1
|
Harper RL, Zhou X, Marciano DP, Cao A, Wang L, Chen G, Adil MS, Zhou W, Maguire P, Deivanayagam S, Yu Q, Viswanathan V, Yang D, Martin M, Isobe S, Otsuki S, Burgess J, Inglis A, Kelley D, Del Rosario PA, Hsi A, Haddad F, Zamanian RT, Boehm M, Snyder MP, Rabinovitch M. Altered maturation and activation state of circulating monocytes is associated with their enhanced recruitment in pulmonary arterial hypertension. Respir Res 2025; 26:148. [PMID: 40234964 PMCID: PMC11998417 DOI: 10.1186/s12931-025-03182-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 03/07/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND It is well-established that patients with pulmonary arterial hypertension (PAH) exhibit increased recruitment of circulating monocytes to their pulmonary arteries. However, it remains unclear whether these monocytes have intrinsic abnormalities that contribute to their recruitment and to PAH pathogenesis. This study aimed to characterize the gene expression profiles of circulating classical, intermediate, and non-classical monocytes and assess their maturation trajectory in patients with idiopathic (I) PAH compared to control subjects. Additionally, it sought to explore the relationship between the observed IPAH abnormalities and deficiencies in bone morphogenetic receptor 2 (BMPR2), the most frequently mutated gene in PAH, and to assess adhesion and transendothelial migration, key processes in monocyte infiltration of pulmonary arteries. METHODS Differentially expressed genes and maturation trajectories of circulating monocytes from patients with IPAH vs. control subjects were compared using single cell RNA sequencing (scRNAseq), followed by FACS analysis. Observations from IPAH and control cells were related to reduced BMPR2 using a THP1 monocyte cell line with BMPR2 reduced by siRNA as well as induced pluripotent stem cell (iPSC) derived monocytes (iMono) from hereditary (H) PAH patients with a BMPR2 mutation and monocytes from mice with Bmpr2 deleted (MON-Bmpr2-/-). RESULTS Classical IPAH monocytes have decreased CD14 mRNA leading to a deviation in their maturation trajectory and early terminal fate, which is not rescued by cytokine treatment. Monocytes that evade early cell death show elevated STAT1, PPDPF and HLA-B, and an interferon (IFN) signature indicative of an altered activation state. A strong link between decreased BMPR2 and CD14 was observed in THP1 cells and in HPAH iMono with a BMPR2 mutation associated with STAT1 and IFN related genes, and in monocytes from MON-Bmpr2-/- mice. Increased adhesion to iPSC-derived endothelial cells (iECs) in HPAH-BMPR2 mutant iMono was associated with elevated ICAM1 expression. Enhanced transendothelial migration of these cells was associated with the reduction in endothelial VE-cadherin (CDH5). CONCLUSIONS IPAH monocytes exhibit an altered activation state associated with reduced BMPR2 and CD14, along with elevated STAT1-IFN expression. These changes are linked to intrinsic functional abnormalities that contribute to the monocytes' increased propensity to invade the pulmonary circulation.
Collapse
Affiliation(s)
- Rebecca L Harper
- Department of Pediatrics, Stanford University School of Medicine, CCSR-1215A, 269 Campus Drive, Stanford, CA, 94305-5162, USA
- Basic Science and Engineering (BASE) Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Xin Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - David P Marciano
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Aiqin Cao
- Department of Pediatrics, Stanford University School of Medicine, CCSR-1215A, 269 Campus Drive, Stanford, CA, 94305-5162, USA
- Basic Science and Engineering (BASE) Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lingli Wang
- Department of Pediatrics, Stanford University School of Medicine, CCSR-1215A, 269 Campus Drive, Stanford, CA, 94305-5162, USA
- Basic Science and Engineering (BASE) Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Guibin Chen
- National Heart, Lung & Blood Institute, National Institutes of Health, Bethesda, MD, 20800, USA
| | - Mir S Adil
- Department of Pediatrics, Stanford University School of Medicine, CCSR-1215A, 269 Campus Drive, Stanford, CA, 94305-5162, USA
- Basic Science and Engineering (BASE) Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Wenyu Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Peter Maguire
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Shanthi Deivanayagam
- Department of Pediatrics, Stanford University School of Medicine, CCSR-1215A, 269 Campus Drive, Stanford, CA, 94305-5162, USA
| | - Quan Yu
- National Heart, Lung & Blood Institute, National Institutes of Health, Bethesda, MD, 20800, USA
| | - Vignesh Viswanathan
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Dan Yang
- National Heart, Lung & Blood Institute, National Institutes of Health, Bethesda, MD, 20800, USA
| | - Marcy Martin
- Department of Pediatrics, Stanford University School of Medicine, CCSR-1215A, 269 Campus Drive, Stanford, CA, 94305-5162, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sarasa Isobe
- Department of Pediatrics, Stanford University School of Medicine, CCSR-1215A, 269 Campus Drive, Stanford, CA, 94305-5162, USA
- Basic Science and Engineering (BASE) Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Shoichiro Otsuki
- Department of Pediatrics, Stanford University School of Medicine, CCSR-1215A, 269 Campus Drive, Stanford, CA, 94305-5162, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jordan Burgess
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Audrey Inglis
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Devon Kelley
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Patricia A Del Rosario
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Andrew Hsi
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Francois Haddad
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Roham T Zamanian
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Manfred Boehm
- National Heart, Lung & Blood Institute, National Institutes of Health, Bethesda, MD, 20800, USA
| | - Michael P Snyder
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Marlene Rabinovitch
- Department of Pediatrics, Stanford University School of Medicine, CCSR-1215A, 269 Campus Drive, Stanford, CA, 94305-5162, USA.
- Basic Science and Engineering (BASE) Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford, CA, 94305, USA.
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
2
|
Nguyen DV, Jin Y, Nguyen TLL, Kim L, Heo KS. 3'-Sialyllactose protects against LPS-induced endothelial dysfunction by inhibiting superoxide-mediated ERK1/2/STAT1 activation and HMGB1/RAGE axis. Life Sci 2024; 338:122410. [PMID: 38191050 DOI: 10.1016/j.lfs.2023.122410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/22/2023] [Accepted: 12/30/2023] [Indexed: 01/10/2024]
Abstract
AIM Endothelial hyperpermeability is an early stage of endothelial dysfunction associated with the progression and development of atherosclerosis. 3'-Sialyllactose (3'-SL) is the most abundant compound in human milk oligosaccharides, and it has the potential to regulate endothelial dysfunction. This study investigated the beneficial effects of 3'-SL on lipopolysaccharide (LPS)-induced endothelial dysfunction in vitro and in vivo. MAIN METHODS We established LPS-induced endothelial dysfunction models in both cultured bovine aortic endothelial cells (BAECs) and mouse models to determine the effects of 3'-SL. Western blotting, qRT-PCR analysis, immunofluorescence staining, and en face staining were employed to clarify underlying mechanisms. Superoxide production was measured by 2',7'-dichlorofluorescin diacetate, and dihydroethidium staining. KEY FINDINGS LPS significantly decreased cell viability, whereas 3'-SL treatment mitigated these effects via inhibiting ERK1/2 activation. Mechanistically, 3'-SL ameliorated LPS-induced ROS accumulation leading to ERK1/2 activation-mediated STAT1 phosphorylation and subsequent inhibition of downstream transcriptional target genes, including VCAM-1, TNF-α, IL-1β, and MCP-1. Interestingly, LPS-induced ERK1/2/STAT1 activation leads to the HMGB1 release from the nucleus into the extracellular space, where it binds to RAGE, while 3'-SL suppressed EC hyperpermeability by suppressing the HMGB1/RAGE axis. This interaction also led to VE-cadherin endothelial junction disassembly and endothelial cell monolayer disruption through ERK1/2/STAT1 modulation. In mouse endothelium, en face staining revealed that 3'-SL abolished LPS-stimulated ROS production and VCAM-1 overexpression. SIGNIFICANCE Our findings suggest that 3'-SL inhibits LPS-induced endothelial hyperpermeability by suppressing superoxide-mediated ERK1/2/STAT1 activation and HMGB1/RAGE axis. Therefore, 3'-SL may be a potential therapeutic agent for preventing the progression of atherosclerosis.
Collapse
Affiliation(s)
- Dung Van Nguyen
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea
| | - Yujin Jin
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea
| | - Thuy Le Lam Nguyen
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea
| | - Lila Kim
- GeneChem Inc. A-201, 187 Techno 2-ro, Daejeon 34025, South Korea
| | - Kyung-Sun Heo
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
3
|
Jiang Y, Qian HY. Transcription factors: key regulatory targets of vascular smooth muscle cell in atherosclerosis. Mol Med 2023; 29:2. [PMID: 36604627 PMCID: PMC9817296 DOI: 10.1186/s10020-022-00586-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis (AS), leading to gradual occlusion of the arterial lumen, refers to the accumulation of lipids and inflammatory debris in the arterial wall. Despite therapeutic advances over past decades including intervention or surgery, atherosclerosis is still the most common cause of cardiovascular diseases and the main mechanism of death and disability worldwide. Vascular smooth muscle cells (VSMCs) play an imperative role in the occurrence of atherosclerosis and throughout the whole stages. In the past, there was a lack of comprehensive understanding of VSMCs, but the development of identification technology, including in vivo single-cell sequencing technology and lineage tracing with the CreERT2-loxP system, suggests that VSMCs have remarkable plasticity and reevaluates well-established concepts about the contribution of VSMCs. Transcription factors, a kind of protein molecule that specifically recognizes and binds DNA upstream promoter regions or distal enhancer DNA elements, play a key role in the transcription initiation of the coding genes and are necessary for RNA polymerase to bind gene promoters. In this review, we highlight that, except for environmental factors, VSMC genes are transcriptionally regulated through complex interactions of multiple conserved cis-regulatory elements and transcription factors. In addition, through a series of transcription-related regulatory processes, VSMCs could undergo phenotypic transformation, proliferation, migration, calcification and apoptosis. Finally, enhancing or inhibiting transcription factors can regulate the development of atherosclerotic lesions, and the downstream molecular mechanism of transcriptional regulation has also been widely studied.
Collapse
Affiliation(s)
- Yu Jiang
- grid.506261.60000 0001 0706 7839Center for Coronary Heart Disease, Department of Cardiology, Fu Wai Hospital, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037 China
| | - Hai-Yan Qian
- grid.506261.60000 0001 0706 7839Center for Coronary Heart Disease, Department of Cardiology, Fu Wai Hospital, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037 China
| |
Collapse
|
4
|
Sun Y, Xu M, Wang C, Guan S, Wang L, Cong B, Zhu W, Xu Y. Low-molecular-weight fucoidan bidirectionally regulates lipid uptake and cholesterol efflux through the p38 MAPK phosphorylation. Int J Biol Macromol 2022; 220:371-384. [PMID: 35970372 DOI: 10.1016/j.ijbiomac.2022.08.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/26/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022]
Abstract
Atherosclerosis (AS) is the pathological basis of many cardiovascular and cerebrovascular diseases, in which macrophage-derived foam cells are the critical step and a typical pathological feature of early atherosclerosis. We previously confirmed that low-molecular-weight fucoidan (LMWF) had a good anti-AS effect, but the mechanism is still unclear. Here with aim to investigate the inhibitory effect of LMWF on foam cells and its molecular mechanism. Oil red O staining showed that LMWF effectively alleviated lipid accumulation and the formation of foam cells. Flow cytometry detection showed that LMWF promoted foam cells apoptosis. In addition, immunofluorescence showed that LMWF inhibited macrophage scavenger receptor A1 (SR-A1)-mediated lipid uptake and promoted ATP-binding cassette transporter A1 (ABCA1)-mediated cholesterol outflow. Western blot showed that LMWF downregulated SR-A1 protein expression and upregulated ABCA1 protein expression by inhibiting p38 mitogen activated protein kinase (p38MAPK) phosphorylation. Moreover, the mRNA transcriptions of Stat1, Elk-1, and Myc were downregulated when treated with LMWF. It concluded that, LMWF achieved bidirectional regulation of SR-A1 and ABCA1, then prevented the formation of foam cells, finally ameliorated the development of AS.
