1
|
Tan WX, Lim LY, Afsha N, Chan GME, Ching C, Oguz G, Neo SP, Mohamed Ali S, Ramasamy A, Gunaratne J, Hunziker W, Khoo CM, Teo AKK. ZHX3 interacts with CEBPB to repress hepatic gluconeogenic gene expression and uric acid secretion. PNAS NEXUS 2025; 4:pgae568. [PMID: 39990763 PMCID: PMC11843648 DOI: 10.1093/pnasnexus/pgae568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 12/11/2024] [Indexed: 02/25/2025]
Abstract
ZHX3, which encodes for a transcriptional repressor, is associated with fasting blood glucose (FBG) levels and increased type 2 diabetes (T2D) risk but its role in cell types involved in glucose metabolism is not well understood. Here, we show that the deletion of ZHX3 in the human pancreatic β-cell line EndoC-βH1 did not impair glucose-stimulated insulin secretion (GSIS) nor perturb its transcriptome. On the other hand, we found that ZHX3 represses the expression of gluconeogenic genes PCK1 and G6PC1 in the human hepatoma line HepG2. Transcriptomic analysis of ZHX3-deficient HepG2 cells revealed that the uric acid transporter gene SLC17A1 was up-regulated, which consequentially led to increased uric acid secretion. High levels of uric acid could then impair GSIS in EndoC-βH1 cells. Subsequently, in-depth co-immunoprecipitation followed by mass spectrometry analysis of ZHX3 in HepG2 cells identified transcription factor CEBPB as its binding partner, required to repress the transcription of PCK1, G6PC1, and partially SLC17A1 in HepG2 cells. Overall, our study uncovered the role of ZHX3 in regulating glucose metabolism in hepatocytes, thereby influencing FBG levels and their association with T2D risk.
Collapse
Affiliation(s)
- Wei Xuan Tan
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Lillian Yuxian Lim
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Nesha Afsha
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Gloria Mei En Chan
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Carmen Ching
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Gokce Oguz
- Bioinformatics Consulting and Training Platform, Genome Institute of Singapore, A*STAR, Singapore 138672, Singapore
| | - Suat Peng Neo
- Translational Biomedical Proteomics Laboratory, IMCB, A*STAR, Singapore 138673, Singapore
| | - Safiah Mohamed Ali
- Epithelial Polarity in Disease and Tissue Regeneration Laboratory; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Adaikalavan Ramasamy
- Bioinformatics Consulting and Training Platform, Genome Institute of Singapore, A*STAR, Singapore 138672, Singapore
| | - Jayantha Gunaratne
- Translational Biomedical Proteomics Laboratory, IMCB, A*STAR, Singapore 138673, Singapore
| | - Walter Hunziker
- Epithelial Polarity in Disease and Tissue Regeneration Laboratory; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Chin Meng Khoo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| |
Collapse
|
2
|
Goldberg D, Buchshtab N, Charni-Natan M, Goldstein I. Transcriptional cascades during fasting amplify gluconeogenesis and instigate a secondary wave of ketogenic gene transcription. Liver Int 2024; 44:2964-2982. [PMID: 39162082 DOI: 10.1111/liv.16077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND AND AIMS During fasting, bodily homeostasis is maintained due to hepatic production of glucose (gluconeogenesis) and ketone bodies (ketogenesis). The main hormones governing hepatic fuel production are glucagon and glucocorticoids that initiate transcriptional programs aimed at supporting gluconeogenesis and ketogenesis. METHODS Using primary mouse hepatocytes as an ex vivo model, we employed transcriptomic analysis (RNA-seq), genome-wide profiling of enhancer dynamics (ChIP-seq), perturbation experiments (inhibitors, shRNA), hepatic glucose production measurements and computational analyses. RESULTS We found that in addition to the known metabolic genes transcriptionally induced by glucagon and glucocorticoids, these hormones induce a set of genes encoding transcription factors (TFs) thereby initiating transcriptional cascades. Upon activation by glucocorticoids, the glucocorticoid receptor (GR) induced the genes encoding two TFs: CCAAT/enhancer-binding protein beta (C/EBPβ) and peroxisome proliferator-activated receptor alpha (PPARα). We found that the GR-C/EBPβ cascade mainly serves as a secondary amplifier of primary hormone-induced gene programs. C/EBPβ augmented gluconeogenic gene expression and hepatic glucose production. Conversely, the GR-PPARα cascade initiated a secondary transcriptional wave of genes supporting ketogenesis. The cascade led to synergistic induction of ketogenic genes which is dependent on protein synthesis. Genome-wide analysis of enhancer dynamics revealed numerous enhancers activated by the GR-PPARα cascade. These enhancers were proximal to ketogenic genes, enriched for the PPARα response element and showed increased PPARα binding. CONCLUSION This study reveals abundant transcriptional cascades occurring during fasting. These cascades serve two separated purposes: the amplification of the gluconeogenic transcriptional program and the induction of a gene program aimed at enhancing ketogenesis.
Collapse
Affiliation(s)
- Dana Goldberg
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Nufar Buchshtab
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Meital Charni-Natan
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ido Goldstein
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
3
|
House JS, Gray S, Owen JR, Jima DD, Smart RC, Hall JR. C/EBPβ deficiency enhances the keratinocyte innate immune response to direct activators of cytosolic pattern recognition receptors. Innate Immun 2023; 29:14-24. [PMID: 37094088 PMCID: PMC10164275 DOI: 10.1177/17534259231162192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/10/2023] [Accepted: 02/08/2023] [Indexed: 04/26/2023] Open
Abstract
The skin is the first line of defense to cutaneous microbes and viruses, and epidermal keratinocytes play a critical role in preventing infection by viruses and pathogens through activation of the type I interferon (IFN) response. Using RNAseq analysis, here we report that the conditional deletion of C/EBPβ transcription factor in mouse epidermis (CKOβ mice) resulted in the upregulation of IFNβ and numerous keratinocyte interferon-stimulated genes (ISGs). The expression of cytosolic pattern recognition receptors (cPRRs), that recognize viral RNA and DNA, were significantly increased, and enriched in the RNAseq data set. cPRRs stimulate a type I IFN response that can trigger cell death to eliminate infected cells. To determine if the observed increases in cPRRs had functional consequences, we transfected CKOβ primary keratinocytes with the pathogen and viral mimics poly(I:C) (dsRNA) or poly(dA:dT) (synthetic B-DNA) that directly activate PRRs. Transfected CKOβ primary keratinocytes displayed an amplified type I IFN response which was accompanied by increased activation of IRF3, enhanced ISG expression, enhanced activation of caspase-8, caspase-3 and increased apoptosis. Our results identify C/EBPβ as a critical repressor of the keratinocyte type I IFN response, and demonstrates that the loss of C/EBPβ primes keratinocytes to the activation of cytosolic PRRs by pathogen RNA and DNA to induce cell death mediated by caspase-8 and caspase-3.
Collapse
Affiliation(s)
- John S. House
- Center of Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
- Toxicology Graduate Program, North Carolina State University, Raleigh, NC, 27695, USA
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC 27709, USA
| | - Sophia Gray
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jennifer R. Owen
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Dereje D. Jima
- Center of Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA
| | - Robert C. Smart
- Center of Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
- Toxicology Graduate Program, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jonathan R. Hall
- Center of Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
- Toxicology Graduate Program, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
4
|
Yang R, Browne JA, Eggener SE, Leir SH, Harris A. A novel transcriptional network for the androgen receptor in human epididymis epithelial cells. Mol Hum Reprod 2019; 24:433-443. [PMID: 30016502 DOI: 10.1093/molehr/gay029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/14/2018] [Indexed: 12/31/2022] Open
Abstract
STUDY QUESTION What is the transcriptional network governed by the androgen receptor (AR) in human epididymis epithelial (HEE) cells from the caput region and if the network is tissue-specific, how is this achieved? SUMMARY ANSWER About 200 genes are differentially expressed in the caput HEE cells after AR activation; the AR transcriptional network is tissue-specific and may be mediated in part by distinct AR co-factors including CAAT-enhancer binding protein beta (CEBPB) and runt-related transcription factor 1 (RUNX1). WHAT IS KNOWN ALREADY Little is known about the AR transcriptional program genome wide in HEE cells, nor its co-factors in those cells. AR has been best studied in the prostate gland epithelium and prostate cancer cell lines, due to the important role of this factor in prostate cancer. However AR-associated differentially expressed genes (DEGs) and AR co-factors have not yet been compared between human epididymis and prostate epithelial cells. STUDY DESIGN, SIZE, DURATION Caput HEE cells from two donors were exposed to the synthetic androgen R1881 at 1 nM for 12-16 h after 72 h of hormone starvation. PARTICIPANTS/MATERIALS, SETTING, METHODS Chromatin was prepared from R1881-treated and vehicle control HEE cells. AR-associated chromatin was purified by chromatin immunoprecipitation (ChIP) and AR occupancy genome wide was revealed by deep sequencing (ChIP-seq). Two independent biological replicates were performed. Total RNA was prepared from R1881 and control-treated HEE cells and gene expression profiles were documented by RNA-seq. The interaction of the potential novel AR co-factors CEBPB and RUNX1, identified through in-silico motif analysis of AR ChIP-seq data, was examined by ChIP-qPCR after siRNA-mediated depletion of each co-factor individually or simultaneously. MAIN RESULTS AND THE ROLE OF CHANCE The results identify about 200 genes that are differentially expressed (DEGs) in HEE cells after AR activation. Some of these DEGs show occupancy of AR at their promoters or cis-regulatory elements suggesting direct regulation. However, there is little overlap in AR-associated DEGs between HEE and prostate epithelial cells. Inspection of over-represented motifs in AR ChIP-seq peaks identified CEBPB and RUNX1 as potential co-factors, with no evidence for FOXA1, which is an important co-factor in the prostate epithelium. CEBPB and RUNX1 ChIP-seq in HEE cells showed that both these factors often occupied AR-binding sites, though rarely simultaneously. Further analysis at a single AR-regulated locus (FK506-binding protein 5, FKPB5) suggests that CEBPB may be a co-activator. These data suggest a novel AR transcriptional network governs differentiated functions of the human epididymis epithelium. LARGE SCALE DATA AR ChIP-seq and RNA-seq data are deposited at GEO: GSE109063. LIMITATIONS, REASONS FOR CAUTION There is substantial donor-to-donor variation in primary HEE cells cultures. We applied stringent statistical tests with a false discovery rate (FDR) of 0.1% for ChIP-seq and standard pipelines for RNA-seq so it is possible that we have missed some AR-regulated genes that are important in caput epididymis function. WIDER IMPLICATIONS OF THE FINDINGS Our data suggest that a novel AR transcriptional network governs differentiated functions of the human epididymis epithelium. Since this cell layer has a critical role in normal sperm maturation, the results are of broader significance in understanding the mechanisms underlying the maintenance of fertility in men. STUDY FUNDING/COMPETING INTERESTS This work was funded by the National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Development: R01 HD068901 (PI: Harris). The authors have no competing interests to declare.
Collapse
Affiliation(s)
- Rui Yang
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL, USA.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - James A Browne
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL, USA.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Scott E Eggener
- Section of Urology, University of Chicago Medical Center, Chicago, IL, USA
| | - Shih-Hsing Leir
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL, USA.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Ann Harris
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL, USA.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
5
|
Schäfer A, Mekker B, Mallick M, Vastolo V, Karaulanov E, Sebastian D, von der Lippen C, Epe B, Downes DJ, Scholz C, Niehrs C. Impaired DNA demethylation of C/EBP sites causes premature aging. Genes Dev 2018; 32:742-762. [PMID: 29884649 PMCID: PMC6049513 DOI: 10.1101/gad.311969.118] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/07/2018] [Indexed: 12/25/2022]
Abstract
Here, Schäfer et al. investigated whether DNA methylation alterations are involved in aging. Using knockout mice for adapter proteins for site-specific demethylation by TET methylcytosine dioxygenases Gadd45a and Ing1, they show that enhancer methylation can affect aging and imply that C/EBP proteins play an unexpected role in this process. Changes in DNA methylation are among the best-documented epigenetic alterations accompanying organismal aging. However, whether and how altered DNA methylation is causally involved in aging have remained elusive. GADD45α (growth arrest and DNA damage protein 45A) and ING1 (inhibitor of growth family member 1) are adapter proteins for site-specific demethylation by TET (ten-eleven translocation) methylcytosine dioxygenases. Here we show that Gadd45a/Ing1 double-knockout mice display segmental progeria and phenocopy impaired energy homeostasis and lipodystrophy characteristic of Cebp (CCAAT/enhancer-binding protein) mutants. Correspondingly, GADD45α occupies C/EBPβ/δ-dependent superenhancers and, cooperatively with ING1, promotes local DNA demethylation via long-range chromatin loops to permit C/EBPβ recruitment. The results indicate that enhancer methylation can affect aging and imply that C/EBP proteins play an unexpected role in this process. Our study suggests a causal nexus between DNA demethylation, metabolism, and organismal aging.
