1
|
Müller C, Maxeiner H. The Neuroanatomical Correlates of Visceral Pain: An Activation Likelihood Estimation Meta-Analysis. Brain Sci 2025; 15:651. [PMID: 40563821 PMCID: PMC12190787 DOI: 10.3390/brainsci15060651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2025] [Revised: 06/16/2025] [Accepted: 06/16/2025] [Indexed: 06/28/2025] Open
Abstract
Background: Acute visceral pain is among the most common symptoms of patients seeking in-hospital treatment and is related to various thoracic, abdominal, and pelvic diseases. It is characterized by distinguishable sensory qualities and can be described on a sensory-discriminative and affective-motivational level. These sensory qualities correlate with the activation of cerebral areas involved in the neuronal processing of visceral pain and can be visualized using functional neuroimaging. Methods: An ALE (activation likelihood estimation) meta-analysis of a total of 21 studies investigating different balloon distention paradigms during either PET or fMRI was performed to demonstrate the neuroanatomical correlates of visceral pain. The ALE meta-analysis was performed using the GingerAle software version 3.0.2 and was displayed with the Mango software 4.1 on an anatomical MNI template. Results: Summarizing studies investigating the functional neuroanatomy of visceral pain, bihemispheric activation of the insula, the thalamus, and clusters involving the right inferior parietal lobe/postcentral gyrus as well as the left postcentral gyrus/parietal inferior lobe were observed. Conclusions: This ALE meta-analysis substantiates the concept of two distinguishable neuroanatomical pathways of visceral pain which are related to either the sensory-discriminative or the affective-motivational dimension of pain processing.
Collapse
Affiliation(s)
- Christoph Müller
- Department of Internal Medicine, Lahn-Dill-Kliniken, 35578 Wetzlar, Germany
- Department of Internal Medicine, University of Marburg, 35037 Marburg, Germany
| | - Hagen Maxeiner
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, Lahn-Dill-Kliniken, 35578 Wetzlar, Germany
| |
Collapse
|
2
|
Camara CF, Filippetti ML, Sel A. Neurophysiological dynamics of visceral signals in emotion, self and bodily consciousness. Proc Biol Sci 2025; 292:20242625. [PMID: 40461074 PMCID: PMC12133374 DOI: 10.1098/rspb.2024.2625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 06/19/2025] Open
Abstract
Bodily organs such as the heart and the lungs play a crucial role in maintaining physiological homeostasis in a continuous closed-loop interaction with the brain. Beyond their vital role, recent developments have emphasized the remarkable contribution of bodily signals to high-level brain functions. A direct route by which bodily signals influence brain functioning is via modulation of electrophysiological dynamics, which in turn influences the integration and processing of emotional and self-related information regulating our conscious experience. Drawing on electrophysiological investigations, we provide a comprehensive picture of the electrophysiology of interoception and its contribution to emotion, self and bodily consciousness, with a focus on cardiac, respiratory and gastric interoception. We provide evidence that altered neurophysiological responses in interoception might underlie deficits in psychopathology. We also summarize the limited evidence on the development of the electrophysiology of interoception during infancy and adolescence, as well as describing some attempts to investigate causality in the neural mechanisms underpinning interoception. A number of important areas for further research are highlighted.
Collapse
Affiliation(s)
- Célia F. Camara
- Department of Psychology, University of Essex, Colchester, UK
| | | | - Alejandra Sel
- Department of Psychology, University of Essex, Colchester, UK
| |
Collapse
|
3
|
Evrard HC. The Isle of Craig: Neuroanatomical and Functional Evidence for a Role of the Insular Cortex in Subjective Feelings. Curr Top Behav Neurosci 2025. [PMID: 40423896 DOI: 10.1007/7854_2025_590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
At the start of the twenty-first century, Arthur D. (Bud) Craig brought back to the fore the Island of Reil (insular cortex or insula). He did so by following, step by step, with rigor and tenacity, the afferent sensory pathway that informs the forebrain about the ongoing physiological status of the organs and tissues of the body. Along with his demonstration of the existence of a primate-specific ascending interoceptive pathway and his subsequent re-interpretation of Sherrington's concept of interoception, Bud Craig's seminal experiments and profound interpretations led him to make the groundbreaking proposals that the dorsal posterior insular cortex provides an ideal substrate for James's concept of emotional embodiment, that the insular cortex contextualizes interoception across a posterior-to-mid-to-anterior integration with multimodal activities, and that the anterior insular cortex has a crucial role in the evolutionary emergence of the awareness of subjective feelings in humans, for the purpose of optimizing metabolic energy usage. Bud Craig's unique work paves the path for further elucidation of the role of the insula and other brain regions in subjective feelings. His discoveries and proposals rest on implacable attention to neuroanatomical and neurophysiological details and a serendipitous quest for the fundamental evolutionary Logic of Life. This chapter provides a detailed description of the ascending interoceptive pathway and the functional and comparative neuroanatomy of the insular cortex in primates. Building on Bud Craig's work, our recent findings suggest that the primary interoceptive cortex serves as a representation of the spino-solitary-parabrachial neuraxis, merging with posterior-to-mid-anterior and dorsal-to-ventral processing streams that form a latticework integration pattern. At the ventral anterior tip of this integration, the von Economo neuron area closes the corticofugal interoceptive-autonomic loop of the sensory-motor homeostatic system through projections to all brainstem nuclei integrating interoceptive afferences.
Collapse
Affiliation(s)
- Henry C Evrard
- Functional & Comparative Neuroanatomy of the Dynamic Embodied Brain Lab, International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technologies, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
- Werner Reichardt Center for Integrative Neuroscience, Karl Eberhard University of Tübingen, Tübingen, Germany
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
4
|
Ziegler KA, Engelhardt S, Carnevale D, McAlpine CS, Guzik TJ, Dimmeler S, Swirski FK. Neural Mechanisms in Cardiovascular Health and Disease. Circ Res 2025; 136:1233-1261. [PMID: 40403111 DOI: 10.1161/circresaha.125.325580] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 04/22/2025] [Accepted: 04/22/2025] [Indexed: 05/24/2025]
Abstract
Although the neurocardiac axis is central to cardiovascular homeostasis, its dysregulation drives heart failure and cardiometabolic diseases. This review examines the bidirectional interplay between the autonomic nervous system and the heart, highlighting the role of this interplay in disease progression and its therapeutic potential. The autonomic nervous system modulates cardiac function and vascular tone through its sympathetic and parasympathetic branches. However, in heart failure, chronic sympathetic overdrive and parasympathetic withdrawal exacerbate myocardial remodeling and metabolic dysfunction, both of which are exacerbated by cardiometabolic conditions such as obesity and diabetes. These conditions are increasingly recognized to impair neurocardiac regulation, thereby promoting inflammation and adverse outcomes. An important emerging area concerns neuroimmune control, in which the brain orchestrates systemic inflammation through circuits involving the bone marrow, spleen, and other organs, thereby amplifying cardiovascular damage. This neuroimmune axis integrates peripheral signals to influence immune responses that contribute to disease progression. Lifestyle factors, such as stress, sleep, exercise, and diet, affect autonomic and immune balance and, thus, cardiovascular disease. Therapeutically, targeting neurocardiac and neuroimmune pathways pharmacologically or via neuromodulation (eg, vagal or splenic nerve stimulation) offers promise although the clinical translation of the latter remains challenging. In this review, we synthesize preclinical and clinical data to highlight the neurocardiac axis as a critical nexus in heart failure and cardiometabolic disease. Harnessing neuroimmune and neurocardiac interactions may inform precision approaches to reduce the burden of these conditions.
Collapse
Affiliation(s)
- Karin A Ziegler
- Institute of Pharmacology and Toxicology, School of Medicine and Health, Technical University of Munich, Germany (K.A.Z., S.E.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (K.A.Z., S.E.)
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, School of Medicine and Health, Technical University of Munich, Germany (K.A.Z., S.E.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (K.A.Z., S.E.)
| | - Daniela Carnevale
- Faculty of Pharmacy and Medicine, Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy (D.C.)
- Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Pozzilli, Italy (D.C.)
| | - Cameron S McAlpine
- Cardiovascular Research Institute, The Friedman Brain Institute, and Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY (C.S.M., F.K.S.)
| | - Tomasz J Guzik
- Centre for Cardiovascular Sciences, The University of Edinburgh, United Kingdom (T.J.G.)
- Department of Internal Medicine (T.J.G.), Jagiellonian University Medical College, Kraków, Poland
- Center for Medical Genomics OMICRON (T.J.G.), Jagiellonian University Medical College, Kraków, Poland
| | - Stefanie Dimmeler
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Germany (S.D.)
- German Centre for Cardiovascular Research (DZHK), Frankfurt am Main, Germany (S.D.)
- Cardiopulmonary Institute, Goethe University Frankfurt am Main, Germany (S.D.)
| | - Filip K Swirski
- Cardiovascular Research Institute, The Friedman Brain Institute, and Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY (C.S.M., F.K.S.)
| |
Collapse
|
5
|
Schuman-Olivier Z, Marin F, Kinder LD, Datko M, Round K, Tohyama S, Garcia RG, Hirschtick RL, Edwards RR, Wells RE, Cheng HT, Barbieri R, Hadjikhani N, Loggia ML, Kaptchuk TJ, Houle TT, Rosen BR, Napadow V. Evaluating brain mechanisms of combined vagus nerve stimulation and mindfulness training for migraine: A randomized 2 × 2 factorial clinical trial protocol. Contemp Clin Trials 2025; 154:107947. [PMID: 40409681 DOI: 10.1016/j.cct.2025.107947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 04/16/2025] [Accepted: 05/10/2025] [Indexed: 05/25/2025]
Abstract
BACKGROUND Migraine is a major cause of disability and efficacious interventions are needed. In this mechanistic study, we investigate the combined, and potentially synergistic, effects of a multimodal intervention combining Mindfulness-Based Stress Reduction (MBSR) and transcutaneous auricular Vagal Nerve Stimulation (taVNS) for migraine. METHODS We utilize a modified double-blinded, placebo-controlled, 2 × 2 factorial randomized longitudinal design to assess the effects of an 8-week MBSR intervention with concomitant Respiratory-gated Auricular Vagal Afferent Nerve Stimulation (RAVANS) taVNS on migraine pathophysiology primary outcomes. We will enroll 150 patients with migraine (4-20 headache days/month). After a run-in month of daily diaries, we expect to randomly assign N = 96 participants to one of four treatment groups: (1) MBSR+RAVANS taVNS, (2) MBSR+Sham taVNS, (3) Nature Education Control (NEC) + RAVANS taVNS, or (4) NEC + Sham taVNS. Before and after intervention, participants have three in-person assessments (a 7 T MRI scan, an autonomic/sensory testing (AST) visit, and a 3 T PET-MRI scan). The primary outcomes for this study assess (1) central sensitization (brainstem/cortical response to trigeminal sensory afference), (2) autonomic dysfunction (High Frequency-Heart Rate Variability (HF-HRV) response to stressors), and (3) neuroinflammation (PET[11C]PBR28 signal). RESULTS Funded by NIH (P01AT009965), registered (NCT03592329). Final longitudinal outcomes will be collected by May 2025. CONCLUSION This mechanistic study is designed to investigate both independent and synergistic neurobiological effects of MBSR and RAVANS taVNS interventions on three distinct pathophysiological mechanisms of migraine. This research will elucidate the mechanistic and potentially synergistic effects of behavioral interventions (e.g., mindfulness) and device-based treatments (e.g., taVNS) for migraine.
Collapse
Affiliation(s)
- Zev Schuman-Olivier
- Center for Mindfulness and Compassion, Department of Psychiatry, Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA.
| | - Frances Marin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA; Center for Mindfulness and Compassion, Department of Psychiatry, Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| | - Lillian D Kinder
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA; Center for Mindfulness and Compassion, Department of Psychiatry, Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| | - Michael Datko
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA; Center for Mindfulness and Compassion, Department of Psychiatry, Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| | - Kassandra Round
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA; Center for Mindfulness and Compassion, Department of Psychiatry, Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| | - Sarasa Tohyama
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Ronald G Garcia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; School of Medicine, Universidad de Santander, Bucaramanga, Colombia
| | - Randy L Hirschtick
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert R Edwards
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rebecca Erwin Wells
- Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hsinlin T Cheng
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Riccardo Barbieri
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nouchine Hadjikhani
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marco L Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Anesthesiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ted J Kaptchuk
- Department of Medicine, Beth Israel Deaconess Hospital, Harvard Medical School, Boston, MA, USA
| | - Timothy T Houle
- Department of Anesthesiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bruce R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Vitaly Napadow
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Zhang Y, Becker B, Kendrick KM, Zhang Q, Yao S. Self-navigating the "Island of Reil": a systematic review of real-time fMRI neurofeedback training of insula activity. Transl Psychiatry 2025; 15:170. [PMID: 40379616 PMCID: PMC12084372 DOI: 10.1038/s41398-025-03382-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 04/26/2025] [Accepted: 05/07/2025] [Indexed: 05/19/2025] Open
Abstract
Real-time fMRI (rtfMRI) neurofeedback (NF) is a novel noninvasive technique that permits individuals to voluntarily control brain activity. The crucial role of the insula in emotional and salience processing makes it one of the most commonly targeted regions in previous rtfMRI studies. To provide an overview of progress in the field, the present review identified 25 rtfMRI insula studies and systematically reviewed key characteristics and findings in these studies. We found that rtfMRI-based NF training is efficient for modulating insula activity and its associated behavioral/symptom-related and neural changes. Furthermore, we also observed a maintenance effect of self-regulation ability and sustained symptom improvement, which is of importance for clinical application. However, training success of insula regulation was not consistently paralleled by behavioral/symptom-related changes, suggesting a need for optimizing the NF training protocol enabling more robust training effects. Principles including inclusion of a well-designed control group/condition, statistical analyses and reporting results following common criteria and a priori determination of sample and effect sizes as well as pre-registration are also highly recommended. In summary, we believe our review will inspire and inform both basic research and therapeutic translation of rtfMRI NF training as an intervention in mental disorders particularly those with insula dysfunction.
