1
|
Kannen V, Olafsen NE, Das S, Giuliana P, Izzati FN, Choksi H, Åhrling SS, Cappello P, Teino I, Maimets T, Jaudzems K, Gulbinas A, Dambrauskas Z, Edgar LJ, Grant DM, Matthews J. Loss of aryl hydrocarbon receptor reduces pancreatic tumor growth by increasing immune cell infiltration. Biochem Pharmacol 2025; 236:116872. [PMID: 40090596 DOI: 10.1016/j.bcp.2025.116872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/16/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease which remains poorly understood. Increasing evidence suggests that the aryl hydrocarbon receptor (AHR) plays a role in the pathogenesis of several cancers; however, its role in PDAC is unclear because AHR exhibits both pro- and anti-tumor activities. Here we evaluated the role of AHR in CR705 and K8484 murine PDAC cells in vitro and CR705 cells in vivo. Loss of Ahr did not affect cell proliferation compared with Cas9 control cells and no differences in tumor development between CR705Cas9 and CR705AhrKO cells were observed in immunocompromised mice. Conversely, tumors from CR705AhrKO cells grew more slowly than tumors from CR705Cas9 cells in immune competent mice. RNA sequencing identified 1279 genes upregulated and 586 genes downregulated in CR705AhrKO tumors compared with CR705Cas9 tumors. Pathway analysis identified immunoregulatory interactions, interferon signaling, and chemokine signaling among the top upregulated pathways. Increased infiltration of CD45+ cells and higher numbers of CD8+ T cells and F4/80+ cells were observed in CR705AhrKO tumors. Ahr deficiency in macrophages (LysMCre) or lymphocytes (RorcCre) did not alter tumor development of CR705Cas9 cells compared with Ahrfl/fl mice. CR705AhrKO tumors in RorcCre mice, but not in LysMCre mice had significantly lower tumor weights normalized to body weights compared with CR705AhrKO tumors in WT mice. These findings show that Ahr loss in CR705 pancreatic cancer cells is sufficient to induce proinflammatory gene responses that contribute to increased immune cell infiltration and reduced tumor growth.
Collapse
MESH Headings
- Animals
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/deficiency
- Receptors, Aryl Hydrocarbon/metabolism
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/genetics
- Mice
- Cell Line, Tumor
- Cell Proliferation/physiology
- Mice, Knockout
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Mice, Inbred C57BL
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Female
- Basic Helix-Loop-Helix Transcription Factors
Collapse
Affiliation(s)
- Vinicius Kannen
- Department of Pharmacology and Toxicology, University of Toronto, Canada
| | | | | | - Paolo Giuliana
- Department of Pharmacology and Toxicology, University of Toronto, Canada
| | - Fauzia N Izzati
- Department of Pharmacology and Toxicology, University of Toronto, Canada
| | - Hani Choksi
- Department of Pharmacology and Toxicology, University of Toronto, Canada
| | | | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Italy
| | - Indrek Teino
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Toivo Maimets
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | | | - Antanas Gulbinas
- Surgical Gastroenterology Laboratory, University of Health 6 Sciences, Lithuania
| | - Zilvinas Dambrauskas
- Surgical Gastroenterology Laboratory, University of Health 6 Sciences, Lithuania
| | - Landon J Edgar
- Department of Pharmacology and Toxicology, University of Toronto, Canada
| | - Denis M Grant
- Department of Pharmacology and Toxicology, University of Toronto, Canada
| | - Jason Matthews
- Department of Pharmacology and Toxicology, University of Toronto, Canada; Department of Nutrition, University of Oslo, Norway.
| |
Collapse
|
2
|
Roztocil E, Husain F, Patrick CC, Feldon SE, Woeller CF. Targeting the Aryl Hydrocarbon Receptor to Attenuate IGF1R Signaling in Thyroid Eye Disease. Thyroid 2025; 35:527-542. [PMID: 40257057 DOI: 10.1089/thy.2024.0529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Background: Thyroid eye disease (TED) is an autoimmune disorder characterized by proptosis, inflammation, and fibrosis. Elevated insulin-like growth factor 1 receptor (IGF1R) signaling in TED orbital fibroblasts (OFs) drives the proliferation and biosynthesis of hyaluronan, which causes enlargement of orbital tissue volume. The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that regulates cellular stress responses, metabolism, and inflammation. Given its important role in regulating cellular responses, we hypothesized that activation of the AHR could limit excessive IGF1R signaling in TED OFs, offering therapeutic potential. Methods: We measured IGF1R and AHR expression levels in TED, non-TED, and non-OF controls. OF activation was analyzed using proliferation, hyaluronan accumulation, and migration assays. RNA sequencing was used to detect transcriptome-wide changes in IGF1-treated TED OFs. After gene set enrichment analysis, select gene expression changes were validated by quantitative polymerase chain reaction. OFs were treated with the AHR ligands 6-formylindolo[3,2-b]carbazole (FICZ) or tapinarof with or without IGF1. Western blotting evaluated signaling pathways impacted by AHR and IGF1R signaling. Results: TED OFs showed elevated IGF1R and AHR expression levels compared to controls. IGF1 significantly increased hyaluronan accumulation, proliferation, and migration in TED OFs compared to non-TED OFs. IGF1R signaling altered the expression of hundreds of genes controlling cell migration, proliferation, and metabolism in TED OFs. These genes included TUBA1B, TUBA1C, CRABP2 (upregulated), and IRS2 and SOD3 (downregulated). AHR activation blocked proliferation, migration, hyaluronan production, and gene expression mediated through IGF1R signaling. The AHR inhibited these pathways by reducing phosphorylation of GSK3β, an important mediator of IGF1R/β-catenin mediated signaling. Conclusions: AHR activation represents a promising therapeutic strategy for mitigating TED progression by inhibiting IGF1R signaling. Through modulation of GSK3β-mediated pathways, AHR activation may target additional pathologically relevant pathways beyond those affected by direct IGF1R inhibitors. This research provides novel insights into TED pathophysiology and offers a potential avenue for developing therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Elisa Roztocil
- Flaum Eye Institute, University of Rochester, Rochester, New York, USA
| | - Farha Husain
- Flaum Eye Institute, University of Rochester, Rochester, New York, USA
| | | | - Steven E Feldon
- Flaum Eye Institute, University of Rochester, Rochester, New York, USA
| | - Collynn F Woeller
- Flaum Eye Institute, University of Rochester, Rochester, New York, USA
| |
Collapse
|
3
|
Shukla V, Iqbal K, Okae H, Arima T, Soares MJ. Effects of an aryl hydrocarbon receptor ligand on human trophoblast cell development. Hum Reprod 2025:deaf075. [PMID: 40294436 DOI: 10.1093/humrep/deaf075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 03/05/2025] [Indexed: 04/30/2025] Open
Abstract
STUDY QUESTION How does activation of aryl hydrocarbon receptor (AHR) signaling affect human trophoblast cell development and differentiation? SUMMARY ANSWER AHR activation alters gene expression without impairing the ability of trophoblast cells to maintain a stem cell state or differentiate into essential cell types, such as extravillous trophoblast (EVT) cells or syncytiotrophoblast (ST), while promoting the production of 2-methoxy estradiol (2ME), which may impact placental development. WHAT IS KNOWN ALREADY The placenta serves both as a nutrient delivery system and a protective barrier against environmental toxins. AHR signaling is known to mediate cellular responses to environmental pollutants, potentially affecting trophoblast cell function, but the specific impacts of AHR activation on these cells were not fully understood. STUDY DESIGN, SIZE, DURATION This study utilized an in vitro model of human trophoblast stem (TS) cells to investigate the downstream effects of AHR activation. The study focused on both undifferentiated TS cells and cells undergoing differentiation. PARTICIPANTS/MATERIALS, SETTING, METHODS Human TS cells were used as a model system. Researchers examined the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure in TS cells maintained in their stem state and in TS cells induced to differentiate into EVT cells or ST. The study assessed changes in gene expression, particularly focusing on CYP1A1 and CYP1B1, as well as the production of 2ME. MAIN RESULTS AND THE ROLE OF CHANCE AHR activation stimulated the expression of CYP1A1 and CYP1B1, key genes associated with AHR signaling, in both undifferentiated and differentiating trophoblast cells. While AHR activation did not impact the ability of the cell to remain in a stem state or differentiate, it increased the production of 2ME, which may influence placentation. These effects were dependent on AHR signaling. LARGE SCALE DATA n/a. LIMITATIONS, REASONS FOR CAUTION This study was conducted in vitro, which may not fully replicate in vivo conditions. Further research is needed to confirm whether these findings apply to placental development in humans. WIDER IMPLICATIONS OF THE FINDINGS The results suggest that AHR signaling activated by environmental pollutants could have a significant impact on placental development through mechanisms involving AHR activation. These findings may have broader implications for understanding how environmental factors affect fetal development. STUDY FUNDING/COMPETING INTEREST(S) This work was funded by the National Institutes of Health: ES028957, HD020676, ES029280, HD105734, HD112559, and the Sosland Foundation. The authors declare no conflicts of interest.
Collapse
Affiliation(s)
- Vinay Shukla
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Khursheed Iqbal
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hiroaki Okae
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Michael J Soares
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- Center for Perinatal Research, Children's Mercy Research Institute, Children's Mercy, Kansas City, MO, USA
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
4
|
Sulentic CEW, Kaplan BLF, Lawrence BP. Using the Key Characteristics Framework to Unlock the Mysteries of Aryl Hydrocarbon Receptor-Mediated Effects on the Immune System. Annu Rev Immunol 2025; 43:191-218. [PMID: 39813730 DOI: 10.1146/annurev-immunol-083122-040107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Initially discovered for its role mediating the deleterious effects of environmental contaminants, the aryl hydrocarbon receptor (AHR) is now known to be a crucial regulator of the immune system. The expanding list of AHR ligands includes synthetic and naturally derived molecules spanning pollutants, phytochemicals, pharmaceuticals, and substances derived from amino acids and microorganisms. The consequences of engaging AHR vary, depending on factors such as the AHR ligand, cell type, immune challenge, developmental state, dose, and timing of exposure relative to the immune stimulus. This review frames this complexity using the recently identified key characteristics of agents that affect immune system function (altered cell signaling, proliferation, differentiation, effector function, communication, trafficking, death, antigen presentation and processing, and tolerance). The use of these key characteristics provides a scaffold for continued discovery of how AHR and its myriad ligands influence the immune system, which will help harness the power of this enigmatic receptor to prevent or treat disease.
Collapse
Affiliation(s)
- Courtney E W Sulentic
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Barbara L F Kaplan
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - B Paige Lawrence
- Department of Environmental Medicine and Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA;
| |
Collapse
|
5
|
El-Mahrouk SR, El-Kadi AOS. Dimethylmonothioarsinic acid (DMMTA V) induces NQO1 expression through coordinated activation of NRF2 and AHR pathways. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 115:104674. [PMID: 40058744 DOI: 10.1016/j.etap.2025.104674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Dimethylmonothioarsinic acid (DMMTAV), a potent toxic metabolite of arsenic, exhibits higher cytotoxicity than other arsenicals. This study investigates its influence on NAD(P)H:quinone oxidoreductase (NQO1) regulation in C57BL/6 mice and Hepa-1c1c7 cells. Mice were administered DMMTAV (6 mg/kg, IP) with or without TCDD (15 µg/kg, IP), and hepatic and extrahepatic tissues were analyzed for NQO1 expression. In vitro, Hepa-1c1c7 cells were treated with 0-2 µM DMMTAV in the presence and absence of TCDD (1 nM), and NQO1 levels were assessed over time. Western blot, real-time PCR, and ARE-luciferase assays determined protein and transcriptional regulation. DMMTAV upregulated NQO1 in liver tissues and induced a time-dependent increase in vitro, peaking at 12 h. It enhanced TCDD-induced NQO1 expression and increased nuclear NRF2 and AHR levels, with peak accumulation at two hours. ARE-luciferase activity confirmed transcriptional activation. These findings reveal DMMTAV enhances NQO1 primarily via NRF2/AHR pathway activation, providing insight into cellular responses to thioarsenicals.
Collapse
Affiliation(s)
- Sara R El-Mahrouk
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Faculty of Pharmacy, Tanta University, Tanta, Gharbia, Egypt
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
6
|
Gan YL, Lee YH. Indoleamine 2,3-Dioxygenase 1/Aryl Hydrocarbon Receptor Feedback Loop Mediates Anti-inflammation in lipopolysaccharide-stimulated Astrocytes to Dampen Inflammatory Neurotoxicity. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2025; 68:1-10. [PMID: 39846297 DOI: 10.4103/ejpi.ejpi-d-24-00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/12/2024] [Indexed: 01/24/2025]
Abstract
ABSTRACT Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates cell immune responses in a cell type-specific and ligand-dependent manner. In the central nervous system, astrocytic AhR plays important roles in regulating neuroinflammation by mediating responses to endogenous ligands generated from the inflammation-induced indoleamine 2,3-dioxygenase 1 (IDO1)/kynurenine (KYN) pathway. We previously demonstrated that reduction of AhR expression decreases lipopolysaccharide (LPS)-induced pro-inflammatory responses in microglia. However, the role of AhR in the astrocytic immune responses and its subsequent effects on microglial activation and neurotoxicity remain unclear. In this study, we used LPS-induced neuroinflammation in rat cortical glia-neuron (GN) mix cultures, which increased the expression of tumor necrosis factor-α and interleukin-6 and microglial activation. These proinflammatory responses were attenuated by a specific AhR agonist 6-formylindolo [3,2-b] carbazole (FICZ), but not by the AhR antagonist CH223191. CH223191, which inhibits LPS- and FICZ-induced AhR activation, enhanced neurotoxicity induced by LPS-glutamate co-treatment in GN mix cultures. Furthermore, inhibition of AhR expression and activation enhanced LPS-induced proinflammatory responses, and LPS-induced AhR activation was abrogated by the inhibition of IDO1 expression in astrocytes. Notably, AhR knockdown inhibited the anti-inflammatory effects of KYN while enhancing LPS-induced IDO1 expression in astrocytes, suggesting that AhR mediates the anti-inflammatory effect of KYN and the negative feedback regulation of IDO1 expression. Finally, we examined the role of astrocytic AhR in inflammatory astrogliosis-induced neurotoxicity by treating primary cortical neurons with LPS-treated astrocyte-conditioned medium (ACM). The results revealed that ACM derived from siAhR-transfected astrocytes increased neurotoxicity. In conclusion, inflammation-activated AhR mediates the anti-inflammatory effects and negative feedback regulation of the IDO1/KYN pathway in astrocytes, thereby dampening inflammatory astrogliosis-induced neurotoxicity.