Collapse
Affiliation(s)
- Yu Sun
- Medical College, Qingdao University, Qingdao 266071, China
| | - Ming Xu
- Medical College, Qingdao University, Qingdao 266071, China
| | - Changxin Wang
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Shulong Guan
- Department of Surgery, Qingdao Shinan District People's Hospital, Qingdao 266520, China
| | - Lina Wang
- Department of Blood Transfusion, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shangdong University, Qingdao 266035, China
| | - Beibei Cong
- Central Laboratory, Qingdao Stomatological Hospital, Qingdao 266001, China.
| | - Wenlong Zhu
- Business School, Qingdao University of Technology, Qingdao 266520, China.
| | - Yingjie Xu
- Central Laboratory, Qingdao Stomatological Hospital, Qingdao 266001, China.
| |
Collapse
|
5
|
Patel J, Vazquez T, Chin F, Keyes E, Yan D, Diaz D, Grinnell M, Sharma M, Li Y, Feng R, Sprow G, Dan J, Werth VP. Multidimensional immune profiling of cutaneous lupus erythematosus in vivo stratified by patient responses to antimalarials. Arthritis Rheumatol 2022; 74:1687-1698. [PMID: 35583812 DOI: 10.1002/art.42235] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/14/2022] [Accepted: 05/12/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The pathogenesis of cutaneous lupus erythematous (CLE) is multifactorial and CLE is difficult to treat due to heterogeneity of inflammatory processes between patients. Antimalarials such as hydroxychloroquine (HCQ) and quinacrine (QC) have long been first-line systemic therapy; however, many patients do not respond and require systemic immunosuppressants with undesirable side effects. Given the complexity and unpredictable responses in CLE, we sought to identify the immunologic landscape of CLE patients stratified by subsequent treatment outcomes to identify potential biomarkers of inducible response. METHOD We performed imaging mass cytometry with 48 treatment-naïve skin biopsies of HCQ responders, QC responders, and non-responders (NR) to analyze multiple immune cell types and inflammatory markers in their native environment in CLE skin. Patients were stratified according to their subsequent response to antimalarials to identify baseline immunophenotypes which may predict response to therapy. RESULTS HCQ responders demonstrated increased CD4 T cells compared to QC. NR had decreased Tregs compared to QC and increased central memory T cells compared to HCQ. QC responders expressed increased phosphorylated (p) STING and IFNκ compared to HCQ. pSTING and IFNκ localized to conventional dendritic cells and positively correlated on a tissue and cellular level. Neighborhood analysis revealed decreased regulatory cell interactions in NR patients. Hierarchical clustering revealed NR groups separated based on pSTAT2/3/4/5, pIRF3, Granzyme B, pJAK2, IL4, IL17, and IFNγ. CONCLUSION These findings demonstrate differential immune compositions between CLE patients, guiding the future for precision-based medicine and treatment response.
Collapse
Affiliation(s)
- Jay Patel
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Vazquez
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104
| | - Felix Chin
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily Keyes
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daisy Yan
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - DeAnna Diaz
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Madison Grinnell
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Meena Sharma
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yubin Li
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rui Feng
- Department of Biostatistics and Epidemiology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Grant Sprow
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Josh Dan
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Victoria P Werth
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104.,Department of Dermatology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Chen R, Sun Y, Lv J, Dou X, Dai M, Sun S, Lin Y. Effects of Dexmedetomidine on Immune Cells: A Narrative Review. Front Pharmacol 2022; 13:829951. [PMID: 35586059 PMCID: PMC9108424 DOI: 10.3389/fphar.2022.829951] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/11/2022] [Indexed: 12/24/2022] Open
Abstract
As we all know, dexmedetomidine (DEX), as a highly selective α2 adrenergic receptor agonist, exerts sedative, anti-anxiety and hypnotic effects by inhibiting the discharge of norepinephrine neurons in locus coeruleus and GABA-related hypnotic pathways. However, the role of DEX in anti-inflammatory and immune regulation has gradually attracted the attention of researchers in recent years. The α2 adrenergic receptor is one of the members of the adrenergic receptor family, which is widely present in a variety of immune cells and mediates the biological behavior of the inflammatory immune system. At present, there have been more and more studies on the effects of DEX on immune cells and inflammatory responses, but few studies have systematically explored the anti-inflammatory and immunomodulatory effects of DEX. Here, we comprehensively review the published human and animal studies related to DEX, summarize the effects of DEX on immune cells and its role in related diseases, and propose potential research direction.
Collapse
Affiliation(s)
- Rui Chen
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Sun
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Lv
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoke Dou
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Maosha Dai
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shujun Sun
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Shujun Sun, ; Yun Lin,
| | - Yun Lin
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Shujun Sun, ; Yun Lin,
| |
Collapse
|
7
|
Bibli SI, Fleming I. Oxidative Post-Translational Modifications: A Focus on Cysteine S-Sulfhydration and the Regulation of Endothelial Fitness. Antioxid Redox Signal 2021; 35:1494-1514. [PMID: 34346251 DOI: 10.1089/ars.2021.0162] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Changes in the oxidative balance can affect cellular physiology and adaptation through redox signaling. The endothelial cells that line blood vessels are particularly sensitive to reactive oxygen species, which can alter cell function by a number of mechanisms, including the oxidative post-translational modification (oxPTM) of proteins on critical cysteine thiols. Such modifications can act as redox-switches to alter the function of targeted proteins. Recent Advances: Mapping the cysteine oxPTM proteome and characterizing the effects of individual oxPTMs to gain insight into consequences for cellular responses has proven challenging. A recent addition to the list of reversible oxPTMs that contributes to cellular redox homeostasis is persulfidation or S-sulfhydration. Critical Issues: It has been estimated that up to 25% of proteins are S-sulfhydrated, making this modification almost as abundant as phosphorylation. In the endothelium, persulfides are generated by the trans-sulfuration pathway that catabolizes cysteine and cystathionine to generate hydrogen sulfide (H2S) and H2S-related sulfane sulfur compounds (H2Sn). This pathway is of particular importance for the vascular system, as the enzyme cystathionine γ lyase (CSE) in endothelial cells accounts for a significant portion of total vascular H2S/H2Sn production. Future Directions: Impaired CSE activity in endothelial dysfunction has been linked with marked changes in the endothelial cell S-sulfhydrome and can contribute to the development of atherosclerosis and hypertension. It will be interesting to determine how changes in the S-sulfhydration of specific networks of proteins contribute to endothelial cell physiology and pathophysiology. Antioxid. Redox Signal. 35, 1494-1514.
Collapse
Affiliation(s)
- Sofia-Iris Bibli
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt am Main, Germany
| |
Collapse
|
8
|
Luo JW, Hu Y, Liu J, Yang H, Huang P. Interleukin-22: a potential therapeutic target in atherosclerosis. Mol Med 2021; 27:88. [PMID: 34388961 PMCID: PMC8362238 DOI: 10.1186/s10020-021-00353-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/07/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Atherosclerosis is recognized as a chronic immuno-inflammatory disease that is characterized by the accumulation of immune cells and lipids in the vascular wall. In this review, we focus on the latest advance regarding the regulation and signaling pathways of IL-22 and highlight its impacts on atherosclerosis. MAIN BODY IL-22, an important member of the IL-10 family of cytokines, is released by cells of the adaptive and innate immune system and plays a key role in the development of inflammatory diseases. The binding of IL-22 to its receptor complex can trigger a diverse array of downstream signaling pathways, in particular the JAK/STAT, to induce the expression of chemokines and proinflammatory cytokines. Recently, numerous studies suggest that IL-22 is involved in the pathogenesis of atherosclerosis by regulation of VSMC proliferation and migration, angiogenesis, inflammatory response, hypertension, and cholesterol metabolism. CONCLUSION IL-22 promotes the development of atherosclerosis by multiple mechanisms, which may be a promising therapeutic target in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Jin-Wen Luo
- Department of Cardio-Thoracic Surgery, Hunan Children's Hospital, Changsha, 410007, People's Republic of China
| | - Yuan Hu
- Department of Ultrasound Medicine, Hunan Children's Hospital, Changsha, 410007, People's Republic of China
| | - Jian Liu
- Department of Cardio-Thoracic Surgery, Hunan Children's Hospital, Changsha, 410007, People's Republic of China
| | - Huan Yang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, Changsha, Hunan, 410001, People's Republic of China.
| | - Peng Huang
- Department of Cardio-Thoracic Surgery, Hunan Children's Hospital, Changsha, 410007, People's Republic of China.
| |
Collapse
|
9
|
Ho CH, Fan CK, Wu CC, Yu HJ, Liu HT, Chen KC, Liu SP, Cheng PC. Enhanced uropathogenic Escherichia coli-induced infection in uroepithelial cells by sugar through TLR-4 and JAK/STAT1 signaling pathways. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 54:193-205. [DOI: 10.1016/j.jmii.2019.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 04/10/2019] [Accepted: 05/15/2019] [Indexed: 12/13/2022]
|
10
|
Zhu B, Zhai Y, Ji M, Wei Y, Wu J, Xue W, Tao WW, Wu H. Alisma orientalis Beverage Treats Atherosclerosis by Regulating Gut Microbiota in ApoE -/- Mice. Front Pharmacol 2020; 11:570555. [PMID: 33101028 PMCID: PMC7545905 DOI: 10.3389/fphar.2020.570555] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Background Alisma orientalis beverage (AOB) is a Chinese traditional medicine formulated with a diversity of medicinal plants and used for treating metabolic syndrome and atherosclerosis (AS) since time ago. Given the current limited biological research on AOB, the mechanism by which AOB treats AS is unknown. This study investigats the role of AOB-induced gut microbiota regulation in the expansion of AS. Methods We established an AS model in male apolipoprotein E-deficient (ApoE−/−) mice that are fed with a high-fat diet (HFD), treated with numerous interventions, and evaluated the inflammatory cytokines and serum biochemical indices. The root of the aorta was stained with oil red O, and the proportion of the lesion area was quantified. Trimethylamine N-oxide (TMAO) and trimethylamine (TMA) levels in serum were evaluated through liquid chromatography with mass spectrometry. Flavin−containing monooxygenase 3 (FMO3) liver protein expression was assessed by Western blotting. 16S rDNA sequencing technique was adopted to establish the changes in the microbiota structure. Results After 8 weeks of HFD feeding, an inflammatory cytokine, and AS development expression were significantly decreased in mice treated with AOB; the same parameters in the mice treated with the antibiotics cocktail did not change. In the gut microbiota study, mice treated with AOB had a markedly different gut microbiota than the HFD-fed mice. Additionally, AOB also decreased serum TMAO and hepatic FMO3 expression. Conclusion The antiatherosclerotic effects of AOB were found associated with changes in the content of gut microbiota and a reduction in TMAO, a gut microbiota metabolite, suggesting that AOB has potential therapeutic value in the treatment of AS.
Collapse
Affiliation(s)
- Boran Zhu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Zhai
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengjiao Ji
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanan Wei
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiafei Wu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenda Xue
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Wei Tao
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Haoxin Wu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
11
|
Elyasi A, Voloshyna I, Ahmed S, Kasselman LJ, Behbodikhah J, De Leon J, Reiss AB. The role of interferon-γ in cardiovascular disease: an update. Inflamm Res 2020; 69:975-988. [PMID: 32699989 DOI: 10.1007/s00011-020-01382-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Cardiovascular disease (CVD) is the leading cause of death, globally, and its prevalence is only expected to rise due to the increasing incidence of co-morbidities such as obesity and diabetes. Medical treatment of CVD is directed primarily at slowing or reversing the underlying atherosclerotic process by managing circulating lipids with an emphasis on control of low-density lipoprotein (LDL) cholesterol. However, over the past several decades, there has been increasing recognition that chronic inflammation and immune system activation are important contributors to atherosclerosis. This shift in focus has led to the elucidation of the complex interplay between cholesterol and cellular secretion of cytokines involved in CVD pathogenesis. Of the vast array of cytokine promoting atherosclerosis, interferon (IFN)-γ is highly implicated and, therefore, of great interest. METHODS Literature review was performed to further understand the effect of IFN-γ on the development of atherosclerotic CVD. RESULTS IFN-γ, the sole member of the type II IFN family, is produced by T cells and macrophages, and has been found to induce production of other cytokines and to have multiple effects on all stages of atherogenesis. IFN-γ activates a variety of signaling pathways, most commonly the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, to induce oxidative stress, promote foam cell accumulation, stimulate smooth muscle cell proliferation and migration into the arterial intima, enhance platelet-derived growth factor expression, and destabilize plaque. These are just a few of the contributions of IFN-γ to the initiation and progression of atherosclerotic CVD. CONCLUSION Given the pivotal role of IFN-γ in the advancement of CVD, activation of its signaling pathways is being explored as a driver of atherosclerosis. Manipulation of this key cytokine may lead to novel therapeutic avenues for CVD prevention and treatment. A number of therapies are being explored with IFN-γ as the potential target.