Collapse
Affiliation(s)
- Andrea Schäfer
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | | | | | | | | | | | - Carina von der Lippen
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
| | - Bernd Epe
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
| | - Damien J Downes
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Carola Scholz
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Christof Niehrs
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany.,German Cancer Research Center, Division of Molecular Embryology, German Cancer Research Center-Center for Molecular Biology (DKFZ-ZMBH) Alliance, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Müller C, Zidek LM, Ackermann T, de Jong T, Liu P, Kliche V, Zaini MA, Kortman G, Harkema L, Verbeek DS, Tuckermann JP, von Maltzahn J, de Bruin A, Guryev V, Wang ZQ, Calkhoven CF. Reduced expression of C/EBPβ-LIP extends health and lifespan in mice. eLife 2018; 7:34985. [PMID: 29708496 PMCID: PMC5986274 DOI: 10.7554/elife.34985] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/27/2018] [Indexed: 02/06/2023] Open
Abstract
Ageing is associated with physical decline and the development of age-related diseases such as metabolic disorders and cancer. Few conditions are known that attenuate the adverse effects of ageing, including calorie restriction (CR) and reduced signalling through the mechanistic target of rapamycin complex 1 (mTORC1) pathway. Synthesis of the metabolic transcription factor C/EBPβ-LIP is stimulated by mTORC1, which critically depends on a short upstream open reading frame (uORF) in the Cebpb-mRNA. Here, we describe that reduced C/EBPβ-LIP expression due to genetic ablation of the uORF delays the development of age-associated phenotypes in mice. Moreover, female C/EBPβΔuORF mice display an extended lifespan. Since LIP levels increase upon aging in wild type mice, our data reveal an important role for C/EBPβ in the aging process and suggest that restriction of LIP expression sustains health and fitness. Thus, therapeutic strategies targeting C/EBPβ-LIP may offer new possibilities to treat age-related diseases and to prolong healthspan. The risks of major diseases including type II diabetes, cancer and Alzheimer’s are linked to the biological process of ageing. By finding ways to slow ageing, we can help more people to live longer healthier lives while avoiding these illnesses. Placing some animals on a diet that contains only two-thirds as many calories as they would normally eat can improve their fitness during old age and delay the onset of many age-related problems. It is unrealistic to expect people to control their diet to this extent, yet there may be other ways to bring about the same effects. Calorie restriction affects the activity of many different genes; for example, it causes a gene that produces a protein known as Liver-enriched Inhibitory Protein (LIP for short) to shut down. LIP controls the activity of many genes involved in metabolism, so it could be a key target for drugs to control ageing. Müller, Zidek et al. used mice that are unable to produce LIP to study this protein’s effect on ageing. The life expectancy of female mice lacking LIP increased by up to 20%. These mice were leaner, fitter, more resistant to cancer, had stronger immune systems and controlled their blood sugar levels better than normal mice. Male mice that lacked LIP did not live longer but did experience some ageing-related benefits. Genetic analysis also showed that gene activity particularly of metabolic genes is more robust in old female LIP-deficient mice and thus more similar to young control mice than old control mice. The results presented by Müller, Zidek et al. suggest that targeting the activity of the LIP gene could help to slow the ageing process. It is not yet clear whether shutting off LIP has similar beneficial effects in humans. Further research is also needed to investigate why female mice gain more benefits from a lack of LIP than males do.
Collapse
Affiliation(s)
- Christine Müller
- European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands.,Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Laura M Zidek
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Tobias Ackermann
- European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Tristan de Jong
- European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Peng Liu
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Verena Kliche
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Mohamad Amr Zaini
- European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Gertrud Kortman
- European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Liesbeth Harkema
- Dutch Molecular Pathology Centre, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Dineke S Verbeek
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jan P Tuckermann
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | | | - Alain de Bruin
- Dutch Molecular Pathology Centre, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Victor Guryev
- European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Zhao-Qi Wang
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Cornelis F Calkhoven
- European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands.,Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| |
Collapse
|
7
|
Khudyakov JI, Champagne CD, Meneghetti LM, Crocker DE. Blubber transcriptome response to acute stress axis activation involves transient changes in adipogenesis and lipolysis in a fasting-adapted marine mammal. Sci Rep 2017; 7:42110. [PMID: 28186107 PMCID: PMC5301240 DOI: 10.1038/srep42110] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/05/2017] [Indexed: 01/04/2023] Open
Abstract
Stress can compromise an animal’s ability to conserve metabolic stores and participate in energy-demanding activities that are critical for fitness. Understanding how wild animals, especially those already experiencing physiological extremes (e.g. fasting), regulate stress responses is critical for evaluating the impacts of anthropogenic disturbance on physiology and fitness, key challenges for conservation. However, studies of stress in wildlife are often limited to baseline endocrine measurements and few have investigated stress effects in fasting-adapted species. We examined downstream molecular consequences of hypothalamic-pituitary-adrenal (HPA) axis activation by exogenous adrenocorticotropic hormone (ACTH) in blubber of northern elephant seals due to the ease of blubber sampling and its key role in metabolic regulation in marine mammals. We report the first phocid blubber transcriptome produced by RNAseq, containing over 140,000 annotated transcripts, including metabolic and adipocytokine genes of interest. The acute response of blubber to stress axis activation, measured 2 hours after ACTH administration, involved highly specific, transient (lasting <24 hours) induction of gene networks that promote lipolysis and adipogenesis in mammalian adipocytes. Differentially expressed genes included key adipogenesis factors which can be used as blubber-specific markers of acute stress in marine mammals of concern for which sampling of other tissues is not possible.
Collapse
Affiliation(s)
- J I Khudyakov
- Department of Biological Sciences, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA.,National Marine Mammal Foundation, 2240 Shelter Island Drive Suite 200, San Diego, CA 92106, USA
| | - C D Champagne
- National Marine Mammal Foundation, 2240 Shelter Island Drive Suite 200, San Diego, CA 92106, USA.,Department of Biological Sciences, Old Dominion University, 1 Monarch Way, Norfolk, VA 23529, USA
| | - L M Meneghetti
- Department of Biology, Sonoma State University, 1801 E Cotati Avenue, Rohnert Park, CA 94928, USA
| | - D E Crocker
- Department of Biology, Sonoma State University, 1801 E Cotati Avenue, Rohnert Park, CA 94928, USA
| |
Collapse
|
8
|
Luo W, Johnson CS, Trump DL. Vitamin D Signaling Modulators in Cancer Therapy. VITAMINS AND HORMONES 2016; 100:433-72. [PMID: 26827962 DOI: 10.1016/bs.vh.2015.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The antiproliferative and pro-apoptotic effects of 1α,25-dihydroxycholecalciferol (1,25(OH)2D3, 1,25D3, calcitriol) have been demonstrated in various tumor model systems in vitro and in vivo. However, limited antitumor effects of 1,25D3 have been observed in clinical trials. This may be attributed to a variety of factors including overexpression of the primary 1,25D3 degrading enzyme, CYP24A1, in tumors, which would lead to rapid local inactivation of 1,25D3. An alternative strategy for improving the antitumor activity of 1,25D3 involves the combination with a selective CYP24A1 inhibitor. The validity of this approach is supported by numerous preclinical investigations, which demonstrate that CYP24A1 inhibitors suppress 1,25D3 catabolism in tumor cells and increase the effects of 1,25D3 on gene expression and cell growth. Studies are now required to determine whether selective CYP24A1 inhibitors+1,25D3 can be used safely and effectively in patients. CYP24A1 inhibitors plus 1,25D3 can cause dose-limiting toxicity of vitamin D (hypercalcemia) in some patients. Dexamethasone significantly reduces 1,25D3-mediated hypercalcemia and enhances the antitumor activity of 1,25D3, increases VDR-ligand binding, and increases VDR protein expression. Efforts to dissect the mechanisms responsible for CYP24A1 overexpression and combinational effect of 1,25D3/dexamethasone in tumors are underway. Understanding the cross talk between vitamin D receptor (VDR) and glucocorticoid receptor (GR) signaling axes is of crucial importance to the design of new therapies that include 1,25D3 and dexamethasone. Insights gained from these studies are expected to yield novel strategies to improve the efficacy of 1,25D3 treatment.
Collapse
Affiliation(s)
- Wei Luo
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Candace S Johnson
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Donald L Trump
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, USA; Inova Dwight and Martha Schar Cancer Institute, Falls Church, Virginia, USA.
| |
Collapse
|
9
|
Somvanshi PR, Patel AK, Bhartiya S, Venkatesh KV. Influence of plasma macronutrient levels on hepatic metabolism: role of regulatory networks in homeostasis and disease states. RSC Adv 2016. [DOI: 10.1039/c5ra18128c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multilevel regulations by metabolic, signaling and transcription pathways form a complex network that works to provide robust metabolic regulation in the liver. This analysis indicates that dietary perturbations in these networks can lead to insulin resistance.
Collapse
Affiliation(s)
- Pramod R. Somvanshi
- Biosystems Engineering Lab
- Department of Chemical Engineering
- Indian Institute of Technology Bombay
- Mumbai
- India 400076
| | - Anilkumar K. Patel
- Biosystems Engineering Lab
- Department of Chemical Engineering
- Indian Institute of Technology Bombay
- Mumbai
- India 400076
| | - Sharad Bhartiya
- Control Systems Engineering Lab
- Department of Chemical Engineering
- Indian Institute of Technology Bombay
- Mumbai
- India 400076
| | - K. V. Venkatesh
- Biosystems Engineering Lab
- Department of Chemical Engineering
- Indian Institute of Technology Bombay
- Mumbai
- India 400076
| |
Collapse
|
10
|
Goldstein I, Hager GL. Transcriptional and Chromatin Regulation during Fasting - The Genomic Era. Trends Endocrinol Metab 2015; 26:699-710. [PMID: 26520657 PMCID: PMC4673016 DOI: 10.1016/j.tem.2015.09.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/10/2015] [Accepted: 09/12/2015] [Indexed: 12/21/2022]
Abstract
An elaborate metabolic response to fasting is orchestrated by the liver and is heavily reliant on transcriptional regulation. In response to hormones (glucagon, glucocorticoids) many transcription factors (TFs) are activated and regulate various genes involved in metabolic pathways aimed at restoring homeostasis: gluconeogenesis, fatty acid oxidation, ketogenesis, and amino acid shuttling. We summarize recent discoveries regarding fasting-related TFs with an emphasis on genome-wide binding patterns. Collectively, the findings we discuss reveal a large degree of cooperation between TFs during fasting that occurs at motif-rich DNA sites bound by a combination of TFs. These new findings implicate transcriptional and chromatin regulation as major determinants of the response to fasting and unravels the complex, multi-TF nature of this response.
Collapse
Affiliation(s)
- Ido Goldstein
- Laboratory of Receptor Biology and Gene Expression, The National Cancer Institute, The National institutes of Health, Bethesda, MD, 20892, USA.