Collapse
Affiliation(s)
- Yu-Ling Gan
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Hsuan Lee
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
7
|
Lin LW, Ehrlich AK, Rice RH. Epigenetic modifications control CYP1A1 Inducibility in human and rat keratinocytes. Toxicol Appl Pharmacol 2025; 494:117163. [PMID: 39580082 DOI: 10.1016/j.taap.2024.117163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/23/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Serially passaged rat keratinocytes exhibit dramatically attenuated induction of Cyp1a1 by aryl hydrocarbon receptor ligands such as TCDD. However, the sensitivity to induction can be restored by protein synthesis inhibition. Previous work revealed that the functionality of the receptor was not affected by passaging. The present work explored the possibility of epigenetic silencing on CYP1A1 inducibility in both rat and human cells. Use of an array of small molecule epigenetic modulators demonstrated that inhibition of histone deacetylases mimicked the effect of protein synthesis inhibition. Consistent with this finding, cycloheximide treatment also reduced histone deacetylase activity. More importantly, when compared to human CYP1A1, rat Cyp1a1 exhibited much greater sensitivity toward epigenetic modulators, particularly inhibitors of histone deacetylases. Other genes in the aryl hydrocarbon receptor domain showed variable and less dramatic responses to histone deacetylase inhibitors. These findings highlight a potential species difference in epigenetics that must be considered when extrapolating results from rodent models to humans and has implications for xenobiotic- or drug-drug interactions where CYP1A1 activity plays an important role.
Collapse
Affiliation(s)
- Lo-Wei Lin
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA.
| | - Allison K Ehrlich
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
| | - Robert H Rice
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
8
|
El-Mahrouk SR, El-Ghiaty MA, Alqahtani MA, El-Kadi AOS. Arsenic Trioxide (ATO III) Induces NAD(P)H Quinone Oxidoreductase 1 (NQO1) Expression in Hepatic and Extrahepatic Tissues of C57BL/6 Mice. Chem Res Toxicol 2024; 37:2040-2051. [PMID: 39630573 DOI: 10.1021/acs.chemrestox.4c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Arsenic trioxide (ATOIII) has emerged as a potent therapeutic agent for acute promyelocytic leukemia (APL), yet its clinical application is often limited by significant adverse effects. This study investigates the molecular mechanisms underlying ATOIII's impact on cellular detoxification pathways, focusing on the regulation of NAD(P)H/quinone oxidoreductase (NQO1), a crucial enzyme in maintaining cellular homeostasis and cancer prevention. We explored ATOIII's effects on NQO1 expression in C57BL/6 mice and Hepa-1c1c7 cells, both independently and in combination with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a known NQO1 inducer. Our findings revealed that ATOIII significantly increased NQO1 expression in hepatic and extrahepatic tissues, as well as in Hepa-1c1c7 cells, at mRNA, protein, and activity levels. This upregulation occurred both in the presence and absence of TCDD. Mechanistically, we demonstrated that ATOIII promotes the nuclear translocation of both nuclear factor erythroid 2-related factor-2 (NRF2) and aryl hydrocarbon receptor (AHR) transcription factors. Furthermore, ATOIII exposure increased antioxidant response element (ARE)-driven reporter gene activity, indicating a transcriptional mechanism of NQO1 induction. Notably, gene silencing experiments confirmed the critical roles of both NRF2 and AHR in mediating ATOIII-induced NQO1 expression. In conclusion, ATOIII exposure is found to upregulate the NQO1 enzyme through a transcriptional mechanism via AHR- and NRF2- dependent mechanisms, offering valuable insights into its therapeutic mechanisms.
Collapse
Affiliation(s)
- Sara R El-Mahrouk
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
- Faculty of Pharmacy, Tanta University, Gharbia, Tanta 31111, Egypt
| | - Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
| | - Mohammed A Alqahtani
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
| |
Collapse
|
9
|
Kong J, Liu Y, Wang J, Qian M, Sun W, Xing L. A Novel Porphyromonas gingivalis Infection-Related Inflammatory Response-Related Genes Signature Predicts the Prognosis of Esophageal Squamous Cell Carcinoma. Clin Med Insights Oncol 2024; 18:11795549241275666. [PMID: 39281690 PMCID: PMC11401022 DOI: 10.1177/11795549241275666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/18/2024] [Indexed: 09/18/2024] Open
Abstract
Background Our previous research showed that Porphyromonas gingivalis (P. gingivalis) infection can activate the inflammatory signaling pathway and promotes the malignancy development of esophageal squamous cell carcinoma (ESCC). However, the prognostic significance of inflammatory response-related genes (IRRGs) in P. gingivalis-infected ESCC requires further elucidation. Hence, our study constructed a prognostic signature based on P. gingivalis and IRRGs to forecast the survival of patients with ESCC, which may provide insight into new treatment options for ESCC patients. Methods Differentially expressed genes (DEGs) were identified in P.gingivalis-infected and P.gingivalis-uninfected ESCC cell by RNA sequencing. A risk model was constructed and validated using the The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database by using univariate Cox regression analysis, LASSO, and the multivariate Cox regression analysis. Kaplan-Meier analysis was carried out to compare the overall survival (OS) between high-risk and low-risk groups. Single-sample gene set enrichment analysis was used to analyze the immune cell infiltration. The Genomics of Drug Sensitivity in Cancer database was used to predict drug sensitivity. Results There were 365 DEGs between the P.gingivalis-infected and P.gingivalis-uninfected groups. Four genes including DKK1, ESRRB, EREG, and RELN were identified to construct the prognostic risk model (P = .012, C-index = 0.73). In both the training and validation sets, patients had a considerably shorter OS in the high-risk group than those in the low-risk group (P < .05). A nomogram was established using the risk score, gender, and N stage which could effectively forecast the prognosis of patients (P = .016, C-index = 0.66). The high-risk group displayed lower immune infiltrating cells, such as activated dendritic cells, type 2 T helper cells, and neutrophils (P < .05). A total of 41 drugs, including dactinomycin, luminespib, and sepantronium bromide, had a significant difference in IC50 between the 2 subgroups. Conclusion We demonstrated the potential of a novel signature constructed from 4 P. gingivalis-related IRRGs for prognostic prediction in ESCC patients.
Collapse
Affiliation(s)
- Jinyu Kong
- School of Information Engineering, Henan University of Science and Technology, Luoyang, China
- Cancer Hospital, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yiwen Liu
- Cancer Hospital, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Jian Wang
- Center of Image Diagnoses, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Mengfan Qian
- Cancer Hospital, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Wei Sun
- Cancer Hospital, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Ling Xing
- School of Information Engineering, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
10
|
Smits JPH, Qu J, Pardow F, van den Brink NJM, Rodijk-Olthuis D, van Vlijmen-Willems IMJJ, van Heeringen SJ, Zeeuwen PLJM, Schalkwijk J, Zhou H, van den Bogaard EH. The Aryl Hydrocarbon Receptor Regulates Epidermal Differentiation through Transient Activation of TFAP2A. J Invest Dermatol 2024; 144:2013-2028.e2. [PMID: 38401701 DOI: 10.1016/j.jid.2024.01.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/26/2024]
Abstract
The aryl hydrocarbon receptor (AHR) is an evolutionary conserved environmental sensor identified as an indispensable regulator of epithelial homeostasis and barrier organ function. Molecular signaling cascade and target genes upon AHR activation and their contribution to cell and tissue function are however not fully understood. Multiomics analyses using human skin keratinocytes revealed that upon ligand activation, AHR binds open chromatin to induce expression of transcription factors, for example, TFAP2A, as a swift response to environmental stimuli. The terminal differentiation program, including upregulation of barrier genes, FLG and keratins, was mediated by TFAP2A as a secondary response to AHR activation. The role of AHR-TFAP2A axis in controlling keratinocyte terminal differentiation for proper barrier formation was further confirmed using CRISPR/Cas9 in human epidermal equivalents. Overall, the study provides additional insights into the molecular mechanism behind AHR-mediated barrier function and identifies potential targets for the treatment of skin barrier diseases.
Collapse
Affiliation(s)
- Jos P H Smits
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands; Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jieqiong Qu
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Felicitas Pardow
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands; Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Noa J M van den Brink
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Diana Rodijk-Olthuis
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | | | - Simon J van Heeringen
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Patrick L J M Zeeuwen
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Joost Schalkwijk
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Huiqing Zhou
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands; Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands.
| | - Ellen H van den Bogaard
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands.
| |
Collapse
|
11
|
Johnson M, Finlayson K, van de Merwe JP, Leusch FDL. Adaption and application of cell-based bioassays to whole-water samples. CHEMOSPHERE 2024; 361:142572. [PMID: 38852631 DOI: 10.1016/j.chemosphere.2024.142572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/20/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
The increasing presence of contaminants of emerging concern in wastewater and their potential environmental risks require improved monitoring and analysis methods. Direct toxicity assessment (DTA) using bioassays can complement chemical analysis of wastewater discharge, but traditional in vivo tests have ethical considerations and are expensive, low-throughput, and limited to apical endpoints (mortality, reproduction, development, and growth). In vitro bioassays offer an alternative approach that is cheaper, faster, and more ethical, and can provide higher sensitivity for some environmentally relevant endpoints. This study explores the potential benefits of using whole water samples of wastewater and environmental surface water instead of traditional solid phase extraction (SPE) methods for in vitro bioassays testing. Whole water samples produced a stronger response in most bioassays, likely due to the loss or alteration of contaminants during SPE sample extraction. In addition, there was no notable difference in results for most bioassays after freezing whole water samples, which allows for increased flexibility in testing timelines and cost savings. These findings highlight the potential advantages of using whole water samples in DTA and provide a framework for future research in this area.
Collapse
Affiliation(s)
- Matthew Johnson
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia; Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Urrbrae, SA, 5064, Australia.
| | - Kimberly Finlayson
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia.
| | - Jason P van de Merwe
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia.
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia.
| |
Collapse
|
12
|
Zhang F, Tang C, Zhu Y, Wang Q, Huang X, Yang C, He C, Zuo Z. Long-term exposure to aryl hydrocarbon receptor agonist neburon induces reproductive toxicity in male zebrafish (Danio rerio). J Environ Sci (China) 2024; 142:193-203. [PMID: 38527884 DOI: 10.1016/j.jes.2023.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 03/27/2024]
Abstract
Neburon is a phenylurea herbicide that is widely used worldwide, but its toxicity is poorly studied. In our previous study, we found that neburon has strong aryl hydrocarbon receptor (AhR) agonist activity, but whether it causes reproductive toxicity is not clear. In the present study, zebrafish were conducted as a model organism to evaluate whether environmental concentrations of neburon (0.1, 1 and 10 µg/L) induce reproductive disorder in males. After exposure to neburon for 150 days from embryo to adult, that the average spawning egg number in high concentration group was 106.40, which was significantly lower than 193.00 in control group. This result was mainly due to the abnormal male reproductive behavior caused by abnormal transcription of genes associated with reproductive behavior in the brain, such as secretogranin-2a. The proportions of spermatozoa in the medium and high concentration groups were 82.40% and 83.84%, respectively, which were significantly lower than 89.45% in control group. This result was mainly caused by hormonal disturbances and an increased proportion of apoptotic cells. The hormonal disruption was due to the significant changes in the transcription levels of key genes in the hypothalamus-pituitary-gonadal axis following neburon treatment. Neburon treatment also significantly activated the AhR signaling pathway, causing oxidative stress damage and eventually leading to a significant increase in apoptosis in the exposed group. Together, these data filled the currently more vacant profile of neburon toxicity and might provide information to assess the ecotoxicity of neburon on male reproduction at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Fucong Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chen Tang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yue Zhu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Qian Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xin Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chunyan Yang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chengyong He
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zhenghong Zuo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
13
|
Grishanova AY, Perepechaeva ML. Kynurenic Acid/AhR Signaling at the Junction of Inflammation and Cardiovascular Diseases. Int J Mol Sci 2024; 25:6933. [PMID: 39000041 PMCID: PMC11240928 DOI: 10.3390/ijms25136933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Persistent systemic chronic inflammatory conditions are linked with many pathologies, including cardiovascular diseases (CVDs), a leading cause of death across the globe. Among various risk factors, one of the new possible contributors to CVDs is the metabolism of essential amino acid tryptophan. Proinflammatory signals promote tryptophan metabolism via the kynurenine (KYN) pathway (KP), thereby resulting in the biosynthesis of several immunomodulatory metabolites whose biological effects are associated with the development of symptoms and progression of various inflammatory diseases. Some participants in the KP are agonists of aryl hydrocarbon receptor (AhR), a central player in a signaling pathway that, along with a regulatory influence on the metabolism of environmental xenobiotics, performs a key immunomodulatory function by triggering various cellular mechanisms with the participation of endogenous ligands to alleviate inflammation. An AhR ligand with moderate affinity is the central metabolite of the KP: KYN; one of the subsequent metabolites of KYN-kynurenic acid (KYNA)-is a more potent ligand of AhR. Understanding the role of AhR pathway-related metabolites of the KP that regulate inflammatory factors in cells of the cardiovascular system is interesting and important for achieving effective treatment of CVDs. The purpose of this review was to summarize the results of studies about the participation of the KP metabolite-KYNA-and of the AhR signaling pathway in the regulation of inflammation in pathological conditions of the heart and blood vessels and about the possible interaction of KYNA with AhR signaling in some CVDs.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630060, Russia;
| |
Collapse
|
14
|
Adegbola PI, Adetutu A. Genetic and epigenetic modulations in toxicity: The two-sided roles of heavy metals and polycyclic aromatic hydrocarbons from the environment. Toxicol Rep 2024; 12:502-519. [PMID: 38774476 PMCID: PMC11106787 DOI: 10.1016/j.toxrep.2024.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 05/24/2024] Open
Abstract
This study emphasizes the importance of considering the metabolic and toxicity mechanisms of environmental concern chemicals in real-life exposure scenarios. Furthermore, environmental chemicals may require metabolic activation to become toxic, and competition for binding sites on receptors can affect the severity of toxicity. The multicomplex process of chemical toxicity is reflected in the activation of multiple pathways during toxicity of which AhR activation is major. Real-life exposure to a mixture of concern chemicals is common, and the composition of these chemicals determines the severity of toxicity. Nutritional essential elements can mitigate the toxicity of toxic heavy metals, while the types and ratio of composition of PAH can either increase or decrease toxicity. The epigenetic mechanisms of heavy metals and PAH toxicity involves either down-regulation or up-regulation of some non-coding RNAs (ncRNAs) whereas specific small RNAs (sRNAs) may have dual role depending on the tissue and circumstance of expression. Similarly, decrease DNA methylation and histone modification are major players in heavy metals and PAH mediated toxicity and FLT1 hypermethylation is a major process in PAH induced carcinogenesis. Overall, this review provides the understanding of the metabolism of environmental concern chemicals, emphasizing the importance of considering mixed compositions and real-life exposure scenarios in assessing their potential effects on human health and diseases development as well as the dual mechanism of toxicity via genetic or epigenetic axis.
