1
|
Zhang J, Fang H, Du G, Zhang D. Metabolic Regulation and Engineering Strategies of Carbon and Nitrogen Metabolism in Escherichia coli. ACS Synth Biol 2025; 14:1367-1380. [PMID: 40243912 DOI: 10.1021/acssynbio.5c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The intricacies of carbon and nitrogen metabolism in Escherichia coli indeed present both challenges and opportunities for metabolic engineering aimed at optimizing microbial production processes. Carbon is the primary energy source and building block for biomolecules at the cellular level, while nitrogen is vital for synthesizing amino acids, nucleotides, and other nitrogen-containing compounds. This review provides a comprehensive summary of the metabolic regulation of central metabolism and outlines engineering strategies for carbon and nitrogen metabolism in E. coli. This perspective enhances our understanding of the molecular mechanisms involved and enables the development of rational metabolic engineering strategies. One key aspect of metabolic engineering consists of understanding the regulatory networks that govern these processes. Both carbon and nitrogen metabolisms are tightly regulated to ensure cellular homeostasis. By elucidating the interconnected nature of carbon and nitrogen metabolism, this review serves not just to better inform the academic community but also to stimulate advancements in biotechnological applications. Metabolic engineering in E. coli, targeting these complex networks, holds immense promise for the sustainable production of chemicals, biofuels, and pharmaceuticals.
Collapse
Affiliation(s)
- Jijiao Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- School of Food Science, Dalian University of Technology, Dalian 116034, China
| | - Huan Fang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Guangqing Du
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- School of Food Science, Dalian University of Technology, Dalian 116034, China
| |
Collapse
|
2
|
Singh P, Kaur J. MSMEG_5850, a global TetR family member supports Mycobacterium smegmatis to survive environmental stress. Folia Microbiol (Praha) 2025; 70:359-370. [PMID: 39017913 DOI: 10.1007/s12223-024-01186-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
A Mycobacterium smegmatis transcriptional regulator, MSMEG_5850, and its ortholog in M. tuberculosis, rv0775 were annotated as putative TetR Family Transcriptional Regulators. Our previous study revealed MSMEG_5850 is involved in global transcriptional regulation in M. smegmatis and the presence of gene product supported the survival of bacteria during nutritional starvation. Phylogenetic analysis showed that MSMEG_5850 diverged early in comparison to its counterparts in virulent strains. Therefore, the expression pattern of MSMEG_5850 and its counterpart, rv0775, was compared during various in-vitro growth and stress conditions. Expression of MSMEG_5850 was induced under different environmental stresses while no change in expression was observed under mid-exponential and stationary phases. No expression of rv0775 was observed under any stress condition tested, while the gene was expressed during the mid-exponential phase that declined in the stationary phase. The effect of MSMEG_5850 on the survival of M. smegmatis under stress conditions and growth pattern was studied using wild type, knockout, and supplemented strain. Deletion of MSMEG_5850 resulted in altered colony morphology, biofilm/pellicle formation, and growth pattern of M. smegmatis. The survival rate of wild-type MSMEG_5850 was higher in comparison to knockout under different environmental stresses. Overall, this study suggested the role of MSMEG_5850 in the growth and adaptation/survival of M. smegmatis under stress conditions.
Collapse
Affiliation(s)
- Parul Singh
- Department of Biotechnology, Panjab University, BMS Block-1, Sector-25, Chandigarh, India, 160014
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, BMS Block-1, Sector-25, Chandigarh, India, 160014.
| |
Collapse
|
3
|
Ho K, Harshey RM. Membrane-associated σ factors disrupt rRNA operon clustering in Escherichia coli. PLoS Biol 2025; 23:e3003113. [PMID: 40245090 PMCID: PMC12037070 DOI: 10.1371/journal.pbio.3003113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 04/28/2025] [Accepted: 03/13/2025] [Indexed: 04/19/2025] Open
Abstract
Chromosomal organization in Escherichia coli as examined by Hi-C methodology indicates that long-range interactions are sparse. Yet, spatial co-localization or "clustering" of 6/7 ribosomal RNA (rrn) operons distributed over half the 4.6 Mbp genome has been captured by two other methodologies-fluorescence microscopy and Mu transposition. Our current understanding of the mechanism of clustering is limited to mapping essential cis elements. To identify trans elements, we resorted to perturbing the system by chemical and physical means and observed that heat shock disrupts clustering. Levels of σH are known to rise as a cellular response to the shock. We show that elevated expression of σH alone is sufficient to disrupt clustering, independent of heat stress. The anti-clustering activity of σH does not depend on its transcriptional activity but requires core-RNAP interaction and DNA-binding activities. This activity of σH is suppressed by ectopic expression of σD suggesting a competition for core-RNAP. A query of the other five known σ factors of E. coli found that elevated expression of FecI, the ECF σ factor that controls iron citrate transport, also perturbs clustering and is also suppressed by σD. We discuss a possible scenario for how these membrane-associated σ factors participate in clustering of distant rrn loci.
Collapse
Affiliation(s)
- Khang Ho
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, United States of America
| | - Rasika M. Harshey
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
4
|
Ho K, Harshey RM. Membrane-associated σ factors disrupt rRNA operon clustering in E. coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.20.614170. [PMID: 39345417 PMCID: PMC11429968 DOI: 10.1101/2024.09.20.614170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Chromosomal organization in E. coli as examined by Hi-C methodology indicates that long-range interactions are sparse. Yet, spatial co-localization or 'clustering' of 6/7 ribosomal RNA (rrn) operons distributed over half the 4.6 Mbp genome has been captured by two other methodologies - fluorescence microscopy and Mu transposition. Our current understanding of the mechanism of clustering is limited to mapping essential cis elements. To identify trans elements, we resorted to perturbing the system by chemical and physical means and observed that heat shock disrupts clustering. Levels of σH are known to rise as a cellular response to the shock. We show that elevated expression of σH alone is sufficient to disrupt clustering, independent of heat stress. The anti-clustering activity of σH does not depend on its transcriptional activity but requires core-RNAP interaction and DNA-binding activities. This activity of σH is suppressed by ectopic expression of σD suggesting a competition for core-RNAP. A query of the other five known σ factors of E. coli found that elevated expression of FecI, the ECF σ factor that controls iron citrate transport, also perturbs clustering and is also suppressed by σD. We discuss a possible scenario for how these membrane-associated σ factors participate in clustering of distant rrn loci.
Collapse
Affiliation(s)
- Khang Ho
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Rasika M. Harshey
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, 78712, USA
| |
Collapse
|
5
|
Teichmann L, Wenne M, Luitwieler S, Dugar G, Bengtsson-Palme J, ter Kuile B. Genetic adaptation to amoxicillin in Escherichia coli: The limited role of dinB and katE. PLoS One 2025; 20:e0312223. [PMID: 39970152 PMCID: PMC11838884 DOI: 10.1371/journal.pone.0312223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/27/2024] [Indexed: 02/21/2025] Open
Abstract
Bacteria can quickly adapt to sub-lethal concentrations of antibiotics. Several stress and DNA repair genes contribute to this adaptation process. However, the pathways leading to adaptation by acquisition of de novo mutations remain poorly understood. This study explored the roles of DNA polymerase IV (dinB) and catalase HP2 (katE) in E. coli's adaptation to amoxicillin. These genes are thought to play essential roles in beta-lactam resistance-dinB in increasing mutation rates and katE in managing oxidative stress. By comparing the adaptation rates, transcriptomic profiles, and genetic changes of wild-type and knockout strains, we aimed to clarify the contributions of these genes to beta-lactam resistance. While all strains exhibited similar adaptation rates and mutations in the frdD gene and ampC operon, several unique mutations were acquired in the ΔkatE and ΔdinB strains. Overall, this study distinguishes the contributions of general stress-related genes on the one hand, and dinB, and katE on the other hand, in development of beta-lactam resistance.
Collapse
Affiliation(s)
- Lisa Teichmann
- Swammerdam Institute of Life Sciences, Molecular Biology and Microbial Food Safety, University of Amsterdam, Amsterdam, The Netherlands
| | - Marcus Wenne
- Department of Life Sciences, Division of Systems and Synthetic Biology, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe) in Gothenburg, Gothenburg, Sweden
| | - Sam Luitwieler
- Swammerdam Institute of Life Sciences, Molecular Biology and Microbial Food Safety, University of Amsterdam, Amsterdam, The Netherlands
| | - Gaurav Dugar
- Swammerdam Institute of Life Sciences, Molecular Biology and Microbial Food Safety, University of Amsterdam, Amsterdam, The Netherlands
| | - Johan Bengtsson-Palme
- Department of Life Sciences, Division of Systems and Synthetic Biology, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe) in Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Benno ter Kuile
- Swammerdam Institute of Life Sciences, Molecular Biology and Microbial Food Safety, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Nakamoto S, Kobayashi I, Watanabe K, Kikuta T, Imamura S, Shimada T. Identification of a comprehensive set of transcriptional regulators involved in the long-term survivability of Escherichia coli in soil. Sci Rep 2025; 15:4279. [PMID: 39905026 PMCID: PMC11794783 DOI: 10.1038/s41598-025-85609-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
Bacteria that typically do not thrive in soil can survive therein for long periods. While much research has been conducted on the external environmental factors affecting the long-term survival of bacteria in soil, their inherent factors are poorly understood. To adapt to environmental changes, bacteria alter their gene expression patterns using transcriptional regulators such as sigma factors. Using Escherichia coli as a model bacterium, we examined the effects of each transcriptional regulator on the long-term survivability of E. coli in soil. The survivability of 294 E. coli strains deficient in transcriptional regulators in soil was measured over 6 weeks. The results showed that ten strains deficient in transcription factors significantly reduced survivability, whereas four deficient strains increased it. The functions common to several of these transcriptional regulators included carbon and nitrogen metabolism, stationary phase adaptation, and osmotic stress adaptation. These transcription factors are often global regulators and conserved among other pathogenic bacterial species. Taken together, we successfully identified a comprehensive set of transcription factors involved in the long-term survival of E. coli in soil. These findings will be useful for understanding the mechanisms underlying the adaptation of microorganisms to soil environments.
Collapse
Affiliation(s)
- Soma Nakamoto
- School of Agriculture, Meiji University, 1-1-1 Kawasaki-Shi, Tokyo, Kanagawa, 214-8571, Japan
| | - Ikki Kobayashi
- School of Agriculture, Meiji University, 1-1-1 Kawasaki-Shi, Tokyo, Kanagawa, 214-8571, Japan
| | - Koichi Watanabe
- School of Agriculture, Meiji University, 1-1-1 Kawasaki-Shi, Tokyo, Kanagawa, 214-8571, Japan
| | - Takeru Kikuta
- School of Agriculture, Meiji University, 1-1-1 Kawasaki-Shi, Tokyo, Kanagawa, 214-8571, Japan
| | - Sousuke Imamura
- Space Environment and Energy Laboratories, NTT Corporation, Musashino-Shi, Tokyo, 180-8585, Japan.
| | - Tomohiro Shimada
- School of Agriculture, Meiji University, 1-1-1 Kawasaki-Shi, Tokyo, Kanagawa, 214-8571, Japan.
| |
Collapse
|
7
|
Belagal P. Genetic and molecular studies of fitC4 and its suppressors fitA76* and fit95 in Escherichia coli. Int Microbiol 2025; 28:201-211. [PMID: 39643848 DOI: 10.1007/s10123-024-00610-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 12/09/2024]
Abstract
The fitA/pheS and fitB/pheT genes were previously proposed to function as transcription factors. The originally identified temperature sensitive (Ts) transcription-defective fitA76 mutant was shown to harbour a second mutation, fit95 (pheT) in addition to pheS5 (pheS; G293 → A293 transition). A new fit mutation namely, fitC4 (fitC locus) was identified in a Ts+ derivative of fitA76, namely JV4. Genetic mapping revealed that fitC4 mutation could be an extragenic suppressor, as it mapped at 39.01 min while fitAB loci mapped at 38.7 min on E. coli chromosome. Upon separation from JV4, fitC4 (Ts) failed to suppress the original fitA76 mutant (pheS5-fit95). Instead, JV4 harboured a modified form of fitA76 designated fitA76* (pheS4-fit95) with G293 → C293 transversion occurred at the same site of pheS5. The fitC4 and fitA76* mutations were genetically separated and reassembled to show that they both suppress each other as like in JV4. The separated fitC4 and fitA76* mutations behave like original fitA76 mutant in terms of transcription abnormality. This study focusses on further characterization of fitC4 and its accompanied mutations. The mutations fitC4, fitA76* and fitC4-fitA76* (reconstructed) are mobilized into new genetic backgrounds where the viability of these strains varied significantly. Growth and transcription abnormalities of fitC4 and fitA76* at 42 °C are restored in the reconstructed strain (fitC4-fitA76*), but not the β-galactosidase induction. As direct evidence, fit95 is shown to suppress fitC4 in a rpoB201 mutation background where fit95 phenotype is completely stabilized. The implications of these results with reference to transcription control by Fit factors in vivo are discussed.
