1
|
Liu Y, Ma X, Cazzaniga M, Gahan CGM, den Besten HMW, Abee T. Nano in Micro: Novel Concepts in Foodborne Pathogen Transmission and Pathogenesis. Annu Rev Food Sci Technol 2025; 16:245-268. [PMID: 39621535 DOI: 10.1146/annurev-food-111523-121811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
In this article, we highlight novel components of foodborne pathogens that influence their response, physiology, adaptation, and survival in the face of diverse stresses, and consequently have implications for their transmission in the food chain and their pathogenesis. Recent insights into the role of bacteriophages/prophages, bacterial extracellular vesicles, and bacterial microcompartments, which make up the emerging field we coined as "nano in micro," are presented, together with the role of understudied food-relevant substrates in pathogen fitness and virulence. These new insights also lead to reflections on generally adopted laboratory conditions in the long-standing research field of adaptive stress response in foodborne pathogens. In addition, selected examples of the impact of diet and microbiota on intestinal colonization and host invasion are discussed. A final section on risk assessment presents an overview of tools for (kinetic) data modeling and perspectives for the implementation of information derived from whole-genome sequencing, combined with advancements in dose-response models and exposure assessments.
Collapse
Affiliation(s)
- Yue Liu
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands; ,
| | - Xuchuan Ma
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands; ,
| | - Monica Cazzaniga
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Cormac G M Gahan
- School of Pharmacy, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Heidy M W den Besten
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands; ,
| | - Tjakko Abee
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands; ,
| |
Collapse
|
2
|
Ubilla-Rodriguez NC, Andreas MP, Giessen TW. Structural and Biochemical Characterization of a Widespread Enterobacterial Peroxidase Encapsulin. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2415827. [PMID: 40167211 DOI: 10.1002/advs.202415827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/11/2025] [Indexed: 04/02/2025]
Abstract
Encapsulins are self-assembling protein compartments found in prokaryotes and specifically encapsulate dedicated cargo enzymes. The most abundant encapsulin cargo class are Dye-decolorizing Peroxidases (DyPs). It has been previously suggested that DyP encapsulins are involved in oxidative stress resistance and bacterial pathogenicity due to DyPs' inherent ability to reduce and detoxify hydrogen peroxide while oxidizing a broad range of organic co-substrates. Here, we report the structural and biochemical analysis of a DyP encapsulin widely found across enterobacteria. Using bioinformatic approaches, we show that this DyP encapsulin is encoded by a conserved transposon-associated operon, enriched in enterobacterial pathogens. Through low pH and peroxide exposure experiments, we highlight the stability of this DyP encapsulin under harsh conditions and show that DyP catalytic activity is highest at low pH. We determine the structure of the DyP-loaded shell and free DyP via cryo-electron microscopy, revealing the structural basis for DyP cargo loading and peroxide preference. This work lays the foundation to further explore the substrate range and physiological functions of enterobacterial DyP encapsulins.
Collapse
Affiliation(s)
| | - Michael P Andreas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Tobias W Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
3
|
Chen H, Han X, Gao J, Tan X, Dai H, Ma L, Zhang Y. Interfacial-Design Mediated Construction of Hybrid Multicompartment Architectures with Layered Physicochemical Barriers for Separately Sequestration of Oxidation-Reduction Molecules and Their Redox Reaction Regulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412033. [PMID: 40072343 DOI: 10.1002/smll.202412033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/16/2025] [Indexed: 04/11/2025]
Abstract
Hybrid multicompartment artificial architectures, inherited from different compartmental systems, possess separate microenvironments that can perform different functions. Herein, a hybrid compartmentalized architecture via hybridizing ferritin nanocage (Fn) with non-aqueous droplets using aminated-modified amphiphilic gelatin (AGEL) is proposed, which enables the generation of compartmentalized emulsions with hybrid multicompartments. The resulting compartmentalized emulsions are termed "hybrasome". Specifically, by chemically attaching ethylenediamine to gelatin, the programmed noncovalent docking of Fn-AGEL nanoparticles is implemented and their interfacial self-rearrangement generates hybrasome with layered physicochemical barriers. Confocal Laser Scanning Microscopy images show that Fn nanocages are deposited on the non-aqueous droplets, separated by gelatin layers. Interfacial adsorption kinetics reveal that lower permeation and rearrangement rates of Fn are responsible for their double-layered structure formation. By choosing oxidized iron nanoparticles and reductant carnosic acid (CA) as models, these two molecules are co-encapsulated separately within the hybrasome, resulting in significant inhibition of the redox reaction. After structural destruction in the intestine, a redox reaction is triggered and leads to the Fe2+ redox products release, which generates a suitable valence state of iron element for cell absorption. Overall, this approach may open up an avenue for facile construction of hybrid compartmentalized architectures used to co-encapsulate incompatible compounds separately and control the sequential release of targeted components.
Collapse
Affiliation(s)
- Hai Chen
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Xueer Han
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Junlu Gao
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Xiaoyi Tan
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, 400715, China
- Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing, 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, 400715, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
- Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing, 400715, China
| |
Collapse
|
4
|
Jha K, Jaishwal P, Yadav TP, Singh SP. Self-assembling of coiled-coil peptides into virus-like particles: Basic principles, properties, design, and applications with special focus on vaccine design and delivery. Biophys Chem 2025; 318:107375. [PMID: 39674128 DOI: 10.1016/j.bpc.2024.107375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024]
Abstract
Self-assembling peptide nanoparticles (SAPN) based delivery systems, including virus-like particles (VLP), have shown great potential for becoming prominent in next-generation vaccine and drug development. The VLP can mimic properties of natural viral capsid in terms of size (20-200 nm), geometry (i.e., icosahedral structures), and the ability to generate a robust immune response (with multivalent epitopes) through activation of innate and/or adaptive immune signals. In this regard, coiled-coil (CC) domains are suitable building blocks for designing VLP because of their programmable interaction specificity, affinity, and well-established sequence-to-structure relationships. Generally, two CC domains with different oligomeric states (trimer and pentamer) are fused to form a monomeric protein through a short, flexible spacer sequence. By using combinations of symmetry axes (2-, 3- and 5- folds) that are unique to the geometry of the desired protein cage, it is possible, in principle, to assemble well-defined protein cages like VLP. In this review, we have discussed the crystallographic rules and the basic principles involved in the design of CC-based VLP. It also explored the functions of numerous noncovalent interactions in generating stable VLP structures, which play a crucial role in improving the properties of vaccine immunogenicity, drug delivery, and 3D cell culturing.
Collapse
Affiliation(s)
- Kisalay Jha
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari 845401, India
| | - Puja Jaishwal
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari 845401, India
| | - Thakur Prasad Yadav
- Department of Physics, Faculty of Science, University of Allahabad, Prayagraj 211002, India.
| | | |
Collapse
|
5
|
Giessen TW. The Structural Diversity of Encapsulin Protein Shells. Chembiochem 2024; 25:e202400535. [PMID: 39330624 DOI: 10.1002/cbic.202400535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024]
Abstract
Subcellular compartmentalization is a universal feature of all cells. Spatially distinct compartments, be they lipid- or protein-based, enable cells to optimize local reaction environments, store nutrients, and sequester toxic processes. Prokaryotes generally lack intracellular membrane systems and usually rely on protein-based compartments and organelles to regulate and optimize their metabolism. Encapsulins are one of the most diverse and widespread classes of prokaryotic protein compartments. They self-assemble into icosahedral protein shells and are able to specifically internalize dedicated cargo enzymes. This review discusses the structural diversity of encapsulin protein shells, focusing on shell assembly, symmetry, and dynamics. The properties and functions of pores found within encapsulin shells will also be discussed. In addition, fusion and insertion domains embedded within encapsulin shell protomers will be highlighted. Finally, future research directions for basic encapsulin biology, with a focus on the structural understand of encapsulins, are briefly outlined.
Collapse
Affiliation(s)
- Tobias W Giessen
- Department of Biological Chemistry, University of Michigan, Ann Arbor, 1150 W Medical Center Dr, Ann Arbor, MI, 48109-5622, USA
| |
Collapse
|
6
|
Ubilla-Rodriguez NC, Andreas MP, Giessen TW. Structural and biochemical characterization of a widespread enterobacterial peroxidase encapsulin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625667. [PMID: 39651212 PMCID: PMC11623594 DOI: 10.1101/2024.11.27.625667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Encapsulins are self-assembling protein compartments found in prokaryotes and specifically encapsulate dedicated cargo enzymes. The most abundant encapsulin cargo class are Dye-decolorizing Peroxidases (DyPs). It has been previously suggested that DyP encapsulins are involved in oxidative stress resistance and bacterial pathogenicity due to DyPs' inherent ability to reduce and detoxify hydrogen peroxide while oxidizing a broad range of organic co-substrates. Here, we report the structural and biochemical analysis of a DyP encapsulin widely found across enterobacteria. Using bioinformatic approaches, we show that this DyP encapsulin is encoded by a conserved transposon-associated operon, enriched in enterobacterial pathogens. Through low pH and peroxide exposure experiments, we highlight the stability of this DyP encapsulin under harsh conditions and show that DyP catalytic activity is highest at low pH. We determine the structure of the DyP-loaded shell and free DyP via cryo-electron microscopy, revealing the structural basis for DyP cargo loading and peroxide preference. Our work lays the foundation to further explore the substrate range and physiological functions of enterobacterial DyP encapsulins.
Collapse
|
7
|
Huang ZS, Tan XQ, Yang HB, Zeng Y, Chen SJ, Wei ZS, Huang YQ. Mechanistic insights into tris(2-chloroisopropyl) phosphate biomineralization coupled with lead (II) biostabilization driven by denitrifying bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173927. [PMID: 38901584 DOI: 10.1016/j.scitotenv.2024.173927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/24/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024]
Abstract
The ubiquity and persistence of organophosphate esters (OPEs) and heavy metal (HMs) pose global environmental risks. This study explored tris(2-chloroisopropyl)phosphate (TCPP) biomineralization coupled to lead (Pb2+) biostabilization driven by denitrifying bacteria (DNB). The domesticated DNB achieved synergistic bioremoval of TCPP and Pb2+ in the batch bioreactor (efficiency: 98 %).TCPP mineralized into PO43- and Cl-, and Pb2+ precipitated with PO43-. The TCPP-degrading/Pb2+-resistant DNB: Achromobacter, Pseudomonas, Citrobacter, and Stenotrophomonas, dominated the bacterial community, and synergized TCPP biomineralization and Pb2+ biostabilization. Metagenomics and metaproteomics revealed TCPP underwent dechlorination, hydrolysis, the TCA cycle-based dissimilation, and assimilation; Pb2+ was detoxified via bioprecipitation, bacterial membrane biosorption, EPS biocomplexation, and efflux out of cells. TCPP, as an initial donor, along with NO3-, as the terminal acceptor, formed a respiratory redox as the primary energy metabolism. Both TCPP and Pb2+ can stimulate phosphatase expression, which established the mutual enhancements between their bioconversions by catalyzing TCPP dephosphorylation and facilitating Pb2+ bioprecipitation. TCPP may alleviate the Pb2+-induced oxidative stress by aiding protein phosphorylation. 80 % of Pb2+ converted into crystalized pyromorphite. These results provide the mechanistic foundations and help develop greener strategies for synergistic bioremediation of OPEs and HMs.