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, The National Cancer Institute, The National institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
11
|
Matsuoka H, Shima A, Kuramoto D, Kikumoto D, Matsui T, Michihara A. Phosphoenolpyruvate Carboxykinase, a Key Enzyme That Controls Blood Glucose, Is a Target of Retinoic Acid Receptor-Related Orphan Receptor α. PLoS One 2015; 10:e0137955. [PMID: 26383638 PMCID: PMC4575163 DOI: 10.1371/journal.pone.0137955] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/25/2015] [Indexed: 12/02/2022] Open
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) catalyzes a committed and rate-limiting step in hepatic gluconeogenesis, and its activity is tightly regulated to maintain blood glucose levels within normal limits. PEPCK activity is primarily regulated through hormonal control of gene transcription. Transcription is additionally regulated via a cAMP response unit, which includes a cAMP response element and four binding sites for CCAAT/enhancer-binding protein (C/EBP). Notably, the cAMP response unit also contains a putative response element for retinoic acid receptor-related orphan receptor α (RORα). In this paper, we characterize the effect of the RORα response element on cAMP-induced transcription. Electrophoresis mobility shift assay indicates that RORα binds this response element in a sequence-specific manner. Furthermore, luciferase reporter assays indicate that RORα interacts with C/EBP at the PEPCK promoter to synergistically enhance transcription. We also found that cAMP-induced transcription depends in part on RORα and its response element. In addition, we show that suppression of RORα by siRNA significantly decreased PEPCK transcription. Finally, we found that a RORα antagonist inhibits hepatic gluconeogenesis in an in vitro glucose production assay. Taken together, the data strongly suggest that PEPCK is a direct RORα target. These results define possible new roles for RORα in hepatic gluconeogenesis.
Collapse
Affiliation(s)
- Hiroshi Matsuoka
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Science, Fukuyama University, Fukuyama, Hiroshima, Japan
- * E-mail:
| | - Akiho Shima
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Science, Fukuyama University, Fukuyama, Hiroshima, Japan
| | - Daisuke Kuramoto
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Science, Fukuyama University, Fukuyama, Hiroshima, Japan
| | - Daisuke Kikumoto
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Science, Fukuyama University, Fukuyama, Hiroshima, Japan
| | - Takashi Matsui
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Science, Fukuyama University, Fukuyama, Hiroshima, Japan
| | - Akihiro Michihara
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Science, Fukuyama University, Fukuyama, Hiroshima, Japan
| |
Collapse
|
12
|
Zidek LM, Ackermann T, Hartleben G, Eichwald S, Kortman G, Kiehntopf M, Leutz A, Sonenberg N, Wang ZQ, von Maltzahn J, Müller C, Calkhoven CF. Deficiency in mTORC1-controlled C/EBPβ-mRNA translation improves metabolic health in mice. EMBO Rep 2015; 16:1022-36. [PMID: 26113365 PMCID: PMC4552494 DOI: 10.15252/embr.201439837] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 05/21/2015] [Indexed: 01/17/2023] Open
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) is a central regulator of physiological adaptations in response to changes in nutrient supply. Major downstream targets of mTORC1 signalling are the mRNA translation regulators p70 ribosomal protein S6 kinase 1 (S6K1p70) and the 4E-binding proteins (4E-BPs). However, little is known about vertebrate mRNAs that are specifically controlled by mTORC1 signalling and are engaged in regulating mTORC1-associated physiology. Here, we show that translation of the CCAAT/enhancer binding protein beta (C/EBPβ) mRNA into the C/EBPβ-LIP isoform is suppressed in response to mTORC1 inhibition either through pharmacological treatment or through calorie restriction. Our data indicate that the function of 4E-BPs is required for suppression of LIP. Intriguingly, mice lacking the cis-regulatory upstream open reading frame (uORF) in the C/EBPβ-mRNA, which is required for mTORC1-stimulated translation into C/EBPβ-LIP, display an improved metabolic phenotype with features also found under calorie restriction. Thus, our data suggest that translational adjustment of C/EBPβ-isoform expression is one of the key processes that direct metabolic adaptation in response to changes in mTORC1 activity.
Collapse
Affiliation(s)
- Laura M Zidek
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Jena, Germany
| | - Tobias Ackermann
- European Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Götz Hartleben
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Jena, Germany European Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sabrina Eichwald
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Jena, Germany
| | - Gertrud Kortman
- European Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Michael Kiehntopf
- Department of Clinical Chemistry and Laboratory Diagnostics, University Hospital Jena, Jena, Germany
| | - Achim Leutz
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Nahum Sonenberg
- Department of Biochemistry & Goodman Cancer Research Center, McGill University, Montreal, QC, Canada
| | - Zhao-Qi Wang
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Jena, Germany
| | - Julia von Maltzahn
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Jena, Germany
| | - Christine Müller
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Jena, Germany European Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Cornelis F Calkhoven
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Jena, Germany European Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
13
|
Insights into Transcriptional Regulation of Hepatic Glucose Production. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 318:203-53. [DOI: 10.1016/bs.ircmb.2015.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Tsutsui T, Fukasawa R, Shinmyouzu K, Nakagawa R, Tobe K, Tanaka A, Ohkuma Y. Mediator complex recruits epigenetic regulators via its two cyclin-dependent kinase subunits to repress transcription of immune response genes. J Biol Chem 2013; 288:20955-20965. [PMID: 23749998 DOI: 10.1074/jbc.m113.486746] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Mediator complex (Mediator) plays pivotal roles in activating transcription by RNA polymerase II, but relatively little is known about its roles in repression. Here, we identified the histone arginine methyltransferase PRMT5 and WD repeat protein 77/methylosome protein 50 (WDR77/MEP50) as Mediator cyclin-dependent kinase (CDK)-interacting proteins and studied the roles of PRMT5 in the transcriptional regulation of CCAAT enhancer-binding protein (C/EBP) β target genes. First, we purified CDK8- and CDK19-containing complexes from HeLa nuclear extracts and subjected these purified complexes to mass spectrometric analyses. These experiments revealed that two Mediator CDKs, CDK8 and CDK19, individually interact with PRMT5 and WDR77, and their interactions with PRMT5 cause transcriptional repression of C/EBPβ target genes by regulating symmetric dimethylation of histone H4 arginine 3 (H4R3me2s) in the promoter regions of those genes. Furthermore, the recruitment of the DNA methyltransferase DNMT3A correlated with H4R3 dimethylation potentially leading to DNA methylation at the promoter proximal region and tight inhibition of preinitiation complex formation. In vertebrates, C/EBPβ regulates many genes involved in immune responses and cell differentiation. These findings shed light on the molecular mechanisms of the repressive roles of Mediator CDKs in transcription of C/EBPβ target genes and might provide clues that enable future studies of the functional associations between Mediators and epigenetic regulation.
Collapse
Affiliation(s)
- Taiki Tsutsui
- From the Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, and
| | - Rikiya Fukasawa
- From the Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, and
| | - Kaori Shinmyouzu
- the Mass Spectrometry Analysis Unit, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Reiko Nakagawa
- the Mass Spectrometry Analysis Unit, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Kazuyuki Tobe
- the First Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan and
| | - Aki Tanaka
- From the Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, and
| | - Yoshiaki Ohkuma
- From the Laboratory of Gene Regulation, Graduate School of Medicine and Pharmaceutical Sciences, and.
| |
Collapse
|
15
|
Viart V, Varilh J, Lopez E, René C, Claustres M, Taulan-Cadars M. Phosphorylated C/EBPβ influences a complex network involving YY1 and USF2 in lung epithelial cells. PLoS One 2013; 8:e60211. [PMID: 23560079 PMCID: PMC3613372 DOI: 10.1371/journal.pone.0060211] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/22/2013] [Indexed: 01/19/2023] Open
Abstract
The promoter of the cystic fibrosis transmembrane conductance regulator gene CFTR is tightly controlled by regulators including CCAAT/enhancer binding proteins (C/EBPs). We previously reported that the transcription factors YY1 and USF2 affect CFTR expression. We can now demonstrate that C/EBPβ, a member of the CCAAT family, binds to the CFTR promoter and contributes to its transcriptional activity. Our data reveal that C/EBPβ cooperates with USF2 and acts antagonistically to YY1 in the control of CFTR expression. Interestingly, YY1, a strong repressor, fails to repress the CFTR activation induced by USF2 through DNA binding competition. Collectively, the data strongly suggest a model by which USF2 functionally interacts with YY1 blocking its inhibitory activity, in favour of C/EBPβ transactivation. Further investigation into the interactions between these three proteins revealed that phosphorylation of C/EBPβ influences the DNA occupancy of YY1 and favours the interaction between USF2 and YY1. This phosphorylation process has several implications in the CFTR transcriptional process, thus evoking an additional layer of complexity to the mechanisms influencing CFTR gene regulation.
Collapse
Affiliation(s)
- Victoria Viart
- UFR de Médecine, Université Montpellier1, Montpellier, France
- INSERM U827, Laboratoire de Génétique de Maladies Rares, Montpellier, France
| | - Jessica Varilh
- INSERM U827, Laboratoire de Génétique de Maladies Rares, Montpellier, France
- Laboratoire de Génétique Moléculaire, Hôpital Arnaud de Villeneuve, CHU Montpellier, Montpellier, France
| | - Estelle Lopez
- UFR de Médecine, Université Montpellier1, Montpellier, France
- INSERM U827, Laboratoire de Génétique de Maladies Rares, Montpellier, France
| | - Céline René
- UFR de Médecine, Université Montpellier1, Montpellier, France
- INSERM U827, Laboratoire de Génétique de Maladies Rares, Montpellier, France
- Laboratoire de Génétique Moléculaire, Hôpital Arnaud de Villeneuve, CHU Montpellier, Montpellier, France
| | - Mireille Claustres
- UFR de Médecine, Université Montpellier1, Montpellier, France
- INSERM U827, Laboratoire de Génétique de Maladies Rares, Montpellier, France
- Laboratoire de Génétique Moléculaire, Hôpital Arnaud de Villeneuve, CHU Montpellier, Montpellier, France
| | - Magali Taulan-Cadars
- UFR de Médecine, Université Montpellier1, Montpellier, France
- INSERM U827, Laboratoire de Génétique de Maladies Rares, Montpellier, France
- * E-mail:
| |
Collapse
|
16
|
Charos AE, Reed BD, Raha D, Szekely AM, Weissman SM, Snyder M. A highly integrated and complex PPARGC1A transcription factor binding network in HepG2 cells. Genome Res 2013; 22:1668-79. [PMID: 22955979 PMCID: PMC3431484 DOI: 10.1101/gr.127761.111] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PPARGC1A is a transcriptional coactivator that binds to and coactivates a variety of transcription factors (TFs) to regulate the expression of target genes. PPARGC1A plays a pivotal role in regulating energy metabolism and has been implicated in several human diseases, most notably type II diabetes. Previous studies have focused on the interplay between PPARGC1A and individual TFs, but little is known about how PPARGC1A combines with all of its partners across the genome to regulate transcriptional dynamics. In this study, we describe a core PPARGC1A transcriptional regulatory network operating in HepG2 cells treated with forskolin. We first mapped the genome-wide binding sites of PPARGC1A using chromatin-IP followed by high-throughput sequencing (ChIP-seq) and uncovered overrepresented DNA sequence motifs corresponding to known and novel PPARGC1A network partners. We then profiled six of these site-specific TF partners using ChIP-seq and examined their network connectivity and combinatorial binding patterns with PPARGC1A. Our analysis revealed extensive overlap of targets including a novel link between PPARGC1A and HSF1, a TF regulating the conserved heat shock response pathway that is misregulated in diabetes. Importantly, we found that different combinations of TFs bound to distinct functional sets of genes, thereby helping to reveal the combinatorial regulatory code for metabolic and other cellular processes. In addition, the different TFs often bound near the promoters and coding regions of each other's genes suggesting an intricate network of interdependent regulation. Overall, our study provides an important framework for understanding the systems-level control of metabolic gene expression in humans.
Collapse
Affiliation(s)
- Alexandra E Charos
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
17
|
Yang HN, Park JS, Woo DG, Jeon SY, Do HJ, Lim HY, Kim JH, Park KH. C/EBP-α and C/EBP-β-mediated adipogenesis of human mesenchymal stem cells (hMSCs) using PLGA nanoparticles complexed with poly(ethyleneimmine). Biomaterials 2011; 32:5924-33. [PMID: 21600648 DOI: 10.1016/j.biomaterials.2011.04.072] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 04/24/2011] [Indexed: 11/29/2022]
Abstract
In this study, to drive efficient adipogenic differentiation, the adipogenic transcription factors C/EBP-α and C/EBP-β fused to green fluorescent protein (GFP) or red fluorescent protein (RFP) were complexed with poly-ethyleneimine (PEI) coupled with biodegradable PLGA nanospheres and delivered to human mesenchymal stem cell (hMSC). FACS analysis revealed that the transfection efficiency of C/EBP-α, C/EBP-β, or both genes complexed with PEI-coated PLGA nanospheres was 12.59%, 21.74%, and 28.96% of hMSCs. Expression and localization of C/EBP-α and C/EBP-β were confirmed by Western blotting and confocal laser microscopy. Overexpression of exogenous C/EBP-α and C/EBP-β significantly elevated adipogenic differentiation processes as indicated by RT-PCR, real-time PCR, Western blotting, histology, and immunofluorescence microscopy. During adipogenesis, PEI-coupled PLGA nanospheres complexed with C/EBP-α and C/EBP-β greatly increased the adipogenic capability of in vitro cultured cells, as well of in vivo transplanted cells. The expression of genes and proteins specific to adipogenic differentiation in hMSCs was significantly elevated compared to the controls.