Collapse
Affiliation(s)
- Ailin Elyasi
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, NYU Winthrop Hospital, 101 Mineola Boulevard, Suite 4-004, Mineola, NY, 11501, USA
| | - Iryna Voloshyna
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, NYU Winthrop Hospital, 101 Mineola Boulevard, Suite 4-004, Mineola, NY, 11501, USA
| | - Saba Ahmed
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, NYU Winthrop Hospital, 101 Mineola Boulevard, Suite 4-004, Mineola, NY, 11501, USA
| | - Lora J Kasselman
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, NYU Winthrop Hospital, 101 Mineola Boulevard, Suite 4-004, Mineola, NY, 11501, USA
| | - Jennifer Behbodikhah
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, NYU Winthrop Hospital, 101 Mineola Boulevard, Suite 4-004, Mineola, NY, 11501, USA
| | - Joshua De Leon
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, NYU Winthrop Hospital, 101 Mineola Boulevard, Suite 4-004, Mineola, NY, 11501, USA
| | - Allison B Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, NYU Winthrop Hospital, 101 Mineola Boulevard, Suite 4-004, Mineola, NY, 11501, USA.
| |
Collapse
|
12
|
Dexmedetomidine Attenuates LPS-Induced Monocyte-Endothelial Adherence via Inhibiting Cx43/PKC- α/NOX2/ROS Signaling Pathway in Monocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2930463. [PMID: 32774667 PMCID: PMC7395996 DOI: 10.1155/2020/2930463] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
Dexmedetomidine is widely used for sedating patients in operation rooms or intensive care units. Its protective functions against oxidative stress, inflammation reaction, and apoptosis have been widely reported. In present study, we explored the effects of dexmedetomidine on monocyte-endothelial adherence. We built lipopolysaccharide- (LPS-) induced monocyte-endothelial adherence models with U937 monocytes and human umbilical vein endothelial cells (HUVECs) and observed the effects of dexmedetomidine on U937-HUVEC adhesion. Specific siRNA was designed to knock-down Connexin43 (Cx43) expression in U937 monocytes. Gö6976, GSK2795039, and NAC were used to inhibit PKC-α, NOX2, and ROS, respectively. Then, we detected whether dexmedetomidine could downregulate Cx43 expression and its downstream PKC-α/NOX2/ROS signaling pathway activation and ultimately result in the decrease of U937-HUVEC adhesion. The results showed that dexmedetomidine, at its clinically relevant concentrations (0.1 nM and 1 nM), could inhibit adhesion of molecule expression (VLA-4 and LFA-1) and U937-HUVEC adhesion. Simultaneously, it also attenuated Cx43 expression in U937 monocytes. With the downregulation of Cx43 expression, the activity of PKC-α and its related NOX2/ROS signaling pathway were reduced. Inhibiting PKC-α/NOX2/ROS signaling pathway with Gö6976, GSK2795039, and NAC, respectively, VLA-4, LFA-1 expression, and U937-HUVEC adhesion were all decreased. In summary, we concluded that dexmedetomidine, at its clinically relevant concentrations (0.1 nM and 1 nM), decreased Cx43 expression in U937 monocytes and PKC-α associated with carboxyl-terminal domain of Cx43 protein. With the downregulation of PKC-α, the NOX2/ROS signaling pathway was inhibited, resulting in the decrease of VLA-4 and LFA-1 expression. Ultimately, U937-HUVEC adhesion was reduced.
Collapse
|
13
|
Lion A, Esnault E, Kut E, Guillory V, Trapp-Fragnet L, Soubies SM, Chanteloup N, Niepceron A, Guabiraba R, Marc D, Eterradossi N, Trapp S, Quéré P. Chicken endothelial cells are highly responsive to viral innate immune stimuli and are susceptible to infections with various avian pathogens. Avian Pathol 2019; 48:121-134. [PMID: 30556415 DOI: 10.1080/03079457.2018.1556386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It is well established that the endothelium plays a prominent role in the pathogenesis of various infectious diseases in mammals. However, little is known about the role of endothelial cells (EC) as targets for avian pathogens and their contribution to the pathogenesis of infectious diseases in galliform birds. First, we explored the innate immune response of primary chicken aortic endothelial cells (pchAEC), obtained from 18-day-old embryos, to stimulation with pathogen-associated molecular patterns or recombinant chicken interferons (type I, II and III IFNs). In spite of the abundant expression of a number of innate immune receptors, marked cytokine responses to stimulation with pathogen-associated molecular patterns were only seen in pchAEC treated with the TLR3 agonist polyI:C (pI:C) and the MDA5 agonist liposome-complexed polyI:C (L-pI:C), as was assessed by quantitative PCR and luciferase-based IFN-I/NFκB reporter assays. Treatments of pchAEC with IFN-α, IFN-γ and IFN-λ resulted in STAT1-phosphorylation/activation, as was revealed by immunoblotting. Next, we demonstrated that pchAEC are susceptible to infection with a variety of poultry pathogens, including Marek's disease virus (MDV), infectious bursal disease virus (IBDV), avian pathogenic Escherichia coli (APEC) and Eimeria tenella. Our data highlight that chicken EC are potential targets for viral, bacterial and protozoan pathogens in gallinaceous poultry and may partake in the inflammatory and antimicrobial response. The pchAEC infection model used herein will allow further studies interrogating avian pathogen interactions with vascular EC. RESEARCH HIGHLIGHTS Use of a well-defined primary chicken aortic endothelial cell (pchAEC) culture model for studying avian host-pathogen interactions. pchAEC are responsive to innate immune stimulation with viral pathogen-associated molecular patterns and chicken type I, II and III interferons. pchAEC are susceptible to infections with economically important poultry pathogens, including MDV, IBDV, APEC and Eimeria tenella.
Collapse
Affiliation(s)
- Adrien Lion
- a INRA, Université François Rabelais, UMR1282 Infectiologie et Santé Publique , Nouzilly , France
| | - Evelyne Esnault
- a INRA, Université François Rabelais, UMR1282 Infectiologie et Santé Publique , Nouzilly , France
| | - Emmanuel Kut
- a INRA, Université François Rabelais, UMR1282 Infectiologie et Santé Publique , Nouzilly , France
| | - Vanaïque Guillory
- a INRA, Université François Rabelais, UMR1282 Infectiologie et Santé Publique , Nouzilly , France
| | - Laetitia Trapp-Fragnet
- a INRA, Université François Rabelais, UMR1282 Infectiologie et Santé Publique , Nouzilly , France
| | - Sébastien M Soubies
- b ANSES, Unité Virologie, Immunologie, Parasitologie Aviaire et Cunicole , Ploufragan , France
| | - Nathalie Chanteloup
- a INRA, Université François Rabelais, UMR1282 Infectiologie et Santé Publique , Nouzilly , France
| | - Alisson Niepceron
- a INRA, Université François Rabelais, UMR1282 Infectiologie et Santé Publique , Nouzilly , France
| | - Rodrigo Guabiraba
- a INRA, Université François Rabelais, UMR1282 Infectiologie et Santé Publique , Nouzilly , France
| | - Daniel Marc
- a INRA, Université François Rabelais, UMR1282 Infectiologie et Santé Publique , Nouzilly , France
| | - Nicolas Eterradossi
- b ANSES, Unité Virologie, Immunologie, Parasitologie Aviaire et Cunicole , Ploufragan , France
| | - Sascha Trapp
- a INRA, Université François Rabelais, UMR1282 Infectiologie et Santé Publique , Nouzilly , France
| | - Pascale Quéré
- a INRA, Université François Rabelais, UMR1282 Infectiologie et Santé Publique , Nouzilly , France
| |
Collapse
|
14
|
Masi S, Orlandi M, Parkar M, Bhowruth D, Kingston I, O'Rourke C, Virdis A, Hingorani A, Hurel SJ, Donos N, D'Aiuto F, Deanfield J. Mitochondrial oxidative stress, endothelial function and metabolic control in patients with type II diabetes and periodontitis: A randomised controlled clinical trial. Int J Cardiol 2018; 271:263-268. [PMID: 30077530 PMCID: PMC6152589 DOI: 10.1016/j.ijcard.2018.05.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/12/2018] [Accepted: 05/08/2018] [Indexed: 01/28/2023]
Abstract
BACKGROUND Periodontitis (PD) and type 2 diabetes (T2D) are characterized by increased mitochondrial oxidative stress production (mtROS), which has been associated with a greater risk of cardiovascular diseases (CVD). Intensive PD treatment (IPT) can significantly improve endothelial function and metabolic control, although the mechanisms remain unclear. We explored whether, in patients with PD and T2D, changes of mtROS are associated with improvement of endothelial function and metabolic control after IPT. METHODS 51 patients with T2D and PD were enrolled in a single-blind controlled trial and randomised to either intensive (n = 27) or standard (CPT, n = 24) PD treatment. Levels of mtROS in peripheral blood mononuclear cells (PBMC) were measured using a FACS-based assay at baseline and 24 h, 1 week, 2 and 6 months after PD treatment. Inflammatory cytokines, CVD risk factors, metabolic control and endothelial function were assessed at baseline and 6 months after intervention. RESULTS After 6 months from PD treatment, the IPT group had lower mtROS (in both the whole PBMC and lymphocytes), circulating levels of HbA1c, glucose, INF-γ, TNF-α (p < 0.05 for all), and improved endothelial function (p < 0.05) compared to the CPT group. There was an association between higher mtROS and lower endothelial function at baseline (r = -0.39; p = 0.01) and, in the IPT group, changes of mtROS were associated with changes of endothelial function (r = 0.41; p < 0.05). CONCLUSIONS Reduced mtROS is associated with improved endothelial function and accompanied by better metabolic control in patients with T2D and PD. mtROS could represent a novel therapeutic target to prevent CVD in T2D.
Collapse
Affiliation(s)
- Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Italy; National Centre for Cardiovascular Prevention and Outcomes, Institute of Cardiovascular Sciences, UCL, London, UK.
| | - Marco Orlandi
- Periodontology Unit, UCL Eastman Dental Institute, UCL, London, UK
| | - Mohamed Parkar
- Cruciform Teaching Facilities Unit, Faculty of Life Sciences, UCL, London, UK
| | - Devina Bhowruth
- National Centre for Cardiovascular Prevention and Outcomes, Institute of Cardiovascular Sciences, UCL, London, UK
| | - Isabel Kingston
- Biomaterials and Tissue Engineering, University College London, UK
| | | | - Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Aroon Hingorani
- Institute of Cardiovascular Science, University College London, UK
| | - Steven J Hurel
- Department of Endocrinology, University College London Hospital, London, UK
| | - Nikolaos Donos
- Centre for Oral Clinical Research, Institute of Dentistry, Barts & The London School of Medicine & Dentistry, Queen Mary University of London (QMUL), UK
| | | | - John Deanfield
- National Centre for Cardiovascular Prevention and Outcomes, Institute of Cardiovascular Sciences, UCL, London, UK
| |
Collapse
|
15
|
Kemmner S, Bachmann Q, Steiger S, Lorenz G, Honarpisheh M, Foresto-Neto O, Wang S, Carbajo-Lozoya J, Alt V, Schulte C, Chmielewski S, Bluyssen HAR, Heemann U, Baumann M, Lech M, Schmaderer C. STAT1 regulates macrophage number and phenotype and prevents renal fibrosis after ischemia-reperfusion injury. Am J Physiol Renal Physiol 2018; 316:F277-F291. [PMID: 30403164 DOI: 10.1152/ajprenal.00004.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Renal ischemia-reperfusion injury (IRI) leads to acute kidney injury or delayed allograft function, which predisposes to fibrosis in the native kidney or kidney transplant. Here we investigated the role of the signal transducer and activator of transcription 1 (STAT1) in inflammatory responses following renal IRI. Our study showed that a subsequent stimulation of Janus-activated kinase 2/STAT1 and Toll-like receptor 4 pathways led to greater STAT1 activation followed by increased cytokine transcription compared with single-pathway stimulation in murine renal tubular cells. Moreover, we observed increased activation of STAT1 under hypoxic conditions. In vivo, STAT1-/- mice displayed less acute tubular necrosis and decreased macrophage infiltration 24 h after renal ischemia. However, investigation of the healing phase (30 days after IRI) revealed significantly more fibrosis in STAT1-/- than in wild-type kidneys. In addition, we demonstrated increased macrophage infiltration in STAT1-/- kidneys. Flow cytometry analysis revealed that STAT1 deficiency drives an alternatively activated macrophage phenotype, which is associated with downregulated cluster of differentiation 80 expression, decreased intracellular reactive oxygen species production, and enhanced ability for phagocytosis. Furthermore, we detected immunohistochemically enhanced STAT1 expression in human renal allograft biopsies with no interstitial fibrosis/tubular atrophy (IF/TA) compared with specimens with severe IF/TA without specific etiology. Thus, STAT1 activation drives macrophages toward an alternatively activated phenotype and enhances fibrogenesis indicating a potential STAT1-driven protective mechanism in tissue repair after ischemic injury.