Collapse
Affiliation(s)
- Yuan Zhang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Keith M Kendrick
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiong Zhang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| | - Shuxia Yao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
7
|
Wang Z, Li X, Li Y, Sun X, Wang Y, Lu T, Zhao D, Ma X, Sun H. The insular cortex-nucleus tractus solitarius glutamatergic pathway involved in acute stress-induced gastric mucosal damage in rats. Neurobiol Stress 2025; 36:100723. [PMID: 40242326 PMCID: PMC12002970 DOI: 10.1016/j.ynstr.2025.100723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/22/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025] Open
Abstract
Previous studies have shown that acute stress-induced gastric mucosal damage is linked to excessive activation of parasympathetic nervous system. The Insular Cortex (IC), the higher centers of the parasympathetic nervous system, serves as both the integration site of gastric sensory information and play a crucial role in the regulation of gastric function. However, whether the IC is involved in Restraint water-immersion stress (RWIS)-induced gastric mucosal damage has not been reported. In this study, we examined the expression of neuronal c-Fos, PSD95 and SYN-1 protein expression in IC during RWIS by immunofluorescence and western blot techniques, as well as assessed IC blood oxygenation level dependant (BOLD) through functional MRI. Chemical genetics techniques specifically modulate the activity of IC glutamatergic neurons and IC-nucleus tractus solitary (NTS) glutamatergic pathway to elucidate their contributions to RWIS-induced gastric mucosal damage. The results showed that the expression of c-Fos, PSD95, and SYN-1 protein in IC increased significantly after RWIS, along with a noticeable enhancement in fMRI signal intensity. Furthermore, inhibiting IC glutamatergic neurons and the IC-NTS glutamatergic neural pathway resulted in a significant reduction in gastric mucosal damage, an increase in the expression of Occludin, Claudin-1, and PCNA in the gastric wall, while the expression of nNOS decreased and CHAT increased. These findings suggest that during RWIS, IC glutaminergic neurons are activated, promoting stress-induced gastric mucosal damage through the IC-NTS-vagal nerve pathway.
Collapse
Affiliation(s)
- Zepeng Wang
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan, 250014, China
| | - Xinyu Li
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan, 250014, China
| | - Yuanyuan Li
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan, 250014, China
| | - Xuehan Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan, 250014, China
| | - Yuxue Wang
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan, 250014, China
| | - Tong Lu
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Dongqin Zhao
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan, 250014, China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Haiji Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan, 250014, China
| |
Collapse
|
8
|
Lee J, Mun J, Choo M, Park SM. Predictive modeling of hemodynamics during viscerosensory neurostimulation via neural computation mechanism in the brainstem. NPJ Digit Med 2025; 8:220. [PMID: 40269082 PMCID: PMC12019394 DOI: 10.1038/s41746-025-01635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 04/11/2025] [Indexed: 04/25/2025] Open
Abstract
Neurostimulation for cardiovascular control faces challenges due to the lack of predictive modeling for stimulus-driven dynamic responses, which is crucial for precise neuromodulation via quality feedback. We address this by employing a digital twin approach that leverages computational mechanisms underlying neuro-hemodynamic responses during neurostimulation. Our results emphasize the computational role of the nucleus tractus solitarius (NTS) in the brainstem in determining these responses. The intrinsic neural circuit within the NTS harbors collective dynamics residing in a low-dimensional latent space, which effectively captures stimulus-driven hemodynamic perturbations. Building on this, we developed a digital twin framework for individually optimized predictive modeling of neuromodulatory outcomes. This framework potentially enables the design of closed-loop neurostimulation systems for precise hemodynamic control. Consequently, our digital twin based on neural computation mechanisms marks an advancement in the artificial regulation of internal organs, paving the way for precise translational medicine to treat chronic diseases.
Collapse
Affiliation(s)
- Jiho Lee
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Junseung Mun
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Minhye Choo
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Sung-Min Park
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Institute of Convergence Science, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Huang TX, Wang S, Ran C. Interoceptive processing in the nucleus of the solitary tract. Curr Opin Neurobiol 2025; 93:103021. [PMID: 40239364 DOI: 10.1016/j.conb.2025.103021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025]
Abstract
The interoceptive nervous system continuously monitors the status of visceral organs to synthesize internal perceptions and regulate behavioral and physiological responses. The nucleus of the solitary tract (NTS) in the brainstem serves as a central interoceptive hub and the initial site where sensory information from internal organs is processed in the brain. Here we review the neurobiological underpinnings of interoceptive processing in the NTS, focusing on recent progress enabled by modern genetic and optical tools for neural circuit dissection and neuronal recordings. Sensory information from internal organs is organized into a topographic map within the NTS, computed locally, modulated by descending inputs from higher brain regions, and distributed to downstream targets via projection neurons to control behavior and physiology. We present a sensory processing perspective on interoceptive coding within this brain structure.
Collapse
Affiliation(s)
- Tianxiao X Huang
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Shiqi Wang
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Chen Ran
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
10
|
Cardenas MA, Le RP, Champ TM, O’Neill D, Fuglevand AJ, Gothard KM. Manipulation of interoceptive signaling biases decision making in rhesus macaques. Proc Natl Acad Sci U S A 2025; 122:e2424680122. [PMID: 40146853 PMCID: PMC12002244 DOI: 10.1073/pnas.2424680122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Several influential theories have proposed that interoceptive signals, sent from the body to the brain, contribute to neural processes that coordinate complex behaviors. We altered the physiological state of the body using compounds that have minimal effect on the brain and evaluated their effect on decision making in rhesus monkeys. We used glycopyrrolate, a nonspecific muscarinic (parasympathetic) antagonist, and isoproterenol, a beta-1/2 (sympathetic) agonist, to create a sympathetic-dominated state in the periphery, that was indexed by increased heart rate. Rhesus monkeys were trained on two variants of an approach-avoidance conflict task. The tasks offered a choice between enduring mildly aversive stimuli in exchange for a steady flow of rewards, or canceling the aversive stimuli, forgoing the rewards. The latency to interrupt the aversive stimuli was used as a measure of monkeys' tolerance for contact with a hot but not painful stimulus or airflow directed at their muzzle. Both drugs reduced tolerance for the aversive stimuli. To determine whether the drug-induced autonomic state reduced the subjective value of the reward, we tested the effects of glycopyrrolate on a food preference task. Food preference was unaltered, suggesting that the sympathetic dominated state in the periphery selectively reduces tolerance for aversive stimuli without altering reward-seeking behaviors. As the drugs used are expected to have little or no direct effect on the brain, the observed biases in decision making are likely induced by interoceptive afferents that signal to the brain the physiological state of the body.
Collapse
Affiliation(s)
- Michael A. Cardenas
- Department of Physiology, College of Medicine, The University of Arizona, Tucson, AZ85724
| | - Ryan P. Le
- Department of Physiology, College of Medicine, The University of Arizona, Tucson, AZ85724
| | - Tess M. Champ
- Department of Physiology, College of Medicine, The University of Arizona, Tucson, AZ85724
| | - Derek O’Neill
- Department of Physiology, College of Medicine, The University of Arizona, Tucson, AZ85724
| | - Andrew J. Fuglevand
- Department of Physiology, College of Medicine, The University of Arizona, Tucson, AZ85724
| | - Katalin M. Gothard
- Department of Physiology, College of Medicine, The University of Arizona, Tucson, AZ85724
| |
Collapse
|
11
|
Hager T, Agorastos A, Ögren SO, Stiedl O. Identifying Cardiovascular Risk by Nonlinear Heart Rate Dynamics Analysis: Translational Biomarker from Mice to Humans. Brain Sci 2025; 15:306. [PMID: 40149828 PMCID: PMC11940095 DOI: 10.3390/brainsci15030306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/28/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND The beat-by-beat fluctuation of heart rate (HR) in its temporal sequence (HR dynamics) provides information on HR regulation by the autonomic nervous system (ANS) and its dysregulation in pathological states. Commonly, linear analyses of HR and its variability (HRV) are used to draw conclusions about pathological states despite clear statistical and translational limitations. OBJECTIVE The main aim of this study was to compare linear and nonlinear HR measures, including detrended fluctuation analysis (DFA), based on ECG recordings by radiotelemetry in C57BL/6N mice to identify pathological HR dynamics. METHODS We investigated different behavioral and a wide range of pharmacological interventions which alter ANS regulation through various peripheral and/or central mechanisms including receptors implicated in psychiatric disorders. This spectrum of interventions served as a reference system for comparison of linear and nonlinear HR measures to identify pathological states. RESULTS Physiological HR dynamics constitute a self-similar, scale-invariant, fractal process with persistent intrinsic long-range correlations resulting in physiological DFA scaling coefficients of α~1. Strongly altered DFA scaling coefficients (α ≠ 1) indicate pathological states of HR dynamics as elicited by (1) parasympathetic blockade, (2) parasympathetic overactivation and (3) sympathetic overactivation but not inhibition. The DFA scaling coefficients are identical in mice and humans under physiological conditions with identical pathological states by defined pharmacological interventions. CONCLUSIONS Here, we show the importance of tonic vagal function for physiological HR dynamics in mice, as reported in humans. Unlike linear measures, DFA provides an important translational measure that reliably identifies pathological HR dynamics based on altered ANS control by pharmacological interventions. Central ANS dysregulation represents a likely mechanism of increased cardiac mortality in psychiatric disorders.
Collapse
Affiliation(s)
- Torben Hager
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands;
| | - Agorastos Agorastos
- Division of Neurosciences, II. Department of Psychiatry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | - Sven Ove Ögren
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Oliver Stiedl
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands;
- Department of Health, Safety and Environment, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, The Netherlands
| |
Collapse
|
12
|
Levichkina E, Grayden DB, Petrou S, Cook MJ, Vidyasagar TR. Sleep links hippocampal propensity for epileptiform activity to its viscerosensory inputs. Front Neurosci 2025; 19:1559529. [PMID: 40182148 PMCID: PMC11965934 DOI: 10.3389/fnins.2025.1559529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
The development of a seizure relies on two factors. One is the existence of an overexcitable neuronal network and the other is a trigger that switches normal activity of that network into a paroxysmal state. While mechanisms of local overexcitation have been the focus of many studies, the process of triggering remains poorly understood. We suggest that, apart from the known exteroceptive sources of reflex epilepsy such as visual, auditory or olfactory signals, there is a range of interoceptive triggers, which are relevant for seizure development in Temporal Lobe Epilepsy (TLE). The hypothesis proposed here aims to explain the prevalence of epileptic activity in sleep and in drowsiness states and to provide a detailed mechanism of seizures triggered by interoceptive signals.
Collapse
Affiliation(s)
- Ekaterina Levichkina
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
| | - David B. Grayden
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
- Graeme Clark Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Steven Petrou
- Florey Institute of Neuroscience & Mental Health, University of Melbourne, Parkville, VIC, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Mark J. Cook
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
- Graeme Clark Institute, The University of Melbourne, Parkville, VIC, Australia
- Department of Neuroscience, St. Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Trichur R. Vidyasagar
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
- Florey Department of Neuroscience & Mental Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
13
|
Li Y, Riganello F, Yu J, Vatrano M, Shen M, Cheng L, Hu X, Ni C, Wang F, Zheng B, Zhang C, Xie C, Li M, Huang W, Shou F, Hu N, Laureys S, Di H. The autonomic response following taVNS predicts changes in level of consciousness in DoC patients. Sci Rep 2025; 15:7317. [PMID: 40025051 PMCID: PMC11873156 DOI: 10.1038/s41598-024-84029-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 12/19/2024] [Indexed: 03/04/2025] Open
Abstract
Advancements in emergency medicine and critical care have significantly improved survival rates for patients with severe acquired brain injuries(sABI), subsequently increasing the prevalence of disorders of consciousness (DoC) such as Unresponsive Wakefulness Syndrome (UWS) and Minimally Conscious State (MCS). However, the assessment of conscious states relies on the observation of behavioral responses, the interpretation of which may vary from evaluator to evaluator, as well as the high rate of misdiagnosis, which together pose significant challenges for clinical diagnosis. The study investigates the utility of transcutaneous auricular vagus nerve stimulation (taVNS) in modulating autonomic responses, as evidenced through heart rate variability (HRV), for distinguishing between healthy individuals and DoC patients and for prognosticating patient outcomes. A prospective randomized clinical trial was conducted from Februry 9, 2022, to February 4, 2024, at Hangzhou Armed Police Hospital in China. Healthy controls (HC) and DoC patients were enrolled in this study. The taVNS was administered to each subject for ten minutes. There electrocardiogram (ECG) signals were recorded for the analysis of HRV both during the stimulation and the ten minutes of rest that preceded and followed the stimulation. Subsequent investigations utilized Support Vector Machine (SVM) modeling, enhanced by a Radial Basis Function (RBF) kernel, to explore potential predictors of patient outcomes. This approach aimed to differentiate HC from DoC and MCS from UWS patients. 26 HC and 36 patients diagnosed with DoC were included in the analysis,. The DoC group consisted of 17 patients with a diagnosis of MCS and 19 with diagnosis of UWS/VS. Significant modulations in HRV parameters (HF, VLF, SampEn) were observed, indicating variations in autonomic response between the control group and DoC patients. Using the VLF, LF, and SampEn features in SVM model, DoC and HC were correctly classified with an accuracy of 86%. Similarly, MCS and UWS were classified with an accuracy of 78%. The SVM modeling achieved an 86% accuracy rate in predicting outcomes three months post-intervention, with a 71% confirmation rate at six months.The results highlight taVNS's potential as a therapeutic modality in managing DoC by demonstrating its impact on autonomic regulation and suggesting pathways for enhancing recovery, which accentuates the significance of exploring brain-heart dynamics in DoC, presenting a novel approach to therapeutic strategies. Trial Registration Information: URL: chictr.org.cn; Unique identifier: ChiCTR2100045161. Date of the first registration: 9th/ April/ 2021.
