1
|
Chavan P, Kitamura T, Sakaguchi M. Memory processing by hippocampal adult-born neurons. Neurobiol Learn Mem 2025; 220:108062. [PMID: 40345378 DOI: 10.1016/j.nlm.2025.108062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
This review provides an integrative overview of the functional roles of adult neurogenesis in the hippocampal dentate gyrus (DG), focusing specifically on its impact on memory processes across the lifespan. A distinguishing feature of this review is its systematic approach, organizing the contributions of adult-born neurons (ABNs) chronologically through the stages of memory-from initial encoding, through sleep-dependent consolidation, retrieval, and finally forgetting. Although the existence and extent of adult neurogenesis in the human DG remain debated, accumulating evidence suggests that ABNs support cognitive functions throughout adulthood. This perspective gains particular importance when considering cognitive decline associated with aging and neurological disorders such as Alzheimer's disease, which are linked to substantial reductions in adult neurogenesis. We compare traditional models of DG function with emerging evidence highlighting both shared and unique contributions of ABNs. For example, the DG is well-established for its role in pattern separation, and as key mediators of this function, ABNs-due to their transiently heightened plasticity and excitability-appear critical for discriminating novel or similar experiences. On the other hand, recent findings underscore the distinct and essential role of ABNs in memory consolidation during REM sleep, suggesting specialized functions of ABNs that are absent in developmentally born granule cells in the DG. Clinically, the potential therapeutic importance of enhancing neurogenesis in memory-related disorders, including post-traumatic stress disorder (PTSD), is emphasized, highlighting promising treatments such as memantine. Lastly, we outline key unresolved questions, advocating for future research aimed at understanding ABN-specific mechanisms. Far from being a mere evolutionary vestige, hippocampal ABNs represent dynamic and essential elements of neural plasticity that are critical for memory formation, adaptation, and resilience across the lifespan.
Collapse
Affiliation(s)
- Parimal Chavan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Masanori Sakaguchi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan.
| |
Collapse
|
2
|
Wu X, Yang Z, Zou J, Gao H, Shao Z, Li C, Lei P. Protein kinases in neurodegenerative diseases: current understandings and implications for drug discovery. Signal Transduct Target Ther 2025; 10:146. [PMID: 40328798 PMCID: PMC12056177 DOI: 10.1038/s41392-025-02179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/03/2025] [Accepted: 02/12/2025] [Indexed: 05/08/2025] Open
Abstract
Neurodegenerative diseases (e.g., Alzheimer's, Parkinson's, Huntington's disease, and Amyotrophic Lateral Sclerosis) are major health threats for the aging population and their prevalences continue to rise with the increasing of life expectancy. Although progress has been made, there is still a lack of effective cures to date, and an in-depth understanding of the molecular and cellular mechanisms of these neurodegenerative diseases is imperative for drug development. Protein phosphorylation, regulated by protein kinases and protein phosphatases, participates in most cellular events, whereas aberrant phosphorylation manifests as a main cause of diseases. As evidenced by pharmacological and pathological studies, protein kinases are proven to be promising therapeutic targets for various diseases, such as cancers, central nervous system disorders, and cardiovascular diseases. The mechanisms of protein phosphatases in pathophysiology have been extensively reviewed, but a systematic summary of the role of protein kinases in the nervous system is lacking. Here, we focus on the involvement of protein kinases in neurodegenerative diseases, by summarizing the current knowledge on the major kinases and related regulatory signal transduction pathways implicated in diseases. We further discuss the role and complexity of kinase-kinase networks in the pathogenesis of neurodegenerative diseases, illustrate the advances of clinical applications of protein kinase inhibitors or novel kinase-targeted therapeutic strategies (such as antisense oligonucleotides and gene therapy) for effective prevention and early intervention.
Collapse
Affiliation(s)
- Xiaolei Wu
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhangzhong Yang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinjun Zou
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuanzhou Li
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Moran PM, Granger KT. IUPHAR review: Moving beyond dopamine-based therapeutic strategies for schizophrenia. Pharmacol Res 2025; 216:107727. [PMID: 40320224 DOI: 10.1016/j.phrs.2025.107727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 05/12/2025]
Abstract
In the following we comprehensively review approaches to treating schizophrenia that do not primarily involve dopamine antagonism or partial agonism. Following 70 years of broadly similar dopamine D2 receptor antagonist/partial agonist drugs, Cobenfy™ was approved as a novel antipsychotic in September 2024. Cobenfy™ is a combination formulation of xanomeline, a muscarinic cholinergic M1/M4 receptor agonist and trospium, a peripherally restricted muscarinic antagonist included to offset peripheral side effects of xanomeline. This approval has reinvigorated optimism in the field and raised important questions for the future direction of antipsychotic drug development. We review therapeutic strategies beyond dopamine that have been and are currently being investigated to address whether there are a sufficient number of novel approaches to maintain the momentum of this breakthrough and question why it has taken so long. The current pipeline of late-stage compounds is low and potentially constrained by historical setbacks and challenges in clinical trial design for schizophrenia. This success rate has future potential to improve given the range of biomarkers in development designed to enable greater precision in future clinical trials. Cobenfy™ approval demonstrates that with combination formulations designed to improve side effect profiles and optimised clinical trial design it is possible to generate tolerable and efficacious treatment options for patients beyond a solely dopaminergic framework. We conclude that advances in understanding the neurobiology of schizophrenia, while not complete, has generated a diverse and well justified pool of potentially novel and repurpose-ready approaches, with mechanisms beyond simple dopamine D2 antagonism/partial agonism.
Collapse
Affiliation(s)
- Paula M Moran
- School of Psychology, University of Nottingham, University Park, NG72RD, UK.
| | - Kiri T Granger
- Monument Therapeutics Ltd., Alderley Park, Congleton Road, Cheshire, Macclesfield SK10 4TG, UK.
| |
Collapse
|
4
|
Chen Y, Han B, Gobbi M, Hou L, Samorì P. Responsive Molecules for Organic Neuromorphic Devices: Harnessing Memory Diversification. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418281. [PMID: 40135253 PMCID: PMC12075916 DOI: 10.1002/adma.202418281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/06/2025] [Indexed: 03/27/2025]
Abstract
In the brain, both the recording and decaying of memory information following external stimulus spikes are fundamental learning rules that determine human behaviors. The former is essential to acquire new knowledge and update the database, while the latter filters noise and autorefresh cache data to reduce energy consumption. To execute these functions, the brain relies on different neuromorphic transmitters possessing various memory kinetics, which can be classified as nonvolatile and volatile memory. Inspired by the human brain, nonvolatile and volatile memory electronic devices have been employed to realize artificial neural networks and spiking neural networks, respectively, which have emerged as essential tools in machine learning. Molecular switches, capable of responding to electrical, optical, electrochemical, and magnetic stimuli, display a disruptive potential for emulating information storage in memory devices. This Review highlights recent developments on responsive molecules, their interfacing with low-dimensional nanostructures and nanomaterials, and their integration into electronic devices. By capitalizing on these concepts, a unique account of neurotransmitter-transfer electronic devices based on responsive molecules with ad hoc memory kinetics is provided. Finally, future directions, challenges, and opportunities are discussed on the use of these devices to engineer more complex logic operations and computing functions at the hardware level.
Collapse
Affiliation(s)
- Yusheng Chen
- Université de StrasbourgCNRSISIS8 allée Gaspard MongeStrasbourg67000France
| | - Bin Han
- Université de StrasbourgCNRSISIS8 allée Gaspard MongeStrasbourg67000France
| | - Marco Gobbi
- Centro de Física de Materiales (CFM‐MPC)CSIC‐UPV/EHUDonostia‐San Sebastian20018Spain
- IKERBASQUEBasque Foundation for ScienceBilbao48009Spain
| | - Lili Hou
- School of Precision Instruments and Optoelectronics EngineeringTianjin UniversityTianjin300072China
| | - Paolo Samorì
- Université de StrasbourgCNRSISIS8 allée Gaspard MongeStrasbourg67000France
| |
Collapse
|
5
|
Strackeljan L, Baidoe-Ansah D, Mirzapourdelavar H, Jia S, Kaushik R, Cangalaya C, Dityatev A. Partial microglial depletion through inhibition of colony-stimulating factor 1 receptor improves synaptic plasticity and cognitive performance in aged mice. Exp Neurol 2025; 387:115186. [PMID: 39956381 DOI: 10.1016/j.expneurol.2025.115186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
Microglia depletion, followed by repopulation, improves cognitive functions in the aged mouse brain. However, even temporal ablation of microglia puts the brain at a high risk of infection. Hence, in the present work, we studied if the partial reduction of microglia with PLX3397 (pexidartinib), an inhibitor of the colony-stimulating factor 1 receptor (CSF1R), could bring similar benefits as reported for microglia ablation. Aged (two-years-old) mice were treated with PLX3397 for a total of 6 weeks, which reduced microglia numbers in the hippocampus and retrosplenial cortex (RSC) to the levels seen in young mice and resulted in layer-specific ablation in the expression of microglial complement protein C1q mediating synaptic remodeling. This treatment boosted long-term potentiation in the CA1 region and improved performance in the hippocampus-dependent novel object location recognition task. Although PLX3397 treatment did not alter the number or total intensity of Wisteria floribunda agglutinin-positive perineuronal nets (PNNs) in the CA1 region of the hippocampus, it changed the fine structure of PNNs. It also elevated the expression of perisynaptic proteoglycan brevican, presynaptic vGluT1 at excitatory synapses, and vGAT in inhibitory ones in the CA1 stratum radiatum. Thus, targeting the CSF1R may provide a safe and efficient strategy to boost synaptic and cognitive functions in the aged brain.
Collapse
Affiliation(s)
- Luisa Strackeljan
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - David Baidoe-Ansah
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Hadi Mirzapourdelavar
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Shaobo Jia
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Rahul Kaushik
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Carla Cangalaya
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Alexander Dityatev
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany; Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany.
| |
Collapse
|
6
|
Mohar B, Michel G, Wang YZ, Hernandez V, Grimm JB, Park JY, Patel R, Clarke M, Brown TA, Bergmann C, Gebis KK, Wilen AP, Liu B, Johnson R, Graves A, Tchumatchenko T, Savas JN, Fornasiero EF, Huganir RL, Tillberg PW, Lavis LD, Svoboda K, Spruston N. DELTA: a method for brain-wide measurement of synaptic protein turnover reveals localized plasticity during learning. Nat Neurosci 2025; 28:1089-1098. [PMID: 40164741 DOI: 10.1038/s41593-025-01923-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 02/10/2025] [Indexed: 04/02/2025]
Abstract
Synaptic plasticity alters neuronal connections in response to experience, which is thought to underlie learning and memory. However, the loci of learning-related synaptic plasticity, and the degree to which plasticity is localized or distributed, remain largely unknown. Here we describe a new method, DELTA, for mapping brain-wide changes in synaptic protein turnover with single-synapse resolution, based on Janelia Fluor dyes and HaloTag knock-in mice. During associative learning, the turnover of the ionotropic glutamate receptor subunit GluA2, an indicator of synaptic plasticity, was enhanced in several brain regions, most markedly hippocampal area CA1. More broadly distributed increases in the turnover of synaptic proteins were observed in response to environmental enrichment. In CA1, GluA2 stability was regulated in an input-specific manner, with more turnover in layers containing input from CA3 compared to entorhinal cortex. DELTA will facilitate exploration of the molecular and circuit basis of learning and memory and other forms of plasticity at scales ranging from single synapses to the entire brain.
Collapse
Affiliation(s)
- Boaz Mohar
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - Gabriela Michel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Yi-Zhi Wang
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Veronica Hernandez
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jonathan B Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jin-Yong Park
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ronak Patel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Morgan Clarke
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Timothy A Brown
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Cornelius Bergmann
- Institute for Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Kamil K Gebis
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Anika P Wilen
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bian Liu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard Johnson
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Austin Graves
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tatjana Tchumatchenko
- Institute for Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jeffrey N Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Eugenio F Fornasiero
- Department Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen (UMG), Göttingen, Germany
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Richard L Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul W Tillberg
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Karel Svoboda
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Nelson Spruston
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| |
Collapse
|
7
|
Spaak E, Wolff MJ. Rapid connectivity modulations unify long-term and working memory. Trends Cogn Sci 2025; 29:400-402. [PMID: 40089410 DOI: 10.1016/j.tics.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 03/17/2025]
Abstract
Panichello et al. recently demonstrated that working memory (WM) information can be maintained without active neural firing. Instead, it is stored in rapidly modulating neural connectivity patterns. This validates the activity-silent model of WM, and unifies the mechanisms of long-term memory (LTM) and WM. Here, we highlight the ramifications of these findings.