Collapse
Affiliation(s)
- Han Na Yang
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
18
|
STAT3/NF-κB interactions determine the level of haptoglobin expression in male rats exposed to dietary restriction and/or acute phase stimuli. Mol Biol Rep 2011; 39:167-76. [DOI: 10.1007/s11033-011-0722-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 04/23/2011] [Indexed: 10/18/2022]
|
19
|
Thompson EA, Zhu S, Hall JR, House JS, Ranjan R, Burr JA, He YY, Owens DM, Smart RC. C/EBPα expression is downregulated in human nonmelanoma skin cancers and inactivation of C/EBPα confers susceptibility to UVB-induced skin squamous cell carcinomas. J Invest Dermatol 2011; 131:1339-46. [PMID: 21346772 DOI: 10.1038/jid.2011.31] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human epidermis is routinely subjected to DNA damage induced by UVB solar radiation. Cell culture studies have revealed an unexpected role for C/EBPα (CCAAT/enhancer-binding protein-α) in the DNA damage response network, where C/EBPα is induced following UVB DNA damage, regulates the G(1) checkpoint, and diminished or ablated expression of C/EBPα results in G(1) checkpoint failure. In the current study we observed that C/EBPα is induced in normal human epidermal keratinocytes and in the epidermis of human subjects exposed to UVB radiation. The analysis of human skin precancerous and cancerous lesions (47 cases) for C/EBPα expression was conducted. Actinic keratoses, a precancerous benign skin growth and precursor to squamous cell carcinoma (SCC), expressed levels of C/EBPα similar to normal epidermis. Strikingly, all invasive SCCs no longer expressed detectable levels of C/EBPα. To determine the significance of C/EBPα in UVB-induced skin cancer, SKH-1 mice lacking epidermal C/EBPα (CKOα) were exposed to UVB. CKOα mice were highly susceptible to UVB-induced SCCs and exhibited accelerated tumor progression. CKOα mice displayed keratinocyte cell cycle checkpoint failure in vivo in response to UVB that was characterized by abnormal entry of keratinocytes into S phase. Our results demonstrate that C/EBPα is silenced in human SCC and loss of C/EBPα confers susceptibility to UVB-induced skin SCCs involving defective cell cycle arrest in response to UVB.
Collapse
Affiliation(s)
- Elizabeth A Thompson
- Cell Signaling and Cancer Group, Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina 27695-7633, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Dhawan P, Christakos S. Novel regulation of 25-hydroxyvitamin D3 24-hydroxylase (24(OH)ase) transcription by glucocorticoids: cooperative effects of the glucocorticoid receptor, C/EBP beta, and the Vitamin D receptor in 24(OH)ase transcription. J Cell Biochem 2010; 110:1314-23. [PMID: 20564225 DOI: 10.1002/jcb.22645] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Glucocorticoid-induced bone loss has been proposed to involve direct effects on bone cells as well as alterations in calcium absorption and excretion. Since vitamin D is important for the maintenance of calcium homeostasis, in the present study the effects of glucocorticoids on vitamin D metabolism through the expression of 24(OH)ase, an enzyme involved in the catabolism of 1,25(OH)(2)D(3), were examined. Injection of vitamin D replete mice with dexamethasone (dex) resulted in a significant induction in 24(OH)ase mRNA in kidney, indicating a regulatory effect of glucocorticoids on vitamin D metabolism. Whether glucocorticoids can affect 24(OH)ase transcription is not known. Here we demonstrate for the first time a glucocorticoid receptor (GR) dependent enhancement of 1,25(OH)(2)D(3)-induced 24(OH)ase transcription. Dex treatment of GR and vitamin D receptor (VDR) transfected COS-7 cells and dex treatment of osteoblastic cells (in which VDR and GR are present endogenously) potentiated 1,25(OH)(2)D(3)-induced 24(OH)ase transcription. In addition, GR was found to cooperate with C/EBP beta to enhance VDR-mediated 24(OH)ase transcription. Using the rat 24(OH)ase promoter with the C/EBP site mutated, GR-mediated potentiation of 1,25(OH)(2)D(3)-induced 24(OH)ase transcription was inhibited. Immunoprecipitation indicated that that GR can interact with C/EBP beta and ChIP/re-ChIP analysis showed that C/EBP beta and GR bind simultaneously to the 24(OH)ase promoter. These findings indicate a novel mechanism whereby glucocorticoids can alter VDR-mediated 24(OH)ase transcription through functional cooperation between C/EBP beta and GR that results in an enhanced ability of C/EBP beta to cooperate with VDR in the regulation of 24(OH)ase.
Collapse
Affiliation(s)
- Puneet Dhawan
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | |
Collapse
|
21
|
MacIsaac KD, Lo KA, Gordon W, Motola S, Mazor T, Fraenkel E. A quantitative model of transcriptional regulation reveals the influence of binding location on expression. PLoS Comput Biol 2010; 6:e1000773. [PMID: 20442865 PMCID: PMC2861697 DOI: 10.1371/journal.pcbi.1000773] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 03/30/2010] [Indexed: 11/19/2022] Open
Abstract
Understanding the mechanistic basis of transcriptional regulation has been a central focus of molecular biology since its inception. New high-throughput chromatin immunoprecipitation experiments have revealed that most regulatory proteins bind thousands of sites in mammalian genomes. However, the functional significance of these binding sites remains unclear. We present a quantitative model of transcriptional regulation that suggests the contribution of each binding site to tissue-specific gene expression depends strongly on its position relative to the transcription start site. For three cell types, we show that, by considering binding position, it is possible to predict relative expression levels between cell types with an accuracy approaching the level of agreement between different experimental platforms. Our model suggests that, for the transcription factors profiled in these cell types, a regulatory site's influence on expression falls off almost linearly with distance from the transcription start site in a 10 kilobase range. Binding to both evolutionarily conserved and non-conserved sequences contributes significantly to transcriptional regulation. Our approach also reveals the quantitative, tissue-specific role of individual proteins in activating or repressing transcription. These results suggest that regulator binding position plays a previously unappreciated role in influencing expression and blurs the classical distinction between proximal promoter and distal binding events. Gene expression is controlled, in large part, by regulatory proteins called transcription factors that bind specific sites in the genome. A major focus of molecular biology has been understanding how these transcription factors interact with the cell's transcriptional machinery, the genome, and with each other to turn genes' expression on and off in various physiological contexts. Previous approaches for modeling transcriptional regulation have focused on the complex combinatorial interactions between groups of transcription factors at regulatory sites, or on the specific activating or repressive functions of individual proteins. In this work, we present a new modeling framework and demonstrate that an equally important, and previously overlooked, consideration in predicting the effect that a regulatory site has on gene expression is simply its location relative to the transcription start site of nearby genes. Our results show that, in general, the closer a binding event is to a gene's transcription start site, the more it influences expression. We also show that considering the particular proteins bound at a regulatory site helps predict the expression of nearby genes. However, considering the sequence conservation level of these sites does not lead to more accurate predictions.
Collapse
Affiliation(s)
- Kenzie D. MacIsaac
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Kinyui A. Lo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - William Gordon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Shmulik Motola
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Tali Mazor
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
22
|
Crosstalk between C/EBPbeta phosphorylation, arginine methylation, and SWI/SNF/Mediator implies an indexing transcription factor code. EMBO J 2010; 29:1105-15. [PMID: 20111005 PMCID: PMC2845275 DOI: 10.1038/emboj.2010.3] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 01/07/2010] [Indexed: 11/08/2022] Open
Abstract
Cellular signalling cascades regulate the activity of transcription factors that convert extracellular information into gene regulation. C/EBPbeta is a ras/MAPkinase signal-sensitive transcription factor that regulates genes involved in metabolism, proliferation, differentiation, immunity, senescence, and tumourigenesis. The protein arginine methyltransferase 4 PRMT4/CARM1 interacts with C/EBPbeta and dimethylates a conserved arginine residue (R3) in the C/EBPbeta N-terminal transactivation domain, as identified by mass spectrometry of cell-derived C/EBPbeta. Phosphorylation of the C/EBPbeta regulatory domain by ras/MAPkinase signalling abrogates the interaction between C/EBPbeta and PRMT4/CARM1. Differential proteomic screening, protein interaction studies, and mutational analysis revealed that methylation of R3 constraines interaction with SWI/SNF and Mediator complexes. Mutation of the R3 methylation site alters endogenous myeloid gene expression and adipogenic differentiation. Thus, phosphorylation of the transcription factor C/EBPbeta couples ras signalling to arginine methylation and regulates the interaction of C/EBPbeta with epigenetic gene regulatory protein complexes during cell differentiation.
Collapse
|
23
|
Liu NC, Lin WJ, Yu IC, Lin HY, Liu S, Lee YF, Chang C. Activation of TR4 orphan nuclear receptor gene promoter by cAMP/PKA and C/EBP signaling. Endocrine 2009; 36:211-7. [PMID: 19618297 DOI: 10.1007/s12020-009-9220-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 04/30/2009] [Accepted: 06/03/2009] [Indexed: 10/20/2022]
Abstract
In earlier studies, we had suggested that the fasting signal induces TR4 orphan nuclear receptor expression in vivo. The detailed mechanism(s), however, remain unclear. In this study, we found that cAMP/PKA, the mediator of fasting and glucagon signals, could induce TR4 gene expression that in turn modulates gluconeogenesis. Mechanistic dissection by in vitro studies in hepatocytes demonstrated that cAMP/PKA might trigger C/EBP alpha and beta binding to the selective cAMP response element, which is located at the TR4 promoter, thus inducing TR4 transcription. We also demonstrated that the binding activity of C/EBPs to the TR4 promoter is increased in response to cAMP treatment. Together, our data identified a new signaling pathway from the fasting signal --> cAMP/PKA --> C/EBP alpha and beta --> TR4 --> gluconeogenesis in hepatocytes; and suggested that TR4 could be an important regulator to control glucose homeostasis. The identification of activator(s)/inhibitor(s) or ligand(s) of TR4 may provide us an alternative way to control gluconeogenesis.
Collapse
Affiliation(s)
- Ning-Chun Liu
- George Whipple Laboratory for Cancer Research, Department of Pathology and Urology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Manna PR, Dyson MT, Stocco DM. Role of basic leucine zipper proteins in transcriptional regulation of the steroidogenic acute regulatory protein gene. Mol Cell Endocrinol 2009; 302:1-11. [PMID: 19150388 PMCID: PMC5006949 DOI: 10.1016/j.mce.2008.12.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 12/15/2008] [Accepted: 12/15/2008] [Indexed: 01/23/2023]
Abstract
The regulation of steroidogenic acute regulatory protein (StAR) gene transcription by cAMP-dependent mechanisms occurs in the absence of a consensus cAMP response element (CRE, TGACGTGA). This regulation is coordinated by multiple transcription factors that bind to sequence-specific elements located approximately 150 bp upstream of the transcription start site. Among the proteins that bind within this region, the basic leucine zipper (bZIP) family of transcription factors, i.e. CRE binding protein (CREB)/CRE modulator (CREM)/activating transcription factor (ATF), activator protein 1 (AP-1; Fos/Jun), and CCAAT enhancer binding protein beta (C/EBPbeta), interact with an overlapping region (-81/-72 bp) in the StAR promoter, mediate stimulus-transcription coupling of cAMP signaling and play integral roles in regulating StAR gene expression. These bZIP proteins are structurally similar and bind to DNA sequences as dimers; however, they exhibit discrete transcriptional activities, interact with several transcription factors and other properties that contribute in their regulatory functions. The 5'-flanking -81/-72 bp region of the StAR gene appears to function as a key element within a complex cAMP response unit by binding to different bZIP members, and the StAR promoter displays variable states of cAMP responsivity contingent upon the occupancy of these cis-elements with these transcription factors. The expression and activities of CREB/CREM/ATF, Fos/Jun and C/EBPbeta have been demonstrated to be mediated by a plethora of extracellular signals, and the phosphorylation of these proteins at several Ser and Thr residues allows recruitment of the transcriptional coactivator CREB binding protein (CBP) or its functional homolog p300 to the StAR promoter. This review will focus on the current level of understanding of the roles of selective bZIP family proteins within the complex series of processes involved in regulating StAR gene transcription.