Collapse
Affiliation(s)
- Praveen Belagal
- Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India.
| |
Collapse
|
8
|
Busby SJW, Browning DF. Transcription activation in Escherichia coli and Salmonella. EcoSal Plus 2024; 12:eesp00392020. [PMID: 38345370 PMCID: PMC11636354 DOI: 10.1128/ecosalplus.esp-0039-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/23/2023] [Indexed: 12/13/2024]
Abstract
Promoter-specific activation of transcript initiation provides an important regulatory device in Escherichia coli and Salmonella. Here, we describe the different mechanisms that operate, focusing on how they have evolved to manage the "housekeeping" bacterial transcription machinery. Some mechanisms involve assisting the bacterial DNA-dependent RNA polymerase or replacing or remodeling one of its subunits. Others are directed to chromosomal DNA, improving promoter function, or relieving repression. We discuss how different activators work together at promoters and how the present complex network of transcription factors evolved.
Collapse
Affiliation(s)
- Stephen J. W. Busby
- School of Biosciences & Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Douglas F. Browning
- School of Biosciences & Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
- School of Biosciences, College of Health & Life Sciences, Aston University, Birmingham, United Kingdom
| |
Collapse
|
9
|
Guo W, Zhou M, Li F, Neves ALA, Ma T, Bi S, Wang W, Long R, Guan LL. Seasonal stability of the rumen microbiome contributes to the adaptation patterns to extreme environmental conditions in grazing yak and cattle. BMC Biol 2024; 22:240. [PMID: 39443951 PMCID: PMC11515522 DOI: 10.1186/s12915-024-02035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The rumen microbiome plays an essential role in maintaining ruminants' growth and performance even under extreme environmental conditions, however, which factors influence rumen microbiome stability when ruminants are reared in such habitats throughout the year is unclear. Hence, the rumen microbiome of yak (less domesticated) and cattle (domesticated) reared on the Qinghai-Tibetan Plateau through the year were assessed to evaluate temporal changes in their composition, function, and stability. RESULTS Rumen fermentation characteristics and pH significantly shifted across seasons in both cattle and yak, but the patterns differed between the two ruminant species. Ruminal enzyme activity varied with season, and production of xylanase and cellulase was greater in yak compared to cattle in both fall and winter. The rumen bacterial community varied with season in both yak and cattle, with higher alpha diversity and similarity (beta diversity) in yak than cattle. The diversity indices of eukaryotic community did not change with season in both ruminant species, but higher similarity was observed in yak. In addition, the similarity of rumen microbiome functional community was higher in yak than cattle across seasons. Moreover, yak rumen microbiome encoded more genes (GH2 and GH3) related to cellulose and hemicellulose degradation compared to cattle, and a new enzyme family (GH160) gene involved in oligosaccharides was uniquely detected in yak rumen. The season affected microbiome attenuation and buffering values (stability), with higher buffering value in yak rumen microbiome than cattle. Positive correlations between antimicrobial resistance gene (dfrF) and CAZyme family (GH113) and microbiome stability were identified in yak, but such relationship was negatively correlated in cattle. CONCLUSIONS The findings of the potential of cellulose degradation, the relationship between rumen microbial stability and the abundance of functional genes varied differently across seasons and between yak and cattle provide insight into the mechanisms that may underpin their divergent adaptation patterns to the harsh climate of the Qinghai-Tibetan Plateau. These results lay a solid foundation for developing strategies to maintain and improve rumen microbiome stability and dig out the potential candidates for manufacturing lignocellulolytic enzymes in the yak rumen to enhance ruminants' performance under extreme environmental conditions.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Plateau Mountain Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
- State Key Laboratory of Grassland Agro-Ecosystems, International Centre of Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mi Zhou
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Fuyong Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
- Department of Animal Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - André Luis Alves Neves
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, Frederiksberg C, 1870, Denmark
| | - Tao Ma
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sisi Bi
- State Key Laboratory of Grassland Agro-Ecosystems, International Centre of Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Weiwei Wang
- Key Laboratory of Plateau Mountain Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Ruijun Long
- State Key Laboratory of Grassland Agro-Ecosystems, International Centre of Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
10
|
Moghimianavval H, Gispert I, Castillo SR, Corning OBWH, Liu AP, Cuba Samaniego C. Engineering Sequestration-Based Biomolecular Classifiers with Shared Resources. ACS Synth Biol 2024; 13:3231-3245. [PMID: 39303290 PMCID: PMC11494701 DOI: 10.1021/acssynbio.4c00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Constructing molecular classifiers that enable cells to recognize linear and nonlinear input patterns would expand the biocomputational capabilities of engineered cells, thereby unlocking their potential in diagnostics and therapeutic applications. While several biomolecular classifier schemes have been designed, the effects of biological constraints such as resource limitation and competitive binding on the function of those classifiers have been left unexplored. Here, we first demonstrate the design of a sigma factor-based perceptron as a molecular classifier working based on the principles of molecular sequestration between the sigma factor and its antisigma molecule. We then investigate how the output of the biomolecular perceptron, i.e., its response pattern or decision boundary, is affected by the competitive binding of sigma factors to a pool of shared and limited resources of core RNA polymerase. Finally, we reveal the influence of sharing limited resources on multilayer perceptron neural networks and outline design principles that enable the construction of nonlinear classifiers using sigma-based biomolecular neural networks in the presence of competitive resource-sharing effects.
Collapse
Affiliation(s)
- Hossein Moghimianavval
- CSHL Course
in Synthetic Biology 2022, Cold Spring Harbor
Laboratory, Cold Spring Harbor, New York 11724, United States
- Department
of Mechanical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | - Ignacio Gispert
- CSHL Course
in Synthetic Biology 2022, Cold Spring Harbor
Laboratory, Cold Spring Harbor, New York 11724, United States
- Chemical
Engineering Department, Imperial College
London, London SW7 2AZ, U.K.
| | - Santiago R. Castillo
- CSHL Course
in Synthetic Biology 2022, Cold Spring Harbor
Laboratory, Cold Spring Harbor, New York 11724, United States
- Department
of Biochemistry and Molecular Biology, Mayo
Clinic, Rochester, Minnesota 55905, United States
| | - Olaf B. W. H. Corning
- CSHL Course
in Synthetic Biology 2022, Cold Spring Harbor
Laboratory, Cold Spring Harbor, New York 11724, United States
- Department
of Bioengineering, University of Washington, Seattle, Washington 98125, United States
| | - Allen P. Liu
- Department
of Mechanical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Biomedical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
- Cellular
and Molecular Biology Program, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Christian Cuba Samaniego
- CSHL Course
in Synthetic Biology 2022, Cold Spring Harbor
Laboratory, Cold Spring Harbor, New York 11724, United States
- Computational
Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
11
|
Belagal P. Genetic and molecular characterization of fit95 mutation of Escherichia coli: evidence that fit95 is an allele of pheT. Arch Microbiol 2024; 206:414. [PMID: 39316172 DOI: 10.1007/s00203-024-04127-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/25/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024]
Abstract
The originally identified transcription-defective fitA76 temperature-sensitive (Ts) mutation defined an allele of pheS. Both fitA/pheS and fitB/pheT were previously proposed to function as transcription factors. Sequencing pheS region of the fitA76 mutant revealed the same G293→A293 transition found in the translation-defective pheS5 mutant. It was subsequently found that fitA76 harbored a second mutation (fit95) in addition to pheS5 mutation. The fit95 was found to be Ts on -salt media but was found unstable. In this investigation, genetic, physiological and molecular characterization of the fit95 mutation was carried out. The fit95 was genetically re-separated from the pheS5 mutation present in the fitA76 mutant and the same was subsequently mobilized into multiple genetic backgrounds to study its phenotypic modulations by altering the medium and supplements. Based on genetic studies, the unstable -salt Ts phenotype of the fit95 could be stabilized by the presence of rpoB201 mutation. Addition of glucose enhanced Ts phenotype in the presence of rpoB201 mutation, but citrate completely alleviated the Ts phenotype. Further, by series of complementation analyses and molecular cloning, the identity of fit95 was revealed as pheT gene which is part of pheST operon.
Collapse
Affiliation(s)
- Praveen Belagal
- Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India.
| |
Collapse
|
12
|
González-González A, Batarseh TN, Rodríguez-Verdugo A, Gaut BS. Patterns of Fitness and Gene Expression Epistasis Generated by Beneficial Mutations in the rho and rpoB Genes of Escherichia coli during High-Temperature Adaptation. Mol Biol Evol 2024; 41:msae187. [PMID: 39235107 PMCID: PMC11414761 DOI: 10.1093/molbev/msae187] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Epistasis is caused by genetic interactions among mutations that affect fitness. To characterize properties and potential mechanisms of epistasis, we engineered eight double mutants that combined mutations from the rho and rpoB genes of Escherichia coli. The two genes encode essential functions for transcription, and the mutations in each gene were chosen because they were beneficial for adaptation to thermal stress (42.2 °C). The double mutants exhibited patterns of fitness epistasis that included diminishing returns epistasis at 42.2 °C, stronger diminishing returns between mutations with larger beneficial effects and both negative and positive (sign) epistasis across environments (20.0 °C and 37.0 °C). By assessing gene expression between single and double mutants, we detected hundreds of genes with gene expression epistasis. Previous work postulated that highly connected hub genes in coexpression networks have low epistasis, but we found the opposite: hub genes had high epistasis values in both coexpression and protein-protein interaction networks. We hypothesized that elevated epistasis in hub genes reflected that they were enriched for targets of Rho termination but that was not the case. Altogether, gene expression and coexpression analyses revealed that thermal adaptation occurred in modules, through modulation of ribonucleotide biosynthetic processes and ribosome assembly, the attenuation of expression in genes related to heat shock and stress responses, and with an overall trend toward restoring gene expression toward the unstressed state.
Collapse
Affiliation(s)
- Andrea González-González
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Tiffany N Batarseh
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
- Department of Integrative Biology, UC Berkeley, Berkeley, CA, USA
| | | | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
13
|
Örn OE, Hagman A, Ismail M, Leiva Eriksson N, Hatti-Kaul R. Enhancing metabolic efficiency via novel constitutive promoters to produce protocatechuic acid in Escherichia coli. Appl Microbiol Biotechnol 2024; 108:442. [PMID: 39153079 PMCID: PMC11330383 DOI: 10.1007/s00253-024-13256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/27/2024] [Accepted: 07/15/2024] [Indexed: 08/19/2024]
Abstract
The antioxidant molecule protocatechuic acid (PCA) can also serve as a precursor for polymer building blocks. PCA can be produced in Escherichia coli overexpressing 3-dehydroshikimate dehydratase (DSD), an enzyme that catalyses the transformation of 3-dehydroshikimate to PCA. Nevertheless, optimizing the expression rate of recombinant enzymes is a key factor in metabolic engineering when producing biobased chemicals. In this study, a degenerate synthetic promoter approach was investigated to improve further the production of PCA. By limited screening of a randomized promoter library made using pSEVA221 plasmid in E. coli, three novel synthetic constitutive promoters were selected that increased the PCA yield from glucose by 10-21% compared to the inducible T7-promoter. RT-qPCR analysis showed that the DSD gene, regulated by the synthetic promoters, had high expression during the exponential phase, albeit the gene expression level dropped 250-fold during stationary phase. Besides the increased product yield, the synthetic promoters avoided the need for a costly inducer for gene expression. Screening of the entire promoter library is likely to provide more positive hits. The study also shows that E. coli transformed with the DSD gene on either pSEVA221 or pCDFDuet plasmids exhibit background PCA levels (~ 0.04 g/L) in the absence of a transcriptional regulatory element. KEY POINTS: • Degenerate synthetic promoters are remarkable tools to produce protocatechuic acid. • The constitutive synthetic promoters did not affect the growth rate of the bacterial host. • The use of constitutive synthetic promoters avoids the need for the costly inducer.