Collapse
Affiliation(s)
- Stephan Kemmner
- Department of Nephrology, Klinikum Rechts der Isar, Technical University of Munich , Munich , Germany
| | - Quirin Bachmann
- Department of Nephrology, Klinikum Rechts der Isar, Technical University of Munich , Munich , Germany
| | - Stefanie Steiger
- Medizinische Klinik und Poliklinik IV, Department of Nephrology, Klinikum der Ludwig-Maximilians-Universität München, Munich , Germany
| | - Georg Lorenz
- Department of Nephrology, Klinikum Rechts der Isar, Technical University of Munich , Munich , Germany
| | - Mohsen Honarpisheh
- Medizinische Klinik und Poliklinik IV, Department of Nephrology, Klinikum der Ludwig-Maximilians-Universität München, Munich , Germany
| | - Orestes Foresto-Neto
- Medizinische Klinik und Poliklinik IV, Department of Nephrology, Klinikum der Ludwig-Maximilians-Universität München, Munich , Germany
| | - Shijun Wang
- Pediatric Research Center, Hannover Medical School , Hannover , Germany
| | - Javier Carbajo-Lozoya
- Department of Nephrology, Klinikum Rechts der Isar, Technical University of Munich , Munich , Germany
| | - Verena Alt
- Department of Nephrology, Klinikum Rechts der Isar, Technical University of Munich , Munich , Germany
| | - Christian Schulte
- Department of Nephrology, Klinikum Rechts der Isar, Technical University of Munich , Munich , Germany
| | - Stefan Chmielewski
- Department of Nephrology, Klinikum Rechts der Isar, Technical University of Munich , Munich , Germany.,Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań , Poznań , Poland
| | - Hans A R Bluyssen
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań , Poznań , Poland
| | - Uwe Heemann
- Department of Nephrology, Klinikum Rechts der Isar, Technical University of Munich , Munich , Germany
| | - Marcus Baumann
- Department of Nephrology, Klinikum Rechts der Isar, Technical University of Munich , Munich , Germany
| | - Maciej Lech
- Medizinische Klinik und Poliklinik IV, Department of Nephrology, Klinikum der Ludwig-Maximilians-Universität München, Munich , Germany
| | - Christoph Schmaderer
- Department of Nephrology, Klinikum Rechts der Isar, Technical University of Munich , Munich , Germany
| |
Collapse
|
16
|
Plens-Galaska M, Szelag M, Collado A, Marques P, Vallejo S, Ramos-González M, Wesoly J, Sanz MJ, Peiró C, Bluyssen HAR. Genome-Wide Inhibition of Pro-atherogenic Gene Expression by Multi-STAT Targeting Compounds as a Novel Treatment Strategy of CVDs. Front Immunol 2018; 9:2141. [PMID: 30283459 PMCID: PMC6156247 DOI: 10.3389/fimmu.2018.02141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/30/2018] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases (CVDs), including atherosclerosis, are globally the leading cause of death. Key factors contributing to onset and progression of atherosclerosis include the pro-inflammatory cytokines Interferon (IFN)α and IFNγ and the Pattern Recognition Receptor (PRR) Toll-like receptor 4 (TLR4). Together, they trigger activation of Signal Transducer and Activator of Transcription (STAT)s. Searches for compounds targeting the pTyr-SH2 interaction area of STAT3, yielded many small molecules, including STATTIC and STX-0119. However, many of these inhibitors do not seem STAT3-specific. We hypothesized that multi-STAT-inhibitors that simultaneously block STAT1, STAT2, and STAT3 activity and pro-inflammatory target gene expression may be a promising strategy to treat CVDs. Using comparative in silico docking of multiple STAT-SH2 models on multi-million compound libraries, we identified the novel multi-STAT inhibitor, C01L_F03. This compound targets the SH2 domain of STAT1, STAT2, and STAT3 with the same affinity and simultaneously blocks their activity and expression of multiple STAT-target genes in HMECs in response to IFNα. The same in silico and in vitro multi-STAT inhibiting capacity was shown for STATTIC and STX-0119. Moreover, C01L_F03, STATTIC and STX-0119 were also able to affect genome-wide interactions between IFNγ and TLR4 by commonly inhibiting pro-inflammatory and pro-atherogenic gene expression directed by cooperative involvement of STATs with IRFs and/or NF-κB. Moreover, we observed that multi-STAT inhibitors could be used to inhibit IFNγ+LPS-induced HMECs migration, leukocyte adhesion to ECs as well as impairment of mesenteric artery contractility. Together, this implicates that application of a multi-STAT inhibitory strategy could provide great promise for the treatment of CVDs.
Collapse
Affiliation(s)
- Martyna Plens-Galaska
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Malgorzata Szelag
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Aida Collado
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| | - Patrice Marques
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| | - Susana Vallejo
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Mariella Ramos-González
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Joanna Wesoly
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - María Jesus Sanz
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| | - Concepción Peiró
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Hans A R Bluyssen
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
17
|
McGarrity S, Anuforo Ó, Halldórsson H, Bergmann A, Halldórsson S, Palsson S, Henriksen HH, Johansson PI, Rolfsson Ó. Metabolic systems analysis of LPS induced endothelial dysfunction applied to sepsis patient stratification. Sci Rep 2018; 8:6811. [PMID: 29717213 PMCID: PMC5931560 DOI: 10.1038/s41598-018-25015-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/13/2018] [Indexed: 12/24/2022] Open
Abstract
Endothelial dysfunction contributes to sepsis outcome. Metabolic phenotypes associated with endothelial dysfunction are not well characterised in part due to difficulties in assessing endothelial metabolism in situ. Here, we describe the construction of iEC2812, a genome scale metabolic reconstruction of endothelial cells and its application to describe metabolic changes that occur following endothelial dysfunction. Metabolic gene expression analysis of three endothelial subtypes using iEC2812 suggested their similar metabolism in culture. To mimic endothelial dysfunction, an in vitro sepsis endothelial cell culture model was established and the metabotypes associated with increased endothelial permeability and glycocalyx loss after inflammatory stimuli were quantitatively defined through metabolomics. These data and transcriptomic data were then used to parametrize iEC2812 and investigate the metabotypes of endothelial dysfunction. Glycan production and increased fatty acid metabolism accompany increased glycocalyx shedding and endothelial permeability after inflammatory stimulation. iEC2812 was then used to analyse sepsis patient plasma metabolome profiles and predict changes to endothelial derived biomarkers. These analyses revealed increased changes in glycan metabolism in sepsis non-survivors corresponding to metabolism of endothelial dysfunction in culture. The results show concordance between endothelial health and sepsis survival in particular between endothelial cell metabolism and the plasma metabolome in patients with sepsis.
Collapse
Affiliation(s)
- Sarah McGarrity
- Center for Systems Biology, University of Iceland, Sturlugata 8, Reykjavik, Iceland
| | - Ósk Anuforo
- Center for Systems Biology, University of Iceland, Sturlugata 8, Reykjavik, Iceland
| | - Haraldur Halldórsson
- Medical Department, University of Iceland, Sturlugata 8, Reykjavik, Iceland
- Landspitali, Læknagarður, Hringbraut, Reykjavik, Iceland
| | - Andreas Bergmann
- Center for Systems Biology, University of Iceland, Sturlugata 8, Reykjavik, Iceland
| | | | - Sirus Palsson
- Center for Systems Biology, University of Iceland, Sturlugata 8, Reykjavik, Iceland
| | | | - Pär Ingemar Johansson
- Center for Systems Biology, University of Iceland, Sturlugata 8, Reykjavik, Iceland
- Rigshospitalet, Blegdamsvej 9, 2100, Kobenhavn O, Denmark
| | - Óttar Rolfsson
- Center for Systems Biology, University of Iceland, Sturlugata 8, Reykjavik, Iceland.
- Medical Department, University of Iceland, Sturlugata 8, Reykjavik, Iceland.
| |
Collapse
|
18
|
Terenina E, Sautron V, Ydier C, Bazovkina D, Sevin-Pujol A, Gress L, Lippi Y, Naylies C, Billon Y, Liaubet L, Mormede P, Villa-Vialaneix N. Time course study of the response to LPS targeting the pig immune gene networks. BMC Genomics 2017; 18:988. [PMID: 29273011 PMCID: PMC5741867 DOI: 10.1186/s12864-017-4363-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 12/01/2017] [Indexed: 12/23/2022] Open
Abstract
Background Stress is a generic term used to describe non-specific responses of the body to all kinds of challenges. A very large variability in the response can be observed across individuals, depending on numerous conditioning factors like genetics, early influences and life history. As a result, there is a wide range of individual vulnerability and resilience to stress, also called robustness. The importance of robustness-related traits in breeding strategies is increasing progressively towards the production of animals with a high level of production under a wide range of climatic conditions and management systems, together with a lower environmental impact and a high level of animal welfare. The present study aims at describing blood transcriptomic, hormonal, and metabolic responses of pigs to a systemic challenge using lipopolysaccharide (LPS). The objective is to analyze the individual variation of the biological responses in relation to the activity of the HPA axis measured by the levels of plasma cortisol after LPS and ACTH in 120 juvenile Large White (LW) pigs. The kinetics of the response was measured with biological variables and whole blood gene expression at 4 time points. A multilevel statistical analysis was used to take into account the longitudinal aspect of the data. Results Cortisol level reaches its peak 4 h after LPS injection. The characteristic changes of white blood cell count to LPS were observed, with a decrease of total count, maximal at t=+4 h, and the mirror changes in the respective proportions of lymphocytes and granulocytes. The lymphocytes / granulocytes ratio was maximal at t=+1 h. An integrative statistical approach was used and provided a set of candidate genes for kinetic studies and ongoing complementary studies focused on the LPS-stimulated inflammatory response. Conclusions The present study demonstrates the specific biomarkers indicative of an inflammation in swine. Furthermore, these stress responses persist for prolonged periods of time and at significant expression levels, making them good candidate markers for evaluating the efficacy of anti-inflammatory drugs. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4363-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena Terenina
- INRA, UMR 1388 GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, F-31326, France.
| | - Valérie Sautron
- INRA, UMR 1388 GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, F-31326, France
| | - Caroline Ydier
- INRA, UMR 1388 GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, F-31326, France
| | - Darya Bazovkina
- Department of Behavioral Neurogenomics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Amélie Sevin-Pujol
- INRA, UMR 1388 GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, F-31326, France
| | - Laure Gress
- INRA, UMR 1388 GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, F-31326, France
| | - Yannick Lippi
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, F-31027, France
| | - Claire Naylies
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, F-31027, France
| | - Yvon Billon
- INRA, UE 1372 GenESI, Surgeres, F-17700, France
| | - Laurence Liaubet
- INRA, UMR 1388 GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, F-31326, France
| | - Pierre Mormede
- INRA, UMR 1388 GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, F-31326, France
| | | |
Collapse
|
19
|
Tomita K, Kabashima A, Freeman BL, Bronk SF, Hirsova P, Ibrahim SH. Mixed Lineage Kinase 3 Mediates the Induction of CXCL10 by a STAT1-Dependent Mechanism During Hepatocyte Lipotoxicity. J Cell Biochem 2017; 118:3249-3259. [PMID: 28262979 PMCID: PMC5550329 DOI: 10.1002/jcb.25973] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 01/10/2023]
Abstract
Saturated fatty acids (SFA) and their toxic metabolites contribute to hepatocyte lipotoxicity in nonalcoholic steatohepatitis (NASH). We previously reported that hepatocytes, under lipotoxic stress, express the potent macrophage chemotactic ligand C-X-C motif chemokine 10 (CXCL10), and release CXCL10-enriched extracellular vesicles (EV) by a mixed lineage kinase (MLK) 3-dependent mechanism. In the current study, we sought to examine the signaling pathway responsible for CXCL10 induction during hepatocyte lipotoxicity. Here, we demonstrate a role for signal transducer and activator of transcription (STAT) 1 in regulating CXCL10 expression. Huh7 and HepG2 cells were treated with lysophosphatidylcholine (LPC), the toxic metabolite of the SFA palmitate. In LPC-treated hepatocytes, CXCL10 induction is mediated by a mitogen activated protein kinase (MAPK) signaling cascade consisting of a relay kinase module of MLK3, MKK3/6, and p38. P38 in turn induces STAT1 Ser727 phosphorylation and CXCL10 upregulation in hepatocytes, which is reduced by genetic or pharmacological inhibition of this MAPK signaling cascade. The binding and activity of STAT1 at the CXCL10 gene promoter were identified by chromatin immunoprecipitation and luciferase gene expression assays. Promoter activation was attenuated by MLK3/STAT1 inhibition or by deletion of the consensus STAT1 binding sites within the CXCL10 promoter. In lipotoxic hepatocytes, MLK3 activates a MAPK signaling cascade, resulting in the activating phosphorylation of STAT1, and CXCL10 transcriptional upregulation. Hence, this kinase relay module and/or STAT1 inhibition may serve as a therapeutic target to reduce CXCL10 release, thereby attenuating NASH pathogenesis. J. Cell. Biochem. 118: 3249-3259, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kyoko Tomita
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Ayano Kabashima
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Brittany L. Freeman
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Steven F. Bronk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Samar H. Ibrahim
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
- Division of Pediatric Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
20
|
Corrigan F, Arulsamy A, Collins-Praino LE, Holmes JL, Vink R. Toll like receptor 4 activation can be either detrimental or beneficial following mild repetitive traumatic brain injury depending on timing of activation. Brain Behav Immun 2017; 64:124-139. [PMID: 28412141 DOI: 10.1016/j.bbi.2017.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/30/2017] [Accepted: 04/07/2017] [Indexed: 12/14/2022] Open
Abstract
A history of repeated concussion has been linked to the later development of neurodegeneration, which is associated with the accumulation of hyperphosphorylated tau and the development of behavioral deficits. However, the role that exogenous factors, such as immune activation, may play in the development of neurodegeneration following repeated mild traumatic brain injury (rmTBI) has not yet been explored. To investigate, male Sprague-Dawley rats were administered three mTBIs 5days apart using the diffuse impact-acceleration model to generate ∼100G. Sham animals underwent surgery only. At 1 or 5days following the last injury rats were given the TLR4 agonist, lipopolysaccharide (LPS, 0.1mg/kg), or saline. TLR4 activation had differential effects following rmTBI depending on the timing of activation. When given at 1day post-injury, LPS acutely activated microglia, but decreased production of pro-inflammatory cytokines like IL-6. This was associated with a reduction in neuronal injury, both acutely, with a restoration of levels of myelin basic protein (MBP), and chronically, preventing a loss of both MBP and PSD-95. Furthermore, these animals did not develop behavioral deficits with no changes in locomotion, anxiety, depressive-like behavior or cognition at 3months post-injury. Conversely, when LPS was given at 5days post-injury, it was associated acutely with an increase in pro-inflammatory cytokine production, with an exacerbation of neuronal damage and increased levels of aggregated and phosphorylated tau. At 3months post-injury, there was a slight exacerbation of functional deficits, particularly in cognition and depressive-like behavior. This highlights the complexity of the immune response following rmTBI and the need to understand how a history of rmTBI interacts with environmental factors to influence the potential to develop later neurodegeneration.
