1
|
Son YL, Hou J, Kato-Suzuki M, Okamatsu-Ogura Y, Watase M, Kiyonari H, Kondo T. Eva1 deficiency prevents obesity-induced metabolic disorders by reducing visceral adipose dysfunction. Metabolism 2025; 168:156235. [PMID: 40118448 DOI: 10.1016/j.metabol.2025.156235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
AIMS Epithelial V-like antigen 1 (Eva1) is a highly specific marker for brown adipose tissue (BAT) in both mice and humans, but its metabolic function remains unclear. We investigated the impact of Eva1 deletion on the development of obesity. METHODS To assess the metabolic role of Eva1, we generated whole-body and adipocyte-specific Eva1knockout (KO) mice, which were subjected to a high-fat diet (HFD) for 12 weeks and characterized metabolic phenotypes. To further elucidate the depot-dependent impact of Eva1 deficiency, we performed histological analysis and 3' mRNA-seq of BAT and epididymal visceral white adipose tissue (eWAT). To investigate the role of macrophage-derived Eva1 in obesity development, we transplanted wild-type (WT) or Eva1KO macrophages into Eva1KO mice fed an HFD. RESULTS We found that whole-body Eva1KO mice are resistant to HFD-induced obesity, insulin resistance and visceral adipose inflammation. However, Eva1 deletion in adipocytes, both brown and white, did not phenocopy these protective effects. Notably, whole-body Eva1 deficiency triggers functional changes in eWAT, but not in BAT. These results led us to investigate a possible involvement of macrophages in Eva1-mediated obesity regulation. We found that Eva1 is expressed in macrophages and plays a role in lipopolysaccharide (LPS)-induced inflammatory responses, possibly through the direct interaction with toll-like receptor 4 (TLR4). Moreover, Eva1KO mice exhibited improved survival rates in the face of severe sepsis induced by LPS. Importantly, transplantation of WT macrophages to Eva1KO mice abolished the beneficial effects of whole-body Eva1 deletion against obesity and visceral adipose inflammation. CONCLUSION Our findings highlight macrophage-derived Eva1 as an important mediator in obesity-induced eWAT remodeling, suggesting that targeting Eva1 could offer a novel therapeutic strategy for obesity-related metabolic disorders.
Collapse
Affiliation(s)
- You Lee Son
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.
| | - Jiahui Hou
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Mira Kato-Suzuki
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Megumi Watase
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Toru Kondo
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
2
|
Bai SY, Zeng DY, Ouyang M, Zeng Y, Tan W, Xu L. Synaptic cell adhesion molecules contribute to the pathogenesis and progression of fragile X syndrome. Front Cell Neurosci 2024; 18:1393536. [PMID: 39022311 PMCID: PMC11252757 DOI: 10.3389/fncel.2024.1393536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and a monogenic cause of autism spectrum disorders. Deficiencies in the fragile X messenger ribonucleoprotein, encoded by the FMR1 gene, lead to various anatomical and pathophysiological abnormalities and behavioral deficits, such as spine dysmorphogenesis and learning and memory impairments. Synaptic cell adhesion molecules (CAMs) play crucial roles in synapse formation and neural signal transmission by promoting the formation of new synaptic contacts, accurately organizing presynaptic and postsynaptic protein complexes, and ensuring the accuracy of signal transmission. Recent studies have implicated synaptic CAMs such as the immunoglobulin superfamily, N-cadherin, leucine-rich repeat proteins, and neuroligin-1 in the pathogenesis of FXS and found that they contribute to defects in dendritic spines and synaptic plasticity in FXS animal models. This review systematically summarizes the biological associations between nine representative synaptic CAMs and FMRP, as well as the functional consequences of the interaction, to provide new insights into the mechanisms of abnormal synaptic development in FXS.
Collapse
Affiliation(s)
- Shu-Yuan Bai
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - De-Yang Zeng
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - Ming Ouyang
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - Yan Zeng
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - Wei Tan
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - Lang Xu
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Yan X, Sun J, Yang W, Li X, Yang Q, Li Y, Wu W, Wei P, Wang L, Song L. An immunoglobulin superfamily member (CgIgIT2) functions as immune inhibitory receptor to inhibit the inflammatory cytokine expressions in Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 144:104708. [PMID: 37044269 DOI: 10.1016/j.dci.2023.104708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 06/05/2023]
Abstract
Immune inhibitory receptors are increasingly acknowledged as potent regulators of immune response, which inhibit the overactivation of immune system and play an important role in maintaining immune homeostasis. In the present study, a novel immunoglobulin superfamily member (CgIgIT2) was identified from the Pacific oyster, Crassostrea gigas. The protein sequence of CgIgIT2 contained one signal peptide, four Ig domains, one fibronectin type III domain, one transmembrane domain, and a cytoplasmic tail with two intracellular immunoreceptor tyrosine-based inhibitory motifs (ITIMs) and one immunoreceptor tyrosine-based switch motif (ITSM). The mRNA transcripts of CgIgIT2 were widely expressed in all the tested tissues, including haemolymph, gill, mantle, adductor muscle, labial palp, gonad and hepatopancreas, with the highest expression in haemolymph. The mRNA expressions of CgIgIT2 in haemocytes increased significantly at 24, 48 and 72 h after Vibrio splendidus stimulation. The positive green signals of CgIgIT2 protein were mainly detected in granulocytes of haemocytes, which were 1.27-fold and 2.15-fold (p < 0.05) higher than that of semi-granulocytes and agranulocytes, respectively. And CgIgIT2 was mainly located in the membrane and cytoplasm of haemocytes. The recombinant protein of CgIgIT2-4 × Ig (rCgIgIT2-4 × Ig) exhibited binding activity towards multiple pathogen-associated molecular patterns (PAMPs), including lipopolysaccharides (LPS), peptidoglycan (PGN), mannose (MAN) and polyinosinic-polycytidylic acid (Poly (I: C)) with the highest affinity for LPS. rCgIgIT2-4 × Ig could also bind Gram-negative bacteria (V. splendidus, V. anguillarum, Escherichia coli), Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis), and fungi (Pichia pastoris). In the blocking assay with anti-CgIgIT2 antibody, the mRNA expressions of interleukins (CgIL17-1, CgIL17-3 and CgIL17-6) and tumor necrosis factors (CgTNF-1 and CgTNF-2) in haemocytes all increased significantly at 12 h after V. splendidus stimulation. These results suggested that CgIgIT2 could function as an inhibitor receptor to bind different PAMPs and microbes, as well as inhibit the mRNA expressions of multiple inflammatory cytokines in oysters.
Collapse
Affiliation(s)
- Xiaoxue Yan
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China.
| | - Wenwen Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China; College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China
| | - Xiaopeng Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Qian Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China; College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China
| | - Wei Wu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China; College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China
| | - Ping Wei
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
4
|
Capuz A, Osien S, Karnoub MA, Aboulouard S, Laurent E, Coyaud E, Raffo-Romero A, Duhamel M, Bonnefond A, Derhourhi M, Trerotola M, El Yazidi-Belkoura I, Devos D, Zilkova M, Kobeissy F, Vanden Abeele F, Fournier I, Cizkova D, Rodet F, Salzet M. Astrocytes express aberrant immunoglobulins as putative gatekeeper of astrocytes to neuronal progenitor conversion. Cell Death Dis 2023; 14:237. [PMID: 37015912 PMCID: PMC10073301 DOI: 10.1038/s41419-023-05737-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/24/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023]
Abstract
Using multi-omics analyses including RNAseq, RT-PCR, RACE-PCR, and shotgun proteomic with enrichment strategies, we demonstrated that newborn rat astrocytes produce neural immunoglobulin constant and variable heavy chains as well as light chains. However, their edification is different from the ones found in B cells and they resemble aberrant immunoglobulins observed in several cancers. Moreover, the complete enzymatic V(D)J recombination complex has also been identified in astrocytes. In addition, the constant heavy chain is also present in adult rat astrocytes, whereas in primary astrocytes from human fetus we identified constant and variable kappa chains as well as the substitution lambda chains known to be involved in pre-B cells. To gather insights into the function of these neural IgGs, CRISPR-Cas9 of IgG2B constant heavy chain encoding gene (Igh6), IgG2B overexpression, proximal labeling of rat astrocytes IgG2B and targets identification through 2D gels were performed. In Igh6 KO astrocytes, overrepresentation of factors involved in hematopoietic cells, neural stem cells, and the regulation of neuritogenesis have been identified. Moreover, overexpression of IgG2B in astrocytes induces the CRTC1-CREB-BDNF signaling pathway known to be involved in gliogenesis, whereas Igh6 KO triggers the BMP/YAP1/TEAD3 pathway activated in astrocytes dedifferentiation into neural progenitors. Proximal labeling experiments revealed that IgG2B is N-glycosylated by the OST complex, addressed to vesicle membranes containing the ATPase complex, and behaves partially like CD98hc through its association with LAT1. These experiments also suggest that proximal IgG2B-LAT1 interaction occurs concomitantly with MACO-1 and C2CD2L, at the heart of a potentially novel cell signaling platform. Finally, we demonstrated that these chains are synthesized individually and associated to recognize specific targets. Indeed, intermediate filaments Eif4a2 and Pdia6 involved in astrocyte fate constitute targets for these neural IgGs. Taken together, we hypothese that neural aberrant IgG chains may act as gatekeepers of astrocytes' fate.
Collapse
Affiliation(s)
- Alice Capuz
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
| | - Sylvain Osien
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
| | - Mélodie Anne Karnoub
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
| | - Soulaimane Aboulouard
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
| | - Estelle Laurent
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
| | - Etienne Coyaud
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
| | - Antonella Raffo-Romero
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
| | - Marie Duhamel
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
| | - Amélie Bonnefond
- Univ. Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, CHU de Lille, 1 place de Verdun, 59000, Lille, France
| | - Mehdi Derhourhi
- Univ. Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, CHU de Lille, 1 place de Verdun, 59000, Lille, France
| | - Marco Trerotola
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), University 'G. D'Annunzio', Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, University 'G. D'Annunzio', Chieti, Italy
| | - Ikram El Yazidi-Belkoura
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59655, Villeneuve d'Ascq, France
| | - David Devos
- Université de Lille, INSERM, U1172, CHU-Lille, Lille Neuroscience Cognition Research Centre, 1 place de Verdun, 59000, Lille, France
| | - Monika Zilkova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 84510, Bratislava, Slovakia
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Fabien Vanden Abeele
- Université de Lille, INSERM U1003, Laboratory of Cell Physiology, 59655, Villeneuve d'Ascq, France
| | - Isabelle Fournier
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
- Institut Universitaire de France, 75005, Paris, France
| | - Dasa Cizkova
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 84510, Bratislava, Slovakia
- Centre for Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Franck Rodet
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France.
| | - Michel Salzet
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, 59655, Villeneuve d'Ascq, France.
- Institut Universitaire de France, 75005, Paris, France.
| |
Collapse
|
5
|
Zhai RG. The Architecture of the Presynaptic Release Site. ADVANCES IN NEUROBIOLOGY 2023; 33:1-21. [PMID: 37615861 DOI: 10.1007/978-3-031-34229-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The architecture of the presynaptic release site is exquisitely designed to facilitate and regulate synaptic vesicle exocytosis. With the identification of some of the building blocks of the active zone and the advent of super resolution imaging techniques, we are beginning to understand the morphological and functional properties of synapses in great detail. Presynaptic release sites consist of the plasma membrane, the cytomatrix, and dense projections. These three components are morphologically distinct but intimately connected with each other and with postsynaptic specializations, ensuring the fidelity of synaptic vesicle tethering, docking, and fusion, as well as signal detection. Although the morphology and molecular compositions of active zones may vary among species, tissues, and cells, global architectural design of the release sites is highly conserved.