Collapse
Affiliation(s)
- Pulak R Manna
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | |
Collapse
|
25
|
Manna PR, Dyson MT, Stocco DM. Regulation of the steroidogenic acute regulatory protein gene expression: present and future perspectives. Mol Hum Reprod 2009; 15:321-33. [PMID: 19321517 DOI: 10.1093/molehr/gap025] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Steroid hormones are synthesized in the adrenal gland, gonads, placenta and brain and are critical for normal reproductive function and bodily homeostasis. The steroidogenic acute regulatory (StAR) protein regulates the rate-limiting step in steroid biosynthesis, i.e. the delivery of cholesterol from the outer to the inner mitochondrial membrane. The expression of the StAR protein is predominantly regulated by cAMP-dependent mechanisms in the adrenal and gonads. Whereas StAR plays an indispensable role in the regulation of steroid biosynthesis, a complete understanding of the regulation of its expression and function in steroidogenesis is not available. It has become clear that the regulation of StAR gene expression is a complex process that involves the interaction of a diversity of hormones and multiple signaling pathways that coordinate the cooperation and interaction of transcriptional machinery, as well as a number of post-transcriptional mechanisms that govern mRNA and protein expression. However, information is lacking on how the StAR gene is regulated in vivo such that it is expressed at appropriate times during development and is confined to the steroidogenic cells. Thus, it is not surprising that the precise mechanism involved in the regulation of StAR gene has not yet been established, which is the key to understanding the regulation of steroidogenesis in the context of both male and female development and function.
Collapse
Affiliation(s)
- Pulak R Manna
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | |
Collapse
|
26
|
Abstract
Transcription is a molecular requisite for long-term synaptic plasticity and long-term memory formation. Thus, in the last several years, one main interest of molecular neuroscience has been the identification of families of transcription factors that are involved in both of these processes. Transcription is a highly regulated process that involves the combined interaction and function of chromatin and many other proteins, some of which are essential for the basal process of transcription, while others control the selective activation or repression of specific genes. These regulated interactions ultimately allow a sophisticated response to multiple environmental conditions, as well as control of spatial and temporal differences in gene expression. Evidence based on correlative changes in expression, genetic mutations, and targeted molecular inhibition of gene expression have shed light on the function of transcription in both synaptic plasticity and memory formation. This review provides a brief overview of experimental work showing that several families of transcription factors, including CREB, C/EBP, Egr, AP-1, and Rel, have essential functions in both processes. The results of this work suggest that patterns of transcription regulation represent the molecular signatures of long-term synaptic changes and memory formation.
Collapse
Affiliation(s)
- Cristina M Alberini
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
27
|
Noyan-Ashraf MH, Sadeghinejad Z, Davies GF, Ross AR, Saucier D, Harkness TAA, Juurlink BHJ. Phase 2 protein inducers in the diet promote healthier aging. J Gerontol A Biol Sci Med Sci 2008; 63:1168-76. [PMID: 19038831 DOI: 10.1093/gerona/63.11.1168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oxidative stress drives many aging-associated problems. Because oxidative stress can be decreased by induction of phase 2 proteins, we hypothesized that incorporating the phase 2 protein inducer 2(3)-tert-butyl-4-hydroxyanisole (tBHA) into the diet would result in healthier aging. C57BL/6 mice were placed either on control mouse chow diet or on chow containing tBHA and were examined at 6, 12, and 18 months. Dietary tBHA resulted in the antioxidant response activation, decreased both oxidative stress and pro-inflammatory gene expression in tissues examined, counteracted the decrease in the transcription factors peroxisome proliferator-activated receptor-gamma and increase in CCAAT/enhancer binding protein-alpha levels seen in liver with aging, and was associated with mice having less weight gain, despite having no differences in food consumption, and better locomotor function. We conclude that simple changes in the diet such as incorporation of phase 2 protein inducers can have a profound influence on health and, thereby, the aging process.
Collapse
|
28
|
Ceseña TI, Cui TX, Subramanian L, Fulton CT, Iñiguez-Lluhí JA, Kwok RPS, Schwartz J. Acetylation and deacetylation regulate CCAAT/enhancer binding protein beta at K39 in mediating gene transcription. Mol Cell Endocrinol 2008; 289:94-101. [PMID: 18486321 DOI: 10.1016/j.mce.2008.03.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 03/05/2008] [Accepted: 03/19/2008] [Indexed: 11/26/2022]
Abstract
The transcription factor CCAAT/enhancer binding protein beta (C/EBPbeta) contains multiple acetylation sites, including lysine (K) 39. Mutation of C/EBPbeta at K39, an acetylation site in the transcriptional activation domain, impairs transcription of C/EBPbeta target genes in a dominant-negative fashion. Further, K39 of C/EBPbeta can be deacetylated by HDAC1, and HDAC1 may decrease C/EBPbeta-mediated transcription, suggesting that acetylation of C/EBPbeta at K39 is dynamically regulated in mediating gene transcription. Acetylation of endogenous C/EBPbeta at K39 is detected in adipose tissue, and also occurs in 3T3-L1 cells undergoing adipocyte conversion. In addition, mutation of K39 in C/EBPbeta impairs activation of its target genes encoding C/EBPalpha and PPARgamma, essential mediators of adipogenesis, as well as adipocyte genes for leptin and Glut4. These findings suggest that acetylation of C/EBPbeta at K39 is an important and dynamic regulatory event that contributes to its ability to transactivate target genes, including those associated with adipogenesis and adipocyte function.
Collapse
Affiliation(s)
- Teresa I Ceseña
- Cellular & Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109-5622, United States
| | | | | | | | | | | | | |
Collapse
|
29
|
Sai S, Esteves CL, Kelly V, Michailidou Z, Anderson K, Coll AP, Nakagawa Y, Ohzeki T, Seckl JR, Chapman KE. Glucocorticoid regulation of the promoter of 11beta-hydroxysteroid dehydrogenase type 1 is indirect and requires CCAAT/enhancer-binding protein-beta. Mol Endocrinol 2008; 22:2049-60. [PMID: 18617597 DOI: 10.1210/me.2007-0489] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts inert 11keto-glucocorticoids to active 11beta-hydroxy forms, thereby amplifying intracellular glucocorticoid action. Up-regulation of 11beta-HSD1 in adipose tissue and liver is of pathogenic importance in metabolic syndrome. However, the mechanisms controlling 11beta-HSD1 transcription are poorly understood. Glucocorticoids themselves potently increase 11beta-HSD1 expression in many cells, providing a potential feed-forward system to pathology. We have investigated the molecular mechanisms by which glucocorticoids regulate transcription of 11beta-HSD1, exploiting an A549 cell model system in which endogenous 11beta-HSD1 is expressed and is induced by dexamethasone. We show that glucocorticoid induction of 11beta-HSD1 is indirect and requires new protein synthesis. A glucocorticoid-responsive region maps to between -196 and -88 with respect to the transcription start site. This region contains two binding sites for CCAAT/enhancer-binding protein (C/EBP) that together are essential for the glucocorticoid response and that bind predominantly C/EBPbeta, with C/EBPdelta present in a minority of the complexes. Both C/EBPbeta and C/EBPdelta are rapidly induced by glucocorticoids in A549 cells, but small interfering RNA-mediated knockdown shows that only C/EBPbeta reduction attenuates the glucocorticoid induction of 11beta-HSD1. Chromatin immunoprecipitation studies demonstrated increased binding of C/EBPbeta to the 11beta-HSD1 promoter in A549 cells after glucocorticoid treatment. A similar mechanism may apply in adipose tissue in vivo where increased C/EBPbeta mRNA levels after glucocorticoid treatment were associated with increased 11beta-HSD1 expression. C/EBPbeta is a key mediator of metabolic and inflammatory signaling. Positive regulation of 11beta-HSD1 by C/EBPbeta may link amplification of glucocorticoid action with metabolic and inflammatory pathways and may represent an endogenous innate host-defense mechanism.
Collapse
Affiliation(s)
- Shuji Sai
- Endocrinology Unit, Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hsu CC, Lu CW, Huang BM, Wu MH, Tsai SJ. Cyclic adenosine 3',5'-monophosphate response element-binding protein and CCAAT/enhancer-binding protein mediate prostaglandin E2-induced steroidogenic acute regulatory protein expression in endometriotic stromal cells. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:433-41. [PMID: 18583320 DOI: 10.2353/ajpath.2008.080199] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aberrant expression of the steroidogenic acute regulatory (StAR) protein in human endometriotic stromal cells plays an important role in the development of endometriosis. Prostaglandin E(2) (PGE(2)) is a potent inducer of StAR expression in these cells; however, the mechanisms responsible for the transcriptional regulation of StAR remain to be elucidated. Herein we report that PGE(2)-induced StAR expression is independent of the transcriptional suppressor DAX-1 but is regulated by the transcriptional activator cyclic adenosine 3',5'-monophosphate (cAMP) response element-binding protein (CREB). A promoter activity assay revealed that the cis-element needed for the binding of the CCAAT/enhancer-binding protein (C/EBP) was critical for PGE(2)-induced StAR expression. Electrophoretic mobility shift assay demonstrated that this region of the StAR promoter was bound by C/EBPalpha, C/EBPbeta, and CREB. Forced expression of either C/EBPalpha or C/EBPbeta alone was sufficient to up-regulate StAR promoter activity whereas PGE(2) was needed to induce StAR promoter activity in CREB-overexpressed cells. Results from a chromatin immunoprecipitation assay demonstrated that the binding of C/EBPbeta to the StAR promoter was increased whereas CREB binding was unchanged after PGE(2) treatment. Taken together, PGE(2)-induced StAR promoter activity appears to be regulated by CREB and C/EBPbeta in a cooperative manner in ectopic human endometriotic stromal cells, providing a molecular framework for the etiology of endometriosis.
Collapse
Affiliation(s)
- Chih-Chao Hsu
- Department of Physiology, National Cheng Kung University Medical College, Tainan 701, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
31
|
Rozance PJ, Limesand SW, Barry JS, Brown LD, Thorn SR, LoTurco D, Regnault TRH, Friedman JE, Hay WW. Chronic late-gestation hypoglycemia upregulates hepatic PEPCK associated with increased PGC1alpha mRNA and phosphorylated CREB in fetal sheep. Am J Physiol Endocrinol Metab 2008; 294:E365-70. [PMID: 18056789 PMCID: PMC3857025 DOI: 10.1152/ajpendo.00639.2007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hepatic glucose production is normally activated at birth but has been observed in response to experimental hypoglycemia in fetal sheep. The cellular basis for this process remains unknown. We determined the impact of 2 wk of fetal hypoglycemia during late gestation on enzymes responsible for hepatic gluconeogenesis, focusing on the insulin-signaling pathway, transcription factors, and coactivators that regulate gluconeogenesis. Hepatic phosphoenolpyruvate carboxykinase and glucose-6-phosphatase mRNA increased 12-fold and 7-fold, respectively, following chronic hypoglycemia with no change in hepatic glycogen. Chronic hypoglycemia decreased fetal plasma insulin with no change in glucagon but increased plasma cortisol 3.5-fold. Peroxisome proliferator-activated receptor-gamma coactivator-1alpha mRNA and phosphorylation of cAMP response element binding protein at Ser(133) were both increased, with no change in Akt, forkhead transcription factor FoxO1, hepatocyte nuclear factor-4alpha, or CCAAT enhancer binding protein-beta. These results demonstrate that chronic fetal hypoglycemia triggers signals that can activate gluconeogenesis in the fetal liver.