Collapse
Affiliation(s)
- Yan Li
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, Zhejiang, China
- School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
| | | | - Jing Yu
- School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
| | | | - Mingquan Shen
- School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
| | - Lijuan Cheng
- School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
| | - Xiaohua Hu
- Department of Rehabilitation, Hospital of Zhejiang Provincial Armed Police Crops, Hangzhou, China
| | - Chengcheng Ni
- School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
| | - Feiyang Wang
- School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
| | - Bo Zheng
- School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
| | - ChengCheng Zhang
- School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
| | - Chaoyi Xie
- School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
| | - Meiqi Li
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Wangshan Huang
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Fangfang Shou
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Nantu Hu
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, Zhejiang, China
- School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
- Joint International Research Unit on Consciousness, CERVO Brain Research Centre, Laval University, Québec, Canada
| | - Haibo Di
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, Zhejiang, China.
- School of Basic Medicine, Hangzhou Normal University, Hangzhou, China.
| |
Collapse
|
14
|
Cramer SR, Han X, Chan DCY, Neuberger T, Zhang N. Neuroimaging Model of Visceral Manipulation in an Awake Rat. J Neurosci 2025; 45:e1317242024. [PMID: 39809541 PMCID: PMC11866998 DOI: 10.1523/jneurosci.1317-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/30/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025] Open
Abstract
Reciprocal neuronal connections exist between the internal organs of the body and the nervous system. These projections to and from the viscera play an essential role in maintaining and fine-tuning organ responses in order to sustain homeostasis and allostasis. Functional maps of brain regions participating in this bidirectional communication have been previously studied in awake humans and anesthetized rodents. To further refine the mechanistic understanding of visceral influence on brain states, however, new paradigms that allow for more invasive, and ultimately more informative, measurements and perturbations must be explored. Furthermore, such paradigms should prioritize human translatability. In the current paper, we address these issues by demonstrating the feasibility of nonanesthetized animal imaging during visceral manipulation. More specifically, we used a barostat interfaced with an implanted gastric balloon to cyclically induce distension of a nonanesthetized male rat's stomach during simultaneous blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging. General linear modeling and spatial independent component analysis revealed several regions with BOLD activation temporally coincident with the gastric distension stimulus. The ON-OFF (20-0 mmHg) barostat balloon pressure cycle resulted in widespread BOLD activation of the inferior colliculus, cerebellum, ventral midbrain, and a variety of hippocampal structures. These results suggest that neuroimaging models of gastric manipulation in the nonanesthetized rat are achievable and provide an avenue for more comprehensive studies involving the integration of other neuroscience techniques like electrophysiology.
Collapse
Affiliation(s)
- Samuel R Cramer
- The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Xu Han
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Dennis C Y Chan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Thomas Neuberger
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Nanyin Zhang
- The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
- Center for Neural Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
- Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
15
|
Zhu H, Ren J, Wang X, Qin W, Xie Y. Targeting skeletal interoception: a novel mechanistic insight into intervertebral disc degeneration and pain management. J Orthop Surg Res 2025; 20:159. [PMID: 39940003 PMCID: PMC11823264 DOI: 10.1186/s13018-025-05577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/05/2025] [Indexed: 02/14/2025] Open
Abstract
Despite being a leading cause of chronic pain and disability, the underlying mechanisms of intervertebral disc (IVD) degeneration (IVDD) remain unclear. Emerging evidence suggests that mechanosensation (the ability of the skeletal system to perceive mechanical and biochemical signals) mediated by abnormal mechanical loading plays a critical role in the regulation of IVD health. This review examines the complex interactions amongIVDs, intraosseous sensory mechanisms, and the central nervous system (CNS), with a particular focus on the roles of pathways such as PGE2/EP4, Wnt/β-catenin, and NF-κB. This review elucidates the manner in which mechanical stress and aberrant signaling disrupt the homeostasis of the nucleus pulposus (NP), cartilaginous endplate (CEP) and annulus fibrosus (AF), thereby driving degeneration and exacerbating pain. Furthermore, targeted therapeutic strategies, including the modulation of skeletal interoception and dynamic mechanical loading, present novel avenues for reversing IVDD progression. By integrating skeletal biology with spinal pathology, this work offers a novel perspective on the pathogenesis of IVDD and identifies promising strategies for clinical intervention. These findings highlight the potential of targeting skeletal interoception to mitigate IVDD and associated pain, paving the way for innovative, mechanism-driven therapies.
Collapse
Affiliation(s)
- Houcheng Zhu
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - JianHang Ren
- Affiliated Yongchuan Hospital of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 402160, China
| | - Xiangjin Wang
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Wenjing Qin
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Yong Xie
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China.
| |
Collapse
|
16
|
Corcoran AW, Perrykkad K, Feuerriegel D, Robinson JE. Body as First Teacher: The Role of Rhythmic Visceral Dynamics in Early Cognitive Development. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2025; 20:45-75. [PMID: 37694720 PMCID: PMC11720274 DOI: 10.1177/17456916231185343] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Embodied cognition-the idea that mental states and processes should be understood in relation to one's bodily constitution and interactions with the world-remains a controversial topic within cognitive science. Recently, however, increasing interest in predictive processing theories among proponents and critics of embodiment alike has raised hopes of a reconciliation. This article sets out to appraise the unificatory potential of predictive processing, focusing in particular on embodied formulations of active inference. Our analysis suggests that most active-inference accounts invoke weak, potentially trivial conceptions of embodiment; those making stronger claims do so independently of the theoretical commitments of the active-inference framework. We argue that a more compelling version of embodied active inference can be motivated by adopting a diachronic perspective on the way rhythmic physiological activity shapes neural development in utero. According to this visceral afferent training hypothesis, early-emerging physiological processes are essential not only for supporting the biophysical development of neural structures but also for configuring the cognitive architecture those structures entail. Focusing in particular on the cardiovascular system, we propose three candidate mechanisms through which visceral afferent training might operate: (a) activity-dependent neuronal development, (b) periodic signal modeling, and (c) oscillatory network coordination.
Collapse
Affiliation(s)
- Andrew W. Corcoran
- Monash Centre for Consciousness and Contemplative Studies, Monash University
- Cognition and Philosophy Laboratory, School of Philosophical, Historical, and International Studies, Monash University
| | - Kelsey Perrykkad
- Cognition and Philosophy Laboratory, School of Philosophical, Historical, and International Studies, Monash University
| | | | - Jonathan E. Robinson
- Cognition and Philosophy Laboratory, School of Philosophical, Historical, and International Studies, Monash University
| |
Collapse
|
17
|
Cheng C, Xue X, Jiao Y, Du M, Zhang M, Zeng X, Sun JB, Qin W, Deng H, Yang XJ. Can earlobe stimulation serve as a sham for transcutaneous auricular vagus stimulation? Evidence from an alertness study following sleep deprivation. Psychophysiology 2025; 62:e14744. [PMID: 39727264 DOI: 10.1111/psyp.14744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/17/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024]
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS) has garnered increasing attention as a safe and effective peripheral neuromodulation technique in various clinical and cognitive neuroscience fields. However, there is ongoing debate about whether the commonly used earlobe control interferes with the objective assessment of taVNS regulatory effects. This study aims to further explore the regulatory effects of taVNS and earlobe stimulation (ES) on alertness levels and physiological indicators following 24 h of sleep deprivation (SD), based on previous findings that both taVNS and ES showed significant positive effects. The goal is to evaluate whether ES can serve as a neutral sham condition. Using a within-subject randomized experimental design involving 56 participants, we assessed alertness, heart rate variability (HRV), and salivary alpha-amylase (sAA) levels in the morning of the first day. After 24 h of SD and 30 min of either taVNS or ES intervention, these indicators were re-evaluated, and the changes in both groups were analyzed. The results indicated that both taVNS and ES improved alertness levels following SD. However, taVNS significantly increased sAA levels, indicating activation of the LC-NE system, whereas ES significantly increased HR and reduced HRV, promoting sympathetic nervous activity. Additionally, the regulatory effect of taVNS on the alertness showed a higher correlation with SD impairment. Although taVNS and ES may involve different and separable neuromodulation mechanisms, both can enhance alertness following SD. Future studies should carefully consider the potential regulatory effects of ES when using it as a sham condition in taVNS research.
Collapse
Affiliation(s)
- Chen Cheng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
| | - Xinxin Xue
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
| | - Yunyun Jiao
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
| | - Mengyu Du
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
| | - Mengkai Zhang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
| | - Xiao Zeng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
- Guangzhou Institute of Technology, Xidian University, Xi'an, China
| | - Jin-Bo Sun
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
- Guangzhou Institute of Technology, Xidian University, Xi'an, China
| | - Wei Qin
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
- Guangzhou Institute of Technology, Xidian University, Xi'an, China
| | - Hui Deng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
- Center of Journal Publication, Xidian University, Xi'an, China
| | - Xue-Juan Yang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
- Guangzhou Institute of Technology, Xidian University, Xi'an, China
| |
Collapse
|
18
|
Santamaría-García H, Migeot J, Medel V, Hazelton JL, Teckentrup V, Romero-Ortuno R, Piguet O, Lawor B, Northoff G, Ibanez A. Allostatic Interoceptive Overload Across Psychiatric and Neurological Conditions. Biol Psychiatry 2025; 97:28-40. [PMID: 38964530 PMCID: PMC12012852 DOI: 10.1016/j.biopsych.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024]
Abstract
Emerging theories emphasize the crucial role of allostasis (anticipatory and adaptive regulation of the body's biological processes) and interoception (integration, anticipation, and regulation of internal bodily states) in adjusting physiological responses to environmental and bodily demands. In this review, we explore the disruptions in integrated allostatic interoceptive mechanisms in psychiatric and neurological disorders, including anxiety, depression, Alzheimer's disease, and frontotemporal dementia. We assess the biological mechanisms associated with allostatic interoception, including whole-body cascades, brain structure and function of the allostatic interoceptive network, heart-brain interactions, respiratory-brain interactions, the gut-brain-microbiota axis, peripheral biological processes (inflammatory, immune), and epigenetic pathways. These processes span psychiatric and neurological conditions and call for developing dimensional and transnosological frameworks. We synthesize new pathways to understand how allostatic interoceptive processes modulate interactions between environmental demands and biological functions in brain disorders. We discuss current limitations of the framework and future transdisciplinary developments. This review opens a new research agenda for understanding how allostatic interoception involves brain predictive coding in psychiatry and neurology, allowing for better clinical application and the development of new therapeutic interventions.