Collapse
Affiliation(s)
- Peter Ifeoluwa Adegbola
- Department of Biochemistry and Forensic Science, First Technical University, Ibadan, Nigeria
| | - Adewale Adetutu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
15
|
Chivé C, Martίn-Faivre L, Eon-Bertho A, Alwardini C, Degrouard J, Albinet A, Noyalet G, Chevaillier S, Maisonneuve F, Sallenave JM, Devineau S, Michoud V, Garcia-Verdugo I, Baeza-Squiban A. Exposure to PM 2.5 modulate the pro-inflammatory and interferon responses against influenza virus infection in a human 3D bronchial epithelium model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123781. [PMID: 38492752 DOI: 10.1016/j.envpol.2024.123781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Epidemiological studies showed a positive association between exposure to PM2.5 and the severity of influenza virus infection. However, the mechanisms by which PM2.5 can disrupt antiviral defence are still unclear. From this perspective, the objective of this study was to evaluate the effects of PM2.5 on antiviral signalling in the respiratory epithelium using the bronchial Calu-3 cell line grown at the air-liquid interface. Pre-exposure to PM2.5 before infection with the influenza virus was investigated, as well as a co-exposure. Although a physical interaction between the virus and the particles seems possible, no effect of PM2.5 on viral replication was observed during co-exposure, although a downregulation of IFN-β release was associated to PM2.5 exposure. However, pre-exposure slightly increased the viral nucleoprotein production and the pro-inflammatory response. Conversely, the level of the myxovirus resistance protein A (MxA), an interferon-stimulated gene (ISG) induced by IFN-β, was reduced. Therefore, these results suggest that pre-exposure to PM2.5 could alter the antiviral response of bronchial epithelial cells, increasing their susceptibility to viral infection.
Collapse
Affiliation(s)
- Chloé Chivé
- Université Paris Cité, Functional and Adaptive Biology Unit, UMR8251-CNRS, Paris, France; French Environment and Energy Management Agency 20, Avenue Du Grésillé - BP, 90406 49004, Angers, France
| | - Lydie Martίn-Faivre
- Université Paris Cité, Inflamex Excellence Laboratory, INSERM UMR-1152-PHERE, F-75018, Paris, France
| | - Alice Eon-Bertho
- Université Paris Cité, Functional and Adaptive Biology Unit, UMR8251-CNRS, Paris, France
| | - Christelle Alwardini
- Université Paris Cité, Functional and Adaptive Biology Unit, UMR8251-CNRS, Paris, France
| | - Jéril Degrouard
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France
| | - Alexandre Albinet
- Institut National de L'Environnement Industriel et des Risques (INERIS), Parc Technologique Alata BP2, 60550, Verneuil en Halatte, France
| | - Gael Noyalet
- Université Paris Cité and Université Paris Est Créteil, CNRS, LISA, F-75013, Paris, France
| | - Servanne Chevaillier
- Université Paris Cité and Université Paris Est Créteil, CNRS, LISA, F-75013, Paris, France
| | - Franck Maisonneuve
- Université Paris Est Créteil and Université Paris Cité, CNRS, LISA, F-94010, Créteil, France
| | - Jean-Michel Sallenave
- Université Paris Cité, Inflamex Excellence Laboratory, INSERM UMR-1152-PHERE, F-75018, Paris, France
| | - Stéphanie Devineau
- Université Paris Cité, Functional and Adaptive Biology Unit, UMR8251-CNRS, Paris, France
| | - Vincent Michoud
- Université Paris Cité and Université Paris Est Créteil, CNRS, LISA, F-75013, Paris, France
| | - Ignacio Garcia-Verdugo
- Université Paris Cité, Inflamex Excellence Laboratory, INSERM UMR-1152-PHERE, F-75018, Paris, France.
| | - Armelle Baeza-Squiban
- Université Paris Cité, Functional and Adaptive Biology Unit, UMR8251-CNRS, Paris, France
| |
Collapse
|
16
|
Laurent J, Diop M, Amara R, Fisson C, Armengaud J, Labadie P, Budzinski H, Couteau J, Maillet G, Le Floch S, Laroche J, Pichereau V. Relevance of flounder caging and proteomics to explore the impact of a major industrial accident caused by fire on the Seine estuarine water quality. MARINE POLLUTION BULLETIN 2024; 201:116178. [PMID: 38401391 DOI: 10.1016/j.marpolbul.2024.116178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
On September 26th 2019, a major fire occurred in the Lubrizol factory located near the Seine estuary, in Rouen-France. Juvenile flounders were captured in the Canche estuary (a reference system) and caged one month in the Canche and in the Seine downstream the accident site. No significant increases of PAHs, PCBs and PFAS was detected in Seine vs Canche sediments after the accident, but a significant increase of dioxins and furans was observed in water and sewage sludge in the Rouen wastewater treatment plant. The proteomics approach highlighted a dysregulation of proteins associated with cholesterol synthesis and lipid metabolism, in fish caged in the Seine. The overall results suggested that the fire produced air borne dioxins and furans that got deposited on soil and subsequently entered in the Seine estuarine waters via runoff; thus contaminating fish preys and caged flounders in the Seine estuary.
Collapse
Affiliation(s)
- Jennifer Laurent
- Univ Brest - CNRS - IRD - Ifremer, UMR 6539 LEMAR, IUEM-Université de Bretagne Occidentale, Rue Dumont D'Urville, 29280 Plouzané, France; CEDRE, 715 rue Alain Colas, 29200 Brest, France.
| | - Mamadou Diop
- Univ. Littoral Côte d'Opale, Univ. Lille, CNRS, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, F-62930 Wimereux, France
| | - Rachid Amara
- Univ. Littoral Côte d'Opale, Univ. Lille, CNRS, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, F-62930 Wimereux, France
| | - Cédric Fisson
- GIP Seine-Aval, Hangar C - Espace des Marégraphes, CS 41174, 76176 Rouen Cedex 1, France
| | - Jean Armengaud
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRAe, F-30207 Bagnols-sur-Cèze, France
| | - Pierre Labadie
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Hélène Budzinski
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Jérôme Couteau
- TOXEM, 12 rue des 4 saisons, 76290 Montivilliers, France
| | | | | | - Jean Laroche
- Univ Brest - CNRS - IRD - Ifremer, UMR 6539 LEMAR, IUEM-Université de Bretagne Occidentale, Rue Dumont D'Urville, 29280 Plouzané, France
| | - Vianney Pichereau
- Univ Brest - CNRS - IRD - Ifremer, UMR 6539 LEMAR, IUEM-Université de Bretagne Occidentale, Rue Dumont D'Urville, 29280 Plouzané, France.
| |
Collapse
|
17
|
Fauteux M, Côté N, Bergeron S, Maréchal A, Gaudreau L. Differential effects of pesticides on dioxin receptor signaling and p53 activation. Sci Rep 2023; 13:21211. [PMID: 38040841 PMCID: PMC10692357 DOI: 10.1038/s41598-023-48555-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/28/2023] [Indexed: 12/03/2023] Open
Abstract
As modern agricultural practices increase their use of chemical pesticides, it is inevitable that we will find a number of these xenobiotics within drinking water supplies and disseminated throughout the food chain. A major problem that arises from this pollution is that the effects of most of these pesticides on cellular mechanisms in general, and how they interact with each other and affect human cells are still poorly understood. In this study we make use of cultured human cancer cells to measure by qRT-PCR how pesticides affect gene expression of stress pathways. Immunoblotting studies were performed to monitor protein expression levels and activation of signaling pathways. We make use of immunofluorescence and microscopy to visualize and quantify DNA damage events in those cells. In the current study, we evaluate the potential of a subset of widely used pesticides to activate the dioxin receptor pathway and affect its crosstalk with estrogen receptor signaling. We quantify the impact of these chemicals on the p53-dependent cellular stress response. We find that, not only can the different pesticides activate the dioxin receptor pathway, most of them have better than additive effects on this pathway when combined at low doses. We also show that different pesticides have the ability to trigger crosstalk events that may generate genotoxic estrogen metabolites. Finally, we show that some, but not all of the tested pesticides can induce a p53-dependent stress response. Taken together our results provide evidence that several xenobiotics found within the environment have the potential to interact together to elicit significant effects on cell systems. Our data warrants caution when the toxicity of substances that are assessed simply for individual chemicals, since important biological effects could be observed only in the presence of other compounds, and that even at very low concentrations.
Collapse
Affiliation(s)
- Myriam Fauteux
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nadia Côté
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sandra Bergeron
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alexandre Maréchal
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Luc Gaudreau
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
18
|
Bhalla D, van Noort V. Molecular Evolution of Aryl Hydrocarbon Receptor Signaling Pathway Genes. J Mol Evol 2023; 91:628-646. [PMID: 37392220 DOI: 10.1007/s00239-023-10124-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023]
Abstract
The Aryl hydrocarbon receptor is an ancient transcriptional factor originally discovered as a sensor of dioxin. In addition to its function as a receptor of environmental toxicants, it plays an important role in development. Although a significant amount of research has been carried out to understand the AHR signal transduction pathway and its involvement in species' susceptibility to environmental toxicants, none of them to date has comprehensively studied its evolutionary origins. Studying the evolutionary origins of molecules can inform ancestral relationships of genes. The vertebrate genome has been shaped by two rounds of whole-genome duplications (WGD) at the base of vertebrate evolution approximately 600 million years ago, followed by lineage-specific gene losses, which often complicate the assignment of orthology. It is crucial to understand the evolutionary origins of this transcription factor and its partners, to distinguish orthologs from ancient non-orthologous homologs. In this study, we have investigated the evolutionary origins of proteins involved in the AHR pathway. Our results provide evidence of gene loss and duplications, crucial for understanding the functional connectivity of humans and model species. Multiple studies have shown that 2R-ohnologs (genes and proteins that have survived from the 2R-WGD) are enriched in signaling components relevant to developmental disorders and cancer. Our findings provide a link between the AHR pathway's evolutionary trajectory and its potential mechanistic involvement in pathogenesis.
Collapse
Affiliation(s)
- Diksha Bhalla
- Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium.
| | - Vera van Noort
- Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| |
Collapse
|
19
|
López-Berenguer G, Acosta-Dacal A, Luzardo PO, Peñalver J, Martínez-López E. Assessment of polycyclic aromatic hydrocarbons (PAHs) in mediterranean top marine predators stranded in SE Spain. CHEMOSPHERE 2023; 336:139306. [PMID: 37354956 DOI: 10.1016/j.chemosphere.2023.139306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants. Although they are not bioaccumulated in vertebrates, chronic exposures might still derive on serious toxic effects. We studied concentrations of 16 reference PAHs on blubber of two dolphin species (striped dolphin, n = 34; and bottlenose dolphin, n = 8) and one marine turtle (loggerhead turtle, n = 23) from the Mediterranean waters of SE Spain, an important or potential breeding area for these and other related species. Σ16 PAHs concentrations were relatively similar between the three species, but they were in the lower range in comparison to worldwide data. Of the six PAHs detected, fluoranthene was the only high molecular weight (HMW) PAH, so low molecular weight (LMW) PAHs predominated. Naphthalene and phenanthrene were invariably those PAHs with higher detection rates as well as those with higher concentrations. In accordance with the literature, sex and length did not have significant influence on PAHs concentrations, probably due to high metabolization rates which prevent for observation of such patterns. Despite LMW PAHs are considered less toxic, we cannot dismiss toxic effects. This is the first work assessing PAHs concentrations in cetaceans and sea turtles from the SE Spain, which could serve as the baseline for future research.
Collapse
Affiliation(s)
| | - A Acosta-Dacal
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Spain
| | - P O Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Spain; Study Group on Wild Animal Conservation Medicine (GEMAS), Spain
| | - J Peñalver
- Area of Toxicology, University of Murcia, Spain; Fishing and Aquaculture Service (CARM), Murcia, Spain
| | - E Martínez-López
- Area of Toxicology, University of Murcia, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca), Spain.
| |
Collapse
|
20
|
Smits JP, Qu J, Pardow F, van den Brink NJ, Rodijk-Olthuis D, van Vlijmen-Willems IM, van Heeringen SJ, Zeeuwen PL, Schalkwijk J, Zhou H, van den Bogaard EH. The aryl hydrocarbon receptor regulates epidermal differentiation through transient activation of TFAP2A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544032. [PMID: 37333234 PMCID: PMC10274772 DOI: 10.1101/2023.06.07.544032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The aryl hydrocarbon receptor (AHR) is an evolutionary conserved environmental sensor identified as indispensable regulator of epithelial homeostasis and barrier organ function. Molecular signaling cascade and target genes upon AHR activation and their contribution to cell and tissue function are however not fully understood. Multi-omics analyses using human skin keratinocytes revealed that, upon ligand activation, AHR binds open chromatin to induce expression of transcription factors (TFs), e.g., Transcription Factor AP-2α (TFAP2A), as a swift response to environmental stimuli. The terminal differentiation program including upregulation of barrier genes, filaggrin and keratins, was mediated by TFAP2A as a secondary response to AHR activation. The role of AHR-TFAP2A axis in controlling keratinocyte terminal differentiation for proper barrier formation was further confirmed using CRISPR/Cas9 in human epidermal equivalents. Overall, the study provides novel insights into the molecular mechanism behind AHR-mediated barrier function and potential novel targets for the treatment of skin barrier diseases.