Collapse
Affiliation(s)
- Oliver Englund Örn
- Division of Biotechnology, Department of Chemistry, Center for Chemistry & Chemical Engineering, Lund University, Box 124, 221 00, Lund, Sweden
| | - Arne Hagman
- Division of Biotechnology, Department of Chemistry, Center for Chemistry & Chemical Engineering, Lund University, Box 124, 221 00, Lund, Sweden
| | - Mohamed Ismail
- Division of Biotechnology, Department of Chemistry, Center for Chemistry & Chemical Engineering, Lund University, Box 124, 221 00, Lund, Sweden
| | - Nélida Leiva Eriksson
- Division of Biotechnology, Department of Chemistry, Center for Chemistry & Chemical Engineering, Lund University, Box 124, 221 00, Lund, Sweden.
| | - Rajni Hatti-Kaul
- Division of Biotechnology, Department of Chemistry, Center for Chemistry & Chemical Engineering, Lund University, Box 124, 221 00, Lund, Sweden.
| |
Collapse
|
14
|
Wen J, Wu BC, Li HM, Zhou W, Song CF. Plastome structure and phylogenetic relationships of genus Hydrocotyle (apiales): provide insights into the plastome evolution of Hydrocotyle. BMC PLANT BIOLOGY 2024; 24:778. [PMID: 39148054 PMCID: PMC11325595 DOI: 10.1186/s12870-024-05483-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND The genus Hydrocotyle Tourn. ex L. is a key group for further study on the evolution of Apiales, comprising around 170 species globally. Previous studies mainly focused on separate sections and provided much information about this genus, but its infrageneric relationships are still confusing. In addition, the genetic basis of its adaptive evolution remains poorly understood. To investigate the phylogeny and evolution of the genus, we selected ten representative species covering two of three diversity distribution centers and exhibiting rich morphology diversity. Comparative plastome analysis was conducted to clarify the structural character of Hydrocotyle plastomes. Positive selection analyses were implemented to assess the evolution of the genus. Phylogenetic inferences with protein-coding sequences (CDS) of Hydrocotyle and 17 related species were also performed. RESULTS Plastomes within Hydrocotyle were generally conservative in structure, gene order, and size. A total of 14 regions (rps16-trnK, trnQ-rps16, atpI-atpH, trnC-petN-psbM, ycf3-trnS, accD-psaI-ycf4, petA-psbJ, rps12-rpl20, rpl16 intron, rps3-rpl16 intron, rps9-rpl22, ndhF-rpl32, ndhA intron, and ycf1a) were recognized as hotspot regions within the genus, which suggested to be promising DNA barcodes for global phylogenetic analysis of Hydrocotyle. The ycf15 gene was suggested to be a protein-coding gene for Hydrocotyle species, and it could be used as a DNA barcode to identify Hydrocotyle. In phylogenetic analysis, three monophyletic clades (Clade I, II, III) were identified with evidence of rapid radiation speciation within Clade I. The selective pressure analysis detected that six CDS genes (ycf1b, matK, atpF, accD, rps14, and psbB) of Hydrocotyle species were under positive selection. Within the genus, the last four genes were conservative, suggesting a relation to the unique evolution of the genus in Apiales. Seven genes (atpE, matK, psbH, ycf1a, ycf1b, rpoA, and ycf2) were detected to be under some degree of positive selection in different taxa within the genus Hydrocotyle, indicating their role in the adaptive evolution of species. CONCLUSIONS Our study offers new insights into the phylogeny and adaptive evolution of Hydrocotyle. The plastome sequences could significantly enhance phylogenetic resolution and provide genomic resources and potential DNA markers useful for future studies of the genus.
Collapse
Affiliation(s)
- Jun Wen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Bao-Cheng Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Hui-Min Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Wei Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Chun-Feng Song
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China.
| |
Collapse
|
15
|
Ascensao JA, Denk J, Lok K, Yu Q, Wetmore KM, Hallatschek O. Rediversification following ecotype isolation reveals hidden adaptive potential. Curr Biol 2024; 34:855-867.e6. [PMID: 38325377 PMCID: PMC10911448 DOI: 10.1016/j.cub.2024.01.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/09/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Microbial communities play a critical role in ecological processes, and their diversity is key to their functioning. However, little is known about whether communities can regenerate ecological diversity following ecotype removal or extinction and how the rediversified communities would compare to the original ones. Here, we show that simple two-ecotype communities from the E. coli long-term evolution experiment (LTEE) consistently rediversified into two ecotypes following the isolation of one of the ecotypes, coexisting via negative frequency-dependent selection. Communities separated by more than 30,000 generations of evolutionary time rediversify in similar ways. The rediversified ecotype appears to share a number of growth traits with the ecotype it replaces. However, the rediversified community is also different from the original community in ways relevant to the mechanism of ecotype coexistence-for example, in stationary phase response and survival. We found substantial variation in the transcriptional states between the two original ecotypes, whereas the differences within the rediversified community were comparatively smaller, although the rediversified community showed unique patterns of differential expression. Our results suggest that evolution may leave room for alternative diversification processes even in a maximally reduced community of only two strains. We hypothesize that the presence of alternative evolutionary pathways may be even more pronounced in communities of many species where there are even more potential niches, highlighting an important role for perturbations, such as species removal, in evolving ecological communities.
Collapse
Affiliation(s)
- Joao A Ascensao
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Jonas Denk
- Department of Physics, University of California Berkeley Berkeley, CA, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Kristen Lok
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
- Present affiliation: Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - QinQin Yu
- Department of Physics, University of California Berkeley Berkeley, CA, USA
- Present affiliation: Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States
| | - Kelly M Wetmore
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Oskar Hallatschek
- Department of Physics, University of California Berkeley Berkeley, CA, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
16
|
Graham CI, MacMartin TL, de Kievit TR, Brassinga AKC. Molecular regulation of virulence in Legionella pneumophila. Mol Microbiol 2024; 121:167-195. [PMID: 37908155 DOI: 10.1111/mmi.15172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 11/02/2023]
Abstract
Legionella pneumophila is a gram-negative bacteria found in natural and anthropogenic aquatic environments such as evaporative cooling towers, where it reproduces as an intracellular parasite of cohabiting protozoa. If L. pneumophila is aerosolized and inhaled by a susceptible person, bacteria may colonize their alveolar macrophages causing the opportunistic pneumonia Legionnaires' disease. L. pneumophila utilizes an elaborate regulatory network to control virulence processes such as the Dot/Icm Type IV secretion system and effector repertoire, responding to changing nutritional cues as their host becomes depleted. The bacteria subsequently differentiate to a transmissive state that can survive in the environment until a replacement host is encountered and colonized. In this review, we discuss the lifecycle of L. pneumophila and the molecular regulatory network that senses nutritional depletion via the stringent response, a link to stationary phase-like metabolic changes via alternative sigma factors, and two-component systems that are homologous to stress sensors in other pathogens, to regulate differentiation between the intracellular replicative phase and more transmissible states. Together, we highlight how this prototypic intracellular pathogen offers enormous potential in understanding how molecular mechanisms enable intracellular parasitism and pathogenicity.
Collapse
Affiliation(s)
- Christopher I Graham
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Teassa L MacMartin
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Teresa R de Kievit
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ann Karen C Brassinga
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
17
|
Shimada T, Ogasawara H, Kobayashi I, Ishihama A. Genomic SELEX Screening of Regulatory Targets of Transcription Factors. Methods Mol Biol 2024; 2819:77-102. [PMID: 39028503 DOI: 10.1007/978-1-0716-3930-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The genome of Escherichia coli K-12 is transcribed by a single species of RNA polymerase. The selectivity of transcriptional targets is determined via interaction with one of seven species of the sigma subunit and a total of approximately 300 species of transcription factor (TFs). For comprehensive identification of the regulatory targets of these two groups of regulatory proteins on the genome, we developed an in vitro approach, "Genomic SELEX" (gSELEX) screening. Here we describe a detailed protocol of the gSELEX screening system, which uses purified regulatory proteins and fragments of genomic DNA from E. coli. Moreover, we describe methods and examples of results using cell-free synthetic proteins.
Collapse
Affiliation(s)
- Tomohiro Shimada
- Meiji University, School of Agriculture, Kawasaki, Kanagawa, Japan.
| | - Hiroshi Ogasawara
- Research Center for Advanced Science and technology, Division of Gene Research, Shinshu University, Ueda, Nagano, Japan
| | - Ikki Kobayashi
- Meiji University, School of Agriculture, Kawasaki, Kanagawa, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
| |
Collapse
|
18
|
Chai G, Li J, Li Z. The interactive effects of ocean acidification and warming on bioeroding sponge Spheciospongia vesparium microbiome indicated by metatranscriptomics. Microbiol Res 2024; 278:127542. [PMID: 37979302 DOI: 10.1016/j.micres.2023.127542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/20/2023]
Abstract
Global climate change will cause coral reefs decline and is expected to increase the reef erosion potential of bioeroding sponges. Microbial symbionts are essential for the overall fitness and survival of sponge holobionts in changing ocean environments. However, we rarely know about the impacts of ocean warming and acidification on bioeroding sponge microbiome. Here, the structural and functional changes of the bioeroding sponge Spheciospongia vesparium microbiome, as well as its recovery potential, were investigated at the RNA level in a laboratory system simulating 32 °C and pH 7.7. Based on metatranscriptome analysis, acidification showed no significant impact, while warming or simultaneous warming and acidification disrupted the sponge microbiome. Warming caused microbial dysbiosis and recruited potentially opportunistic and pathogenic members of Nesiotobacter, Oceanospirillaceae, Deltaproteobacteria, Epsilonproteobacteria, Bacteroidetes and Firmicutes. Moreover, warming disrupted nutrient exchange and molecular interactions in the sponge holobiont, accompanied by stimulation of virulence activity and anaerobic metabolism including denitrification and dissimilatory reduction of nitrate and sulfate to promote sponge necrosis. Particularly, the interaction between acidification and warming alleviated the negative effects of warming and enhanced the Rhodobacteraceae-driven ethylmalonyl-CoA pathway and sulfur-oxidizing multienzyme system. The microbiome could not recover during the experiment period after warming or combined stress was removed. This study suggests that warming or combined warming and acidification will irreversibly destabilize the S. vesparium microbial community structure and function, and provides insight into the molecular mechanisms of the interactive effects of acidification and warming on the sponge microbiome.