Collapse
Affiliation(s)
- R Grace Zhai
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
6
|
Lobb-Rabe M, DeLong K, Salazar RJ, Zhang R, Wang Y, Carrillo RA. Dpr10 and Nocte are required for Drosophila motor axon pathfinding. Neural Dev 2022; 17:10. [PMID: 36271407 PMCID: PMC9585758 DOI: 10.1186/s13064-022-00165-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
The paths axons travel to reach their targets and the subsequent synaptic connections they form are highly stereotyped. How cell surface proteins (CSPs) mediate these processes is not completely understood. The Drosophila neuromuscular junction (NMJ) is an ideal system to study how pathfinding and target specificity are accomplished, as the axon trajectories and innervation patterns are known and easily visualized. Dpr10 is a CSP required for synaptic partner choice in the neuromuscular and visual circuits and for axon pathfinding in olfactory neuron organization. In this study, we show that Dpr10 is also required for motor axon pathfinding. To uncover how Dpr10 mediates this process, we used immunoprecipitation followed by mass spectrometry to identify Dpr10 associated proteins. One of these, Nocte, is an unstructured, intracellular protein implicated in circadian rhythm entrainment. We mapped nocte expression in larvae and found it widely expressed in neurons, muscles, and glia. Cell-specific knockdown suggests nocte is required presynaptically to mediate motor axon pathfinding. Additionally, we found that nocte and dpr10 genetically interact to control NMJ assembly, suggesting that they function in the same molecular pathway. Overall, these data reveal novel roles for Dpr10 and its newly identified interactor, Nocte, in motor axon pathfinding and provide insight into how CSPs regulate circuit assembly.
Collapse
Affiliation(s)
- Meike Lobb-Rabe
- Department of Molecular Genetics & Cellular Biology, University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA
- Program in Cell and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Katherine DeLong
- Department of Molecular Genetics & Cellular Biology, University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA
| | - Rio J Salazar
- Department of Molecular Genetics & Cellular Biology, University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA
- Program in Cell and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Ruiling Zhang
- Department of Molecular Genetics & Cellular Biology, University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Yupu Wang
- Department of Molecular Genetics & Cellular Biology, University of Chicago, Chicago, IL, 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Robert A Carrillo
- Department of Molecular Genetics & Cellular Biology, University of Chicago, Chicago, IL, 60637, USA.
- Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA.
- Program in Cell and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
7
|
GPBAR1 preserves neurite and synapse of dopaminergic neurons via RAD21-OPCML signaling: Role in preventing Parkinson's disease in mouse model and human patients. Pharmacol Res 2022; 184:106459. [PMID: 36152741 DOI: 10.1016/j.phrs.2022.106459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022]
Abstract
Parkinson's disease (PD) exhibits systemic impacts on the metabolism, while metabolic alteration contributes to the risk and progression of PD. Bile acids (BA) metabolism disturbance has been linked to PD pathology. Membrane-bound G protein-coupled bile acid receptor 1 (GPBAR1) is expressed in the brain and thought to be neuroprotective; however, the role of GPBAR1 in PD remains unknown. The current study aimed to explore the effect of GPBAR1 in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice with dopaminergic (DA) neuron-specific Gpbar1 knockdown or central GPBAR1 activation. The underlying mechanisms were investigated using mesencephalic primary neurons analyzed. Our study found that GPBAR1 was reduced in the substantia nigra of PD patients and MPTP-PD mice, and its expression was negatively correlated with the severity of PD-related features. Genetic downregulation of Gpbar1 in mouse mesencephalic DA neurons exacerbated MPTP-induced neurobehavioral and neuropathological deficits, whereas activation of central GPBAR1 with INT-777 (INT) relieved it. Moreover, in vivo and in vitro experiments showed the neurite- and synapse-protective effects of GPBAR1 activation in PD model. Mechanistically, by promoting the nuclear localization of cohesin subunit RAD21, GPBAR1 activation increased opioid-binding cell adhesion molecule (Opcml) expression, thereby inhibiting neurite and synapse degeneration of DA neurons in PD model. Collectively, our findings demonstrate that GPBAR1 is implicated in PD pathogenesis and activation of central GPBAR1 with INT antagonizes neurodegenerative pathology in PD model. This neuroprotection, at least in part, is attributed to the RAD21-OPCML signaling in neurons. Hence, GPBAR1 may serve as a promising candidate target for PD treatment.
Collapse
|
8
|
Wang C, Ma H, Zhang B, Hua T, Wang H, Wang L, Han L, Li Q, Wu W, Sun Y, Yang H, Lu X. Inhibition of IL1R1 or CASP4 attenuates spinal cord injury through ameliorating NLRP3 inflammasome-induced pyroptosis. Front Immunol 2022; 13:963582. [PMID: 35990672 PMCID: PMC9389052 DOI: 10.3389/fimmu.2022.963582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating trauma characterized by serious neuroinflammation and permanent neurological dysfunction. However, the molecular mechanism of SCI remains unclear, and few effective medical therapies are available at present. In this study, multiple bioinformatics methods were used to screen out novel targets for SCI, and the mechanism of these candidates during the progression of neuroinflammation as well as the therapeutic effects were both verified in a rat model of traumatic SCI. As a result, CASP4, IGSF6 and IL1R1 were identified as the potential diagnostic and therapeutic targets for SCI by computational analysis, which were enriched in NF-κB and IL6-JAK-STATA3 signaling pathways. In the injured spinal cord, these three signatures were up-regulated and closely correlated with NLRP3 inflammasome formation and gasdermin D (GSDMD) -induced pyroptosis. Intrathecal injection of inhibitors of IL1R1 or CASP4 improved the functional recovery of SCI rats and decreased the expression of these targets and inflammasome component proteins, such as NLRP3 and GSDMD. This treatment also inhibited the pp65 activation into the nucleus and apoptosis progression. In conclusion, our findings of the three targets shed new light on the pathogenesis of SCI, and the use of immunosuppressive agents targeting these proteins exerted anti-inflammatory effects against spinal cord inflammation by inhibiting NF-kB and NLRP3 inflammasome activation, thus blocking GSDMD -induced pyroptosis and immune activation.
Collapse
Affiliation(s)
- Chenfeng Wang
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai, China
| | - Hongdao Ma
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai, China
| | - Bangke Zhang
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai, China
| | - Tong Hua
- Department of Anesthesiology, Shanghai Changzheng Hospital, Shanghai, China
| | - Haibin Wang
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai, China
| | - Liang Wang
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai, China
| | - Lin Han
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai, China
| | - Qisheng Li
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai, China
| | - Weiqing Wu
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai, China
| | - Yulin Sun
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai, China
| | - Haisong Yang
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai, China
- *Correspondence: Xuhua Lu, ; Haisong Yang,
| | - Xuhua Lu
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai, China
- *Correspondence: Xuhua Lu, ; Haisong Yang,
| |
Collapse
|
9
|
Scheurer L, Das Gupta RR, Saebisch A, Grampp T, Benke D, Zeilhofer HU, Wildner H. Expression of immunoglobulin constant domain genes in neurons of the mouse central nervous system. Life Sci Alliance 2021; 4:4/11/e202101154. [PMID: 34433614 PMCID: PMC8403770 DOI: 10.26508/lsa.202101154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/16/2021] [Accepted: 08/17/2021] [Indexed: 11/24/2022] Open
Abstract
General consensus states that immunoglobulins are exclusively expressed by B lymphocytes to form the first line of defense against common pathogens. Here, we provide compelling evidence for the expression of two heavy chain immunoglobulin genes in subpopulations of neurons in the mouse brain and spinal cord. RNA isolated from excitatory and inhibitory neurons through ribosome affinity purification revealed Ighg3 and Ighm transcripts encoding for the constant (Fc), but not the variable regions of IgG3 and IgM. Because, in the absence of the variable immunoglobulin regions, these transcripts lack the canonical transcription initiation site used in lymphocytes, we screened for alternative 5' transcription start sites and identified a novel 5' exon adjacent to a proposed promoter element. Immunohistochemical, Western blot, and in silico analyses strongly support that these neuronal transcripts are translated into proteins containing four Immunoglobulin domains. Our data thus demonstrate the expression of two Fc-encoding genes Ighg3 and Ighm in spinal and supraspinal neurons of the murine CNS and suggest a hitherto unknown function of the encoded proteins.
Collapse
Affiliation(s)
- Louis Scheurer
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
| | - Rebecca R Das Gupta
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland.,Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Annika Saebisch
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
| | - Thomas Grampp
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
| | - Dietmar Benke
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland .,Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Hendrik Wildner
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
| |
Collapse
|
10
|
Desse VE, Blanchette CR, Nadour M, Perrat P, Rivollet L, Khandekar A, Bénard CY. Neuronal post-developmentally acting SAX-7S/L1CAM can function as cleaved fragments to maintain neuronal architecture in C. elegans. Genetics 2021; 218:6296841. [PMID: 34115111 DOI: 10.1093/genetics/iyab086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/24/2021] [Indexed: 01/09/2023] Open
Abstract
Whereas remarkable advances have uncovered mechanisms that drive nervous system assembly, the processes responsible for the lifelong maintenance of nervous system architecture remain poorly understood. Subsequent to its establishment during embryogenesis, neuronal architecture is maintained throughout life in the face of the animal's growth, maturation processes, the addition of new neurons, body movements, and aging. The C. elegans protein SAX-7, homologous to the vertebrate L1 protein family of neural adhesion molecules, is required for maintaining the organization of neuronal ganglia and fascicles after their successful initial embryonic development. To dissect the function of sax-7 in neuronal maintenance, we generated a null allele and sax-7S-isoform-specific alleles. We find that the null sax-7(qv30) is, in some contexts, more severe than previously described mutant alleles, and that the loss of sax-7S largely phenocopies the null, consistent with sax-7S being the key isoform in neuronal maintenance. Using a sfGFP::SAX-7S knock-in, we observe sax-7S to be predominantly expressed across the nervous system, from embryogenesis to adulthood. Yet, its role in maintaining neuronal organization is ensured by post-developmentally acting SAX-7S, as larval transgenic sax-7S(+) expression alone is sufficient to profoundly rescue the null mutants' neuronal maintenance defects. Moreover, the majority of the protein SAX-7 appears to be cleaved, and we show that these cleaved SAX-7S fragments together, not individually, can fully support neuronal maintenance. These findings contribute to our understanding of the role of the conserved protein SAX-7/L1CAM in long-term neuronal maintenance, and may help decipher processes that go awry in some neurodegenerative conditions.
Collapse
Affiliation(s)
- Virginie E Desse
- Department of Biological Sciences, CERMO-FC Research Center, Université du Québec à Montréal, Montréal, QC H2X 1Y4, Canada
| | - Cassandra R Blanchette
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Malika Nadour
- Department of Biological Sciences, CERMO-FC Research Center, Université du Québec à Montréal, Montréal, QC H2X 1Y4, Canada
| | - Paola Perrat
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lise Rivollet
- Department of Biological Sciences, CERMO-FC Research Center, Université du Québec à Montréal, Montréal, QC H2X 1Y4, Canada
| | - Anagha Khandekar
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Claire Y Bénard
- Department of Biological Sciences, CERMO-FC Research Center, Université du Québec à Montréal, Montréal, QC H2X 1Y4, Canada
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
11
|
Hisaoka T, Komori T, Fujimoto K, Kitamura T, Morikawa Y. Comprehensive expression pattern of kin of irregular chiasm-like 3 in the adult mouse brain. Biochem Biophys Res Commun 2021; 563:66-72. [PMID: 34062388 DOI: 10.1016/j.bbrc.2021.05.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022]
Abstract
Kin of irregular chiasm-like 3 (Kirrel3), a member of the immunoglobulin superfamily, is expressed in the central nervous system during development and in adulthood. It has been reported that Kirrel3 is involved in the axonal fasciculation in the olfactory bulb, the neuronal migration in the pontine nucleus, and the synapse formation in the hippocampal neurons in mice. Although KIRREL3 mutations have been implicated in autism spectrum disorder and intellectual disability in humans, the comprehensive expression pattern of Kirrel3 in the adult brain is not fully understood. To better visualize Kirrel3 expression pattern and to gain insight into the role of Kirrel3 in the brain, we investigated the expression of Kirrel3 in the adult brain of Kirrel3-heterozygous (Kirrel3+/-) mice, in which Kirrel3-expressing cells could be identified by the expression of β-galactosidase (β-gal) in the nucleus of cells. The strong expression of β-gal was observed in the hippocampus, cerebral cortex, olfactory bulb, amygdala, thalamus, and cerebellum. In the hippocampus, β-gal was detected in the dentate gyrus and in the ventral parts of CA1 and CA3, which are known to be involved in the social recognition memory. Within the cerebral cortex, many cells with β-gal expression were observed in the olfactory area and auditory area. In the striatum, neurons with β-gal expression were mainly observed in the ventral striatum. Expression of β-gal was observed in all layers in the cerebellum and olfactory bulb, except for the olfactory nerve layer. Double-immunofluorescence staining of β-galactosidase with neuronal markers revealed that β-gal expression was exclusively detected in neurons. These results suggest that Kirrel3 may be involved in the maintenance of neuronal networks, such as the maintenance of synaptic connectivity and plasticity in the motor, sensory, and cognitive circuits of adult brain.