Collapse
Affiliation(s)
- Paul J Rozance
- Perinatal Research Center, Department of Pediatrics, University of Colorado Health Sciences Center, Aurora, CO 80045, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yarwood SJ, Borland G, Sands WA, Palmer TM. Identification of CCAAT/enhancer-binding proteins as exchange protein activated by cAMP-activated transcription factors that mediate the induction of the SOCS-3 gene. J Biol Chem 2008; 283:6843-53. [PMID: 18195020 DOI: 10.1074/jbc.m710342200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The prototypical second messenger cAMP is a key regulator of immune and inflammatory responses. Its ability to inhibit interleukin (IL)-6 responses is due to induction of suppressor of cytokine signaling-3 (SOCS-3), a negative regulator of IL-6 receptor signaling. We have determined previously that SOCS-3 induction by cAMP occurs independently of cAMP-dependent protein kinase, instead requiring the recently identified cAMP sensor exchange protein activated by cAMP 1 (EPAC1). Here we present evidence to suggest that the C/EBP family of transcription factors link EPAC1 activation to SOCS-3 induction. Firstly, selective activation of EPAC in human umbilical vein endothelial cells increased C/EBP DNA binding activity and recruitment of C/EBPbeta to the SOCS-3 promoter. Secondly, knockdown of C/EBPbeta and -delta isoforms abolished both SOCS-3 induction and inhibition of IL-6 signaling in response to cAMP. Thirdly, overexpression of C/EBPalpha, -beta, or -delta potentiated EPAC-mediated accumulation of SOCS-3. Finally, these effects were not restricted to human umbilical vein endothelial cells, because similar phenomena were observed in murine embryonic fibroblasts in which C/EBPbeta or delta had been deleted. In summary, our findings constitute the first description of an EPAC-C/EBP pathway that can control cAMP-mediated changes in gene expression independently of protein kinase A.
Collapse
Affiliation(s)
- Stephen J Yarwood
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Davidson Bldg., Glasgow G12 8QQ, United Kingdom.
| | | | | | | |
Collapse
|
33
|
McCarthy TL, Hochberg RB, Labaree DC, Centrella M. 3-ketosteroid reductase activity and expression by fetal rat osteoblasts. J Biol Chem 2007; 282:34003-12. [PMID: 17905737 DOI: 10.1074/jbc.m707502200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In addition to reproductive tissue, sex hormones induce transcriptional events in many connective tissue cells, including osteoblasts. Some sex hormone receptor modulators with bone sparing effects selectively target estrogen or androgen receptors, whereas others appear more promiscuous, in part through enzymatic metabolism. Rat osteoblasts express significant oxidative 3alpha-hydroxysteroid dehydrogenase activity, which can convert precursor substrates to potent androgen receptor agonists. Here we show that they also express 3-ketosteroid reductase activity, exemplified by 7-methyl-17-ethynyl-19-norandrostan-5 (10)en-3-one (tibolone) conversion to potent estrogen receptor alpha agonists. Conversion was rapid and quantitative, with 3alpha-hydroxytibolone as the primary metabolite. Consistently, tibolone induced estrogen receptor alpha-dependent gene promoter activity through cis-acting estrogen response elements, increased the stimulatory effect of TGF-beta on Smad-dependent gene promoter activity, and enhanced prostaglandin E2-induced activity of transcription factor Runx2. Rat osteoblasts express the 3-ketosteroid reductase AKR1C9, an aldo-keto reductase gene family member. Exposure to prostaglandin E2 increased AKR1C9 gene promoter activity and mRNA expression. AKR1C9 promoter activity was also enhanced by overexpression of protein kinase A catalytic subunit or transcription factor C/EBPdelta, and the effect of PGE2 was reduced by dominant negative C/EBPdelta competition or C/EBPdelta antisense expression. Moreover, prostaglandin E2 increased the amount of functional endogenous nuclear C/EBPdelta that could bind specifically to a distinct domain approximately 1.8-kb upstream from the start site of AKR1C9 transcription. In summary, in addition to 3alpha-hydroxysteroid dehydrogenase, rat osteoblasts express significant and regulatable 3-ketosteroid reductase activity. Through these enzymes, they may selectively metabolize precursor compounds into potent steroid receptor agonists locally within bone.
Collapse
Affiliation(s)
- Thomas L McCarthy
- Department of Surgery, Section of Plastic Surgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| | | | | | | |
Collapse
|
34
|
Ets-2 and C/EBP-beta are important mediators of ovine trophoblast Kunitz domain protein-1 gene expression in trophoblast. BMC Mol Biol 2007; 8:14. [PMID: 17326832 PMCID: PMC1817651 DOI: 10.1186/1471-2199-8-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 02/27/2007] [Indexed: 11/22/2022] Open
Abstract
Background The trophoblast Kunitz domain proteins (TKDPs) constitute a highly expressed, placenta-specific, multigene family restricted to ruminant ungulates and characterized by a C-terminal "Kunitz" domain, preceded by one or more unique N-terminal domains. TKDP-1 shares an almost identical expression pattern with interferon-tau, the "maternal recognition of pregnancy protein" in ruminants. Our goal here has been to determine whether the ovine (ov) Tkdp-1 and IFNT genes possess a similar transcriptional code. Results The ovTkdp-1 promoter has been cloned and characterized. As with the IFNT promoter, the Tkdp-1 promoter is responsive to Ets-2, and promoter-driven reporter activity can be increased over 700-fold in response to over-expression of Ets-2 and a constitutively active form of protein Kinase A (PKA). Unexpectedly, the promoter element of Tkdp-1 responsible for this up-regulation, unlike that of the IFNT, does not bind Ets-2. However, mutation of a CCAAT/enhancer binding element within this control region not only reduced basal transcriptional activity, but prevented Ets-2 as well as cyclic adenosine 5'-monophosphate (cAMP)/PKA and Ras/mitogen-activated protein kinase (MAPK) responsiveness. In vitro binding experiments and in vivo protein-protein interaction assays implicated CCAAT/enhancer binding protein-beta (C/EBP-β) as involved in up-regulating the Tkdp-1 promoter activity. A combination of Ets-2 and C/EBP-β can up-regulate expression of the minimal Tkdp-1 promoter as much as 930-fold in presence of a cAMP analog. An AP-1-like element adjacent to the CCAAT enhancer, which binds Jun family members, is required for basal and cAMP/ C/EBP-β-dependent activation of the gene, but not for Ets-2-dependent activity. Conclusion This paper demonstrates how Ets-2, a key transcription factor for trophoblast differentiation and function, can control expression of two genes (Tkdp-1 and IFNT) having similar spatial and temporal expression patterns via very different mechanisms.
Collapse
|
35
|
Rodríguez L, Bartolomé N, Ochoa B, Martínez MJ. Isolation and Characterization of the Rat SND p102 Gene Promoter. Ann N Y Acad Sci 2006; 1091:282-95. [PMID: 17341622 DOI: 10.1196/annals.1378.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this work, we report the isolation and characterization of a 1,688-bp sequence corresponding to the promoter region of the rat endoplasmic reticulum (ER) cholesterol ester hydrolase gene, renamed as staphylococcal nuclease domain-containing protein of 102 kDa (SND p102) in GenBank database according to the structural properties and molecular weight of the protein. The transcription start site was located 216 bases upstream of the ATG start codon by RNA ligase mediated-rapid amplification of cDNA ends (RLM-RACE). Bioinformatic analysis of the isolated sequence revealed a lack of typical promoter TATA box and the presence of GC-rich motifs and CCAAT boxes recognized by Sp 1 and nuclear factor-Y among other putative binding sites for a number of transcription factors implicated in both basal and regulated processes. Electrophoretic mobility shift and supershift assays using nuclear extracts from human (HepG2) and rat (McA-RH7777) hepatoma cells demonstrated that nuclear factor-Y (NF-Y) transcription factor bound to the core sequences at (-257, -253), (-290, -286), and (-370, -366) upstream translation initiation site. The absence of TATA box and the location and reverse orientation of the CCAAT boxes in the promoter region strongly suggest a role for NF-Y in the regulation of transcription of SND p102 gene.
Collapse
Affiliation(s)
- Lorena Rodríguez
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country, Sarriena s/n, 48940-Leioa, Bizkaia, Spain
| | | | | | | |
Collapse
|
36
|
Shankar K, Hidestrand M, Liu X, Xiao R, Skinner CM, Simmen FA, Badger TM, Ronis MJJ. Physiologic and genomic analyses of nutrition-ethanol interactions during gestation: Implications for fetal ethanol toxicity. Exp Biol Med (Maywood) 2006; 231:1379-97. [PMID: 16946407 DOI: 10.1177/153537020623100812] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nutrition-ethanol (EtOH) interactions during gestation remain unclear primarily due to the lack of appropriate rodent models. In the present report we utilize total enteral nutrition (TEN) to specifically understand the roles of nutrition and caloric intake in EtOH-induced fetal toxicity. Time-impregnated rats were intragastrically fed either control or diets containing EtOH (8-14 g/kg/day) at a recommended caloric intake for pregnant rats or rats 30% undernourished, from gestation day (GD) 6-20. Decreased fetal weight and litter size (P < 0.05) and increased full litter resorptions (33% vs. 0%), were observed in undernourished dams compared to adequately fed rats given the same dose of EtOH, while undernutrition alone did not produce any fetal toxicity. Undernutrition led to impairment of EtOH metabolism, increased blood EtOH concentrations (160%), and decreased maternal hepatic ADH1 mRNA, protein, and activity. Microarray analyses of maternal hepatic gene expression on GD15 revealed that 369 genes were altered by EtOH in the presence of undernutrition, as compared to only 37 genes by EtOH per se (+/-2-fold, P < 0.05). Hierarchical clustering and gene ontology analysis revealed that stress and external stimulus responses, transcriptional regulation, cellular homeostasis, and protein metabolism were affected uniquely in the EtOH-under-nutrition group, but not by EtOH alone. Microarray data were confirmed using real-time RT-PCR. Undernourished EtOH-fed animals had 2-fold lower IGF-1 mRNA and 10-fold lower serum IGF-1 protein levels compared to undernourished controls (P < 0.0005). Examination of maternal GH signaling via STAT5a and -5b revealed significant reduction in both gene and protein expression produced by both EtOH and undernutrition. However, despite significantly elevated fetal BECs, fetal IGF-1 mRNA and protein were not affected by EtOH or EtOH-undernutrition combinations. Our data suggest that undernutrition potentiates the fetal toxicity of EtOH in part by disrupting maternal GH-IGF-1, signaling thereby decreasing maternal uterine capacity and placental growth.
Collapse
Affiliation(s)
- Kartik Shankar
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Yang TTC, Suk HY, Yang X, Olabisi O, Yu RYL, Durand J, Jelicks LA, Kim JY, Scherer PE, Wang Y, Feng Y, Rossetti L, Graef IA, Crabtree GR, Chow CW. Role of transcription factor NFAT in glucose and insulin homeostasis. Mol Cell Biol 2006; 26:7372-87. [PMID: 16908540 PMCID: PMC1636854 DOI: 10.1128/mcb.00580-06] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 05/16/2006] [Accepted: 08/02/2006] [Indexed: 12/11/2022] Open
Abstract
Compromised immunoregulation contributes to obesity and complications in metabolic pathogenesis. Here, we demonstrate that the nuclear factor of activated T cell (NFAT) group of transcription factors contributes to glucose and insulin homeostasis. Expression of two members of the NFAT family (NFATc2 and NFATc4) is induced upon adipogenesis and in obese mice. Mice with the Nfatc2-/- Nfatc4-/- compound disruption exhibit defects in fat accumulation and are lean. Nfatc2-/- Nfatc4-/- mice are also protected from diet-induced obesity. Ablation of NFATc2 and NFATc4 increases insulin sensitivity, in part, by sustained activation of the insulin signaling pathway. Nfatc2-/- Nfatc4-/- mice also exhibit an altered adipokine profile, with reduced resistin and leptin levels. Mechanistically, NFAT is recruited to the transcription loci and regulates resistin gene expression upon insulin stimulation. Together, these results establish a role for NFAT in glucose/insulin homeostasis and expand the repertoire of NFAT function to metabolic pathogenesis and adipokine gene transcription.