Collapse
Affiliation(s)
- Eelke Spaak
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands.
| | - Michael J Wolff
- Ernst Strüngmann Institute for Neuroscience, Frankfurt am Main, Germany
| |
Collapse
|
8
|
Ribeiro-Rodrigues L, Fonseca-Gomes J, Paulo SL, Viais R, Ribeiro FF, Miranda-Lourenço C, Mouro FM, Belo RF, Ferreira CB, Tanqueiro SR, Ferreira-Manso M, Umemori J, Castrén E, Paiva VH, Sebastião AM, Aronica E, Campos AR, Bentes C, Xapelli S, Diógenes MJ. Cleavage of the TrkB-FL receptor during epileptogenesis: insights from a kainic acid-induced model of epilepsy and human samples. Pharmacol Res 2025; 215:107707. [PMID: 40118354 PMCID: PMC12033085 DOI: 10.1016/j.phrs.2025.107707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/25/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Brain-derived neurotrophic factor (BDNF) is essential for neuronal survival, differentiation, and plasticity. In epilepsy, BDNF exhibits a dual role, exerting both antiepileptic and pro-epileptic effects. The cleavage of its main receptor, full-length tropomyosin-related kinase B (TrkB-FL), was suggested to occur in status epilepticus (SE) in vitro. Moreover, under excitotoxic conditions, TrkB-FL was found to be cleaved, resulting in the formation of a new intracellular fragment, TrkB-ICD. Thus, we hypothesized that TrkB-FL cleavage and TrkB-ICD formation could represent an uncovered mechanism in epilepsy. We used a rat model of mesial temporal lobe epilepsy (mTLE) induced by kainic acid (KA) to investigate TrkB-FL cleavage and TrkB-ICD formation during SE (∼3 h after KA) and established epilepsy (EE) (4-5 weeks after KA). Animals treated with 10 mg/kg of KA exhibited TrkB-FL cleavage during SE, with hippocampal levels of TrkB-FL and TrkB-ICD correlating with seizure severity. Notably, TrkB-FL cleavage and TrkB-ICD formation were also detected in animals with EE, which exhibited spontaneous recurrent convulsive seizures, neuronal death, mossy fiber sprouting, and long-term memory impairment. Importantly, hippocampal samples from patients with refractory epilepsy also showed TrkB-FL cleavage with increased TrkB-ICD levels. Additionally, lentiviral-mediated overexpression of TrkB-ICD in the hippocampus of healthy mice and rats resulted in long-term memory impairment. Our findings suggest that TrkB-FL cleavage and the subsequent TrkB-ICD production occur throughout epileptogenesis, with the extent of cleavage correlating positively with seizure occurrence. Moreover, we found that TrkB-ICD overexpression impairs memory. This work uncovers a novel mechanism in epileptogenesis that could serve as a potential therapeutic target in mTLE, with implications for preserving cognitive function.
Collapse
Affiliation(s)
- Leonor Ribeiro-Rodrigues
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal.
| | - João Fonseca-Gomes
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Present address: Roche Farmacêutica e Química, Amadora, Portugal
| | - Sara L Paulo
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal.
| | - Ricardo Viais
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| | | | - Catarina Miranda-Lourenço
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal.
| | | | - Rita F Belo
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | | | | | - Mafalda Ferreira-Manso
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal.
| | - Juzoh Umemori
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland.
| | - Eero Castrén
- Neuroscience Center, University of Helsinki, Helsinki, Finland.
| | - Vítor H Paiva
- University of Coimbra, CFE - Centre for Functional Ecology - TERRA - Science for People & the Planet, Department of Life Sciences, Coimbra, Portugal.
| | - Ana M Sebastião
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal.
| | - Eleonora Aronica
- Department of (Neuro)Pathology Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands.
| | - Alexandre Rainha Campos
- Centro de Referência para a área da Epilepsia Refratária (ERN EpiCARE member), CHULN, Lisboa, Portugal; Serviço de Neurologia, CHULN, Lisboa, Portugal
| | - Carla Bentes
- Laboratório de EEG/Sono - Unidade de Monitorização Neurofisiológica. Serviço de Neurologia, CHULN, Lisboa, Portugal; Centro de Estudos Egas Moniz. Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara Xapelli
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal.
| | - Maria José Diógenes
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal.
| |
Collapse
|
9
|
Kim D, Park P, Li X, Wong-Campos JD, Tian H, Moult EM, Grimm JB, Lavis LD, Cohen AE. EPSILON: a method for pulse-chase labeling to probe synaptic AMPAR exocytosis during memory formation. Nat Neurosci 2025; 28:1099-1107. [PMID: 40164742 DOI: 10.1038/s41593-025-01922-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/10/2025] [Indexed: 04/02/2025]
Abstract
A tool to map changes in synaptic strength during a defined time window could provide powerful insights into the mechanisms of learning and memory. Here we developed a technique, Extracellular Protein Surface Labeling in Neurons (EPSILON), to map α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) exocytosis in vivo by sequential pulse-chase labeling of surface AMPARs with membrane-impermeable dyes. This approach yields synaptic-resolution maps of AMPAR exocytosis, a proxy for synaptic potentiation, in genetically targeted neurons during memory formation. In mice undergoing contextual fear conditioning, we investigated the relationship between synapse-level AMPAR exocytosis in CA1 pyramidal neurons and cell-level expression of the immediate early gene product cFos, a frequently used marker of engram neurons. We observed a strong correlation between AMPAR exocytosis and cFos expression, suggesting a synaptic mechanism for the association of cFos expression with memory engrams. The EPSILON technique is a useful tool for mapping synaptic plasticity and may be extended to investigate trafficking of other transmembrane proteins.
Collapse
Affiliation(s)
- Doyeon Kim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Pojeong Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Brain Sciences, DGIST, Daegu, Republic of Korea
| | - Xiuyuan Li
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - J David Wong-Campos
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - He Tian
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Eric M Moult
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Jonathan B Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Adam E Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Department of Physics, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
10
|
Zaater MA, El Kerdawy AM, Mahmoud WR, Abou-Seri SM. Going beyond ATP binding site as a novel inhibitor design strategy for tau protein kinases in the treatment of Alzheimer's disease: A review. Int J Biol Macromol 2025; 307:142141. [PMID: 40090653 DOI: 10.1016/j.ijbiomac.2025.142141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/01/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
Alzheimer's disease (AD) is among the top mortality causing diseases worldwide. The presence of extracellular β-amyloidosis, as well as intraneuronal neurofibrillary aggregates of the abnormally hyperphosphorylated tau protein are two major characteristics of AD. Targeting protein kinases that are involved in the disease pathways has been a common approach in the fight against AD. Unfortunately, most kinase inhibitors currently available target the adenosine triphosphate (ATP)- binding site, which has proven unsuccessful due to issues with selectivity and resistance. As a result, a pressing need to find other alternative sites beyond the ATP- binding site has profoundly evolved. In this review, we will showcase some case studies of inhibitors of tau protein kinases acting beyond ATP binding site which have shown promising results in alleviating AD.
Collapse
Affiliation(s)
- Marwa A Zaater
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo 11562, Egypt
| | - Ahmed M El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo 11562, Egypt; School of Health and Care Sciences, College of Health and Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom.
| | - Walaa R Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo 11562, Egypt
| | - Sahar M Abou-Seri
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo 11562, Egypt
| |
Collapse
|
11
|
Zheng XX, Wang F, Ding H, Li HT, Yang XJ, Li XC, Dou ZW, Hu WC, Han WJ, Li ZZ, Li YC, Chu WG, Yuan H, Wu SX, Xie RG, Luo C. cGMP-dependent protein kinase I in the dorsal hippocampus protects against synaptic plasticity and cognitive deficit induced by chronic pain. Pain 2025:00006396-990000000-00888. [PMID: 40310865 DOI: 10.1097/j.pain.0000000000003624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 03/07/2025] [Indexed: 05/03/2025]
Abstract
ABSTRACT Patients with chronic pain often experience an exacerbated pain response and complain of memory deficits. However, the mechanistic link between pain and cognitive function remains unclear. The dorsal hippocampus (dHPC), a well-defined region responsible for learning and memory, displays maladaptive plasticity upon injury, which involves the activation of N-methyl-d-aspartic acid receptors. Mounting evidence has shown that cyclic guanosine cGMP-dependent protein kinase I (PKG-I) serves as a key downstream target of the N-methyl-d-aspartic acid receptors-NO-cGMP signaling pathway, regulating neuronal plasticity, pain hypersensitivity, and pain-related affective disorders. Despite these advances, it has remained elusive whether and how PKG-I in the dHPC contributes to hippocampal plasticity, as well as to chronic pain and pain-related cognitive deficits. In this study, we disclosed the crucial role of PKG-I in the dHPC in chronic pain and pain-related cognitive deficits. Following nerve injury, mice exhibited mechanical allodynia and thermal hyperalgesia, along with pain-related cognitive impairments; these changes were accompanied by the downregulation of PKG-I at both mRNA and protein levels in the dHPC. Overexpression of PKG-I in the dHPC alleviated pain hypersensitivity and associated cognitive deficits. Further mechanistic analysis revealed that PKG-I contributes to modulating Ca2+ mobilization in hippocampal pyramidal neurons, which brings about the production and secretion of a brain-derived neurotrophic factor in the dHPC. The resultant increase of the brain-derived neurotrophic factor in turn enhanced hippocampal neuronal excitability and synaptic plasticity and thus relieved pain hypersensitivity and pain-related cognitive impairment. Our findings extended the functional capability of hippocampal PKG-I on chronic pain and pain-related cognitive impairment. Hippocampal PKG-I may represent a novel therapeutic target for the treatment of chronic pain and pain-related memory deficits.
Collapse
Affiliation(s)
- Xing-Xing Zheng
- College of Life Sciences, Northwest University, Xi'an, China
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Fei Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hui Ding
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Hai-Tao Li
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- The Fourteenth Squadron of the Fourth Regiment, School of Basal Medicine, Fourth Military Medical University, Xi'an, China
| | - Xin-Jiang Yang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiang-Chen Li
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- The Third Squadron of the First Regiment, School of Basal Medicine, Fourth Military Medical University, Xi'an, China
| | - Zhi-Wei Dou
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- Class 2018, The Twenty-fourth Squadron of the Sixth Brigade, School of Basal Medicine, Fourth Military Medical University, Xi'an, China
| | - Wen-Chao Hu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- Class 2018, The Twenty-fourth Squadron of the Sixth Brigade, School of Basal Medicine, Fourth Military Medical University, Xi'an, China
| | - Wen-Juan Han
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Zhen-Zhen Li
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Ying-Chun Li
- College of Life Sciences, Northwest University, Xi'an, China
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Wen-Guang Chu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Hua Yuan
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Sheng-Xi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Rou-Gang Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Ceng Luo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- Innovation Research Institute, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
12
|
Zengeler KE, Hollis A, Deutsch TCJ, Samuels JD, Ennerfelt H, Moore KA, Steacy EJ, Sabapathy V, Sharma R, Patel MK, Lukens JR. Inflammasome signaling in astrocytes modulates hippocampal plasticity. Immunity 2025:S1074-7613(25)00170-0. [PMID: 40318630 DOI: 10.1016/j.immuni.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 12/13/2024] [Accepted: 04/08/2025] [Indexed: 05/07/2025]
Abstract
Emerging evidence indicates that a baseline level of controlled innate immune signaling is required to support proper brain function. However, little is known about the function of most innate immune pathways in homeostatic neurobiology. Here, we report a role for astrocyte-dependent inflammasome signaling in regulating hippocampal plasticity. Inflammasomes are multiprotein complexes that promote caspase-1-mediated interleukin (IL)-1 and IL-18 production in response to pathogens and tissue damage. We observed that inflammasome complex formation was regularly detected under homeostasis in hippocampal astrocytes and that its assembly is dynamically regulated in response to learning and regional activity. Conditional ablation of caspase-1 in astrocytes limited hyperexcitability in an acute seizure model and impacted hippocampal plasticity via modulation of synaptic protein density, neuronal activity, and perineuronal net coverage. Caspase-1 and IL-18 regulated hippocampal IL-33 production and related plasticity. These findings reveal a homeostatic function for astrocyte inflammasome activity in regulating hippocampal physiology in health and disease.
Collapse
Affiliation(s)
- Kristine E Zengeler
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA.
| | - Ava Hollis
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | - Tyler C J Deutsch
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, USA
| | - Joshua D Samuels
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Hannah Ennerfelt
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA 24304, USA
| | - Katelyn A Moore
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | - Eric J Steacy
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | - Vikram Sabapathy
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, VA 22908, USA
| | - Rahul Sharma
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, VA 22908, USA
| | - Manoj K Patel
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
| | - John R Lukens
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
13
|
Gelinas JN, Khodagholy D. Interictal network dysfunction and cognitive impairment in epilepsy. Nat Rev Neurosci 2025:10.1038/s41583-025-00924-3. [PMID: 40295879 DOI: 10.1038/s41583-025-00924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2025] [Indexed: 04/30/2025]
Abstract
Epilepsy is diagnosed when neural networks become capable of generating excessive or hypersynchronous activity patterns that result in observable seizures. In many cases, epilepsy is associated with cognitive comorbidities that persist between seizures and negatively impact quality of life. Dysregulation of the coordinated physiological network interactions that are required for cognitive function has been implicated in mediating these enduring symptoms, but the causal mechanisms are often elusive. Here, we provide an overview of neural network abnormalities with the potential to contribute to cognitive dysfunction in epilepsy. We examine these pathological interactions across spatial and temporal scales, additionally highlighting the dynamics that arise in response to the brain's intrinsic capacity for plasticity. Understanding these processes will facilitate development of network-level interventions to address cognitive comorbidities that remain undertreated by currently available epilepsy therapeutics.
Collapse
Affiliation(s)
- Jennifer N Gelinas
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
- Department of Paediatrics, University of California, Irvine, CA, USA.
- Children's Hospital of Orange County, Orange, CA, USA.
| | - Dion Khodagholy
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
- Department of Electrical Engineering, University of California, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California, Irvine, CA, USA.