Collapse
Affiliation(s)
- Frances Corrigan
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| | - Alina Arulsamy
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Lyndsey E Collins-Praino
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Joshua L Holmes
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Robert Vink
- Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| |
Collapse
|
21
|
Zawadzka M, Jagodziński PP. Exercise-induced epigenetic regulations in inflammatory related cells. J Appl Biomed 2017. [DOI: 10.1016/j.jab.2016.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
22
|
Cardiac troponin I exacerbates myocardial ischaemia/reperfusion injury by inducing the adhesion of monocytes to vascular endothelial cells via a TLR4/NF-κB-dependent pathway. Clin Sci (Lond) 2016; 130:2279-2293. [PMID: 27682003 DOI: 10.1042/cs20160373] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/29/2016] [Accepted: 09/28/2016] [Indexed: 12/20/2022]
Abstract
Cardiac troponin I (cTnI), a biomarker for myocardial damage and risk stratification, may be involved in the pathogenesis of cardiovascular diseases, which was ascribed to the effect of cTnI auto-antibodies. Whether or not cTnI itself has a direct impact on acute myocardial injury is unknown. To exclude the influence of cTnI antibody on the cardiac infarct size, we studied the effect of cTnI shortly after myocardial ischaemia-reperfusion (I/R) injury when cTnI antibodies were not elevated. Pretreatment with cTnI augmented the myocardial infarct size caused by I/R, accompanied by an increase in inflammatory markers in the blood and myocardium. Additional experiments using human umbilical vein endothelial cells (HUVECs) showed that the detrimental effect of cTnI was related to cTnI-induced increase in vascular cell adhesion molecule-1 (VCAM-1) expression and VCAM-1 mediated adhesion of human monocytes (THP-1) to HUVECs, which could be neutralized by VCAM-1 antibody. Both toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) were involved in the signalling pathway, because blockade of either TLR4 or NF-κB inhibited the cTnI's effect on VCAM-1 expression and adhesion of monocytes to endothelial cells. Moreover, TLR4 inhibition reduced cTnI-augmented cardiac injury in rats with I/R injury. We conclude that cTnI exacerbates myocardial I/R injury by inducing the adhesion of monocytes to vascular endothelial cells via activation of the TLR4/NF-κB pathway. Inhibition of TLR4 may be an alternative strategy to reduce cTnI-induced myocardial I/R injury.
Collapse
|
23
|
Liu X, Hu Y, Liu X, Zheng Y, Luo M, Liu W, Zhao Y, Zou L. EPHB4, a down stream target of IFN-γ/STAT1 signal pathway, regulates endothelial activation possibly contributing to the development of preeclampsia. Am J Reprod Immunol 2016; 76:307-17. [PMID: 27553867 DOI: 10.1111/aji.12555] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/29/2016] [Indexed: 11/28/2022] Open
Abstract
PROBLEM Preeclampsia is characterized by endothelial activation and excessive inflammation, of which interferon (IFN)-γ is a potent inducer. Eph receptor B4 (EPHB4) also involved in endothelial activation in inflammation. Their role and relationship in preeclampsia remain unclear. METHOD OF STUDY Intercellular adhesion molecular (ICAM)-1 was employed as the hallmark of endothelial activation. The serum levels of IFN-γ and the expression of EPHB4 and ICAM-1 were assessed by ELISA, qRT-PCR and WB, respectively. Primary human umbilical vein endothelial cells (HUVECs) were treated with IFN-γ of different concentration or for different times to determine the effect of IFN-γ on EPHB4 and ICAM-1 expression. Overexpression and shRNA constructs, chromatin immunoprecipitation (ChIP) and luciferase assays were conducted to clarify the regulation mechanism of IFN-γ/STAT1 on EPHB4 resulting in HUVECs activation. Endothelial-trophoblast co-culture model was used to illustrate the role of EPHB4 in the process of activated endothelial cells resisting trophoblast invasion. RESULTS IFN-γ, EPHB4 and ICAM-1 expression were elevated in preeclampsia. IFN-γ induced HUVECs activation through EPHB4 expression. ChIP and luciferase assays revealed that IFN-γ promoted EPHB4 transcription by STAT-1 binding to EPHB4 promoter. EPHB4 probably involved in resisting trophoblasts displacement by IFN-γ-activated HUVECs. CONCLUSION This study uncovered the character of EPHB4-regulating endothelial activation in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Xiaoping Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Hu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxia Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanfang Zheng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minglian Luo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weifang Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
24
|
Ibrahim SH, Hirsova P, Tomita K, Bronk SF, Werneburg NW, Harrison SA, Goodfellow VS, Malhi H, Gores GJ. Mixed lineage kinase 3 mediates release of C-X-C motif ligand 10-bearing chemotactic extracellular vesicles from lipotoxic hepatocytes. Hepatology 2016; 63:731-44. [PMID: 26406121 PMCID: PMC4764421 DOI: 10.1002/hep.28252] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/28/2015] [Accepted: 09/22/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Mixed lineage kinase 3 (MLK3) deficiency reduces macrophage-associated inflammation in a murine model of nonalcoholic steatohepatitis (NASH). However, the mechanistic links between MLK3 activation in hepatocytes and macrophage-driven inflammation in NASH are uncharted. Herein, we report that MLK3 mediates the release of (C-X-C motif) ligand 10 (CXCL10)-laden extracellular vesicles (EVs) from lipotoxic hepatocytes, which induce macrophage chemotaxis. Primary mouse hepatocytes (PMHs) and Huh7 cells were treated with palmitate or lysophosphatidylcholine (LPC). Released EVs were isolated by differential ultracentrifugation. LPC treatment of PMH or Huh7 cells induced release of EVs, which was prevented by either genetic or pharmacological inhibition of MLK3. Mass spectrometry identified the potent chemokine, CXCL10, in the EVs, which was markedly enriched in EVs isolated from LPC-treated hepatocytes versus untreated cells. Green fluorescent protein (GFP)-tagged CXCL10 was present in vesicular structures and colocalized with the red fluorescent protein (RFP)-tagged EV marker, CD63, after LPC treatment of cotransfected Huh-7 cells. Either genetic deletion or pharmacological inhibition of MLK3 prevented CXCL10 enrichment in EVs. Treatment of mouse bone-marrow-derived macrophages with lipotoxic hepatocyte-derived EVs induced macrophage chemotaxis, an effect blocked by incubation with CXCL10-neutralizing antisera. MLK3-deficient mice fed a NASH-inducing diet had reduced concentrations of total plasma EVs and CXCL10 containing EVs compared to wild-type mice. CONCLUSIONS During hepatocyte lipotoxicity, activated MLK3 induces the release of CXCL10-bearing vesicles from hepatocytes, which are chemotactic for macrophages.
Collapse
Affiliation(s)
- Samar H. Ibrahim
- Division of Pediatric Gastroenterology, Mayo Clinic, Rochester, Minnesota
| | - Petra Hirsova
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Kyoko Tomita
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Steven F. Bronk
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Nathan W. Werneburg
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Harmeet Malhi
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Gregory J. Gores
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
25
|
Chmielewski S, Piaszyk-Borychowska A, Wesoly J, Bluyssen HAR. STAT1 and IRF8 in Vascular Inflammation and Cardiovascular Disease: Diagnostic and Therapeutic Potential. Int Rev Immunol 2015; 35:434-454. [DOI: 10.3109/08830185.2015.1087519] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Stefan Chmielewski
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
- Department of Nephrology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Anna Piaszyk-Borychowska
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Joanna Wesoly
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Hans A. R. Bluyssen
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
26
|
Biswas I, Singh B, Sharma M, Agrawala PK, Khan GA. Extracellular RNA facilitates hypoxia-induced leukocyte adhesion and infiltration in the lung through TLR3-IFN-γ-STAT1 signaling pathway. Eur J Immunol 2015; 45:3158-73. [PMID: 26350442 DOI: 10.1002/eji.201545597] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 08/18/2015] [Accepted: 09/04/2015] [Indexed: 01/12/2023]
Abstract
Endogenous ligands released from dying cells, including extracellular RNA (eRNA), cause TLR activation, which is associated with inflammation and vascular diseases. However, the importance of this response in acute hypoxia (AH) remains unexplored. Here, we observed eRNA-mediated TLR3 activation during exposure of mice to AH in the absence of exogenous viral stimuli. RNaseA treatment diminished AH-induced expression of IFN and cell adhesion molecules (CAMs) and myeloid cell infiltration in the lung, and TLR3 gene silencing or neutralization with antibodies markedly attenuated AH- or poly I:C-induced IFN and CAM expression and leukocyte adhesion (LA) and myeloid cell infiltration in the lung. However, RNaseA treatment or TLR3 gene silencing failed to alter AH-induced cell death and proliferation in lung vasculature. Furthermore, IFN-γ--but not IFN-α--regulated AH-induced CAM expression and LA. Treatment with RNaseA, TLR3 siRNA, neutralizing antibodies, or a STAT1 inhibitor substantially decreased AH- and poly I:C-induced STAT1 phosphorylation, CAM expression, and myeloid cell infiltration, suggesting a central role for STAT1 phosphorylation in AH-induced LA and infiltration. We conclude that eRNA activates TLR3 and facilitates, through in vivo IFN-γ-STAT1 signaling, AH-induced leukocyte infiltration in the lung. Thus, RNaseA might provide a therapeutic alternative for patients with lung diseases.
Collapse
Affiliation(s)
- Indranil Biswas
- Department of Physiology, Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi, India
| | - Bandana Singh
- Department of Physiology, Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi, India
| | - Manish Sharma
- Department of Proteomics, Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi, India
| | - Paban K Agrawala
- Institute of Nuclear Medicine and Allied Sciences, Timarpur, Delhi, India
| | - Gausal A Khan
- Department of Physiology, Defence Institute of Physiology and Allied Sciences, Timarpur, Delhi, India
| |
Collapse
|
27
|
Flemming M, Kraus B, Rascle A, Jürgenliemk G, Fuchs S, Fürst R, Heilmann J. Revisited anti-inflammatory activity of matricine in vitro: Comparison with chamazulene. Fitoterapia 2015; 106:122-8. [PMID: 26304764 DOI: 10.1016/j.fitote.2015.08.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 12/15/2022]
Abstract
The proazulene matricine (1) is present in chamomile flower heads and has been proven to exhibit strong in vivo anti-inflammatory activity. In contrast to other secondary metabolites in chamomile preparations like its degradation product chamazulene (2), no plausible targets have been found to explain this activity. Therefore we revisited 1 regarding its in vitro anti-inflammatory activity in cellular and molecular studies. Using ICAM-1 as a marker for NF-κB activation, it was shown that ICAM-1 protein expression induced by TNF-α and LPS, but not by IFN-γ, was remarkably inhibited by 1 in endothelial cells (HMEC-1). Inhibition was concentration-dependent in a micromolar range (10-75 μM) and did not involve cytotoxic effects. At 75 μM expression of the adhesion molecule ICAM-1 was down to 52.7 ± 3.3% and 20.4 ± 1.8% of control in TNF-α and LPS-stimulated HMEC-1, respectively. In contrast, 2 showed no activity. Quantitative RT-PCR experiments revealed that TNF-α-induced expression of the ICAM-1 gene was also reduced by 1 in a concentration-dependent manner, reaching 32.3 ± 6.2% of control at 100 μM matricine. Additional functional assays (NF-κB promotor activity and cytoplasm to nucleus translocation) confirmed the inhibitory effect of 1 on NF-κB signaling. Despite the fact that 1 lacks an α,β-unsaturated carbonyl and is thus not able to act via a Michael reaction with electron rich SH groups of functional biological molecules, data gave strong evidence that 1 inhibits NF-κB transcriptional activity in endothelial cells by an hitherto unknown mechanism and this may contribute to its well-known anti-inflammatory activity in vivo.