Collapse
Affiliation(s)
- Jos P.H. Smits
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jieqiong Qu
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Felicitas Pardow
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Noa J.M. van den Brink
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Diana Rodijk-Olthuis
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | | | - Simon J. van Heeringen
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Patrick L.J.M. Zeeuwen
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Joost Schalkwijk
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Huiqing Zhou
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
- Department of Human Genetics, Radboudumc
| | - Ellen H. van den Bogaard
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
21
|
Schmidt JR, Haupt J, Riemschneider S, Kämpf C, Löffler D, Blumert C, Reiche K, Koehl U, Kalkhof S, Lehmann J. Transcriptomic signatures reveal a shift towards an anti-inflammatory gene expression profile but also the induction of type I and type II interferon signaling networks through aryl hydrocarbon receptor activation in murine macrophages. Front Immunol 2023; 14:1156493. [PMID: 37287978 PMCID: PMC10242070 DOI: 10.3389/fimmu.2023.1156493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates a broad range of target genes involved in the xenobiotic response, cell cycle control and circadian rhythm. AhR is constitutively expressed in macrophages (Mϕ), acting as key regulator of cytokine production. While proinflammatory cytokines, i.e., IL-1β, IL-6, IL-12, are suppressed through AhR activation, anti-inflammatory IL-10 is induced. However, the underlying mechanisms of those effects and the importance of the specific ligand structure are not yet completely understood. Methods Therefore, we have compared the global gene expression pattern in activated murine bone marrow-derived macrophages (BMMs) subsequently to exposure with either benzo[a]pyrene (BaP) or indole-3-carbinol (I3C), representing high-affinity vs. low-affinity AhR ligands, respectively, by means of mRNA sequencing. AhR dependency of observed effects was proved using BMMs from AhR-knockout (Ahr-/-) mice. Results and discussion In total, more than 1,000 differentially expressed genes (DEGs) could be mapped, covering a plethora of AhR-modulated effects on basal cellular processes, i.e., transcription and translation, but also immune functions, i.e., antigen presentation, cytokine production, and phagocytosis. Among DEGs were genes that are already known to be regulated by AhR, i.e., Irf1, Ido2, and Cd84. However, we identified DEGs not yet described to be AhR-regulated in Mϕ so far, i.e., Slpi, Il12rb1, and Il21r. All six genes likely contribute to shifting the Mϕ phenotype from proinflammatory to anti-inflammatory. The majority of DEGs induced through BaP were not affected through I3C exposure, probably due to higher AhR affinity of BaP in comparison to I3C. Mapping of known aryl hydrocarbon response element (AHRE) sequence motifs in identified DEGs revealed more than 200 genes not possessing any AHRE, and therefore being not eligible for canonical regulation. Bioinformatic approaches modeled a central role of type I and type II interferons in the regulation of those genes. Additionally, RT-qPCR and ELISA confirmed a AhR-dependent expressional induction and AhR-dependent secretion of IFN-γ in response to BaP exposure, suggesting an auto- or paracrine activation pathway of Mϕ.
Collapse
Affiliation(s)
- Johannes R. Schmidt
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Leipzig, Germany
| | - Janine Haupt
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Leipzig, Germany
| | - Sina Riemschneider
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Christoph Kämpf
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Dennis Löffler
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Leipzig, Germany
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Conny Blumert
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Leipzig, Germany
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Kristin Reiche
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Institute for Clinical Immunology, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Ulrike Koehl
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Leipzig, Germany
- Institute for Clinical Immunology, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Stefan Kalkhof
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Leipzig, Germany
- Department of Applied Sciences, Institute for Bioanalysis, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - Jörg Lehmann
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Leipzig, Germany
| |
Collapse
|
22
|
Dutta S, Banu SK, Arosh JA. Endocrine disruptors and endometriosis. Reprod Toxicol 2023; 115:56-73. [PMID: 36436816 DOI: 10.1016/j.reprotox.2022.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Endometriosis is a hormone-dependent inflammatory gynecological disease of reproductive-age women. It is clinically and pathologically characterized by the presence of functional endometrium as heterogeneous lesions outside the uterine cavity. The two major symptoms are chronic pelvic pain and infertility, which profoundly affect women's reproductive health and quality of life. This significant individual and public health concerns underscore the importance of understanding the pathogenesis of endometriosis. The environmental endocrine-disrupting chemicals (EDCs) are exogenous agents that interfere with the synthesis, secretion, transport, signaling, or metabolism of hormones responsible for homeostasis, reproduction, and developmental processes. Endometriosis has been potentially linked to exposure to EDCs. In this review, based on the robust literature search, we have selected four endocrine disruptors (i) polychlorinated biphenyls (PCB)s (ii) dioxins (TCDD) (iii) bisphenol A (BPA) and its analogs and (iv) phthalates to elucidate their critical role in the etiopathogenesis of endometriosis. The epidemiological and experimental data discussed in this review indicate that these four EDCs activate multiple intracellular signaling pathways associated with proinflammation, estrogen, progesterone, prostaglandins, cell survival, apoptosis, migration, invasion, and growth of endometriosis. The available information strongly indicates that environmental exposure to EDCs such as PCBs, dioxins, BPA, and phthalates individually or collectively contribute to the pathophysiology of endometriosis. Further understanding of the molecular mechanisms of how these EDCs establish endometriosis and therapeutic strategies to mitigate the effects of these EDCs in the pathogenesis of endometriosis are timely needed. Moreover, understanding the interactive roles of these EDCs in the pathogenesis of endometriosis will help regulate the exposure to these EDCs in reproductive age women.
Collapse
Affiliation(s)
- Sudipta Dutta
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 77843 College Station, TX, USA
| | - Sakhila K Banu
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 77843 College Station, TX, USA.
| | - Joe A Arosh
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 77843 College Station, TX, USA.
| |
Collapse
|
23
|
Tanaka M, Komaki Y, Toyooka T, Ibuki Y. Butyrate Enhances γ-H2AX Induced by Benzo[ a]pyrene. Chem Res Toxicol 2022; 35:2241-2251. [PMID: 36399157 DOI: 10.1021/acs.chemrestox.2c00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Benzo[a]pyrene (BaP) is known to form DNA adduct following metabolic activation, which causes phosphorylation of histone H2AX (γ-H2AX). Recent studies have shown that histone deacetylase (HDAC) inhibitors enhanced BaP-induced CYP1A1 gene expression. In this study, we examined the relationship between the HDAC inhibitor-augmented metabolic activation and BaP-induced γ-H2AX. Sodium butyrate (SB), a typical HDAC inhibitor, enhanced BaP-induced γ-H2AX. The enhanced DNA damage was further confirmed by biased sinusoidal field gel electrophoresis, which detects DNA double-strand breaks. SB remarkably augmented BaP-induced CYP1A1 gene expression, and CYP1A1-overexpressing cells showed elevated generation of γ-H2AX. Furthermore, SB enhanced intracellular oxidation after treatment with BaP. These results suggested that SB-induced CYP1A1 upregulation facilitated BaP metabolism, which might result in excess DNA adducts or oxidative DNA damages, leading to augmentation of γ-H2AX.
Collapse
Affiliation(s)
- Miki Tanaka
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yukako Komaki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tatsushi Toyooka
- National Institute of Occupational Safety and Health, 6-21-1 Nagao, Tama-ku, Kawasaki 214-8585, Japan
| | - Yuko Ibuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
24
|
Malekinejad F, Fink-Gremmels J, Malekinejad H. Zearalenone and its metabolite exposure directs oestrogen metabolism towards potentially carcinogenic metabolites in human breast cancer MCF-7 cells. Mycotoxin Res 2022; 39:45-56. [PMID: 36517666 DOI: 10.1007/s12550-022-00472-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
Zearalenone (ZEN) is produced by Fusarium species contaminating various agriculture crops. In this study, the effects of ZEN and its metabolites α-zearalenol (α-ZEL), and β-zearalenol (β-ZEL) on the formation of carcinogenic oestrogen-catechols in MCF-7 cells were investigated. To assess the effects of mycoestrogens on the activity of cytochrome P450 1A1 and CYP1B1, the rate of ethoxyresorufin O-deethylation (EROD-assay) was measured. The effects of mycoestrogens on the expression of CYP 1A1, CYP 1B1, aryl-hydrocarbon receptor (AhR), and oestrogen receptor alpha (ERα) were determined by qPCR. The catechol-O-methyltransferase (COMT) activity was measured as the ratio of the methoxy metabolites of oestradiol. Results show that mycoestrogens inhibited significantly the CYP1-dependent EROD activities. In the presence of selective inhibitors, mycoestrogens reduced CYP 1A1 and enhanced CYP 1B1 activity. Quantitative PCR analyses demonstrated the upregulation of AhR and confirmed the selective effect of mycoestrogens on CYP1 expression levels and the decline of the CYP 1A1/CYP 1B1 ratio. Mycoestrogens increased the ratio of 4-MeOE to 2-MeOE2 formation significantly (P < 0.05). Our results suggest that the tested mycoestrogens increase the production of CYP1B1-mediated oestrogen catechol metabolites, directing the biotransformation of E2 towards 4-OHE2, which has been identified earlier as a crucial factor in oestrogen-induced tumour initiation.
Collapse
|
25
|
Kurowska P, Mlyczyńska E, Dawid M, Respekta N, Pich K, Serra L, Dupont J, Rak A. Endocrine disruptor chemicals, adipokines and reproductive functions. Endocrine 2022; 78:205-218. [PMID: 35476178 DOI: 10.1007/s12020-022-03061-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/17/2022] [Indexed: 11/03/2022]
Abstract
The prevalence of adult obesity has risen markedly in recent decades. The endocrine system precisely regulates energy balance, fat abundance and fat deposition. Interestingly, white adipose tissue is an endocrine gland producing adipokines, which regulate whole-body physiology, including energy balance and reproduction. Endocrine disruptor chemicals (EDCs) include natural substances or chemicals that affect the endocrine system by multiple mechanisms and increase the risk of adverse health outcomes. Numerous studies have associated exposure to EDCs with obesity, classifying them as obesogens by their ability to activate different mechanisms, including the differentiation of adipocytes, increasing the storage of triglycerides, or elevating the number of adipocytes. Moreover, in recent years, not only industrial deception and obesity have intensified but also the problem of human infertility. Reproductive functions depend on hormone interactions, the balance of which may be disrupted by various EDCs or obesity. This review gives a brief summary of common EDCs linked with obesity, the mechanisms of their action, and the effect on adipokine levels, reproduction and connected disorders, such as polycystic ovarian syndrome, decrease in sperm motility, preeclampsia, intrauterine growth restriction in females and decrease of sperm motility in males.
Collapse
Affiliation(s)
- Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Natalia Respekta
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Loïse Serra
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France
| | - Joëlle Dupont
- INRAE, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
26
|
Al-Dhfyan A, Alaiya A, Al-Mohanna F, Attwa MW, Alasmari AF, Bakheet SA, Korashy HM. Crosstalk Between Aryl Hydrocarbon Receptor (AhR) and BCL-2 Pathways Suggests the Use of AhR Antagonist to Maintain Normal Differentiation State of Mammary Epithelial Cells During BCL-2 Inhibition Therapy. J Adv Res 2022:S2090-1232(22)00234-X. [PMID: 36307019 PMCID: PMC10403657 DOI: 10.1016/j.jare.2022.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/01/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Activating the aryl hydrocarbon receptor upon exposure to environmental pollutants promotes development of breast cancer stem cell (CSCs). BCL-2 family proteins protect cancer cells from the apoptotic effects of chemotherapeutic drugs. However, the crosstalk between AhR and the BCL-2 family in CSC development remains uninvestigated. OBJECTIVES This study explored the interaction mechanisms between AhR and BCL-2 in CSC development and chemoresistance. METHODS A quantitative proteomic analysis study was performed as a tool for comparative expression analysis of breast cancer cells treated by AhR agonist. The basal and inducible levels of BCL-2, AhR, and CYP1A1 in vitro breast cancer and epithelial cell lines and in vivo mice animal models were determined by RT-PCR, Western blot analysis, immunofluorescence, flow cytometry, silencing of the target, and immunohistochemistry. In addition, an in silico toxicity study was conducted using DEREK software. RESULTS Activation of the AhR/CYP1A1 pathway in mice increased EpCAMHigh/CD49fLow CD61+ luminal progenitor-like cells in early tumor formation but not in advanced tumors. In parallel, a chemoproteomic study on breast cancer MCF-7 cells revealed that the BCL-2 protein expression was the most upregulated upon AhR activation. The crosstalk between the AhR and BCL-2 pathways in vitro and in vivo modulated the CSCs features and chemoresistance. Interestingly, inhibition of BCL-2 in mice by venetoclax (VCX) increased EpCAMHigh/CD49fLow CD61+ luminal progenitor-like cells, causing inhibition of epithelial lineage markers, disruption of mammary gland branching and induced the epithelial-mesenchymal transition in mammary epithelial cells (MECs). The combined treatment of VCX and AhR antagonists in mice corrected the abnormal differentiation in MECs and protected mammary gland branching and cell identity. CONCLUSIONS This is the first study to report crosstalk between AhR and BCL-2 in breast CSCs and provides the rationale for using a combined treatment of BCL-2 inhibitor and AhR antagonist for more effective cancer prevention and treatment.
Collapse
|
27
|
Coe KJ, Feinstein M, Higgins JW, Leung P, Scott BP, Skaptason J, Tam Y, Volak LP, Kinong J, Bittner A, McAllister H, Lim NM, Hack M, Koudriakova T. Characterization of JNJ-2482272 [4-(4-Methyl-2-(4-(Trifluoromethyl)Phenyl)Thiazole-5-yl) Pyrimidine-2-Amine] As a Strong Aryl Hydrocarbon Receptor Activator in Rat and Human. Drug Metab Dispos 2022; 50:1064-1076. [PMID: 35680134 DOI: 10.1124/dmd.121.000825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/18/2022] [Indexed: 11/22/2022] Open
Abstract
[4-(4-Methyl-2-(4-(trifluoromethyl)phenyl)thiazole-5-yl)pyrimidine-2-amine] (JNJ-2482272), under investigation as an anti-inflammatory agent, was orally administered to rats once daily at 60 mg/kg for 6 consecutive days. Despite high plasma exposure after single administration (Cmax of 7.1 μM), JNJ-2482272 had plasma concentrations beneath the lower limit of quantification (3 ng/ml) after 6 consecutive days of dosing. To determine if JNJ-2482272 is an autoinducer in rats, plated rat hepatocytes were treated with JNJ-2482272 for 2 days. The major hydroxylated metabolites of JNJ-2482272 were isolated and characterized by mass spectrometry and NMR analyses. Compared with the vehicle-treated cells, a concentration-dependent increase was observed in the formation of phase I- and II-mediated metabolites coinciding with greater expression of cytochrome P450s (P450s) and UDP-glucuronosyltransferases (UGTs) in rat hepatocytes. CYP1A1, CYP1A2, CYP1B1, and UGT1A6 transcripts were predominantly induced, suggesting that JNJ-2482272 is an activator of the aryl hydrocarbon receptor (AhR). In a human AhR reporter assay, JNJ-2482272 demonstrated potent AhR activation with an EC50 value of 0.768 nM, a potency more comparable to the strong AhR activator and toxin 2,3,7,8-tetrachloro-dibenzodioxin than to weaker AhR activators 3-methylcholanthrene, β-naphthoflavone, and omeprazole. In plated human hepatocytes, JNJ-2482272 induced CYP1A1 gene expression with an EC50 of 20.4 nM and increased CYP1A activity >50-fold from basal levels. In human recombinant P450s, JNJ-2482272 was exclusively metabolized by the CYP1 family of enzymes and most rapidly by CYP1A1. The summation of these in vitro findings bridges the in vivo conclusion that JNJ-2482272 is a strong autoinducer in rats and potentially in humans through potent AhR activation. SIGNIFICANCE STATEMENT: Drugs that induce their own metabolism (autoinducers) can lack sustained exposures for pharmacology and safety assessment hindering their development. JNJ-2482272 is demonstrated herein as a strong aryl hydrocarbon receptor (AhR) activator and CYP1A autoinducer, explaining its near complete loss of exposure after repeat administration in rat, which is likely translatable to human (if progressed further) considering its nanomolar potency comparable to "classical" AhR ligands like 2,3,7,8-tetrachloro-dibenzo-dioxin despite bearing a "nonclassical" drug structure.