- Department of Materials Science and Engineering, University of California, Irvine, CA, USA.
| |
Collapse
|
14
|
Billard JM, Ploux E, Largilliere S, Corvaisier S, Gorisse-Hussonnois L, Radzishevsky I, Wolosker H, Freret T. Early involvement of D-serine in β-amyloid-dependent pathophysiology. Cell Mol Life Sci 2025; 82:179. [PMID: 40293541 PMCID: PMC12037454 DOI: 10.1007/s00018-025-05691-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/04/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025]
Abstract
The N-methyl-D-aspartate subtype of glutamate receptors (NMDAR) is a key regulator of brain plasticity encoding learning and memory. In addition to glutamate, NMDAR activation requires the binding of the co-agonist D-serine. The beta-amyloid (Aß) peptide which accumulates in Alzheimer's disease (AD), affects the D-serine-dependent NMDAR activation in vitro, but whether this alteration would significantly contribute to AD-related pathophysiology and memory deficits remains unclear. Herein, we report a decrease in the maximal pool of recruitable NMDAR and in the expression of NMDAR-dependent long-term potentiation together with impaired basal neurotransmission at CA3/CA1 synapses from hippocampal slices of 5xFAD mouse, an AD-related model with elevated Aß levels. The NMDAR synaptic impairments develop from 1.5 to 2 months of age with the initial rise of Aß and is correlated to a transient increase in D-serine levels. Deficits in working and spatial memories as well as cognitive flexibility then occurred in 10-12 months-old animals. Importantly, the NMDA-related synaptic deregulations (but not the altered basal neurotransmission) and behavioral impairments (working and cognitive flexibility) are prevented or reduced (spatial memory) in 5xFAD mice devoid of D-serine after genetic deletion of its synthesis enzyme serine racemase. Altogether, these results therefore provide in vivo evidence for the implication of D-serine at least in the early pathogenic signatures of AD driven by the increase in amyloid load suggesting that the recent proposal of preventive therapy of AD by administration of the precursor L-serine remains questionable.
Collapse
Affiliation(s)
- J-M Billard
- Normandie University, UNICAEN, INSERM, GIP CYCERON, COMETE, Caen, France.
- UNICAEN COMETE, INSERM UMR S-1075, GIP CYCERON, Bat GMPc, Campus Horowitz, Bd Henri Becquerel, Caen, CS14032, France.
| | - E Ploux
- Normandie University, UNICAEN, INSERM, GIP CYCERON, COMETE, Caen, France
| | - S Largilliere
- Normandie University, UNICAEN, INSERM, GIP CYCERON, COMETE, Caen, France
| | - S Corvaisier
- Normandie University, UNICAEN, INSERM, GIP CYCERON, COMETE, Caen, France
| | | | - I Radzishevsky
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - H Wolosker
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - T Freret
- Normandie University, UNICAEN, INSERM, GIP CYCERON, COMETE, Caen, France.
| |
Collapse
|
15
|
Li J, Lou S, Bian X. Osteocalcin and GPR158: linking bone and brain function. Front Cell Dev Biol 2025; 13:1564751. [PMID: 40337551 PMCID: PMC12055796 DOI: 10.3389/fcell.2025.1564751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/10/2025] [Indexed: 05/09/2025] Open
Abstract
Osteocalcin (OCN), a small protein secreted by osteoblasts, has attracted significant attention for its role as an endocrine factor in regulating the central nervous system (CNS) via the bone-brain axis. As a critical receptor for OCN, G protein-coupled receptor 158 (GPR158) facilitates the proliferation, differentiation, and survival of neural cells while directly influencing neurons' structural and functional plasticity, thereby modulating cognitive function. Additionally, GPR158 is involved in cellular energy metabolism and interacts with proteins such as regulators of G protein signaling 7 (RGS7), broadening the understanding of OCN's impact on neural activity. Notably, GPR158 displays region- and cell type-specific bidirectional effects under certain pathological conditions, such as tumor development and mood regulation, adding complexity to its mechanisms of action. Although the precise biological mechanisms underlying the OCN/GPR158 signaling pathway remain incompletely understood, its association with neurodegenerative diseases (NDs), including Alzheimer's disease (AD) and Parkinson's disease (PD), is becoming increasingly evident. Thus, a systematic summary of OCN/GPR158 in CNS regulation and NDs will deepen understanding of its role in brain function and support the development of new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Jingjing Li
- Physical Education College, Shanghai University, Shanghai, China
| | - Shujie Lou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Xuepeng Bian
- Department of Rehabilitation, School of International Medical Technology, Shanghai Sanda University, Shanghai, China
| |
Collapse
|
16
|
Lee WP, Chiang MH, Chao YP, Wang YF, Chen YL, Lin YC, Jenq SY, Lu JW, Fu TF, Liang JY, Yang KC, Chang LY, Wu T, Wu CL. Dynamics of two distinct memory interactions during water seeking in Drosophila. Proc Natl Acad Sci U S A 2025; 122:e2422028122. [PMID: 40244670 PMCID: PMC12036989 DOI: 10.1073/pnas.2422028122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Forming and forgetting memories shape our self-awareness and help us face future challenges. Therefore, understanding how memories are formed and how different memories interact in the brain is important. Previous studies have shown that thirsty flies sense humidity through ionotropic receptors, which help them locate water sources. Here, we showed that thirsty flies can be trained to associate specific odors with humidity to form a humidity memory that lasts for 30 min after association. Humidity memory formation requires the Ir93a and Ir40a ionotropic receptors, which are essential for environmental humidity sensing. Water memory takes precedence, leading to the forgetting of humidity memory by activating a small subset of dopaminergic neurons called protocerebral anterior medial (PAM)-γ4, that project to the restricted region of the mushroom body (MB) γ lobes. Adult-stage-specific silencing of Dop2R dopaminergic receptors in MB γ neurons prolongs humidity memory for 3 h. Live-brain calcium imaging and dopamine sensor studies revealed significantly increased PAM-γ4 neural activity after odor/humidity association, suggesting its role in forgetting the humidity memory. Our results suggest that overlapping neural circuits are responsible for the acquisition of water memory and forgetting humidity memory in thirsty flies.
Collapse
Affiliation(s)
- Wang-Pao Lee
- Department of Biochemistry, Chang Gung University, Taoyuan33302, Taiwan
| | - Meng-Hsuan Chiang
- Department of Biochemistry, Chang Gung University, Taoyuan33302, Taiwan
| | - Yi-Ping Chao
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan33302, Taiwan
| | - Ying-Fong Wang
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan33302, Taiwan
| | - Yan-Lin Chen
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan33302, Taiwan
| | - Yu-Chun Lin
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan33302, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Shan-Yun Jenq
- Department of Biomedical Sciences, Chang Gung University, Taoyuan33302, Taiwan
| | - Jun-Wei Lu
- Department of Biomedical Sciences, Chang Gung University, Taoyuan33302, Taiwan
| | - Tsai-Feng Fu
- Department of Applied Chemistry, National Chi Nan University, Nantou54561, Taiwan
| | - Jia-Yu Liang
- Department of Biochemistry, Chang Gung University, Taoyuan33302, Taiwan
| | - Kai-Cing Yang
- Department of Biomedical Sciences, Chang Gung University, Taoyuan33302, Taiwan
| | - Li-Yun Chang
- Department of Biochemistry, Chang Gung University, Taoyuan33302, Taiwan
| | - Tony Wu
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei 23651 City, Taiwan
| | - Chia-Lin Wu
- Department of Biochemistry, Chang Gung University, Taoyuan33302, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan33302, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu30013, Taiwan
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei 23651 City, Taiwan
| |
Collapse
|
17
|
Wang J, Pan H, Tang H, Zhang J, Li T, Liu Y, Huang Y, Fei Z, Wang Y. Shuangxia Decoction attenuates sleep disruption in 5×FAD mice through neuroinflammation inhibition: An integrative analysis of transcriptomic and molecular biology investigations. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119642. [PMID: 40101857 DOI: 10.1016/j.jep.2025.119642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/23/2025] [Accepted: 03/15/2025] [Indexed: 03/20/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alzheimer's disease (AD) is a neurodegenerative disease characterized by memory and learning deficits. Circadian rhythm disruption-induced sleep disruption is frequently observed in AD patients. The Shuangxia Decoction (SXD) comprising Pinellia ternata (Thunb.) Breit. (Banxia) and Prunella vulgaris L. (Xiakucao), has been effectively used to treate sleep disruption for thousands of years. However, the mechanisms by which SXD treated AD through circadian rhythm-related pathways remain unexplored. AIMS OF THE STUDY This research sought to determine the efficacy, mechanisms, and active compounds of SXD in AD treatment via an integrative approach. MATERIALS AND METHODS We conducted a chronic jet lag (CJL) protocol in wild-type (WT) mice and monitored their rest/activity to compare their rest/activity period among WT, CJL, and CJD + SXD groups. In addition, we evaluated the impact of SXD on the cognitive and Aβ burden of 5 × FAD mice by behavioral tests and Thioflavin staining. The underlying pathway analysis of SXD was revealed through transcriptomic and biology experimental validation. The active compounds of SXD were further analyzed using the UPLC-MS, molecular docking, and cellular thermal shift assay (CESTA). RESULTS Our study demonstrated a rapid recovery of rest/activity period in CJL mice following SXD treatment. Additionally, SXD treatment alleviated Aβ plaque accumulation, subsequently preserving cognitive behavior and motor ability in 5 × FAD mice. Moreover, SXD significantly enhanced neuronal synaptic plasticity dendritic plasticity in CA1 neurons of 5 × FAD mice. Transcriptomic analysis showed upregulation of the neuroinflammation-related pathway in 5 × FAD mice. Subsequent heatmap analysis indicated a suppression of inflammatory factor secretion (Cd68, Trem2, IL-6, IL-1β, Cxc3r1, Tnf et al.) and an increase of anti-inflammatory factor secretion (IL4, Ccl19, Ccl21a et al.) following SXD treatment in the 5 × FAD mice. Meanwhile, SXD upregulated positive regulators involved in the circadian rhythm like Bmal1 and Clock, and downregulated negative regulators like Nr1d1. Moreover, microglia exhibited an amoeboid morphology characterized by few processes and rounded cell bodies in 5 × FAD mice, whereas the age-matched SXD group maintained microglia with a ramified appearance. Additionally, our study identified 20 major components of SXD and identified 3-(3,4-Dihydroxyphenyl) lactic acid, Salviaflaside, and Ilexhainanoside D for further molecular docking with REV-ERBα (NR1D1), a commonly used circadian target. Salviaflaside further showed a strong bind with REV-ERBα via CESTA. CONCLUSIONS Our findings indicate that SXD may rescue circadian rhythm in 5 × FAD mice through specifically binding to REV-ERBα in microglia to activate the BMAL1/CLOCK pathway, thus inhibiting transcription of inflammatory factors, contributing to alleviating neuroinflammation and impeding AD progression. Our results offer a scientific foundation for developing SXD-based therapies in the early stage of AD, where sleep disruption precedes cognitive decline, offering potential leads for clinical trials to improve sleep quality thus delaying neurodegeneration in AD patients.
Collapse
Affiliation(s)
- Jie Wang
- Department of Chinese Medicine & Integrative Medicine, Shanghai Geriatric Medical Center, Zhongshan Hospital, Fudan University, 2560 Chunshen Road, Shanghai, 201104, China; Department of Chinese Medicine & Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 201104, China
| | - Hao Pan
- Department of Neurosurgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haiyan Tang
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jingsi Zhang
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tingting Li
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yizhou Liu
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yiwen Huang
- Endocrinology Department of Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Zhimin Fei
- Department of Neurosurgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yu Wang
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
18
|
Takagi K. A reduction in energy costs induces integrated states of brain dynamics. Sci Rep 2025; 15:11421. [PMID: 40181147 PMCID: PMC11968916 DOI: 10.1038/s41598-025-96120-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 03/26/2025] [Indexed: 04/05/2025] Open
Abstract
In the human brain, interactions between multiple regions organize stable dynamics that enable enhanced cognitive processes. However, it is unclear how collective activities in the brain network can generate stable states while preserving unity across the whole brain scale under successive environmental changes. Herein, a network model was introduced in which network connections were adjusted to reduce the energy consumption level by avoiding excess changes in the activated states of each region during successive interactions. For time series data obtained from fMRI images, a connection matrix was generated by a simulation, and the predictions made by this matrix yielded accurate results relative to the real data. In this simulation, the adjustment process was activity-dependent, in which the interregional connections between intense active regions were reinforced to prohibit free behaviours. This resulted in a reduced excess energy loss and the integration of multiple regional activities into integrated dynamic states under constraints imposed by other regions. It was suggested that the simple rule of saving excess energy costs plays an important role in the mechanism that regulates large-scale brain networks and dynamics.
Collapse
|
19
|
Shouval HZ, Kirkwood A. Eligibility traces as a synaptic substrate for learning. Curr Opin Neurobiol 2025; 91:102978. [PMID: 39965463 DOI: 10.1016/j.conb.2025.102978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/20/2025]
Abstract
Animals can learn to associate a behavior or a stimulus with a delayed reward, this is essential for survival. A mechanism proposed for bridging this gap are synaptic eligibility traces, which are slowly decaying tags, which can lead to synaptic plasticity if followed by rewards. Recently, experiments have demonstrated the existence of synaptic eligibility traces in diverse neural systems, depending on either neuromodulators or plateau potentials. Evidence for both eligibility trace-dependent potentiation and depression of synaptic efficacies has emerged. We discuss the commonalities and differences of these different results. We show why the existence of both potentiation and depression is important because these opposing forces can lead to a synaptic stopping rule. Without a stopping rule, synapses would saturate at their upper bound thus leading to a loss of selectivity and representational power. We discuss the possible underlying mechanisms of the eligibility traces as well as their functional and theoretical significance.