Collapse
Affiliation(s)
- Hernando Santamaría-García
- Pontificia Universidad Javeriana, PhD program of Neuroscience, Bogotá, Colombia; Hospital Universitario San Ignacio, Centro de Memoria y Cognición Intellectus, Bogotá, Colombia
| | - Joaquin Migeot
- Global Brain Health Institute, University California of San Francisco, San Francisco, California; Global Brain Health Institute, Trinity College of Dublin, Dublin, Ireland; Latin American Brain Health Institute, Universidad Adolfo Ibanez, Santiago, Chile
| | - Vicente Medel
- Latin American Brain Health Institute, Universidad Adolfo Ibanez, Santiago, Chile
| | - Jessica L Hazelton
- Latin American Brain Health Institute, Universidad Adolfo Ibanez, Santiago, Chile; School of Psychology and Brain & Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Vanessa Teckentrup
- School of Psychology and Trinity Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Roman Romero-Ortuno
- Pontificia Universidad Javeriana, PhD program of Neuroscience, Bogotá, Colombia; Discipline of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Olivier Piguet
- School of Psychology and Brain & Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Brian Lawor
- Pontificia Universidad Javeriana, PhD program of Neuroscience, Bogotá, Colombia
| | - George Northoff
- Institute of Mental Health Research, Mind, Brain Imaging and Neuroethics Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Agustin Ibanez
- Global Brain Health Institute, University California of San Francisco, San Francisco, California; Global Brain Health Institute, Trinity College of Dublin, Dublin, Ireland; Latin American Brain Health Institute, Universidad Adolfo Ibanez, Santiago, Chile; School of Psychology and Trinity Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
19
|
Su TJ, Lin CHJ, Liu YL, Hsueh HW, Hsieh ST, Chao CC, Chiang MC. Altered connectivity of central autonomic network: effects of dysautonomia in hereditary transthyretin amyloidosis with polyneuropathy. Amyloid 2024; 31:257-265. [PMID: 39044725 DOI: 10.1080/13506129.2024.2383450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/23/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Hereditary transthyretin amyloidosis with polyneuropathy (ATTRv-PN) is a progressive fatal disorder caused by deposition of mutant transthyretin (TTR) amyloids mainly in the nerves and heart. Autonomic dysfunction is a major disabling manifestation, affecting 90% of patients with late-onset ATTRv-PN. The current study aimed to investigate brain functional alterations associated with dysautonomia due to peripheral autonomic nerve degeneration in ATTRv-PN. METHODS Resting-state functional MRI data were acquired from 43 ATTRv-PN patients predominantly of A97S (p.A117S) genotype, and the functional connectivity of central autonomic regions was assessed. RESULTS Compared with age-matched healthy controls, the ATTRv-PN patients exhibited (1) reduced functional connectivity of the central autonomic regions such as hypothalamus, amygdala, anterior insula, and middle cingulate cortex with brain areas of the limbic, frontal, and somatosensory systems, and (2) correlations of reduced functional autonomic connectivity with the severity of autonomic dysfunction especially orthostatic intolerance, decreased heart rate variability, and greater clinical disability. CONCLUSIONS Our findings provide evidence linking peripheral autonomic dysfunction with altered connectivity in the central autonomic network in ATTRv-PN.
Collapse
Affiliation(s)
- Tsai-Jou Su
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chien-Ho Janice Lin
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Yeong-An Orthopedic and Physical Therapy Clinic, Taipei, Taiwan
| | - Yen-Lin Liu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Radiation Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Hsueh-Wen Hsueh
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Tsang Hsieh
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
- Center of Precision Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chi-Chao Chao
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Chang Chiang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
20
|
O'Shea MJ, Anversa RG, Ch'ng SS, Campbell EJ, Walker LC, Andrews ZB, Lawrence AJ, Brown RM. An Island of Reil excitation: Mapping glutamatergic (vGlut1+ and vGlut2+) connections in the medial insular cortex. Biochem Pharmacol 2024; 230:116637. [PMID: 39561925 DOI: 10.1016/j.bcp.2024.116637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
The insular cortex is a multifunctional and richly connected region of the cerebral cortex, critical in the neural integration of external stimuli and internal signals. Well-served for this role by a large network of afferent and efferent connections, the mouse insula can be simplified into an anterior, medial and posterior portion. Here we focus on the medial subregion, a once over-looked area that has gained recent attention for its involvement in an array of behaviours. Although the connections of medial insular cortex neurons have been previously identified, their precise glutamatergic phenotype remains undefined (typically defined by the presence of the subtype of vesicular glutamate transporters). Hence, we combined Cre knock-in mouse lines and adeno-associated viral tracing to distinguish between the expression of the two major vesicular glutamate transporters, type 1 (vGlut1) and 2 (vGlut2), in the subregion's neuronal inputs and outputs. Our results determined that the medial insula has extensive glutamatergic efferents expressing both vGlut1 and vGlut2 throughout the neuraxis. In contrast, a more conservative number of glutamatergic inputs were observed, with exclusively vGlut2+ projections received from hypothalamic and thalamic regions. Taken together, we demonstrate that vGlut1- and vGlut2-expressing networks of this insular subdivision have distinct connectivity patterns, including a greater abundance of vGlut1+ fibres innervating hypothalamic regions and the extended amygdala. These findings provide insight into the distinct chemo-architecture of this region, which may facilitate further investigation into the role of the medial insula in complex behaviour.
Collapse
Affiliation(s)
- Mia Jessica O'Shea
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia
| | - Roberta Goncalves Anversa
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia; Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, VIC, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
| | - Sarah Sulaiman Ch'ng
- Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, VIC, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
| | - Erin Jane Campbell
- Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, VIC, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia; School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia; Brain Neuromodulation Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Leigh Clasina Walker
- Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, VIC, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
| | - Zane Bruce Andrews
- Monash Biomedicine Discovery Institute, Clayton, VIC, Australia; Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Andrew John Lawrence
- Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, VIC, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
| | - Robyn Mary Brown
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia; Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, VIC, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia.
| |
Collapse
|
21
|
Islam J, Rahman MT, Ali M, Kc E, Park YS. Potential hypothalamic mechanisms in trigeminal neuropathic pain: a comparative analysis with migraine and cluster headache. J Headache Pain 2024; 25:205. [PMID: 39587517 PMCID: PMC11587712 DOI: 10.1186/s10194-024-01914-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
Trigeminal neuropathic pain (TNP), migraine, and cluster headache (CH) profoundly impact the quality of life and present significant clinical challenges due to their complex neurobiological underpinnings. This review delves into the pivotal role of the hypothalamus in the pathophysiology of these facial pain syndromes, highlighting its distinctive functions and potential as a primary target for research, diagnosis, and therapy. While the involvement of the hypothalamus in migraine and CH has been increasingly supported by imaging and clinical studies, the precise mechanisms of its role remain under active investigation. The role of the hypothalamus in TNP, in contrast, is less explored and represents a critical gap in our understanding. The hypothalamus's involvement varies significantly across these conditions, orchestrating a unique interplay of neural circuits and neurotransmitter systems that underlie the distinct characteristics of each pain type. We have explored advanced neuromodulation techniques, such as deep brain stimulation (DBS) and optogenetics, which show promise in targeting hypothalamic dysfunction to alleviate pain symptoms. Furthermore, we discuss the neuroplastic changes within the hypothalamus that contribute to the chronicity of these pains and the implications of these findings for developing targeted therapies. By offering a comprehensive examination of the hypothalamus's roles, this paper aims to bridge existing knowledge gaps and propel forward the understanding and management of facial neuralgias, underscoring the hypothalamus's critical position in future neurological research.
Collapse
Affiliation(s)
- Jaisan Islam
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Md Taufiqur Rahman
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Muhammad Ali
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Elina Kc
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Young Seok Park
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea.
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Republic of Korea.
| |
Collapse
|
22
|
Fu ZT, Liu CZ, Kim MR, Liu YD, Wang Y, Fu YM, Yang JW, Yang NN. Acupuncture improves the symptoms, serum ghrelin, and autonomic nervous system of patients with postprandial distress syndrome: a randomized controlled trial. Chin Med 2024; 19:162. [PMID: 39568071 PMCID: PMC11580632 DOI: 10.1186/s13020-024-01028-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Whether gastrointestinal hormones in patients with postprandial distress syndrome (PDS) are altered by acupuncture, and whether such alterations are related to the autonomic nervous system (ANS), remains an open question. OBJECTIVE This study aims to investigate the effects of acupuncture on symptoms, serum hormones, and ANS in PDS patients. METHODS This randomized controlled clinical trial was conducted at Beijing Hospital of Traditional Chinese Medicine affiliated with Capital Medical University. Sixty-two PDS patients were randomly assigned equally to acupuncture or sham acupuncture arm (3 sessions per week for 4-week). The main outcome measures which were evaluated at baseline and 4-week included cardinal symptoms, serum hormones including ghrelin, vasoactive intestinal peptide (VIP), substance P (SP), and ANS. RESULTS Among the 62 randomly assigned participants, 51 (82%) were included in the baseline characteristics and outcome analysis. Gastrointestinal symptoms including response rate (p = 0.001) and dyspepsia symptom severity (p = 0.002) were significantly improved after acupuncture treatment. Serum ghrelin concentration was significantly higher in acupuncture group than in sham acupuncture group (8.34 ± 3.00 ng/ml versus 6.52 ± 2.00 ng/ml, p = 0.022) after 4-week treatment, instead of VIP and SP (p > 0.05). The acupuncture group had significantly higher vagal activity, showing with increasing of high-frequency component (HF, p ≤ 0.001) and decreasing of the ratio of low-frequency and HF (p ≤ 0.001). In relationship analysis, the HF component exhibited a significant inverse correlation with symptom severity (R = - 0.501, p ≤ 0.001), but not with ghrelin level (R = 0.026, p = 0.865). CONCLUSION Acupuncture may improve the symptoms and increase the ghrelin level of PDS patients, the therapeutic effect of acupuncture was associated with the alteration of vagal activity. TRIAL REGISTRATION The trial is registered with the ISRCTN registry, ISRCTN12511434. Registered 31 March 2017, https://www.isrctn.com/ .
Collapse
Affiliation(s)
- Zi-Tong Fu
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, No. 11 Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China
| | - Cun-Zhi Liu
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, No. 11 Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China
| | - Mi-Rim Kim
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, No. 11 Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China
| | - Yi-Duo Liu
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, No. 11 Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China
| | - Yu Wang
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, No. 11 Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China
| | - Yi-Ming Fu
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, No. 11 Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China
| | - Jing-Wen Yang
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, No. 11 Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China
| | - Na-Na Yang
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, No. 11 Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
23
|
Haghir H, Kuckertz A, Zhao L, Hami J, Palomero-Gallagher N. A new map of the rat isocortex and proisocortex: cytoarchitecture and M 2 receptor distribution patterns. Brain Struct Funct 2024; 229:1795-1822. [PMID: 37318645 PMCID: PMC11485150 DOI: 10.1007/s00429-023-02654-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/13/2023] [Indexed: 06/16/2023]
Abstract
Neurotransmitters and their receptors are key molecules in information transfer between neurons, thus enabling inter-areal communication. Therefore, multimodal atlases integrating the brain's cyto- and receptor architecture constitute crucial tools to understand the relationship between its structural and functional segregation. Cholinergic muscarinic M2 receptors have been shown to be an evolutionarily conserved molecular marker of primary sensory areas in the mammalian brain. To complement existing rodent atlases, we applied a silver cell body staining and quantitative in vitro receptor autoradiographic visualization of M2 receptors to alternating sections throughout the entire brain of five adult male Wistar rats (three sectioned coronally, one horizontally, one sagittally). Histological sections and autoradiographs were scanned at a spatial resolution of 1 µm and 20 µm per pixel, respectively, and files were stored as 8 bit images. We used these high-resolution datasets to create an atlas of the entire rat brain, including the olfactory bulb, cerebellum and brainstem. We describe the cyto- and M2 receptor architectonic features of 48 distinct iso- and proisocortical areas across the rat forebrain and provide their mean M2 receptor density. The ensuing parcellation scheme, which is discussed in the framework of existing comprehensive atlasses, includes the novel subdivision of mediomedial secondary visual area Oc2MM into anterior (Oc2MMa) and posterior (Oc2MMp) parts, and of lateral visual area Oc2L into rostrolateral (Oc2Lr), intermediate dorsolateral (Oc2Lid), intermediate ventrolateral (Oc2Liv) and caudolateral (Oc2Lc) secondary visual areas. The M2 receptor densities and the comprehensive map of iso-and proisocortical areas constitute useful tools for future computational and neuroscientific studies.
Collapse
Affiliation(s)
- Hossein Haghir
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetic Research Center (MGRC), School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Anika Kuckertz
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
| | - Ling Zhao
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
| | - Javad Hami
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
- Faculty of Medicine, HMU Health and Medical University Potsdam, 14471, Potsdam, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany.
- C. & O. Vogt Institute of Brain Research, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
24
|
Stagaman K, Kmiecik MJ, Wetzel M, Aslibekyan S, Sonmez TF, Fontanillas P, Tung J, Holmes MV, Walk ST, Houser MC, Norcliffe-Kaufmann L. Oral and gut microbiome profiles in people with early idiopathic Parkinson's disease. COMMUNICATIONS MEDICINE 2024; 4:209. [PMID: 39443634 PMCID: PMC11499922 DOI: 10.1038/s43856-024-00630-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Early detection of Parkinson's disease (PD), a neurodegenerative disease with central and peripheral nerve involvement, ensures timely treatment access. Microbes influence nervous system health and are altered in PD. METHODS We examined gut and mouth microbiomes from recently diagnosed patients in a geographically diverse, matched case-control, shotgun metagenomics study. RESULTS Here, we show greater alpha-diversity in 445 PD patients versus 221 controls. The microbial signature of PD includes overabundance of 16 OTUs, including Streptococcus mutans and Bifidobacterium dentium, and depletion of 28 OTUs. Machine learning models indicate that subspecies level oral microbiome abundances best distinguish PD with reasonably high accuracy (area under the curve: 0.758). Microbial networks are disrupted in cases, with reduced connectivity between short-chain fatty acid-producing bacteria the the gut. Importantly, microbiome diversity metrics are associated with non-motor autonomic symptom severity. CONCLUSIONS Our results provide evidence that predictive oral PD microbiome signatures could possibly be used as biomarkers for the early detection of PD, particularly when there is peripheral nervous system involvement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Seth T Walk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Madelyn C Houser
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
25
|
Noohi F, Kosik EL, Veziris C, Perry DC, Rosen HJ, Kramer JH, Miller BL, Holley SR, Seeley WW, Sturm VE. Structural neuroanatomy of human facial behaviors. Soc Cogn Affect Neurosci 2024; 19:nsae064. [PMID: 39308147 PMCID: PMC11492553 DOI: 10.1093/scan/nsae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/23/2024] [Accepted: 09/21/2024] [Indexed: 10/22/2024] Open
Abstract
The human face plays a central role in emotions and social communication. The emotional and somatic motor networks generate facial behaviors, but whether facial behaviors have representations in the structural anatomy of the human brain is unknown. We coded 16 facial behaviors in 55 healthy older adults who viewed five videos that elicited emotions and examined whether individual differences in facial behavior were related to regional variation in gray matter volume. Voxel-based morphometry analyses revealed that greater emotional facial behavior during the disgust trial (i.e. greater brow furrowing and eye tightening as well as nose wrinkling and upper lip raising) and the amusement trial (i.e. greater smiling and eye tightening) was associated with larger gray matter volume in midcingulate cortex, supplementary motor area, and precentral gyrus, areas spanning both the emotional and somatic motor networks. When measured across trials, however, these facial behaviors (and others) only related to gray matter volume in the precentral gyrus, a somatic motor network hub. These findings suggest that the emotional and somatic motor networks store structural representations of facial behavior and that the midcingulate cortex is critical for generating the predictable movements in the face that arise during emotions.