Collapse
Affiliation(s)
- Kevin J Coe
- Janssen Research & Development, L.L.C., San Diego, California (K.J.C., M.F., P.L., B.P.S., L.P.V., H.M., N.M.L., M.H., T.K.); Janssen Research & Development, L.L.C., San Francisco, California (Y.T.), Neurocrine Biosciences, Inc, San Diego, California (J.S.); Pfizer, San Diego, California (J.K.); Turnstone Biologics, La Jolla, California (A.B.); and Trestle Biotherapeutics, San Diego, California (J.W.H.)
| | - Mark Feinstein
- Janssen Research & Development, L.L.C., San Diego, California (K.J.C., M.F., P.L., B.P.S., L.P.V., H.M., N.M.L., M.H., T.K.); Janssen Research & Development, L.L.C., San Francisco, California (Y.T.), Neurocrine Biosciences, Inc, San Diego, California (J.S.); Pfizer, San Diego, California (J.K.); Turnstone Biologics, La Jolla, California (A.B.); and Trestle Biotherapeutics, San Diego, California (J.W.H.)
| | - J William Higgins
- Janssen Research & Development, L.L.C., San Diego, California (K.J.C., M.F., P.L., B.P.S., L.P.V., H.M., N.M.L., M.H., T.K.); Janssen Research & Development, L.L.C., San Francisco, California (Y.T.), Neurocrine Biosciences, Inc, San Diego, California (J.S.); Pfizer, San Diego, California (J.K.); Turnstone Biologics, La Jolla, California (A.B.); and Trestle Biotherapeutics, San Diego, California (J.W.H.)
| | - Perry Leung
- Janssen Research & Development, L.L.C., San Diego, California (K.J.C., M.F., P.L., B.P.S., L.P.V., H.M., N.M.L., M.H., T.K.); Janssen Research & Development, L.L.C., San Francisco, California (Y.T.), Neurocrine Biosciences, Inc, San Diego, California (J.S.); Pfizer, San Diego, California (J.K.); Turnstone Biologics, La Jolla, California (A.B.); and Trestle Biotherapeutics, San Diego, California (J.W.H.)
| | - Brian P Scott
- Janssen Research & Development, L.L.C., San Diego, California (K.J.C., M.F., P.L., B.P.S., L.P.V., H.M., N.M.L., M.H., T.K.); Janssen Research & Development, L.L.C., San Francisco, California (Y.T.), Neurocrine Biosciences, Inc, San Diego, California (J.S.); Pfizer, San Diego, California (J.K.); Turnstone Biologics, La Jolla, California (A.B.); and Trestle Biotherapeutics, San Diego, California (J.W.H.)
| | - Judy Skaptason
- Janssen Research & Development, L.L.C., San Diego, California (K.J.C., M.F., P.L., B.P.S., L.P.V., H.M., N.M.L., M.H., T.K.); Janssen Research & Development, L.L.C., San Francisco, California (Y.T.), Neurocrine Biosciences, Inc, San Diego, California (J.S.); Pfizer, San Diego, California (J.K.); Turnstone Biologics, La Jolla, California (A.B.); and Trestle Biotherapeutics, San Diego, California (J.W.H.)
| | - Yuen Tam
- Janssen Research & Development, L.L.C., San Diego, California (K.J.C., M.F., P.L., B.P.S., L.P.V., H.M., N.M.L., M.H., T.K.); Janssen Research & Development, L.L.C., San Francisco, California (Y.T.), Neurocrine Biosciences, Inc, San Diego, California (J.S.); Pfizer, San Diego, California (J.K.); Turnstone Biologics, La Jolla, California (A.B.); and Trestle Biotherapeutics, San Diego, California (J.W.H.)
| | - Laurie P Volak
- Janssen Research & Development, L.L.C., San Diego, California (K.J.C., M.F., P.L., B.P.S., L.P.V., H.M., N.M.L., M.H., T.K.); Janssen Research & Development, L.L.C., San Francisco, California (Y.T.), Neurocrine Biosciences, Inc, San Diego, California (J.S.); Pfizer, San Diego, California (J.K.); Turnstone Biologics, La Jolla, California (A.B.); and Trestle Biotherapeutics, San Diego, California (J.W.H.)
| | - Jennifer Kinong
- Janssen Research & Development, L.L.C., San Diego, California (K.J.C., M.F., P.L., B.P.S., L.P.V., H.M., N.M.L., M.H., T.K.); Janssen Research & Development, L.L.C., San Francisco, California (Y.T.), Neurocrine Biosciences, Inc, San Diego, California (J.S.); Pfizer, San Diego, California (J.K.); Turnstone Biologics, La Jolla, California (A.B.); and Trestle Biotherapeutics, San Diego, California (J.W.H.)
| | - Anton Bittner
- Janssen Research & Development, L.L.C., San Diego, California (K.J.C., M.F., P.L., B.P.S., L.P.V., H.M., N.M.L., M.H., T.K.); Janssen Research & Development, L.L.C., San Francisco, California (Y.T.), Neurocrine Biosciences, Inc, San Diego, California (J.S.); Pfizer, San Diego, California (J.K.); Turnstone Biologics, La Jolla, California (A.B.); and Trestle Biotherapeutics, San Diego, California (J.W.H.)
| | - Heather McAllister
- Janssen Research & Development, L.L.C., San Diego, California (K.J.C., M.F., P.L., B.P.S., L.P.V., H.M., N.M.L., M.H., T.K.); Janssen Research & Development, L.L.C., San Francisco, California (Y.T.), Neurocrine Biosciences, Inc, San Diego, California (J.S.); Pfizer, San Diego, California (J.K.); Turnstone Biologics, La Jolla, California (A.B.); and Trestle Biotherapeutics, San Diego, California (J.W.H.)
| | - Nathan M Lim
- Janssen Research & Development, L.L.C., San Diego, California (K.J.C., M.F., P.L., B.P.S., L.P.V., H.M., N.M.L., M.H., T.K.); Janssen Research & Development, L.L.C., San Francisco, California (Y.T.), Neurocrine Biosciences, Inc, San Diego, California (J.S.); Pfizer, San Diego, California (J.K.); Turnstone Biologics, La Jolla, California (A.B.); and Trestle Biotherapeutics, San Diego, California (J.W.H.)
| | - Michael Hack
- Janssen Research & Development, L.L.C., San Diego, California (K.J.C., M.F., P.L., B.P.S., L.P.V., H.M., N.M.L., M.H., T.K.); Janssen Research & Development, L.L.C., San Francisco, California (Y.T.), Neurocrine Biosciences, Inc, San Diego, California (J.S.); Pfizer, San Diego, California (J.K.); Turnstone Biologics, La Jolla, California (A.B.); and Trestle Biotherapeutics, San Diego, California (J.W.H.)
| | - Tatiana Koudriakova
- Janssen Research & Development, L.L.C., San Diego, California (K.J.C., M.F., P.L., B.P.S., L.P.V., H.M., N.M.L., M.H., T.K.); Janssen Research & Development, L.L.C., San Francisco, California (Y.T.), Neurocrine Biosciences, Inc, San Diego, California (J.S.); Pfizer, San Diego, California (J.K.); Turnstone Biologics, La Jolla, California (A.B.); and Trestle Biotherapeutics, San Diego, California (J.W.H.)
| |
Collapse
|
28
|
Current Therapeutic Landscape and Safety Roadmap for Targeting the Aryl Hydrocarbon Receptor in Inflammatory Gastrointestinal Indications. Cells 2022; 11:cells11101708. [PMID: 35626744 PMCID: PMC9139855 DOI: 10.3390/cells11101708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/30/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023] Open
Abstract
Target modulation of the AhR for inflammatory gastrointestinal (GI) conditions holds great promise but also the potential for safety liabilities both within and beyond the GI tract. The ubiquitous expression of the AhR across mammalian tissues coupled with its role in diverse signaling pathways makes development of a “clean” AhR therapeutically challenging. Ligand promiscuity and diversity in context-specific AhR activation further complicates targeting the AhR for drug development due to limitations surrounding clinical translatability. Despite these concerns, several approaches to target the AhR have been explored such as small molecules, microbials, PROTACs, and oligonucleotide-based approaches. These various chemical modalities are not without safety liabilities and require unique de-risking strategies to parse out toxicities. Collectively, these programs can benefit from in silico and in vitro methodologies that investigate specific AhR pathway activation and have the potential to implement thresholding parameters to categorize AhR ligands as “high” or “low” risk for sustained AhR activation. Exploration into transcriptomic signatures for AhR safety assessment, incorporation of physiologically-relevant in vitro model systems, and investigation into chronic activation of the AhR by structurally diverse ligands will help address gaps in our understanding regarding AhR-dependent toxicities. Here, we review the role of the AhR within the GI tract, novel therapeutic modality approaches to target the AhR, key AhR-dependent safety liabilities, and relevant strategies that can be implemented to address drug safety concerns. Together, this review discusses the emerging therapeutic landscape of modalities targeting the AhR for inflammatory GI indications and offers a safety roadmap for AhR drug development.
Collapse
|
29
|
Dehdari H, Moradian F, Barzegar A, Ebrahimzadeh MA. CYP1A1 contiguous hypermethylation within a putative CpG block is associated with breast cancer progression: Feasibility to define boundary motives. Exp Cell Res 2022; 413:113062. [PMID: 35167827 DOI: 10.1016/j.yexcr.2022.113062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/03/2022] [Accepted: 02/11/2022] [Indexed: 11/04/2022]
Abstract
Having broad specificity for xenobiotics metabolism throughout the body, cytochrome P450 (CYP) isoform 1A1 is of key relevance for carcinogenesis. However, the oncogenic potential of its altered transcription and the underlying mechanism has not been well-established in breast cancer. Direct bisulfite sequencing PCR (BSP) of the CYP1A1 promoter, enriched by 113 CpGs within and flanking the xenobiotic response elements (XREs) 2 to 10, in paired cancerous and normal tissues from 40 breast cancer patients revealed three distinctly methylated patterns; unmethylated (XREs 2 to 6) and completely methylated (XREs 7 and 8) CpGs, in common for the normal and cancerous tissues, and a putative 171bp CpG block (XREs 9 and 10) contiguously hypermethylated in the tumor tissues. Increased transcription of CYP1A1, observed for the cancerous tissues, was correlated with the hypermethylation of given CpG block, besides simultaneously being associated with upregulation of the anti-apoptotic BCL-2. Clinical value of the methylation changes, investigated based on the comparisons between the tissue cohorts of different clinicopathological features, exhibited gradual hypermethylation of the corresponding CpG block following disease progression as well as lymphatic involvement. Hypermethylation of given CpG block may has potential to be used as a biomarker for diagnosis and progression of breast cancer.
Collapse
Affiliation(s)
- Hossein Dehdari
- Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Fatemeh Moradian
- Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Ali Barzegar
- Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
| | - Mohammad Ali Ebrahimzadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
30
|
Murphy L, LeBaron MJ, Johnson K, Rasoulpour RJ, Wang X, LaRocca J. Bridging Sex-Specific Differences in the CAR-Mediated Hepatocarcinogenesis of Nitrapyrin Using Molecular and Apical Endpoints. FRONTIERS IN TOXICOLOGY 2022; 3:766196. [PMID: 35295143 PMCID: PMC8915892 DOI: 10.3389/ftox.2021.766196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Nitrapyrin, a nitrification inhibitor, produces liver tumors in B6C3F1 mice. In a 2-year oncogenicity study, increased incidence of mice with hepatocellular tumors was observed following exposure to 125 (females only) or 250 mg/kg/day (males and females) nitrapyrin in the diet. Previous data was generated in male mice to support a mode-of-action (MoA) characterized by constitutive androstane receptor (CAR) nuclear receptor (NR) activation, increased hepatocellular proliferation, and subsequent hepatocellular foci and tumor formation. Uncertainty as to the relevance of this MoA for females remained given the increased sensitivity to tumor formation in female mice. A targeted MoA study was conducted to evaluate CAR activation and hepatic responses in female mice treated with the female carcinogenic dose of nitrapyrin for 4 days. Nitrapyrin induced a treatment-related increase in hepatocellular hypertrophy and hepatocellular proliferation. Nitrapyrin also induced a dose-related increase in the Cyp2b10/CAR-associated transcript and liver weights. Nitrapyrin-induced liver weights and Cyp2b10 gene expression for both males and females were compared to data generated from three other established CAR activators; methyl isobutyl ketone, phenobarbital, and sulfoxaflor. The response observed in female mice following exposure to nitrapyrin was within range of the degree of change observed in mice following exposure to tumorigenic doses of other CAR activators. Consistent with the liver MoA in male mice, these data support a CAR-mediated mode of action for nitrapyrin-induced liver tumors in female mice, with the understanding that a focused approach minimizing animal use can bridge male and female datasets when sex-specific carcinogenic differences are observed.