Collapse
Affiliation(s)
- Harel Z Shouval
- Department of Neurobiology and Anatomy, University of Texas Medical School at Houston, Houston, TX, USA; Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA.
| | - Alfredo Kirkwood
- Mind/Brain Institute, Johns Hopkins University, 3400 North Charles Street, 350 Dunning Hall, Baltimore, MD 21218, USA
| |
Collapse
|
20
|
Shu F, Chen W, Chen Y, Liu G. 2D Atomic-Molecular Heterojunctions toward Brainoid Applications. Macromol Rapid Commun 2025; 46:e2400529. [PMID: 39101667 DOI: 10.1002/marc.202400529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Brainoid computing using 2D atomic crystals and their heterostructures, by emulating the human brain's remarkable efficiency and minimal energy consumption in information processing, poses a formidable solution to the energy-efficiency and processing speed constraints inherent in the von Neumann architecture. However, conventional 2D material based heterostructures employed in brainoid devices are beset with limitations, performance uniformity, fabrication intricacies, and weak interfacial adhesion, which restrain their broader application. The introduction of novel 2D atomic-molecular heterojunctions (2DAMH), achieved through covalent functionalization of 2D materials with functional molecules, ushers in a new era for brain-like devices by providing both stability and tunability of functionalities. This review chiefly delves into the electronic attributes of 2DAMH derived from the synergy of polymer materials with 2D materials, emphasizing the most recent advancements in their utilization within memristive devices, particularly their potential in replicating the functionality of biological synapses. Despite ongoing challenges pertaining to precision in modification, scalability in production, and the refinement of underlying theories, the proliferation of innovative research is actively pursuing solutions. These endeavors illuminate the vast potential for incorporating 2DAMH within brain-inspired intelligent systems, highlighting the prospect of achieving a more efficient and energy-conserving computing paradigm.
Collapse
Affiliation(s)
- Fan Shu
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weilin Chen
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu Chen
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Gang Liu
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
21
|
Wang BY, Wang B, Cao B, Gu LL, Chen J, He H, Zhao Z, Chen F, Wang Z. Associative Learning-Induced Synaptic Potentiation at the Two Major Hippocampal CA1 Inputs for Cued Memory Acquisition. Neurosci Bull 2025; 41:649-664. [PMID: 39604622 PMCID: PMC11979062 DOI: 10.1007/s12264-024-01327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/03/2024] [Indexed: 11/29/2024] Open
Abstract
Learning-associated functional plasticity at hippocampal synapses remains largely unexplored. Here, in a single session of reward-based trace conditioning, we examine learning-induced synaptic plasticity in the dorsal CA1 hippocampus (dCA1). Local field-potential recording combined with selective optogenetic inhibition first revealed an increase of dCA1 synaptic responses to the conditioned stimulus (CS) induced during conditioning at both Schaffer collaterals to the stratum radiatum (Rad) and temporoammonic input to the lacunosum moleculare (LMol). At these dCA1 inputs, synaptic potentiation of CS-responding excitatory synapses was further demonstrated by locally blocking NMDA receptors during conditioning and whole-cell recording sensory-evoked synaptic responses in dCA1 neurons from naive animals. An overall similar time course of the induction of synaptic potentiation was found in the Rad and LMol by multiple-site recording; this emerged later and saturated earlier than conditioned behavioral responses. Our experiments demonstrate a cued memory-associated dCA1 synaptic plasticity induced at both Schaffer collaterals and temporoammonic pathways.
Collapse
Affiliation(s)
- Bing-Ying Wang
- Institute and Key Laboratory of Brain Functional Genomics of Chinese Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Bo Wang
- Institute and Key Laboratory of Brain Functional Genomics of Chinese Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Bo Cao
- Institute and Key Laboratory of Brain Functional Genomics of Chinese Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Ling-Ling Gu
- Institute and Key Laboratory of Brain Functional Genomics of Chinese Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Jiayu Chen
- Institute and Key Laboratory of Brain Functional Genomics of Chinese Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Hua He
- Department of Neurosurgery, Third Affiliated Hospital of Navy Military Medical University, Shanghai, 200438, China
| | - Zheng Zhao
- Institute and Key Laboratory of Brain Functional Genomics of Chinese Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China.
| | - Fujun Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Zhiru Wang
- Institute and Key Laboratory of Brain Functional Genomics of Chinese Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
22
|
Baldinotti R, Pauzin FP, Fevang H, Ishizuka Y, Bramham CR. A Nanobody-Based Proximity Ligation Assay Detects Constitutive and Stimulus-Regulated Native Arc/Arg3.1 Oligomers in Hippocampal Neuronal Dendrites. Mol Neurobiol 2025; 62:3973-3990. [PMID: 39367947 PMCID: PMC11880080 DOI: 10.1007/s12035-024-04508-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/16/2024] [Indexed: 10/07/2024]
Abstract
Activity-regulated cytoskeleton-associated protein (Arc), the product of an immediate early gene, plays critical roles in synaptic plasticity and memory. Evidence suggests that Arc function is determined by its oligomeric state; however, methods for localization of native Arc oligomers are lacking. Here, we developed a nanobody-based proximity ligation assay (PLA) for detection, localization, and quantification of Arc-Arc complexes in primary rat hippocampal neuronal cultures. We used nanobodies with single, structurally defined epitopes in the bilobar Arc capsid domain. Nanobody H11 binds inside the N-lobe ligand pocket, while nanobody C11 binds to the C-lobe surface. For each nanobody, ALFA- and FLAG-epitope tags created a platform for antibody binding and PLA. Surprisingly, PLA puncta in neuronal dendrites revealed widespread constitutive Arc-Arc complexes. Treatment of cultures with tetrodotoxin or cycloheximide had no effect, suggesting stable complexes that are independent of recent neuronal activity and protein synthesis. To assess detection of oligomers, cultures were exposed to a cell-penetrating peptide inhibitor of the Arc oligomerization motif (OligoOFF). Arc-Arc complexes detected by H11 PLA were inhibited by OligoOff but not by control peptide. Notably, Arc complexes detected by C11 were unaffected by OligoOFF. Furthermore, we evaluated Arc complex formation after chemical stimuli that increase Arc synthesis. Brain-derived neurotrophic factor increased Arc-Arc signal detected by C11, but not H11. Conversely, dihydroxyphenylglycine (DHPG) treatment selectively enhanced H11 PLA signals. In sum, nanobody-based PLA reveals constitutive and stimulus-regulated Arc oligomers in hippocampal neuronal dendrites. A model is proposed based on detection of Arc dimer by C11 and higher-order oligomer by H11 nanobody.
Collapse
Affiliation(s)
- Rodolfo Baldinotti
- Department of Biomedicine, University of Bergen, Jonas Lies 91, 5009, Bergen, Norway
- Mohn Research Center for the Brain, University of Bergen, Bergen, Norway
| | - Francois P Pauzin
- Department of Biomedicine, University of Bergen, Jonas Lies 91, 5009, Bergen, Norway
- Mohn Research Center for the Brain, University of Bergen, Bergen, Norway
| | - Hauk Fevang
- Department of Biomedicine, University of Bergen, Jonas Lies 91, 5009, Bergen, Norway
- Mohn Research Center for the Brain, University of Bergen, Bergen, Norway
| | - Yuta Ishizuka
- Department of Biomedicine, University of Bergen, Jonas Lies 91, 5009, Bergen, Norway
| | - Clive R Bramham
- Department of Biomedicine, University of Bergen, Jonas Lies 91, 5009, Bergen, Norway.
- Mohn Research Center for the Brain, University of Bergen, Bergen, Norway.
| |
Collapse
|
23
|
Belkacem A, Lavigne KM, Raucher-Chéné D, Makowski C, Chakravarty M, Joober R, Malla A, Shah J, Lepage M. Association of anticholinergic burden with hippocampal subfields volume in first-episode psychosis. Psychiatry Res Neuroimaging 2025; 348:111968. [PMID: 40015233 DOI: 10.1016/j.pscychresns.2025.111968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/15/2024] [Accepted: 02/15/2025] [Indexed: 03/01/2025]
Abstract
Polypharmacy is relatively common in early psychosis, but little attention has been paid to the anticholinergic burden of medication use (the cumulative effect of medications that block the cholinergic system). Evidence suggests that anticholinergic burden is associated with cognitive deficits and that hippocampal dysfunction may be involved in those impairments. We aimed to examine this association in a cohort of patients with first-episode psychosis. We hypothesized that patients with the highest burden would experience a more significant reduction in hippocampal volume compared to those with low burden and healthy controls, both at baseline (3 months) and at month 12. Patients (n = 82; low burden [n = 64] and high burden [n = 18], defined by a Drug Burden Index cut-off of 1) followed at the PEPP-Montreal clinic, and controls (n = 55) completed a 3T MRI at both timepoints. After controlling for antipsychotic dosage at both timepoints, results at baseline and over time revealed a greater reduction in left fimbria volumes in high-burden patients compared to low-burden patients and controls. Overall, the associations observed between high anticholinergic burden and hippocampal volume provide further evidence for considering this dimension when prescribing medication in early psychosis.
Collapse
Affiliation(s)
- Agnès Belkacem
- Douglas Research Centre, McGill University, Montreal, Quebec, Canada
| | - Katie M Lavigne
- Douglas Research Centre, McGill University, Montreal, Quebec, Canada; Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | | | - Carolina Makowski
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | | | - Ridha Joober
- Douglas Research Centre, McGill University, Montreal, Quebec, Canada
| | - Ashok Malla
- Douglas Research Centre, McGill University, Montreal, Quebec, Canada
| | - Jai Shah
- Douglas Research Centre, McGill University, Montreal, Quebec, Canada
| | - Martin Lepage
- Douglas Research Centre, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
24
|
López-Merino E, Fernández-Rodrigo A, Jiang JG, Gutiérrez-Eisman S, Fernández de Sevilla D, Fernández-Medarde A, Santos E, Guerra C, Barbacid M, Esteban JA, Briz V. Different Ras isoforms regulate synaptic plasticity in opposite directions. EMBO J 2025; 44:2106-2133. [PMID: 39984756 PMCID: PMC11961722 DOI: 10.1038/s44318-025-00390-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/23/2025] Open
Abstract
The small GTPase Ras is an intracellular signaling hub required for long-term potentiation (LTP) in the hippocampus and for memory formation. Genetic alterations in Ras signaling (i.e., RASopathies) are linked to cognitive disorders in humans. However, it remains unclear how Ras controls synaptic plasticity, and whether different Ras isoforms play overlapping or distinct roles in neurons. Using genetically modified mice, we show here that H-Ras (the most abundant isoform in the brain) does not promote LTP, but instead long-term depression mediated by metabotropic glutamate receptors (mGluR-LTD). Mechanistically, H-Ras is activated locally in spines during mGluR-LTD via c-Src, and is required to trigger Erk activation and de novo protein synthesis. Furthermore, H-Ras deletion impairs object recognition as well as social and spatial memory. Conversely, K-Ras is the isoform specifically required for LTP. This functional specialization correlates with a differential synaptic distribution of the two isoforms H-Ras and K-Ras, which may have important implications for RASopathies and cognitive function.
Collapse
Affiliation(s)
| | - Alba Fernández-Rodrigo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Inserm Université de Bordeaux, U1215 Neurocentre Magendie, Bordeaux, France
| | - Jessie G Jiang
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | | | | | - Alberto Fernández-Medarde
- Centro de Investigación del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
- CIBERONC (Instituto de Salud Carlos III), Madrid, Spain
| | - Eugenio Santos
- Centro de Investigación del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
- CIBERONC (Instituto de Salud Carlos III), Madrid, Spain
| | - Carmen Guerra
- CIBERONC (Instituto de Salud Carlos III), Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Mariano Barbacid
- CIBERONC (Instituto de Salud Carlos III), Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - José A Esteban
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.
| | - Víctor Briz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.
- Centro Nacional de Sanidad Ambiental (Instituto de Salud Carlos III), Majadahonda, Madrid, Spain.
| |
Collapse
|
25
|
Ageta-Ishihara N, Fukazawa Y, Arima-Yoshida F, Okuno H, Ishii Y, Takao K, Konno K, Fujishima K, Ageta H, Hioki H, Tsuchida K, Sato Y, Kengaku M, Watanabe M, Watabe AM, Manabe T, Miyakawa T, Inokuchi K, Bito H, Kinoshita M. Septin 3 regulates memory and L-LTP-dependent extension of endoplasmic reticulum into spines. Cell Rep 2025; 44:115352. [PMID: 40023151 DOI: 10.1016/j.celrep.2025.115352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/11/2024] [Accepted: 02/05/2025] [Indexed: 03/04/2025] Open
Abstract
Transient memories are converted to persistent memories at the synapse and circuit/systems levels. The synapse-level consolidation parallels electrophysiological transition from early- to late-phase long-term potentiation of synaptic transmission (E-/L-LTP). While glutamate signaling upregulations coupled with dendritic spine enlargement are common underpinnings of E-LTP and L-LTP, synaptic mechanisms conferring persistence on L-LTP remain unclear. Here, we show that L-LTP induced at the perforant path-hippocampal dentate gyrus (DG) synapses accompanies cytoskeletal remodeling that involves actin and the septin subunit SEPT3. L-LTP in DG neurons causes fast spine enlargement, followed by SEPT3-dependent smooth endoplasmic reticulum (sER) extension into enlarged spines. Spines containing sER show greater Ca2+ responses upon synaptic input and local synaptic activity. Consistently, Sept3 knockout in mice (Sept3-/-) impairs memory consolidation and causes a scarcity of sER-containing spines. These findings indicate a concept that sER extension into active spines serves as a synaptic basis of memory consolidation.