Collapse
Affiliation(s)
- Fate Noohi
- Department of Neurology, University of California, San Francisco, CA 94158, United States
| | - Eena L Kosik
- Department of Neurology, University of California, San Francisco, CA 94158, United States
| | - Christina Veziris
- Department of Neurology, University of California, San Francisco, CA 94158, United States
| | - David C Perry
- Department of Neurology, University of California, San Francisco, CA 94158, United States
| | - Howard J Rosen
- Department of Neurology, University of California, San Francisco, CA 94158, United States
| | - Joel H Kramer
- Department of Neurology, University of California, San Francisco, CA 94158, United States
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94158, United States
| | - Bruce L Miller
- Department of Neurology, University of California, San Francisco, CA 94158, United States
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94158, United States
| | - Sarah R Holley
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94158, United States
- Department of Psychology, San Francisco State University, San Francisco, CA 94132, United States
| | - William W Seeley
- Department of Neurology, University of California, San Francisco, CA 94158, United States
| | - Virginia E Sturm
- Department of Neurology, University of California, San Francisco, CA 94158, United States
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94158, United States
| |
Collapse
|
26
|
Sammons M, Popescu MC, Chi J, Liberles SD, Gogolla N, Rolls A. Brain-body physiology: Local, reflex, and central communication. Cell 2024; 187:5877-5890. [PMID: 39423806 PMCID: PMC11624509 DOI: 10.1016/j.cell.2024.08.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/25/2024] [Accepted: 08/26/2024] [Indexed: 10/21/2024]
Abstract
Behavior is tightly synchronized with bodily physiology. Internal needs from the body drive behavior selection, while optimal behavior performance requires a coordinated physiological response. Internal state is dynamically represented by the nervous system to influence mood and emotion, and body-brain signals also direct responses to external sensory cues, enabling the organism to adapt and pursue its goals within an ever-changing environment. In this review, we examine the anatomy and function of the brain-body connection, manifested across local, reflex, and central regulation levels. We explore these hierarchical loops in the context of the immune system, specifically through the lens of immunoception, and discuss the impact of its dysregulation on human health.
Collapse
Affiliation(s)
- Megan Sammons
- Rappaport School of Medicine, Technion, Haifa, Israel
| | - Miranda C Popescu
- Emotion Research Department, Max Planck Institute of Psychiatry, Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Jingyi Chi
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Stephen D Liberles
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Nadine Gogolla
- Emotion Research Department, Max Planck Institute of Psychiatry, Munich, Germany
| | - Asya Rolls
- Rappaport School of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
27
|
Perrotta M, Carnevale D. Neuroimmune modulation for targeting organ damage in hypertension and atherosclerosis. J Physiol 2024; 602:4789-4802. [PMID: 39298270 DOI: 10.1113/jp284078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
The brain is essential for processing and integrating sensory signals coming from peripheral tissues. Conversely, the autonomic nervous system regulated by brain centres modulates the immune responses involved in the genesis and progression of cardiovascular diseases. Understanding the pathophysiological bases of this relationship established between the brain and immune system is relevant for advancing therapies. An additional mechanism involved in the regulation of cardiovascular function is provided by the brain-mediated control of the renin-angiotensin system. In both cases, the communication is typically bidirectional and established by afferent and sensory signals collected at the level of peripheral tissues, efferent circuits, as well as of hormones. Understanding how the brain mediates the bidirectional communication and how the immune system participates in this process is object of intense investigation. This review examines key findings that support a role for these interactions in the pathogenesis of major vascular diseases that are characterized by a consistent alteration of the immune response, such as hypertension and atherosclerosis. In addition, we provide a critical appraisal of the translational implications that these discoveries have in the clinical setting where an effective management of neuroimmune and/or neuroinflammatory state might be beneficial.
Collapse
Affiliation(s)
- Marialuisa Perrotta
- Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Department of Angiocardioneurology and Translational Medicine, Pozzilli, Italy
- Department of Molecular Medicine, 'Sapienza' University of Rome, Rome, Italy
| | - Daniela Carnevale
- Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Department of Angiocardioneurology and Translational Medicine, Pozzilli, Italy
- Department of Molecular Medicine, 'Sapienza' University of Rome, Rome, Italy
| |
Collapse
|
28
|
Cramer SR, Han X, Chan DCY, Neuberger T, Zhang N. Neuroimaging model of visceral manipulation in awake rat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613477. [PMID: 39345508 PMCID: PMC11429785 DOI: 10.1101/2024.09.17.613477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Reciprocal neuronal connections exist between the internal organs of the body and the nervous system. These projections to and from the viscera play an essential role in maintaining and finetuning organ responses in order to sustain homeostasis and allostasis. Functional maps of brain regions participating in this bidirectional communication have been previously studied in awake humans and anesthetized rodents. To further refine the mechanistic understanding of visceral influence on brain states, however, new paradigms that allow for more invasive, and ultimately more informative, measurements and perturbations must be explored. Further, such paradigms should prioritize human translatability. In the current paper, we address these issues by demonstrating the feasibility of non-anesthetized animal imaging during visceral manipulation. More specifically, we used a barostat interfaced with an implanted gastric balloon to cyclically induce distension of a non-anesthetized rat's stomach during simultaneous BOLD fMRI. General linear modeling and spatial independent component analysis revealed several regions with BOLD activation temporally coincident with the gastric distension stimulus. The ON-OFF (20 mmHg - 0 mmHg) barostat-balloon pressure cycle resulted in widespread BOLD activation of the inferior colliculus, cerebellum, ventral midbrain, and a variety of hippocampal structures. These results suggest that neuroimaging models of gastric manipulation in the non-anesthetized rat are achievable and provide an avenue for more comprehensive studies involving the integration of other neuroscience techniques like electrophysiology. Significance Statement It is unclear to what extent measurements of brain activity are affected by background, and experimentally unrelated, interoceptive processes. To advance our understanding of ongoing visceral activity's influence on brain states, here we provide a proof of concept, anesthesia-free animal model of visceral manipulation during simultaneous BOLD fMRI. We successfully demonstrated BOLD activation during gastric distension of the unanesthetized rat in both classically reported (cerebellum, hippocampus) and novel (inferior colliculus) regions. This paradigm establishes an important foundation for further interrogation of viscera-brain interactions.
Collapse
|
29
|
Palser ER, Veziris CR, Morris NA, Roy ARK, Watson-Pereira C, Holley SR, Miller BL, Gorno-Tempini ML, Sturm VE. Elevated unanticipated acoustic startle reactivity in dyslexia. DYSLEXIA (CHICHESTER, ENGLAND) 2024; 30:e1779. [PMID: 38979661 PMCID: PMC11257413 DOI: 10.1002/dys.1779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/22/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024]
Abstract
People with dyslexia, a neurodevelopmental disorder of reading, are highly attuned to the emotional world. Compared with their typically developing peers, children with dyslexia exhibit greater autonomic nervous system reactivity and facial behaviour to emotion- and empathy-inducing film clips. Affective symptoms, such as anxiety, are also more common in children with dyslexia than in those without. Here, we investigated whether the startle response, an automatic reaction that lies at the interface of emotion and reflex, is elevated in dyslexia. We measured facial behaviour, electrodermal reactivity (a sympathetic nervous system measure) and emotional experience in response to a 100 ms, 105 dB unanticipated acoustic startle task in 30 children with dyslexia and 20 comparison children without dyslexia (aged 7-13) who were matched on age, sex and nonverbal reasoning. Our results indicated that the children with dyslexia had greater total facial behaviour and electrodermal reactivity to the acoustic startle task than the children without dyslexia. Across the sample, greater electrodermal reactivity during the startle predicted greater parent-reported anxiety symptoms. These findings contribute to an emerging picture of heightened emotional reactivity in dyslexia and suggest accentuated sympathetic nervous system reactivity may contribute to the elevated anxiety that is often seen in this population.
Collapse
Affiliation(s)
- Eleanor R. Palser
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Christina R. Veziris
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Nathaniel A. Morris
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Ashlin R. K. Roy
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Christa Watson-Pereira
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Sarah R. Holley
- Psychology Department, San Francisco State University, San Francisco, CA 94132, USA
- Department of Psychiatry, University of California San Francisco, San Francisco, CA 94131, USA
| | - Bruce L. Miller
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Maria Luisa Gorno-Tempini
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Psychiatry, University of California San Francisco, San Francisco, CA 94131, USA
| | - Virginia E. Sturm
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Psychiatry, University of California San Francisco, San Francisco, CA 94131, USA
| |
Collapse
|
30
|
Rajiah R, Takahashi K, Aziz Q, Ruffle JK. Brain effect of transcutaneous vagal nerve stimulation: A meta-analysis of neuroimaging evidence. Neurogastroenterol Motil 2024; 36:e14484. [PMID: 36281057 DOI: 10.1111/nmo.14484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/23/2022] [Accepted: 09/12/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Dysfunction in the autonomic nervous system is common throughout many functional gastrointestinal diseases (FGIDs) that have been historically difficult to treat. In recent years, transcutaneous vagal nerve stimulation (tVNS) has shown promise for improving FGID symptoms. However, the brain effects of tVNS remain unclear, which we investigated by neuroimaging meta-analysis. METHODS A total of 157 studies were identified, 4 of which were appropriate for inclusion, encompassing 60 healthy human participants. Using activation likelihood analysis estimation, we statistically quantified functional brain activity changes across three domains: (1) tVNS vs. null stimulation, (2) tVNS vs. sham stimulation, and (3) sham stimulation vs. null stimulation. KEY RESULTS tVNS significantly increased activity in the insula, anterior cingulate, inferior and superior frontal gyri, caudate and putamen, and reduced activity in the hippocampi, occipital fusiform gyri, temporal pole, and middle temporal gyri, when compared to null stimulation (all corrected p < 0.005). tVNS increased activity in the anterior cingulate gyrus, left thalamus, caudate, and paracingulate gyrus and reduced activity in right thalamus, posterior cingulate cortex, and temporal fusiform cortex, when compared to sham stimulation (all corrected p < 0.005). Sham stimulation significantly increased activity in the insula and reduced activity in the posterior cingulate and paracingulate gyrus (all corrected p < 0.001), when contrasted to null stimulation. CONCLUSIONS Brain effects of tVNS localize to regions associated with both physiological autonomic regulation and regions whose activity is modulated across numerous FGIDs, which may provide a neural basis for efficacy of this treatment. Functional activity differences between sham and null stimulation illustrate the importance of robust control procedures for future trials.
Collapse
Affiliation(s)
- Rebekah Rajiah
- Centre for Neuroscience and Trauma, Blizard Institute, Wingate Institute of Neurogastroenterology, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Kazuya Takahashi
- Centre for Neuroscience and Trauma, Blizard Institute, Wingate Institute of Neurogastroenterology, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Qasim Aziz
- Centre for Neuroscience and Trauma, Blizard Institute, Wingate Institute of Neurogastroenterology, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - James K Ruffle
- Centre for Neuroscience and Trauma, Blizard Institute, Wingate Institute of Neurogastroenterology, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, UK
- UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
31
|
Feldman MJ, Bliss-Moreau E, Lindquist KA. The neurobiology of interoception and affect. Trends Cogn Sci 2024; 28:643-661. [PMID: 38395706 PMCID: PMC11222051 DOI: 10.1016/j.tics.2024.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Scholars have argued for centuries that affective states involve interoception, or representations of the state of the body. Yet, we lack a mechanistic understanding of how signals from the body are transduced, transmitted, compressed, and integrated by the brains of humans to produce affective states. We suggest that to understand how the body contributes to affect, we first need to understand information flow through the nervous system's interoceptive pathways. We outline such a model and discuss how unique anatomical and physiological aspects of interoceptive pathways may give rise to the qualities of affective experiences in general and valence and arousal in particular. We conclude by considering implications and future directions for research on interoception, affect, emotions, and human mental experiences.