Collapse
Affiliation(s)
- Tomoko Hisaoka
- Department of Anatomy and Neurobiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Tadasuke Komori
- Department of Anatomy and Neurobiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Kohta Fujimoto
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Yoshihiro Morikawa
- Department of Anatomy and Neurobiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan.
| |
Collapse
|
12
|
Glycoproteomic analysis of the changes in protein N-glycosylation during neuronal differentiation in human-induced pluripotent stem cells and derived neuronal cells. Sci Rep 2021; 11:11169. [PMID: 34045517 PMCID: PMC8160270 DOI: 10.1038/s41598-021-90102-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/04/2021] [Indexed: 11/09/2022] Open
Abstract
N-glycosylation of glycoproteins, a major post-translational modification, plays a crucial role in various biological phenomena. In central nervous systems, N-glycosylation is thought to be associated with differentiation and regeneration; however, the state and role of N-glycosylation in neuronal differentiation remain unclear. Here, we conducted sequential LC/MS/MS analyses of tryptic digest, enriched glycopeptides, and deglycosylated peptides of proteins derived from human-induced pluripotent stem cells (iPSCs) and iPSC-derived neuronal cells, which were used as a model of neuronal differentiation. We demonstrate that the production profiles of many glycoproteins and their glycoforms were altered during neuronal differentiation. Particularly, the levels of glycoproteins modified with an N-glycan, consisting of five N-acetylhexosamines, three hexoses, and a fucose (HN5H3F), increased in dopaminergic neuron-rich cells (DAs). The N-glycan was deduced to be a fucosylated and bisected biantennary glycan based on product ion spectra. Interestingly, the HN5H3F-modified proteins were predicted to be functionally involved in neural cell adhesion, axon guidance, and the semaphorin-plexin signaling pathway, and protein modifications were site-selective and DA-selective regardless of protein production levels. Our integrated method for glycoproteome analysis and resultant profiles of glycoproteins and their glycoforms provide valuable information for further understanding the role of N-glycosylation in neuronal differentiation and neural regeneration.
Collapse
|
13
|
Zhang Z, Ye M, Li Q, You Y, Yu H, Ma Y, Mei L, Sun X, Wang L, Yue W, Li R, Li J, Zhang D. The Schizophrenia Susceptibility Gene OPCML Regulates Spine Maturation and Cognitive Behaviors through Eph-Cofilin Signaling. Cell Rep 2020; 29:49-61.e7. [PMID: 31577955 DOI: 10.1016/j.celrep.2019.08.091] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 07/09/2019] [Accepted: 08/27/2019] [Indexed: 12/30/2022] Open
Abstract
Previous genetic and biological evidence converge on the involvement of synaptic dysfunction in schizophrenia, and OPCML, encoding a synaptic membrane protein, is reported to be genetically associated with schizophrenia. However, its role in the pathophysiology of schizophrenia remains largely unknown. Here, we found that Opcml is strongly expressed in the mouse hippocampus; ablation of Opcml leads to reduced phosphorylated cofilin and dysregulated F-actin dynamics, which disturbs the spine maturation. Furthermore, Opcml interacts with EphB2 to control the stability of spines by regulating the ephrin-EphB2-cofilin signaling pathway. Opcml-deficient mice display impaired cognitive behaviors and abnormal sensorimotor gating, which are similar to features in neuropsychiatric disorders such as schizophrenia. Notably, the administration of aripiprazole partially restores the abnormal behaviors in Opcml-/- mice by increasing the phosphorylated cofilin level and facilitating spine maturation. We demonstrated a critical role of the schizophrenia-susceptible gene OPCML in spine maturation and cognitive behaviors via regulating the ephrin-EphB2-cofilin signaling pathway, providing further insights into the characteristics of schizophrenia.
Collapse
Affiliation(s)
- Zhengrong Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Maoqing Ye
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Qiongwei Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yang You
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Hao Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yuanlin Ma
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Liwei Mei
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Xiaqin Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Lifang Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Weihua Yue
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Rena Li
- National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Jun Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China.
| | - Dai Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.
| |
Collapse
|
14
|
Vukojevic V, Mastrandreas P, Arnold A, Peter F, Kolassa IT, Wilker S, Elbert T, de Quervain DJF, Papassotiropoulos A, Stetak A. Evolutionary conserved role of neural cell adhesion molecule-1 in memory. Transl Psychiatry 2020; 10:217. [PMID: 32632143 PMCID: PMC7338365 DOI: 10.1038/s41398-020-00899-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 01/17/2023] Open
Abstract
The neural cell adhesion molecule 1 (NCAM-1) has been implicated in several brain-related biological processes, including neuronal migration, axonal branching, fasciculation, and synaptogenesis, with a pivotal role in synaptic plasticity. Here, we investigated the evolutionary conserved role of NCAM-1 in learning and memory. First, we investigated sustained changes in ncam-1 expression following aversive olfactory conditioning in C. elegans using molecular genetic methods. Furthermore, we examined the link between epigenetic signatures of the NCAM1 gene and memory in two human samples of healthy individuals (N = 568 and N = 319) and in two samples of traumatized individuals (N = 350 and N = 463). We found that olfactory conditioning in C. elegans induced ncam-1 expression and that loss of ncam-1 function selectively impaired associative long-term memory, without causing acquisition, sensory, or short-term memory deficits. Reintroduction of the C. elegans or human NCAM1 fully rescued memory impairment, suggesting a conserved role of NCAM1 for memory. In parallel, DNA methylation of the NCAM1 promoter in two independent healthy Swiss cohorts was associated with memory performance. In two independent Sub-Saharan populations of conflict zone survivors who had faced severe trauma, DNA methylation at an alternative promoter of the NCAM1 gene was associated with traumatic memories. Our results support a role of NCAM1 in associative memory in nematodes and humans, and might, ultimately, be helpful in elucidating diagnostic markers or suggest novel therapy targets for memory-related disorders, like PTSD.
Collapse
Affiliation(s)
- Vanja Vukojevic
- University of Basel, Department of Psychology, Division of Molecular Neuroscience, Birmannsgasse 8, CH-4055, Basel, Switzerland.
- University of Basel, Department Biozentrum, Life Sciences Training Facility, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland.
- University of Basel, Psychiatric University Clinics, Wilhelm Klein-Strasse 27, CH-4012, Basel, Switzerland.
- University of Basel, Transfaculty Research Platform, Birmannsgasse 8, CH-4055, Basel, Switzerland.
| | - Pavlina Mastrandreas
- University of Basel, Department of Psychology, Division of Molecular Neuroscience, Birmannsgasse 8, CH-4055, Basel, Switzerland.
- University of Basel, Department Biozentrum, Life Sciences Training Facility, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland.
- University of Basel, Transfaculty Research Platform, Birmannsgasse 8, CH-4055, Basel, Switzerland.
| | - Andreas Arnold
- University of Basel, Department of Psychology, Division of Molecular Neuroscience, Birmannsgasse 8, CH-4055, Basel, Switzerland
- University of Basel, Department Biozentrum, Life Sciences Training Facility, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
- University of Basel, Transfaculty Research Platform, Birmannsgasse 8, CH-4055, Basel, Switzerland
| | - Fabian Peter
- University of Basel, Department of Psychology, Division of Molecular Neuroscience, Birmannsgasse 8, CH-4055, Basel, Switzerland
- University of Basel, Department Biozentrum, Life Sciences Training Facility, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
- University of Basel, Transfaculty Research Platform, Birmannsgasse 8, CH-4055, Basel, Switzerland
| | - Iris-T Kolassa
- Ulm University, Clinical & Biological Psychology, Institute for Psychology & Education, Albert-Einstein-Allee 47, D-89069, Ulm, Germany
| | - Sarah Wilker
- Ulm University, Clinical & Biological Psychology, Institute for Psychology & Education, Albert-Einstein-Allee 47, D-89069, Ulm, Germany
- University Bielefeld, Department for Psychology and Sports Science, P.O. Box 100131, D-33501, Bielefeld, Germany
| | - Thomas Elbert
- University of Konstanz, Clinical Psychology & Behavioural Neuroscience, D-78457, Konstanz, Germany
| | - Dominique J-F de Quervain
- University of Basel, Department of Psychology, Division of Molecular Neuroscience, Birmannsgasse 8, CH-4055, Basel, Switzerland
- University of Basel, Transfaculty Research Platform, Birmannsgasse 8, CH-4055, Basel, Switzerland
- University of Basel, Department of Psychology, Division of Cognitive Neuroscience, Birmannsgasse 8, CH-4055, Basel, Switzerland
| | - Andreas Papassotiropoulos
- University of Basel, Department of Psychology, Division of Molecular Neuroscience, Birmannsgasse 8, CH-4055, Basel, Switzerland.
- University of Basel, Department Biozentrum, Life Sciences Training Facility, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland.
- University of Basel, Psychiatric University Clinics, Wilhelm Klein-Strasse 27, CH-4012, Basel, Switzerland.
- University of Basel, Transfaculty Research Platform, Birmannsgasse 8, CH-4055, Basel, Switzerland.
| | - Attila Stetak
- University of Basel, Department of Psychology, Division of Molecular Neuroscience, Birmannsgasse 8, CH-4055, Basel, Switzerland
- University of Basel, Department Biozentrum, Life Sciences Training Facility, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
- University of Basel, Psychiatric University Clinics, Wilhelm Klein-Strasse 27, CH-4012, Basel, Switzerland
- University of Basel, Transfaculty Research Platform, Birmannsgasse 8, CH-4055, Basel, Switzerland
| |
Collapse
|
15
|
Glass WG, Duncan AL, Biggin PC. Computational Investigation of Voltage-Gated Sodium Channel β3 Subunit Dynamics. Front Mol Biosci 2020; 7:40. [PMID: 32266288 PMCID: PMC7103644 DOI: 10.3389/fmolb.2020.00040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/19/2020] [Indexed: 01/23/2023] Open
Abstract
Voltage-gated sodium (Na v ) channels form the basis for the initiation of the action potential in excitable cells by allowing sodium ions to pass through the cell membrane. The Na v channel α subunit is known to function both with and without associated β subunits. There is increasing evidence that these β subunits have multiple roles that include not only influencing the voltage-dependent gating but also the ability to alter the spatial distribution of the pore-forming α subunit. Recent structural data has shown possible ways in which β1 subunits may interact with the α subunit. However, the position of the β1 subunit would not be compatible with a previous trimer structure of the β3 subunit. Furthermore, little is currently known about the dynamic behavior of the β subunits both as individual monomers and as higher order oligomers. Here, we use multiscale molecular dynamics simulations to assess the dynamics of the β3, and the closely related, β1 subunit. These findings reveal the spatio-temporal dynamics of β subunits and should provide a useful framework for interpreting future low-resolution experiments such as atomic force microscopy.
Collapse
Affiliation(s)
| | | | - Philip C. Biggin
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Bhardwaj A, Pandey P, Babu K. Control of Locomotory Behavior of Caenorhabditis elegans by the Immunoglobulin Superfamily Protein RIG-3. Genetics 2020; 214:135-145. [PMID: 31740450 PMCID: PMC6944407 DOI: 10.1534/genetics.119.302872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/15/2019] [Indexed: 12/23/2022] Open
Abstract
Cell surface immunoglobulin superfamily (IgSF) proteins play important roles in the development and function of the nervous system . Here we define the role of a Caenorhabditis elegans IgSF protein, RIG-3, in the function of the AVA command interneuron. This study reveals that RIG-3 regulates the abundance of the glutamate receptor subunit, GLR-1, in the AVA command interneuron and also regulates reversal behavior in C. elegans The mutant strain lacking rig-3 (rig-3 (ok2156)) shows increased reversal frequency during local search behaviors. Genetic and behavioral experiments suggest that RIG-3 functions through GLR-1 to regulate reversal behavior. We also show that the increased reversal frequency seen in rig-3 mutants is dependent on the increase in GLR-1 abundance at synaptic inputs to AVA, suggesting that RIG-3 alters the synaptic strength of incoming synapses through GLR-1 Consistent with the imaging experiments, altered synaptic strength was also reflected in increased calcium transients in rig-3 mutants when compared to wild-type control animals. Our results further suggest that animals lacking rig-3 show increased AVA activity, allowing the release of FLP-18 neuropeptide from AVA, which is an activity-dependent signaling molecule. Finally, we show that FLP-18 functions through the neuropeptide receptor, NPR-5, to modulate reversal behavior in C. elegans.