Collapse
Affiliation(s)
- Natsumi Ageta-Ishihara
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Chiba 274-8510, Japan; Department of Molecular Biology, Division of Biological Sciences, Nagoya University Graduate School of Science, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Science, University of Fukui, Yoshida-gun, Fukui 910-1193, Japan
| | - Fumiko Arima-Yoshida
- Division of Neuronal Network, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Kashiwa, Chiba 277-8567, Japan
| | - Hiroyuki Okuno
- Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Yuichiro Ishii
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keizo Takao
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Kohtarou Konno
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Kazuto Fujishima
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study (KUIAS-iCeMS), Sakyo-ku, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-8686, Japan
| | - Hiroshi Ageta
- Division for Therapies Against Intractable Diseases, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Hiroyuki Hioki
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kunihiro Tsuchida
- Division for Therapies Against Intractable Diseases, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Mineko Kengaku
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study (KUIAS-iCeMS), Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Ayako M Watabe
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Kashiwa, Chiba 277-8567, Japan
| | - Toshiya Manabe
- Division of Neuronal Network, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Kaoru Inokuchi
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Makoto Kinoshita
- Department of Molecular Biology, Division of Biological Sciences, Nagoya University Graduate School of Science, Chikusa-ku, Nagoya 464-8602, Japan.
| |
Collapse
|
26
|
Willems TS, Xiong H, Kessels HW, Lesuis SL. GluA1-containing AMPA receptors are necessary for sparse memory engram formation. Neurobiol Learn Mem 2025; 218:108031. [PMID: 39922481 DOI: 10.1016/j.nlm.2025.108031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/17/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Memory formation depends on the selective recruitment of neuronal ensembles into circuits known as engrams, which represent the physical substrate of memory. Sparse encoding of these ensembles is essential for memory specificity and efficiency. AMPA receptor (AMPAR) subunits, particularly GluA1, play a central role in synaptic plasticity, which underpins memory encoding. This study investigates how GluA1 expression influences the recruitment of neurons into memory engrams. Using global GluA1 knockout (GluA1KO) mice, localized knockout models, and contextual fear-conditioning paradigms, we evaluated the role of GluA1 in memory formation and engram sparsity. GluA1KO mice exhibited impaired short-term memory retention but preserved 24-hour contextual memory. Despite this, these mice displayed increased expression of the immediate early gene Arc in hippocampal neurons, indicative of a denser engram network. Electrophysiological analyses revealed reduced synaptic strength in GluA1-deficient neurons, irrespective of Arc expression. Localized GluA1 knockout in the hippocampus confirmed that GluA1 deficiency increases neuronal recruitment into engrams, disrupting the sparse encoding typically observed in wild-type mice. These findings demonstrate that GluA1-containing AMPARs constrain engram size, ensuring selective recruitment of neurons for efficient memory encoding. By regulating synaptic plasticity, GluA1 facilitates both the encoding and size of memory circuits. This study highlights the critical role of GluA1 in maintaining sparse engram formation and provides insight into mechanisms underlying memory deficits in conditions where synaptic composition is altered.
Collapse
Affiliation(s)
- Thije S Willems
- Department of Cell and Circuit Neuroscience, Swammerdam Institute for Life Sciences, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Hui Xiong
- Department of Cell and Circuit Neuroscience, Swammerdam Institute for Life Sciences, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, the Netherlands; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Helmut W Kessels
- Department of Cell and Circuit Neuroscience, Swammerdam Institute for Life Sciences, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Sylvie L Lesuis
- Department of Cell and Circuit Neuroscience, Swammerdam Institute for Life Sciences, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
27
|
Song H, Park J, Rosenberg MD. Understanding cognitive processes across spatial scales of the brain. Trends Cogn Sci 2025; 29:282-294. [PMID: 39500686 DOI: 10.1016/j.tics.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 03/08/2025]
Abstract
Cognition arises from neural operations at multiple spatial scales, from individual neurons to large-scale networks. Despite extensive research on coding principles and emergent cognitive processes across brain areas, investigation across scales has been limited. Here, we propose ways to test the idea that different cognitive processes emerge from distinct information coding principles at various scales, which collectively give rise to complex behavior. This approach involves comparing brain-behavior associations and the underlying neural geometry across scales, alongside an investigation of global and local scale interactions. Bridging findings across species and techniques through open science and collaborations is essential to comprehensively understand the multiscale brain and its functions.
Collapse
Affiliation(s)
- Hayoung Song
- Department of Psychology, University of Chicago, Chicago, IL, USA; Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA.
| | - JeongJun Park
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA.
| | - Monica D Rosenberg
- Department of Psychology, University of Chicago, Chicago, IL, USA; Neuroscience Institute, University of Chicago, Chicago, IL, USA; Institute for Mind and Biology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
28
|
Li J, Wang N, Huang Q, Jiao C, Liu W, Yang C, Tang X, Mao R, Zhou Q, Ding Y, Shan B, Xu L. Acute Treatment with Salvianolic Acid A Produces Neuroprotection in Stroke Models by Inducing Excitatory Long-Term Synaptic Depression. ACS Chem Neurosci 2025; 16:659-672. [PMID: 39888337 DOI: 10.1021/acschemneuro.4c00720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
Acute ischemic stroke (AIS) is a significant brain disease with a high mortality and disability rate. Additional therapies for AIS are urgently needed, and neuroplasticity mechanisms by agents are expected to be neuroprotective for AIS. As a major active component of Salvia miltiorrhiza, salvianolic acid A (SAA) has shown potential for preventing cardiovascular diseases. However, there is no evidence of the long-term effect of SAA on ischemic injury or its mechanism. Therefore, using rats and mice, we systematically investigated the impact of SAA on AIS from the perspective of neuroprotective and neuroplasticity. Here, we report that SAA induces a long-term depression (LTD)-like process in synapses. This antiexcitotoxicity action supports the SAA effect, including alleviating infarction and promoting blood circulation in photothrombosis and middle cerebral artery occlusion (MCAO) models. Furthermore, repeated positron emission tomography/computed tomography (PET/CT) imaging and behavioral assessments two months after AIS induction reveal that acute treatment of SAA promotes recovery from disrupted whole-brain glucose metabolism and impaired spatial memory. These data suggest that acute treatment of SAA is neuroprotective by improving long-term functional outcomes through a synaptic LTD-like process, providing a promising adjunct to current therapies to enable better recovery for AIS.
Collapse
Affiliation(s)
- Jinnan Li
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Niya Wang
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Qi Huang
- Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, the Chinese Academy of Sciences, Beijing 100049, China
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai 200030, China
| | - Chunxiang Jiao
- College of Pharmacy and Chemistry, Dali University, Dali 671000, China
| | - Weilin Liu
- The Academy of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Chunxian Yang
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Xun Tang
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Rongrong Mao
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China
- Kunming Medical University, Kunming 650500, China
| | - Qixin Zhou
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Yuqiang Ding
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Baoci Shan
- Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, the Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Xu
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
- CAS Centre for Excellence in Brain Science and Intelligent Technology, Shanghai 200031, China
| |
Collapse
|
29
|
Mukherjee U, Basu B, Beyer SE, Ghodsi S, Robillard N, Vanrobaeys Y, Taylor EB, Abel T, Chatterjee S. Histone Lysine Crotonylation Regulates Long-Term Memory Storage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639114. [PMID: 40027819 PMCID: PMC11870504 DOI: 10.1101/2025.02.19.639114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Histone post-translational modifications (PTMs), particularly lysine acetylation (Kac), are critical epigenetic regulators of gene transcription underlying long-term memory consolidation. Beyond Kac, several other non-acetyl acylations have been identified, but their role in memory consolidation remains unknown. Here, we demonstrate histone lysine crotonylation (Kcr) as a key molecular switch of hippocampal memory storage. Spatial memory training induces distinct spatiotemporal patterns of Kcr induction in the dorsal hippocampus of mice. Through genetic and pharmacological manipulations, we show that reducing hippocampal Kcr levels impairs long-term memory, while increasing Kcr enhances memory. Utilizing single-nuclei multiomics, we delineate that Kcr enhancement during memory consolidation activates transcription of genes involved in neurotransmission and synaptic function within hippocampal excitatory neurons. Cell-cell communication analysis further inferred that Kcr enhancement strengthens glutamatergic signaling within principal hippocampal neurons. Our findings establish Kcr as a novel epigenetic mechanism governing memory consolidation and provide a foundation for therapeutic strategies targeting memory-related disorders.
Collapse
Affiliation(s)
- Utsav Mukherjee
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States
| | - Budhaditya Basu
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Stacy E. Beyer
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Saaman Ghodsi
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Nathan Robillard
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Yann Vanrobaeys
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, United States
| | - Eric B. Taylor
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, United States
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, United States
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Snehajyoti Chatterjee
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
30
|
Statsenko Y, Kuznetsov NV, Ljubisaljevich M. Hallmarks of Brain Plasticity. Biomedicines 2025; 13:460. [PMID: 40002873 PMCID: PMC11852462 DOI: 10.3390/biomedicines13020460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/15/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Cerebral plasticity is the ability of the brain to change and adapt in response to experience or learning. Its hallmarks are developmental flexibility, complex interactions between genetic and environmental influences, and structural-functional changes comprising neurogenesis, axonal sprouting, and synaptic remodeling. Studies on brain plasticity have important practical implications. The molecular characteristics of changes in brain plasticity may reveal disease course and the rehabilitative potential of the patient. Neurological disorders are linked with numerous cerebral non-coding RNAs (ncRNAs), in particular, microRNAs; the discovery of their essential role in gene regulation was recently recognized and awarded a Nobel Prize in Physiology or Medicine in 2024. Herein, we review the association of brain plasticity and its homeostasis with ncRNAs, which make them putative targets for RNA-based diagnostics and therapeutics. New insight into the concept of brain plasticity may provide additional perspectives on functional recovery following brain damage. Knowledge of this phenomenon will enable physicians to exploit the potential of cerebral plasticity and regulate eloquent networks with timely interventions. Future studies may reveal pathophysiological mechanisms of brain plasticity at macro- and microscopic levels to advance rehabilitation strategies and improve quality of life in patients with neurological diseases.
Collapse
Affiliation(s)
- Yauhen Statsenko
- ASPIRE Precision Medicine Institute in Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Nik V. Kuznetsov
- ASPIRE Precision Medicine Institute in Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Milos Ljubisaljevich
- ASPIRE Precision Medicine Institute in Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
31
|
Jabri M, Hossein-Babaei F. DC field-biased multibit/analog artificial synapse featuring an additional degree of freedom for performance tuning. NANOSCALE 2025; 17:3389-3401. [PMID: 39704050 DOI: 10.1039/d4nr03464c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Multibit/analog artificial synapses are in demand for neuromorphic computing systems. A problem hindering the utilization of memristive artificial synapses in commercial neuromorphic systems is the rigidity of their functional parameters, plasticity in particular. Here, we report fabricating polycrystalline rutile-based memristive memory segments with Ti/poly-TiO2/Ti structures featuring multibit/analog storage and the first use of a tunable DC-biasing for synaptic plasticity adjustment from short- to long-term. The unbiased device is of short-term plasticity, positive biasing increases the remanence of the recorded events and the device gains long-term plasticity at a specific biasing level determined from the device geometry. The adjustability of the biasing field provides an additional degree of freedom allowing performance tuning; the paired-pulse facilitation index of the device is tuned by the biasing level adjustment providing further functional versatility. An appropriately biased segment provides more than 10 synaptic weight levels linearly depending on the number and duration of the stimulating spikes. The relationship with spike magnitude is exponential. The experimentally determined nonlinearity coefficient of the biased device for 50 potentiating spikes is comparable to the best published data. The spike-timing-dependent plasticity determined experimentally for the biased device in its long-term plasticity mode fits the mathematical relationship developed for biological synapses. Fabricated on a titanium metal foil, the produced memristors are sturdy and flexible making them suitable for wearable and implantable intelligent electronics. Our findings are anticipated to raise the potential of forming artificial synapses out of polycrystalline metal oxide thin films.
Collapse
Affiliation(s)
- Milad Jabri
- Electronic Materials Laboratory, K. N. Toosi University of Technology, Tehran 1631714191, Iran.
| | - Faramarz Hossein-Babaei
- Electronic Materials Laboratory, K. N. Toosi University of Technology, Tehran 1631714191, Iran.