Collapse
Affiliation(s)
- Lynea Murphy
- Corteva Agriscience, Indianapolis, IN, United States
| | - Matthew J LeBaron
- The Dow Chemical Company, Toxicology and Environmental Research and Consulting, Midland, MI, United States
| | - Kamin Johnson
- Corteva Agriscience, Indianapolis, IN, United States
| | | | - Xiujuan Wang
- Corteva Agriscience, Indianapolis, IN, United States
| | | |
Collapse
|
31
|
Aranguren-Abadía L, Yadetie F, Donald CE, Sørhus E, Myklatun LE, Zhang X, Lie KK, Perrichon P, Nakken CL, Durif C, Shema S, Browman HI, Skiftesvik AB, Goksøyr A, Meier S, Karlsen OA. Photo-enhanced toxicity of crude oil on early developmental stages of Atlantic cod (Gadus morhua). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150697. [PMID: 34610396 DOI: 10.1016/j.scitotenv.2021.150697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/26/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Photo-enhanced toxicity of crude oil is produced by exposure to ultraviolet (UV) radiation. Atlantic cod (Gadus morhua) embryos were exposed to crude oil with and without UV radiation (290-400 nm) from 3 days post fertilization (dpf) until 6 dpf. Embryos from the co-exposure experiment were continually exposed to UV radiation until hatching at 11 dpf. Differences in body burden levels and cyp1a expression in cod embryos were observed between the exposure regimes. High doses of crude oil produced increased mortality in cod co-exposed embryos, as well as craniofacial malformations and heart deformities in larvae from both experiments. A higher number of differentially expressed genes (DEGs) and pathways were revealed in the co-exposure experiment, indicating a photo-enhanced effect of crude oil toxicity. Our results provide mechanistic insights into crude oil and photo-enhanced crude oil toxicity, suggesting that UV radiation increases the toxicity of crude oil in early life stages of Atlantic cod.
Collapse
Affiliation(s)
| | - Fekadu Yadetie
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Elin Sørhus
- Institute of Marine Research, Bergen, Norway
| | | | - Xiaokang Zhang
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Kai K Lie
- Institute of Marine Research, Bergen, Norway
| | | | | | - Caroline Durif
- Institute of Marine Research, Austevoll Research Station, Storebø, Norway
| | - Steven Shema
- Grótti ehf., Grundarstíg 4, 101 Reykjavík, Iceland
| | - Howard I Browman
- Institute of Marine Research, Austevoll Research Station, Storebø, Norway
| | | | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Odd André Karlsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
32
|
Shallis RM, Gore SD. Agent Orange and dioxin-induced myeloid leukemia: a weaponized vehicle of leukemogenesis. Leuk Lymphoma 2022; 63:1534-1543. [PMID: 35105250 DOI: 10.1080/10428194.2022.2034156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Agent Orange (AO) was the dominant weaponized herbicide employed by the United States (US) military during the Vietnam war. AO, however, was found to be regularly contaminated by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most toxic dioxin known; furthermore, AO was commonly diluted in the field with other aromatic hydrocarbons to assist with delivery mechanisms. Unbeknownst to the US military and the millions exposed, these events have likely contributed to the development of acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) that has affected many veterans. Null studies regarding an association between AO exposure and AML/MDS are limited in their methodology and application. The acknowledgement that the known carcinogen TCDD was a contaminant in AO when paired with a strong biological plausibility for its leukemogenicity and an observed increased risk of AML/MDS in TCDD-exposed individuals should suffice to establish causal association and that veterans to whom this might apply should be awarded appropriate indemnity.
Collapse
Affiliation(s)
- Rory M Shallis
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT, USA
| | - Steven D Gore
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT, USA
| |
Collapse
|
33
|
Cho H, Choi I, Kim SK, Baik S, Ryu CS. LC-MS-based assay of granisetron 7-hydroxylation activity for the evaluation of CYP1A1 induction from diesel particulate matter-exposed hepatic and respiratory cell lines. Food Chem Toxicol 2022; 161:112829. [PMID: 35093429 DOI: 10.1016/j.fct.2022.112829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 11/28/2022]
Abstract
Particulate matter (PM) generally consists of aggregated particles containing trace metals and polycyclic aromatic hydrocarbons (PAHs). Cytochrome P450 (CYP) 1A1, one of the extensively investigated biomarkers, is highly inducible when PAHs activate the aryl hydrocarbon receptor (AhR). The present study focused on developing a LC-MS/MS-based assay to evaluate CYP1A1 induction potential following PM exposure. This assay adapted a CYP1A1 selective reaction of granisetron 7-hydroxylation in response to an AhR inducer, 6-formylindolo[3,2-b]carbazole (FICZ), in HepaRG and A549 cell lines. Exposure to FICZ (10 nM) increased the levels of granisetron 7-hydroxylation significantly, whereas no elevation of ethoxyresorufin-O-deethylation (EROD) activity was found in HepaRG cells. In A549 cells, granisetron 7-hydroxylation showed a better dose-response from 0 to 10000 nM FICZ treatment than EROD. EROD Additionally, the application of the assay with diesel PM exposure showed a concentration-dependent induction of CYP1A1 in HepaRG, A549, and human nasal epithelial cells. The granisetron assay has better selectivity for CYP1A1 than the conventional EROD assay, which is overlapped reaction with CYP1A2 and CYP1B1, with high correlations between AhR activation and CYP1A1 mRNA levels. Accompanying the great application potential to different organs and cell culture systems, future studies will implement the granisetron assay for the respiratory toxicity evaluation.
Collapse
Affiliation(s)
- Hyunki Cho
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrücken, 66123, Germany
| | - Ian Choi
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrücken, 66123, Germany
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, 34134, South Korea
| | - Seungyun Baik
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrücken, 66123, Germany.
| | - Chang Seon Ryu
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrücken, 66123, Germany.
| |
Collapse
|
34
|
Saiki JP, Andreasson JO, Grimes KV, Frumkin LR, Sanjines E, Davidson MG, Park KT, Limketkai B. Treatment-refractory ulcerative colitis responsive to indigo naturalis. BMJ Open Gastroenterol 2022; 8:bmjgast-2021-000813. [PMID: 34969665 PMCID: PMC8718466 DOI: 10.1136/bmjgast-2021-000813] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Background Indigo naturalis (IN) is an herbal medicine that has been used for ulcerative colitis with an unclear mechanism of action. Indigo and indirubin, its main constituents, are ligands of the aryl hydrocarbon receptor (AhR). We assessed the safety, efficacy, and colon AhR activity of IN given orally to patients with treatment-refractory ulcerative colitis. The role of AhR in IN benefit was further evaluated with an AhR antagonist in a murine colitis model. Methods This open-label, dose-escalation study sequentially treated 11 patients with ulcerative colitis with either IN 500 mg/day or 1.5 g/day for 8 weeks, followed by a 4-week non-treatment period. The primary efficacy endpoint was clinical response at week 8, assessed by total Mayo score. Secondary endpoints included clinical remission, Ulcerative Colitis Endoscopic Index of Severity, quality of life, and colon AhR activity measured by cytochrome P450 1A1 (CYP1A1) RNA expression. Results Ten of 11 (91%) patients, including 8/9 (89%) with moderate-to-severe disease, achieved a clinical response. Among these 10 patients, all had failed treatment with 5-aminosalicylic acid, 8 patients with a tumour necrosis factor (TNF)-alpha inhibitor, and 6 patients with TNF-alpha inhibitor and vedolizumab. Five patients were corticosteroid dependent. Clinical response was observed in all five patients who had been recommended for colectomy. Three patients achieved clinical remission. All patients experienced improved endoscopic severity and quality of life. Four weeks after treatment completion, six patients had worsened partial Mayo scores. Four patients progressed to colectomy after study completion. Colon CYP1A1 RNA expression increased 12 557-fold at week 8 among six patients evaluated. No patient discontinued IN due to an adverse event. Concomitant administration of 3-methoxy-4-nitroflavone, an AhR antagonist, in a murine colitis model abrogated the benefit of IN. Conclusion IN is a potentially effective therapy for patients with treatment-refractory ulcerative colitis. This benefit is likely through AhR activation. Trial registration number NCT02442960.
Collapse
Affiliation(s)
- Julie P Saiki
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Johan Ol Andreasson
- Department of Genetics, Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - Kevin V Grimes
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Lyn R Frumkin
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Elvi Sanjines
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
| | | | - K T Park
- Division of Pediatric Gastroenterology, Stanford University School of Medicine, Stanford, California, USA
| | - Berkeley Limketkai
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
35
|
Alhoshani A, Alotaibi M, As Sobeai HM, Alharbi N, Alhazzani K, Al-Dhfyan A, Alanazi FE, Korashy HM. In vivo and in vitro studies evaluating the chemopreventive effect of metformin on the aryl hydrocarbon receptor-mediated breast carcinogenesis. Saudi J Biol Sci 2021; 28:7396-7403. [PMID: 34867043 PMCID: PMC8626299 DOI: 10.1016/j.sjbs.2021.08.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 01/02/2023] Open
Abstract
Metformin (MET) is a clinically used anti-hyperglycemic agent that shows activities against chemically-induced animal models of cancer. A study from our laboratory showed that MET protectes against 7, 12-dimethylbenz[a]anthracene (DMBA)-induced carcinogenesis in vitro human non-cancerous epithelial breast cells (MCF10A) via activation of the aryl hydrocarbon receptor (AhR). However, it is unclear whether MET can prevent the initiation of breast carcinogenesis in an in vivo rat model of AhR-induced breast carcinogenesis. Therefore, the main aims of this study are to examine the effect of MET on protecting against rat breast carcinogenesis induced by DMBA and to explore whether this effect is medicated through the AhR pathway. In this study, treatment of female rats with DMBA initiated breast carcinogenesis though inhibiting apoptosis and tumor suppressor genes while inducing oxidative DNA damage and cell cycle proliferative markers. This effect was associated with activation of AhR and its downstream target genes; cytochrome P4501A1 (CYP1A1) and CYP1B1. Importantly, MET treatment protected against DMBA-induced breast carcinogenesis by restoring DMBA effects on apoptosis, tumor suppressor genes, DNA damage, and cell proliferation. Mechanistically using in vitro human breast cancer MCF-7 cells, MET inhibited breast cancer stem cells spheroids formation and development by DMBA, which was accompanied by a proportional inhibition in CYP1A1 gene expression. In conclusion, the study reports evidence that MET is an effective chemopreventive therapy for breast cancer by inhibiting the activation of CYP1A1/CYP1B1 pathway in vivo rat model.
Collapse
Affiliation(s)
- Ali Alhoshani
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Moureq Alotaibi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Homood M As Sobeai
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Naif Alharbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah Al-Dhfyan
- Stem Cell & Tissue Re-Engineering, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Fawaz E Alanazi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| |
Collapse
|
36
|
Vazquez-Rivera E, Rojas B, Parrott JC, Shen AL, Xing Y, Carney PR, Bradfield CA. The aryl hydrocarbon receptor as a model PAS sensor. Toxicol Rep 2021; 9:1-11. [PMID: 34950569 PMCID: PMC8671103 DOI: 10.1016/j.toxrep.2021.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 01/02/2023] Open
Abstract
Proteins containing PER-ARNT-SIM (PAS) domains are commonly associated with environmental adaptation in a variety of organisms. The PAS domain is found in proteins throughout Archaea, Bacteria, and Eukarya and often binds small-molecules, supports protein-protein interactions, and transduces input signals to mediate an adaptive physiological response. Signaling events mediated by PAS sensors can occur through induced phosphorelays or genomic events that are often dependent upon PAS domain interactions. In this perspective, we briefly discuss the diversity of PAS domain containing proteins, with particular emphasis on the prototype member, the aryl hydrocarbon receptor (AHR). This ligand-activated transcription factor acts as a sensor of the chemical environment in humans and many chordates. We conclude with the idea that since mammalian PAS proteins often act through PAS-PAS dimers, undocumented interactions of this type may link biological processes that we currently think of as independent. To support this idea, we present a framework to guide future experiments aimed at fully elucidating the spectrum of PAS-PAS interactions with an eye towards understanding how they might influence environmental sensing in human and wildlife populations.
Collapse
Affiliation(s)
- Emmanuel Vazquez-Rivera
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Brenda Rojas
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Jessica C. Parrott
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Anna L. Shen
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Yongna Xing
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Patrick R. Carney
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| | - Christopher A. Bradfield
- Molecular and Environmental Toxicology Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States
| |
Collapse
|
37
|
Iqbal K, Pierce SH, Kozai K, Dhakal P, Scott RL, Roby KF, Vyhlidal CA, Soares MJ. Evaluation of Placentation and the Role of the Aryl Hydrocarbon Receptor Pathway in a Rat Model of Dioxin Exposure. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:117001. [PMID: 34747641 PMCID: PMC8574979 DOI: 10.1289/ehp9256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND Our environment is replete with chemicals that can affect embryonic and extraembryonic development. Dioxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), are compounds affecting development through the aryl hydrocarbon receptor (AHR). OBJECTIVES The purpose of this investigation was to examine the effects of TCDD exposure on pregnancy and placentation and to evaluate roles for AHR and cytochrome P450 1A1 (CYP1A1) in TCDD action. METHODS Actions of TCDD were examined in wild-type and genome-edited rat models. Placenta phenotyping was assessed using morphological, biochemical, and molecular analyses. RESULTS TCDD exposures were shown to result in placental adaptations and at higher doses, pregnancy termination. Deep intrauterine endovascular trophoblast cell invasion was a prominent placentation site adaptation to TCDD. TCDD-mediated placental adaptations were dependent upon maternal AHR signaling but not upon placental or fetal AHR signaling nor the presence of a prominent AHR target, CYP1A1. At the placentation site, TCDD activated AHR signaling within endothelial cells but not trophoblast cells. Immune and trophoblast cell behaviors at the uterine-placental interface were guided by the actions of TCDD on endothelial cells. DISCUSSION We identified an AHR regulatory pathway in rats activated by dioxin affecting uterine and trophoblast cell dynamics and the formation of the hemochorial placenta. https://doi.org/10.1289/EHP9256.