Collapse
Affiliation(s)
- Ashwani Bhardwaj
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli 140306, India
| | - Pratima Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli 140306, India
| | - Kavita Babu
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli 140306, India
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
17
|
Turbpaiboon C, Siripan W, Nimnoi P, Sreekanth GP, Wiriyarat W, Tassaneetrithep B, Chompoopong S. Neural cell adhesion molecule (NCAM) and polysialic acid–NCAM expression in developing ICR mice. ASIAN BIOMED 2019. [DOI: 10.1515/abm-2019-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Background
Coexpression of polysialic acid (PSA)–neuronal cell adhesion molecule (NCAM) with immature neuronal markers is used to indicate the developmental state of neurons generated in the subgranular zone (SGZ) of adult hippocampus. PSA–NCAM is highly expressed throughout the embryonic and juvenile mammalian brain, but heavily downregulated in adult brain.
Objective
To visualize the expression profiles of NCAM/PSA–NCAM in the dentate SGZ of the hippocampus in developing ICR mice.
Methods
Cellular distribution, expression, and developmental changes of NCAM/PSA–NCAM were studied in ICR mice at embryonic age 17 days (E17); and similarly at postnatal ages P3, P5, and P7. The SGZ was studied using NCAM and PSA–NCAM immunoreactive staining with or without hematoxylin counterstaining. Western blotting was used to confirm protein expression levels.
Results
NCAM expression was localized to the surface of neurons and glia and was higher in postnatal mice than it was in embryonic mice. PSA–NCAM was found in cytoplasm and membrane of neural cells, more densely staining in the dentate SGZ at P7, but no staining found at E17. Western blotting of brain tissues also showed expression of both PSA–NCAM and NCAM increased significantly at P5 and P7 compared with expression at P3.
Conclusions
Progressive increase in NCAM expression occurs in the SGZ during embryogenic and postnatal development. PSA–NCAM was not expressed in embryonic ICR mice, but was increased after birth and highly localized in the SGZ at P7. This NCAM expression pattern in the developing brain indicating structural plasticity and neurogenesis may be useful for study of brain repair.
Collapse
Affiliation(s)
- Chairat Turbpaiboon
- Department of Anatomy, Faculty of Medicine, Siriraj Hospital, Mahidol University , Bangkok 10700 , Bangkok , Thailand
| | - Wongsakorn Siripan
- Department of Anatomy, Faculty of Medicine, Siriraj Hospital, Mahidol University , Bangkok 10700 , Bangkok , Thailand
| | - Pornkanok Nimnoi
- Department of Anatomy, Faculty of Medicine, Siriraj Hospital, Mahidol University , Bangkok 10700 , Bangkok , Thailand
| | - Gopinathan Pillai Sreekanth
- Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University , Bangkok 10700 , Bangkok , Thailand
| | - Witthawat Wiriyarat
- Department of Pre-clinical and Applied Animal Science, Faculty of Veterinary Science, Mahidol University , Bangkok 10700 , Bangkok , Thailand
| | - Boonrat Tassaneetrithep
- Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University , Bangkok 10700 , Bangkok , Thailand
| | - Supin Chompoopong
- Department of Anatomy, Faculty of Medicine, Siriraj Hospital, Mahidol University , Bangkok 10700 , Bangkok , Thailand
| |
Collapse
|
18
|
Liu D, Yi Q, Wu Y, Lu G, Gong C, Song X, Sun J, Qu C, Liu C, Wang L, Song L. A hypervariable immunoglobulin superfamily member from Crassostrea gigas functions as pattern recognition receptor with opsonic activity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:96-108. [PMID: 29738808 DOI: 10.1016/j.dci.2018.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
Immunoglobulin superfamily (IgSF), an extensive collection of proteins possessing at least one immunoglobulin-like (Ig-like) domain, performs a wide range of functions in recognition, binding or adhesion process of cells. In the present study, a cysteine-rich motif associated immunoglobulin domain containing protein (designated CgCAICP-1) was identified in Pacific oyster Crassostrea gigas. The deduced protein sequence of CgCAICP-1 contained 534 amino acidresidues, with three Ig domains which were designated as IG1, IG2 and IG3, and a cysteine-rich motif between the first and second Ig domain. The mRNA transcripts of CgCAICP-1 were highly expressed in hemocytes and up-regulated significantly (p < 0.05) after the stimulation of lipopolysaccharides (LPS), but not peptidoglycan (PGN). The recombinant CgCAICP-1 protein (rCgCAICP-1) exhibited binding activity to various pathogen-associated molecular patterns (PAMPs) including LPS, PGN, mannose (Man) and D-galactose (D-Gal), and microorganisms including Vibrio splendidus, Escherichia coli, Staphylococcus aureus, Micrococcus luteus and Pichia pastoris. The phagocytic rates of oyster hemocytes towards Gram-negative bacteria V. splendidus and Gram-positive bacteria M. luteus were significantly enhanced (p < 0.05) after pre-incubation of microbes with rCgCAICP-1. Furthermore, the transcripts of CgCAICP-1 exhibited high level of polymorphism among individuals. The ratio of nonsynonymous and synonymous distances (dN/dS) for AA'BCC'D strands of IG1 (the possible binding sites 1, pbs1) across all allelic variants was 2.09 (p < 0.05), while the ratio for the non-pbs regions was less than 1.0. The 1248 bp fragment amplified from the 5' end of CgCAICP-1 open reading frame (ORF) from 24 transcript variants could be divided artificially into seven regions of 50 elements, and all of the allelic variants might be derived from these elements by point mutation and recombination processes. These results collectively suggested that CgCAICP-1 might function as an important pattern recognition receptor (PRR) to recognize various PAMPs and facilitated the phagocytosis of oyster hemocytes towards both Gram-positive and Gram-negative bacteria. Diverse isoforms of CgCAICP-1 were generated through point mutation and recombination processes and maintained by balancing selection, which would provide a broader spectrum of interaction surface and be associated with immune resistance of oysters to infectious pathogens.
Collapse
Affiliation(s)
- Dongyang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Yichen Wu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Guangxia Lu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Changhao Gong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Chen Qu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Conghui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
19
|
Abstract
Cell-cell adhesion is important for cell growth, tissue development, and neural network formation. Structures of cell adhesion molecules have been widely studied by crystallography, revealing the molecular details of adhesion interfaces. However, due to technical limitations, the overall structure and organization of adhesion molecules at cell adhesion interfaces has not been fully investigated. Here, we combine electron microscopy and other biophysical methods to characterize the structure of cell-cell adhesion mediated by the cell adhesion molecule Sidekick (Sidekick-1 and Sidekick-2) and obtain 3D views of the Sidekick-mediated adhesion interfaces as well as the organization of Sidekick molecules between cell membranes by electron tomography. The results suggest that the Ig-like domains and the fibronectin III (FnIII) domains of Sidekicks play different roles in cell adhesion. The Ig-like domains mediate the homophilic transinteractions bridging adjacent cells, while the FnIII domains interact with membranes, resulting in a tight adhesion interface between cells that may contribute to the specificity and plasticity of cell-cell contacts during cell growth and neural development.
Collapse
|
20
|
Wesdorp M, Murillo-Cuesta S, Peters T, Celaya AM, Oonk A, Schraders M, Oostrik J, Gomez-Rosas E, Beynon AJ, Hartel BP, Okkersen K, Koenen HJPM, Weeda J, Lelieveld S, Voermans NC, Joosten I, Hoyng CB, Lichtner P, Kunst HPM, Feenstra I, de Bruijn SE, Admiraal RJC, Yntema HG, van Wijk E, Del Castillo I, Serra P, Varela-Nieto I, Pennings RJE, Kremer H. MPZL2, Encoding the Epithelial Junctional Protein Myelin Protein Zero-like 2, Is Essential for Hearing in Man and Mouse. Am J Hum Genet 2018; 103:74-88. [PMID: 29961571 DOI: 10.1016/j.ajhg.2018.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 05/25/2018] [Indexed: 02/01/2023] Open
Abstract
In a Dutch consanguineous family with recessively inherited nonsyndromic hearing impairment (HI), homozygosity mapping combined with whole-exome sequencing revealed a MPZL2 homozygous truncating variant, c.72del (p.Ile24Metfs∗22). By screening a cohort of phenotype-matched subjects and a cohort of HI subjects in whom WES had been performed previously, we identified two additional families with biallelic truncating variants of MPZL2. Affected individuals demonstrated symmetric, progressive, mild to moderate sensorineural HI. Onset of HI was in the first decade, and high-frequency hearing was more severely affected. There was no vestibular involvement. MPZL2 encodes myelin protein zero-like 2, an adhesion molecule that mediates epithelial cell-cell interactions in several (developing) tissues. Involvement of MPZL2 in hearing was confirmed by audiometric evaluation of Mpzl2-mutant mice. These displayed early-onset progressive sensorineural HI that was more pronounced in the high frequencies. Histological analysis of adult mutant mice demonstrated an altered organization of outer hair cells and supporting cells and degeneration of the organ of Corti. In addition, we observed mild degeneration of spiral ganglion neurons, and this degeneration was most pronounced at the cochlear base. Although MPZL2 is known to function in cell adhesion in several tissues, no phenotypes other than HI were found to be associated with MPZL2 defects. This indicates that MPZL2 has a unique function in the inner ear. The present study suggests that deleterious variants of Mplz2/MPZL2 affect adhesion of the inner-ear epithelium and result in loss of structural integrity of the organ of Corti and progressive degeneration of hair cells, supporting cells, and spiral ganglion neurons.
Collapse
Affiliation(s)
- Mieke Wesdorp
- Hearing and Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; The Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Silvia Murillo-Cuesta
- Institute of Biomedical Research "Alberto Sols," Spanish National Research Council-Autonomous University of Madrid, 28029 Madrid, Spain; Center for Biomedical Network Research in Rare Diseases, Institute of Health Carlos III, 28029 Madrid, Spain; Hospital La Paz Institute for Health Research, 28029 Madrid, Spain
| | - Theo Peters
- Hearing and Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Adelaida M Celaya
- Institute of Biomedical Research "Alberto Sols," Spanish National Research Council-Autonomous University of Madrid, 28029 Madrid, Spain; Center for Biomedical Network Research in Rare Diseases, Institute of Health Carlos III, 28029 Madrid, Spain
| | - Anne Oonk
- Hearing and Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Margit Schraders
- Hearing and Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Jaap Oostrik
- Hearing and Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Elena Gomez-Rosas
- Center for Biomedical Network Research in Rare Diseases, Institute of Health Carlos III, 28029 Madrid, Spain; Servicio de Genetica, Hospital Universitario Ramon y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Andy J Beynon
- Hearing and Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Bas P Hartel
- Hearing and Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Kees Okkersen
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Department of Neurology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Hans J P M Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Jack Weeda
- Department of Ophthalmology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Stefan Lelieveld
- The Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Nicol C Voermans
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Department of Neurology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Irma Joosten
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Carel B Hoyng
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Department of Ophthalmology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Peter Lichtner
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Henricus P M Kunst
- Hearing and Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Radboud Institute of Health Sciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Ilse Feenstra
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Suzanne E de Bruijn
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Ronald J C Admiraal
- Hearing and Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Helger G Yntema
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Erwin van Wijk
- Hearing and Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Ignacio Del Castillo
- Center for Biomedical Network Research in Rare Diseases, Institute of Health Carlos III, 28029 Madrid, Spain; Servicio de Genetica, Hospital Universitario Ramon y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Pau Serra
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Isabel Varela-Nieto
- Institute of Biomedical Research "Alberto Sols," Spanish National Research Council-Autonomous University of Madrid, 28029 Madrid, Spain; Center for Biomedical Network Research in Rare Diseases, Institute of Health Carlos III, 28029 Madrid, Spain; Hospital La Paz Institute for Health Research, 28029 Madrid, Spain
| | - Ronald J E Pennings
- Hearing and Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Hannie Kremer
- Hearing and Genes Division, Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
21
|
Thapliyal S, Vasudevan A, Dong Y, Bai J, Koushika SP, Babu K. The C-terminal of CASY-1/Calsyntenin regulates GABAergic synaptic transmission at the Caenorhabditis elegans neuromuscular junction. PLoS Genet 2018. [PMID: 29529030 PMCID: PMC5864096 DOI: 10.1371/journal.pgen.1007263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The C. elegans ortholog of mammalian calsyntenins, CASY-1, is an evolutionarily conserved type-I transmembrane protein that is highly enriched in the nervous system. Mammalian calsyntenins are strongly expressed at inhibitory synapses, but their role in synapse development and function is still elusive. Here, we report a crucial role for CASY-1 in regulating GABAergic synaptic transmission at the C. elegans neuromuscular junction (NMJ). The shorter isoforms of CASY-1; CASY-1B and CASY-1C, express and function in GABA motor neurons where they regulate GABA neurotransmission. Using pharmacological, behavioral, electrophysiological, optogenetic and imaging approaches we establish that GABA release is compromised at the NMJ in casy-1 mutants. Further, we demonstrate that CASY-1 is required to modulate the transport of GABAergic synaptic vesicle (SV) precursors through a possible interaction with the SV motor protein, UNC-104/KIF1A. This study proposes a possible evolutionarily conserved model for the regulation of GABA synaptic functioning by calsyntenins. GABA acts as a major inhibitory neurotransmitter in both vertebrate and invertebrate nervous systems. Despite the potential deregulation of GABA signaling in several neurological disorders, our understanding of the genetic factors that regulate GABAergic synaptic transmission has just started to evolve. Here, we identify a role for a cell adhesion molecule, CASY-1, in regulating GABA signaling at the C. elegans NMJ. We show that the mutants in casy-1 have reduced number of GABA vesicles at the synapse resulting in less GABA release from the presynaptic GABAergic motor neurons. Further, we show that the shorter isoforms of the casy-1 gene; casy-1b and casy-1c that carry a potential kinesin-motor binding domain are responsible for maintaining GABAergic signaling at the synapse. We show a novel interaction of the CASY-1 isoforms with the C- terminal of the UNC-104/KIF1A motor protein that mediates the trafficking of GABAergic synaptic vesicle precursors to the synapse, thus maintaining normal inhibitory signaling at the NMJ.