- Hezare Sevom Co. Ltd, 7, Niloofar Square, Tehran 1533874417, Iran
| |
Collapse
|
32
|
Cheng Q, Fan Y, Zhang P, Liu H, Han J, Yu Q, Wang X, Wu S, Lu Z. Biomarkers of synaptic degeneration in Alzheimer's disease. Ageing Res Rev 2025; 104:102642. [PMID: 39701184 DOI: 10.1016/j.arr.2024.102642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Synapse has been considered a critical neuronal structure in the procession of Alzheimer's disease (AD), attacked by two pathological molecule aggregates (amyloid-β and phosphorylated tau) in the brain, disturbing synaptic homeostasis before disease manifestation and subsequently causing synaptic degeneration. Recently, evidence has emerged indicating that soluble oligomeric amyloid-β (AβO) and tau exert direct toxicity on synapses, causing synaptic damage. Synaptic degeneration is closely linked to cognitive decline in AD, even in the asymptomatic stages of AD. Therefore, the identification of novel, specific, and sensitive biomarkers involved in synaptic degeneration holds significant promise for early diagnosis of AD, reducing synaptic degeneration and loss, and controlling the progression of AD. Currently, a range of biomarkers in cerebrospinal fluid (CSF), such as synaptosome-associated protein 25 (SNAP-25), synaptotagmin-1, growth-associated protein-43 (GAP-43), and neurogranin (Ng), along with functional brain imaging techniques, can detect variations in synaptic density, offering high sensitivity and specificity for AD diagnosis. However, these methods face challenges, including invasiveness, high cost, and limited accessibility. In contrast, biomarkers found in blood or urine provide a minimally invasive, cost-effective, and more accessible alternative to traditional diagnostic methods. Notably, neuron-derived exosomes in blood, which contain synaptic proteins, show variations in concentration that can serve as indicators of synaptic injury, providing an additional, less invasive approach to AD diagnosis and monitoring.
Collapse
Affiliation(s)
- Qian Cheng
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Yiou Fan
- Laboratory and Quality Management Department, Centers for Disease Control and Prevention of Shandong, Jinan, Shandong, China
| | - Pengfei Zhang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Huan Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Jialin Han
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Qian Yu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xueying Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Shuang Wu
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Zhiming Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| |
Collapse
|
33
|
da Costa Neto IR, do Amaral Junior FL, da Silva Arruda BF, Castro MML, Carvalho Chaves de Siqueira Mendes FD, Anthony DC, de Oliveira Brites DMT, Diniz CWP, Sosthenes MCK. Impact of masticatory activity and rehabilitation on astrocyte morphology across the molecular layer of the dentate gyrus: Insights from the outer, medial, and inner sublayers and their relationship with spatial learning and memory. Ann Anat 2025; 258:152356. [PMID: 39608517 DOI: 10.1016/j.aanat.2024.152356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024]
Abstract
The dentate gyrus plays a crucial role in learning and spatial memory, particularly in its middle third molecular layer, which receives the primary afferent input via the medial perforant path. Interestingly, changes in masticatory activity are described to affect this region with visible astrogliosis, release of pro-inflammatory cytokines and oxidative stress, affecting synaptic physiology, and cognition. This study aimed to investigate the impact of altered masticatory activity on spatial memory in young Swiss albino mice, correlating these effects with morphological changes in astrocytes. The mice were divided into three groups: Hard diet with pellets (HD), hard diet/soft diet (HD/SD, reduced masticatory activity), and HD/SD/HD (rehabilitated). The Morris water maze test was used to measure escape latency, while three-dimensional microscopic reconstruction methods provided morphometric data on the astrocytes. Hierarchical clustering analysis validated the existence of four morphological subtypes with decreasing complexity (AST1, AST2, AST3, and AST4), in the outer, middle, and inner thirds of the dentate gyrus molecular layer. Changes in masticatory activity affected the number and distribution of astrocytes subtypes excepting AST3 in the middle third layer. Canonical discriminant function analysis indicated that complexity was the variable most influencing cluster formation. Correlation tests between complexity and escape latency for each animal group showed a significant correlation with a large effect size of 60 % [Pearson's R: 0.605, p < 0.001] in the HD group in the middle third, which was disrupted by altered masticatory activity. AST3 morphotype in the middle third showed a linear correlation with learning and spatial memory functions in the HD group [Pearson's R: 0.624, p < 0.001] that disappeared with a reduction in masticatory activity, and nor restored by diet rehabilitation. This finding was not observed for inner and outer layers, supporting the contribution of middle third AST3 to learning and spatial memory. Group comparison tests also revealed that diet differentially impacts astrocyte subpopulations on each third of the dentate gyrus molecular layer. Data validate the influence of the masticatory activity on astrocyte complexity and suggest the existence of AST3 association with spatial memory and learning tasks in young female mice. Further research on the underlying mechanisms of these relationships is essential to identify potential therapeutic targets for cognitive disorders and to develop effective interventions to preserve cognitive function.
Collapse
Affiliation(s)
- Ivaniro Rodrigues da Costa Neto
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA 66073-005, Brazil; Universidade da Amazônia, Ananindeua, PA 67113-901, Brazil
| | - Fabio Leite do Amaral Junior
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA 66073-005, Brazil
| | - Bernardo Freire da Silva Arruda
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA 66073-005, Brazil
| | - Micaele Maria Lopes Castro
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA 66073-005, Brazil
| | - Fabíola de Carvalho Chaves de Siqueira Mendes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA 66073-005, Brazil; Curso de Medicina, Centro Universitário do Estado do Pará, Belém, PA 66613-903, Brazil
| | - Daniel Clive Anthony
- University of Oxford, Laboratory of Experimental Neuropathology, Department of Pharmacology, Oxford OX13QT, United Kingdom
| | - Dora Maria Tuna de Oliveira Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA 66073-005, Brazil
| | - Marcia Consentino Kronka Sosthenes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA 66073-005, Brazil.
| |
Collapse
|
34
|
Li X, Wang X, Hu X, Tang P, Chen C, He L, Chen M, Bello ST, Chen T, Wang X, Wong YT, Sun W, Chen X, Qu J, He J. Cortical HFS-Induced Neo-Hebbian Local Plasticity Enhances Efferent Output Signal and Strengthens Afferent Input Connectivity. eNeuro 2025; 12:ENEURO.0045-24.2024. [PMID: 39809536 PMCID: PMC11810566 DOI: 10.1523/eneuro.0045-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 12/17/2024] [Accepted: 12/25/2024] [Indexed: 01/16/2025] Open
Abstract
High-frequency stimulation (HFS)-induced long-term potentiation (LTP) is generally regarded as a homosynaptic Hebbian-type LTP, where synaptic changes are thought to occur at the synapses that project from the stimulation site and terminate onto the neurons at the recording site. In this study, we first investigated HFS-induced LTP on urethane-anesthetized rats and found that cortical HFS enhances neural responses at the recording site through the strengthening of local connectivity with nearby neurons at the stimulation site rather than through synaptic strengthening at the recording site. This enhanced local connectivity at the stimulation site leads to increased output propagation, resulting in signal potentiation at the recording site. Additionally, we discovered that HFS can also nonspecifically strengthen distant afferent synapses at the HFS site, thereby expanding its impact beyond local neural connections. This form of plasticity exhibits a neo-Hebbian characteristic as it exclusively manifests in the presence of cholecystokinin release, induced by HFS. The cortical HFS-induced local LTP was further supported by a behavioral task, providing additional evidence. Our results unveil a previously overlooked mechanism underlying cortical plasticity: synaptic plasticity is more likely to occur around the soma site of strongly activated cortical neurons rather than solely at their projection terminals.
Collapse
Affiliation(s)
- Xiao Li
- Departments of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong
- Research Centre for Treatments of Brain Disorders, City University of Hong Kong, Kowloon, Hong Kong
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xue Wang
- Departments of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong
- Research Centre for Treatments of Brain Disorders, City University of Hong Kong, Kowloon, Hong Kong
| | - Xiaohan Hu
- Departments of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong
- Research Centre for Treatments of Brain Disorders, City University of Hong Kong, Kowloon, Hong Kong
| | - Peng Tang
- Departments of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong
- Research Centre for Treatments of Brain Disorders, City University of Hong Kong, Kowloon, Hong Kong
- Center of Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Shatin, Hong Kong
| | - Congping Chen
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Ling He
- Departments of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong
- Research Centre for Treatments of Brain Disorders, City University of Hong Kong, Kowloon, Hong Kong
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Center of Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Shatin, Hong Kong
| | - Mengying Chen
- Departments of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong
- Research Centre for Treatments of Brain Disorders, City University of Hong Kong, Kowloon, Hong Kong
| | - Stephen Temitayo Bello
- Departments of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong
- Research Centre for Treatments of Brain Disorders, City University of Hong Kong, Kowloon, Hong Kong
| | - Tao Chen
- Departments of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong
- Research Centre for Treatments of Brain Disorders, City University of Hong Kong, Kowloon, Hong Kong
- Center of Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Shatin, Hong Kong
| | - Xiaoyu Wang
- Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Yin Ting Wong
- Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Wenjian Sun
- Departments of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Xi Chen
- Departments of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong
- Research Centre for Treatments of Brain Disorders, City University of Hong Kong, Kowloon, Hong Kong
| | - Jianan Qu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Jufang He
- Departments of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong
- Research Centre for Treatments of Brain Disorders, City University of Hong Kong, Kowloon, Hong Kong
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Center of Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Shatin, Hong Kong
| |
Collapse
|
35
|
Zhu X, Huang Y, Qiu J, Zhong Z, Peng Y, Liang X, Chen J, Zhou J, Liang X, Wang H, Xie W, Ding Y. Chaihu Guizhi Decoction prevents cognitive, memory impairments and sensorimotor gating deficit induced by N-methyl-d-aspartate receptor antibody in mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118806. [PMID: 39278296 DOI: 10.1016/j.jep.2024.118806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anti-NMDAR encephalitis is one of the most common types of autoimmune encephalitis, primarily presenting with prodromal symptoms, such as fever and headache, followed by a range of neurological and psychiatric symptoms. Chaihu Guizhi Decoction (CGD), a traditional Chinese medicine formulated by Zhang Zhongjing in the Eastern Han Dynasty, has been effectively used in clinical practice to treat the symptoms of Taiyang and Shaoyang disorders, including fever, headache, and psychiatric disorders. AIM OF THE STUDY To demonstrate the protective effects of CGD in an animal model of anti-NMDAR encephalitis and explore the potential mechanisms involved. MATERIALS AND METHODS UHPLC-HRMS was used to identify CGD's chemical components and serum metabolomic profiles. Network pharmacology and molecular docking were performed to predict potential targets of CGD for the treatment of anti-NMDAR encephalitis. The effect of CGD on anti-NMDAR encephalitis was evaluated using a mouse model induced by patients' antibodies. Behavioral tests were performed to assess cognitive impairment and schizophrenia-like behaviors. The effect of CGD on the cell-surface NMDAR GluN1 subunit in cultured neurons treated with patient antibodies was detected by immunofluorescence. Golgi staining was used to observe morphological changes in hippocampal dendrites. The expression of NMDAR-interacting proteins and various neuroreceptors in the hippocampus were examined to validate the targets predicted using network pharmacology and molecular docking. RESULTS CGD alleviated cognitive, memory, and sensorimotor gating deficits in mice treated with anti-NMDAR encephalitis patients' antibodies. Further experiments demonstrated the effect of CGD in preventing NMDAR reduction both in vitro and in vivo. Meanwhile, CGD regulated NMDAR-interacting proteins and dopamine receptors but did not affect hippocampal dendritic morphology and synaptic density. Additionally, CGD modifies metabolic pathways associated with anti-NMDAR encephalitis and other neurological and psychiatric disorders. CONCLUSIONS CGD exhibited protective effects against anti-NMDAR encephalitis by mitigating the antibody-induced reduction in NMDAR and NMDAR-interacting proteins.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yingyi Huang
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Jing Qiu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zheng Zhong
- Department of Chemistry and the Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yu Peng
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China
| | - Xiaoshan Liang
- Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jinyu Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jieli Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiaotao Liang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Honghao Wang
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China.
| | - Wei Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China; Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Yuewen Ding
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China; Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
36
|
Hadke S, Kang MA, Sangwan VK, Hersam MC. Two-Dimensional Materials for Brain-Inspired Computing Hardware. Chem Rev 2025; 125:835-932. [PMID: 39745782 DOI: 10.1021/acs.chemrev.4c00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Recent breakthroughs in brain-inspired computing promise to address a wide range of problems from security to healthcare. However, the current strategy of implementing artificial intelligence algorithms using conventional silicon hardware is leading to unsustainable energy consumption. Neuromorphic hardware based on electronic devices mimicking biological systems is emerging as a low-energy alternative, although further progress requires materials that can mimic biological function while maintaining scalability and speed. As a result of their diverse unique properties, atomically thin two-dimensional (2D) materials are promising building blocks for next-generation electronics including nonvolatile memory, in-memory and neuromorphic computing, and flexible edge-computing systems. Furthermore, 2D materials achieve biorealistic synaptic and neuronal responses that extend beyond conventional logic and memory systems. Here, we provide a comprehensive review of the growth, fabrication, and integration of 2D materials and van der Waals heterojunctions for neuromorphic electronic and optoelectronic devices, circuits, and systems. For each case, the relationship between physical properties and device responses is emphasized followed by a critical comparison of technologies for different applications. We conclude with a forward-looking perspective on the key remaining challenges and opportunities for neuromorphic applications that leverage the fundamental properties of 2D materials and heterojunctions.
Collapse
Affiliation(s)
- Shreyash Hadke
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Min-A Kang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Vinod K Sangwan
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
37
|
Flores JC, Sarkar D, Zito K. A synapse-specific refractory period for plasticity at individual dendritic spines. Proc Natl Acad Sci U S A 2025; 122:e2410433122. [PMID: 39772745 PMCID: PMC11745398 DOI: 10.1073/pnas.2410433122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
How newly formed memories are preserved while brain plasticity is ongoing has been a source of debate. One idea is that synapses which experienced recent plasticity become resistant to further plasticity, a type of metaplasticity often referred to as saturation. Here, we probe the local dendritic mechanisms that limit plasticity at recently potentiated synapses. We show that recently potentiated individual synapses exhibit a synapse-specific refractory period for further potentiation. We further found that the refractory period is associated with reduced postsynaptic CaMKII signaling; however, stronger synaptic activation fully restored CaMKII signaling but only partially restored the ability for further plasticity. Importantly, the refractory period is released after one hour, a timing that coincides with the enrichment of several postsynaptic proteins to preplasticity levels. Notably, increasing the level of the postsynaptic scaffolding protein, PSD95, but not of PSD93, overcomes the refractory period. Our results support a model in which potentiation at a single synapse is sufficient to initiate a synapse-specific refractory period that persists until key postsynaptic proteins regain their steady-state synaptic levels.