Collapse
Affiliation(s)
- M J Feldman
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - E Bliss-Moreau
- Department of Psychology, University of California Davis, Davis, CA, USA; California National Primate Research Center, University of California Davis, Davis, CA, USA
| | - K A Lindquist
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
32
|
Lee SA, Lee JJ, Han J, Choi M, Wager TD, Woo CW. Brain representations of affective valence and intensity in sustained pleasure and pain. Proc Natl Acad Sci U S A 2024; 121:e2310433121. [PMID: 38857402 PMCID: PMC11194486 DOI: 10.1073/pnas.2310433121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/18/2024] [Indexed: 06/12/2024] Open
Abstract
Pleasure and pain are two fundamental, intertwined aspects of human emotions. Pleasurable sensations can reduce subjective feelings of pain and vice versa, and we often perceive the termination of pain as pleasant and the absence of pleasure as unpleasant. This implies the existence of brain systems that integrate them into modality-general representations of affective experiences. Here, we examined representations of affective valence and intensity in an functional MRI (fMRI) study (n = 58) of sustained pleasure and pain. We found that the distinct subpopulations of voxels within the ventromedial and lateral prefrontal cortices, the orbitofrontal cortex, the anterior insula, and the amygdala were involved in decoding affective valence versus intensity. Affective valence and intensity predictive models showed significant decoding performance in an independent test dataset (n = 62). These models were differentially connected to distinct large-scale brain networks-the intensity model to the ventral attention network and the valence model to the limbic and default mode networks. Overall, this study identified the brain representations of affective valence and intensity across pleasure and pain, promoting a systems-level understanding of human affective experiences.
Collapse
Affiliation(s)
- Soo Ahn Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Jae-Joong Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, Republic of Korea
| | - Jisoo Han
- Korea Brain Research Institute, Daegu41062, Republic of Korea
| | - Myunghwan Choi
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul08826, Republic of Korea
| | - Tor D. Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH03755
| | - Choong-Wan Woo
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon16419, Republic of Korea
- Life-inspired Neural Network for Prediction and Optimization Research Group, Suwon16419, Republic of Korea
| |
Collapse
|
33
|
Pan I, Umapathy S. Probiotics an emerging therapeutic approach towards gut-brain-axis oriented chronic health issues induced by microplastics: A comprehensive review. Heliyon 2024; 10:e32004. [PMID: 38882279 PMCID: PMC11176854 DOI: 10.1016/j.heliyon.2024.e32004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Applications for plastic polymers can be found all around the world, often discarded without any prior care, exacerbating the environmental issue. When large waste materials are released into the environment, they undergo physical, biological, and photo-degradation processes that break them down into smaller polymer fragments known as microplastics (MPs). The time it takes for residual plastic to degrade depends on the type of polymer and environmental factors, with some taking as long as 600 years or more. Due to their small size, microplastics can contaminate food and enter the human body through food chains and webs, causing gastrointestinal (GI) tract pain that can range from local to systemic. Microplastics can also acquire hydrophobic organic pollutants and heavy metals on their surface, due to their large surface area and surface hydrophobicity. The levels of contamination on the microplastic surface are significantly higher than in the natural environment. The gut-brain axis (GB axis), through which organisms interact with their environment, regulate nutritional digestion and absorption, intestinal motility and secretion, complex polysaccharide breakdown, and maintain intestinal integrity, can be altered by microplastics acting alone or in combination with pollutants. Probiotics have shown significant therapeutic potential in managing various illnesses mediated by the gut-brain axis. They connect hormonal and biochemical pathways to promote gut and brain health, making them a promising therapy option for a variety of GB axis-mediated illnesses. Additionally, taking probiotics with or without food can reduce the production of pro-inflammatory cytokines, reactive oxygen species (ROS), neuro-inflammation, neurodegeneration, protein folding, and both motor and non-motor symptoms in individuals with Parkinson's disease. This study provides new insight into microplastic-induced gut dysbiosis, its associated health risks, and the benefits of using both traditional and next-generation probiotics to maintain gut homeostasis.
Collapse
Affiliation(s)
- Ieshita Pan
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Suganiya Umapathy
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602105, Tamil Nadu, India
| |
Collapse
|
34
|
Kittleson AR, Woodward ND, Heckers S, Sheffield JM. The insula: Leveraging cellular and systems-level research to better understand its roles in health and schizophrenia. Neurosci Biobehav Rev 2024; 160:105643. [PMID: 38531518 PMCID: PMC11796093 DOI: 10.1016/j.neubiorev.2024.105643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/04/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
Schizophrenia is a highly heterogeneous disorder characterized by a multitude of complex and seemingly non-overlapping symptoms. The insular cortex has gained increasing attention in neuroscience and psychiatry due to its involvement in a diverse range of fundamental human experiences and behaviors. This review article provides an overview of the insula's cellular and anatomical organization, functional and structural connectivity, and functional significance. Focusing on specific insula subregions and using knowledge gained from humans and preclinical studies of insular tracings in non-human primates, we review the literature and discuss the functional roles of each subregion, including in somatosensation, interoception, salience processing, emotional processing, and social cognition. Building from this foundation, we then extend these findings to discuss reported abnormalities of these functions in individuals with schizophrenia, implicating insular involvement in schizophrenia pathology. This review underscores the insula's vast role in the human experience and how abnormal insula structure and function could result in the wide-ranging symptoms observed in schizophrenia.
Collapse
Affiliation(s)
- Andrew R Kittleson
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN 37235, United States; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States.
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States.
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States.
| | - Julia M Sheffield
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, United States.
| |
Collapse
|
35
|
Talpir I, Livneh Y. Stereotyped goal-directed manifold dynamics in the insular cortex. Cell Rep 2024; 43:114027. [PMID: 38568813 PMCID: PMC11063631 DOI: 10.1016/j.celrep.2024.114027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/12/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024] Open
Abstract
The insular cortex is involved in diverse processes, including bodily homeostasis, emotions, and cognition. However, we lack a comprehensive understanding of how it processes information at the level of neuronal populations. We leveraged recent advances in unsupervised machine learning to study insular cortex population activity patterns (i.e., neuronal manifold) in mice performing goal-directed behaviors. We find that the insular cortex activity manifold is remarkably consistent across different animals and under different motivational states. Activity dynamics within the neuronal manifold are highly stereotyped during rewarded trials, enabling robust prediction of single-trial outcomes across different mice and across various natural and artificial motivational states. Comparing goal-directed behavior with self-paced free consumption, we find that the stereotyped activity patterns reflect task-dependent goal-directed reward anticipation, and not licking, taste, or positive valence. These findings reveal a core computation in insular cortex that could explain its involvement in pathologies involving aberrant motivations.
Collapse
Affiliation(s)
- Itay Talpir
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yoav Livneh
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
36
|
Fan W, Engborg CB, Sciolino NR. Locus Ceruleus Dynamics Are Suppressed during Licking and Enhanced Postlicking Independent of Taste Novelty. eNeuro 2024; 11:ENEURO.0535-23.2024. [PMID: 38649278 PMCID: PMC11036117 DOI: 10.1523/eneuro.0535-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024] Open
Abstract
Attending to salient sensory attributes of food, such as tastes that are new, displeasing, or unexpected, allows the procurement of nutrients without food poisoning. Exposure to new tastes is known to increase norepinephrine (NE) release in taste processing forebrain areas, yet the central source for this release is unknown. Locus ceruleus norepinephrine neurons (LC-NE) emerge as a candidate in signaling salient information about taste, as other salient sensory stimuli (e.g., visual, auditory, somatosensation) are known to activate LC neurons. To determine if LC neurons are sensitive to features of taste novelty, we used fiber photometry to record LC-NE activity in water-restricted mice that voluntarily licked either novel or familiar substances of differential palatability (saccharine, citric acid). We observed that LC-NE activity was suppressed during lick bursts and transiently activated upon the termination of licking and that these dynamics were independent of the familiarity of the substance consumed. We next recorded LC dynamics during brief and unexpected consumption of tastants and found no increase in LC-NE activity, despite their responsiveness to visual and auditory stimuli, revealing selectivity in LC's responses to salient sensory information. Our findings suggest that LC activity during licking is not influenced by taste novelty, implicating a possible role for non-LC noradrenergic nuclei in signaling critical information about taste.
Collapse
Affiliation(s)
- Will Fan
- Departments of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - Christopher B Engborg
- Departments of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - Natale R Sciolino
- Departments of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
- Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269
- Psychological Sciences, University of Connecticut, Storrs, Connecticut 06269
- Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
37
|
Yang D, Xu J, Xu K, Xu P. Skeletal interoception in osteoarthritis. Bone Res 2024; 12:22. [PMID: 38561376 PMCID: PMC10985098 DOI: 10.1038/s41413-024-00328-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/02/2024] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
The interoception maintains proper physiological conditions and metabolic homeostasis by releasing regulatory signals after perceving changes in the internal state of the organism. Among its various forms, skeletal interoception specifically regulates the metabolic homeostasis of bones. Osteoarthritis (OA) is a complex joint disorder involving cartilage, subchondral bone, and synovium. The subchondral bone undergoes continuous remodeling to adapt to dynamic joint loads. Recent findings highlight that skeletal interoception mediated by aberrant mechanical loads contributes to pathological remodeling of the subchondral bone, resulting in subchondral bone sclerosis in OA. The skeletal interoception is also a potential mechanism for chronic synovial inflammation in OA. In this review, we offer a general overview of interoception, specifically skeletal interoception, subchondral bone microenviroment and the aberrant subchondral remedeling. We also discuss the role of skeletal interoception in abnormal subchondral bone remodeling and synovial inflammation in OA, as well as the potential prospects and challenges in exploring novel OA therapies that target skeletal interoception.
Collapse
Affiliation(s)
- Dinglong Yang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Jiawen Xu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ke Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Peng Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
38
|
De Falco E, Solcà M, Bernasconi F, Babo-Rebelo M, Young N, Sammartino F, Tallon-Baudry C, Navarro V, Rezai AR, Krishna V, Blanke O. Single neurons in the thalamus and subthalamic nucleus process cardiac and respiratory signals in humans. Proc Natl Acad Sci U S A 2024; 121:e2316365121. [PMID: 38451949 PMCID: PMC10945861 DOI: 10.1073/pnas.2316365121] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/16/2024] [Indexed: 03/09/2024] Open
Abstract
Visceral signals are constantly processed by our central nervous system, enable homeostatic regulation, and influence perception, emotion, and cognition. While visceral processes at the cortical level have been extensively studied using non-invasive imaging techniques, very few studies have investigated how this information is processed at the single neuron level, both in humans and animals. Subcortical regions, relaying signals from peripheral interoceptors to cortical structures, are particularly understudied and how visceral information is processed in thalamic and subthalamic structures remains largely unknown. Here, we took advantage of intraoperative microelectrode recordings in patients undergoing surgery for deep brain stimulation (DBS) to investigate the activity of single neurons related to cardiac and respiratory functions in three subcortical regions: ventral intermedius nucleus (Vim) and ventral caudalis nucleus (Vc) of the thalamus, and subthalamic nucleus (STN). We report that the activity of a large portion of the recorded neurons (about 70%) was modulated by either the heartbeat, the cardiac inter-beat interval, or the respiration. These cardiac and respiratory response patterns varied largely across neurons both in terms of timing and their kind of modulation. A substantial proportion of these visceral neurons (30%) was responsive to more than one of the tested signals, underlining specialization and integration of cardiac and respiratory signals in STN and thalamic neurons. By extensively describing single unit activity related to cardiorespiratory function in thalamic and subthalamic neurons, our results highlight the major role of these subcortical regions in the processing of visceral signals.