Collapse
Affiliation(s)
- Zhen-Shan Huang
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Xiu-Qin Tan
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, MEE, Guangzhou 510530, China
| | - Han-Biao Yang
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Yuan Zeng
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - She-Jun Chen
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Zai-Shan Wei
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Yu-Qi Huang
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
8
|
Raza S, Sarkar D, Chan LJG, Mae J, Sutter M, Petzold CJ, Kerfeld CA, Ralston CY, Gupta S, Vermaas JV. Comparative Pore Structure and Dynamics for Bacterial Microcompartment Shell Protein Assemblies in Sheets or Shells. ACS OMEGA 2024; 9:35503-35514. [PMID: 39184480 PMCID: PMC11339822 DOI: 10.1021/acsomega.4c02406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 08/27/2024]
Abstract
Bacterial microcompartments (BMCs) are protein-bound organelles found in some bacteria that encapsulate enzymes for enhanced catalytic activity. These compartments spatially sequester enzymes within semipermeable shell proteins, analogous to many membrane-bound organelles. The shell proteins assemble into multimeric tiles; hexamers, trimers, and pentamers, and these tiles self-assemble into larger assemblies with icosahedral symmetry. While icosahedral shells are the predominant form in vivo, the tiles can also form nanoscale cylinders or sheets. The individual multimeric tiles feature central pores that are key to regulating transport across the protein shell. Our primary interest is to quantify pore shape changes in response to alternative component morphologies at the nanoscale. We used molecular modeling tools to develop atomically detailed models for both planar sheets of tiles and curved structures representative of the complete shells found in vivo. Subsequently, these models were animated using classical molecular dynamics simulations. From the resulting trajectories, we analyzed the overall structural stability, water accessibility to individual residues, water residence time, and pore geometry for the hexameric and trimeric protein tiles from the Haliangium ochraceum model BMC shell. These exhaustive analyses suggest no substantial variation in pore structure or solvent accessibility between the flat and curved shell geometries. We additionally compare our analysis to hydroxyl radical footprinting data to serve as a check against our simulation results, highlighting specific residues where water molecules are bound for a long time. Although with little variation in morphology or water interaction, we propose that the planar and capsular morphology can be used interchangeably when studying permeability through BMC pores.
Collapse
Affiliation(s)
- Saad Raza
- MSU-DOE
Plant Research Laboratory, Michigan State
University, East Lansing, Michigan 48824, United States
| | - Daipayan Sarkar
- MSU-DOE
Plant Research Laboratory, Michigan State
University, East Lansing, Michigan 48824, United States
| | - Leanne Jade G. Chan
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Joshua Mae
- MSU-DOE
Plant Research Laboratory, Michigan State
University, East Lansing, Michigan 48824, United States
| | - Markus Sutter
- MSU-DOE
Plant Research Laboratory, Michigan State
University, East Lansing, Michigan 48824, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Christopher J. Petzold
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Cheryl A. Kerfeld
- MSU-DOE
Plant Research Laboratory, Michigan State
University, East Lansing, Michigan 48824, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Corie Y. Ralston
- Molecular
Foundry Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Sayan Gupta
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Josh V. Vermaas
- MSU-DOE
Plant Research Laboratory, Michigan State
University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
9
|
Su L, Marshall IPG, Teske AP, Yao H, Li J. Genomic characterization of the bacterial phylum Candidatus Effluviviacota, a cosmopolitan member of the global seep microbiome. mBio 2024; 15:e0099224. [PMID: 38980039 PMCID: PMC11323493 DOI: 10.1128/mbio.00992-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024] Open
Abstract
The microbial communities of marine seep sediments contain unexplored physiological and phylogenetic diversity. Here, we examined 30 bacterial metagenome-assembled genomes (MAGs) from cold seeps in the South China Sea, the Indian Ocean, the Scotian Basin, and the Gulf of Mexico, as well as from deep-sea hydrothermal sediments in the Guaymas Basin, Gulf of California. Phylogenetic analyses of these MAGs indicate that they form a distinct phylum-level bacterial lineage, which we propose as a new phylum, Candidatus Effluviviacota, in reference to its preferential occurrence at diverse seep areas. Based on tightly clustered high-quality MAGs, we propose two new genus-level candidatus taxa, Candidatus Effluvivivax and Candidatus Effluvibates. Genomic content analyses indicate that Candidatus Effluviviacota are chemoheterotrophs that harbor the Embden-Meyerhof-Parnas glycolysis pathway. They gain energy by fermenting organic substrates. Additionally, they display potential capabilities for the degradation of cellulose, hemicellulose, starch, xylan, and various peptides. Extracellular anaerobic respiration appears to rely on metals as electron acceptors, with electron transfer primarily mediated by multiheme cytochromes and by a flavin-based extracellular electron transfer (EET) mechanism that involves NADH-quinone oxidoreductase-demethylmenaquinone-synthesizing enzymes, uncharacterized membrane proteins, and flavin-binding proteins, also known as the NUO-DMK-EET-FMN complex. The heterogeneity within the Ca. Effluviviacota phylum suggests varying roles in energy metabolism among different genera. While NUO-DMK-EET-FMN electron transfer has been reported predominantly in Gram-positive bacteria, it is now identified in Ca. Effluviviacota as well. We detected the presence of genes associated with bacterial microcompartments in Ca. Effluviviacota, which can promote specific metabolic processes and protect the cytosol from toxic intermediates. IMPORTANCE The newly discovered bacterial phylum Candidatus Effluviviacota is widespread across diverse seepage ecosystems, marine environments, and freshwater environments, with a notable preference for cold seeps. While maintaining an average abundance of approximately 1% in the global gene catalog of cold seep habitats, it has not hitherto been characterized. The metabolic versatility of Ca. Effluviviacota in anaerobic carbon, hydrogen, and metal cycling aligns with its prevalence in anoxic niches, with a preference for cold seep environments. Variations in metabolic potential between Ca. Effluvivivax and Ca. Effluvibates may contribute to shaping their respective habitat distributions.
Collapse
Affiliation(s)
- Lei Su
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
- Department of Biology, Center for Electromicrobiology (CEM), Section for Microbiology, Aarhus University, Aarhus, Denmark
| | - Ian P. G. Marshall
- Department of Biology, Center for Electromicrobiology (CEM), Section for Microbiology, Aarhus University, Aarhus, Denmark
| | - Andreas P. Teske
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Huiqiang Yao
- MLR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, Guangzhou, China
| | - Jiangtao Li
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| |
Collapse
|
10
|
Barnes AJ, Bennett EF, Vezina B, Hudson AW, Hernandez GE, Nutter NA, Bray AS, Nagpal R, Wyres KL, Zafar MA. Ethanolamine metabolism through two genetically distinct loci enables Klebsiella pneumoniae to bypass nutritional competition in the gut. PLoS Pathog 2024; 20:e1012189. [PMID: 38713723 PMCID: PMC11101070 DOI: 10.1371/journal.ppat.1012189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/17/2024] [Accepted: 04/10/2024] [Indexed: 05/09/2024] Open
Abstract
Successful microbial colonization of the gastrointestinal (GI) tract hinges on an organism's ability to overcome the intense competition for nutrients in the gut between the host and the resident gut microbiome. Enteric pathogens can exploit ethanolamine (EA) in the gut to bypass nutrient competition. However, Klebsiella pneumoniae (K. pneumoniae) is an asymptomatic gut colonizer and, unlike well-studied enteric pathogens, harbors two genetically distinct ethanolamine utilization (eut) loci. Our investigation uncovered unique roles for each eut locus depending on EA utilization as a carbon or nitrogen source. Murine gut colonization studies demonstrated the necessity of both eut loci in the presence of intact gut microbiota for robust GI colonization by K. pneumoniae. Additionally, while some Escherichia coli gut isolates could metabolize EA, other commensals were incapable, suggesting that EA metabolism likely provides K. pneumoniae a selective advantage in gut colonization. Molecular and bioinformatic analyses unveiled the conservation of two eut loci among K. pneumoniae and a subset of the related taxa in the K. pneumoniae species complex, with the NtrC-RpoN regulatory cascade playing a pivotal role in regulation. These findings identify EA metabolism as a critical driver of K. pneumoniae niche establishment in the gut and propose microbial metabolism as a potential therapeutic avenue to combat K. pneumoniae infections.
Collapse
Affiliation(s)
- Andrew J. Barnes
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Emma F. Bennett
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Ben Vezina
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Andrew W. Hudson
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Giovanna E. Hernandez
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Noah A. Nutter
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Andrew S. Bray
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Ravinder Nagpal
- Department of Health, Nutrition, and Food Science, Florida State University, Tallahassee, Florida, United States of America
| | - Kelly L. Wyres
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - M. Ammar Zafar
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| |
Collapse
|
11
|
Jones JA, Andreas MP, Giessen TW. Structural basis for peroxidase encapsulation inside the encapsulin from the Gram-negative pathogen Klebsiella pneumoniae. Nat Commun 2024; 15:2558. [PMID: 38519509 PMCID: PMC10960027 DOI: 10.1038/s41467-024-46880-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Encapsulins are self-assembling protein nanocompartments capable of selectively encapsulating dedicated cargo proteins, including enzymes involved in iron storage, sulfur metabolism, and stress resistance. They represent a unique compartmentalization strategy used by many pathogens to facilitate specialized metabolic capabilities. Encapsulation is mediated by specific cargo protein motifs known as targeting peptides (TPs), though the structural basis for encapsulation of the largest encapsulin cargo class, dye-decolorizing peroxidases (DyPs), is currently unknown. Here, we characterize a DyP-containing encapsulin from the enterobacterial pathogen Klebsiella pneumoniae. By combining cryo-electron microscopy with TP and TP-binding site mutagenesis, we elucidate the molecular basis for cargo encapsulation. TP binding is mediated by cooperative hydrophobic and ionic interactions as well as shape complementarity. Our results expand the molecular understanding of enzyme encapsulation inside protein nanocompartments and lay the foundation for rationally modulating encapsulin cargo loading for biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Jesse A Jones
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael P Andreas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tobias W Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Raza S, Sarkar D, Chan LJG, Mae J, Sutter M, Petzold CJ, Kerfeld CA, Ralston CY, Gupta S, Vermaas JV. Comparative Pore Structure and Dynamics for Bacterial Microcompartment Shell Protein Assemblies in Sheets or Shells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584231. [PMID: 38559214 PMCID: PMC10980050 DOI: 10.1101/2024.03.12.584231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Bacterial microcompartments (BMCs) are protein-bound organelles found in some bacteria which encapsulate enzymes for enhanced catalytic activity. These compartments spatially sequester enzymes within semi-permeable shell proteins, analogous to many membrane-bound organelles. The shell proteins assemble into multimeric tiles; hexamers, trimers, and pentamers, and these tiles self-assemble into larger assemblies with icosahedral symmetry. While icosahedral shells are the predominant form in vivo, the tiles can also form nanoscale cylinders or sheets. The individual multimeric tiles feature central pores that are key to regulating transport across the protein shell. Our primary interest is to quantify pore shape changes in response to alternative component morphologies at the nanoscale. We use molecular modeling tools to develop atomically detailed models for both planar sheets of tiles and curved structures representative of the complete shells found in vivo. Subsequently, these models were animated using classical molecular dynamics simulations. From the resulting trajectories, we analyzed overall structural stability, water accessibility to individual residues, water residence time, and pore geometry for the hexameric and trimeric protein tiles from the Haliangium ochraceum model BMC shell. These exhaustive analyses suggest no substantial variation in pore structure or solvent accessibility between the flat and curved shell geometries. We additionally compare our analysis to hydroxyl radical footprinting data to serve as a check against our simulation results, highlighting specific residues where water molecules are bound for a long time. Although with little variation in morphology or water interaction, we propose that the planar and capsular morphology can be used interchangeably when studying permeability through BMC pores.