Collapse
Affiliation(s)
- Khursheed Iqbal
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Department of Pathology and Laboratory Medicine, KUMC, Kansas City, Kansas, USA
| | - Stephen H. Pierce
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Department of Pathology and Laboratory Medicine, KUMC, Kansas City, Kansas, USA
| | - Keisuke Kozai
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Department of Pathology and Laboratory Medicine, KUMC, Kansas City, Kansas, USA
| | - Pramod Dhakal
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Department of Pathology and Laboratory Medicine, KUMC, Kansas City, Kansas, USA
| | - Regan L. Scott
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Department of Pathology and Laboratory Medicine, KUMC, Kansas City, Kansas, USA
| | - Katherine F. Roby
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Department of Anatomy and Cell Biology, KUMC, Kansas City, Kansas, USA
| | - Carrie A. Vyhlidal
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children’s Mercy Kansas City, Kansas City, Missouri
- Center for Perinatal Research, Children’s Mercy Research Institute, Children’s Mercy Kansas City, Kansas City, Missouri
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Michael J. Soares
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Department of Pathology and Laboratory Medicine, KUMC, Kansas City, Kansas, USA
- Center for Perinatal Research, Children’s Mercy Research Institute, Children’s Mercy Kansas City, Kansas City, Missouri
- Department of Obstetrics and Gynecology, KUMC, Kansas City, Kansas, USA
| |
Collapse
|
38
|
Exploring the Molecular Mechanism of Astragali Radix-Curcumae Rhizoma against Gastric Intraepithelial Neoplasia by Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8578615. [PMID: 34646329 PMCID: PMC8505068 DOI: 10.1155/2021/8578615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/22/2021] [Indexed: 01/30/2023]
Abstract
Background Astragali Radix-Curcumae Rhizoma (ARCR), a classic drug pair, has been widely used for the treatment of gastric intraepithelial neoplasia (GIN) in China. However, the underlying mechanisms of this drug pair are still unknown. Thus, elucidating the molecular mechanism of ARCR for treating GIN is imperative. Methods The active components and targets of ARCR were determined from the TCMSP database, and the differentially expressed genes related to GIN were identified from the GSE130823 dataset. The protein-protein interaction (PPI) network and ARCR-active component-target-pathway network were constructed by STRING 11.0 and Cytoscape 3.7.2, respectively. In addition, a receiver operating characteristic curve (ROC) was conducted to verify the key targets, and enrichment analyses were performed using R software. Molecular docking was carried out to test the binding capacity between core active components and key targets. Results 31 active components were obtained from ARCR, among which 22 were hit by the 51 targets associated with GIN. Gene Ontology (GO) functional enrichment analysis showed that biological process (BP), molecular function (MF), and cellular component (CC) were most significantly enriched in response to a drug, catecholamine binding, and apical part of the cell, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated ARCR against GIN through regulation of neuroactive ligand-receptor interaction, nitrogen metabolism, calcium signaling pathway, chemical carcinogenesis-receptor activation, drug metabolism, gap junction, and cancers. In the PPI network, 15 potential targets were identified, of which nine key targets were proven to have higher diagnostic values in ROC. Molecular docking revealed a good binding affinity of active components (quercetin, bisdemethoxycurcumin, and kaempferol) with the corresponding targets (CYP3A4, CYP1A1, HMOX1, DRD2, DPP4, ADRA2A, ADRA2C, NR1I2, and LGALS4). Conclusion This study revealed the active components and molecular mechanism by which ARCR treatment is effective against GIN through regulating multipathway, such as neuroactive ligand-receptor interaction, nitrogen metabolism, and calcium signaling pathway.
Collapse
|
39
|
Sahebnasagh A, Hashemi J, Khoshi A, Saghafi F, Avan R, Faramarzi F, Azimi S, Habtemariam S, Sureda A, Khayatkashani M, Safdari M, Rezai Ghaleno H, Soltani H, Khayat Kashani HR. Aromatic hydrocarbon receptors in mitochondrial biogenesis and function. Mitochondrion 2021; 61:85-101. [PMID: 34600156 DOI: 10.1016/j.mito.2021.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022]
Abstract
Mitochondria are ubiquitous membrane-bound organelles that not only play a key role in maintaining cellular energy homeostasis and metabolism but also in signaling and apoptosis. Aryl hydrocarbons receptors (AhRs) are ligand-activated transcription factors that recognize a wide variety of xenobiotics, including polyaromatic hydrocarbons and dioxins, and activate diverse detoxification pathways. These receptors are also activated by natural dietary compounds and endogenous metabolites. In addition, AhRs can modulate the expression of a diverse array of genes related to mitochondrial biogenesis and function. The aim of the present review is to analyze scientific data available on the AhR signaling pathway and its interaction with the intracellular signaling pathways involved in mitochondrial functions, especially those related to cell cycle progression and apoptosis. Various evidence have reported the crosstalk between the AhR signaling pathway and the nuclear factor κB (NF-κB), tyrosine kinase receptor signaling and mitogen-activated protein kinases (MAPKs). The AhR signaling pathway seems to promote cell cycle progression in the absence of exogenous ligands, whereas the presence of exogenous ligands induces cell cycle arrest. However, its effects on apoptosis are controversial since activation or overexpression of AhR has been observed to induce or inhibit apoptosis depending on the cell type. Regarding the mitochondria, although activation by endogenous ligands is related to mitochondrial dysfunction, the effects of endogenous ligands are not well understood but point towards antiapoptotic effects and inducers of mitochondrial biogenesis.
Collapse
Affiliation(s)
- Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Javad Hashemi
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhosein Khoshi
- Department of Clinical Biochemistry, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Razieh Avan
- Assistant Professor of Clinical Pharmacy, Department of Clinical Pharmacy, Medical Toxicology and Drug Abuse Research Center (MTDRC), Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Faramarzi
- Clinical Pharmacy Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Azimi
- Student Research Committee, Department of Clinical Pharmacy, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, School of Science, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, United Kingdom
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands and Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Maryam Khayatkashani
- School of Iranian Traditional Medicine, Tehran University of Medical Sciences, 14155-6559 Tehran, Iran
| | - Mohammadreza Safdari
- Department of Orthopedic Surgery, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hassan Rezai Ghaleno
- Department of Surgery, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hosseinali Soltani
- Department of General Surgery, Imam Ali Hospital, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
40
|
Hutin D, Long AS, Sugamori K, Shao P, Singh SK, Rasmussen M, Olafsen NE, Pettersen S, Grimaldi G, Grant DM, Matthews J. 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD)-Inducible Poly-ADP-Ribose Polymerase (TIPARP/PARP7) Catalytic Mutant Mice (TiparpH532A) Exhibit Increased Sensitivity to TCDD-Induced Hepatotoxicity and Lethality. Toxicol Sci 2021; 183:154-169. [PMID: 34129049 PMCID: PMC8404992 DOI: 10.1093/toxsci/kfab075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly-adenosine diphosphate (ADP)-ribose polymerase (TIPARP/PARP7), an aryl hydrocarbon receptor (AHR) target gene and mono-ADP-ribosyltransferase, acts as part of a negative feedback loop to repress AHR signaling. This process is prevented by a single H532A mutation in TIPARP that destroys its catalytic activity. We hypothesized that the loss of TIPARP catalytic activity would increase sensitivity to TCDD-induced toxicity in vivo. To test this, we created a catalytically deficient mouse line (TiparpH532A) by introducing a single H532A mutation in TIPARP. Treatment of mouse embryonic fibroblasts or hepatocytes isolated from TiparpH532A mice confirmed the increased TCDD-induced expression of the AHR target genes Cyp1a1, Cyp1b1, and Tiparp. TiparpH532A mice given a single injection of 10 µg/kg TCDD, a nonlethal dose in Tiparp+/+ mice, did not survive beyond day 10. All Tiparp+/+ mice survived the 30-day treatment. TCDD-treated TiparpH532A mice displayed increased expression of AHR target genes, increased steatohepatitis and hepatotoxicity. Hepatic RNA-sequencing revealed 7-fold more differentially expressed genes in TiparpH532A mice than in Tiparp+/+ mice (4542 vs 647 genes) 6 days after TCDD treatment. Differentially expressed genes included genes involved in xenobiotic metabolism, lipid homeostasis and inflammation. Taken together, these data further support TIPARP as a critical negative regulator of AHR activity and show that loss of its catalytic activity is sufficient to increase sensitivity to TCDD-induced steatohepatitis and lethality. Since TIPARP inhibition has recently emerged as a potential anticancer therapy, the impact on AHR signaling, TCDD and polycyclic aromatic hydrocarbon toxicity will need to be carefully considered under conditions of therapeutic TIPARP inhibition.
Collapse
Affiliation(s)
- David Hutin
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8 Ontario, Canada
| | - Alexandra S Long
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8 Ontario, Canada
| | - Kim Sugamori
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8 Ontario, Canada
| | - Peng Shao
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8 Ontario, Canada
| | | | - Marit Rasmussen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Ninni Elise Olafsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Solveig Pettersen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Giulia Grimaldi
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Denis M Grant
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8 Ontario, Canada
| | - Jason Matthews
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8 Ontario, Canada.,Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| |
Collapse
|
41
|
Sadowska A, Nynca A, Ruszkowska M, Paukszto L, Myszczynski K, Swigonska S, Orlowska K, Molcan T, Jastrzebski JP, Ciereszko RE. Transcriptional profiling of Chinese hamster ovary (CHO) cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Reprod Toxicol 2021; 104:143-154. [PMID: 34363982 DOI: 10.1016/j.reprotox.2021.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a man-made chemical compound contaminating the environment. An exposure of organisms to TCDD results in numerous disorders. The main mechanism of TCDD action involves the induction of the aryl hydrocarbon receptor (AhR) pathway followed by the increase in the expression and activity of cytochrome P450 family 1 (CYP1) enzymes. The main aim of the present study was to identify, by means of RNA sequencing, transcripts involved in the mechanism of TCDD action in Chinese hamster ovary (CHO) cells, known to not express CYP1A1 enzyme. The CHO cells were treated with TCDD for 3, 12 or 24 h, and total RNA was isolated and sequenced. Thirty six (padjusted < 0.05) or six (padjusted < 0.05, log2FC ≥ 1.0/log2FC≤-1.0) differentially expressed genes (DEGs) were identified in TCDD-treated cells depending on the assumed statistical criteria. The dioxin up- and downregulated the expression of genes associated with ovarian follicle functions, development, cardiovascular system, signal transduction, inflammation and carcinogenesis. TCDD did not affect the expression of any of 522 miRNAs which were identified in the cells. The expression of CYP1A1, CYP1A2 and CYP1B1 was demonstrated neither in control nor in TCDD-treated CHO cells, although the respective genes were found in the cell genome. Twenty two other CYP enzymes were identified in CHO cells, however their expression was also not affected by TCDD.
Collapse
Affiliation(s)
- Agnieszka Sadowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland.
| | - Anna Nynca
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland.
| | - Monika Ruszkowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Lukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Kamil Myszczynski
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Sylwia Swigonska
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Karina Orlowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Tomasz Molcan
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Jan P Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Renata E Ciereszko
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland; Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| |
Collapse
|
42
|
Nordestgaard AT. Causal relationship from coffee consumption to diseases and mortality: a review of observational and Mendelian randomization studies including cardiometabolic diseases, cancer, gallstones and other diseases. Eur J Nutr 2021; 61:573-587. [PMID: 34319429 DOI: 10.1007/s00394-021-02650-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE High coffee consumption is associated with low risk of mortality and morbidity, but the causality remains unclear. This review aims to discuss findings from observational studies on coffee consumption in context of Mendelian randomization studies. METHODS The PubMed database was searched for all Mendelian randomization studies on coffee consumption and corresponding observational studies. RESULTS High coffee consumption is associated with low risk of all-cause and cardiovascular mortality in observational studies (HRs of 0.85-0.90 vs. no/low consumers), with no support of causality in Mendelian randomization studies. Moderate/high consumption is associated with low risk of cardiometabolic diseases, including ischemic heart disease (HRs of 0.85-0.90 vs. no/low consumption), stroke (HRs of approximately 0.80 vs. no/low consumption), type 2 diabetes (HRs of approximately 0.70 vs. no/low consumption) and obesity in observational studies, but not in Mendelian randomization studies. High consumption is associated with low risk of endometrial cancer and melanoma and high risk of lung cancer in observational studies, but with high risk of colorectal cancer in Mendelian randomization studies. In observational and Mendelian randomization studies, high coffee consumption is associated with low risk of gallstones (HRs of 0.55-0.70 for high vs. no/low self-reported and 0.81 (0.69-0.96) for highest vs. lowest genetic consumption). CONCLUSION High coffee consumption is associated with low risk of mortality, cardiometabolic diseases, some cancers and gallstones in observational studies, with no evidence to support causality from Mendelian randomization studies for most diseases except gallstones.
Collapse
Affiliation(s)
- Ask T Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 1, 2730, Herlev, Denmark.
| |
Collapse
|
43
|
Roles of the ubiquitin ligase CUL4B and ADP-ribosyltransferase TiPARP in TCDD-induced nuclear export and proteasomal degradation of the transcription factor AHR. J Biol Chem 2021; 297:100886. [PMID: 34146543 PMCID: PMC8318916 DOI: 10.1016/j.jbc.2021.100886] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a transcription factor activated by exogenous halogenated polycyclic aromatic hydrocarbon compounds, including the environmental toxin TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin, and naturally occurring dietary and endogenous compounds. The activated AHR enhances transcription of specific genes including phase I and phase II metabolism enzymes and other targets genes such as the TCDD-inducible poly(ADP-ribose) polymerase (TiPARP). The regulation of AHR activation is a dynamic process: immediately after transcriptional activation of the AHR by TCDD, the AHR is exported from the nucleus to the cytoplasm where it is subjected to proteasomal degradation. However, the mechanisms regulating AHR degradation are not well understood. Here, we studied the role of two enzymes reported to enhance AHR breakdown: the cullin 4B (CUL4B)AHR complex, an E3 ubiquitin ligase that targets the AHR and other proteins for ubiquitination, and TiPARP, which targets proteins for ADP-ribosylation, a posttranslational modification that can increase susceptibility to degradation. Using a WT mouse embryonic fibroblast (MEF) cell line and an MEF cell line in which CUL4B has been deleted (MEFCul4b-null), we discovered that loss of CUL4B partially prevented AHR degradation after TCDD exposure, while knocking down TiPARP in MEFCul4b-null cells completely abolished AHR degradation upon TCDD treatment. Increased TCDD-activated AHR protein levels in MEFCul4b-null and MEFCul4b-null cells in which TiPARP was knocked down led to enhanced AHR transcriptional activity, indicating that CUL4B and TiPARP restrain AHR action. This study reveals a novel function of TiPARP in controlling TCDD-activated AHR nuclear export and subsequent proteasomal degradation.