Collapse
Affiliation(s)
- Marcel Flemming
- Institut für Pharmazie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Birgit Kraus
- Institut für Pharmazie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Anne Rascle
- Institut für Immunologie, Universität Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Guido Jürgenliemk
- Institut für Pharmazie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Simone Fuchs
- Institut für Pharmazeutische Biologie, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Robert Fürst
- Institut für Pharmazeutische Biologie, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Jörg Heilmann
- Institut für Pharmazie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany.
| |
Collapse
|
28
|
Hou Y, Liu M, Husted C, Chen C, Thiagarajan K, Johns JL, Rao SP, Alvira CM. Activation of the nuclear factor-κB pathway during postnatal lung inflammation preserves alveolarization by suppressing macrophage inflammatory protein-2. Am J Physiol Lung Cell Mol Physiol 2015; 309:L593-604. [PMID: 26163511 DOI: 10.1152/ajplung.00029.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 07/06/2015] [Indexed: 11/22/2022] Open
Abstract
A significant portion of lung development is completed postnatally during alveolarization, rendering the immature lung vulnerable to inflammatory stimuli that can disrupt lung structure and function. Although the NF-κB pathway has well-recognized pro-inflammatory functions, novel anti-inflammatory and developmental roles for NF-κB have recently been described. Thus, to determine how NF-κB modulates alveolarization during inflammation, we exposed postnatal day 6 mice to vehicle (PBS), systemic lipopolysaccharide (LPS), or the combination of LPS and the global NF-κB pathway inhibitor BAY 11-7082 (LPS + BAY). LPS impaired alveolarization, decreased lung cell proliferation, and reduced epithelial growth factor expression. BAY exaggerated these detrimental effects of LPS, further suppressing proliferation and disrupting pulmonary angiogenesis, an essential component of alveolarization. The more severe pathology induced by LPS + BAY was associated with marked increases in lung and plasma levels of macrophage inflammatory protein-2 (MIP-2). Experiments using primary neonatal pulmonary endothelial cells (PEC) demonstrated that MIP-2 directly impaired neonatal PEC migration in vitro; and neutralization of MIP-2 in vivo preserved lung cell proliferation and pulmonary angiogenesis and prevented the more severe alveolar disruption induced by the combined treatment of LPS + BAY. Taken together, these studies demonstrate a key anti-inflammatory function of the NF-κB pathway in the early alveolar lung that functions to mitigate the detrimental effects of inflammation on pulmonary angiogenesis and alveolarization. Furthermore, these data suggest that neutralization of MIP-2 may represent a novel therapeutic target that could be beneficial in preserving lung growth in premature infants exposed to inflammatory stress.
Collapse
Affiliation(s)
- Yanli Hou
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Min Liu
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Cristiana Husted
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California; Department of Biochemistry, Faculty of Medicine, University of Nevada/Reno, Reno, Nevada; and
| | - Chihhsin Chen
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Kavitha Thiagarajan
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Jennifer L Johns
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California
| | - Shailaja P Rao
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Cristina M Alvira
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California; Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California;
| |
Collapse
|
29
|
Youn SW, Park KK. Small-nucleic-acid-based therapeutic strategy targeting the transcription factors regulating the vascular inflammation, remodeling and fibrosis in atherosclerosis. Int J Mol Sci 2015; 16:11804-11833. [PMID: 26006249 PMCID: PMC4463731 DOI: 10.3390/ijms160511804] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis arises when injury to the arterial wall induces an inflammatory cascade that is sustained by a complex network of cytokines, together with accumulation of lipids and fibrous material. Inflammatory cascades involve leukocyte adherence and chemotaxis, which are coordinated by the local secretion of adhesion molecules, chemotactic factors, and cytokines. Transcription factors are critical to the integration of the various steps of the cascade response to mediators of vascular injury, and are induced in a stimulus-dependent and cell-type-specific manner. Several small-nucleic-acid-based therapeutic strategies have recently been developed to target transcription factors: antisense oligodeoxynucleotides, RNA interference, microRNA, and decoy oligodeoxynucleotides. The aim of this review was to provide an overview of these particular targeted therapeutic strategies, toward regulation of the vascular inflammation, remodeling and fibrosis associated with atherosclerosis.
Collapse
Affiliation(s)
- Sung Won Youn
- Department of Radiology, Catholic University of Daegu Medical Center, School of Medicine, Catholic University of Daegu, Daegu 705-718, Korea.
| | - Kwan-Kyu Park
- Department of Pathology, Catholic University of Daegu Medical Center, School of Medicine, Catholic University of Daegu, Daegu 705-718, Korea.
| |
Collapse
|
30
|
Boshuizen MCS, de Winther MPJ. Interferons as Essential Modulators of Atherosclerosis. Arterioscler Thromb Vasc Biol 2015; 35:1579-88. [PMID: 25953648 DOI: 10.1161/atvbaha.115.305464] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/27/2015] [Indexed: 12/11/2022]
Abstract
Interferons (IFNs) are key regulators of both innate and adaptive immune responses. The family of IFN cytokines can be divided into 3 main subtypes of which type I and type II IFNs are most well-defined. IFNs are known to be important mediators in atherosclerosis. Evidence from both in vitro and in vivo studies shows that the IFNs are generally proatherosclerotic. However, their role in atherosclerosis is complex, with distinct roles for these cytokines throughout different stages of the disease. In this review, we will discuss the current knowledge on the role of type I and type II IFNs in atherosclerosis development, specifically focusing on their role in endothelial activation, cell recruitment, foam cell formation, and regulation of apoptosis. Furthermore, we will discuss whether IFNs could be considered as new molecular targets for therapeutic intervention in atherosclerosis.
Collapse
Affiliation(s)
- Marieke C S Boshuizen
- From the Experimental Vascular Biology, Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Menno P J de Winther
- From the Experimental Vascular Biology, Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
31
|
Lee SJ, Seo KW, Kim CD. LPS Increases 5-LO Expression on Monocytes via an Activation of Akt-Sp1/NF-κB Pathways. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:263-8. [PMID: 25954132 PMCID: PMC4422967 DOI: 10.4196/kjpp.2015.19.3.263] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/26/2015] [Accepted: 03/21/2015] [Indexed: 01/01/2023]
Abstract
5-Lipoxygenase (5-LO) plays a pivotal role in the progression of atherosclerosis. Therefore, this study investigated the molecular mechanisms involved in 5-LO expression on monocytes induced by LPS. Stimulation of THP-1 monocytes with LPS (0~3 µg/ml) increased 5-LO promoter activity and 5-LO protein expression in a concentration-dependent manner. LPS-induced 5-LO expression was blocked by pharmacological inhibition of the Akt pathway, but not by inhibitors of MAPK pathways including the ERK, JNK, and p38 MAPK pathways. In line with these results, LPS increased the phosphorylation of Akt, suggesting a role for the Akt pathway in LPS-induced 5-LO expression. In a promoter activity assay conducted to identify transcription factors, both Sp1 and NF-κB were found to play central roles in 5-LO expression in LPS-treated monocytes. The LPS-enhanced activities of Sp1 and NF-κB were attenuated by an Akt inhibitor. Moreover, the LPS-enhanced phosphorylation of Akt was significantly attenuated in cells pretreated with an anti-TLR4 antibody. Taken together, 5-LO expression in LPS-stimulated monocytes is regulated at the transcriptional level via TLR4/Akt-mediated activations of Sp1 and NF-κB pathways in monocytes.
Collapse
Affiliation(s)
- Seung Jin Lee
- Department of Pharmacology and BK21 Medical Science Education Center, School of Medicine, Pusan National University, Yangsan 626-870, Korea
| | - Kyo Won Seo
- Department of Pharmacology and BK21 Medical Science Education Center, School of Medicine, Pusan National University, Yangsan 626-870, Korea
| | - Chi Dae Kim
- Department of Pharmacology and BK21 Medical Science Education Center, School of Medicine, Pusan National University, Yangsan 626-870, Korea
| |
Collapse
|
32
|
STAT1-dependent signal integration between IFNγ and TLR4 in vascular cells reflect pro-atherogenic responses in human atherosclerosis. PLoS One 2014; 9:e113318. [PMID: 25478796 PMCID: PMC4257532 DOI: 10.1371/journal.pone.0113318] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 10/24/2014] [Indexed: 12/31/2022] Open
Abstract
Signal integration between IFNγ and TLRs in immune cells has been associated with the host defense against pathogens and injury, with a predominant role of STAT1. We hypothesize that STAT1-dependent transcriptional changes in vascular cells involved in cross-talk between IFNγ and TLR4, reflect pro-atherogenic responses in human atherosclerosis. Genome-wide investigation identified a set of STAT1-dependent genes that were synergistically affected by interactions between IFNγ and TLR4 in VSMCs. These included the chemokines Cxcl9, Ccl12, Ccl8, Ccrl2, Cxcl10 and Ccl5, adhesion molecules Cd40, Cd74, and antiviral and antibacterial genes Rsad2, Mx1, Oasl1, Gbp5, Nos2, Batf2 and Tnfrsf11a. Among the amplified genes was also Irf8, of which Ccl5 was subsequently identified as a new pro-inflammatory target in VSMCs and ECs. Promoter analysis predicted transcriptional cooperation between STAT1, IRF1, IRF8 and NFκB, with the novel role of IRF8 providing an additional layer to the overall complexity. The synergistic interactions between IFNγ and TLR4 also resulted in increased T-cell migration and impaired aortic contractility in a STAT1-dependent manner. Expression of the chemokines CXCL9 and CXCL10 correlated with STAT1 phosphorylation in vascular cells in plaques from human carotid arteries. Moreover, using data mining of human plaque transcriptomes, expression of a selection of these STAT1-dependent pro-atherogenic genes was found to be increased in coronary artery disease (CAD) and carotid atherosclerosis. Our study provides evidence to suggest that in ECs and VSMCs STAT1 orchestrates a platform for cross-talk between IFNγ and TLR4, and identifies a STAT1-dependent gene signature that reflects a pro-atherogenic state in human atherosclerosis.
Collapse
|
33
|
Keating ST, Ziemann M, Okabe J, Khan AW, Balcerczyk A, El-Osta A. Deep sequencing reveals novel Set7 networks. Cell Mol Life Sci 2014; 71:4471-86. [PMID: 24875254 PMCID: PMC11113315 DOI: 10.1007/s00018-014-1651-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 05/13/2014] [Accepted: 05/15/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Methyl-dependent regulation of transcription has expanded from a traditional focus on histones to encompass transcription factor modulation. While the Set7 lysine methyltransferase is associated with pro-inflammatory gene expression in vascular endothelial cells, genome-wide regulatory roles remain to be investigated. From initial characterization of Set7 as specific for methyl-lysine 4 of H3 histones (H3K4m1), biochemical activity toward non-histone substrates has revealed additional mechanisms of gene regulation. RESULTS mRNA-Seq revealed transcriptional deregulation of over 8,000 genes in an endothelial model of Set7 knockdown. Gene ontology identified up-regulated pathways involved in developmental processes and extracellular matrix remodeling, whereas pathways regulating the inflammatory response as well as nitric oxide signaling were down-regulated. Chromatin maps derived from ChIP-Seq profiling of H3K4m1 identified several hundred loci with loss of H3K4m1 at gene regulatory elements associated with an unexpectedly subtle effect on gene expression. Transcription factor network analysis implicated six previously described Set7 substrates in mRNA-Seq changes, and we predict that Set7 post-translationally regulates other transcription factors associated with vascular endothelial gene expression through the presence of Set7 amino acid methylation motifs. CONCLUSION We describe a role for Set7 in regulating developmental pathways and response to stimuli (inflammation/immune response) in human endothelial cells of vascular origin. Set7-dependent gene expression changes that occurred independent of H3K4m1 may involve transcription factor lysine methylation events. The method of mapping measured transcriptional changes to transcription factors to identify putative substrates with strong associations to functional changes is applicable to substrate prediction for other broad-substrate histone modifiers.
Collapse
Affiliation(s)
- Samuel T. Keating
- Epigenetics in Human Health and Disease Laboratory, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004 Australia
| | - Mark Ziemann
- Epigenetics in Human Health and Disease Laboratory, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004 Australia
- Epigenomics Profiling Facility, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004 Australia
| | - Jun Okabe
- Epigenetics in Human Health and Disease Laboratory, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004 Australia
- Department of Medicine, Central Clinical School, Monash University, Melbourne, VIC 3800 Australia
| | - Abdul Waheed Khan
- Epigenetics in Human Health and Disease Laboratory, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004 Australia
| | - Aneta Balcerczyk
- Epigenetics in Human Health and Disease Laboratory, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004 Australia
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Laboratory, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004 Australia
- Epigenomics Profiling Facility, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004 Australia
- Department of Pathology, The University of Melbourne, Melbourne, VIC 3010 Australia
- Department of Medicine, Central Clinical School, Monash University, Melbourne, VIC 3800 Australia
| |
Collapse
|
34
|
Moll HP, Lee A, Minussi DC, da Silva CG, Csizmadia E, Bhasin M, Ferran C. A20 regulates atherogenic interferon (IFN)-γ signaling in vascular cells by modulating basal IFNβ levels. J Biol Chem 2014; 289:30912-24. [PMID: 25217635 DOI: 10.1074/jbc.m114.591966] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
IFNγ signaling in endothelial (EC) and smooth muscle cells (SMC) is a key culprit of pathologic vascular remodeling. The impact of NF-κB inhibitory protein A20 on IFNγ signaling in vascular cells remains unknown. In gain- and loss-of-function studies, A20 inversely regulated expression of IFNγ-induced atherogenic genes in human EC and SMC by modulating STAT1 transcription. In vivo, inadequate A20 expression in A20 heterozygote mice aggravated intimal hyperplasia following partial carotid artery ligation. This outcome uniquely associated with increased levels of Stat1 and super-induction of Ifnγ-dependent genes. Transcriptome analysis of the aortic media from A20 heterozygote versus wild-type mice revealed increased basal Ifnβ signaling as the likely cause for higher Stat1 transcription. We confirmed higher basal IFNβ levels in A20-silenced human SMC and showed that neutralization or knockdown of IFNβ abrogates heightened STAT1 levels in these cells. Upstream of IFNβ, A20-silenced EC and SMC demonstrated higher levels of phosphorylated/activated TANK-binding kinase-1 (TBK1), a regulator of IFNβ transcription. This suggested that A20 knockdown increased STAT1 transcription by enhancing TBK1 activation and subsequently basal IFNβ levels. Altogether, these results uncover A20 as a key physiologic regulator of atherogenic IFNγ/STAT1 signaling. This novel function of A20 added to its ability to inhibit nuclear factor-κB (NF-κB) activation solidifies its promise as an ideal therapeutic candidate for treatment and prevention of vascular diseases. In light of recently discovered A20/TNFAIP3 (TNFα-induced protein 3) single nucleotide polymorphisms that impart lower A20 expression or function, these results also qualify A20 as a reliable clinical biomarker for vascular risk assessment.