Collapse
Affiliation(s)
- Saad Raza
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing MI 48824
| | - Daipayan Sarkar
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing MI 48824
| | - Leanne Jade G Chan
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Current address: Calico Life Sciences LLC, South San Francisco, CA 94080
| | - Joshua Mae
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing MI 48824
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing MI 48824
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720
| | - Christopher J Petzold
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing MI 48824
- Department Of Biochemistry and Molecular Biology, Michigan State University, East Lansing MI 48824
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720
| | - Corie Y Ralston
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720
| | - Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720
| | - Josh V Vermaas
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing MI 48824
- Department Of Biochemistry and Molecular Biology, Michigan State University, East Lansing MI 48824
| |
Collapse
|
13
|
Benisch R, Andreas MP, Giessen TW. A widespread bacterial protein compartment sequesters and stores elemental sulfur. SCIENCE ADVANCES 2024; 10:eadk9345. [PMID: 38306423 PMCID: PMC10836720 DOI: 10.1126/sciadv.adk9345] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Subcellular compartments often serve to store nutrients or sequester labile or toxic compounds. As bacteria mostly do not possess membrane-bound organelles, they often have to rely on protein-based compartments. Encapsulins are one of the most prevalent protein-based compartmentalization strategies found in prokaryotes. Here, we show that desulfurase encapsulins can sequester and store large amounts of crystalline elemental sulfur. We determine the 1.78-angstrom cryo-EM structure of a 24-nanometer desulfurase-loaded encapsulin. Elemental sulfur crystals can be formed inside the encapsulin shell in a desulfurase-dependent manner with l-cysteine as the sulfur donor. Sulfur accumulation can be influenced by the concentration and type of sulfur source in growth medium. The selectively permeable protein shell allows the storage of redox-labile elemental sulfur by excluding cellular reducing agents, while encapsulation substantially improves desulfurase activity and stability. These findings represent an example of a protein compartment able to accumulate and store elemental sulfur.
Collapse
Affiliation(s)
- Robert Benisch
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael P. Andreas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tobias W. Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Nabi S, Sofi FA, Jan Q, Bhat AY, Ingole PP, Bayati M, Bhat MA. The enhanced electrocatalytic performance of nanoscopic Cu 6Pd 12Fe 12 heterometallic molecular box encaged cytochrome c. NANOSCALE 2023; 16:411-426. [PMID: 38073595 DOI: 10.1039/d3nr03451h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Designing molecular cages for atomic/molecular scale guests is a special art used by material chemists to harvest the virtues of the otherwise vile idea known as "the cage". In recent years, there has been a notable surge in research investigations focused on the exploration and utilization of the distinct advantages offered by this art in the advancement of efficient and stable bio-electrocatalysts. This usually is achieved through encapsulation of biologically accessible redox proteins within specifically designed molecular cages and matrices. Herein, we present the first successful method for encaging cytochrome c (Cyt-c), a clinically significant enzyme system, inside coordination-driven self-assembled Cu6Pd12Fe12 heterometallic hexagonal molecular boxes (Cu-HMHMB), in order to create a Cyt-c@Cu-HMHMB composite. 1H NMR, FTIR, and UV-Vis spectroscopy, ICP-MS, TGA and voltammetric investigations carried out on the so-crafted Cyt-c@Cu-HMHMB bio-inorganic composite imply that the presented strategy ensures encaging of Cyt-c in a catalytically active, electrochemically stable and redox-accessible state inside the Cu-HMHMB. Cyt-c@Cu-HMHMB is demonstrated to exhibit excellent stability and electrocatalytic activity toward very selective, sensitive electrochemical sensing of nitrite exhibiting a limit of detection as low as 32 nanomolar and a sensitivity of 7.28 μA μM-1 cm-2. Importantly, Cyt-c@Cu-HMHMB is demonstrated to exhibit an excellent electrocatalytic performance toward the 4ē pathway oxygen reduction reaction (ORR) with an onset potential of 0.322 V (vs. RHE) and a Tafel slope of 266 mV dec-1. Our findings demonstrate that Cu-HMHMB is an excellent matrix for Cyt-c encapsulation. We anticipate that the entrapment-based technique described here will be applicable to other enzyme systems and Cyt-c for various electrochemical and other applications.
Collapse
Affiliation(s)
- Shazia Nabi
- Department of Chemistry, University of Kashmir, Srinagar-190006, J & K, India.
| | - Feroz Ahmad Sofi
- Department of Chemistry, University of Kashmir, Srinagar-190006, J & K, India.
| | - Qounsar Jan
- Department of Chemistry, University of Kashmir, Srinagar-190006, J & K, India.
| | - Aamir Y Bhat
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India
| | - Pravin P Ingole
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India
| | - Maryam Bayati
- Department of Mechanical & Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Mohsin Ahmad Bhat
- Department of Chemistry, University of Kashmir, Srinagar-190006, J & K, India.
| |
Collapse
|
15
|
Yao L, Wu X, Jiang X, Shan M, Zhang Z, Li Y, Yang A, Li Y, Yang C. Subcellular compartmentalization in the biosynthesis and engineering of plant natural products. Biotechnol Adv 2023; 69:108258. [PMID: 37722606 DOI: 10.1016/j.biotechadv.2023.108258] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Plant natural products (PNPs) are specialized metabolites with diverse bioactivities. They are extensively used in the pharmaceutical, cosmeceutical and food industries. PNPs are synthesized in plant cells by enzymes that are distributed in different subcellular compartments with unique microenvironments, such as ions, co-factors and substrates. Plant metabolic engineering is an emerging and promising approach for the sustainable production of PNPs, for which the knowledge of the subcellular compartmentalization of their biosynthesis is instrumental. In this review we describe the state of the art on the role of subcellular compartments in the biosynthesis of major types of PNPs, including terpenoids, phenylpropanoids, alkaloids and glucosinolates, and highlight the efforts to target biosynthetic pathways to subcellular compartments in plants. In addition, we will discuss the challenges and strategies in the field of plant synthetic biology and subcellular engineering. We expect that newly developed methods and tools, together with the knowledge gained from the microbial chassis, will greatly advance plant metabolic engineering.
Collapse
Affiliation(s)
- Lu Yao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Xiuming Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Xun Jiang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Muhammad Shan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Zhuoxiang Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Yiting Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Yu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Changqing Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China.
| |
Collapse
|
16
|
Česle EEL, Ta Rs K, Jansons J, Kalniņš G. Modulation of Hybrid GRM2-type Bacterial Microcompartment Shells through BMC-H Shell Protein Fusion and Incorporation of Non-native BMC-T Shell Proteins. ACS Synth Biol 2023; 12:3275-3286. [PMID: 37937366 DOI: 10.1021/acssynbio.3c00281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Bacterial microcompartments (BMCs) are organelle-like structures in bacteria that facilitate a wide range of enzymatic reactions. The microcompartment shell contains an encapsulated enzymatic core and, in contrast to phospholipid-based eukaryotic organelle membranes, has a pseudoicosahedral shape composed of BMC-H, BMC-T, and BMC-P proteins with conserved structures. This semipermeable microcompartment shell delineates the enzymatic core assemblies and the intermediates from the rest of the cell. It is also thought to function as a barrier against toxic intermediates as well as to increase the reaction rate. These properties of BMCs have made them intriguing candidates for biotechnological applications, for which it is important to explore the potential scope of the BMC shell modulation possibilities. In this work, we explore two BMC shell modulation mechanisms: first, confirming the incorporation of three trimeric BMC-T shell proteins and two truncated BMC-T shell proteins into Klebsiella pneumoniae GRM2-type BMC protein shells containing no representatives of this group, and second, producing BMC particles from double- and triple-fused hexameric BMC-H shell proteins. These results reveal the potential for "mix and match" synthetic BMC shell formation to ensure shell properties specifically suited to the encapsulated cargo and show for the first time the involvement of an essentially dimeric pseudohexameric shell protein in BMC shell formation.
Collapse
Affiliation(s)
- Eva Emi Lija Česle
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| | - Kaspars Ta Rs
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
- University of Latvia, Jelgavas 1, Riga 1004, Latvia
| | - Juris Jansons
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| | - Gints Kalniņš
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| |
Collapse
|
17
|
Jones JA, Andreas MP, Giessen TW. Structural basis for peroxidase encapsulation in a protein nanocompartment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558302. [PMID: 37790520 PMCID: PMC10542125 DOI: 10.1101/2023.09.18.558302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Encapsulins are self-assembling protein nanocompartments capable of selectively encapsulating dedicated cargo proteins, including enzymes involved in iron storage, sulfur metabolism, and stress resistance. They represent a unique compartmentalization strategy used by many pathogens to facilitate specialized metabolic capabilities. Encapsulation is mediated by specific cargo protein motifs known as targeting peptides (TPs), though the structural basis for encapsulation of the largest encapsulin cargo class, dye-decolorizing peroxidases (DyPs), is currently unknown. Here, we characterize a DyP-containing encapsulin from the enterobacterial pathogen Klebsiella pneumoniae. By combining cryo-electron microscopy with TP mutagenesis, we elucidate the molecular basis for cargo encapsulation. TP binding is mediated by cooperative hydrophobic and ionic interactions as well as shape complementarity. Our results expand the molecular understanding of enzyme encapsulation inside protein nanocompartments and lay the foundation for rationally modulating encapsulin cargo loading for biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Jesse A. Jones
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael P. Andreas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tobias W. Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Ni T, Jiang Q, Ng PC, Shen J, Dou H, Zhu Y, Radecke J, Dykes GF, Huang F, Liu LN, Zhang P. Intrinsically disordered CsoS2 acts as a general molecular thread for α-carboxysome shell assembly. Nat Commun 2023; 14:5512. [PMID: 37679318 PMCID: PMC10484944 DOI: 10.1038/s41467-023-41211-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023] Open
Abstract
Carboxysomes are a paradigm of self-assembling proteinaceous organelles found in nature, offering compartmentalisation of enzymes and pathways to enhance carbon fixation. In α-carboxysomes, the disordered linker protein CsoS2 plays an essential role in carboxysome assembly and Rubisco encapsulation. Its mechanism of action, however, is not fully understood. Here we synthetically engineer α-carboxysome shells using minimal shell components and determine cryoEM structures of these to decipher the principle of shell assembly and encapsulation. The structures reveal that the intrinsically disordered CsoS2 C-terminus is well-structured and acts as a universal "molecular thread" stitching through multiple shell protein interfaces. We further uncover in CsoS2 a highly conserved repetitive key interaction motif, [IV]TG, which is critical to the shell assembly and architecture. Our study provides a general mechanism for the CsoS2-governed carboxysome shell assembly and cargo encapsulation and further advances synthetic engineering of carboxysomes for diverse biotechnological applications.
Collapse
Affiliation(s)
- Tao Ni
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Qiuyao Jiang
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Pei Cing Ng
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Juan Shen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Hao Dou
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Yanan Zhu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Julika Radecke
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Gregory F Dykes
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Fang Huang
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China.