Collapse
Affiliation(s)
- Shruti Thapliyal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli, Punjab, India
| | - Amruta Vasudevan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
| | - Yongming Dong
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 and Department of Biochemistry, University of Washington, Seattle, WA, United Sttaes of America
| | - Jihong Bai
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 and Department of Biochemistry, University of Washington, Seattle, WA, United Sttaes of America
| | - Sandhya P. Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
| | - Kavita Babu
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli, Punjab, India
- * E-mail: ,
| |
Collapse
|
22
|
Sanchez-Pulido L, Ponting CP. TMEM132: an ancient architecture of cohesin and immunoglobulin domains define a new family of neural adhesion molecules. Bioinformatics 2018; 34:721-724. [PMID: 29088312 PMCID: PMC6030884 DOI: 10.1093/bioinformatics/btx689] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/29/2017] [Accepted: 10/26/2017] [Indexed: 11/26/2022] Open
Abstract
Summary The molecular functions of TMEM132 genes remain poorly understood and under-investigated despite their mutations associated with non-syndromic hearing loss, panic disorder and cancer. Here we show the full domain architecture of human TMEM132 family proteins solved using in-depth sequence and structural analysis. We reveal them to be five previously unappreciated cell adhesion molecules whose domain architecture has an early holozoan origin prior to the emergence of choanoflagellates and metazoa. The extra-cellular portions of TMEM132 proteins contain five conserved domains including three tandem immunoglobulin domains, and a cohesin domain homologue, the first such domain found in animals. These findings strongly predict a cellular adhesion function for TMEM132 family, connecting the extracellular medium with the intracellular actin cytoskeleton. Contact luis.sanchez-pulido@igmm.ed.ac.uk. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Luis Sanchez-Pulido
- Medical Research Council Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
| | - Chris P Ponting
- Medical Research Council Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
23
|
Singh K, Loreth D, Pöttker B, Hefti K, Innos J, Schwald K, Hengstler H, Menzel L, Sommer CJ, Radyushkin K, Kretz O, Philips MA, Haas CA, Frauenknecht K, Lilleväli K, Heimrich B, Vasar E, Schäfer MKE. Neuronal Growth and Behavioral Alterations in Mice Deficient for the Psychiatric Disease-Associated Negr1 Gene. Front Mol Neurosci 2018; 11:30. [PMID: 29479305 PMCID: PMC5811522 DOI: 10.3389/fnmol.2018.00030] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/23/2018] [Indexed: 12/11/2022] Open
Abstract
Neuronal growth regulator 1 (NEGR1), a member of the immunoglobulin superfamily cell adhesion molecule subgroup IgLON, has been implicated in neuronal growth and connectivity. In addition, genetic variants in or near the NEGR1 locus have been associated with obesity and more recently with learning difficulties, intellectual disability and psychiatric disorders. However, experimental evidence is lacking to support a possible link between NEGR1, neuronal growth and behavioral abnormalities. Initial expression analysis of NEGR1 mRNA in C57Bl/6 wildtype (WT) mice by in situ hybridization demonstrated marked expression in the entorhinal cortex (EC) and dentate granule cells. In co-cultures of cortical neurons and NSC-34 cells overexpressing NEGR1, neurite growth of cortical neurons was enhanced and distal axons occupied an increased area of cells overexpressing NEGR1. Conversely, in organotypic slice co-cultures, Negr1-knockout (KO) hippocampus was less permissive for axons grown from EC of β-actin-enhanced green fluorescent protein (EGFP) mice compared to WT hippocampus. Neuroanatomical analysis revealed abnormalities of EC axons in the hippocampal dentate gyrus (DG) of Negr1-KO mice including increased numbers of axonal projections to the hilus. Neurotransmitter receptor ligand binding densities, a proxy of functional neurotransmitter receptor abundance, did not show differences in the DG of Negr1-KO mice but altered ligand binding densities to NMDA receptor and muscarinic acetylcholine receptors M1 and M2 were found in CA1 and CA3. Activity behavior, anxiety-like behavior and sensorimotor gating were not different between genotypes. However, Negr1-KO mice exhibited impaired social behavior compared to WT littermates. Moreover, Negr1-KO mice showed reversal learning deficits in the Morris water maze and increased susceptibility to pentylenetetrazol (PTZ)-induced seizures. Thus, our results from neuronal growth assays, neuroanatomical analyses and behavioral assessments provide first evidence that deficiency of the psychiatric disease-associated Negr1 gene may affect neuronal growth and behavior. These findings might be relevant to further evaluate the role of NEGR1 in cognitive and psychiatric disorders.
Collapse
Affiliation(s)
- Katyayani Singh
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Desirée Loreth
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bruno Pöttker
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kyra Hefti
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Jürgen Innos
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kathrin Schwald
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heidi Hengstler
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lutz Menzel
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Clemens J Sommer
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany.,Focus Program Translational Neurosciences, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Konstantin Radyushkin
- Focus Program Translational Neurosciences, Johannes Gutenberg-University of Mainz, Mainz, Germany.,Mouse Behavioral Unit, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Oliver Kretz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katrin Frauenknecht
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg-University of Mainz, Mainz, Germany.,Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Bernd Heimrich
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany.,Focus Program Translational Neurosciences, Johannes Gutenberg-University of Mainz, Mainz, Germany
| |
Collapse
|
24
|
|
25
|
Howell K, Hobert O. Morphological Diversity of C. elegans Sensory Cilia Instructed by the Differential Expression of an Immunoglobulin Domain Protein. Curr Biol 2017; 27:1782-1790.e5. [PMID: 28578929 DOI: 10.1016/j.cub.2017.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 04/27/2017] [Accepted: 05/03/2017] [Indexed: 01/08/2023]
Abstract
Cilia on dendritic endings of sensory neurons organize distinct types of sensory machinery [1]. Ciliated endings display neuron-type-specific patterns of membrane elaborations [1-3], but it is not well understood how such neuron-type-specific morphologies are generated and whether they are coupled to the specification of other identity aspects of a terminally differentiated sensory neuron. In the course of a genome-wide analysis of members of a small family of immunoglobulin domain proteins, we found that OIG-8, a previously uncharacterized transmembrane protein with a single immunoglobulin (Ig) domain, instructs the distinct, neuron-type-specific elaboration of ciliated endings of different olfactory neuron types in the nematode C. elegans. OIG-8 protein localizes to ciliated endings of these sensory neurons, and is transcribed at different levels in distinct olfactory neuron types. oig-8 expression levels correlate with the extent of sensory cilia growth and branching patterns. Loss of oig-8 leads to a reduction in the branching patterns of cilia, whereas raising the levels of oig-8 results in an increase in elaborations. Levels of OIG-8 expression are controlled by the specific combination of a terminal selector type of transcription factors that also specify other identity features of distinct olfactory neuron types.
Collapse
Affiliation(s)
- Kelly Howell
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA.
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
26
|
Somplatzki S, Mühlenhoff M, Kröger A, Gerardy-Schahn R, Böldicke T. Intrabodies against the Polysialyltransferases ST8SiaII and ST8SiaIV inhibit Polysialylation of NCAM in rhabdomyosarcoma tumor cells. BMC Biotechnol 2017; 17:42. [PMID: 28499450 PMCID: PMC5429572 DOI: 10.1186/s12896-017-0360-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 04/19/2017] [Indexed: 01/05/2023] Open
Abstract
Background Polysialic acid (polySia) is a carbohydrate modification of the neural cell adhesion molecule (NCAM), which is implicated in neural differentiation and plays an important role in tumor development and metastasis. Polysialylation of NCAM is mediated by two Golgi-resident polysialyltransferases (polyST) ST8SiaII and ST8SiaIV. Intracellular antibodies (intrabodies; IB) expressed inside the ER and retaining proteins passing the ER such as cell surface receptors or secretory proteins provide an efficient means of protein knockdown. To inhibit the function of ST8SiaII and ST8SiaIV specific ER IBs were generated starting from two corresponding hybridoma clones. Both IBs αST8SiaII-IB and αST8SiaIV-IB were constructed in the scFv format and their functions characterized in vitro and in vivo. Results IBs directed against the polySTs prevented the translocation of the enzymes from the ER to the Golgi-apparatus. Co-immunoprecipitation of ST8SiaII and ST8SiaIV with the corresponding IBs confirmed the intracellular interaction with their cognate antigens. In CHO cells overexpressing ST8SiaII and ST8SiaIV, respectively, the transfection with αST8SiaII-IB or αST8SiaIV-IB inhibited significantly the cell surface expression of polysialylated NCAM. Furthermore stable expression of ST8SiaII-IB, ST8SiaIV-IB and luciferase in the rhabdomyosarcoma cell line TE671 reduced cell surface expression of polySia and delayed tumor growth if cells were xenografted into C57BL/6 J RAG-2 mice. Conclusion Data obtained strongly indicate that αST8SiaII-IB and αST8SiaIV-IB are promising experimental tools to analyze the individual role of the two enzymes during brain development and during migration and proliferation of tumor cells. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0360-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefan Somplatzki
- Helmholtz Centre for Infection Research, Structural and Functional Protein Research, Inhoffenstraße 7, D-38124, Braunschweig, Germany
| | - Martina Mühlenhoff
- Institute of Cellular Chemistry, Hannover Medical School, D-30625, Hannover, Germany
| | - Andrea Kröger
- Helmholtz Centre for Infection Research, Group Innate Immunity and Infection, Inhoffenstraße 7, D-38124, Braunschweig, Germany
| | - Rita Gerardy-Schahn
- Institute of Cellular Chemistry, Hannover Medical School, D-30625, Hannover, Germany
| | - Thomas Böldicke
- Helmholtz Centre for Infection Research, Structural and Functional Protein Research, Inhoffenstraße 7, D-38124, Braunschweig, Germany.
| |
Collapse
|
27
|
Turgeon MO, Silander TL, Doycheva D, Liao XH, Rigden M, Ongaro L, Zhou X, Joustra SD, Wit JM, Wade MG, Heuer H, Refetoff S, Bernard DJ. TRH Action Is Impaired in Pituitaries of Male IGSF1-Deficient Mice. Endocrinology 2017; 158:815-830. [PMID: 28324000 PMCID: PMC5460797 DOI: 10.1210/en.2016-1788] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/06/2017] [Indexed: 11/19/2022]
Abstract
Loss-of-function mutations in the X-linked immunoglobulin superfamily, member 1 (IGSF1) gene cause central hypothyroidism. IGSF1 is a transmembrane glycoprotein of unknown function expressed in thyrotropin (TSH)-producing thyrotrope cells of the anterior pituitary gland. The protein is cotranslationally cleaved, with only its C-terminal domain (CTD) being trafficked to the plasma membrane. Most intragenic IGSF1 mutations in humans map to the CTD. In this study, we used CRISPR-Cas9 to introduce a loss-of-function mutation into the IGSF1-CTD in mice. The modified allele encodes a truncated protein that fails to traffic to the plasma membrane. Under standard laboratory conditions, Igsf1-deficient males exhibit normal serum TSH levels as well as normal numbers of TSH-expressing thyrotropes. However, pituitary expression of the TSH subunit genes and TSH protein content are reduced, as is expression of the receptor for thyrotropin-releasing hormone (TRH). When challenged with exogenous TRH, Igsf1-deficient males release TSH, but to a significantly lesser extent than do their wild-type littermates. The mice show similarly attenuated TSH secretion when rendered profoundly hypothyroid with a low iodine diet supplemented with propylthiouracil. Collectively, these results indicate that impairments in pituitary TRH receptor expression and/or downstream signaling underlie central hypothyroidism in IGSF1 deficiency syndrome.