Collapse
Affiliation(s)
- Guangjun Chai
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinlong Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiyong Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
19
|
Jeong GJ, Khan F, Tabassum N, Kim YM. Cellular and physiological roles of sigma factors in Vibrio spp.: A comprehensive review. Int J Biol Macromol 2024; 254:127833. [PMID: 37918595 DOI: 10.1016/j.ijbiomac.2023.127833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Vibrio species are motile gram-negative bacteria commonly found in aquatic environments. Vibrio species include pathogenic as well as non-pathogenic strains. Pathogenic Vibrio species have been reported in invertebrates and humans, whereas non-pathogenic strains are involved in symbiotic relationships with their eukaryotic hosts. These bacteria are also able to adapt to fluctuations in temperature, salinity, and pH, in addition to oxidative stress, and osmotic pressure in aquatic ecosystems. Moreover, they have also developed protective mechanisms against the immune systems of their hosts. Vibrio species accomplish adaptation to changing environments outside or inside the host by altering their gene expression profiles. To this end, several sigma factors specifically regulate gene expression, particularly under stressful environmental conditions. Moreover, other sigma factors are associated with biofilm formation and virulence as well. This review discusses different types of sigma and anti-sigma factors of Vibrio species involved in virulence and regulation of gene expression upon changes in environmental conditions. The evolutionary relationships between sigma factors with various physiological roles in Vibrio species are also discussed extensively.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Institute of Fisheries Sciences, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
20
|
Sánchez-Jiménez A, Llamas MA, Marcos-Torres FJ. Transcriptional Regulators Controlling Virulence in Pseudomonas aeruginosa. Int J Mol Sci 2023; 24:11895. [PMID: 37569271 PMCID: PMC10418997 DOI: 10.3390/ijms241511895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Pseudomonas aeruginosa is a pathogen capable of colonizing virtually every human tissue. The host colonization competence and versatility of this pathogen are powered by a wide array of virulence factors necessary in different steps of the infection process. This includes factors involved in bacterial motility and attachment, biofilm formation, the production and secretion of extracellular invasive enzymes and exotoxins, the production of toxic secondary metabolites, and the acquisition of iron. Expression of these virulence factors during infection is tightly regulated, which allows their production only when they are needed. This process optimizes host colonization and virulence. In this work, we review the intricate network of transcriptional regulators that control the expression of virulence factors in P. aeruginosa, including one- and two-component systems and σ factors. Because inhibition of virulence holds promise as a target for new antimicrobials, blocking the regulators that trigger the production of virulence determinants in P. aeruginosa is a promising strategy to fight this clinically relevant pathogen.
Collapse
Affiliation(s)
| | - María A. Llamas
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain;
| | - Francisco Javier Marcos-Torres
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain;
| |
Collapse
|
21
|
Rey-Varela D, Balado M, Lemos ML. The Sigma Factor AsbI Is Required for the Expression of Acinetobactin Siderophore Transport Genes in Aeromonas salmonicida. Int J Mol Sci 2023; 24:ijms24119672. [PMID: 37298622 DOI: 10.3390/ijms24119672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Aeromonas salmonicida subsp. salmonicida (A. salmonicida), a Gram-negative bacterium causing furunculosis in fish, produces the siderophores acinetobactin and amonabactins in order to extract iron from its hosts. While the synthesis and transport of both systems is well understood, the regulation pathways and conditions necessary for the production of each one of these siderophores are not clear. The acinetobactin gene cluster carries a gene (asbI) encoding a putative sigma factor belonging to group 4 σ factors, or, the ExtraCytoplasmic Function (ECF) group. By generating a null asbI mutant, we demonstrate that AsbI is a key regulator that controls acinetobactin acquisition in A. salmonicida, since it directly regulates the expression of the outer membrane transporter gene and other genes necessary for Fe-acinetobactin transport. Furthermore, AsbI regulatory functions are interconnected with other iron-dependent regulators, such as the Fur protein, as well as with other sigma factors in a complex regulatory network.
Collapse
Affiliation(s)
- Diego Rey-Varela
- Departmento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Miguel Balado
- Departmento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Manuel L Lemos
- Departmento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
22
|
Murashko ON, Yeh KH, Yu CHA, Kaberdin VR, Lin-Chao S. Sodium Fluoride Exposure Leads to ATP Depletion and Altered RNA Decay in Escherichia coli under Anaerobic Conditions. Microbiol Spectr 2023; 11:e0415822. [PMID: 36939343 PMCID: PMC10100675 DOI: 10.1128/spectrum.04158-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/11/2023] [Indexed: 03/21/2023] Open
Abstract
Although fluoride-containing compounds are widely used to inhibit bacterial growth, the reprogramming of gene expression underlying cellular responses to fluoride, especially under anaerobic conditions, is still poorly understood. Here, we compare the genome-wide transcriptomic profiles of E. coli grown in the absence (control) or presence (20 and 70 mM) of sodium fluoride (NaF) under anaerobic conditions and assess the impact of fluoride-dependent ATP depletion on RNA turnover. Tiling array analysis revealed transcripts displaying altered abundance in response to NaF treatments. Quantile-based K-means clustering uncovered a subset of genes that were highly upregulated and then downregulated in response to increased and subsequently decreased fluoride concentrations, many of which (~40%) contained repetitive extragenic palindromic (REP) sequences. Northern blot analysis of some of these highly upregulated REP-containing transcripts (i.e., osmC, proP, efeO and yghA) confirmed their considerably enhanced abundance in response to NaF treatment. An mRNA stability analysis of osmC and yghA transcripts demonstrated that fluoride treatment slows down RNA degradation, thereby enhancing RNA stability and steady-state mRNA levels. Moreover, we demonstrate that turnover of these transcripts depends on RNase E activity and RNA degradosome. Thus, we show that NaF exerts significant effects at the whole-transcriptome level under hypoxic growth (i.e., mimicking the host environment), and fluoride can impact gene expression posttranscriptionally by slowing down ATP-dependent degradation of structured RNAs. IMPORTANCE Gram-negative Escherichia coli is a rod-shaped facultative anaerobic bacterium commonly found in microaerobic/anaerobic environments, including the dental plaques of warm-blooded organisms. These latter can be treated efficiently with fluoride-rich compounds that act as anticaries agents to prevent tooth decay. Although fluoride inhibits microbial growth by affecting metabolic pathways, the molecular mechanisms underlying its activity under anaerobic conditions remain poorly defined. Here, using genome-wide transcriptomics, we explore the impact of fluoride treatments on E. coli gene expression under anaerobic conditions. We reveal key gene clusters associated with cellular responses to fluoride and define its ATP-dependent stabilizing effects on transcripts containing repetitive extragenic palindromic sequences. We demonstrate the mechanisms controlling the RNA stability of these REP-containing mRNAs. Thus, fluoride can affect gene expression posttranscriptionally by stabilizing structured RNAs.
Collapse
Affiliation(s)
| | - Kun-Hai Yeh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | - Vladimir R. Kaberdin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Leioa, Spain
- Basque Foundation for Science, IKERBASQUE, Bilbao, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), Plentzia, Spain
| | - Sue Lin-Chao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
23
|
Neira JL, Palomino-Schätzlein M. Folding of the nascent polypeptide chain of a histidine phosphocarrier protein in vitro. Arch Biochem Biophys 2023; 736:109538. [PMID: 36738980 DOI: 10.1016/j.abb.2023.109538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
The phosphotransferase system (PTS), a metabolic pathway formed by five proteins, modulates the use of sugars in bacteria. The second protein in the chain is the histidine phosphocarrier, HPr, with the binding site at His15. The HPr kinase/phosphorylase (HPrK/P), involved in the bacterial use of carbon sources, phosphorylates HPr at Ser46, and it binds at its binding site. The regulator of sigma D protein (Rsd) also binds to HPr at His15. We have designed fragments of HPr, growing from its N-terminus and containing the His15. In this work, we obtained three fragments, HPr38, HPr58 and HPr70, comprising the first thirty-eight, fifty-eight and seventy residues of HPr, respectively. All fragments were mainly disordered, with evidence of a weak native-like, helical population around the binding site, as shown by fluorescence, far-ultraviolet circular dichroism, size exclusion chromatography and nuclear magnetic resonance. Although HPr38, HPr58 and HPr70 were disordered, they could bind to: (i) the N-terminal domain of first protein of the PTS, EIN; (ii) Rsd; and, (iii) HPrK/P, as shown by fluorescence and biolayer interferometry (BLI). The association constants for each protein to any of the fragments were in the low micromolar range, within the same range than those measured in the binding of HPr to each protein. Then, although acquisition of stable, native-like secondary and tertiary structures occurred at the last residues of the polypeptide, the ability to bind protein partners happened much earlier in the growing chain. Binding was related to the presence of the native-like structure around His15.
Collapse
Affiliation(s)
- José L Neira
- IDIBE, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Joint Units IQFR-CSIC-BIFI and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018, Zaragoza, Spain.
| | - Martina Palomino-Schätzlein
- ProtoQSAR SL, CEEI-Valencia, Parque Tecnológico de Valencia, Av. Benjamin Franklin 12 (Dep. 8), 46980, Paterna, Valencia, Spain
| |
Collapse
|
24
|
Metal-Responsive Transcription Factors Co-Regulate Anti-Sigma Factor (Rsd) and Ribosome Dimerization Factor Expression. Int J Mol Sci 2023; 24:ijms24054717. [PMID: 36902154 PMCID: PMC10003395 DOI: 10.3390/ijms24054717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Bacteria exposed to stress survive by regulating the expression of several genes at the transcriptional and translational levels. For instance, in Escherichia coli, when growth is arrested in response to stress, such as nutrient starvation, the anti-sigma factor Rsd is expressed to inactivate the global regulator RpoD and activate the sigma factor RpoS. However, ribosome modulation factor (RMF) expressed in response to growth arrest binds to 70S ribosomes to form inactive 100S ribosomes and inhibit translational activity. Moreover, stress due to fluctuations in the concentration of metal ions essential for various intracellular pathways is regulated by a homeostatic mechanism involving metal-responsive transcription factors (TFs). Therefore, in this study, we examined the binding of a few metal-responsive TFs to the promoter regions of rsd and rmf through promoter-specific TF screening and studied the effects of these TFs on the expression of rsd and rmf in each TF gene-deficient E. coli strain through quantitative PCR, Western blot imaging, and 100S ribosome formation analysis. Our results suggest that several metal-responsive TFs (CueR, Fur, KdpE, MntR, NhaR, PhoP, ZntR, and ZraR) and metal ions (Cu2+, Fe2+, K+, Mn2+, Na+, Mg2+, and Zn2+) influence rsd and rmf gene expression while regulating transcriptional and translational activities.
Collapse
|
25
|
Fu X, Xie DF, Zhou YY, Cheng RY, Zhang XY, Zhou SD, He XJ. Phylogeny and adaptive evolution of subgenus Rhizirideum (Amaryllidaceae, Allium) based on plastid genomes. BMC PLANT BIOLOGY 2023; 23:70. [PMID: 36726056 PMCID: PMC9890777 DOI: 10.1186/s12870-022-03993-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/09/2022] [Indexed: 06/01/2023]
Abstract
The subgenus Rhizirideum in the genus Allium consists of 38 species worldwide and forms five sections (A. sect. Rhizomatosa, A. sect. Tenuissima, A. sect. Rhizirideum, A. sect. Eduardia, and A. sect. Caespitosoprason), A. sect. Caespitosoprason being merged into A. sect. Rhizomatosa recently. Previous studies on this subgenus mainly focused on separate sections. To investigate the inter-section and inter-subgenera phylogenetic relationships and adaptive evolution of A. subg. Rhizirideum, we selected thirteen representative species, which cover five sections of this subgenus and can represent four typical phenotypes of it. We conducted the comparative plastome analysis with our thirteen plastomes. And phylogenetic inferences with CDSs and complete sequences of plastomes of our thirteen species and another fifty-four related species were also performed. As a result, the A. subg. Rhizirideum plastomes were relatively conservative in structure, IR/SC borders, codon usage, and repeat sequence. In phylogenetic results, the inter-subgenera relationships among A. subg. Rhizirideum and other genus Allium subgenera were generally similar to the previous reports. In contrast, the inter-section relationships within our subgenus A. subg. Rhizirideum were newly resolved in this study. A. sect. Rhizomatosa and A. sect. Tenuissima were sister branches, which were then clustered with A. sect. Rhizirideum and A. sect. Eduardia successively. However, Allium Polyrhizum Turcz. ex Regel, type species of A. sect. Caespitosoprason, was resolved as the basal taxon of A. subg. Rhizirideum. Allium siphonanthum J. M. Xu was also found in clade A. subg. Cyathophora instead of clade A. subg. Rhizirideum. The selective pressure analysis was also conducted, and most protein-coding genes were under purifying selection. At the same time, just one gene, ycf2, was found under positive selection, and another three genes (rbcL, ycf1a, ycf1b) presented relaxed selection, which were all involved in the photosynthesis. The low temperature, dry climate, and high altitude of the extreme habitats where A. subg. Rhizirideum species grow might impose intense natural selection forces on their plastome genes for photosynthesis. In summary, our research provides new insights into the phylogeny and adaptive evolution of A. subg. Rhizirideum. Moreover, we suggest that the positions of the A. subg. Rhizirideum species A. polyrhizum and A. siphonanthum should be reconsidered.