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, OX3 7BN, UK.
| |
Collapse
|
19
|
van der Ven AM, Gyamfi H, Suttisansanee U, Ahmad MS, Su Z, Taylor RM, Poole A, Chiorean S, Daub E, Urquhart T, Honek JF. Molecular Engineering of E. coli Bacterioferritin: A Versatile Nanodimensional Protein Cage. Molecules 2023; 28:4663. [PMID: 37375226 DOI: 10.3390/molecules28124663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Currently, intense interest is focused on the discovery and application of new multisubunit cage proteins and spherical virus capsids to the fields of bionanotechnology, drug delivery, and diagnostic imaging as their internal cavities can serve as hosts for fluorophores or bioactive molecular cargo. Bacterioferritin is unusual in the ferritin protein superfamily of iron-storage cage proteins in that it contains twelve heme cofactors and is homomeric. The goal of the present study is to expand the capabilities of ferritins by developing new approaches to molecular cargo encapsulation employing bacterioferritin. Two strategies were explored to control the encapsulation of a diverse range of molecular guests compared to random entrapment, a predominant strategy employed in this area. The first was the inclusion of histidine-tag peptide fusion sequences within the internal cavity of bacterioferritin. This approach allowed for the successful and controlled encapsulation of a fluorescent dye, a protein (fluorescently labeled streptavidin), or a 5 nm gold nanoparticle. The second strategy, termed the heme-dependent cassette strategy, involved the substitution of the native heme with heme analogs attached to (i) fluorescent dyes or (ii) nickel-nitrilotriacetate (NTA) groups (which allowed for controllable encapsulation of a histidine-tagged green fluorescent protein). An in silico docking approach identified several small molecules able to replace the heme and capable of controlling the quaternary structure of the protein. A transglutaminase-based chemoenzymatic approach to surface modification of this cage protein was also accomplished, allowing for future nanoparticle targeting. This research presents novel strategies to control a diverse set of molecular encapsulations and adds a further level of sophistication to internal protein cavity engineering.
Collapse
Affiliation(s)
- Anton M van der Ven
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Hawa Gyamfi
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | | | - Muhammad S Ahmad
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Zhengding Su
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Robert M Taylor
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Amanda Poole
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Sorina Chiorean
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Elisabeth Daub
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Taylor Urquhart
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - John F Honek
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
20
|
Turali-Emre ES, Emre AE, Vecchio DA, Kadiyala U, VanEpps JS, Kotov NA. Self-Organization of Iron Sulfide Nanoparticles into Complex Multicompartment Supraparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211244. [PMID: 36965166 PMCID: PMC10265277 DOI: 10.1002/adma.202211244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/02/2023] [Indexed: 06/09/2023]
Abstract
Self-assembled compartments from nanoscale components are found in all life forms. Their characteristic dimensions are in 50-1000 nm scale, typically assembled from a variety of bioorganic "building blocks". Among the various functions that these mesoscale compartments carry out, protection of the content from the environment is central. Finding synthetic pathways to similarly complex and functional particles from technologically friendly inorganic nanoparticles (NPs) is needed for a multitude of biomedical, biochemical, and biotechnological processes. Here, it is shown that FeS2 NPs stabilized by l-cysteine self-assemble into multicompartment supraparticles (mSPs). The NPs initially produce ≈55 nm concave assemblies that reconfigure into ≈75 nm closed mSPs with ≈340 interconnected compartments with an average size of ≈5 nm. The intercompartmental partitions and mSP surface are formed primarily from FeS2 and Fe2 O3 NPs, respectively. The intermediate formation of cup-like particles enables encapsulation of biological cargo. This capability is demonstrated by loading mSPs with DNA and subsequent transfection of mammalian cells. Also it is found that the temperature stability of the DNA cargo is enhanced compared to the traditional delivery vehicles. These findings demonstrate that biomimetic compartmentalized particles can be used to successfully encapsulate and enhance temperature stability of the nucleic acid cargo for a variety of bioapplications.
Collapse
Affiliation(s)
- E. Sumeyra Turali-Emre
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, MI, 48109, USA
| | - Ahmet E. Emre
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, MI, 48109, USA
| | - Drew A. Vecchio
- Chemical Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, MI, 48109, USA
| | - Usha Kadiyala
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, MI, 48109, USA
| | - J. Scott VanEpps
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Macromolecular Science and Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, MI, 48109, USA
| | - Nicholas A. Kotov
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Chemical Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Materials Science and Engineering Department, University of Michigan Ann Arbor, MI, 48109, USA
- Macromolecular Science and Engineering Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute University of Michigan; University of Michigan; Ann Arbor, MI, 48109, USA
| |
Collapse
|
21
|
Abstract
Encapsulins are a recently discovered class of prokaryotic self-assembling icosahedral protein nanocompartments measuring between 24 and 42 nm in diameter, capable of selectively encapsulating dedicated cargo proteins in vivo. They have been classified into four families based on sequence identity and operon structure, and thousands of encapsulin systems have recently been computationally identified across a wide range of bacterial and archaeal phyla. Cargo encapsulation is mediated by the presence of specific targeting motifs found in all native cargo proteins that interact with the interior surface of the encapsulin shell during self-assembly. Short C-terminal targeting peptides (TPs) are well documented in Family 1 encapsulins, while more recently, larger N-terminal targeting domains (TDs) have been discovered in Family 2. The modular nature of TPs and their facile genetic fusion to non-native cargo proteins of interest has made cargo encapsulation, both in vivo and in vitro, readily exploitable and has therefore resulted in a range of rationally engineered nano-compartmentalization systems. This review summarizes current knowledge on cargo protein encapsulation within encapsulins and highlights select studies that utilize TP fusions to non-native cargo in creative and useful ways.
Collapse
Affiliation(s)
- Jesse A Jones
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Robert Benisch
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Tobias W Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
22
|
McNeale D, Esquirol L, Okada S, Strampel S, Dashti N, Rehm B, Douglas T, Vickers C, Sainsbury F. Tunable In Vivo Colocalization of Enzymes within P22 Capsid-Based Nanoreactors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17705-17715. [PMID: 36995754 DOI: 10.1021/acsami.3c00971] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Virus-like particles (VLPs) derived from bacteriophage P22 have been explored as biomimetic catalytic compartments. In vivo colocalization of enzymes within P22 VLPs uses sequential fusion to the scaffold protein, resulting in equimolar concentrations of enzyme monomers. However, control over enzyme stoichiometry, which has been shown to influence pathway flux, is key to realizing the full potential of P22 VLPs as artificial metabolons. We present a tunable strategy for stoichiometric control over in vivo co-encapsulation of P22 cargo proteins, verified for fluorescent protein cargo by Förster resonance energy transfer. This was then applied to a two-enzyme reaction cascade. l-homoalanine, an unnatural amino acid and chiral precursor to several drugs, can be synthesized from the readily available l-threonine by the sequential activity of threonine dehydratase and glutamate dehydrogenase. We found that the loading density of both enzymes influences their activity, with higher activity found at lower loading density implying an impact of molecular crowding on enzyme activity. Conversely, increasing overall loading density by increasing the amount of threonine dehydratase can increase activity from the rate-limiting glutamate dehydrogenase. This work demonstrates the in vivo colocalization of multiple heterologous cargo proteins in a P22-based nanoreactor and shows that controlled stoichiometry of individual enzymes in an enzymatic cascade is required for the optimal design of nanoscale biocatalytic compartments.
Collapse
Affiliation(s)
- Donna McNeale
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, QLD 4111, Australia
- CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Dutton Park, QLD 4102, Australia
| | - Lygie Esquirol
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, QLD 4111, Australia
- CSIRO Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, ACT 2601, Australia
| | - Shoko Okada
- CSIRO Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, ACT 2601, Australia
| | - Shai Strampel
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, QLD 4111, Australia
| | - Noor Dashti
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, QLD 4111, Australia
| | - Bernd Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, QLD 4111, Australia
| | - Trevor Douglas
- Department of Chemistry, Indiana University, Indiana University, Bloomington, Indiana 47405, United States
| | - Claudia Vickers
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, QLD 4111, Australia
- CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Dutton Park, QLD 4102, Australia
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Biological and Environmental Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Frank Sainsbury
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, QLD 4111, Australia
- CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Dutton Park, QLD 4102, Australia
| |
Collapse
|
23
|
Lavania A, Carpenter WB, Oltrogge LM, Perez D, Turnšek JB, Savage DF, Moerner WE. Exploring Masses and Internal Mass Distributions of Single Carboxysomes in Free Solution Using Fluorescence and Interferometric Scattering in an Anti-Brownian Trap. J Phys Chem B 2022; 126:8747-8759. [PMID: 36282790 PMCID: PMC9639131 DOI: 10.1021/acs.jpcb.2c05939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/10/2022] [Indexed: 01/11/2023]
Abstract
Carboxysomes are self-assembled bacterial microcompartments that facilitate carbon assimilation by colocalizing the enzymes of CO2 fixation within a protein shell. These microcompartments can be highly heterogeneous in their composition and filling, so measuring the mass and loading of an individual carboxysome would allow for better characterization of its assembly and function. To enable detailed and extended characterizations of single nanoparticles in solution, we recently demonstrated an improved interferometric scattering anti-Brownian electrokinetic (ISABEL) trap, which tracks the position of a single nanoparticle via its scattering of a near-infrared beam and applies feedback to counteract its Brownian motion. Importantly, the scattering signal can be related to the mass of nanoscale proteinaceous objects, whose refractive indices are well-characterized. We calibrate single-particle scattering cross-section measurements in the ISABEL trap and determine individual carboxysome masses in the 50-400 MDa range by analyzing their scattering cross sections with a core-shell model. We further investigate carboxysome loading by combining mass measurements with simultaneous fluorescence reporting from labeled internal components. This method may be extended to other biological objects, such as viruses or extracellular vesicles, and can be combined with orthogonal fluorescence reporters to achieve precise physical and chemical characterization of individual nanoscale biological objects.
Collapse
Affiliation(s)
- Abhijit
A. Lavania
- Department
of Chemistry, Stanford University, Stanford, California94305, United States
- Department
of Applied Physics, Stanford University, Stanford, California94305, United States
| | - William B. Carpenter
- Department
of Chemistry, Stanford University, Stanford, California94305, United States
| | - Luke M. Oltrogge
- Department
of Molecular and Cell Biology, University
of California Berkeley, Berkeley, California94720, United States
| | - Davis Perez
- Department
of Chemistry, Stanford University, Stanford, California94305, United States
| | - Julia B. Turnšek
- Department
of Molecular and Cell Biology, University
of California Berkeley, Berkeley, California94720, United States
| | - David F. Savage
- Department
of Molecular and Cell Biology, University
of California Berkeley, Berkeley, California94720, United States
| | - W. E. Moerner
- Department
of Chemistry, Stanford University, Stanford, California94305, United States
- Department
of Applied Physics, Stanford University, Stanford, California94305, United States
| |
Collapse
|
24
|
Getting the Payload in Place - Unravelling the Complexities of Making a Bacterial Microcompartment. J Bacteriol 2022; 204:e0012722. [PMID: 36000835 PMCID: PMC9487458 DOI: 10.1128/jb.00127-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial microcompartments (BMCs) are complex macromolecular assemblies composed of any outer protein shell that encases a specific metabolic pathway cargo. Recent research is now starting to unravel some of the processes that are involved in directing the enzyme cargo to the inside of the BMC. In particular, an article in this issue of J Bacteriol by N. W. Kennedy, C. E. Mills, C. H. Abrahamson, A. Archer, et al. (J Bacteriol 204:e00576-21, 2022, https://doi.org/10.1128/jb.00576-21) highlights the role played by the shell protein PduB in coordinating this internalization process.