Collapse
Affiliation(s)
- Juan C. Flores
- Center for Neuroscience, University of California, Davis, CA95618
| | - Dipannita Sarkar
- Center for Neuroscience, University of California, Davis, CA95618
| | - Karen Zito
- Center for Neuroscience, University of California, Davis, CA95618
| |
Collapse
|
38
|
Xu Z, Shi J, Liu R, Li Z, Xu S, Gong H, Fu M, Xu H, Yu S, Liu J, Wu H, Li X, Liu S, Wei W. CircSATB2 modulates fear extinction memory via Robo3-driven synaptic plasticity. Brain Res Bull 2025; 220:111167. [PMID: 39675489 DOI: 10.1016/j.brainresbull.2024.111167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Circular RNAs (circRNAs) are novel class of stable regulatory RNAs abundantly expressed in the brain. However, their role in fear extinction (EXT) memory remains largely unexplored. To investigate the mechanisms of Circular Special AT-rich Sequence Binding Protein 2 (circSatb2) in EXT memory, we constructed a lentivirus overexpressing circSatb2 and injected it into the infralimbic prefrontal cortex (ILPFC) of the mouse brain. Following extinction training and subsequent testing, we observed an essential role of circSatb2 in this dynamic process. RNA sequencing (RNA-seq) and bioinformatics analyses revealed that circSatb2 enhances the transcription of Roundabout Guidance Receptor 3 (Robo3), a key gene implicated in axon guidance and synaptic plasticity, which was validated by RT-qPCR. Neuronal morphology was assessed using confocal microscopy to determine changes in dendritic spine density. Our results demonstrated that circSatb2 significantly enhances Robo3 transcription, leading to increased dendritic spine formation and improved synaptic plasticity. In conclusion, circSatb2 promotes the formation of EXT memory by upregulating Robo3 transcription and enhancing synaptic plasticity. These findings position circSatb2 as a potential therapeutic target for disorders associated with memory impairment.
Collapse
Affiliation(s)
- Ziyue Xu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jichun Shi
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Runming Liu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhehao Li
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuangxiang Xu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hao Gong
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane 4702, Australia
| | - Mingyue Fu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hongyu Xu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuangqi Yu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junhui Liu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huiqing Wu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xiang Li
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China; Medical Research Institute, Wuhan University, Wuhan, China; Sino-Italian Ascula Brain Science Joint Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Sha Liu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of General Practice, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Wei Wei
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
39
|
Carrese AM, Vitale R, Turco M, Masola V, Aniello F, Vitale E, Donizetti A. Sustained Depolarization Induces Gene Expression Pattern Changes Related to Synaptic Plasticity in a Human Cholinergic Cellular Model. Mol Neurobiol 2025; 62:935-945. [PMID: 38941065 PMCID: PMC11711863 DOI: 10.1007/s12035-024-04262-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/25/2024] [Indexed: 06/29/2024]
Abstract
Neuronal gene expression in the brain dynamically responds to synaptic activity. The interplay among synaptic activity, gene expression, and synaptic plasticity has crucial implications for understanding the pathophysiology of diseases such as Alzheimer's disease and epilepsy. These diseases are marked by synaptic dysfunction that affects the expression patterns of neuroprotective genes that are incompletely understood. In our study, we developed a cellular model of synaptic activity using human cholinergic neurons derived from SH-SY5Y cell differentiation. Depolarization induction modulates the expression of neurotrophic genes and synaptic markers, indicating a potential role in synaptic plasticity regulation. This hypothesis is further supported by the induction kinetics of various long non-coding RNAs, including primate-specific ones. Our experimental model showcases the utility of SH-SY5Y cells in elucidating the molecular mechanisms underlying synaptic plasticity in human cellular systems.
Collapse
Affiliation(s)
- Anna Maria Carrese
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy
| | - Rossella Vitale
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy
| | - Manuela Turco
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Naples, 80131, Italy
| | - Valeria Masola
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy
- Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
| | - Francesco Aniello
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy
| | - Emilia Vitale
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Naples, 80131, Italy.
| | - Aldo Donizetti
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy.
| |
Collapse
|
40
|
Demmings MD, da Silva Chagas L, Traetta ME, Rodrigues RS, Acutain MF, Barykin E, Datusalia AK, German-Castelan L, Mattera VS, Mazengenya P, Skoug C, Umemori H. (Re)building the nervous system: A review of neuron-glia interactions from development to disease. J Neurochem 2025; 169:e16258. [PMID: 39680483 DOI: 10.1111/jnc.16258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 12/18/2024]
Abstract
Neuron-glia interactions are fundamental to the development and function of the nervous system. During development, glia, including astrocytes, microglia, and oligodendrocytes, influence neuronal differentiation and migration, synapse formation and refinement, and myelination. In the mature brain, glia are crucial for maintaining neural homeostasis, modulating synaptic activity, and supporting metabolic functions. Neurons, inherently vulnerable to various stressors, rely on glia for protection and repair. However, glia, in their reactive state, can also promote neuronal damage, which contributes to neurodegenerative and neuropsychiatric diseases. Understanding the dual role of glia-as both protectors and potential aggressors-sheds light on their complex contributions to disease etiology and pathology. By appropriately modulating glial activity, it may be possible to mitigate neurodegeneration and restore neuronal function. In this review, which originated from the International Society for Neurochemistry (ISN) Advanced School in 2019 held in Montreal, Canada, we first describe the critical importance of glia in the development and maintenance of a healthy nervous system as well as their contributions to neuronal damage and neurological disorders. We then discuss potential strategies to modulate glial activity during disease to protect and promote a properly functioning nervous system. We propose that targeting glial cells presents a promising therapeutic avenue for rebuilding the nervous system.
Collapse
Affiliation(s)
- Matthew D Demmings
- Neuroscience Program, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Luana da Silva Chagas
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Marianela E Traetta
- Instituto de Biología Celular y Neurociencia (IBCN), Facultad de Medicina, Conicet, Buenos Aires, Argentina
| | - Rui S Rodrigues
- University of Bordeaux, INSERM, Neurocentre Magendie U1215, Bordeaux, France
| | - Maria Florencia Acutain
- Instituto de Biología Celular y Neurociencia (IBCN), Facultad de Medicina, Conicet, Buenos Aires, Argentina
| | - Evgeny Barykin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER Raebareli), Raebareli, UP, India
| | - Liliana German-Castelan
- Neuroscience Program, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Vanesa S Mattera
- Instituto de Química y Fisicoquímica Biológica (IQUIFIB-FFyB-UBA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pedzisai Mazengenya
- Center of Medical and bio-Allied Health Sciences Research, College of Medicine, Ajman University, Ajman, United Arab Emirates
| | - Cecilia Skoug
- Department of Neuroscience, Physiology & Pharmacology, Centre for Cardiovascular and Metabolic Neuroscience, University College London, London, UK
| | - Hisashi Umemori
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Good MA, Bannerman DM. Hippocampal Synaptic Plasticity: Integrating Memory and Anxiety Impairments in the Early Stages of Alzheimer's Disease. Curr Top Behav Neurosci 2025; 69:27-48. [PMID: 39747797 DOI: 10.1007/7854_2024_565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
A decline in hippocampal function has long been associated with the progression of cognitive impairments in patients with Alzheimer's disease (AD). The disruption of hippocampal synaptic plasticity [primarily the reduction of long-term potentiation LTP] by excess production of soluble beta-amyloid (Aβ) has long been accepted as the mechanism by which AD pathology impairs memory, at least during the early stages of AD pathogenesis. However, the premise that hippocampal LTP underpins the formation of associative, long-term memories has been challenged. Here, we consider evidence that this canonical view of LTP needs to be refined. Similarly, the view that the hippocampus simply supports memory ignores the wealth of data showing that the hippocampus is functionally heterogeneous along its septo-temporal axis. The ventral (but not the dorsal) hippocampus plays a major role in modulating emotional reactions to conflict. Here, we suggest that hippocampal LTP is not involved in forming long-term associative memories, but instead contributes to the disambiguation of overlapping memories in situations of conflict and associative interference. This conceptualisation of hippocampal synaptic plasticity may help explain how early-stage AD pathology may impact both memory and anxiety.
Collapse
Affiliation(s)
- Mark A Good
- School of Psychology, Cardiff University, Park Place, Cardiff, UK.
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
42
|
León-Bravo G, Cantarero-Carmona I. A Longitudinal, Observational, and Descriptive Study About Benefits of Craniosacral Therapy in Child Neurodevelopment. Clin Pediatr (Phila) 2025; 64:25-35. [PMID: 38624090 DOI: 10.1177/00099228241245334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
INTRODUCTION Coordination and balance are progressive motor skills that guide physical therapists in recognizing abnormal patterns during childish neurodevelopment. We aim to compare the efficacy of craniosacral therapy (CST) together with balance and coordination therapy (BCT) vs traditional BCT during neurodevelopment. METHODS Longitudinal, observational, and descriptive study with 111 apparently healthy children divided into 4 groups: craniosacral-balance and coordination therapy placebo (CS-BCTp), craniosacral-balance and coordination therapy (CS-BCT), balance and coordination therapy placebo (BCTp), and balance and coordination therapy (BCT). RESULTS Significant changes have been observed with the CS-BCT from the fourth session. Balance and coordination therapy is less effective. There are differences in the Battelle Scale at the beginning and after the 7 therapy sessions in the CS-BCT group. CONCLUSIONS The study shows that CST together with balance and coordination exercises can be a more effective and faster treatment to improve these motor skills, correcting and improving alterations during child neurodevelopment.
Collapse
Affiliation(s)
- Gema León-Bravo
- Department of Nursing, Pharmacology and Physiotherapy, University of Cordoba, Cordoba, Spain
| | - Irene Cantarero-Carmona
- Department of Morphological and Sociosanitary Sciences, University of Cordoba, Cordoba, Spain
| |
Collapse
|
43
|
Gyllingberg L, Tian Y, Sumpter DJT. A minimal model of cognition based on oscillatory and current-based reinforcement processes. J R Soc Interface 2025; 22:rsif20240402. [PMID: 39837485 PMCID: PMC11750385 DOI: 10.1098/rsif.2024.0402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/18/2024] [Accepted: 11/06/2024] [Indexed: 01/23/2025] Open
Abstract
Building mathematical models of brains is difficult because of the sheer complexity of the problem. One potential starting point is basal cognition, which gives an abstract representation of a range of organisms without central nervous systems, including fungi, slime moulds and bacteria. We propose one such model, demonstrating how a combination of oscillatory and current-based reinforcement processes can be used to couple resources in an efficient manner, mimicking the way these organisms function. A key ingredient in our model, not found in previous basal cognition models, is that we explicitly model oscillations in the number of particles (i.e. the nutrients, chemical signals or similar, which make up the biological system) and the flow of these particles within the modelled organisms. Using this approach, our model builds efficient solutions, provided the environmental oscillations are sufficiently out of phase. We further demonstrate that amplitude differences can promote efficient solutions and that the system is robust to frequency differences. In the context of these findings, we discuss connections between our model and basal cognition in biological systems and slime moulds, in particular, how oscillations might contribute to self-organized problem-solving by these organisms.
Collapse
Affiliation(s)
- Linnéa Gyllingberg
- Department of Mathematics, University of California, Los Angeles, CA, USA
- Department of Mathematics, Uppsala University, Uppsala, Sweden
| | - Yu Tian
- Nordita, Stockholm University and KTH Royal Institute of Technology, Stockholm, Sweden
| | | |
Collapse
|
44
|
Farkas D, Dobránszki J. Vegetal memory through the lens of transcriptomic changes - recent progress and future practical prospects for exploiting plant transcriptional memory. PLANT SIGNALING & BEHAVIOR 2024; 19:2383515. [PMID: 39077764 PMCID: PMC11290777 DOI: 10.1080/15592324.2024.2383515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Plant memory plays an important role in the efficient and rapid acclimation to a swiftly changing environment. In addition, since plant memory can be inherited, it is also of adaptive and evolutionary importance. The ability of a plant to store, retain, retrieve and delete information on acquired experience is based on cellular, biochemical and molecular networks in the plants. This review offers an up-to-date overview on the formation, types, checkpoints of plant memory based on our current knowledge and focusing on its transcriptional aspects, the transcriptional memory. Roles of long and small non-coding RNAs are summarized in the regulation, formation and the cooperation between the different layers of the plant memory, i.e. in the establishment of epigenetic changes associated with memory formation in plants. The RNA interference mechanisms at the RNA and DNA level and the interplays between them are also presented. Furthermore, this review gives an insight of how exploitation of plant transcriptional memory may provide new opportunities for elaborating promising cost-efficient, and effective strategies to cope with the ever-changing environmental perturbations, caused by climate change. The potentials of plant memory-based methods, such as crop priming, cross acclimatization, memory modification by miRNAs and associative use of plant memory, in the future's agriculture are also discussed.