Collapse
Affiliation(s)
- Marc-Olivier Turgeon
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6 Canada
| | - Tanya L. Silander
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6 Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 2B4 Canada
| | - Denica Doycheva
- 4Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
- Leibniz Institute on Aging–Fritz Lipmann Institute, 07745 Jena, Germany
| | | | - Marc Rigden
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Luisina Ongaro
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6 Canada
| | - Xiang Zhou
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6 Canada
| | - Sjoerd D. Joustra
- Department of Pediatrics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Jan M. Wit
- Department of Pediatrics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Mike G. Wade
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Heike Heuer
- 4Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Samuel Refetoff
- Department of Medicine and
- Department of Pediatrics and Committee on Genetics, University of Chicago, Chicago, Illinois 60637
| | - Daniel J. Bernard
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6 Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 2B4 Canada
| |
Collapse
|
28
|
O'Callaghan EK, Ballester Roig MN, Mongrain V. Cell adhesion molecules and sleep. Neurosci Res 2016; 116:29-38. [PMID: 27884699 DOI: 10.1016/j.neures.2016.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 10/26/2016] [Accepted: 10/28/2016] [Indexed: 02/06/2023]
Abstract
Cell adhesion molecules (CAMs) play essential roles in the central nervous system, where some families are involved in synaptic development and function. These synaptic adhesion molecules (SAMs) are involved in the regulation of synaptic plasticity, and the formation of neuronal networks. Recent findings from studies examining the consequences of sleep loss suggest that these molecules are candidates to act in sleep regulation. This review highlights the experimental data that lead to the identification of SAMs as potential sleep regulators, and discusses results supporting that specific SAMs are involved in different aspects of sleep regulation. Further, some potential mechanisms by which SAMs may act to regulate sleep are outlined, and the proposition that these molecules may serve as molecular machinery in the two sleep regulatory processes, the circadian and homeostatic components, is presented. Together, the data argue that SAMs regulate the neuronal plasticity that underlies sleep and wakefulness.
Collapse
Affiliation(s)
- Emma Kate O'Callaghan
- Research Centre and Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, 5400 Gouin West Blvd. Montreal, QC, H4J 1C5, Canada; Department of Neuroscience, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montreal, QC, H3C 3J7, Canada
| | - Maria Neus Ballester Roig
- Research Centre and Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, 5400 Gouin West Blvd. Montreal, QC, H4J 1C5, Canada; Neurophysiology of Sleep and Biology Rhythms Laboratory, IDISPA (Health Research Foundation Illes Balears), University of Balearic Islands, Palma de Mallorca 07122, Spain
| | - Valérie Mongrain
- Research Centre and Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, 5400 Gouin West Blvd. Montreal, QC, H4J 1C5, Canada; Department of Neuroscience, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montreal, QC, H3C 3J7, Canada,.
| |
Collapse
|
29
|
Lin YC, Frei JA, Kilander MBC, Shen W, Blatt GJ. A Subset of Autism-Associated Genes Regulate the Structural Stability of Neurons. Front Cell Neurosci 2016; 10:263. [PMID: 27909399 PMCID: PMC5112273 DOI: 10.3389/fncel.2016.00263] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a range of neurological conditions that affect individuals’ ability to communicate and interact with others. People with ASD often exhibit marked qualitative difficulties in social interaction, communication, and behavior. Alterations in neurite arborization and dendritic spine morphology, including size, shape, and number, are hallmarks of almost all neurological conditions, including ASD. As experimental evidence emerges in recent years, it becomes clear that although there is broad heterogeneity of identified autism risk genes, many of them converge into similar cellular pathways, including those regulating neurite outgrowth, synapse formation and spine stability, and synaptic plasticity. These mechanisms together regulate the structural stability of neurons and are vulnerable targets in ASD. In this review, we discuss the current understanding of those autism risk genes that affect the structural connectivity of neurons. We sub-categorize them into (1) cytoskeletal regulators, e.g., motors and small RhoGTPase regulators; (2) adhesion molecules, e.g., cadherins, NCAM, and neurexin superfamily; (3) cell surface receptors, e.g., glutamatergic receptors and receptor tyrosine kinases; (4) signaling molecules, e.g., protein kinases and phosphatases; and (5) synaptic proteins, e.g., vesicle and scaffolding proteins. Although the roles of some of these genes in maintaining neuronal structural stability are well studied, how mutations contribute to the autism phenotype is still largely unknown. Investigating whether and how the neuronal structure and function are affected when these genes are mutated will provide insights toward developing effective interventions aimed at improving the lives of people with autism and their families.
Collapse
Affiliation(s)
- Yu-Chih Lin
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Jeannine A Frei
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Michaela B C Kilander
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Wenjuan Shen
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Gene J Blatt
- Laboratory of Autism Neurocircuitry, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| |
Collapse
|
30
|
Frei JA, Stoeckli ET. SynCAMs - From axon guidance to neurodevelopmental disorders. Mol Cell Neurosci 2016; 81:41-48. [PMID: 27594578 DOI: 10.1016/j.mcn.2016.08.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 08/28/2016] [Accepted: 08/31/2016] [Indexed: 12/22/2022] Open
Abstract
Many cell adhesion molecules are located at synapses but only few of them can be considered synaptic cell adhesion molecules in the strict sense. Besides the Neurexins and Neuroligins, the LRRTMs (leucine rich repeat transmembrane proteins) and the SynCAMs/CADMs can induce synapse formation when expressed in non-neuronal cells and therefore are true synaptic cell adhesion molecules. SynCAMs (synaptic cell adhesion molecules) are a subfamily of the immunoglobulin superfamily of cell adhesion molecules. As suggested by their name, they were first identified as cell adhesion molecules at the synapse which were sufficient to trigger synapse formation. They also contribute to myelination by mediating axon-glia cell contacts. More recently, their role in earlier stages of neural circuit formation was demonstrated, as they also guide axons both in the peripheral and in the central nervous system. Mutations in SynCAM genes were found in patients diagnosed with autism spectrum disorders. The diverse functions of SynCAMs during development suggest that neurodevelopmental disorders are not only due to defects in synaptic plasticity. Rather, early steps of neural circuit formation are likely to contribute.
Collapse
Affiliation(s)
- Jeannine A Frei
- Hussman Institute for Autism, 801 W Baltimore Street, Baltimore, MD 20201, United States
| | - Esther T Stoeckli
- Dept of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
31
|
Howell K, Hobert O. Small Immunoglobulin Domain Proteins at Synapses and the Maintenance of Neuronal Features. Neuron 2016; 89:239-41. [PMID: 26796686 DOI: 10.1016/j.neuron.2016.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The integrity of neural circuits must be maintained throughout the lifetime of an organism. In this issue of Neuron, Cherra and Jin (2016) characterize a small, two-Ig domain protein, ZIG-10, and its role in maintaining synaptic density in a specific set of C. elegans neurons.
Collapse
Affiliation(s)
- Kelly Howell
- Department of Biology, Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA.
| | - Oliver Hobert
- Department of Biology, Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
32
|
Liu C, Wang M, Jiang S, Wang L, Chen H, Liu Z, Qiu L, Song L. A novel junctional adhesion molecule A (CgJAM-A-L) from oyster (Crassostrea gigas) functions as pattern recognition receptor and opsonin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 55:211-220. [PMID: 26434620 DOI: 10.1016/j.dci.2015.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/29/2015] [Accepted: 09/29/2015] [Indexed: 06/05/2023]
Abstract
Junctional adhesion molecule (JAM), a subfamily of immunoglobulin superfamily (IgSF) with a couple of immunoglobulin domains, can act as regulator in homeostasis and inflammation of vertebrates. In the present study, a structural homolog of JAM-A (designated CgJAM-A-L) was screened out from oyster, Crassostrea gigas, through a search of JAM-A D1 domain (N-terminal Ig domain in JAM-A). The cDNA of CgJAM-A-L was of 1188 bp encoding a predicted polypeptide of 395 amino acids. The immunoreactive area of CgJAM-A-L mainly distributed over the plasma membrane of hemocytes. After Vibro splendidus or tumor necrosis factor (CgTNF-1) stimulation, the mRNA transcripts of CgJAM-A-L in hemocytes increased significantly by 4.46-fold and 9.00-fold (p < 0.01) of those in control group, respectively. The recombinant CgJAM-A-L protein (rCgJAM-A-L) could bind multiple PAMPs including lipopolysaccharides (LPS), peptidoglycan (PGN), lipoteichoic acid (LTA), mannose (MAN), β-glucan (GLU) and poly(I:C), and various microorganisms including Micrococcus luteus, Staphylococcus aureus, Escherichia coli, Vibro anguillarum, V. splendidus, Pastoris pastoris and Yarrowia lipolytica. The phagocytic rates of oyster hemocytes towards Gram-negative bacteria V. anguillarum and yeast P. pastoris were significantly enhanced after the incubation of rCgJAM-A-L, and even increased more significantly after the pre-incubation of rCgJAM-A-L with microbes (p < 0.01). The results collectively indicated that CgJAM-A-L functioned as an important pattern recognition receptor (PRR) and opsonin in the immune defense against invading pathogen in oyster. Moreover, as the most primitive specie with homolog of JAMs, the information of CgJAM-A-L in oyster would provide useful clues for the evolutionary study of JAMs and immunoglobulins.
Collapse
Affiliation(s)
- Conghui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoqun Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linsheng Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
33
|
Cherra SJ, Jin Y. A Two-Immunoglobulin-Domain Transmembrane Protein Mediates an Epidermal-Neuronal Interaction to Maintain Synapse Density. Neuron 2016; 89:325-36. [PMID: 26777275 PMCID: PMC4871750 DOI: 10.1016/j.neuron.2015.12.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 08/17/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023]
Abstract
Synaptic maintenance is essential for neural circuit function. In the C. elegans locomotor circuit, motor neurons are in direct contact with the epidermis. Here, we reveal a novel epidermal-neuronal interaction mediated by a two-immunoglobulin domain transmembrane protein, ZIG-10, that is necessary for maintaining cholinergic synapse density. ZIG-10 is localized at the cell surface of epidermis and cholinergic motor neurons, with high levels at areas adjacent to synapses. Loss of zig-10 increases the number of cholinergic excitatory synapses and exacerbates convulsion behavior in a seizure model. Mis-expression of zig-10 in GABAergic inhibitory neurons reduces GABAergic synapse number, dependent on the presence of ZIG-10 in the epidermis. Furthermore, ZIG-10 interacts with the tyrosine kinase SRC-2 to regulate the phagocytic activity of the epidermis to restrict cholinergic synapse number. Our studies demonstrate the highly specific roles of non-neuronal cells in modulating neural circuit function, through neuron-type-specific maintenance of synapse density.