Collapse
|
25
|
P Patterson D, Hjorth C, Hernandez Irias A, Hewagama N, Bird J. Delayed In Vivo Encapsulation of Enzymes Alters the Catalytic Activity of Virus-Like Particle Nanoreactors. ACS Synth Biol 2022; 11:2956-2968. [PMID: 36073831 DOI: 10.1021/acssynbio.1c00636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Encapsulation of enzymes inside protein cage structures, mimicking protein-based organelle structures found in nature, has great potential for the development of new catalytic materials with enhanced properties. In vitro and in vivo methodologies have been developed for the encapsulation of enzymes within protein cage structures of several types, particularly virus-like particles (VLPs), with the ability to retain the activity of the encapsulated enzymes. Here, we examine the in vivo encapsulation of enzymes within the bacteriophage P22 derived VLP and show that some enzymes may require a delay in encapsulation to allow proper folding and maturation before they can be encapsulated inside P22 as fully active enzymes. Using a sequential expression strategy, where enzyme cargoes are first expressed, allowed to fold, and later encapsulated by the expression of the P22 coat protein, altered enzymatic activities are obtained in comparison to enzymes encapsulated in P22 VLPs using a simultaneous coexpression strategy. The strategy and results discussed here highlight important considerations for researchers investigating the encapsulation of enzymes inside confined reaction environments via in vivo routes and provide a potential solution for those that have been unable to produce active enzymes upon encapsulation.
Collapse
Affiliation(s)
- Dustin P Patterson
- Department of Chemistry and Biochemistry, The University of Texas at Tyler, 3900 University Blvd., Tyler, Texas 75799, United States
| | - Christy Hjorth
- Department of Chemistry and Biochemistry, The University of Texas at Tyler, 3900 University Blvd., Tyler, Texas 75799, United States
| | - Andrea Hernandez Irias
- Department of Chemistry and Biochemistry, The University of Texas at Tyler, 3900 University Blvd., Tyler, Texas 75799, United States
| | - Nathasha Hewagama
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Jessica Bird
- Department of Chemistry and Biochemistry, The University of Texas at Tyler, 3900 University Blvd., Tyler, Texas 75799, United States
| |
Collapse
|
26
|
Strobl K, Selivanovitch E, Ibáñez-Freire P, Moreno-Madrid F, Schaap IAT, Delgado-Buscalioni R, Douglas T, de Pablo PJ. Electromechanical Photophysics of GFP Packed Inside Viral Protein Cages Probed by Force-Fluorescence Hybrid Single-Molecule Microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200059. [PMID: 35718881 PMCID: PMC9528512 DOI: 10.1002/smll.202200059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Packing biomolecules inside virus capsids has opened new avenues for the study of molecular function in confined environments. These systems not only mimic the highly crowded conditions in nature, but also allow their manipulation at the nanoscale for technological applications. Here, green fluorescent proteins are packed in virus-like particles derived from P22 bacteriophage procapsids. The authors explore individual virus cages to monitor their emission signal with total internal reflection fluorescence microscopy while simultaneously changing the microenvironment with the stylus of atomic force microscopy. The mechanical and electronic quenching can be decoupled by ≈10% each using insulator and conductive tips, respectively. While with conductive tips the fluorescence quenches and recovers regardless of the structural integrity of the capsid, with the insulator tips quenching only occurs if the green fluorescent proteins remain organized inside the capsid. The electronic quenching is associated with the coupling of the protein fluorescence emission with the tip surface plasmon resonance. In turn, the mechanical quenching is a consequence of the unfolding of the aggregated proteins during the mechanical disruption of the capsid.
Collapse
Affiliation(s)
- Klara Strobl
- Department of Condensed Matter Physics, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | | | - Pablo Ibáñez-Freire
- Department of Condensed Matter Physics, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Francisco Moreno-Madrid
- Department of Condensed Matter Physics, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | | | - Rafael Delgado-Buscalioni
- Department of Condensed Matter Physics, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute of Condensed Matter Physics (IFIMAC), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Trevor Douglas
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Pedro J de Pablo
- Department of Condensed Matter Physics, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute of Condensed Matter Physics (IFIMAC), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| |
Collapse
|
27
|
Tsidilkovski L, Mohajerani F, Hagan MF. Microcompartment assembly around multicomponent fluid cargoes. J Chem Phys 2022; 156:245104. [PMID: 35778087 PMCID: PMC9249432 DOI: 10.1063/5.0089556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This article describes dynamical simulations of the assembly of an icosahedral protein shell around a bicomponent fluid cargo. Our simulations are motivated by bacterial microcompartments, which are protein shells found in bacteria that assemble around a complex of enzymes and other components involved in certain metabolic processes. The simulations demonstrate that the relative interaction strengths among the different cargo species play a key role in determining the amount of each species that is encapsulated, their spatial organization, and the nature of the shell assembly pathways. However, the shell protein–shell protein and shell protein–cargo component interactions that help drive assembly and encapsulation also influence cargo composition within certain parameter regimes. These behaviors are governed by a combination of thermodynamic and kinetic effects. In addition to elucidating how natural microcompartments encapsulate multiple components involved within reaction cascades, these results have implications for efforts in synthetic biology to colocalize alternative sets of molecules within microcompartments to accelerate specific reactions. More broadly, the results suggest that coupling between self-assembly and multicomponent liquid–liquid phase separation may play a role in the organization of the cellular cytoplasm.
Collapse
Affiliation(s)
- Lev Tsidilkovski
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Farzaneh Mohajerani
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Michael F Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| |
Collapse
|
28
|
Tyukodi B, Mohajerani F, Hall DM, Grason GM, Hagan MF. Thermodynamic Size Control in Curvature-Frustrated Tubules: Self-Limitation with Open Boundaries. ACS NANO 2022; 16:9077-9085. [PMID: 35638478 PMCID: PMC10362403 DOI: 10.1021/acsnano.2c00865] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We use computational modeling to investigate the assembly thermodynamics of a particle-based model for geometrically frustrated assembly, in which the local packing geometry of subunits is incompatible with uniform, strain-free large-scale assembly. The model considers discrete triangular subunits that drive assembly toward a closed, hexagonal-ordered tubule, but have geometries that locally favor negative Gaussian curvature. We use dynamical Monte Carlo simulations and enhanced sampling methods to compute the free energy landscape and corresponding self-assembly behavior as a function of experimentally accessible parameters that control assembly driving forces and the magnitude of frustration. The results determine the parameter range where finite-temperature self-limiting assembly occurs, in which the equilibrium assembly size distribution is sharply peaked around a well-defined finite size. The simulations also identify two mechanisms by which the system can escape frustration and assemble to unlimited size, and determine the particle-scale properties of subunits that suppress unbounded growth.
Collapse
Affiliation(s)
- Botond Tyukodi
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Farzaneh Mohajerani
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, United States
| | - Douglas M Hall
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Gregory M Grason
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, United States
| |
Collapse
|
29
|
Abstract
Subcellular compartmentalization is a defining feature of all cells. In prokaryotes, compartmentalization is generally achieved via protein-based strategies. The two main classes of microbial protein compartments are bacterial microcompartments and encapsulin nanocompartments. Encapsulins self-assemble into proteinaceous shells with diameters between 24 and 42 nm and are defined by the viral HK97-fold of their shell protein. Encapsulins have the ability to encapsulate dedicated cargo proteins, including ferritin-like proteins, peroxidases, and desulfurases. Encapsulation is mediated by targeting sequences present in all cargo proteins. Encapsulins are found in many bacterial and archaeal phyla and have been suggested to play roles in iron storage, stress resistance, sulfur metabolism, and natural product biosynthesis. Phylogenetic analyses indicate that they share a common ancestor with viral capsid proteins. Many pathogens encode encapsulins, and recent evidence suggests that they may contribute toward pathogenicity. The existing information on encapsulin structure, biochemistry, biological function, and biomedical relevance is reviewed here.
Collapse
Affiliation(s)
- Tobias W. Giessen
- Departments of Biomedical Engineering and Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
30
|
USF Genomics Class 2020, USF Genomics Class 2021, Sutter M, Kerfeld CA, Scott KM. Atypical Carboxysome Loci: JEEPs or Junk? Front Microbiol 2022; 13:872708. [PMID: 35668770 PMCID: PMC9164163 DOI: 10.3389/fmicb.2022.872708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
Carboxysomes, responsible for a substantial fraction of CO2 fixation on Earth, are proteinaceous microcompartments found in many autotrophic members of domain Bacteria, primarily from the phyla Proteobacteria and Cyanobacteria. Carboxysomes facilitate CO2 fixation by the Calvin-Benson-Bassham (CBB) cycle, particularly under conditions where the CO2 concentration is variable or low, or O2 is abundant. These microcompartments are composed of an icosahedral shell containing the enzymes ribulose 1,5-carboxylase/oxygenase (RubisCO) and carbonic anhydrase. They function as part of a CO2 concentrating mechanism, in which cells accumulate HCO3 - in the cytoplasm via active transport, HCO3 - enters the carboxysomes through pores in the carboxysomal shell proteins, and carboxysomal carbonic anhydrase facilitates the conversion of HCO3 - to CO2, which RubisCO fixes. Two forms of carboxysomes have been described: α-carboxysomes and β-carboxysomes, which arose independently from ancestral microcompartments. The α-carboxysomes present in Proteobacteria and some Cyanobacteria have shells comprised of four types of proteins [CsoS1 hexamers, CsoS4 pentamers, CsoS2 assembly proteins, and α-carboxysomal carbonic anhydrase (CsoSCA)], and contain form IA RubisCO (CbbL and CbbS). In the majority of cases, these components are encoded in the genome near each other in a gene locus, and transcribed together as an operon. Interestingly, genome sequencing has revealed some α-carboxysome loci that are missing genes encoding one or more of these components. Some loci lack the genes encoding RubisCO, others lack a gene encoding carbonic anhydrase, some loci are missing shell protein genes, and in some organisms, genes homologous to those encoding the carboxysome-associated carbonic anhydrase are the only carboxysome-related genes present in the genome. Given that RubisCO, assembly factors, carbonic anhydrase, and shell proteins are all essential for carboxysome function, these absences are quite intriguing. In this review, we provide an overview of the most recent studies of the structural components of carboxysomes, describe the genomic context and taxonomic distribution of atypical carboxysome loci, and propose functions for these variants. We suggest that these atypical loci are JEEPs, which have modified functions based on the presence of Just Enough Essential Parts.
Collapse
Affiliation(s)
| | | | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Cheryl A. Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Kathleen M. Scott
- Integrative Biology Department, University of South Florida, Tampa, FL, United States
| |
Collapse
|
31
|
Effects of Drought on the Growth of Lespedeza davurica through the Alteration of Soil Microbial Communities and Nutrient Availability. J Fungi (Basel) 2022; 8:jof8040384. [PMID: 35448615 PMCID: PMC9025084 DOI: 10.3390/jof8040384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 01/24/2023] Open
Abstract
Lespedeza davurica (Laxm.) is highly important for reducing soil erosion and maintaining the distinctive natural scenery of semiarid grasslands in northwest China. In this study, a pot experiment was conducted to investigate the effects of drought (20% water-holding capacity) on biomass and its allocation, root characteristics, plant hormones, and soil microbial communities and nutrients after L. davurica was grown in a greenhouse. Drought reduced the total biomass of L. davurica but increased the root:shoot biomass ratio. In addition, drought altered the composition and structure of microbial communities by limiting the mobility of nutrients in non-rhizosphere soils. In particular, drought increased the relative abundances of Basidiomycota, Acidobacteria, Actinobacteria, Coprinellus, Humicola and Rubrobacter, which were closely positively related to the soil organic carbon, pH, available phosphorus, ammonia nitrogen (N) and nitrate N under drought conditions. Furthermore, soil fungi could play a more potentially significant role than that of bacteria in the response of L. davurica to drought. Consequently, our study uncovered the effects of drought on the growth of L. davurica by altering soil microbial communities and/or soil nutrients, thus providing new insights for forage production and natural grassland restoration on the Loess Plateau of China.