Collapse
Affiliation(s)
- Teddy T C Yang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Herranz H, Morata G, Milán M. calderón encodes an organic cation transporter of the major facilitator superfamily required for cell growth and proliferation of Drosophila tissues. Development 2006; 133:2617-25. [PMID: 16774996 DOI: 10.1242/dev.02436] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The adaptation of growth in response to dietary changes is essential for the normal development of all organisms. The insulin receptor (InR) signalling pathway controls growth and metabolism in response to nutrient availability. The elements of this pathway have been described, although little is known about the downstream elements regulated by this cascade. We identified calderón, a gene that encodes a protein with highest homology with organic cation transporters of the major facilitator superfamily, as a new transcriptional target of the InR pathway. These transporters are believed to function mainly in the uptake of sugars, as well as other organic metabolites. Genetic experiments demonstrate that calderón is required cell autonomously and downstream of the InR pathway for normal growth and proliferation of larval tissues. Our results indicate that growth of imaginal cells may be modulated by two distinct, but coordinated, nutrient-sensing mechanisms: one cell-autonomous and the other humoral.
Collapse
Affiliation(s)
- Héctor Herranz
- Icrea and Institut de Recerca Biomedica, Parc Cientific de Barcelona, Josep Samitier, 1-5, 08028 Barcelona, Spain
| | | | | |
Collapse
|
39
|
McFie PJ, Wang GL, Timchenko NA, Wilson HL, Hu X, Roesler WJ. Identification of a Co-repressor That Inhibits the Transcriptional and Growth-Arrest Activities of CCAAT/Enhancer-binding Protein α. J Biol Chem 2006; 281:18069-80. [PMID: 16644732 DOI: 10.1074/jbc.m512734200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We used a yeast two-hybrid screening approach to identify novel interactors of CCAAT/enhancer-binding protein alpha (C/EBPalpha) that may offer insight into its mechanism of action and regulation. One clone obtained was that for CA150, a nuclear protein previously characterized as a transcriptional elongation factor. In this report, we show that CA150 is a widely expressed co-repressor of C/EBP proteins. Two-hybrid and co-immunoprecipitation analyses indicated that CA150 interacts with C/EBPalpha. Overexpression of CA150 inhibited the transactivation produced by C/EBPalpha and was also able to reverse the enhancing effect of the co-activator p300 on C/EBPbeta-mediated transactivation. Analysis of C/EBPalpha mutants indicated that CA150 interacts with C/EBPalpha primarily through a domain spanning amino acids 135-150. Chromatin immunoprecipitation assays showed that CA150 was present on a promoter that is repressed by C/EBPalpha but not present on a promoter that is activated by C/EBPalpha. Finally, we showed that in cells in which growth arrest had been induced by ectopic expression of C/EBPalpha, CA150 was able to release them from growth arrest. Interestingly, CA150 could not reverse the growth arrest produced by the minimal growth-arrest domain of C/EBPalpha (amino acids 175-217), suggesting that the effect of CA150 was directed at a region of C/EBPalpha outside of this minimal domain, consistent with our two-hybrid analysis. Taken together, these data indicate that CA150 is a co-repressor of C/EBP proteins and provides a possible mechanism for how C/EBPalpha can repress transcription of specific genes.
Collapse
Affiliation(s)
- Pamela J McFie
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Our understanding of metabolism is undergoing a dramatic shift. Indeed, the efforts made towards elucidating the mechanisms controlling the major regulatory pathways are now being rewarded. At the molecular level, the crucial role of transcription factors is particularly well-illustrated by the link between alterations of their functions and the occurrence of major metabolic diseases. In addition, the possibility of manipulating the ligand-dependent activity of some of these transcription factors makes them attractive as therapeutic targets. The aim of this review is to summarize recent knowledge on the transcriptional control of metabolic homeostasis. We first review data on the transcriptional regulation of the intermediary metabolism, i.e., glucose, amino acid, lipid, and cholesterol metabolism. Then, we analyze how transcription factors integrate signals from various pathways to ensure homeostasis. One example of this coordination is the daily adaptation to the circadian fasting and feeding rhythm. This section also discusses the dysregulations causing the metabolic syndrome, which reveals the intricate nature of glucose and lipid metabolism and the role of the transcription factor PPARgamma in orchestrating this association. Finally, we discuss the molecular mechanisms underlying metabolic regulations, which provide new opportunities for treating complex metabolic disorders.
Collapse
Affiliation(s)
- Béatrice Desvergne
- Center for Integrative Genomics, National Centre of Competence in Research Frontiers in Genetics, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
41
|
Suh GY, Jin Y, Yi AK, Wang XM, Choi AMK. CCAAT/enhancer-binding protein mediates carbon monoxide-induced suppression of cyclooxygenase-2. Am J Respir Cell Mol Biol 2006; 35:220-6. [PMID: 16543610 PMCID: PMC2643257 DOI: 10.1165/rcmb.2005-0154oc] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) is a key enzyme involved in the inflammatory process that is rapidly induced in macrophages in response to LPS. Carbon monoxide (CO), a byproduct of heme oxygnease-1, can suppress proinflammatory response in various in vitro and in vivo models of inflammation. This study was undertaken to examine whether CO can regulate (and if so, to delineate the mechanism by which CO regulates) LPS-induced COX-2 expression in macrophages. RAW 264.7 murine macrophages were stimulated with LPS (0-10 ng/ml) with or without CO (500 ppm). Northern and Western blot analysis was done. Progstaglandin E(2) and nitrite concentration was measured from cell culture supernatant. Electrophoretic mobility shift assay was performed to assess nuclear factor binding. CO downregulated LPS-induced COX-2 mRNA and protein expression. CO also inhibited LPS-induced prostaglandin E(2) secretion (P < 0.05). CO also decreased LPS-induced CCAAT/enhancer-binding protein (C/EBP) beta and delta protein expression in LPS-treated RAW 264.7 cells. Gel shift analysis revealed that CO treatment decreased LPS-induced activation of protein binding to C/EBP consensus oligonucleotides of murine cyclooxygenase-2 promoter. CO also decreased LPS-induced nitric oxide synthase-2 protein expression and nitrite production, and decreased LPS-induced activation of protein binding to C/EBP consensus oligonucleotides of murine nitric oxide synthase-2 promoter. CO may act as an important regulator of inflammation by virtue of its ability to regulate C/EBPs.
Collapse
Affiliation(s)
- Gee Young Suh
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, 3459 Fifth Avenue, MUH 628, PA 15213, USA
| | | | | | | | | |
Collapse
|
42
|
Yang TTC, Ung PMU, Rincón M, Chow CW. Role of the CCAAT/enhancer-binding protein NFATc2 transcription factor cascade in the induction of secretory phospholipase A2. J Biol Chem 2006; 281:11541-52. [PMID: 16500900 DOI: 10.1074/jbc.m511214200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Inflammatory cytokines such as interleukin-1 and tumor necrosis factor-alpha modulate a transcription factor cascade in the liver to induce and sustain an acute and systemic defense against foreign entities. The transcription factors involved include NF-kappaB, STAT, and CCAAT/enhancer-binding protein (C/EBP). Whether the NFAT group of transcription factors (which was first characterized as playing an important role in cytokine gene expression in the adaptive response in immune cells) participates in the acute-phase response in hepatocytes is not known. Here, we have investigated whether NFAT is part of the transcription factor cascade in hepatocytes during inflammatory stress. We report that interleukin-1 or tumor necrosis factor-alpha increases expression of and activates NFATc2. C/EBP-mediated NFATc2 induction is temporally required for expression of type IIA secretory phospholipase A2. NFATc2 is also required for expression of phospholipase D1 and the calcium-binding protein S100A3. Thus, a C/EBP-NFATc2 transcription factor cascade provides an additional means to modulate the acute-phase response upon stimulation with inflammatory cytokines.
Collapse
Affiliation(s)
- Teddy T C Yang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
43
|
Carmona M, Hondares E, Rodríguez De La Concepción M, Rodríguez-Sureda V, Peinado-Onsurbe J, Poli V, Iglesias R, Villarroya F, Giralt M. Defective thermoregulation, impaired lipid metabolism, but preserved adrenergic induction of gene expression in brown fat of mice lacking C/EBPbeta. Biochem J 2005; 389:47-56. [PMID: 15762841 PMCID: PMC1188262 DOI: 10.1042/bj20050009] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
C/EBPbeta (CCAAT/enhancer-binding protein beta) is a transcriptional regulator of the UCP1 (uncoupling protein-1) gene, the specific marker gene of brown adipocytes that is responsible for their thermogenic capacity. To investigate the role of C/EBPbeta in brown fat, we studied the C/EBPbeta-null mice. When placed in the cold, C/EBPbeta(-/-) mice did not maintain body temperature. This cold-sensitive phenotype occurred, although UCP1 and PGC-1alpha (peroxisome-proliferator-activated receptor gamma co-activator-1alpha) gene expression was unaltered in brown fat of C/EBPbeta(-/-) mice. The UCP1 gene promoter was repressed by the truncated inhibitory C/EBPbeta isoform LIP (liver-enriched transcriptional inhibitory protein, the truncated inhibitory C/EBPbeta isoform). Since C/EBPbeta-null mice lack both C/EBPbeta isoforms, active LAP (liver-enriched transcriptional activatory protein, the active C/EBPbeta isoform) and LIP, the absence of LIP may have a stronger effect than the absence of LAP upon UCP1 gene expression. Gene expression for UCP2 and UCP3 was not impaired in all tissues analysed. In primary brown adipocytes from C/EBPbeta(-/-) mice, induction of gene expression by noradrenaline was preserved. In contrast, the expression of genes related to lipid storage was impaired, as was the amount of triacylglycerol mobilized after acute cold exposure in brown fat from C/EBPbeta(-/-) mice. LPL (lipoprotein lipase) activity was also impaired in brown fat, but not in other tissues of C/EBPbeta(-/-) mice. LPL protein levels were also diminished, but this effect was independent of changes in LPL mRNA, suggesting that C/EBPbeta is involved in the post-transcriptional regulation of LPL gene expression in brown fat. In summary, defective thermoregulation owing to the lack of C/EBPbeta is associated with the reduced capacity to supply fatty acids as fuels to sustain brown fat thermogenesis.