Collapse
Affiliation(s)
- Xiao Fu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, The People's Republic of China
| | - Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, The People's Republic of China
| | - Yu-Yang Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, The People's Republic of China
| | - Rui-Yu Cheng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, The People's Republic of China
| | - Xiang-Yi Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, The People's Republic of China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, The People's Republic of China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, The People's Republic of China.
| |
Collapse
|
26
|
Qin HH, Cai J, Liu CK, Zhou RX, Price M, Zhou SD, He XJ. The plastid genome of twenty-two species from Ferula, Talassia, and Soranthus: comparative analysis, phylogenetic implications, and adaptive evolution. BMC PLANT BIOLOGY 2023; 23:9. [PMID: 36604614 PMCID: PMC9814190 DOI: 10.1186/s12870-022-04027-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The Ferula genus encompasses 180-185 species and is one of the largest genera in Apiaceae, with many of Ferula species possessing important medical value. The previous studies provided more information for Ferula, but its infrageneric relationships are still confusing. In addition, its genetic basis of its adaptive evolution remains poorly understood. Plastid genomes with more variable sites have the potential to reconstruct robust phylogeny in plants and investigate the adaptive evolution of plants. Although chloroplast genomes have been reported within the Ferula genus, few studies have been conducted using chloroplast genomes, especially for endemic species in China. RESULTS Comprehensively comparative analyses of 22 newly sequenced and assembled plastomes indicated that these plastomes had highly conserved genome structure, gene number, codon usage, and repeats type and distribution, but varied in plastomes size, GC content, and the SC/IR boundaries. Thirteen mutation hotspot regions were detected and they would serve as the promising DNA barcodes candidates for species identification in Ferula and related genera. Phylogenomic analyses with high supports and resolutions showed that Talassia transiliensis and Soranthus meyeri were nested in the Ferula genus, and thus they should be transferred into the Ferula genus. Our phylogenies also indicated the monophyly of subgenera Sinoferula and subgenera Narthex in Ferula genus. Twelve genes with significant posterior probabilities for codon sites were identified in the positively selective analysis, and their function may relate to the photosystem II, ATP subunit, and NADH dehydrogenase. Most of them might play an important role to help Ferula species adapt to high-temperatures, strong-light, and drought habitats. CONCLUSION Plastome data is powerful and efficient to improve the support and resolution of the complicated Ferula phylogeny. Twelve genes with significant posterior probabilities for codon sites were helpful for Ferula to adapt to the harsh environment. Overall, our study supplies a new perspective for comprehending the phylogeny and evolution of Ferula.
Collapse
Affiliation(s)
- Huan-Huan Qin
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jing Cai
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Chang-Kun Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Ren-Xiu Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Megan Price
- Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
27
|
Chen L, Zhang M, Li X, Wu Q, Xue X, Zhang T, Lu R, Zhang Y. AphA directly activates the transcription of polysaccharide biosynthesis gene scvE in Vibrio parahaemolyticus. Gene 2023; 851:146980. [DOI: 10.1016/j.gene.2022.146980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
|
28
|
Ferrarini MG, Dell’Aglio E, Vallier A, Balmand S, Vincent-Monégat C, Hughes S, Gillet B, Parisot N, Zaidman-Rémy A, Vieira C, Heddi A, Rebollo R. Efficient compartmentalization in insect bacteriomes protects symbiotic bacteria from host immune system. MICROBIOME 2022; 10:156. [PMID: 36163269 PMCID: PMC9513942 DOI: 10.1186/s40168-022-01334-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Many insects house symbiotic intracellular bacteria (endosymbionts) that provide them with essential nutrients, thus promoting the usage of nutrient-poor habitats. Endosymbiont seclusion within host specialized cells, called bacteriocytes, often organized in a dedicated organ, the bacteriome, is crucial in protecting them from host immune defenses while avoiding chronic host immune activation. Previous evidence obtained in the cereal weevil Sitophilus oryzae has shown that bacteriome immunity is activated against invading pathogens, suggesting endosymbionts might be targeted and impacted by immune effectors during an immune challenge. To pinpoint any molecular determinants associated with such challenges, we conducted a dual transcriptomic analysis of S. oryzae's bacteriome subjected to immunogenic peptidoglycan fragments. RESULTS We show that upon immune challenge, the bacteriome actively participates in the innate immune response via induction of antimicrobial peptides (AMPs). Surprisingly, endosymbionts do not undergo any transcriptomic changes, indicating that this potential threat goes unnoticed. Immunohistochemistry showed that TCT-induced AMPs are located outside the bacteriome, excluding direct contact with the endosymbionts. CONCLUSIONS This work demonstrates that endosymbiont protection during an immune challenge is mainly achieved by efficient confinement within bacteriomes, which provides physical separation between host systemic response and endosymbionts. Video Abstract.
Collapse
Affiliation(s)
- Mariana Galvão Ferrarini
- Univ Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
| | - Elisa Dell’Aglio
- Univ Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Agnès Vallier
- Univ Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Séverine Balmand
- Univ Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| | | | - Sandrine Hughes
- UMR5242, Institut de Génomique Fonctionnelle de Lyon (IGFL), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon (Univ Lyon), F-69007 Lyon, France
| | - Benjamin Gillet
- UMR5242, Institut de Génomique Fonctionnelle de Lyon (IGFL), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon (Univ Lyon), F-69007 Lyon, France
| | - Nicolas Parisot
- Univ Lyon, INSA-Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Anna Zaidman-Rémy
- Univ Lyon, INSA-Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
| | - Abdelaziz Heddi
- Univ Lyon, INSA-Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Rita Rebollo
- Univ Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| |
Collapse
|
29
|
Cai X, Li X, Qin J, Zhang Y, Yan B, Cai J. Gene rppA co-regulated by LRR, SigA, and CcpA mediates antibiotic resistance in Bacillus thuringiensis. Appl Microbiol Biotechnol 2022; 106:5687-5699. [PMID: 35906441 DOI: 10.1007/s00253-022-12090-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022]
Abstract
Antibiotic resistance genes are usually tightly controlled by transcription factors and RNA regulatory elements including sRNAs, riboswitches, and attenuators, and their expression is activated to respond to antibiotic exposure. In previous work, we revealed that the rppA gene is regulated by attenuator LRR and two mistranslation products in Bacillus thuringiensis BMB171. However, its function and promoter regulation is still not precise. In this study, we demonstrated that the encoding product of the rppA gene acts as an ARE1 ABC-F protein and confers resistance to antibiotics virginiamycin M1 and lincomycin when overexpressed. Besides the reported attenuator LRR, the expression of the rppA gene is controlled by the sigma factor SigA and a global transcription factor CcpA. Consequently, its promoter activity is mainly maintained at the stationary phase of cell growth and inhibited in the presence of glucose. Our study revealed the function and regulation of the rppA gene in detail. KEY POINTS: • The RppA protein acts as an ARE1 ABC-F protein • The rppA gene confers resistance to antibiotics virginiamycin M1 and lincomycin when overexpressed • The expression of the rppA gene is regulated by the sigma factor SigA and the pleiotropic regulator CcpA.
Collapse
Affiliation(s)
- Xia Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xuelian Li
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jiaxin Qin
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yizhuo Zhang
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Bing Yan
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jun Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071, China.
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, 300071, China.
| |
Collapse
|
30
|
Baptista ISC, Kandavalli V, Chauhan V, Bahrudeen MNM, Almeida BLB, Palma CSD, Dash S, Ribeiro AS. Sequence-dependent model of genes with dual σ factor preference. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194812. [PMID: 35338024 DOI: 10.1016/j.bbagrm.2022.194812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
Abstract
Escherichia coli uses σ factors to quickly control large gene cohorts during stress conditions. While most of its genes respond to a single σ factor, approximately 5% of them have dual σ factor preference. The most common are those responsive to both σ70, which controls housekeeping genes, and σ38, which activates genes during stationary growth and stresses. Using RNA-seq and flow-cytometry measurements, we show that 'σ70+38 genes' are nearly as upregulated in stationary growth as 'σ38 genes'. Moreover, we find a clear quantitative relationship between their promoter sequence and their response strength to changes in σ38 levels. We then propose and validate a sequence dependent model of σ70+38 genes, with dual sensitivity to σ38 and σ70, that is applicable in the exponential and stationary growth phases, as well in the transient period in between. We further propose a general model, applicable to other stresses and σ factor combinations. Given this, promoters controlling σ70+38 genes (and variants) could become important building blocks of synthetic circuits with predictable, sequence-dependent sensitivity to transitions between the exponential and stationary growth phases.
Collapse
Affiliation(s)
- Ines S C Baptista
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Vinodh Kandavalli
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland; Department of Cell and Molecular Biology, Uppsala University, Uppsala 752 37, Sweden
| | - Vatsala Chauhan
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Mohamed N M Bahrudeen
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Bilena L B Almeida
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Cristina S D Palma
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Suchintak Dash
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Andre S Ribeiro
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland; Center of Technology and Systems (CTS-Uninova), NOVA University of Lisbon, 2829-516 Monte de Caparica, Portugal.
| |
Collapse
|
31
|
A Role for the RNA Polymerase Gene Specificity Factor σ 54 in the Uniform Colony Growth of Uropathogenic Escherichia coli. J Bacteriol 2022; 204:e0003122. [PMID: 35357162 PMCID: PMC9017345 DOI: 10.1128/jb.00031-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The canonical function of a bacterial sigma (σ) factor is to determine the gene specificity of the RNA polymerase (RNAP). In several diverse bacterial species, the σ54 factor uniquely confers distinct functional and regulatory properties on the RNAP. A hallmark feature of the σ54-RNAP is the obligatory requirement for an activator ATPase to allow transcription initiation. Different activator ATPases couple diverse environmental cues to the σ54-RNAP to mediate adaptive changes in gene expression. Hence, the genes that rely upon σ54 for their transcription have a wide range of different functions suggesting that the repertoire of functions performed by genes, directly or indirectly affected by σ54, is not yet exhaustive. By comparing the growth patterns of prototypical enteropathogenic, uropathogenic, and nonpathogenic Escherichia coli strains devoid of σ54, we uncovered that the absence of σ54 results in two differently sized colonies that appear at different times specifically in the uropathogenic E. coli (UPEC) strain. Notably, UPEC bacteria devoid of individual activator ATPases of the σ54-RNAP do not phenocopy the σ54 mutant strain. Thus, it seems that σ54’s role as a determinant of uniform colony appearance in UPEC bacteria represents a putative non-canonical function of σ54 in regulating genetic information flow. IMPORTANCE RNA synthesis is the first step of gene expression. The multisubunit RNA polymerase (RNAP) is the central enzyme responsible for RNA synthesis in bacteria. The dissociable sigma (σ) factor subunit directs the RNAP to different sets of genes to allow their expression in response to various cellular needs. Of the seven σ factors in Escherichia coli and related bacteria, σ54 exists in a class of its own. This study has uncovered that σ54 is a determinant of the uniform growth of uropathogenic E. coli on solid media. This finding suggests a role for this σ54 in gene regulation that extends beyond its known function as an RNAP gene specificity factor.