Collapse
|
44
|
Amobi-McCloud A, Muthuswamy R, Battaglia S, Yu H, Liu T, Wang J, Putluri V, Singh PK, Qian F, Huang RY, Putluri N, Tsuji T, Lugade AA, Liu S, Odunsi K. IDO1 Expression in Ovarian Cancer Induces PD-1 in T Cells via Aryl Hydrocarbon Receptor Activation. Front Immunol 2021; 12:678999. [PMID: 34025677 PMCID: PMC8136272 DOI: 10.3389/fimmu.2021.678999] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
The immunoregulatory enzyme, indoleamine 2,3-dioxygenase (IDO1) and the PD-1/PD-L1 axis are potent mechanisms that impede effective anti-tumor immunity in ovarian cancer. However, whether the IDO pathway regulates PD-1 expression in T cells is currently unknown. Here we show that tumoral IDO1 expression led to profound changes in tryptophan, nicotinate/nicotinamide, and purine metabolic pathways in the ovarian tumor microenvironment, and to an increased frequency of PD-1+CD8+ tumor infiltrating T cells. We determined that activation of the aryl hydrocarbon receptor (AHR) by kynurenine induced PD-1 expression, and this effect was significantly abrogated by the AHR antagonist CH223191. Mechanistically, kynurenine alters chromatin accessibility in regulatory regions of T cell inhibitory receptors, allowing AHR to bind to consensus XRE motifs in the promoter region of PD-1. These results enable the design of strategies to target the IDO1 and AHR pathways for enhancing anti-tumor immunity in ovarian cancer.
Collapse
Affiliation(s)
- Adaobi Amobi-McCloud
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Ravikumar Muthuswamy
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Sebastiano Battaglia
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Han Yu
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Tao Liu
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Jianmin Wang
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Vasanta Putluri
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, United States
| | - Prashant K. Singh
- Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Feng Qian
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Ruea-Yea Huang
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Nagireddy Putluri
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, United States
- Molecular and Cellular Biology, Advanced Technology Cores, Baylor College of Medicine, Houston, TX, United States
| | - Takemasa Tsuji
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- Obstetrics and Gynecology-Gynecologic Oncology, University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL, United States
| | - Amit A. Lugade
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Song Liu
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Kunle Odunsi
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- Obstetrics and Gynecology-Gynecologic Oncology, University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL, United States
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
45
|
Singleman C, Holtzman NG. PCB and TCDD derived embryonic cardiac defects result from a novel AhR pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 233:105794. [PMID: 33662880 DOI: 10.1016/j.aquatox.2021.105794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/30/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Polychlorinated biphenyls (PCBs) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are environmental contaminants known to impact cardiac development, a key step in the embryonic development of most animals. To date, little is understood of the molecular mechanism driving the observed cardiac defects in exposed fishes. The literature shows PCB & TCDD derived cardiac defects are concurrent with, but not caused by, expression of cyp1A, due to activation of the aryl hydrocarbon receptor (AhR) gene activation pathway. However, in this study, detailed visualization of fish hearts exposed to PCBs and TCDD show that, in addition to a failure of cardiac looping in early heart development, the inner endocardial lining of the heart fails to maintain proper cell adhesion and tissue integrity. The resulting gap between the endocardium and myocardium in both zebrafish and Atlantic sturgeon suggested functional faults in endothelial adherens junction formation. Thus, we explored the molecular mechanism triggering cardiac defects using immunohistochemistry to identify the location and phosphorylation state of key regulatory and adhesion molecules. We hypothesized that PCB and TCDD activates AhR, phosphorylating Src, which then phosphorylates the endothelial adherens junction protein, VEcadherin. When phosphorylated, VEcadherin dimers, found in the endocardium and vasculature, separate, reducing tissue integrity. In zebrafish, treatment with PCB and TCDD contaminants leads to higher phosphorylation of VEcadherin in cardiac tissue suggesting that these cells have reduced connectivity. Small molecule inhibition of Src phosphorylation prevents contaminant stimulated phosphorylation of VEcadherin and rescues both cardiac function and gross morphology. Atlantic sturgeon hearts show parallels to contaminant exposed zebrafish cardiac phenotype at the tissue level. These data suggest that the mechanism for PCB and TCDD action in the heart is, in part, distinct from the canonical mechanism described in the literature and that cardiac defects are impacted by this nongenomic mechanism.
Collapse
Affiliation(s)
- Corinna Singleman
- Department of Biology, Queens College, City University of New York, 65-30 Kissena Blvd, Queens NY 11367-1597, USA; The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Nathalia G Holtzman
- Department of Biology, Queens College, City University of New York, 65-30 Kissena Blvd, Queens NY 11367-1597, USA; The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA.
| |
Collapse
|
46
|
Wuputra K, Tsai MH, Kato K, Yang YH, Pan JB, Ku CC, Noguchi M, Kishikawa S, Nakade K, Chen HL, Liu CJ, Nakamura Y, Kuo KK, Lin YC, Chan TF, Wu DC, Hou MF, Huang SK, Lin CS, Yokoyama KK. Dimethyl sulfoxide stimulates the AhR-Jdp2 axis to control ROS accumulation in mouse embryonic fibroblasts. Cell Biol Toxicol 2021; 38:203-222. [PMID: 33723743 PMCID: PMC8986748 DOI: 10.1007/s10565-021-09592-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/21/2021] [Indexed: 11/21/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-binding protein that responds to environmental aromatic hydrocarbons and stimulates the transcription of downstream phase I enzyme–related genes by binding the cis element of dioxin-responsive elements (DREs)/xenobiotic-responsive elements. Dimethyl sulfoxide (DMSO) is a well-known organic solvent that is often used to dissolve phase I reagents in toxicology and oxidative stress research experiments. In the current study, we discovered that 0.1% DMSO significantly induced the activation of the AhR promoter via DREs and produced reactive oxygen species, which induced apoptosis in mouse embryonic fibroblasts (MEFs). Moreover, Jun dimerization protein 2 (Jdp2) was found to be required for activation of the AhR promoter in response to DMSO. Coimmunoprecipitation and chromatin immunoprecipitation studies demonstrated that the phase I–dependent transcription factors, AhR and the AhR nuclear translocator, and phase II–dependent transcription factors such as nuclear factor (erythroid-derived 2)–like 2 (Nrf2) integrated into DRE sites together with Jdp2 to form an activation complex to increase AhR promoter activity in response to DMSO in MEFs. Our findings provide evidence for the functional role of Jdp2 in controlling the AhR gene via Nrf2 and provide insights into how Jdp2 contributes to the regulation of ROS production and the cell spreading and apoptosis produced by the ligand DMSO in MEFs.
Collapse
Affiliation(s)
- Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ming-Ho Tsai
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Kohsuke Kato
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ya-Han Yang
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jia-Bin Pan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Michiya Noguchi
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Shotaro Kishikawa
- Gene Engineering Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Koji Nakade
- Gene Engineering Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Hua-Ling Chen
- National Institute of Environmental Health, National Health Research Institutes, Zhunan, Taiwan
| | - Chung-Jung Liu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Gastroenterology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Kung-Kai Kuo
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ying-Chu Lin
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Te-Fu Chan
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Deng-Chyang Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Gastroenterology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ming-Feng Hou
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shau-Ku Huang
- National Institute of Environmental Health, National Health Research Institutes, Zhunan, Taiwan.
| | - Chang-Shen Lin
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Kazunari K Yokoyama
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan. .,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
47
|
Sharma D, Rani P, Onteru SK, Roy P, Tyagi RK, Singh SP, Singh D. Reverse transcription-loop mediated isothermal amplification (RT-LAMP) assay for detection of AhR receptor responsive xenobiotics. Toxicol Mech Methods 2021; 31:359-366. [PMID: 33563076 DOI: 10.1080/15376516.2021.1884923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Dioxins are a group of highly toxic environmental persistent organic pollutants, which are lipophilic in nature. 2, 3, 7, 8- tetrachlorodibenzo-p-dioxin (TCDD) is the most toxic representative of this class. TCDD causes several human health effects like endocrine disruption, carcinogenesis and reproductive toxicity mediated by aryl-hydrocarbon receptor. Current detection methods of dioxins like gas chromatography-mass spectrometry, liquid chromatography-mass spectrometry etc. are costly and time consuming. Therefore, the present study aims to develop a relatively faster and cheaper technique called reverse transcription-loop mediated isothermal amplification (RT-LAMP) assay to detect dioxins. Cultured granulosa cells used as a model system were treated with different doses (5, 10 and 15 pg/mL) of aryl hydrocarbon receptor (AhR)responsive xenobiotic, TCDD, in accordance with maximum residue limit values. Cells were treated for 6, 12 and 24 h, respectively to study the gene expression of TCDD receptor called AhR and AhR responsive genes, CYP1A1 and CYP1B1, in a dose and time dependent manner. All targeted genes expression significantly increased after 6 and 12 h by 1.3-8 folds. For the development of RT-LAMP assay, CYP1A1 gene was used with 6 h TCDD treatment. RT-LAMP assay was standardized with optimal color change at 30 min using 50 ng of cellular RNA. In all the cases, we could distinguish RT-LAMP-positive condition from one sample to another sample due to intensity of color. The method was also validated by spectrometric method. In conclusion, the developed method will be used to screen AhR receptor responsive xenobiotics by observing the color change in RT-LAMP assay like dioxin used in the present study.
Collapse
Affiliation(s)
- Deeksha Sharma
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| | - Payal Rani
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| | - Partha Roy
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| | - Rakesh Kumar Tyagi
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| | - Surya Pratap Singh
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| |
Collapse
|
48
|
Štampar M, Sedighi Frandsen H, Rogowska-Wrzesinska A, Wrzesinski K, Filipič M, Žegura B. Hepatocellular carcinoma (HepG2/C3A) cell-based 3D model for genotoxicity testing of chemicals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:143255. [PMID: 33187710 DOI: 10.1016/j.scitotenv.2020.143255] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 05/25/2023]
Abstract
The major weakness of the current in vitro genotoxicity test systems is the inability of the indicator cells to express metabolic enzymes needed for the activation and detoxification of genotoxic compounds, which consequently can lead to misleading results. Thus, there is a significant emphasis on developing hepatic cell models, including advanced in vitro three-dimensional (3D) cell-based systems, which better imitate in vivo cell behaviour and offer more accurate and predictive data for human exposures. In this study, we developed an approach for genotoxicity testing with 21-day old spheroids formed from human hepatocellular carcinoma cells (HepG2/C3A) using the dynamic clinostat bioreactor system (CelVivo BAM/bioreactor) under controlled conditions. The spheroids were exposed to indirect-acting genotoxic compounds, polycyclic aromatic hydrocarbon [PAH; benzo(a) pyrene B(a)P], and heterocyclic aromatic amine [PhIP]) at non-cytotoxic concentrations for 24 and 96 h. The results showed that both environmental pollutants B(a)P and PhIP significantly increased the level of DNA strand breaks assessed by the comet assay. Further, the mRNA level of selected genes encoding metabolic enzymes from phase I and II, and DNA damage responsive genes was determined (qPCR). The 21-day old spheroids showed higher basal expression of genes encoding metabolic enzymes compared to monolayer culture. In spheroids, B(a)P or PhIP induced compound-specific up-regulation of genes implicated in their metabolism, and deregulation of genes implicated in DNA damage and immediate-early response. The study demonstrated that this model utilizing HepG2/C3A spheroids grown under dynamic clinostat conditions represents a very sensitive and promising in vitro model for genotoxicity and environmental studies and can thus significantly contribute to a more reliable assessment of genotoxic activities of pure chemicals, and complex environmental samples even at very low for environmental exposure relevant concentrations.
Collapse
Affiliation(s)
- Martina Štampar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia; Jozef Stefan International Postgraduate School, Ljubljana, Slovenia.
| | - Helle Sedighi Frandsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| | | | | | - Metka Filipič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia.
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia.
| |
Collapse
|
49
|
Identification and response of cytochrome P450 genes in the brackish water flea Diaphanosoma celebensis after exposure to benzo[α]pyrene and heavy metals. Mol Biol Rep 2021; 48:657-664. [PMID: 33393003 DOI: 10.1007/s11033-020-06113-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022]
Abstract
The cytochrome P450 (CYP) enzyme family is extensive; these enzymes participate in phase I enzyme metabolism and are involved in xenobiotic detoxification in all living organisms. Despite their significance in xenobiotic detoxification, little is known about the species-specific comparison of CYPs and their molecular responses in aquatic invertebrates. We identified 31 CYPs in the brackish water flea Diaphanosoma celebensis via thorough exploration of transcriptomic databases and measured the transcript profiles of 9 CYPs (within full sequences) in response to benzo[α]pyrene (B[α]P) and two heavy metals (cadmium [Cd] and copper [Cu]). Through phylogenetic analysis, the CYPs were separated and clustered into four clans: mitochondrial, CYP2, CYP3, and CYP4. The expression of 9 CYPs were differentially modulated (up- and/or downregulated) in response to B[α]P, Cd, and Cu. In particular, CYP370A15 was significantly upregulated in response to B[α]P, Cd, and Cu, suggesting that the identified CYPs are involved in xenobiotic detoxification and are useful as biomarkers in response to B[α]P, Cd, and Cu. This study aimed to comprehensively annotate cladoceran CYPs; our results will add to the existing knowledge on the potential roles of CYPs in xenobiotic detoxification in cladocerans.
Collapse
|
50
|
Perepechaeva ML, Gubanova NV, Grishanova AY. Effects of prolonged subchronic benzo(α)pyrene exposure on rat liver morphology and CYP1A expression during treatment with menadione, quercetin, or tocopherol. Drug Chem Toxicol 2020; 45:1587-1596. [PMID: 33213213 DOI: 10.1080/01480545.2020.1849270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Arylamines and polycyclic aromatic hydrocarbons (PAHs) are hazardous anthropogenic pollutants in the environment. The toxicity of PAHs, which include benzo(α)pyrene (BP), is mediated by the activation of Р450 cytochromes of the 1А subfamily (CYP1A1 and CYP1A2). Previously, we have demonstrated that tocopherol, quercetin, and menadione inhibit the expression and activity of CYP1A in the liver of male Wistar rats after administration of a high BP dose to the rats for 3 days. Here, we confirmed the effects of tocopherol, quercetin, and menadione on the expression and activity of CYP1A and on rat liver morphology during prolonged administration (90 days) of a low BP dose. We revealed that subchronic oral administration of a low BP dose has no influence on CYP1A expression as compared to controls but can cause pathomorphological changes in rat liver tissue. These changes are abrogated by tocopherol, attenuated by quercetin, and enhanced by menadione.
Collapse
Affiliation(s)
- M L Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - N V Gubanova
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk, Russia
| | - A Y Grishanova
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| |
Collapse
|