Collapse
Affiliation(s)
- M. Carmen Carmona
- *Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, E-08028-Barcelona, Catalunya, Spain
| | - Elayne Hondares
- *Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, E-08028-Barcelona, Catalunya, Spain
| | | | - Víctor Rodríguez-Sureda
- *Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, E-08028-Barcelona, Catalunya, Spain
| | - Julia Peinado-Onsurbe
- *Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, E-08028-Barcelona, Catalunya, Spain
| | - Valeria Poli
- †Dipartimento di Genetica, Biologia e Biochimica, Universitá di Torino, 10126-Torino, Italy
| | - Roser Iglesias
- *Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, E-08028-Barcelona, Catalunya, Spain
| | - Francesc Villarroya
- *Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, E-08028-Barcelona, Catalunya, Spain
| | - Marta Giralt
- *Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, E-08028-Barcelona, Catalunya, Spain
- To whom correspondence should be addressed (email )
| |
Collapse
|
44
|
Chen WK, Chang NCA, Chang YH, Chang KL, Wu SC, Yang TS, Wu SM, Chang AC. Characterization of the regulatory region of Adra2c, the gene encoding the murine alpha2C adrenoceptor subtype. J Biomed Sci 2005; 11:886-901. [PMID: 15591786 DOI: 10.1007/bf02254374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Accepted: 06/29/2004] [Indexed: 01/17/2023] Open
Abstract
The 5' flanking sequence (3,227 base pairs, bp) of the mouse Adra2c subtype gene was determined and characterized. The transcription start site was mapped to nucleotide 'A' of two initiator motifs in tandem array, i.e. 1,159 and 1,153 bp upstream from the initiation codon of the open reading frame (ORF) of Adra2c, respectively. One structural feature salient to the 5' regulatory region of Adra2c is present in the sequence 1 kb immediately upstream from the receptor ORF, which is highly enriched in GC content (76%) and CpG island counts (i.e. CpG/GpC, 146:177), and thus rich in Sp1-binding motifs. At the 3' flanking region, the polyadenylation signal was mapped to 481 bp downstream from the termination codon. The transcript defined by sequence data thereby is consistent with a size of 3 kb (brain form) determined by Northern blot analysis. The transgene, Adra2c-NN- lacZ, which links the promoter region of Adra2c to the lacZ reporter gene, was constructed in order to evaluate the functional capacity of the promoter and the putative motifs residing within the defined regulatory region (1.9 kb upstream from the ORF) in directing the reporter gene expression in vitro in transiently transfected cells and in vivo in transgenic (Tg) mice. Permissive cell types to Adra2c-NN include those derived from neural and kidney lineages. Significant Adra2c-NN-driven reporter expression in Tg mice established suggests that alpha2C adrenoceptor expression is permissive under Adra2c-NN in central (cerebral cortex, hippocampus, subthalamus, hypothalamus, superior colliculus, cerebellum, and brain stem) and peripheral (pancreatic beta-islets) tissues.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Base Sequence
- Blotting, Northern
- Blotting, Southern
- Brain/metabolism
- Central Nervous System/metabolism
- Cloning, Molecular
- Codon
- Computational Biology
- CpG Islands
- Gene Library
- Gene Transfer Techniques
- Genes, Reporter
- Humans
- Islets of Langerhans/metabolism
- Lac Operon
- Mice
- Mice, Transgenic
- Models, Genetic
- Molecular Sequence Data
- Nucleic Acid Hybridization
- Open Reading Frames
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Receptors, Adrenergic, alpha-2/chemistry
- Receptors, Adrenergic, alpha-2/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tissue Distribution
- Transcription Factors
- Transcription, Genetic
- Transfection
- Transgenes
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- Wen-Kwei Chen
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, ROC
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Svotelis A, Doyon G, Bernatchez G, Désilets A, Rivard N, Asselin C. IL-1 beta-dependent regulation of C/EBP delta transcriptional activity. Biochem Biophys Res Commun 2005; 328:461-70. [PMID: 15694370 DOI: 10.1016/j.bbrc.2005.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Indexed: 11/19/2022]
Abstract
We have previously shown that the transcription factor C/EBP delta is involved in the intestinal inflammatory response. C/EBP delta regulates several inflammatory response genes, such as haptoglobin, in the rat intestinal epithelial cell line IEC-6 in response to IL-1. However, the different C/EBP delta domains involved in IL-1 beta-mediated transcriptional activation and the kinases implicated have not been properly defined. To address this, we determined the role of the p38 MAP kinase in the regulation of C/EBP delta transcriptional activity. The IL-1-dependent induction of the acute phase protein gene haptoglobin in IEC-6 cells was decreased in response to the p38 MAP kinase inhibitor SB203580, as determined by Northern blot. Transcriptional activity of C/EBP delta was repressed by the specific inhibitor of the p38 MAP kinase, as assessed by transient transfection assays. Mutagenesis studies and transient transfection assays revealed an important domain for transcriptional activation between amino acids 70 and 108. This domain overlapped with a docking site for the p38 MAP kinase, between amino acids 75 and 85, necessary to insure C/EBP delta phosphorylation. Deletion of this domain led to a decrease in basal transcriptional activity of C/EBP delta and in p300-dependent transactivation, as assessed by transient transfection assays, and in IL-1-dependent haptoglobin induction. This unusual arrangement of a kinase docking site within a transactivation domain may functionally be important for the regulation of C/EBP delta transcriptional activity.
Collapse
Affiliation(s)
- Amy Svotelis
- CIHR Group on Functional Development and Physiopathology of the Digestive Tract, Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine, Université de Sherbrooke, Que., Canada J1H 5N4
| | | | | | | | | | | |
Collapse
|
46
|
Chin KT, Zhou HJ, Wong CM, Lee JMF, Chan CP, Qiang BQ, Yuan JG, Ng IOL, Jin DY. The liver-enriched transcription factor CREB-H is a growth suppressor protein underexpressed in hepatocellular carcinoma. Nucleic Acids Res 2005; 33:1859-73. [PMID: 15800215 PMCID: PMC1072803 DOI: 10.1093/nar/gki332] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have previously characterized transcription factor LZIP to be a growth suppressor targeted by hepatitis C virus oncoprotein. In search of proteins closely related to LZIP, we have identified a liver-enriched transcription factor CREB-H. LZIP and CREB-H represent a new subfamily of bZIP factors. CREB-H activates transcription by binding to cAMP responsive element, box B, and ATF6-binding element. Interestingly, CREB-H has a putative transmembrane (TM) domain and it localizes ambiently to the endoplasmic reticulum. Proteolytic cleavage that removes the TM domain leads to nuclear translocation and activation of CREB-H. CREB-H activates the promoter of hepatic gluconeogenic enzyme phosphoenolpyruvate carboxykinase. This activation can be further stimulated by cAMP and protein kinase A. CREB-H transcript is exclusively abundant in adult liver. In contrast, the expression of CREB-H mRNA is aberrantly reduced in hepatoma tissues and cells. The enforced expression of CREB-H suppresses the proliferation of cultured hepatoma cells. Taken together, our findings suggest that the liver-enriched bZIP transcription factor CREB-H is a growth suppressor that plays a role in hepatic physiology and pathology.
Collapse
Affiliation(s)
- King-Tung Chin
- Department of Biochemistry, University of Hong KongHong Kong, China
| | - Hai-Jun Zhou
- Department of Biochemistry, University of Hong KongHong Kong, China
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100005, China
| | - Chun-Ming Wong
- Department of Pathology, Faculty of Medicine, University of Hong KongHong Kong, China
| | - Joyce Man-Fong Lee
- Department of Pathology, Faculty of Medicine, University of Hong KongHong Kong, China
| | - Ching-Ping Chan
- Department of Biochemistry, University of Hong KongHong Kong, China
| | - Bo-Qin Qiang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100005, China
| | - Jian-Gang Yuan
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100005, China
| | - Irene Oi-lin Ng
- Department of Pathology, Faculty of Medicine, University of Hong KongHong Kong, China
| | - Dong-Yan Jin
- Department of Biochemistry, University of Hong KongHong Kong, China
- To whom correspondence should be addressed at Department of Biochemistry, The University of Hong Kong, 3rd Floor, Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Hong Kong. Tel: +852 2819 9491; Fax: +852 2855 1254;
| |
Collapse
|
47
|
Fang HL, Abdolalipour M, Duanmu Z, Smigelski JR, Weckle A, Kocarek TA, Runge-Morris M. Regulation of glucocorticoid-inducible hydroxysteroid sulfotransferase (SULT2A-40/41) gene transcription in primary cultured rat hepatocytes: role of CCAAT/enhancer-binding protein liver-enriched transcription factors. Drug Metab Dispos 2005; 33:147-56. [PMID: 15502011 DOI: 10.1124/dmd.104.000281] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanism responsible for glucocorticoid receptor (GR)-mediated induction of rat hepatic hydroxysteroid sulfotransferase (SULT2A-40/41) gene transcription was investigated. We previously reported that the region of the SULT2A-40/41 5'-flanking region delimited by -158 to -77 nucleotides relative to the transcription start site was sufficient to support GR-inducible expression. This region of the SULT2A-40/41 gene does not contain a consensus glucocorticoid receptor-responsive element, but does contain two consensus sites for liver-enriched CCAAT/enhancer-binding protein (C/EBP) transcription factors. In the present study, incubation of primary cultured rat hepatocytes with a GR-activating concentration (10(-7) M) of a potent glucocorticoid, dexamethasone or triamcinolone acetonide (TA), rapidly produced increases in C/EBPalpha and C/EBPbeta nuclear protein contents, as measured by Western blot or in vitro DNA-binding activity analysis, that preceded increases in SULT2A-40/41 mRNA and protein levels. Transient cotransfection of SULT2A-40/41 reporter plasmids with a dominant negative C/EBP expression plasmid completely blocked TA-inducible SULT2A-40/41 reporter gene expression. Linker scanning and site-directed mutagenesis of the proximal SULT2A-40/41 5'-flanking region, complemented by in vitro DNA-binding analyses, indicated that the more distal C/EBP site was important for controlling SULT2A-40/41 promoter activity. These data support a role for GR-inducible C/EBPalpha and C/EBPbeta expression in the transactivation of hepatic SULT2A-40/41 expression.
Collapse
Affiliation(s)
- Hai-Lin Fang
- Institute of Environmental Health Sciences, Wayne State University, 2727 Second Avenue, Room 4000, Detroit, MI 48201, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Rochford JJ, Semple RK, Laudes M, Boyle KB, Christodoulides C, Mulligan C, Lelliott CJ, Schinner S, Hadaschik D, Mahadevan M, Sethi JK, Vidal-Puig A, O'Rahilly S. ETO/MTG8 is an inhibitor of C/EBPbeta activity and a regulator of early adipogenesis. Mol Cell Biol 2004; 24:9863-72. [PMID: 15509789 PMCID: PMC525461 DOI: 10.1128/mcb.24.22.9863-9872.2004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The putative transcriptional corepressor ETO/MTG8 has been extensively studied due to its involvement in a chromosomal translocation causing the t(8;21) form of acute myeloid leukemia. Despite this, the role of ETO in normal physiology has remained obscure. Here we show that ETO is highly expressed in preadipocytes and acts as an inhibitor of C/EBPbeta during early adipogenesis, contributing to its characteristically delayed activation. ETO prevents both the transcriptional activation of the C/EBPalpha promoter by C/EBPbeta and its concurrent accumulation in centromeric sites during early adipogenesis. ETO expression rapidly reduces after the initiation of adipogenesis, and this is essential to the normal induction of adipogenic gene expression. These findings define, for the first time, a molecular role for ETO in normal physiology as an inhibitor of C/EBPbeta and a novel regulator of early adipogenesis.
Collapse
Affiliation(s)
- Justin J. Rochford
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Robert K. Semple
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Matthias Laudes
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Keith B. Boyle
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | | - Claire Mulligan
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Christopher J. Lelliott
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Sven Schinner
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Dirk Hadaschik
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Meera Mahadevan
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Jaswinder K. Sethi
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Antonio Vidal-Puig
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Stephen O'Rahilly
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
- Corresponding author. Mailing address: Department of Clinical Biochemistry, University of Cambridge, Box 232, Level 4, Addenbrooke's Hospital, Hills Rd., Cambridge CB2 2QR, United Kingdom. Phone: 44 (0) 1223-336855. Fax: 44 (0) 1223-330598. E-mail:
| |
Collapse
|
49
|
Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY, Mootha VK, Jäger S, Vianna CR, Reznick RM, Cui L, Manieri M, Donovan MX, Wu Z, Cooper MP, Fan MC, Rohas LM, Zavacki AM, Cinti S, Shulman GI, Lowell BB, Krainc D, Spiegelman BM. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 2004; 119:121-135. [PMID: 15454086 DOI: 10.1016/j.cell.2004.09.013] [Citation(s) in RCA: 966] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Revised: 08/04/2004] [Accepted: 08/17/2004] [Indexed: 12/29/2022]
Abstract
PGC-1alpha is a coactivator of nuclear receptors and other transcription factors that regulates several metabolic processes, including mitochondrial biogenesis and respiration, hepatic gluconeogenesis, and muscle fiber-type switching. We show here that, while hepatocytes lacking PGC-1alpha are defective in the program of hormone-stimulated gluconeogenesis, the mice have constitutively activated gluconeogenic gene expression that is completely insensitive to normal feeding controls. C/EBPbeta is elevated in the livers of these mice and activates the gluconeogenic genes in a PGC-1alpha-independent manner. Despite having reduced mitochondrial function, PGC-1alpha null mice are paradoxically lean and resistant to diet-induced obesity. This is largely due to a profound hyperactivity displayed by the null animals and is associated with lesions in the striatal region of the brain that controls movement. These data illustrate a central role for PGC-1alpha in the control of energy metabolism but also reveal novel systemic compensatory mechanisms and pathogenic effects of impaired energy homeostasis.
Collapse
Affiliation(s)
- Jiandie Lin
- Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Growth of organisms and their constituent parts responds to both intrinsic and extrinsic cues during development: organisms of a given species generally grow at a predictable rate and to a specific body size, but individuals can modify this program during development in response to environmental conditions. Recent experiments, using gene knockouts and targeted overexpression, have revealed the central role of a signaling network controlled by the PI3K and TOR kinases in this regulation. These signaling molecules control growth by coordinately regulating a large number of cell biological processes. This review focuses on the cellular activities regulated by PI3K and TOR during development, and discusses how changes in different aspects of cellular metabolism may interact to regulate growth.
Collapse
Affiliation(s)
- Thomas P Neufeld
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|