Collapse
|
32
|
Liu X, Zhao G, Sun S, Fan C, Feng X, Xiong P. Biosynthetic Pathway and Metabolic Engineering of Succinic Acid. Front Bioeng Biotechnol 2022; 10:843887. [PMID: 35350186 PMCID: PMC8957974 DOI: 10.3389/fbioe.2022.843887] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/16/2022] [Indexed: 11/25/2022] Open
Abstract
Succinic acid, a dicarboxylic acid produced as an intermediate of the tricarboxylic acid (TCA) cycle, is one of the most important platform chemicals for the production of various high value-added derivatives. As traditional chemical synthesis processes suffer from nonrenewable resources and environment pollution, succinic acid biosynthesis has drawn increasing attention as a viable, more environmentally friendly alternative. To date, several metabolic engineering approaches have been utilized for constructing and optimizing succinic acid cell factories. In this review, different succinic acid biosynthesis pathways are summarized, with a focus on the key enzymes and metabolic engineering approaches, which mainly include redirecting carbon flux, balancing NADH/NAD+ ratios, and optimizing CO2 supplementation. Finally, future perspectives on the microbial production of succinic acid are discussed.
Collapse
Affiliation(s)
- Xiutao Liu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Guang Zhao
- State Key Lab of Microbial Technology, Shandong University, Qingdao, China
| | - Shengjie Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Chuanle Fan
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Xinjun Feng
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Peng Xiong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
33
|
Iron Homeostasis in Pseudomonas aeruginosa: Targeting Iron Acquisition and Storage as an Antimicrobial Strategy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:29-68. [DOI: 10.1007/978-3-031-08491-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Neira JL, Palomino-Schätzlein M, Hurtado-Gómez E, Ortore MG, Falcó A. An N-terminal half fragment of the histidine phosphocarrier protein, HPr, is disordered but binds to HPr partners and shows antibacterial properties. Biochim Biophys Acta Gen Subj 2021; 1865:130015. [PMID: 34537288 DOI: 10.1016/j.bbagen.2021.130015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/26/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The phosphotransferase system (PTS) modulates the preferential use of sugars in bacteria. It is formed by a protein cascade in which the first two proteins are general (namely enzyme I, EI, and the histidine phosphocarrier protein, HPr) and the others are sugar-specific permeases; the active site of HPr is His15. The HPr kinase/phosphorylase (HPrK/P), involved in the use of carbon sources in Gram-positive, phopshorylates HPr at a serine. The regulator of sigma D protein (Rsd) also binds to HPr. We are designing specific fragments of HPr, which can be used to interfere with those protein-protein interactions (PPIs), where the intact HPr intervenes. METHODS We obtained a fragment (HPr48) comprising the first forty-eight residues of HPr. HPr48 was disordered as shown by fluorescence, far-ultraviolet (UV) circular dichroism (CD), small angle X-ray scattering (SAXS) and nuclear magnetic resonance (NMR). RESULTS Secondary structure propensities, from the assigned backbone nuclei, further support the unfolded nature of the fragment. However, HPr48 was capable of binding to: (i) the N-terminal region of EI, EIN; (ii) the intact Rsd; and, (iii) HPrK/P, as shown by fluorescence, far-UV CD, NMR and biolayer interferometry (BLI). The association constants for each protein, as measured by fluorescence and BLI, were in the order of the low micromolar range, similar to those measured between the intact HPr and each of the other macromolecules. CONCLUSIONS Although HPr48 is forty-eight-residue long, it assisted antibiotics to exert antimicrobial activity. GENERAL SIGNIFICANCE HPr48 could be used as a lead compound in the development of new antibiotics, or, alternatively, to improve the efficiency of existing ones.
Collapse
Affiliation(s)
- José L Neira
- IDIBE, Universidad Miguel Hernández, 03202, Elche (Alicante), Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain.
| | | | | | - María G Ortore
- Dipartimento DiSVA, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Alberto Falcó
- IDIBE, Universidad Miguel Hernández, 03202, Elche (Alicante), Spain.
| |
Collapse
|
35
|
Shimada T, Furuhata S, Ishihama A. Whole set of constitutive promoters for RpoN sigma factor and the regulatory role of its enhancer protein NtrC in Escherichia coli K-12. Microb Genom 2021; 7. [PMID: 34787538 PMCID: PMC8743547 DOI: 10.1099/mgen.0.000653] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The promoter selectivity of Escherichia coli RNA polymerase (RNAP) is determined by its promoter-recognition sigma subunit. The model prokaryote E. coli K-12 contains seven species of the sigma subunit, each recognizing a specific set of promoters. Using genomic SELEX (gSELEX) screening in vitro, we identified the whole set of ‘constitutive’ promoters recognized by the reconstituted RNAP holoenzyme alone, containing RpoD (σ70), RpoS (σ38), RpoH (σ32), RpoF (σ28) or RpoE (σ24), in the absence of other supporting regulatory factors. In contrast, RpoN sigma (σ54), involved in expression of nitrogen-related genes and also other cellular functions, requires an enhancer (or activator) protein, such as NtrC, for transcription initiation. In this study, a series of gSELEX screenings were performed to search for promoters recognized by the RpoN RNAP holoenzyme in the presence and absence of the major nitrogen response enhancer NtrC, the best-characterized enhancer. Based on the RpoN holoenzyme-binding sites, a total of 44 to 61 putative promoters were identified, which were recognized by the RpoN holoenzyme alone. In the presence of the enhancer NtrC, the recognition target increased to 61–81 promoters. Consensus sequences of promoters recognized by RpoN holoenzyme in the absence and presence of NtrC were determined. The promoter activity of a set of NtrC-dependent and -independent RpoN promoters was verified in vivo under nitrogen starvation, in the presence and absence of RpoN and/or NtrC. The promoter activity of some RpoN-recognized promoters increased in the absence of RpoN or NtrC, supporting the concept that the promoter-bound NtrC-enhanced RpoN holoenzyme functions as a repressor against RpoD holoenzyme. Based on our findings, we propose a model in which the RpoN holoenzyme fulfils the dual role of repressor and transcriptase for the same set of genes. We also propose that the promoter recognized by RpoN holoenzyme in the absence of enhancers is the ‘repressive’ promoter. The presence of high-level RpoN sigma in growing E. coli K-12 in rich medium may be related to the repression role of a set of genes needed for the utilization of ammonia as a nitrogen source in poor media. The list of newly identified regulatory targets of RpoN provides insight into E. coli survival under nitrogen-depleted conditions in nature.
Collapse
Affiliation(s)
- Tomohiro Shimada
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Shun Furuhata
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Akira Ishihama
- Micro-Nanotechnology Research Center, Hosei University, Koganei, Tokyo, Japan
| |
Collapse
|
36
|
Chen XJ, Wang B, Thompson IP, Huang WE. Rational Design and Characterization of Nitric Oxide Biosensors in E. coli Nissle 1917 and Mini SimCells. ACS Synth Biol 2021; 10:2566-2578. [PMID: 34551261 DOI: 10.1021/acssynbio.1c00223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitric oxide (NO) is an important disease biomarker found in many chronic inflammatory diseases and cancers. A well-characterized nitric sensing system is useful to aid the rapid development of bacteria therapy and synthetic biology. In this work, we engineered a set of NO-responsive biosensors based on the PnorV promoter and its NorR regulator in the norRVW operon; the circuits were characterized and optimized in probiotic Escherichia coli Nissle 1917 and mini SimCells (minicells containing designed gene circuits for specific tasks). Interestingly, the expression level of NorR displayed an inverse correlation to the PnorV promoter activation, as a strong expression of the NorR regulator resulted in a low amplitude of NO-inducible gene expression. This could be explained by a competitive binding mechanism where the activated and inactivated NorR competitively bind to the same site on the PnorV promoter. To overcome such issues, the NO induction performance was further improved by making a positive feedback loop that fine-tuned the level of NorR. In addition, by examining two integration host factor (IHF) binding sites of the PnorV promoter, we demonstrated that the deletion of the second IHF site increased the maximum signal output by 25% (500 μM DETA/NO) with no notable increase in the basal expression level. The optimized NO-sensing gene circuit in anucleate mini SimCells exhibited increased robustness against external fluctuation in medium composition. The NO detection limit of the optimized gene circuit pPnorVβ was also improved from 25.6 to 1.3 nM in mini SimCells. Moreover, lyophilized mini SimCells can maintain function for over 2 months. Hence, SimCell-based NO biosensors could be used as safe sensor chassis for synthetic biology.
Collapse
Affiliation(s)
- Xiaoyu J. Chen
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
| | - Baojun Wang
- Hangzhou Innovation Center and College of Chemical & Biological Engineering, Zhejiang University, Hangzhou 311200, China
- School of Biological Sciences, University of Edinburgh, G20 Roger Land Building, The Kingʼs Buildings, Edinburgh EH9 3FF, United Kingdom
- ZJU-UoE Joint Research Centre for Engineering Biology, Zhejiang University, Haining 314400, China
| | - Ian P. Thompson
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
| | - Wei E. Huang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
| |
Collapse
|
37
|
Residual Helicity at the Active Site of the Histidine Phosphocarrier, HPr, Modulates Binding Affinity to Its Natural Partners. Int J Mol Sci 2021; 22:ijms221910805. [PMID: 34639146 PMCID: PMC8509676 DOI: 10.3390/ijms221910805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 11/16/2022] Open
Abstract
The phosphoenolpyruvate-dependent phosphotransferase system (PTS) modulates the preferential use of sugars in bacteria. The first proteins in the cascade are common to all organisms (EI and HPr). The active site of HPr involves a histidine (His15) located immediately before the beginning of the first α-helix. The regulator of sigma D (Rsd) protein also binds to HPr. The region of HPr comprising residues Gly9-Ala30 (HPr9–30), involving the first α-helix (Ala16-Thr27) and the preceding active site loop, binds to both the N-terminal region of EI and intact Rsd. HPr9–30 is mainly disordered. We attempted to improve the affinity of HPr9–30 to both proteins by mutating its sequence to increase its helicity. We designed peptides that led to a marginally larger population in solution of the helical structure of HPr9–30. Molecular simulations also suggested a modest increment in the helical population of mutants, when compared to the wild-type. The mutants, however, were bound with a less favorable affinity than the wild-type to both the N-terminal of EI (EIN) or Rsd, as tested by isothermal titration calorimetry and fluorescence. Furthermore, mutants showed lower antibacterial properties against Staphylococcus aureus than the wild-type peptide. Therefore, we concluded that in HPr, a compromise between binding to its partners and residual structure at the active site must exist to carry out its function.
Collapse
|
38
|
Park J, Wang HH. Systematic dissection of σ 70 sequence diversity and function in bacteria. Cell Rep 2021; 36:109590. [PMID: 34433066 PMCID: PMC8716302 DOI: 10.1016/j.celrep.2021.109590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 04/19/2021] [Accepted: 08/02/2021] [Indexed: 10/29/2022] Open
Abstract
Primary σ70 factors are key conserved bacterial regulatory proteins that interact with regulatory DNA to control gene expression. It is, however, poorly understood whether σ70 sequence diversity in different bacteria reflects functional differences. Here, we employ comparative and functional genomics to explore the sequence and function relationship of primary σ70. Using multiplex automated genome engineering and deep sequencing (MAGE-seq), we generate a saturation mutagenesis library and high-resolution fitness map of E. coli σ70 in domains 2-4. Mapping natural σ70 sequence diversity to the E. coli σ70 fitness landscape reveals significant predicted fitness deficits across σ70 orthologs. Interestingly, these predicted deficits are larger than observed fitness changes for 15 σ70 orthologs introduced into E. coli. Finally, we use a multiplexed transcriptional reporter assay and RNA sequencing (RNA-seq) to explore functional differences of several σ70 orthologs. This work provides an in-depth analysis of σ70 sequence and function to improve efforts to understand the evolution and engineering potential of this global regulator.