Collapse
Affiliation(s)
- Emanuela De Falco
- Laboratory of Cognitive Neuroscience, School of Life Sciences, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne1015, Switzerland
- Department of Neuroscience, Rockefeller Neuroscience Institute–West Virginia University, Morgantown, WV26505
| | - Marco Solcà
- Laboratory of Cognitive Neuroscience, School of Life Sciences, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne1015, Switzerland
- Department of Psychiatry, University Hospital Geneva, Geneva1205, Switzerland
| | - Fosco Bernasconi
- Laboratory of Cognitive Neuroscience, School of Life Sciences, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne1015, Switzerland
| | - Mariana Babo-Rebelo
- Laboratory of Cognitive Neuroscience, School of Life Sciences, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne1015, Switzerland
| | - Nicole Young
- Medical Department, SpecialtyCare, Brentwood, TN37027
| | - Francesco Sammartino
- Department of Physical Medicine and Rehabilitation, The Ohio State University, Columbus, OH43210
| | - Catherine Tallon-Baudry
- Laboratoire de Neurosciences Cognitives et Computationnelles, Département d’Etudes Cognitives, École normale supérieure-Paris Sciences et Lettres University, Inserm, Paris75005, France
| | - Vincent Navarro
- Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm, CNRS, Assistance Publique - Hôpitaux de Paris, Epilepsy Unit, Hôpital de la Pitié-Salpêtrière, Paris75013, France
| | - Ali R. Rezai
- Department of Neurosurgery, Rockefeller Neuroscience Institute—West Virginia University, Morgantown, WV26505
| | - Vibhor Krishna
- Department of Neurosurgery, University of North Carolina at Chapel Hill, Durham, NC27516
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, School of Life Sciences, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne1015, Switzerland
- Department of Clinical Neurosciences, University Hospital Geneva, Geneva1205, Switzerland
| |
Collapse
|
39
|
Pace SA, Lukinic E, Wallace T, McCartney C, Myers B. Cortical-brainstem circuitry attenuates physiological stress reactivity. J Physiol 2024; 602:949-966. [PMID: 38353989 PMCID: PMC10940195 DOI: 10.1113/jp285627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Exposure to stressful stimuli promotes multi-system biological responses to restore homeostasis. Catecholaminergic neurons in the rostral ventrolateral medulla (RVLM) facilitate sympathetic activity and promote physiological adaptations, including glycaemic mobilization and corticosterone release. While it is unclear how brain regions involved in the cognitive appraisal of stress regulate RVLM neural activity, recent studies found that the rodent ventromedial prefrontal cortex (vmPFC) mediates stress appraisal and physiological stress responses. Thus, a vmPFC-RVLM connection could represent a circuit mechanism linking stress appraisal and physiological reactivity. The current study investigated a direct vmPFC-RVLM circuit utilizing genetically encoded anterograde and retrograde tract tracers. Together, these studies found that stress-activated vmPFC neurons project to catecholaminergic neurons throughout the ventrolateral medulla in male and female rats. Next, we utilized optogenetic terminal stimulation to evoke vmPFC synaptic glutamate release in the RVLM. Photostimulating the vmPFC-RVLM circuit during restraint stress suppressed glycaemic stress responses in males, without altering the female response. However, circuit stimulation decreased corticosterone responses to stress in both sexes. Circuit stimulation did not modulate affective behaviour in either sex. Further analysis indicated that circuit stimulation preferentially activated non-catecholaminergic medullary neurons in both sexes. Additionally, vmPFC terminals targeted medullary inhibitory neurons. Thus, both male and female rats have a direct vmPFC projection to the RVLM that reduces endocrine stress responses, likely by recruiting local RVLM inhibitory neurons. Ultimately, the excitatory/inhibitory balance of vmPFC synapses in the RVLM may regulate stress reactivity and stress-related health outcomes. KEY POINTS: Glutamatergic efferents from the ventromedial prefrontal cortex target catecholaminergic neurons throughout the ventrolateral medulla. Partially segregated, stress-activated ventromedial prefrontal cortex populations innervate the rostral and caudal ventrolateral medulla. Stimulating ventromedial prefrontal cortex synapses in the rostral ventrolateral medulla decreases stress-induced glucocorticoid release in males and females. Stimulating ventromedial prefrontal cortex terminals in the rostral ventrolateral medulla preferentially activates non-catecholaminergic neurons. Ventromedial prefrontal cortex terminals target medullary inhibitory neurons.
Collapse
Affiliation(s)
- Sebastian A. Pace
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA 80523
| | - Ema Lukinic
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA 80523
| | - Tyler Wallace
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA 80523
| | - Carlie McCartney
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA 80523
| | - Brent Myers
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA 80523
| |
Collapse
|
40
|
Jammal Salameh L, Bitzenhofer SH, Hanganu-Opatz IL, Dutschmann M, Egger V. Blood pressure pulsations modulate central neuronal activity via mechanosensitive ion channels. Science 2024; 383:eadk8511. [PMID: 38301001 DOI: 10.1126/science.adk8511] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/11/2023] [Indexed: 02/03/2024]
Abstract
The transmission of the heartbeat through the cerebral vascular system causes intracranial pressure pulsations. We discovered that arterial pressure pulsations can directly modulate central neuronal activity. In a semi-intact rat brain preparation, vascular pressure pulsations elicited correlated local field oscillations in the olfactory bulb mitral cell layer. These oscillations did not require synaptic transmission but reflected baroreceptive transduction in mitral cells. This transduction was mediated by a fast excitatory mechanosensitive ion channel and modulated neuronal spiking activity. In awake animals, the heartbeat entrained the activity of a subset of olfactory bulb neurons within ~20 milliseconds. Thus, we propose that this fast, intrinsic interoceptive mechanism can modulate perception-for example, during arousal-within the olfactory bulb and possibly across various other brain areas.
Collapse
Affiliation(s)
- Luna Jammal Salameh
- Neurophysiology Group, Zoological Institute, Regensburg University, 93040 Regensburg, Germany
| | - Sebastian H Bitzenhofer
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Mathias Dutschmann
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Veronica Egger
- Neurophysiology Group, Zoological Institute, Regensburg University, 93040 Regensburg, Germany
| |
Collapse
|
41
|
Kilpatrick LA, Gupta A, Tillisch K, Labus JS, Naliboff BD, Mayer EA, Chang L. Neural correlates of perceived and relative resilience in male and female patients with irritable bowel syndrome. Neurogastroenterol Motil 2024; 36:e14710. [PMID: 38031358 PMCID: PMC11014739 DOI: 10.1111/nmo.14710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Patients with irritable bowel syndrome (IBS) show lower resilience than healthy controls (HCs), associated with greater symptom severity and worse quality of life. However, little is known about affected markers of resilience or the influence of sex. Furthermore, as resilience is complex, a comprehensive assessment, with multiple resilience measures, is needed. Therefore, we aimed to evaluate perceived and relative resilience and their neural correlates in men and women with IBS. METHODS In 402 individuals (232 IBS [73.3% women] and 170 HCs [61.2% women]), perceived resilience was assessed by the Connor-Davidson Resilience Scale (CDRISC) and Brief Resilience Scale (BRS); relative resilience was assessed by the standardized residual of the Short Form-12 mental component summary score predicted by the Adverse Childhood Experiences score. Non-rotated partial least squares analysis of region-to-region resting-state connectivity data was used to define resilience-related signatures in HCs. Disease and sex-related differences within these signatures were investigated. KEY RESULTS Scores on all resilience measures were lower in IBS than in HCs (p's < 0.05). In all three resilience-related signatures, patients with IBS showed reduced connectivity largely involving the central autonomic network (p's < 0.001). Men with IBS showed lower CDRISC scores than women with IBS, and greater reductions in CDRISC-related connectivity, associated with worse symptom severity (p < 0.05). CONCLUSIONS AND INFERENCES Individuals with IBS show reduced perceived and relative resilience, with reduced connectivity suggesting impaired homeostasis maintenance. Men with IBS may show additional impairment in specific aspects of resilience. Treatments aimed at improving resilience may benefit patients with IBS, especially men with IBS.
Collapse
Affiliation(s)
- Lisa A Kilpatrick
- Goodman-Luskin Microbiome Center, David Geffen School of Medicine, University of California, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Arpana Gupta
- Goodman-Luskin Microbiome Center, David Geffen School of Medicine, University of California, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Kirsten Tillisch
- Goodman-Luskin Microbiome Center, David Geffen School of Medicine, University of California, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Jennifer S Labus
- Goodman-Luskin Microbiome Center, David Geffen School of Medicine, University of California, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA
- Brain Research Institute, University of California, Los Angeles, California, USA
- Gonda (Goldschmied) Neuroscience Research Center, Los Angeles, California, USA
| | - Bruce D Naliboff
- Goodman-Luskin Microbiome Center, David Geffen School of Medicine, University of California, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Emeran A Mayer
- Goodman-Luskin Microbiome Center, David Geffen School of Medicine, University of California, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Lin Chang
- Goodman-Luskin Microbiome Center, David Geffen School of Medicine, University of California, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA
| |
Collapse
|
42
|
Uezono S, Kato T, Yamada Y, Yoshimoto M, Yamamoto N. Afferent and efferent connections of the secondary general visceral sensory nucleus in goldfish. J Comp Neurol 2024; 532:e25566. [PMID: 38104256 DOI: 10.1002/cne.25566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/01/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023]
Abstract
The secondary general visceral sensory nucleus (SVN) receives ascending fibers from the commissural nucleus of Cajal (NCC), or the primary general visceral sensoru in the medulla oblongata of teleosts. However, the full set of fiber connections of the SVN have been studied only in the Nile tilapia. We have investigated the connections of the SVN in goldfish by tracer injection experiments to the nucleus. We paid special attention to the possible presence of spinal afferents, since the spinal cord projects to the lateral parabrachial nucleus, or the presumed homologue of SVN, in mammals. We found that the SVN indeed receives spinal projections. Spinal terminals were restricted to a region ventrolaterally adjacent to the terminal zone of NCC fibers, suggesting that the SVN can be subdivided into two subnuclei: the commissural nucleus-recipient (SVNc) and spinal-recipient (SVNsp) subnuclei. Tracer injections to the SVNc and SVNsp as well as reciprocal injections to the diencephalon revealed that both subnuclei project directly to diencephalic structures, such as the posterior thalamic nucleus and nucleus of lateral recess, although diencephalic projections of the SVNsp were rather sparse. The SVNsp appears to send fibers to more wide-spread targets in the preoptic area than the SVNc does. The SVNc projects to the telencephalon, while the SVNsp sends scarce or possibly no fibers to the telencephalon. Another notable difference was that the SVNsp gives rise to massive projections to the dorsal diencephalon (ventromedial thalamic, central posterior thalamic, and periventricular posterior tubercular nuclei). These differential connections of the subnuclei may reflect discrete functional significances of the general visceral sensory information mediated by the medulla oblongata and spinal cord.
Collapse
Affiliation(s)
- Shiori Uezono
- Laboratory of Fish Biology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Japan
- Department of Rehabilitation Sciences, University of Tokyo Health Sciences, Tama, Japan
| | - Takeshi Kato
- Laboratory of Fish Biology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Japan
| | - Yuusuke Yamada
- Laboratory of Fish Biology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Japan
| | - Masami Yoshimoto
- Department of Rehabilitation Sciences, University of Tokyo Health Sciences, Tama, Japan
| | - Naoyuki Yamamoto
- Laboratory of Fish Biology, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Japan
| |
Collapse
|
43
|
Kang K, Shi K, Liu J, Li N, Wu J, Zhao X. Autonomic dysfunction and treatment strategies in intracerebral hemorrhage. CNS Neurosci Ther 2024; 30:e14544. [PMID: 38372446 PMCID: PMC10875714 DOI: 10.1111/cns.14544] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/15/2023] [Accepted: 11/17/2023] [Indexed: 02/20/2024] Open
Abstract
AIMS Autonomic dysfunction with central autonomic network (CAN) damage occurs frequently after intracerebral hemorrhage (ICH) and contributes to a series of adverse outcomes. This review aims to provide insight and convenience for future clinical practice and research on autonomic dysfunction in ICH patients. DISCUSSION We summarize the autonomic dysfunction in ICH from the aspects of potential mechanisms, clinical significance, assessment, and treatment strategies. The CAN structures mainly include insular cortex, anterior cingulate cortex, amygdala, hypothalamus, nucleus of the solitary tract, ventrolateral medulla, dorsal motor nucleus of the vagus, nucleus ambiguus, parabrachial nucleus, and periaqueductal gray. Autonomic dysfunction after ICH is closely associated with neurological functional outcomes, cardiac complications, blood pressure fluctuation, immunosuppression and infection, thermoregulatory dysfunction, hyperglycemia, digestive dysfunction, and urogenital disturbances. Heart rate variability, baroreflex sensitivity, skin sympathetic nerve activity, sympathetic skin response, and plasma catecholamine concentration can be used to assess the autonomic functional activities after ICH. Risk stratification of patients according to autonomic functional activities, and development of intervention approaches based on the restoration of sympathetic-parasympathetic balance, would potentially improve clinical outcomes in ICH patients. CONCLUSION The review systematically summarizes the evidence of autonomic dysfunction and its association with clinical outcomes in ICH patients, proposing that targeting autonomic dysfunction could be potentially investigated to improve the clinical outcomes.
Collapse
Affiliation(s)
- Kaijiang Kang
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Kaibin Shi
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Jiexin Liu
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Na Li
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Jianwei Wu
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
| | - Xingquan Zhao
- Department of NeurologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Center of StrokeBeijing Institute for Brain DisordersBeijingChina
- Research Unit of Artificial Intelligence in Cerebrovascular DiseaseChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
44
|
Bonaz B. The gut-brain axis in Parkinson's disease. Rev Neurol (Paris) 2024; 180:65-78. [PMID: 38129277 DOI: 10.1016/j.neurol.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
There is a bi-directional communication between the gut, including the microbiota, and the brain through the autonomic nervous system. Accumulating evidence has suggested a bidirectional link between gastrointestinal inflammation and neurodegeneration, in accordance with the concept of the gut-rain axis. An abnormal microbiota-gut-brain interaction contributes to the pathogeny of Parkinson's disease. This supports the hypothesis that Parkinson's disease originates in the gut to spread to the central nervous system, in particular through the vagus nerve. Targeting the gut-to-brain axis with vagus nerve stimulation, fecal microbiota transplantation, gut-selective antibiotics, as well as drugs targeting the leaky gut might be of interest in the management of Parkinson's disease.