Collapse
Affiliation(s)
- Dóra Farkas
- Centre for Agricultural Genomics and Biotechnology, Faculty of the Agricultural and Food Science and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| | - Judit Dobránszki
- Centre for Agricultural Genomics and Biotechnology, Faculty of the Agricultural and Food Science and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| |
Collapse
|
45
|
Sadegh-Zadeh SA, Hazegh P. Advancing neural computation: experimental validation and optimization of dendritic learning in feedforward tree networks. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2024; 13:49-69. [PMID: 39850544 PMCID: PMC11751443 DOI: 10.62347/fiqw7087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/25/2024] [Indexed: 01/25/2025]
Abstract
OBJECTIVES This study aims to explore the capabilities of dendritic learning within feedforward tree networks (FFTN) in comparison to traditional synaptic plasticity models, particularly in the context of digit recognition tasks using the MNIST dataset. METHODS We employed FFTNs with nonlinear dendritic segment amplification and Hebbian learning rules to enhance computational efficiency. The MNIST dataset, consisting of 70,000 images of handwritten digits, was used for training and testing. Key performance metrics, including accuracy, precision, recall, and F1-score, were analysed. RESULTS The dendritic models significantly outperformed synaptic plasticity-based models across all metrics. Specifically, the dendritic learning framework achieved a test accuracy of 91%, compared to 88% for synaptic models, demonstrating superior performance in digit classification. CONCLUSIONS Dendritic learning offers a more powerful computational framework by closely mimicking biological neural processes, providing enhanced learning efficiency and scalability. These findings have important implications for advancing both artificial intelligence systems and computational neuroscience.
Collapse
Affiliation(s)
| | - Pooya Hazegh
- Department of Radiology, Carver College of Medicine, University of IowaIowa, IA 52242, USA
| |
Collapse
|
46
|
Tadinada SM, Walsh EN, Mukherjee U, Abel T. Differential effects of Phosphodiesterase 4A5 on cAMP-dependent forms of long-term potentiation. J Physiol 2024. [PMID: 39693518 DOI: 10.1113/jp286801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
cAMP signalling is critical for memory consolidation and certain forms of long-term potentiation (LTP). Phosphodiesterases (PDEs), enzymes that degrade the second messengers cAMP and cGMP, are highly conserved during evolution and represent a unique set of drug targets, given the involvement of these enzymes in several pathophysiological states including brain disorders. The PDE4 family of cAMP-selective PDEs exert regulatory roles in memory and synaptic plasticity, but the specific roles of distinct PDE4 isoforms in these processes are poorly understood. Building on our previous work demonstrating that spatial and contextual memory deficits were caused by expressing selectively the long isoform of the PDE4A subfamily, PDE4A5, in hippocampal excitatory neurons, we now investigate the effects of PDE4A isoforms on different cAMP-dependent forms of LTP. We found that PDE4A5 impairs long-lasting LTP induced by theta burst stimulation (TBS) while sparing long-lasting LTP induced by spaced four-train stimulation (4 × 100 Hz). This effect requires the unique N-terminus of PDE4A5 and is specific to this long isoform. Targeted overexpression of PDE4A5 in area CA1 is sufficient to impair TBS-LTP, suggesting that cAMP levels in the postsynaptic neuron are critical for TBS-LTP. Our results shed light on the inherent differences among the PDE4A subfamily isoforms, emphasizing the importance of the long isoforms, which have a unique N-terminal region. Advancing our understanding of the function of specific PDE isoforms will pave the way for developing isoform-selective approaches to treat the cognitive deficits that are debilitating aspects of psychiatric, neurodevelopmental and neurodegenerative disorders. KEY POINTS: Hippocampal overexpression of PDE4A5, but not PDE4A1 or the N-terminus-truncated PDE4A5 (PDE4A5Δ4), selectively impairs long-term potentiation (LTP) induced by theta burst stimulation (TBS-LTP). Expression of PDE4A5 in area CA1 is sufficient to cause deficits in TBS-LTP. Hippocampal overexpression of the PDE4A isoforms PDE4A1 and PDE4A5 does not impair LTP induced by repeated tetanic stimulation at the CA3-CA1 synapses. These results suggest that PDE4A5, through its N-terminus, regulates cAMP pools that are critical for memory consolidation and expression of specific forms of long-lasting synaptic plasticity at CA3-CA1 synapses.
Collapse
Affiliation(s)
- Satya Murthy Tadinada
- Department of Neuroscience and Pharmacology, The University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
| | - Emily N Walsh
- Department of Neuroscience and Pharmacology, The University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA, USA
| | - Utsav Mukherjee
- Department of Neuroscience and Pharmacology, The University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA, USA
| | - Ted Abel
- Department of Neuroscience and Pharmacology, The University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
47
|
Zhou Y, Wang JL, Qiu L, Torpey J, Wixson JG, Lyon M, Chen X. NMDA Receptors Control Activity Hierarchy in Neural Network: Loss of Control in Hierarchy Leads to Learning Impairments, Dissociation, and Psychosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.06.523038. [PMID: 36712055 PMCID: PMC9881912 DOI: 10.1101/2023.01.06.523038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
While it is known that associative memory is preferentially encoded by memory-eligible "primed" neurons, in vivo neural activity hierarchy has not been quantified and little is known about how such a hierarchy is established. Leveraging in vivo calcium imaging of hippocampal neurons on freely behaving mice, we developed the first method to quantify real-time neural activity hierarchy in the CA1 region. Neurons at the top of activity hierarchy are identified as primed neurons. In cilia knockout mice that exhibit severe learning deficits, the percentage of primed neurons is drastically reduced. We developed a simplified neural network model that incorporates simulations of linear and non-linear weighted components, modeling the synaptic ionic conductance of AMPA and NMDA receptors, respectively. We found that moderate non-linear to linear conductance ratios naturally leads a small fraction of neurons to be primed in the simulated neural network. Removal of the non-linear component eliminates the existing activity hierarchy and reinstate it to the network stochastically primes a new pool of neurons. Blockade of NMDA receptors by ketamine not only decreases general neuronal activity causing learning impairments, but also disrupts neural activity hierarchy. Additionally, ketamine-induced super-synchronized slow oscillation during anesthesia can be simulated if the non-linear NMDAR component is removed to flatten activity hierarchy. Together, this study develops a unique method to measure neural activity hierarchy and identifies NMDA receptors as a key factor that controls the hierarchy. It presents the first evidence suggesting that hierarchy disruption by NMDAR blockade causes dissociation and psychosis.
Collapse
|
48
|
Mazaheri M, Radahmadi M, Sharifi MR. Effects of chronic empathic stress on synaptic efficacy, as well as short-term and long-term plasticity at the Schaffer collateral/commissural- CA1 synapses in the dorsal hippocampus of rats. Metab Brain Dis 2024; 40:54. [PMID: 39636524 DOI: 10.1007/s11011-024-01487-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Empathy, the ability to comprehend and share others' emotional states, impacts brain functions. This in vivo electrophysiological study explored the influence of chronic empathic stress on synaptic efficacy, as well as short-term and long-term plasticity at the Schaffer collateral/Commissural - CA1 synapses in the dorsal hippocampus of rats, in situations of social equality and inequality. Forty-eight male rats were randomized into six groups: control, pseudo-observer, pseudo-demonstrator, observer, demonstrator, and co-demonstrator (Co, Pse-Ob, Pse-De, Ob, De, Co-De) groups. Stress induction (2h/day, 21 days) was performed in situations of equality and inequality. Serum corticosterone levels, slope, amplitude, and area under the curve (AUC) of field excitatory postsynaptic potentials (fEPSPs) were assessed in the hippocampal CA1 area using input-output (I/O) functions, paired-pulse (PP) responses with different interpulse intervals (IPIs), and long-term potentiation (LTP) after high-frequency stimulation (HFS). The fEPSP slope, amplitude, and AUC significantly decreased in all stress groups, especially in the De and Pse-De groups. These parameters were significantly increased in the Co-De and Ob groups compared to the De group. Notably, the corticosterone levels strongly confirmed the electrophysiological findings. Chronic empathic stress could disrupt synaptic efficacy and plasticity in the CA1 area. Empathic stress, involving the presence of cagemates in situations of social equality and inequality, can modify long-term plasticity and serum corticosterone levels in demonstrators and co-demonstrators. Under empathic stress related to situations of inequality, freely moving observers may influence the demonstrators' stress experience. Therefore, the presence of a conspecific in the social inequality conditions had significant suppressive effects on long-term plasticity, while conversely, under equality conditions, long-term plasticity was favorably improved through social buffering.
Collapse
Affiliation(s)
- Mohammad Mazaheri
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Radahmadi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammad Reza Sharifi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
49
|
Tian Z, Zhang Q, Wang L, Li M, Li T, Wang Y, Cao Z, Jiang X, Luo P. Progress in the mechanisms of pain associated with neurodegenerative diseases. Ageing Res Rev 2024; 102:102579. [PMID: 39542176 DOI: 10.1016/j.arr.2024.102579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Neurodegenerative diseases (NDDs) represent a class of neurological disorders characterized by the progressive degeneration or loss of neurons, impacting millions of individuals globally. In addition to the typical manifestations, pain is a prevalent symptom associated with NDDs, seriously impacting the quality of life for patients. The pathogenesis of pain associated with NDDs is intricate and multifaceted. Currently, the clinical management of NDDs-related pain symptoms predominantly relies on conventional pharmacological agents or physical therapy. However, these approaches often fail to produce satisfactory outcomes. This article summarizes the underlying mechanisms of major NDDs-associated pain: Neuroinflammation, Brain and spinal cord dysfunctions, Mitochondrial dysfunction, Risk gene and pathological protein, as well as Receptor, channel, and neurotransmitter. While numerous studies have investigated the downstream pathological processes associated with these mechanisms, there remains a significant gap in identifying the key initiating factors. Specifically, there is insufficient evidence for the upstream elements that activate microglia and astrocytes in neuroinflammation leading to pain in NDDs. Likewise, there is an absence of upstream factors elucidating how dysfunctions in the brain and spinal cord, as well as mitochondrial impairments, contribute to the development of pain. Furthermore, the specific mechanisms through which hallmark pathological proteins related to NDDs contribute to these pathological processes remain inadequately understood. The objective of this article is to synthesize the existing mechanisms underlying pain associated with NDDs, including Alzheimer's disease, Parkinson's disease, Huntington's disease, Schizophrenia, Amyotrophic lateral sclerosis, and Multiple sclerosis, while also identifying gaps and deficiencies in these mechanisms. This paper offers insights for future research trajectories. Given the intricate pathogenesis of NDDs-related pain, it emphasizes that a promising short-term strategy is combination therapy-intervening concurrently in multiple pathological processes-akin to the cocktail approach utilized in treating acquired immunodeficiency syndrome (AIDS). For long-term advancements, achieving breakthroughs in the treatment of the NDDs themselves will remain essential for alleviating accompanying pain symptoms.
Collapse
Affiliation(s)
- Zhicheng Tian
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Qi Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; The Fifth Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ling Wang
- Xi'an Children's Hospital, Xi'an 710002, China
| | - Mengxiang Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; The Fifth Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Tianjing Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yujie Wang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zixuan Cao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; The Sixth Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
50
|
Leana-Sandoval G, Kolli AV, Chinn CA, Madrid A, Lo I, Sandoval MA, Vera VA, Simms J, Wood MA, Diaz-Alonso J. The GluA1 cytoplasmic tail regulates intracellular AMPA receptor trafficking and synaptic transmission onto dentate gyrus GABAergic interneurons, gating response to novelty. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.01.626277. [PMID: 39677714 PMCID: PMC11643017 DOI: 10.1101/2024.12.01.626277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The GluA1 subunit, encoded by the putative schizophrenia-associated gene GRIA1, is required for activity-regulated AMPA receptor (AMPAR) trafficking, and plays a key role in cognitive and affective function. The cytoplasmic, carboxy-terminal domain (CTD) is the most divergent region across AMPAR subunits. The GluA1 CTD has received considerable attention for its role during long-term potentiation (LTP) at CA1 pyramidal neuron synapses. However, its function at other synapses and, more broadly, its contribution to different GluA1-dependent processes, is poorly understood. Here, we used mice with a constitutive truncation of the GluA1 CTD to dissect its role regulating AMPAR localization and function as well as its contribution to cognitive and affective processes. We found that GluA1 CTD truncation affected AMPAR subunit levels and intracellular trafficking. ΔCTD GluA1 mice exhibited no memory deficits, but presented exacerbated novelty-induced hyperlocomotion and dentate gyrus granule cell (DG GC) hyperactivity, among other behavioral alterations. Mechanistically, we found that AMPAR EPSCs onto DG GABAergic interneurons were significantly reduced, presumably underlying, at least in part, the observed changes in neuronal activity and behavior. In summary, this study dissociates CTD-dependent from CTD-independent GluA1 functions, unveiling the GluA1 CTD as a crucial hub regulating AMPAR function in a cell type-specific manner.
Collapse
Affiliation(s)
- Gerardo Leana-Sandoval
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Ananth V Kolli
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Carlene A Chinn
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
- Department of Neurobiology & Behavior, University of California at Irvine, CA, 92697, USA
| | - Alexis Madrid
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Iris Lo
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Matthew A Sandoval
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Vanessa Alizo Vera
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
- Department of Neurobiology & Behavior, University of California at Irvine, CA, 92697, USA
| | - Jeffrey Simms
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Marcelo A Wood
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
- Department of Neurobiology & Behavior, University of California at Irvine, CA, 92697, USA
| | - Javier Diaz-Alonso
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| |
Collapse
|