Collapse
Affiliation(s)
- Jimin Park
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Irving Medical Center, New York, NY, USA.
| | - Harris H Wang
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
39
|
Abstract
Chloroplasts, the sites of photosynthesis and sources of reducing power, are at the core of the success story that sets apart autotrophic plants from most other living organisms. Along with their fellow organelles (e.g., amylo-, chromo-, etio-, and leucoplasts), they form a group of intracellular biosynthetic machines collectively known as plastids. These plant cell constituents have their own genome (plastome), their own (70S) ribosomes, and complete enzymatic equipment covering the full range from DNA replication via transcription and RNA processive modification to translation. Plastid RNA synthesis (gene transcription) involves the collaborative activity of two distinct types of RNA polymerases that differ in their phylogenetic origin as well as their architecture and mode of function. The existence of multiple plastid RNA polymerases is reflected by distinctive sets of regulatory DNA elements and protein factors. This complexity of the plastid transcription apparatus thus provides ample room for regulatory effects at many levels within and beyond transcription. Research in this field offers insight into the various ways in which plastid genes, both singly and groupwise, can be regulated according to the needs of the entire cell. Furthermore, it opens up strategies that allow to alter these processes in order to optimize the expression of desired gene products.
Collapse
Affiliation(s)
- Jennifer Ortelt
- Department of Biology and Biotechnology, University of Bochum, Bochum, Germany
| | - Gerhard Link
- Department of Biology and Biotechnology, University of Bochum, Bochum, Germany.
| |
Collapse
|
40
|
Rangel-Chávez CP, Galán-Vásquez E, Pescador-Tapia A, Delaye L, Martínez-Antonio A. RNA polymerases in strict endosymbiont bacteria with extreme genome reduction show distinct erosions that might result in limited and differential promoter recognition. PLoS One 2021; 16:e0239350. [PMID: 34324516 PMCID: PMC8321222 DOI: 10.1371/journal.pone.0239350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 06/22/2021] [Indexed: 11/26/2022] Open
Abstract
Strict endosymbiont bacteria present high degree genome reduction, retain smaller proteins, and in some instances, lack complete functional domains compared to free-living counterparts. Until now, the mechanisms underlying these genetic reductions are not well understood. In this study, the conservation of RNA polymerases, the essential machinery for gene expression, is analyzed in endosymbiont bacteria with extreme genome reductions. We analyzed the RNA polymerase subunits to identify and define domains, subdomains, and specific amino acids involved in precise biological functions known in Escherichia coli. We also perform phylogenetic analysis and three-dimensional models over four lineages of endosymbiotic proteobacteria with the smallest genomes known to date: Candidatus Hodgkinia cicadicola, Candidatus Tremblaya phenacola, Candidatus Tremblaya Princeps, Candidatus Nasuia deltocephalinicola, and Candidatus Carsonella ruddii. We found that some Hodgkinia strains do not encode for the RNA polymerase α subunit. The rest encode genes for α, β, β', and σ subunits to form the RNA polymerase. However, 16% shorter, on average, respect their orthologous in E. coli. In the α subunit, the amino-terminal domain is the most conserved. Regarding the β and β' subunits, both the catalytic core and the assembly domains are the most conserved. However, they showed compensatory amino acid substitutions to adapt to changes in the σ subunit. Precisely, the most erosive diversity occurs within the σ subunit. We identified broad amino acid substitution even in those recognizing and binding to the -10-box promoter element. In an overall conceptual image, the RNA polymerase from Candidatus Nasuia conserved the highest similarity with Escherichia coli RNA polymerase and their σ70. It might be recognizing the two main promoter elements (-10 and -35) and the two promoter accessory elements (-10 extended and UP-element). In Candidatus Carsonella, the RNA polymerase could recognize all the promoter elements except the -10-box extended. In Candidatus Tremblaya and Hodgkinia, due to the α carboxyl-terminal domain absence, they might not recognize the UP-promoter element. We also identified the lack of the β flap-tip helix domain in most Hodgkinia's that suggests the inability to bind the -35-box promoter element.
Collapse
Affiliation(s)
- Cynthia Paola Rangel-Chávez
- Biological Engineering Laboratory, Genetic Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute, Irapuato Gto, México
| | - Edgardo Galán-Vásquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, CDMX, México
| | - Azucena Pescador-Tapia
- Biological Engineering Laboratory, Genetic Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute, Irapuato Gto, México
| | - Luis Delaye
- Evolutionary Genomics Laboratory, Genetic Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute, Irapuato Gto, México
| | - Agustino Martínez-Antonio
- Biological Engineering Laboratory, Genetic Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute, Irapuato Gto, México
| |
Collapse
|
41
|
Olaniyan OT, Dare A, Okoli B, Adetunji CO, Ibitoye BO, Okotie GE, Eweoya O. Increase in SARS-CoV-2 infected biomedical waste among low middle-income countries: environmental sustainability and impact with health implications. J Basic Clin Physiol Pharmacol 2021; 33:27-44. [PMID: 34293833 DOI: 10.1515/jbcpp-2020-0533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 06/28/2021] [Indexed: 12/15/2022]
Abstract
Studies have shown that severe acute respiratory syndrome corona virus-2 (SARS-CoV-2) is a highly infectious disease, with global deaths rising to about 360,438 as of 28 May 2020. Different countries have used various approaches such as lockdown, social distancing, maintenance of personal hygiene, and increased establishment of testing and isolation centers to manage the pandemic. Poor biomedical waste (BMW) management, treatment, and disposal techniques, especially SARS-CoV-2 infected BMW, may threaten the environmental and public health in most developing countries and, by extension, impact the economic status of individuals and the nation at large. This may increase the potential for the transmission of air/blood body fluid-borne pathogens, increase the growth of microorganisms, risk of mutagenesis, and upsurge of more virulent strain. In contrast, uncontrolled substandard burning could increase the potential spread of nosocomial infection and environmental exposure to toxic organic compounds, heavy metals, radioactive, and genotoxic bio-aerosols which might be present in the gaseous, liquid, and solid by-products. The paucity of understanding of pathophysiology and management of the SARS-CoV-2 pandemic has also necessitated the need to put in place appropriate disposal techniques to cater for the sudden increase in the global demand for personal protective equipment (PPE) and pharmaceutical drugs to manage the pandemic and to reduce the risk of preventable infection by the waste. Therefore, there is a need for adequate sensitization, awareness, and environmental monitoring of the impacts of improper handling of SARS-CoV-2 infected BMWs. Hence, this review aimed to address the issues relating to the improper management of increased SARS-CoV-2 infected BMW in low middle-income countries (LMICs).
Collapse
Affiliation(s)
- Olugbemi T Olaniyan
- Department of Physiology, Laboratory for Reproductive Biology and Developmental Programming, Edo University Iyamho, Iyamho, Nigeria
| | - Ayobami Dare
- Discipline of Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Bamidele Okoli
- Institute of Chemical and Biotechnology, Vaal University of Technology, Southern Gauteng Science and Technology Park, Sebokeng, South Africa
| | - Charles O Adetunji
- Department of Microbiology, Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Edo University Iyamho, Iyamho, Edo State, Nigeria
| | | | - Gloria E Okotie
- Department of Physiology, University of Ibadan, Ibadan, Nigeria
| | - Olugbenga Eweoya
- Department of Anatomical Sciences, School of Medicine and Allied Health Sciences, University of the Gambia, Serekunda, The Gambia
| |
Collapse
|
42
|
Ishihama A, Shimada T. Hierarchy of transcription factor network in Escherichia coli K-12: H-NS-mediated silencing and Anti-silencing by global regulators. FEMS Microbiol Rev 2021; 45:6312496. [PMID: 34196371 DOI: 10.1093/femsre/fuab032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Transcriptional regulation for genome expression determines growth and adaptation of single-cell bacteria that are directly exposed to environment. The transcriptional apparatus in Escherichia coli K-12 is composed of RNA polymerase core enzyme and two groups of its regulatory proteins, seven species of promoter-recognition subunit sigma and about 300 species of transcription factors. The identification of regulatory targets for all these regulatory proteins is critical toward understanding the genome regulation as a whole. For this purpose, we performed a systematic search in vitro of the whole set of binding sites for each factor by gSELEX system. This review summarizes the accumulated knowledge of regulatory targets for more than 150 TFs from E. coli K-12. Overall TFs could be classified into four families: nucleoid-associated bifunctional TFs; global regulators; local regulators; and single-target regulators, in which the regulatory functions remain uncharacterized for the nucleoid-associated TFs. Here we overview the regulatory targets of two nucleoid-associated TFs, H-NS and its paralog StpA, both together playing the silencing role of a set of non-essential genes. Participation of LeuO and other global regulators have been indicated for the anti-silencing. Finally, we propose the hierarchy of TF network as a key framework of the bacterial genome regulation.
Collapse
Affiliation(s)
- Akira Ishihama
- Hosei University, Research Institute for Micro-Nano Technology, Koganei, Tokyo 184-0003, Japan
| | - Tomohiro Shimada
- Meiji University, School of Agriculture, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
43
|
Shimada T, Ogasawara H, Kobayashi I, Kobayashi N, Ishihama A. Single-Target Regulators Constitute the Minority Group of Transcription Factors in Escherichia coli K-12. Front Microbiol 2021; 12:697803. [PMID: 34220787 PMCID: PMC8249747 DOI: 10.3389/fmicb.2021.697803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/28/2021] [Indexed: 11/13/2022] Open
Abstract
The identification of regulatory targets of all transcription factors (TFs) is critical for understanding the entire network of genome regulation. A total of approximately 300 TFs exist in the model prokaryote Escherichia coli K-12, but the identification of whole sets of their direct targets is impossible with use of in vivo approaches. For this end, the most direct and quick approach is to identify the TF-binding sites in vitro on the genome. We then developed and utilized the gSELEX screening system in vitro for identification of more than 150 E. coli TF-binding sites along the E. coli genome. Based on the number of predicted regulatory targets, we classified E. coli K-12 TFs into four groups, altogether forming a hierarchy ranging from a single-target TF (ST-TF) to local TFs, global TFs, and nucleoid-associated TFs controlling as many as 1,000 targets. Using the collection of purified TFs and a library of genome DNA segments from a single and the same E. coli K-12, we identified here a total of 11 novel ST-TFs, CsqR, CusR, HprR, NorR, PepA, PutA, QseA, RspR, UvrY, ZraR, and YqhC. The regulation of single-target promoters was analyzed in details for the hitherto uncharacterized QseA and RspR. In most cases, the ST-TF gene and its regulatory target genes are adjacently located on the E. coli K-12 genome, implying their simultaneous transfer in the course of genome evolution. The newly identified 11 ST-TFs and the total of 13 hitherto identified altogether constitute the minority group of TFs in E. coli K-12.
Collapse
Affiliation(s)
| | - Hiroshi Ogasawara
- Research Center for Supports to Advanced Science, Division of Gene Research, Shinshu University, Nagano, Japan.,Research Center for Fungal and Microbial Dynamism, Shinshu University, Nagano, Japan
| | - Ikki Kobayashi
- School of Agriculture, Meiji University, Kawasaki, Japan
| | - Naoki Kobayashi
- Department of Frontier Science, Hosei University, Koganei, Japan
| | - Akira Ishihama
- Department of Frontier Science, Hosei University, Koganei, Japan.,Micro-Nano Technology Research Center, Hosei University, Koganei, Japan
| |
Collapse
|
44
|
Zhang Y, Qiu Y, Gao H, Sun J, Li X, Zhang M, Xue X, Yang W, Ni B, Hu L, Yin Z, Lu R, Zhou D. OpaR Controls the Metabolism of c-di-GMP in Vibrio parahaemolyticus. Front Microbiol 2021; 12:676436. [PMID: 34163453 PMCID: PMC8215210 DOI: 10.3389/fmicb.2021.676436] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
Vibrio parahaemolyticus, the leading cause of seafood-associated gastroenteritis worldwide, has a strong ability to form biofilms on surfaces. Quorum sensing (QS) is a process widely used by bacteria to communicate with each other and control gene expression via the secretion and detection of autoinducers. OpaR is the master QS regulator of V. parahaemolyticus operating under high cell density (HCD). OpaR regulation of V. parahaemolyticus biofilm formation has been reported, but the regulatory mechanisms are still not fully understood. bis-(3'-5')-cyclic di-GMP (c-di-GMP) is an omnipresent intracellular second messenger that regulates diverse behaviors of bacteria including activation of biofilm formation. In this work, we showed that OpaR repressed biofilm formation and decreased the intracellular concentration of c-di-GMP in V. parahaemolyticus RIMD2210633. The OpaR box-like sequences were detected within the regulatory DNA regions of scrA, scrG, VP0117, VPA0198, VPA1176, VP0699, and VP2979, encoding a group of GGDEF and/or EAL-type proteins. The results of qPCR, LacZ fusion, EMSA, and DNase I footprinting assays demonstrated that OpaR bound to the upstream DNA regions of scrA, VP0117, VPA0198, VPA1176, and VP0699 to repress their transcription, whereas it positively and directly regulated the transcription of scrG and VP2979. Thus, transcriptional regulation of these genes by OpaR led directly to changes in the intracellular concentration of c-di-GMP. The direct association between QS and c-di-GMP metabolism in V. parahaemolyticus RIMD2210633 would be conducive to precise control of gene transcription and bacterial behaviors such as biofilm formation.