Collapse
Affiliation(s)
- Salvatore J. Cherra
- Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yishi Jin
- Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
34
|
He S, Philbrook A, McWhirter R, Gabel CV, Taub DG, Carter MH, Hanna IM, Francis MM, Miller DM. Transcriptional Control of Synaptic Remodeling through Regulated Expression of an Immunoglobulin Superfamily Protein. Curr Biol 2015; 25:2541-8. [PMID: 26387713 DOI: 10.1016/j.cub.2015.08.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/04/2015] [Accepted: 08/10/2015] [Indexed: 11/24/2022]
Abstract
Neural circuits are actively remodeled during brain development, but the molecular mechanisms that trigger circuit refinement are poorly understood. Here, we describe a transcriptional program in C. elegans that regulates expression of an Ig domain protein, OIG-1, to control the timing of synaptic remodeling. DD GABAergic neurons reverse polarity during larval development by exchanging the locations of pre- and postsynaptic components. In newly born larvae, DDs receive cholinergic inputs in the dorsal nerve cord. These inputs are switched to the ventral side by the end of the first larval (L1) stage. VD class GABAergic neurons are generated in the late L1 and are postsynaptic to cholinergic neurons in the dorsal nerve cord but do not remodel. We investigated remodeling of the postsynaptic apparatus in DD and VD neurons using targeted expression of the acetylcholine receptor (AChR) subunit, ACR-12::GFP. We determined that OIG-1 antagonizes the relocation of ACR-12 from the dorsal side in L1 DD neurons. During the L1/L2 transition, OIG-1 is downregulated in DD neurons by the transcription factor IRX-1/Iroquois, allowing the repositioning of synaptic inputs to the ventral side. In VD class neurons, which normally do not remodel, the transcription factor UNC-55/COUP-TF turns off IRX-1, thus maintaining high levels of OIG-1 to block the removal of dorsally located ACR-12 receptors. OIG-1 is secreted from GABA neurons, but its anti-plasticity function is cell autonomous and may not require secretion. Our study provides a novel mechanism by which synaptic remodeling is set in motion through regulated expression of an Ig domain protein.
Collapse
Affiliation(s)
- Siwei He
- Neuroscience Graduate Program, Vanderbilt International Scholar Program, Vanderbilt University, 465 21(st) Avenue South, Nashville, TN 37240-7935, USA
| | - Alison Philbrook
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Rebecca McWhirter
- Department of Cell and Developmental Biology, Vanderbilt University, 465 21(st) Avenue South, Nashville, TN 37240-7935, USA
| | - Christopher V Gabel
- Department of Physiology and Biophysics, Boston University Medical Campus, 700 Albany Street, Boston, MA 02118, USA
| | - Daniel G Taub
- Department of Physiology and Biophysics, Boston University Medical Campus, 700 Albany Street, Boston, MA 02118, USA
| | - Maximilian H Carter
- Department of Cell and Developmental Biology, Vanderbilt University, 465 21(st) Avenue South, Nashville, TN 37240-7935, USA
| | - Isabella M Hanna
- Department of Cell and Developmental Biology, Vanderbilt University, 465 21(st) Avenue South, Nashville, TN 37240-7935, USA
| | - Michael M Francis
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | - David M Miller
- Neuroscience Graduate Program, Vanderbilt International Scholar Program, Vanderbilt University, 465 21(st) Avenue South, Nashville, TN 37240-7935, USA; Department of Cell and Developmental Biology, Vanderbilt University, 465 21(st) Avenue South, Nashville, TN 37240-7935, USA.
| |
Collapse
|
35
|
High B, Cole AA, Chen X, Reese TS. Electron microscopic tomography reveals discrete transcleft elements at excitatory and inhibitory synapses. Front Synaptic Neurosci 2015; 7:9. [PMID: 26113817 PMCID: PMC4461817 DOI: 10.3389/fnsyn.2015.00009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/28/2015] [Indexed: 12/24/2022] Open
Abstract
Electron microscopy has revealed an abundance of material in the clefts of synapses in the mammalian brain, and the biochemical and functional characteristics of proteins occupying synaptic clefts are well documented. However, the detailed spatial organization of the proteins in the synaptic clefts remains unclear. Electron microscope tomography provides a way to delineate and map the proteins spanning the synaptic cleft because freeze substitution preserves molecular details with sufficient contrast to visualize individual cleft proteins. Segmentation and rendering of electron dense material connected across the cleft reveals discrete structural elements that are readily classified into five types at excitatory synapses and four types at inhibitory synapses. Some transcleft elements resemble shapes and sizes of known proteins and could represent single dimers traversing the cleft. Some of the types of cleft elements at inhibitory synapses roughly matched the structure and proportional frequency of cleft elements at excitatory synapses, but the patterns of deployments in the cleft are quite different. Transcleft elements at excitatory synapses were often evenly dispersed in clefts of uniform (18 nm) width but some types show preference for the center or edges of the cleft. Transcleft elements at inhibitory synapses typically were confined to a peripheral region of the cleft where it narrowed to only 6 nm wide. Transcleft elements in both excitatory and inhibitory synapses typically avoid places where synaptic vesicles attach to the presynaptic membrane. These results illustrate that elements spanning synaptic clefts at excitatory and inhibitory synapses consist of distinct structures arranged by type in a specific but different manner at excitatory and inhibitory synapses.
Collapse
Affiliation(s)
- Brigit High
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Strokes, National Institutes of Health Bethesda, MD, USA
| | - Andy A Cole
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Strokes, National Institutes of Health Bethesda, MD, USA ; Department of Cell and Molecular Biology, Northwestern University Chicago, IL, USA
| | - Xiaobing Chen
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Strokes, National Institutes of Health Bethesda, MD, USA
| | - Thomas S Reese
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Strokes, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
36
|
Bizzoca A, Picocci S, Corsi P, Arbia S, Croci L, Consalez GG, Gennarini G. The gene encoding the mouse contactin-1 axonal glycoprotein is regulated by the collier/Olf1/EBF family early B-Cell factor 2 transcription factor. Dev Neurobiol 2015; 75:1420-40. [DOI: 10.1002/dneu.22293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/17/2015] [Accepted: 03/22/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Antonella Bizzoca
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs; Medical School, University of Bari; Policlinico Bari I-70124 Italy
| | - Sabrina Picocci
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs; Medical School, University of Bari; Policlinico Bari I-70124 Italy
| | - Patrizia Corsi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs; Medical School, University of Bari; Policlinico Bari I-70124 Italy
| | - Stefania Arbia
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs; Medical School, University of Bari; Policlinico Bari I-70124 Italy
| | - Laura Croci
- Division of Neuroscience; San Raffaele Scientific Institute; Milano I-20132 Italy
| | - G. Giacomo Consalez
- Division of Neuroscience; San Raffaele Scientific Institute; Milano I-20132 Italy
- Università Vita-Salute San Raffaele; Milano I-20132 Italy
| | - Gianfranco Gennarini
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs; Medical School, University of Bari; Policlinico Bari I-70124 Italy
| |
Collapse
|
37
|
Yamamuro K, Kimoto S, Rosen KM, Kishimoto T, Makinodan M. Potential primary roles of glial cells in the mechanisms of psychiatric disorders. Front Cell Neurosci 2015; 9:154. [PMID: 26029044 PMCID: PMC4432872 DOI: 10.3389/fncel.2015.00154] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 04/06/2015] [Indexed: 01/05/2023] Open
Abstract
While neurons have long been considered the major player in multiple brain functions such as perception, emotion, and memory, glial cells have been relegated to a far lesser position, acting as merely a “glue” to support neurons. Multiple lines of recent evidence, however, have revealed that glial cells such as oligodendrocytes, astrocytes, and microglia, substantially impact on neuronal function and activities and are significantly involved in the underlying pathobiology of psychiatric disorders. Indeed, a growing body of evidence indicates that glial cells interact extensively with neurons both chemically (e.g., through neurotransmitters, neurotrophic factors, and cytokines) and physically (e.g., through gap junctions), supporting a role for these cells as likely significant modifiers not only of neural function in brain development but also disease pathobiology. Since questions have lingered as to whether glial dysfunction plays a primary role in the biology of neuropsychiatric disorders or a role related solely to their support of neuronal physiology in these diseases, informative and predictive animal models have been developed over the last decade. In this article, we review recent findings uncovered using glia-specific genetically modified mice with which we can evaluate both the causation of glia dysfunction and its potential role in neuropsychiatric disorders such as autism and schizophrenia.
Collapse
Affiliation(s)
- Kazuhiko Yamamuro
- Department of Psychiatry, Faculty of Medicine, Nara Medical University, Kashihara Japan
| | - Sohei Kimoto
- Department of Psychiatry, Faculty of Medicine, Nara Medical University, Kashihara Japan
| | | | - Toshifumi Kishimoto
- Department of Psychiatry, Faculty of Medicine, Nara Medical University, Kashihara Japan
| | - Manabu Makinodan
- Department of Psychiatry, Faculty of Medicine, Nara Medical University, Kashihara Japan
| |
Collapse
|
38
|
Alimperti S, Andreadis ST. CDH2 and CDH11 act as regulators of stem cell fate decisions. Stem Cell Res 2015; 14:270-82. [PMID: 25771201 DOI: 10.1016/j.scr.2015.02.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/24/2015] [Accepted: 02/10/2015] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence suggests that the mechanical and biochemical signals originating from cell-cell adhesion are critical for stem cell lineage specification. In this review, we focus on the role of cadherin mediated signaling in development and stem cell differentiation, with emphasis on two well-known cadherins, cadherin-2 (CDH2) (N-cadherin) and cadherin-11 (CDH11) (OB-cadherin). We summarize the existing knowledge regarding the role of CDH2 and CDH11 during development and differentiation in vivo and in vitro. We also discuss engineering strategies to control stem cell fate decisions by fine-tuning the extent of cell-cell adhesion through surface chemistry and microtopology. These studies may be greatly facilitated by novel strategies that enable monitoring of stem cell specification in real time. We expect that better understanding of how intercellular adhesion signaling affects lineage specification may impact biomaterial and scaffold design to control stem cell fate decisions in three-dimensional context with potential implications for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Stella Alimperti
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA
| | - Stelios T Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA; Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA.
| |
Collapse
|
39
|
Frei JA, Stoeckli ET. SynCAMs extend their functions beyond the synapse. Eur J Neurosci 2014; 39:1752-60. [DOI: 10.1111/ejn.12544] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/17/2014] [Accepted: 02/03/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Jeannine A. Frei
- Institute of Molecular Life Sciences and Neuroscience Center Zurich; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Esther T. Stoeckli
- Institute of Molecular Life Sciences and Neuroscience Center Zurich; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
40
|
Central genomic regulation of the expression of oestrous behaviour in dairy cows: a review. Animal 2014; 8:754-64. [PMID: 24598582 DOI: 10.1017/s1751731114000342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The expression of oestrous behaviour in Holstein Friesian dairy cows has progressively decreased over the past 50 years. Reduced oestrus expression is one of the factors contributing to the current suboptimal reproductive efficiency in dairy farming. Variation between and within cows in the expression of oestrous behaviour is associated with variation in peripheral blood oestradiol concentrations during oestrus. In addition, there is evidence for a priming role of progesterone for the full display of oestrous behaviour. A higher rate of metabolic clearance of ovarian steroids could be one of the factors leading to lower peripheral blood concentrations of oestradiol and progesterone in high-producing dairy cows. Oestradiol acts on the brain by genomic, non-genomic and growth factor-dependent mechanisms. A firm base of understanding of the ovarian steroid-driven central genomic regulation of female sexual behaviour has been obtained from studies on rodents. These studies have resulted in the definition of five modules of oestradiol-activated genes in the brain, referred to as the GAPPS modules. In a recent series of studies, gene expression in the anterior pituitary and four brain areas (amygdala, hippocampus, dorsal hypothalamus and ventral hypothalamus) in oestrous and luteal phase cows, respectively, has been measured, and the relation with oestrous behaviour of these cows was analysed. These studies identified a number of genes of which the expression was associated with the intensity of oestrous behaviour. These genes could be grouped according to the GAPPS modules, suggesting close similarity of the regulation of oestrous behaviour in cows and female sexual behaviour in rodents. A better understanding of the central genomic regulation of the expression of oestrous behaviour in dairy cows may in due time contribute to improved (genomic) selection strategies for appropriate oestrus expression in high-producing dairy cows.