Collapse
|
32
|
Toward a glycyl radical enzyme containing synthetic bacterial microcompartment to produce pyruvate from formate and acetate. Proc Natl Acad Sci U S A 2022; 119:2116871119. [PMID: 35193962 PMCID: PMC8872734 DOI: 10.1073/pnas.2116871119] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
The enormous complexity of metabolic pathways, in both their regulation and propensity for metabolite cross-talk, represents a major obstacle for metabolic engineering. Self-assembling, catalytically programmable and genetically transferable bacterial microcompartments (BMCs) offer solutions to decrease this complexity through compartmentalization of enzymes within a selectively permeable protein shell. Synthetic BMCs can operate as autonomous metabolic modules decoupled from the cell’s regulatory network, only interfacing with the cell’s metabolism via the highly engineerable proteinaceous shell. Here, we build a synthetic, modular, multienzyme BMC. It functions not only as a proof-of-concept for next-generation metabolic engineering, but also provides the foundation for subsequent tuning, with the goal to create a microanaerobic environment protecting an oxygen-sensitive reaction in aerobic growth conditions that could be deployed. Formate has great potential to function as a feedstock for biorefineries because it can be sustainably produced by a variety of processes that don’t compete with agricultural production. However, naturally formatotrophic organisms are unsuitable for large-scale cultivation, difficult to engineer, or have inefficient native formate assimilation pathways. Thus, metabolic engineering needs to be developed for model industrial organisms to enable efficient formatotrophic growth. Here, we build a prototype synthetic formate utilizing bacterial microcompartment (sFUT) encapsulating the oxygen-sensitive glycyl radical enzyme pyruvate formate lyase and a phosphate acyltransferase to convert formate and acetyl-phosphate into the central biosynthetic intermediate pyruvate. This metabolic module offers a defined environment with a private cofactor coenzyme A that can cycle efficiently between the encapsulated enzymes. To facilitate initial design-build-test-refine cycles to construct an active metabolic core, we used a “wiffleball” architecture, defined as an icosahedral bacterial microcompartment (BMC) shell with unoccupied pentameric vertices to freely permit substrate and product exchange. The resulting sFUT prototype wiffleball is an active multi enzyme synthetic BMC functioning as platform technology.
Collapse
|
33
|
Uchida M, Manzo E, Echeveria D, Jiménez S, Lovell L. Harnessing physicochemical properties of virus capsids for designing enzyme confined nanocompartments. Curr Opin Virol 2022; 52:250-257. [PMID: 34974380 PMCID: PMC8939255 DOI: 10.1016/j.coviro.2021.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022]
Abstract
Viruses have drawn significant scientific interest from a wide variety of disciplines beyond virology because of their elegant architectures and delicately balanced activities. A virus-like particle (VLP), a noninfectious protein cage derived from viruses or other cage-forming proteins, has been exploited as a nano-scale platform for bioinspired engineering and synthetic manipulation with a range of applications. Encapsulation of functional proteins, especially enzymes, is an emerging use of VLPs that is promising not only for developing efficient and robust catalytic materials, but also for providing fundamental insights into the effects of enzyme compartmentalization commonly observed in cells. This review highlights recent advances in employing VLPs as a container for confining enzymes. To accomplish larger and more controlled enzyme loading, various different enzyme encapsulation strategies have been developed; many of these strategies are inspired from assembly and genome loading mechanisms of viral capsids. Characterization of VLPs' physicochemical properties, such as porosity, could lead to rational manipulation and a better understanding of the catalytic behavior of the materials.
Collapse
Affiliation(s)
- Masaki Uchida
- Department of Chemistry and Biochemistry, California State University, Fresno, 2555 E. San Ramon Ave., Fresno, CA 93740, USA.
| | - Elia Manzo
- Department of Chemistry and Biochemistry, California State University, Fresno, 2555 E. San Ramon Ave., Fresno, CA 93740, USA
| | - Dustin Echeveria
- Department of Chemistry and Biochemistry, California State University, Fresno, 2555 E. San Ramon Ave., Fresno, CA 93740, USA
| | - Sophie Jiménez
- Department of Chemistry and Biochemistry, California State University, Fresno, 2555 E. San Ramon Ave., Fresno, CA 93740, USA
| | - Logan Lovell
- Department of Chemistry and Biochemistry, California State University, Fresno, 2555 E. San Ramon Ave., Fresno, CA 93740, USA
| |
Collapse
|
34
|
Ross J, McIver Z, Lambert T, Piergentili C, Bird JE, Gallagher KJ, Cruickshank FL, James P, Zarazúa-Arvizu E, Horsfall LE, Waldron KJ, Wilson MD, Mackay CL, Baslé A, Clarke DJ, Marles-Wright J. Pore dynamics and asymmetric cargo loading in an encapsulin nanocompartment. SCIENCE ADVANCES 2022; 8:eabj4461. [PMID: 35080974 PMCID: PMC8791618 DOI: 10.1126/sciadv.abj4461] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Encapsulins are protein nanocompartments that house various cargo enzymes, including a family of decameric ferritin-like proteins. Here, we study a recombinant Haliangium ochraceum encapsulin:encapsulated ferritin complex using cryo-electron microscopy and hydrogen/deuterium exchange mass spectrometry to gain insight into the structural relationship between the encapsulin shell and its protein cargo. An asymmetric single-particle reconstruction reveals four encapsulated ferritin decamers in a tetrahedral arrangement within the encapsulin nanocompartment. This leads to a symmetry mismatch between the protein cargo and the icosahedral encapsulin shell. The encapsulated ferritin decamers are offset from the interior face of the encapsulin shell. Using hydrogen/deuterium exchange mass spectrometry, we observed the dynamic behavior of the major fivefold pore in the encapsulin shell and show the pore opening via the movement of the encapsulin A-domain. These data will accelerate efforts to engineer the encapsulation of heterologous cargo proteins and to alter the permeability of the encapsulin shell via pore modifications.
Collapse
Affiliation(s)
- Jennifer Ross
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK
- Newcastle University Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Zak McIver
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Thomas Lambert
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Cecilia Piergentili
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Jasmine Emma Bird
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Kelly J. Gallagher
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Faye L. Cruickshank
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Patrick James
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | | | - Louise E. Horsfall
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Kevin J. Waldron
- Newcastle University Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Marcus D. Wilson
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - C. Logan Mackay
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Arnaud Baslé
- Newcastle University Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - David J. Clarke
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Jon Marles-Wright
- Newcastle University Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
35
|
Burrichter AG, Dörr S, Bergmann P, Haiß S, Keller A, Fournier C, Franchini P, Isono E, Schleheck D. Bacterial microcompartments for isethionate desulfonation in the taurine-degrading human-gut bacterium Bilophila wadsworthia. BMC Microbiol 2021; 21:340. [PMID: 34903181 PMCID: PMC8667426 DOI: 10.1186/s12866-021-02386-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/08/2021] [Indexed: 11/15/2022] Open
Abstract
Background Bilophila wadsworthia, a strictly anaerobic, sulfite-reducing bacterium and common member of the human gut microbiota, has been associated with diseases such as appendicitis and colitis. It is specialized on organosulfonate respiration for energy conservation, i.e., utilization of dietary and host-derived organosulfonates, such as taurine (2-aminoethansulfonate), as sulfite donors for sulfite respiration, producing hydrogen sulfide (H2S), an important intestinal metabolite that may have beneficial as well as detrimental effects on the colonic environment. Its taurine desulfonation pathway involves the glycyl radical enzyme (GRE) isethionate sulfite-lyase (IslAB), which cleaves isethionate (2-hydroxyethanesulfonate) into acetaldehyde and sulfite. Results We demonstrate that taurine metabolism in B. wadsworthia 3.1.6 involves bacterial microcompartments (BMCs). First, we confirmed taurine-inducible production of BMCs by proteomic, transcriptomic and ultra-thin sectioning and electron-microscopical analyses. Then, we isolated BMCs from taurine-grown cells by density-gradient ultracentrifugation and analyzed their composition by proteomics as well as by enzyme assays, which suggested that the GRE IslAB and acetaldehyde dehydrogenase are located inside of the BMCs. Finally, we are discussing the recycling of cofactors in the IslAB-BMCs and a potential shuttling of electrons across the BMC shell by a potential iron-sulfur (FeS) cluster-containing shell protein identified by sequence analysis. Conclusions We characterized a novel subclass of BMCs and broadened the spectrum of reactions known to take place enclosed in BMCs, which is of biotechnological interest. We also provided more details on the energy metabolism of the opportunistic pathobiont B. wadsworthia and on microbial H2S production in the human gut. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02386-w.
Collapse
Affiliation(s)
- Anna G Burrichter
- Department of Biology, University of Konstanz, Konstanz, Germany. .,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany. .,Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany.
| | - Stefanie Dörr
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Paavo Bergmann
- Electron Microscopy Centre, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Sebastian Haiß
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Anja Keller
- Department of Biology, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | | | - Paolo Franchini
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Erika Isono
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - David Schleheck
- Department of Biology, University of Konstanz, Konstanz, Germany. .,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
36
|
LaFrance BJ, Cassidy-Amstutz C, Nichols RJ, Oltrogge LM, Nogales E, Savage DF. The encapsulin from Thermotoga maritima is a flavoprotein with a symmetry matched ferritin-like cargo protein. Sci Rep 2021; 11:22810. [PMID: 34815415 PMCID: PMC8610991 DOI: 10.1038/s41598-021-01932-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/29/2021] [Indexed: 11/09/2022] Open
Abstract
Bacterial nanocompartments, also known as encapsulins, are an emerging class of protein-based 'organelles' found in bacteria and archaea. Encapsulins are virus-like icosahedral particles comprising a ~ 25-50 nm shell surrounding a specific cargo enzyme. Compartmentalization is thought to create a unique chemical environment to facilitate catalysis and isolate toxic intermediates. Many questions regarding nanocompartment structure-function remain unanswered, including how shell symmetry dictates cargo loading and to what extent the shell facilitates enzymatic activity. Here, we explore these questions using the model Thermotoga maritima nanocompartment known to encapsulate a redox-active ferritin-like protein. Biochemical analysis revealed the encapsulin shell to possess a flavin binding site located at the interface between capsomere subunits, suggesting the shell may play a direct and active role in the function of the encapsulated cargo. Furthermore, we used cryo-EM to show that cargo proteins use a form of symmetry-matching to facilitate encapsulation and define stoichiometry. In the case of the Thermotoga maritima encapsulin, the decameric cargo protein with fivefold symmetry preferentially binds to the pentameric-axis of the icosahedral shell. Taken together, these observations suggest the shell is not simply a passive barrier-it also plays a significant role in the structure and function of the cargo enzyme.