Collapse
Affiliation(s)
- Herwig P Moll
- From the Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery
| | - Andy Lee
- From the Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery
| | - Darlan C Minussi
- From the Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery
| | - Cleide G da Silva
- From the Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery
| | - Eva Csizmadia
- From the Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery
| | - Manoj Bhasin
- the Division of Interdisciplinary Medicine and Biotechnology, Bioinformatics Core, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02135
| | - Christiane Ferran
- From the Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Division of Nephrology, Department of Medicine, and
| |
Collapse
|
35
|
Sikorski K, Wesoly J, Bluyssen HAR. Data mining of atherosclerotic plaque transcriptomes predicts STAT1-dependent inflammatory signal integration in vascular disease. Int J Mol Sci 2014; 15:14313-31. [PMID: 25196434 PMCID: PMC4159852 DOI: 10.3390/ijms150814313] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/29/2014] [Accepted: 08/01/2014] [Indexed: 01/02/2023] Open
Abstract
Atherosclerotic plaque development involves multiple extra- and intra-cellular signals engaging cells from the immune system and from the vasculature. Pro-inflammatory pathways activated by interferon gamma (IFNγ) and toll-like receptor 4 (TLR4) ligands are profoundly involved in plaque formation and have been shown to involve cross-talk in all atheroma-interacting cell types leading to increased activation of signal transducer and activator of transcription-1 (STAT1) and elevated expression of pro-inflammatory mediators. Here we demonstrate that in Gene Expression Omnibus repository (GEO) deposited microarray datasets, obtained from human coronary and carotid atherosclerotic plaques, a significant increase in expression of pro-inflammatory and immunomodulatory genes can be detected. Moreover, increased expression of multiple chemokines, adhesion molecules and matrix-remodeling molecules was commonly detected in both plaque types and correlated with the presence of putative STAT1 binding sites in their promoters, suggesting strong involvement of STAT1 in plaque development. We also provide evidence to suggest that STAT1-nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) or STAT1-interferon-regulated factor (IRF) regulatory modules are over-represented in the promoters of these inflammatory genes, which points to a possible contribution of IFNγ and TLR4 cross-talk in the process of atherogenesis. Finally, a subset of these genes encodes for secreted proteins that could serve as a basis of a non-invasive diagnostic assay. The results of our in silico analysis in vitro provide potential evidence that STAT1-dependent IFNγ-TLR4 cross-talk plays a crucial role in coronary and carotid artery plaque development and identifies a STAT1-dependent gene signature that could represent a novel diagnostic tool to monitor and diagnose plaque progression in human atherosclerosis.
Collapse
Affiliation(s)
- Krzysztof Sikorski
- Department of Human Molecular Genetics, Adam Mickiewicz University in Poznan, Poznan 61-614, Poland.
| | - Joanna Wesoly
- Laboratory of High-Throughput Technologies, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, Poznan 61-614, Poland.
| | - Hans A R Bluyssen
- Department of Human Molecular Genetics, Adam Mickiewicz University in Poznan, Poznan 61-614, Poland.
| |
Collapse
|
36
|
Gan AM, Butoi E, Manea A, Pirvulescu MM, Stan D, Simion V, Calin M, Simionescu M, Manduteanu I. Functional analysis of the fractalkine gene promoter in human aortic smooth muscle cells exposed to proinflammatory conditions. FEBS J 2014; 281:3869-81. [DOI: 10.1111/febs.12921] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 07/01/2014] [Accepted: 07/07/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Ana-Maria Gan
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’ of the Romanian Academy; Bucharest Romania
| | - Elena Butoi
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’ of the Romanian Academy; Bucharest Romania
| | - Adrian Manea
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’ of the Romanian Academy; Bucharest Romania
| | - Monica Madalina Pirvulescu
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’ of the Romanian Academy; Bucharest Romania
| | - Daniela Stan
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’ of the Romanian Academy; Bucharest Romania
| | - Viorel Simion
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’ of the Romanian Academy; Bucharest Romania
| | - Manuela Calin
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’ of the Romanian Academy; Bucharest Romania
| | - Maya Simionescu
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’ of the Romanian Academy; Bucharest Romania
| | - Ileana Manduteanu
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’ of the Romanian Academy; Bucharest Romania
| |
Collapse
|
37
|
Sikorski K, Chmielewski S, Olejnik A, Wesoly JZ, Heemann U, Baumann M, Bluyssen H. STAT1 as a central mediator of IFNγ and TLR4 signal integration in vascular dysfunction. JAKSTAT 2014; 1:241-9. [PMID: 24058779 PMCID: PMC3670280 DOI: 10.4161/jkst.22469] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is characterized by early endothelial dysfunction and altered vascular smooth muscle cells (VSMCs) contractility. The forming atheroma is a site of excessive production of cytokines and inflammatory ligands by various cell types that mediate inflammation and immune responses. Key factors contributing to early stages of plaque development are IFNγ and TLR4. This review provides insight in the differential STAT1-dependent signal integration between IFNγ and TLR4 signals in vascular cells and atheroma interacting immune cells. This results in increased leukocyte attraction and adhesion and VSMC proliferation and migration, which are important characteristics of EC dysfunction and early triggers of atherosclerosis.
Collapse
Affiliation(s)
- Krzysztof Sikorski
- Department of Human Molecular Genetics; Institute of Molecular Biology and Biotechnology; Faculty of Biology; Adam Mickiewicz University; Poznan, Poland
| | | | | | | | | | | | | |
Collapse
|
38
|
Szelag M, Sikorski K, Czerwoniec A, Szatkowska K, Wesoly J, Bluyssen HAR. In silico simulations of STAT1 and STAT3 inhibitors predict SH2 domain cross-binding specificity. Eur J Pharmacol 2013; 720:38-48. [PMID: 24211327 DOI: 10.1016/j.ejphar.2013.10.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 11/25/2022]
Abstract
Signal transducers and activators of transcription (STATs) comprise a family of transcription factors that are structurally related and which participate in signaling pathways activated by cytokines, growth factors and pathogens. Activation of STAT proteins is mediated by the highly conserved Src homology 2 (SH2) domain, which interacts with phosphotyrosine motifs for specific contacts between STATs and receptors and for STAT dimerization. By generating new models for human (h)STAT1, hSTAT2 and hSTAT3 we applied comparative in silico docking to determine SH2-binding specificity of the STAT3 inhibitor stattic, and of fludarabine (STAT1 inhibitor). Thus, we provide evidence that by primarily targeting the highly conserved phosphotyrosine (pY+0) SH2 binding pocket stattic is not a specific hSTAT3 inhibitor, but is equally effective towards hSTAT1 and hSTAT2. This was confirmed in Human Micro-vascular Endothelial Cells (HMECs) in vitro, in which stattic inhibited interferon-α-induced phosphorylation of all three STATs. Likewise, fludarabine inhibits both hSTAT1 and hSTAT3 phosphorylation, but not hSTAT2, by competing with the highly conserved pY+0 and pY-X binding sites, which are less well-preserved in hSTAT2. Moreover we observed that in HMECs in vitro fludarabine inhibits cytokine and lipopolysaccharide-induced phosphorylation of hSTAT1 and hSTAT3 but does not affect hSTAT2. Finally, multiple sequence alignment of STAT-SH2 domain sequences confirmed high conservation between hSTAT1 and hSTAT3, but not hSTAT2, with respect to stattic and fludarabine binding sites. Together our data offer a molecular basis that explains STAT cross-binding specificity of stattic and fludarabine, thereby questioning the present selection strategies of SH2 domain-based competitive small inhibitors.
Collapse
Affiliation(s)
- Malgorzata Szelag
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614 Poznan, Poland
| | | | | | | | | | | |
Collapse
|
39
|
Aho V, Ollila HM, Rantanen V, Kronholm E, Surakka I, van Leeuwen WMA, Lehto M, Matikainen S, Ripatti S, Härmä M, Sallinen M, Salomaa V, Jauhiainen M, Alenius H, Paunio T, Porkka-Heiskanen T. Partial sleep restriction activates immune response-related gene expression pathways: experimental and epidemiological studies in humans. PLoS One 2013; 8:e77184. [PMID: 24194869 PMCID: PMC3806729 DOI: 10.1371/journal.pone.0077184] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 08/30/2013] [Indexed: 12/22/2022] Open
Abstract
Epidemiological studies have shown that short or insufficient sleep is associated with increased risk for metabolic diseases and mortality. To elucidate mechanisms behind this connection, we aimed to identify genes and pathways affected by experimentally induced, partial sleep restriction and to verify their connection to insufficient sleep at population level. The experimental design simulated sleep restriction during a working week: sleep of healthy men (N = 9) was restricted to 4 h/night for five nights. The control subjects (N = 4) spent 8 h/night in bed. Leukocyte RNA expression was analyzed at baseline, after sleep restriction, and after recovery using whole genome microarrays complemented with pathway and transcription factor analysis. Expression levels of the ten most up-regulated and ten most down-regulated transcripts were correlated with subjective assessment of insufficient sleep in a population cohort (N = 472). Experimental sleep restriction altered the expression of 117 genes. Eight of the 25 most up-regulated transcripts were related to immune function. Accordingly, fifteen of the 25 most up-regulated Gene Ontology pathways were also related to immune function, including those for B cell activation, interleukin 8 production, and NF-κB signaling (P<0.005). Of the ten most up-regulated genes, expression of STX16 correlated negatively with self-reported insufficient sleep in a population sample, while three other genes showed tendency for positive correlation. Of the ten most down-regulated genes, TBX21 and LGR6 correlated negatively and TGFBR3 positively with insufficient sleep. Partial sleep restriction affects the regulation of signaling pathways related to the immune system. Some of these changes appear to be long-lasting and may at least partly explain how prolonged sleep restriction can contribute to inflammation-associated pathological states, such as cardiometabolic diseases.