Collapse
|
41
|
Dolan J, Mitchell KJ. Mutation of Elfn1 in mice causes seizures and hyperactivity. PLoS One 2013; 8:e80491. [PMID: 24312227 PMCID: PMC3842350 DOI: 10.1371/journal.pone.0080491] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/12/2013] [Indexed: 02/02/2023] Open
Abstract
A growing number of proteins with extracellular leucine-rich repeats (eLRRs) have been implicated in directing neuronal connectivity. We previously identified a novel family of eLRR proteins in mammals: the Elfns are transmembrane proteins with 6 LRRs, a fibronectin type-3 domain and a long cytoplasmic tail. The recent discovery that Elfn1 protein, expressed postsynaptically, can direct the elaboration of specific electrochemical properties of synapses between particular cell types in the hippocampus strongly reinforces this hypothesis. Here, we present analyses of an Elfn1 mutant mouse line and demonstrate a functional requirement for this gene in vivo. We first carried out detailed expression analysis of Elfn1 using a β-galactosidase reporter gene in the knockout line. Elfn1 is expressed in distinct subsets of interneurons of the hippocampus and cortex, and also in discrete subsets of cells in the habenula, septum, globus pallidus, dorsal subiculum, amygdala and several other regions. Elfn1 is expressed in diverse cell types, including local GABAergic interneurons as well as long-range projecting GABAergic and glutamatergic neurons. Elfn1 protein localises to axons of excitatory neurons in the habenula, and long-range GABAergic neurons of the globus pallidus, suggesting the possibility of additional roles for Elfn1 in axons or presynaptically. While gross anatomical analyses did not reveal any obvious neuroanatomical abnormalities, behavioural analyses clearly illustrate functional effects of Elfn1 mutation. Elfn1 mutant mice exhibit seizures, subtle motor abnormalities, reduced thigmotaxis and hyperactivity. The hyperactivity is paradoxically reversible by treatment with the stimulant amphetamine, consistent with phenotypes observed in animals with habenular lesions. These analyses reveal a requirement for Elfn1 in brain function and are suggestive of possible relevance to the etiology and pathophysiology of epilepsy and attention-deficit hyperactivity disorder.
Collapse
Affiliation(s)
- Jackie Dolan
- Smurfit Institute of Genetics and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Kevin J. Mitchell
- Smurfit Institute of Genetics and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
42
|
The cell biology of synaptic specificity during development. Curr Opin Neurobiol 2013; 23:1018-26. [PMID: 23932598 DOI: 10.1016/j.conb.2013.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 02/05/2023]
Abstract
Proper circuit connectivity is critical for nervous system function. Connectivity derives from the interaction of two interdependent modules: synaptic specificity and synaptic assembly. Specificity involves both targeting of neurons to specific laminar regions and the formation of synapses onto defined subcellular areas. In this review, we focus discussion on recently elucidated molecular mechanisms that control synaptic specificity and link them to synapse assembly. We use these molecular pathways to underscore fundamental cell biological concepts that underpin, and help explain, the rules governing synaptic specificity.
Collapse
|
43
|
Razmi A, Jahanabadi S, Sahebgharani M, Zarrindast MR. EPAC–STX interaction may play a role in neurodevelopment/neurogenesis. Med Hypotheses 2013; 81:216-8. [DOI: 10.1016/j.mehy.2013.04.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/17/2013] [Accepted: 04/26/2013] [Indexed: 11/30/2022]
|
44
|
Plum, an immunoglobulin superfamily protein, regulates axon pruning by facilitating TGF-β signaling. Neuron 2013; 78:456-68. [PMID: 23664613 DOI: 10.1016/j.neuron.2013.03.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2013] [Indexed: 11/22/2022]
Abstract
Axon pruning during development is essential for proper wiring of the mature nervous system, but its regulation remains poorly understood. We have identified an immunoglobulin superfamily (IgSF) transmembrane protein, Plum, that is cell autonomously required for axon pruning of mushroom body (MB) γ neurons and for ectopic synapse refinement at the developing neuromuscular junction in Drosophila. Plum promotes MB γ neuron axon pruning by regulating the expression of Ecdysone Receptor-B1, a key initiator of axon pruning. Genetic analyses indicate that Plum acts to facilitate signaling of Myoglianin, a glial-derived TGF-β, on MB γ neurons upstream of the type-I TGF-β receptor Baboon. Myoglianin, Baboon, and Ecdysone Receptor-B1 are also required for neuromuscular junction ectopic synapse refinement. Our study highlights both IgSF proteins and TGF-β facilitation as key promoters of developmental axon elimination and demonstrates a mechanistic conservation between MB axon pruning during metamorphosis and the refinement of ectopic larval neuromuscular connections.
Collapse
|
45
|
Kong L, Choi RC, Tsim KW, Jing N, Nakayama DK, Wang Z. Distribution and expression of Kirre, an IgSF molecule, during postnatal development of rat cerebellum. Neurosci Lett 2013; 543:22-6. [DOI: 10.1016/j.neulet.2013.03.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 03/11/2013] [Accepted: 03/17/2013] [Indexed: 11/24/2022]
|
46
|
Abstract
Homophilic interaction of the L1 family of cell adhesion molecules plays a pivotal role in regulating neurite outgrowth and neural cell networking in vivo. Functional defects in L1 family members are associated with neurological disorders such as X-linked mental retardation, multiple sclerosis, low-IQ syndrome, developmental delay, and schizophrenia. Various human tumors with poor prognosis also implicate the role of L1, a representative member of the L1 family of cell adhesion molecules, and ectopic expression of L1 in fibroblastic cells induces metastasis-associated gene expression. Previous studies on L1 homologs indicated that four N-terminal immunoglobulin-like domains form a horseshoe-like structure that mediates homophilic interactions. Various models including the zipper, domain-swap, and symmetry-related models are proposed to be involved in structural mechanism of homophilic interaction of the L1 family members. Recently, cryo-electron tomography of L1 and crystal structure studies of neurofascin, an L1 family protein, have been performed. This review focuses on recent discoveries of different models and describes the possible structural mechanisms of homophilic interactions of L1 family members. Understanding structural mechanisms of homophilic interactions in various cell adhesion proteins should aid the development of therapeutic strategies for L1 family cell adhesion molecule-associated diseases.
Collapse
Affiliation(s)
- Chun Hua Wei
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 133-791, Korea
| | | |
Collapse
|
47
|
Katidou M, Tavernarakis N, Karagogeos D. The contactin RIG-6 mediates neuronal and non-neuronal cell migration in Caenorhabditis elegans. Dev Biol 2012; 373:184-95. [PMID: 23123963 DOI: 10.1016/j.ydbio.2012.10.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 10/22/2012] [Accepted: 10/25/2012] [Indexed: 12/20/2022]
Abstract
Cell adhesion molecules of the Immunoglobulin Superfamily (IgCAMs) are key factors in nervous system formation. The contactin subgroup of IgCAMs consists of GPI-anchored glycoproteins implicated in axon outgrowth, guidance, fasciculation and neuronal differentiation. The mechanism by which contactins facilitate neuronal development is not understood. To gain insight into the function of contactins, we characterized RIG-6, the sole contactin of Caenorhabditis elegans. We show that the contactin RIG-6 is involved in excretory cell (EC) tubular elongation. We also show that RIG-6 mediates axon outgrowth and guidance along both the anterior-posterior and dorso-ventral axis, during C. elegans development. We find that optimal RIG-6 expression is critical for accurate mechanosensory neuron axon elongation and ventral nerve cord architecture. In addition, our data suggest that the cytoplasmic UNC-53/NAV2 proteins may contribute to relay signaling via contactins.
Collapse
Affiliation(s)
- Markella Katidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | | | | |
Collapse
|
48
|
Expression profiles of genes regulating dairy cow fertility: recent findings, ongoing activities and future possibilities. Animal 2012; 2:1158-67. [PMID: 22443728 DOI: 10.1017/s1751731108002371] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Subfertility has negative effects for dairy farm profitability, animal welfare and sustainability of animal production. Increasing herd sizes and economic pressures restrict the amount of time that farmers can spend on counteractive management. Genetic improvement will become increasingly important to restore reproductive performance. Complementary to traditional breeding value estimation procedures, genomic selection based on genome-wide information will become more widely applied. Functional genomics, including transcriptomics (gene expression profiling), produces the information to understand the consequences of selection as it helps to unravel physiological mechanisms underlying female fertility traits. Insight into the latter is needed to develop new effective management strategies to combat subfertility. Here, the importance of functional genomics for dairy cow reproduction so far and in the near future is evaluated. Recent gene profiling studies in the field of dairy cow fertility are reviewed and new data are presented on genes that are expressed in the brains of dairy cows and that are involved in dairy cow oestrus (behaviour). Fast-developing new research areas in the field of functional genomics, such as epigenetics, RNA interference, variable copy numbers and nutrigenomics, are discussed including their promising future value for dairy cow fertility.
Collapse
|
49
|
Melanophore migration and survival during zebrafish adult pigment stripe development require the immunoglobulin superfamily adhesion molecule Igsf11. PLoS Genet 2012; 8:e1002899. [PMID: 22916035 PMCID: PMC3420941 DOI: 10.1371/journal.pgen.1002899] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/01/2012] [Indexed: 11/19/2022] Open
Abstract
The zebrafish adult pigment pattern has emerged as a useful model for understanding the development and evolution of adult form as well as pattern-forming mechanisms more generally. In this species, a series of horizontal melanophore stripes arises during the larval-to-adult transformation, but the genetic and cellular bases for stripe formation remain largely unknown. Here, we show that the seurat mutant phenotype, consisting of an irregular spotted pattern, arises from lesions in the gene encoding Immunoglobulin superfamily member 11 (Igsf11). We find that Igsf11 is expressed by melanophores and their precursors, and we demonstrate by cell transplantation and genetic rescue that igsf11 functions autonomously to this lineage in promoting adult stripe development. Further analyses of cell behaviors in vitro, in vivo, and in explant cultures ex vivo demonstrate that Igsf11 mediates adhesive interactions and that mutants for igsf11 exhibit defects in both the migration and survival of melanophores and their precursors. These findings identify the first in vivo requirements for igsf11 as well as the first instance of an immunoglobulin superfamily member functioning in pigment cell development and patterning. Our results provide new insights into adult pigment pattern morphogenesis and how cellular interactions mediate pattern formation. Vertebrate pigment patterns are stunningly diverse and have been an important model of pattern formation for more than a century. Nevertheless, we still know remarkably little about the genes and cell behaviors that underlie the generation of specific patterns. To elucidate such mechanisms, a large number of pigment pattern mutants have been isolated in the genetically tractable zebrafish. Instead of the normal horizontal stripe pattern, many of these mutants exhibit spots of varying sizes and degrees of organization. Here, we show that one such mutant, seurat, named for the 19th century pointillist, George Seurat, exhibits lesions in the gene encoding a classical cell adhesion molecule (CAM) of the immunoglobulin superfamily, Igsf11. We find that Igsf11 mediates cell adhesion and promotes the migration and survival of melanophores and their precursors during adult stripe formation. These results are exciting because they are the first time that a CAM has been implicated in pigment pattern formation, despite the long-standing expectation that such molecules might be required to regulate adhesive interactions during these events. These cellular phenotypes further represent the first known in vivo functions for Igsf11 and point to the potential for similar activities amongst the rich diversity of immunoglobulin superfamily members.
Collapse
|
50
|
Functional inactivation of the genome-wide association study obesity gene neuronal growth regulator 1 in mice causes a body mass phenotype. PLoS One 2012; 7:e41537. [PMID: 22844493 PMCID: PMC3402391 DOI: 10.1371/journal.pone.0041537] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 06/22/2012] [Indexed: 12/21/2022] Open
Abstract
To date, genome-wide association studies (GWAS) have identified at least 32 novel loci for obesity and body mass-related traits. However, the causal genetic variant and molecular mechanisms of specific susceptibility genes in relation to obesity are yet to be fully confirmed and characterised. Here, we examined whether the candidate gene NEGR1 encoding the neuronal growth regulator 1, also termed neurotractin or Kilon, accounts for the obesity association. To characterise the function of NEGR1 for body weight control in vivo, we generated two novel mutant mouse lines, including a constitutive NEGR1-deficient mouse line as well as an ENU-mutagenised line carrying a loss-of-function mutation (Negr1-I87N) and performed metabolic phenotypic analyses. Ablation of NEGR1 results in a small but steady reduction of body mass in both mutant lines, accompanied with a small reduction in body length in the Negr1-I87N mutants. Magnetic resonance scanning reveals that the reduction of body mass in Negr1-I87N mice is due to a reduced proportion of lean mass. Negr1-I87N mutants display reduced food intake and physical activity while normalised energy expenditure remains unchanged. Expression analyses confirmed the brain-specific distribution of NEGR1 including strong expression in the hypothalamus. In vitro assays show that NEGR1 promotes cell-cell adhesion and neurite growth of hypothalamic neurons. Our results indicate a role of NEGR1 in the control of body weight and food intake. This study provides evidence that supports the link of the GWAS candidate gene NEGR1 with body weight control.
Collapse
|