Collapse
Affiliation(s)
- Benjamin J LaFrance
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Caleb Cassidy-Amstutz
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Robert J Nichols
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Luke M Oltrogge
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Eva Nogales
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David F Savage
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
37
|
Liu LN. Advances in the bacterial organelles for CO 2 fixation. Trends Microbiol 2021; 30:567-580. [PMID: 34802870 DOI: 10.1016/j.tim.2021.10.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 02/08/2023]
Abstract
Carboxysomes are a family of bacterial microcompartments (BMCs), present in all cyanobacteria and some proteobacteria, which encapsulate the primary CO2-fixing enzyme, Rubisco, within a virus-like polyhedral protein shell. Carboxysomes provide significantly elevated levels of CO2 around Rubisco to maximize carboxylation and reduce wasteful photorespiration, thus functioning as the central CO2-fixation organelles of bacterial CO2-concentration mechanisms. Their intriguing architectural features allow carboxysomes to make a vast contribution to carbon assimilation on a global scale. In this review, we discuss recent research progress that provides new insights into the mechanisms of how carboxysomes are assembled and functionally maintained in bacteria and recent advances in synthetic biology to repurpose the metabolic module in diverse applications.
Collapse
Affiliation(s)
- Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK; College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 266003 Qingdao, China.
| |
Collapse
|
38
|
Straube AV, Winkelmann S, Schütte C, Höfling F. Stochastic pH Oscillations in a Model of the Urea-Urease Reaction Confined to Lipid Vesicles. J Phys Chem Lett 2021; 12:9888-9893. [PMID: 34609862 DOI: 10.1021/acs.jpclett.1c03016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The urea-urease clock reaction is a pH switch from acid to basic that can turn into a pH oscillator if it occurs inside a suitable open reactor. We numerically study the confinement of the reaction to lipid vesicles, which permit the exchange with an external reservoir by differential transport, enabling the recovery of the pH level and yielding a constant supply of urea molecules. For microscopically small vesicles, the discreteness of the number of molecules requires a stochastic treatment of the reaction dynamics. Our analysis shows that intrinsic noise induces a significant statistical variation of the oscillation period, which increases as the vesicles become smaller. The mean period, however, is found to be remarkably robust for vesicle sizes down to approximately 200 nm, but the periodicity of the rhythm is gradually destroyed for smaller vesicles. The observed oscillations are explained as a canard-like limit cycle that differs from the wide class of conventional feedback oscillators.
Collapse
Affiliation(s)
| | | | - Christof Schütte
- Zuse Institute Berlin, Takustraße 7, 14195 Berlin, Germany
- Freie Universität Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195 Berlin, Germany
| | - Felix Höfling
- Zuse Institute Berlin, Takustraße 7, 14195 Berlin, Germany
- Freie Universität Berlin, Department of Mathematics and Computer Science, Arnimallee 6, 14195 Berlin, Germany
| |
Collapse
|
39
|
Ochoa JM, Mijares O, Acosta AA, Escoto X, Leon-Rivera N, Marshall JD, Sawaya MR, Yeates TO. Structural characterization of hexameric shell proteins from two types of choline-utilization bacterial microcompartments. Acta Crystallogr F Struct Biol Commun 2021; 77:275-285. [PMID: 34473104 PMCID: PMC8411931 DOI: 10.1107/s2053230x21007470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/21/2021] [Indexed: 11/08/2023] Open
Abstract
Bacterial microcompartments are large supramolecular structures comprising an outer proteinaceous shell that encapsulates various enzymes in order to optimize metabolic processes. The outer shells of bacterial microcompartments are made of several thousand protein subunits, generally forming hexameric building blocks based on the canonical bacterial microcompartment (BMC) domain. Among the diverse metabolic types of bacterial microcompartments, the structures of those that use glycyl radical enzymes to metabolize choline have not been adequately characterized. Here, six structures of hexameric shell proteins from type I and type II choline-utilization microcompartments are reported. Sequence and structure analysis reveals electrostatic surface properties that are shared between the four types of shell proteins described here.
Collapse
Affiliation(s)
- Jessica M. Ochoa
- UCLA Molecular Biology Institute, University of California Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Oscar Mijares
- Whittier College, 13406 East Philadelphia Street, Whittier, CA 90602, USA
| | - Andrea A. Acosta
- Whittier College, 13406 East Philadelphia Street, Whittier, CA 90602, USA
| | - Xavier Escoto
- Department of Chemistry and Biochemistry, University of California Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Nancy Leon-Rivera
- Whittier College, 13406 East Philadelphia Street, Whittier, CA 90602, USA
| | - Joanna D. Marshall
- Department of Chemistry and Biochemistry, University of California Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Michael R. Sawaya
- UCLA–DOE Institute of Genomics and Proteomics, University of California Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Todd O. Yeates
- UCLA Molecular Biology Institute, University of California Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- UCLA–DOE Institute of Genomics and Proteomics, University of California Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| |
Collapse
|
40
|
Kirst H, Kerfeld CA. Clues to the function of bacterial microcompartments from ancillary genes. Biochem Soc Trans 2021; 49:1085-1098. [PMID: 34196367 PMCID: PMC8517908 DOI: 10.1042/bst20200632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 01/14/2023]
Abstract
Bacterial microcompartments (BMCs) are prokaryotic organelles. Their bounding membrane is a selectively permeable protein shell, encapsulating enzymes of specialized metabolic pathways. While the function of a BMC is dictated by the encapsulated enzymes which vary with the type of the BMC, the shell is formed by conserved protein building blocks. The genes necessary to form a BMC are typically organized in a locus; they encode the shell proteins, encapsulated enzymes as well as ancillary proteins that integrate the BMC function into the cell's metabolism. Among these are transcriptional regulators which usually found at the beginning or end of a locus, and transmembrane proteins that presumably function to conduct the BMC substrate into the cell. Here, we describe the types of transcriptional regulators and permeases found in association with BMC loci, using a recently collected data set of more than 7000 BMC loci distributed over 45 bacterial phyla, including newly discovered BMC loci. We summarize the known BMC regulation mechanisms, and highlight how much remains to be uncovered. We also show how analysis of these ancillary proteins can inform hypotheses about BMC function; by examining the ligand-binding domain of the regulator and the transporter, we propose that nucleotides are the likely substrate for an enigmatic uncharacterized BMC of unknown function.
Collapse
Affiliation(s)
- Henning Kirst
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, U.S.A
| | - Cheryl A Kerfeld
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, U.S.A
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, U.S.A
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824, U.S.A
| |
Collapse
|
41
|
Kumar G, Sinha S. Biophysical approaches to understand and re-purpose bacterial microcompartments. Curr Opin Microbiol 2021; 63:43-51. [PMID: 34166983 DOI: 10.1016/j.mib.2021.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/15/2021] [Accepted: 05/17/2021] [Indexed: 11/30/2022]
Abstract
Bacterial microcompartments represent a modular class of prokaryotic organelles associated with metabolic processes. They harbor a congregation of enzymes that work in cascade within a small, confined volume. These sophisticated nano-engineered crafts of nature offer a tempting paradigm for the fabrication of biosynthetic nanoreactors. Repurposing bacterial microcompartments to develop nanostructures with desired functions requires a careful manipulation in their structural makeup and composition. This calls for a comprehensive understanding of all the interactions of the physical components which frame such molecular architectures. Over recent years, several biophysical techniques have been essential in illuminating the role played by bacterial microcompartments within cells, and have revealed crucial details regarding the morphology, physical properties and functions of their constituent proteins. This has promoted contemplation of ideas for engineering microcompartments inspired biomaterials with novel features and functions.
Collapse
Affiliation(s)
- Gaurav Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali (SAS Nagar), Knowledge City, Punjab 140306, India
| | - Sharmistha Sinha
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali (SAS Nagar), Knowledge City, Punjab 140306, India.
| |
Collapse
|
42
|
Recent structural insights into bacterial microcompartment shells. Curr Opin Microbiol 2021; 62:51-60. [PMID: 34058518 DOI: 10.1016/j.mib.2021.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/26/2021] [Accepted: 04/20/2021] [Indexed: 02/05/2023]
Abstract
Bacterial microcompartments are organelle-like structures that enhance a variety of metabolic functions in diverse bacteria. Composed entirely of proteins, thousands of homologous hexameric shell proteins tesselate to form facets while pentameric proteins form the vertices of a polyhedral shell that encapsulates various enzymes, substrates and cofactors. Recent structural data have highlighted nuanced variations in the sequence and topology of microcompartment shell proteins, emphasizing how variation and specialization enable the construction of complex molecular machines. Recent studies engineering synthetic miniaturized microcompartment shells provide additional frameworks for dissecting principles of microcompartment structure and assembly. This review updates our current understanding of bacterial microcompartment shell proteins, providing new insights and highlighting outstanding questions.
Collapse
|
43
|
Cesle EE, Filimonenko A, Tars K, Kalnins G. Variety of size and form of GRM2 bacterial microcompartment particles. Protein Sci 2021; 30:1035-1043. [PMID: 33763934 PMCID: PMC8040866 DOI: 10.1002/pro.4069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
Bacterial microcompartments (BMCs) are bacterial organelles involved in enzymatic processes, such as carbon fixation, choline, ethanolamine and propanediol degradation, and others. Formed of a semi-permeable protein shell and an enzymatic core, they can enhance enzyme performance and protect the cell from harmful intermediates. With the ability to encapsulate non-native enzymes, BMCs show high potential for applied use. For this goal, a detailed look into shell form variability is significant to predict shell adaptability. Here we present four novel 3D cryo-EM maps of recombinant Klebsiella pneumoniae GRM2 BMC shell particles with the resolution in range of 9 to 22 Å and nine novel 2D classes corresponding to discrete BMC shell forms. These structures reveal icosahedral, elongated, oblate, multi-layered and polyhedral traits of BMCs, indicating considerable variation in size and form as well as adaptability during shell formation processes.
Collapse
Affiliation(s)
- Eva Emilija Cesle
- Structural Biology, Biotechnology and Virusology LaboratoryLatvian Biomedical Research and Study CentreRigaLatvia
| | - Anatolij Filimonenko
- CEITEC‐Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
| | - Kaspars Tars
- Structural Biology, Biotechnology and Virusology LaboratoryLatvian Biomedical Research and Study CentreRigaLatvia
- Faculty of BiologyUniversity of LatviaRigaLatvia
| | - Gints Kalnins
- Structural Biology, Biotechnology and Virusology LaboratoryLatvian Biomedical Research and Study CentreRigaLatvia
| |
Collapse
|
44
|
Hagan MF, Grason GM. Equilibrium mechanisms of self-limiting assembly. REVIEWS OF MODERN PHYSICS 2021; 93:025008. [PMID: 35221384 PMCID: PMC8880259 DOI: 10.1103/revmodphys.93.025008] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Self-assembly is a ubiquitous process in synthetic and biological systems, broadly defined as the spontaneous organization of multiple subunits (e.g. macromolecules, particles) into ordered multi-unit structures. The vast majority of equilibrium assembly processes give rise to two states: one consisting of dispersed disassociated subunits, and the other, a bulk-condensed state of unlimited size. This review focuses on the more specialized class of self-limiting assembly, which describes equilibrium assembly processes resulting in finite-size structures. These systems pose a generic and basic question, how do thermodynamic processes involving non-covalent interactions between identical subunits "measure" and select the size of assembled structures? In this review, we begin with an introduction to the basic statistical mechanical framework for assembly thermodynamics, and use this to highlight the key physical ingredients that ensure equilibrium assembly will terminate at finite dimensions. Then, we introduce examples of self-limiting assembly systems, and classify them within this framework based on two broad categories: self-closing assemblies and open-boundary assemblies. These include well-known cases in biology and synthetic soft matter - micellization of amphiphiles and shell/tubule formation of tapered subunits - as well as less widely known classes of assemblies, such as short-range attractive/long-range repulsive systems and geometrically-frustrated assemblies. For each of these self-limiting mechanisms, we describe the physical mechanisms that select equilibrium assembly size, as well as potential limitations of finite-size selection. Finally, we discuss alternative mechanisms for finite-size assemblies, and draw contrasts with the size-control that these can achieve relative to self-limitation in equilibrium, single-species assemblies.