Collapse
Affiliation(s)
- Vilma Aho
- Department of Physiology, Institute of Biomedicine, University of Helsinki, Helsinki, Finland
| | - Hanna M. Ollila
- Department of Physiology, Institute of Biomedicine, University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine, National Institute for Health and Welfare, Helsinki, Finland
- FIMM, Finnish Institute of Molecular Medicine, Helsinki, Finland
- Department of Psychiatry, HUCH, Helsinki, Finland
| | - Ville Rantanen
- Research Programs Unit, Genome-Scale Biology & Institute of Biomedicine, University of Helsinki, Helsinki, Finland
| | - Erkki Kronholm
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Ida Surakka
- Department of Molecular Medicine, National Institute for Health and Welfare, Helsinki, Finland
- FIMM, Finnish Institute of Molecular Medicine, Helsinki, Finland
| | - Wessel M. A. van Leeuwen
- Department of Physiology, Institute of Biomedicine, University of Helsinki, Helsinki, Finland
- Centre of Expertise for Human Factors at Work, Finnish Institute of Occupational Health, Helsinki, Finland
- Stress Research Institute, Stockholm University, Stockholm, Sweden
| | - Maili Lehto
- Unit of Systems Toxicology, Centre of Expertise for Health and Work Ability, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Sampsa Matikainen
- Unit of Systems Toxicology, Centre of Expertise for Health and Work Ability, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Samuli Ripatti
- Department of Molecular Medicine, National Institute for Health and Welfare, Helsinki, Finland
- FIMM, Finnish Institute of Molecular Medicine, Helsinki, Finland
- Department of Medical Epidemiology & Biostatistics, Karolinska Institute, Stockholm, Sweden
- Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Mikko Härmä
- Centre of Expertise for Human Factors at Work, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Mikael Sallinen
- Centre of Expertise for Human Factors at Work, Finnish Institute of Occupational Health, Helsinki, Finland
- Agora Center, University of Jyväskylä, Jyväskylä, Finland
| | - Veikko Salomaa
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Matti Jauhiainen
- Department of Molecular Medicine, National Institute for Health and Welfare, Helsinki, Finland
- FIMM, Finnish Institute of Molecular Medicine, Helsinki, Finland
| | - Harri Alenius
- Unit of Systems Toxicology, Centre of Expertise for Health and Work Ability, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Tiina Paunio
- Department of Molecular Medicine, National Institute for Health and Welfare, Helsinki, Finland
- FIMM, Finnish Institute of Molecular Medicine, Helsinki, Finland
- Department of Psychiatry, HUCH, Helsinki, Finland
| | - Tarja Porkka-Heiskanen
- Department of Physiology, Institute of Biomedicine, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
40
|
Association of Single Nucleotide Polymorphisms on Chromosome 9p21.3 With Cardiovascular Death in Kidney Transplant Recipients. Transplantation 2013; 95:928-32. [DOI: 10.1097/tp.0b013e318282f2b1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
Monnier J, Lewén S, O'Hara E, Huang K, Tu H, Butcher EC, Zabel BA. Expression, regulation, and function of atypical chemerin receptor CCRL2 on endothelial cells. THE JOURNAL OF IMMUNOLOGY 2012; 189:956-67. [PMID: 22696441 DOI: 10.4049/jimmunol.1102871] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chemokine (CC motif) receptor-like 2 (CCRL2) binds leukocyte chemoattractant chemerin and can regulate local levels of the attractant, but does not itself support cell migration. In this study, we show that CCRL2 and VCAM-1 are upregulated on cultured human and mouse vascular endothelial cells (EC) and cell lines by proinflammatory stimuli. CCRL2 induction is dependent on NF-κB and JAK/STAT signaling pathways, and activated endothelial cells specifically bind chemerin. In vivo, CCRL2 is constitutively expressed at high levels by lung endothelial cells and at lower levels by liver endothelium; and liver but not lung EC respond to systemic LPS injection by further upregulation of the receptor. Plasma levels of total chemerin are elevated in CCRL2(-/-) mice and are significantly enhanced after systemic LPS treatment in CCRL2(-/-) mice compared with wild-type mice. Following acute LPS-induced pulmonary inflammation in vivo, chemokine-like receptor 1 (CMKLR1)(+) NK cell recruitment to the airways is significantly impaired in CCRL2(-/-) mice compared with wild-type mice. In vitro, chemerin binding to CCRL2 on endothelial cells triggers robust adhesion of CMKLR1(+) lymphoid cells through an α(4)β(1) integrin/VCAM-1-dependent mechanism. In conclusion, CCRL2 is expressed by EC in a tissue- and activation-dependent fashion, regulates circulating chemerin levels and its bioactivity, and enhances chemerin- and CMKLR1-dependent lymphocyte/EC adhesion in vitro and recruitment to inflamed airways in vivo. Its expression and/or induction on EC by proinflammatory stimuli provide a novel and specific mechanism for the local enrichment of chemerin at inflammatory sites, regulating the recruitment of CMKLR1(+) cells.
Collapse
Affiliation(s)
- Justin Monnier
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Wimbauer F, Yang C, Shogren KL, Zhang M, Goyal R, Riester SM, Yaszemski MJ, Maran A. Regulation of interferon pathway in 2-methoxyestradiol-treated osteosarcoma cells. BMC Cancer 2012; 12:93. [PMID: 22429849 PMCID: PMC3414746 DOI: 10.1186/1471-2407-12-93] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 03/19/2012] [Indexed: 12/20/2022] Open
Abstract
Background Osteosarcoma is a bone tumor that often affects children and young adults. Although a combination of surgery and chemotherapy has improved the survival rate in the past decades, local recurrence and metastases still develop in 40% of patients. A definite therapy is yet to be determined for osteosarcoma. Anti- tumor compound and a metabolite of estrogen, 2-methoxyestradiol (2-ME) induces cell death in osteosarcoma cells. In this report, we have investigated whether interferon (IFN) pathway is involved in 2-ME-induced anti-tumor effects in osteosarcoma cells. Methods 2-ME effects on IFN mRNA levels were determined by Real time PCR analysis. Transient transfections followed by reporter assays were used for investigating 2-ME effects on IFN-pathway. Western blot analyses were used to measure protein and phosphorylation levels of IFN-regulated eukaryotic initiation factor-2 alpha (eIF-2α). Results 2-ME regulates IFN and IFN-mediated effects in osteosarcoma cells. 2 -ME induces IFN gene activity and expression in osteosarcoma cells. 2-ME treatment induced IFN-stimulated response element (ISRE) sequence-dependent transcription and gamma-activated sequence (GAS)-dependent transcription in several osteosarcoma cells. Whereas, 2-ME did not affect IFN gene and IFN pathways in normal primary human osteoblasts (HOB). 2-ME treatment increased the phosphorylation of eIF-2α in osteosarcoma cells. Furthermore, analysis of osteosarcoma tissues shows that the levels of phosphorylated form of eIF-2α are decreased in tumor compared to normal controls. Conclusions 2-ME treatment triggers the induction and activity of IFN and IFN pathway genes in 2-ME-sensitive osteosarcoma tumor cells but not in 2-ME-resistant normal osteoblasts. In addition, IFN-signaling is inhibited in osteosarcoma patients. Thus, IFN pathways play a role in osteosarcoma and in 2-ME-mediated anti-proliferative effects, and therefore targeted induction of IFN signaling could lead to effective treatment strategies in the control of osteosarcoma.
Collapse
Affiliation(s)
- Fritz Wimbauer
- Department of Orthopedics, College of Medicine, Mayo Clinic, Rochester, MN 55906, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Li CH, Liao PL, Shyu MK, Liu CW, Kao CC, Huang SH, Cheng YW, Kang JJ. Zinc oxide nanoparticles-induced intercellular adhesion molecule 1 expression requires Rac1/Cdc42, mixed lineage kinase 3, and c-Jun N-terminal kinase activation in endothelial cells. Toxicol Sci 2012; 126:162-72. [PMID: 22166487 DOI: 10.1093/toxsci/kfr331] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The explosive development of nanotechnology has caused an increase in unintended biohazards in humans and in the ecosystem. Similar to particulate matter, nanoparticles (NPs) are strongly correlated with the increase in incidences of cardiovascular diseases, yet the mechanisms behind this correlation remain unclear. Within the testing concentrations of 0.1-10 μg/ml, which did not cause a marked drop in cell viability, zinc oxide NPs (ZnO-NPs) induced intercellular adhesion molecule-1 (ICAM-1) messenger RNA, and protein expression in both concentration- and time-dependent manner in treated human umbilical vein endothelial cells (HUVECs). ZnO-NPs treatment cause the activation of Ras-related C3 botulinum toxin substrate 1 (Rac1)/cell division control protein 42 homolog (Cdc42) and protein accumulation of mixed lineage kinase 3 (MLK3), followed by c-Jun N-terminal kinase (JNK) and transcription factor c-Jun activation. Induction of ICAM-1 and phosphorylation of JNK and c-Jun could be inhibited by either JNK inhibitor SP600125 or Rac guanosine triphosphatase inhibitor NSC23766 pretreatment. In addition, pretreatment with NSC23766 significantly reduced MLK3 accumulation, suggesting the involvement of Rac1/Cdc42-MLK3-JNK-c-Jun signaling in the regulation of ZnO-NPs-induced ICAM-1 expression, whereas these signaling factors were not activated in zinc oxide microparticles (ZnO-MPs)-treated HUVECs. The increase of ICAM-1 expression on ZnO-NPs-treated HUVECs enables leukocytes to adhere and has been identified as an indicator of vascular inflammation. Our data are essential for safety evaluation of the clinical usage of ZnO-NPs in daily supplements, cosmetics, and biomedicines.
Collapse
Affiliation(s)
- Ching-Hao Li
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Liu H, Ning H, Men H, Hou R, Fu M, Zhang H, Liu J. Regulation of CCL5 expression in smooth muscle cells following arterial injury. PLoS One 2012; 7:e30873. [PMID: 22292067 PMCID: PMC3264622 DOI: 10.1371/journal.pone.0030873] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 12/22/2011] [Indexed: 12/15/2022] Open
Abstract
Chemokines play a crucial role in inflammation and in the pathophysiology of atherosclerosis by recruiting inflammatory immune cells to the endothelium. Chemokine CCL5 has been shown to be involved in atherosclerosis progression. However, little is known about how CCL5 is regulated in vascular smooth muscle cells. In this study we report that CCL5 mRNA expression was induced and peaked in aorta at day 7 and then declined after balloon artery injury, whereas IP-10 and MCP-1 mRNA expression were induced and peaked at day 3 and then rapidly declined. The expression of CCL5 receptors (CCR1, 3 & 5) were also rapidly induced and then declined except CCR5 which expression was still relatively high at day 14 after balloon injury. In rat smooth muscle cells (SMCs), similar as in aorta CCL5 mRNA expression was induced and kept increasing after LPS plus IFN-gamma stimulation, whereas IP-10 mRNA expression was rapidly induced and then declined. Our data further indicate that induction of CCL5 expression in SMCs was mediated by IRF-1 via binding to the IRF-1 response element in CCL5 promoter. Moreover, p38 MAPK was involved in suppression of CCL5 and IP-10 expression in SMCs through common upstream molecule MKK3. The downstream molecule MK2 was required for p38-mediated CCL5 but not IP-10 inhibition. Our findings indicate that CCL5 induction in aorta and SMCs is mediated by IRF-1 while activation of p38 MAPK signaling inhibits CCL5 and IP-10 expression. Methods targeting MK2 expression could be used to selectively regulate CCL5 but not IP-10 expression in SMCs.
Collapse
MESH Headings
- Animals
- Carotid Artery Injuries/genetics
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/pathology
- Carotid Artery, Common/drug effects
- Carotid Artery, Common/metabolism
- Carotid Artery, Common/pathology
- Cells, Cultured
- Chemokine CCL5/genetics
- Chemokine CCL5/metabolism
- Chemokine CXCL10/genetics
- Chemokine CXCL10/metabolism
- Chemokine CXCL10/physiology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Interferon Regulatory Factor-1/genetics
- Interferon Regulatory Factor-1/metabolism
- Interferon Regulatory Factor-1/physiology
- Lipopolysaccharides/pharmacology
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Rats
- Rats, Sprague-Dawley
- Time Factors
- Transfection
- p38 Mitogen-Activated Protein Kinases/metabolism
- p38 Mitogen-Activated Protein Kinases/physiology
Collapse
Affiliation(s)
- Huan Liu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
- Heibei North University Medical College, Zhangjiakou, China
| | - Huan Ning
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Hongchao Men
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Rong Hou
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Mingui Fu
- Shock/Trauma Research Center & Department of Basic Medical Science, School of Medicine, University of Missouri Kansas City, Missouri, United States of America
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
- * E-mail: (JL); (HZ)
| | - Jianguo Liu
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: (JL); (HZ)
| |
Collapse
|
45
|
STAT1 as a novel therapeutical target in pro-atherogenic signal integration of IFNγ, TLR4 and IL-6 in vascular disease. Cytokine Growth Factor Rev 2011; 22:211-9. [PMID: 21752694 DOI: 10.1016/j.cytogfr.2011.06.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inflammation participates importantly in host defenses against infectious agents and injury, but it also contributes to the pathophysiology of atherosclerosis. Recruitment of blood leukocytes to the injured vascular endothelium characterizes the initiation and progression of atherosclerosis and involves many inflammatory mediators, modulated by cells of both innate and adaptive immunity. The pro-inflammatory cytokine, interferon (IFN)-γ derived from T cells, is vital for both innate and adaptive immunity and is also expressed at high levels in atherosclerotic lesions. As such IFN-γ plays a crucial role in the pathology of atherosclerosis through activation of signal transducer and activator of transcription (STAT) 1. Toll-like receptors (TLRs) are innate immune pattern recognition receptors (PRRs) expressed on a variety of cells, and thus initiate and sustain the inflammatory response in atherosclerosis. More recent studies have revealed that STAT1 is involved in the signaling events mediated by TLR4, leading to increased expression of several pro-inflammatory and pro-atherogenic mediators. By upregulating members of the Suppressors Of Cytokine Signaling (SOCS) family that regulate cellular responsiveness to immune signals, IFNγ and TLR4-activated pathways have also shown to inhibit IL-6 STAT3-dependent anti-inflammatory signaling and potentially shift IL-6 to a STAT1 activating pro-inflammatory cytokine. Consequently, STAT1 has been identified as a point of convergence for the cross-talk between the pro-atherogenic IFN-γ, TLR4 and IL-6 activated pathways in immune as well as vascular cells, as such amplifying pro-inflammatory signals. This results in augmented smooth muscle cell (SMC) and leukocyte migration, leukocyte to endothelial cell (EC) adhesion and foam cell formation, and could encompass a novel mechanism involved in the initiation and progression of atherosclerosis. Therefore, application of small inhibitory compounds that specifically interact with the SH2-phosphotyrosine pocket of STAT1, proposed here as a novel working mechanism for the known STAT1 inhibitor fludarabine, could be a promising tool in the development of a therapeutical strategy for atherosclerosis.
Collapse
|