Collapse
Affiliation(s)
- B Bonaz
- Service d'hépato-gastroentérologie, Grenoble institut neurosciences, université Grenoble-Alpes, Grenoble, France.
| |
Collapse
|
45
|
Clement G, Cavillon G, Vuillier F, Bouhaddi M, Béreau M. Unveiling autonomic failure in synucleinopathies: Significance in diagnosis and treatment. Rev Neurol (Paris) 2024; 180:79-93. [PMID: 38216420 DOI: 10.1016/j.neurol.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/14/2024]
Abstract
Autonomic failure is frequently encountered in synucleinopathies such as multiple system atrophy (MSA), Parkinson's disease (PD), Lewy body disease, and pure autonomic failure (PAF). Cardiovascular autonomic failure affects quality of life and can be life threatening due to the risk of falls and the increased incidence of myocardial infarction, stroke, and heart failure. In PD and PAF, pathogenic involvement is mainly post-ganglionic, while in MSA, the involvement is mainly pre-ganglionic. Cardiovascular tests exploring the autonomic nervous system (ANS) are based on the analysis of continuous, non-invasive recordings of heart rate and digital blood pressure (BP). They assess facets of sympathetic and parasympathetic activities and provide indications on the integrity of the baroreflex arc. The tilt test is widely used in clinical practice. It can be combined with catecholamine level measurement and analysis of baroreflex activity and cardiac variability for a detailed analysis of cardiovascular damage. MIBG myocardial scintigraphy is the most sensitive test for early detection of autonomic dysfunction. It provides a useful measure of post-ganglionic sympathetic fiber integrity and function and is therefore an effective tool for distinguishing PD from other parkinsonian syndromes such as MSA. Autonomic cardiovascular investigations differentiate between certain parkinsonian syndromes that would otherwise be difficult to segregate, particularly in the early stages of the disease. Exploring autonomic failure by gathering information about residual sympathetic tone, low plasma norepinephrine levels, and supine hypertension can guide therapeutic management of orthostatic hypotension (OH).
Collapse
Affiliation(s)
- G Clement
- Service de neurologie électrophysiologie clinique, CHU de Besançon, 3, boulevard Alexandre-Fleming, 25030 Besançon cedex, France; Centre expert Parkinson, CHU de Besançon, 3, boulevard Alexandre-Fleming, 25030 Besançon cedex, France.
| | - G Cavillon
- Service de neurologie électrophysiologie clinique, CHU de Besançon, 3, boulevard Alexandre-Fleming, 25030 Besançon cedex, France; Centre expert Parkinson, CHU de Besançon, 3, boulevard Alexandre-Fleming, 25030 Besançon cedex, France
| | - F Vuillier
- Laboratoire d'anatomie, UFR santé, université de Franche-Comté, 19, rue Ambroise-Paré, 25030 Besançon cedex, France
| | - M Bouhaddi
- Laboratoire de physiologie-explorations fonctionnelles, CHU de Besançon, 3, boulevard Alexandre-Fleming, 25030 Besançon cedex, France
| | - M Béreau
- Service de neurologie électrophysiologie clinique, CHU de Besançon, 3, boulevard Alexandre-Fleming, 25030 Besançon cedex, France; Centre expert Parkinson, CHU de Besançon, 3, boulevard Alexandre-Fleming, 25030 Besançon cedex, France
| |
Collapse
|
46
|
Tsai SF, Kuo YM. The Role of Central Oxytocin in Autonomic Regulation. CHINESE J PHYSIOL 2024; 67:3-14. [PMID: 38780268 DOI: 10.4103/ejpi.ejpi-d-23-00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/10/2023] [Indexed: 05/25/2024] Open
Abstract
Oxytocin (OXT), a neuropeptide originating from the hypothalamus and traditionally associated with peripheral functions in parturition and lactation, has emerged as a pivotal player in the central regulation of the autonomic nervous system (ANS). This comprehensive ANS, comprising sympathetic, parasympathetic, and enteric components, intricately combines sympathetic and parasympathetic influences to provide unified control. The central oversight of sympathetic and parasympathetic outputs involves a network of interconnected regions spanning the neuroaxis, playing a pivotal role in the real-time regulation of visceral function, homeostasis, and adaptation to challenges. This review unveils the significant involvement of the central OXT system in modulating autonomic functions, shedding light on diverse subpopulations of OXT neurons within the paraventricular nucleus of the hypothalamus and their intricate projections. The narrative progresses from the basics of central ANS regulation to a detailed discussion of the central controls of sympathetic and parasympathetic outflows. The subsequent segment focuses specifically on the central OXT system, providing a foundation for exploring the central role of OXT in ANS regulation. This review synthesizes current knowledge, paving the way for future research endeavors to unravel the full scope of autonomic control and understand multifaceted impact of OXT on physiological outcomes.
Collapse
Affiliation(s)
- Sheng-Feng Tsai
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Min Kuo
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
47
|
Notley SR, Mitchell D, Taylor NAS. A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 3: Heat and cold tolerance during exercise. Eur J Appl Physiol 2024; 124:1-145. [PMID: 37796292 DOI: 10.1007/s00421-023-05276-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/04/2023] [Indexed: 10/06/2023]
Abstract
In this third installment of our four-part historical series, we evaluate contributions that shaped our understanding of heat and cold stress during occupational and athletic pursuits. Our first topic concerns how we tolerate, and sometimes fail to tolerate, exercise-heat stress. By 1900, physical activity with clothing- and climate-induced evaporative impediments led to an extraordinarily high incidence of heat stroke within the military. Fortunately, deep-body temperatures > 40 °C were not always fatal. Thirty years later, water immersion and patient treatments mimicking sweat evaporation were found to be effective, with the adage of cool first, transport later being adopted. We gradually acquired an understanding of thermoeffector function during heat storage, and learned about challenges to other regulatory mechanisms. In our second topic, we explore cold tolerance and intolerance. By the 1930s, hypothermia was known to reduce cutaneous circulation, particularly at the extremities, conserving body heat. Cold-induced vasodilatation hindered heat conservation, but it was protective. Increased metabolic heat production followed, driven by shivering and non-shivering thermogenesis, even during exercise and work. Physical endurance and shivering could both be compromised by hypoglycaemia. Later, treatments for hypothermia and cold injuries were refined, and the thermal after-drop was explained. In our final topic, we critique the numerous indices developed in attempts to numerically rate hot and cold stresses. The criteria for an effective thermal stress index were established by the 1930s. However, few indices satisfied those requirements, either then or now, and the surviving indices, including the unvalidated Wet-Bulb Globe-Thermometer index, do not fully predict thermal strain.
Collapse
Affiliation(s)
- Sean R Notley
- Defence Science and Technology Group, Department of Defence, Melbourne, Australia
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Nigel A S Taylor
- Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
48
|
Cole WR, Tegeler CL, Choi YS, Harris TE, Rachels N, Bellini PG, Haight TJ, Gerdes L, Tegeler CH, Roy MJ. Randomized, controlled clinical trial of acoustic stimulation to reduce postconcussive symptoms. Ann Clin Transl Neurol 2024; 11:105-120. [PMID: 37990636 PMCID: PMC10791035 DOI: 10.1002/acn3.51937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/17/2023] [Accepted: 10/19/2023] [Indexed: 11/23/2023] Open
Abstract
OBJECTIVE Effective interventions are needed to address postconcussive symptoms. We report the results of randomized, sham-controlled trial of Cereset Research™ Standard Operating Procedures (CR-SOP), a noninvasive, closed-loop, allostatic, acoustic stimulation neurotechnology previously shown to improve insomnia. METHODS Military service members, veterans, or their spouses with persistent symptoms (Neurobehavioral Symptom Inventory [NSI] Score ≥23) after mTBI 3 months to 10 years ago, were randomized to receive 10 sessions of engineered tones linked to brainwaves (LB, intervention), or random engineered tones not linked to brainwaves (NL, sham control). The primary outcome was change in NSI, with secondary outcomes of heart rate variability and self-report measures of sleep, mood, and anxiety. RESULTS Participants (n = 106, 22% female, mean age 37.1, 2.8 deployments, 3.8 TBIs) were randomized 1:1 to LB or NL, with no significant differences between groups at baseline. Among all study participants, the NSI declined from baseline 41.0 to 27.2 after (P < 0.0001), with gains largely sustained at 3 months (31.2) and 6 months (28.4). However, there were no significant differences between the LB (NSI declined from 39.9 at baseline to 28.2 post-intervention, 31.5 at 3 months, and 29.4 at 6 months) and NL (NSI declined from 41.5 at baseline to 26.2, 29.9, and 27.3, respectively. Similar patterns were observed for the PCL5 and PHQ-9 and there was no difference in HRV between groups. INTERPRETATION Ten hours of acoustic stimulation while resting in a zero-gravity chair improves postconcussive symptoms. However, linking tones to brain electrical activity did not reduce symptoms more than random tones. REGISTRATION ClinicalTrials.gov - NCT03649958.
Collapse
Affiliation(s)
- Wesley R. Cole
- University of North CarolinaChapel HillNorth CarolinaUSA
| | | | - Y. Sammy Choi
- Womack Army Medical CenterFort BraggNorth CarolinaUSA
| | | | - Nora Rachels
- Womack Army Medical CenterFort BraggNorth CarolinaUSA
| | - Paula G. Bellini
- Uniformed Services UniversityBethesdaMarylandUSA
- Henry M. Jackson FoundationRockvilleMarylandUSA
| | - Thaddeus J. Haight
- Uniformed Services UniversityBethesdaMarylandUSA
- Henry M. Jackson FoundationRockvilleMarylandUSA
| | - Lee Gerdes
- Brain State Technologies, LLCScottsdaleArizonaUSA
| | | | - Michael J. Roy
- Uniformed Services UniversityBethesdaMarylandUSA
- Walter Reed National Military Medical CenterBethesdaMarylandUSA
| |
Collapse
|
49
|
Zhang Y, Zhang Q, Wang J, Zhou M, Qing Y, Zou H, Li J, Yang C, Becker B, Kendrick KM, Yao S. "Listen to your heart": A novel interoceptive strategy for real-time fMRI neurofeedback training of anterior insula activity. Neuroimage 2023; 284:120455. [PMID: 37952779 DOI: 10.1016/j.neuroimage.2023.120455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023] Open
Abstract
Real-time fMRI (rt-fMRI) neurofeedback (NF) training is a novel non-invasive technique for volitional brain modulation. Given the important role of the anterior insula (AI) in human cognitive and affective processes, it has become one of the most investigated regions in rt-fMRI studies. Most rt-fMRI insula studies employed emotional recall/imagery as the regulation strategy, which may be less effective for psychiatric disorders characterized by altered emotional processing. The present study thus aimed to examine the feasibility of a novel interoceptive strategy based on heartbeat detection in rt-fMRI guided AI regulation and its associated behavioral changes using a randomized double-blind, sham feedback-controlled between-subject design. 66 participants were recruited and randomly assigned to receive either NF from the left AI (LAI) or sham feedback from a control region while using the interoceptive strategy. N = 57 participants were included in the final data analyses. Empathic and interoceptive pre-post training changes were collected as behavioral measures of NF training effects. Results showed that participants in the NF group exhibited stronger LAI activity than the control group with LAI activity being positively correlated with interoceptive accuracy following NF training, although there were no significant increases of LAI activity over training sessions. Importantly, ability of LAI regulation could be maintained in a transfer session without feedback. Successful LAI regulation was associated with strengthened functional connectivity of the LAI with cognitive control, memory and learning, and salience/interoceptive networks. The present study demonstrated for the first time the efficacy of a novel regulation strategy based on interoceptive processing in up-regulating LAI activity. Our findings also provide proof of concept for the translational potential of this strategy in rt-fMRI AI regulation of psychiatric disorders characterized by altered emotional processing.
Collapse
Affiliation(s)
- Yuan Zhang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China; The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qiong Zhang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China; The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jiayuan Wang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China; The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Menghan Zhou
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China; The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yanan Qing
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China; The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Haochen Zou
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China; The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jianfu Li
- The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chenghui Yang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Benjamin Becker
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; Department of Psychology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Keith M Kendrick
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China; The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Shuxia Yao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China; The MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
50
|
Korom M, Tabachnick AR, Sellers T, Valadez EA, Tottenham N, Dozier M. Associations between cortical thickness and parasympathetic nervous system functioning during middle childhood. Psychophysiology 2023; 60:e14391. [PMID: 37455342 PMCID: PMC10789912 DOI: 10.1111/psyp.14391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/03/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
Positive associations have been found between cortical thickness and measures of parasympathetic cardiac control (e.g., respiratory sinus arrhythmia, RSA) in adults, which may indicate mechanistic integration between neural and physiological indicators of stress regulation. However, it is unknown when in development this brain-body association arises and whether the direction of association and neuroanatomical localization vary across development. To investigate this, we collected structural magnetic resonance imaging and resting-state respiratory sinus arrhythmia data from children in middle childhood (N = 62, Mage = 10.09, range: 8.28-12.14 years). Whole-brain and exploratory ROI analyses revealed positive associations between RSA and cortical thickness in four frontal and parietal clusters in the left hemisphere and one cluster in the right. Exploratory ROI analyses revealed a similar positive association between cortical thickness and RSA, with two regions surviving multiple comparison correction, including the inferior frontal orbital gyrus and the Sylvian fissure. Prior work has identified these cortical areas as part of the central autonomic network that supports integrative regulation of stress response (e.g., autonomic, endocrine, and behavioral) and emotional expression. Our results suggest that the association between cortical thickness and resting RSA is present in middle childhood and is similar to the associations seen during adulthood. Future studies should investigate associations between RSA and cortical thickness among young children and adolescents.
Collapse
Affiliation(s)
- Marta Korom
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | | | - Tabitha Sellers
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Emilio A Valadez
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, Maryland, USA
| | - Nim Tottenham
- Department of Psychology, Columbia University in the City of New York, New York, New York, USA
| | - Mary Dozier
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|