Collapse
Affiliation(s)
- Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454, USA
| | - Gregory M Grason
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
45
|
Ochoa JM, Bair K, Holton T, Bobik TA, Yeates TO. MCPdb: The bacterial microcompartment database. PLoS One 2021; 16:e0248269. [PMID: 33780471 PMCID: PMC8007038 DOI: 10.1371/journal.pone.0248269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
Bacterial microcompartments are organelle-like structures composed entirely of proteins. They have evolved to carry out several distinct and specialized metabolic functions in a wide variety of bacteria. Their outer shell is constructed from thousands of tessellating protein subunits, encapsulating enzymes that carry out the internal metabolic reactions. The shell proteins are varied, with single, tandem and permuted versions of the PF00936 protein family domain comprising the primary structural component of their polyhedral architecture, which is reminiscent of a viral capsid. While considerable amounts of structural and biophysical data have been generated in the last 15 years, the existing functionalities of current resources have limited our ability to rapidly understand the functional and structural properties of microcompartments (MCPs) and their diversity. In order to make the remarkable structural features of bacterial microcompartments accessible to a broad community of scientists and non-specialists, we developed MCPdb: The Bacterial Microcompartment Database (https://mcpdb.mbi.ucla.edu/). MCPdb is a comprehensive resource that categorizes and organizes known microcompartment protein structures and their larger assemblies. To emphasize the critical roles symmetric assembly and architecture play in microcompartment function, each structure in the MCPdb is validated and annotated with respect to: (1) its predicted natural assembly state (2) tertiary structure and topology and (3) the metabolic compartment type from which it derives. The current database includes 163 structures and is available to the public with the anticipation that it will serve as a growing resource for scientists interested in understanding protein-based metabolic organelles in bacteria.
Collapse
Affiliation(s)
- Jessica M. Ochoa
- UCLA Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Kaylie Bair
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Thomas Holton
- UCLA Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Thomas A. Bobik
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Todd O. Yeates
- UCLA Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
- UCLA Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
46
|
Mohajerani F, Sayer E, Neil C, Inlow K, Hagan MF. Mechanisms of Scaffold-Mediated Microcompartment Assembly and Size Control. ACS NANO 2021; 15:4197-4212. [PMID: 33683101 PMCID: PMC8058603 DOI: 10.1021/acsnano.0c05715] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This article describes a theoretical and computational study of the dynamical assembly of a protein shell around a complex consisting of many cargo molecules and long, flexible scaffold molecules. Our study is motivated by bacterial microcompartments, which are proteinaceous organelles that assemble around a condensed droplet of enzymes and reactants. As in many examples of cytoplasmic liquid-liquid phase separation, condensation of the microcompartment interior cargo is driven by flexible scaffold proteins that have weak multivalent interactions with the cargo. Our results predict that the shell size, amount of encapsulated cargo, and assembly pathways depend sensitively on properties of the scaffold, including its length and valency of scaffold-cargo interactions. Moreover, the ability of self-assembling protein shells to change their size to accommodate scaffold molecules of different lengths depends crucially on whether the spontaneous curvature radius of the protein shell is smaller or larger than a characteristic elastic length scale of the shell. Beyond natural microcompartments, these results have important implications for synthetic biology efforts to target alternative molecules for encapsulation by microcompartments or viral shells. More broadly, the results elucidate how cells exploit coupling between self-assembly and liquid-liquid phase separation to organize their interiors.
Collapse
Affiliation(s)
- Farzaneh Mohajerani
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Evan Sayer
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Christopher Neil
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Koe Inlow
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Michael F Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
47
|
Waghwani HK, Douglas T. Cytochrome C with peroxidase-like activity encapsulated inside the small DPS protein nanocage. J Mater Chem B 2021; 9:3168-3179. [PMID: 33885621 DOI: 10.1039/d1tb00234a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nature utilizes self-assembled protein-based structures as subcellular compartments in prokaryotes to sequester catalysts for specialized biochemical reactions. These protein cage structures provide unique isolated environments for the encapsulated enzymes. Understanding these systems is useful in the bioinspired design of synthetic catalytic organelle-like nanomaterials. The DNA binding protein from starved cells (Dps), isolated from Sulfolobus solfataricus, is a 9 nm dodecameric protein cage making it the smallest known naturally occurring protein cage. It is naturally over-expressed in response to oxidative stress. The small size, natural biodistribution to the kidney, and ability to cross the glomerular filtration barrier in in vivo experiments highlight its potential as a synthetic antioxidant. Cytochrome C (CytC) is a small heme protein with peroxidase-like activity involved in the electron transport chain and also plays a critical role in cellular apoptosis. Here we report the encapsulation of CytC inside the 5 nm interior cavity of Dps and demonstrate the catalytic activity of the resultant Dps nanocage with enhanced antioxidant behavior. The small cavity can accommodate a single CytC and this was achieved through self-assembly of chimeric cages comprising Dps subunits and a Dps subunit to which the CytC was fused. For selective isolation of CytC containing Dps cages, we utilized engineered polyhistidine tag present only on the enzyme fused Dps subunits (6His-Dps-CytC). The catalytic activity of encapsulated CytC was studied using guaiacol and 3,3',5,5'-tetramethylbenzidine (TMB) as two different peroxidase substrates and compared to the free (unencapsulated) CytC activity. The encapsulated CytC showed better pH dependent catalytic activity compared to free enzyme and provides a proof-of-concept model to engineer these small protein cages for their potential as catalytic nanoreactors.
Collapse
Affiliation(s)
- Hitesh Kumar Waghwani
- Department of Chemistry, Indiana University, 800 E Kirkwood Ave., Bloomington, Indiana 47405, USA.
| | | |
Collapse
|
48
|
Altenburg WJ, Rollins N, Silver PA, Giessen TW. Exploring targeting peptide-shell interactions in encapsulin nanocompartments. Sci Rep 2021; 11:4951. [PMID: 33654191 PMCID: PMC7925596 DOI: 10.1038/s41598-021-84329-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/11/2021] [Indexed: 11/09/2022] Open
Abstract
Encapsulins are recently discovered protein compartments able to specifically encapsulate cargo proteins in vivo. Encapsulation is dependent on C-terminal targeting peptides (TPs). Here, we characterize and engineer TP-shell interactions in the Thermotoga maritima and Myxococcus xanthus encapsulin systems. Using force-field modeling and particle fluorescence measurements we show that TPs vary in native specificity and binding strength, and that TP-shell interactions are determined by hydrophobic and ionic interactions as well as TP flexibility. We design a set of TPs with a variety of predicted binding strengths and experimentally characterize these designs. This yields a set of TPs with novel binding characteristics representing a potentially useful toolbox for future nanoreactor engineering aimed at controlling cargo loading efficiency and the relative stoichiometry of multiple concurrently loaded cargo proteins.
Collapse
Affiliation(s)
- Wiggert J Altenburg
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard, Boston, MA, 02115, USA
| | - Nathan Rollins
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard, Boston, MA, 02115, USA
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard, Boston, MA, 02115, USA
| | - Tobias W Giessen
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA.
- Wyss Institute for Biologically Inspired Engineering at Harvard, Boston, MA, 02115, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
49
|
Xing CY, Ma TF, Guo JS, Shen Y, Yan P, Fang F, Chen YP. Bacterially self-assembled encapsulin nanocompartment for removing silver from water. WATER RESEARCH 2021; 191:116800. [PMID: 33433335 DOI: 10.1016/j.watres.2020.116800] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Compartmentalization can protect cells from the interference of external toxic substances by sequestering toxic products. We hypothesized that proteinaceous nanocompartments may be a feasible candidate material to be added to genetically modified bacteria for the sequestration of toxic environmental products, which would open up a new bioremediation pathway. Here, we showed that the model bacterium (Escherichia coli) with self-assembling nanocompartments can remove silver (Ag) from water. Transmission electron microscopy and energy dispersive X-ray (TEM-EDX) analysis showed that the nanocompartments combined stably with silver in vitro. In addition, when exposed to 30 μM AgNO3, the survival rate of genetically modified bacteria (with nanocompartments) was 86%, while it was just 59% in the wild-type bacteria (without nanocompartments). Label-free quantitative proteomics indicated that the nanocompartments enhanced bacterial activity by inducing the up-regulation of protein processing and secondary metabolites, and decreased their intracellular silver concentration, both of which contributed to their increased resistance to toxic silver. This study on nanocompartments has contributed to a deeper understanding of how bacteria respond to environmental stressors like heavy metal pollutants in water. The technology promises to provide a new strategy for recycling heavy metals from sewage.
Collapse
Affiliation(s)
- Chong-Yang Xing
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligence Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Teng-Fei Ma
- National Base of International Science and Technology Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Yu Shen
- National Base of International Science and Technology Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - You-Peng Chen
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligence Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
50
|
Melian C, Castellano P, Segli F, Mendoza LM, Vignolo GM. Proteomic Analysis of Listeria monocytogenes FBUNT During Biofilm Formation at 10°C in Response to Lactocin AL705. Front Microbiol 2021; 12:604126. [PMID: 33584610 PMCID: PMC7880126 DOI: 10.3389/fmicb.2021.604126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/06/2021] [Indexed: 12/04/2022] Open
Abstract
Listeria monocytogenes is one of the major food-related pathogens and is able to survive and multiply under different stress conditions. Its persistence in industrial premises and foods is partially due to its ability to form biofilm. Thus, as a natural strategy to overcome L. monocytogenes biofilm formation, the treatment with lactocin AL705 using a sublethal dose (20AU/ml) was explored. The effect of the presence of the bacteriocin on the biofilm formation at 10°C of L. monocytogenes FBUNT was evaluated for its proteome and compared to the proteomes of planktonic and sessile cells grown at 10°C in the absence of lactocin. Compared to planktonic cells, adaptation of sessile cells during cold stress involved protein abundance shifts associated with ribosomes function and biogenesis, cell membrane functionality, carbohydrate and amino acid metabolism, and transport. When sessile cells were treated with lactocin AL705, proteins’ up-regulation were mostly related to carbohydrate metabolism and nutrient transport in an attempt to compensate for impaired energy generation caused by bacteriocin interacting with the cytoplasmic membrane. Notably, transport systems such as β-glucosidase IIABC (lmo0027), cellobiose (lmo2763), and trehalose (lmo1255) specific PTS proteins were highly overexpressed. In addition, mannose (lmo0098), a specific PTS protein indicating the adaptive response of sessile cells to the bacteriocin, was downregulated as this PTS system acts as a class IIa bacteriocin receptor. A sublethal dose of lactocin AL705 was able to reduce the biofilm formation in L. monocytogenes FBUNT and this bacteriocin induced adaptation mechanisms in treated sessile cells. These results constitute valuable data related to specific proteins targeting the control of L. monocytogenes biofilm upon bacteriocin treatment.
Collapse
Affiliation(s)
- Constanza Melian
- Centro de Referencia para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Patricia Castellano
- Centro de Referencia para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Franco Segli
- Centro de Referencia para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Lucía M Mendoza
- Centro de Referencia para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Graciela Margarita Vignolo
- Centro de Referencia para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucumán, Argentina
| |
Collapse
|