Collapse
Affiliation(s)
- Yiquan Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yue Qiu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - He Gao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Junfang Sun
- Department of Clinical Laboratory, Nantong Third Hospital Affiliated to Nantong University, Nantong, China
| | - Xue Li
- Department of Clinical Laboratory, Nantong Third Hospital Affiliated to Nantong University, Nantong, China
| | - Miaomiao Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xingfan Xue
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bin Ni
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Renfei Lu
- Department of Clinical Laboratory, Nantong Third Hospital Affiliated to Nantong University, Nantong, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
45
|
Niche dimensions of a marine bacterium are identified using invasion studies in coastal seawater. Nat Microbiol 2021; 6:524-532. [PMID: 33495621 DOI: 10.1038/s41564-020-00851-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023]
Abstract
Niche theory is a foundational ecological concept that explains the distribution of species in natural environments. Identifying the dimensions of any organism's niche is challenging because numerous environmental factors can affect organism viability. We used serial invasion experiments to introduce Ruegeria pomeroyi DSS-3, a heterotrophic marine bacterium, into a coastal phytoplankton bloom on 14 dates. RNA-sequencing analysis of R. pomeroyi was conducted after 90 min to assess its niche dimensions in this dynamic ecosystem. We identified ~100 external conditions eliciting transcriptional responses, which included substrates, nutrients, metals and biotic interactions such as antagonism, resistance and cofactor synthesis. The peak bloom was characterized by favourable states for most of the substrate dimensions, but low inferred growth rates of R. pomeroyi at this stage indicated that its niche was narrowed by factors other than substrate availability, most probably negative biotic interactions with the bloom dinoflagellate. Our findings indicate chemical and biological features of the ocean environment that can constrain where heterotrophic bacteria survive.
Collapse
|
46
|
Wang H, Yang Z, Swingle B, Kvitko BH. AlgU, a Conserved Sigma Factor Regulating Abiotic Stress Tolerance and Promoting Virulence in Pseudomonas syringae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:326-336. [PMID: 33264045 DOI: 10.1094/mpmi-09-20-0254-cr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pseudomonas syringae can rapidly deploy specialized functions to deal with abiotic and biotic stresses. Host niches pose specific sets of environmental challenges driven, in part, by immune defenses. Bacteria use a "just-in-time" strategy of gene regulation, meaning that they only produce the functions necessary for survival as needed. Extracytoplasmic function (ECF) sigma factors transduce a specific set of environmental signals and change gene expression patterns by altering RNA polymerase promoter specificity, to adjust bacterial physiology, structure, or behavior, singly or in combination, to improve chances of survival. The broadly conserved ECF sigma factor AlgU affects virulence in both animal and plant pathogens. Pseudomonas syringae AlgU controls expression of more than 800 genes, some of which contribute to suppression of plant immunity and bacterial fitness in plants. This review discusses AlgU activation mechanisms, functions controlled by AlgU, and how these functions contribute to P. syringae survival in plants.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. 2021.
Collapse
Affiliation(s)
- Haibi Wang
- Department of Plant Pathology, University of Georgia, 120 Carlton St., Athens, GA 30602, U.S.A
| | - Zichu Yang
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Bldg., Ithaca, NY 14853, U.S.A
| | - Bryan Swingle
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Bldg., Ithaca, NY 14853, U.S.A
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, United States Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853, U.S.A
| | - Brian H Kvitko
- Department of Plant Pathology, University of Georgia, 120 Carlton St., Athens, GA 30602, U.S.A
- The Plant Center, University of Georgia, Athens, GA 30602, U.S.A
| |
Collapse
|
47
|
The Context-Dependent Influence of Promoter Sequence Motifs on Transcription Initiation Kinetics and Regulation. J Bacteriol 2021; 203:JB.00512-20. [PMID: 33139481 DOI: 10.1128/jb.00512-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The fitness of an individual bacterial cell is highly dependent upon the temporal tuning of gene expression levels when subjected to different environmental cues. Kinetic regulation of transcription initiation is a key step in modulating the levels of transcribed genes to promote bacterial survival. The initiation phase encompasses the binding of RNA polymerase (RNAP) to promoter DNA and a series of coupled protein-DNA conformational changes prior to entry into processive elongation. The time required to complete the initiation phase can vary by orders of magnitude and is ultimately dictated by the DNA sequence of the promoter. In this review, we aim to provide the required background to understand how promoter sequence motifs may affect initiation kinetics during promoter recognition and binding, subsequent conformational changes which lead to DNA opening around the transcription start site, and promoter escape. By calculating the steady-state flux of RNA production as a function of these effects, we illustrate that the presence/absence of a consensus promoter motif cannot be used in isolation to make conclusions regarding promoter strength. Instead, the entire series of linked, sequence-dependent structural transitions must be considered holistically. Finally, we describe how individual transcription factors take advantage of the broad distribution of sequence-dependent basal kinetics to either increase or decrease RNA flux.
Collapse
|
48
|
Zhang Y, Qiu Y, Xue X, Zhang M, Sun J, Li X, Hu L, Yin Z, Yang W, Lu R, Zhou D. Transcriptional regulation of the virulence genes and the biofilm formation associated operons in Vibrio parahaemolyticus. Gut Pathog 2021; 13:15. [PMID: 33653369 PMCID: PMC7923509 DOI: 10.1186/s13099-021-00410-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/23/2021] [Indexed: 11/10/2022] Open
Abstract
Background The membrane fusion protein (mfp) gene locus of Vibrio parahaemolyticus consists of two operons, cpsQ-mfpABC and mfpABC, which are both required for biofilm formation. ToxR and CalR are required for the full virulence of V. parahaemolyticus, and their mutual regulation has been demonstrated. Moreover, cell density-dependent expression of toxR was previously observed in V. parahaemolyticus, but details about the related mechanisms remained unclear. QsvR can work with the master quorum sensing (QS) regulators AphA and OpaR to regulate virulence expression and biofilm formation. Results In the present work, we showed that QsvR bound to the promoter-proximal DNA regions of toxR and calR to repress their transcription as well as occupying the regulatory regions of cpsQ-mfpABC and mfpABC to activate their transcription. Thus, we reconstructed the QsvR-dependent promoter organization of toxR, calR, cpsQ-mfpABC, and mfpABC. Conclusion QsvR directly repressed toxR and calR transcription as well as directly activated cpsQ-mfpABC and mfpABC transcription. The data presented here promotes us to gain deeper knowledge of the regulatory network of the mfp locus in V. parahaemolyticus.
Collapse
Affiliation(s)
- Yiquan Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China. .,School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Yue Qiu
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xingfan Xue
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Miaomiao Zhang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Junfang Sun
- Department of Clinical Laboratory, Nantong Third Hospital Affiliated to Nantong University, Nantong, 212006, Jiangsu, China
| | - Xue Li
- Department of Clinical Laboratory, Nantong Third Hospital Affiliated to Nantong University, Nantong, 212006, Jiangsu, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Renfei Lu
- Department of Clinical Laboratory, Nantong Third Hospital Affiliated to Nantong University, Nantong, 212006, Jiangsu, China.
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| |
Collapse
|
49
|
Hinzke T, Kleiner M, Meister M, Schlüter R, Hentschker C, Pané-Farré J, Hildebrandt P, Felbeck H, Sievert SM, Bonn F, Völker U, Becher D, Schweder T, Markert S. Bacterial symbiont subpopulations have different roles in a deep-sea symbiosis. eLife 2021; 10:58371. [PMID: 33404502 PMCID: PMC7787665 DOI: 10.7554/elife.58371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 12/05/2020] [Indexed: 12/13/2022] Open
Abstract
The hydrothermal vent tubeworm Riftia pachyptila hosts a single 16S rRNA phylotype of intracellular sulfur-oxidizing symbionts, which vary considerably in cell morphology and exhibit a remarkable degree of physiological diversity and redundancy, even in the same host. To elucidate whether multiple metabolic routes are employed in the same cells or rather in distinct symbiont subpopulations, we enriched symbionts according to cell size by density gradient centrifugation. Metaproteomic analysis, microscopy, and flow cytometry strongly suggest that Riftia symbiont cells of different sizes represent metabolically dissimilar stages of a physiological differentiation process: While small symbionts actively divide and may establish cellular symbiont-host interaction, large symbionts apparently do not divide, but still replicate DNA, leading to DNA endoreduplication. Moreover, in large symbionts, carbon fixation and biomass production seem to be metabolic priorities. We propose that this division of labor between smaller and larger symbionts benefits the productivity of the symbiosis as a whole.
Collapse
Affiliation(s)
- Tjorven Hinzke
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany.,Energy Bioengineering Group, University of Calgary, Calgary, Canada
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, United States
| | - Mareike Meister
- Institute of Microbiology, University of Greifswald, Greifswald, Germany.,Leibniz Institute for Plasma Science and Technology, Greifswald, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | - Christian Hentschker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jan Pané-Farré
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Petra Hildebrandt
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Horst Felbeck
- Scripps Institution of Oceanography, University of California San Diego, San Diego, United States
| | - Stefan M Sievert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, United States
| | - Florian Bonn
- Institute of Biochemistry, University Hospital, Goethe University School of Medicine Frankfurt, Frankfurt, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Thomas Schweder
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| | - Stephanie Markert
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| |
Collapse
|
50
|
Davey JA, Wilson CJ. Engineered signal-coupled inducible promoters: measuring the apparent RNA-polymerase resource budget. Nucleic Acids Res 2020; 48:9995-10012. [PMID: 32890400 PMCID: PMC7515704 DOI: 10.1093/nar/gkaa734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
Inducible promoters are a central regulatory component in synthetic biology, metabolic engineering, and protein production for laboratory and commercial uses. Many of these applications utilize two or more exogenous promoters, imposing a currently unquantifiable metabolic burden on the living system. Here, we engineered a collection of inducible promoters (regulated by LacI-based transcription factors) that maximize the free-state of endogenous RNA polymerase (RNAP). We leveraged this collection of inducible promotors to construct simple two-channel logical controls that enabled us to measure metabolic burden – as it relates to RNAP resource partitioning. The two-channel genetic circuits utilized sets of signal-coupled transcription factors that regulate cognate inducible promoters in a coordinated logical fashion. With this fundamental genetic architecture, we evaluated the performance of each inducible promoter as discrete operations, and as coupled systems to evaluate and quantify the effects of resource partitioning. Obtaining the ability to systematically and accurately measure the apparent RNA-polymerase resource budget will enable researchers to design more robust genetic circuits, with significantly higher fidelity. Moreover, this study presents a workflow that can be used to better understand how living systems adapt RNAP resources, via the complementary pairing of constitutive and regulated promoters that vary in strength.
Collapse
Affiliation(s)
- James A Davey
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, 311 Ferst Drive, Atlanta, GA 30332-0100, USA
| | - Corey J Wilson
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, 311 Ferst Drive, Atlanta, GA 30332-0100, USA
| |
Collapse
|