1
|
Miller ZA, Carey RM, Lee RJ. A deadly taste: linking bitter taste receptors and apoptosis. Apoptosis 2025; 30:674-692. [PMID: 39979526 PMCID: PMC11946974 DOI: 10.1007/s10495-025-02091-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
Humans can perceive five canonical tastes: salty, sour, umami, sweet, and bitter. These tastes are transmitted through the activation of ion channels and receptors. Bitter taste receptors (Taste Family 2 Receptors; T2Rs) are a sub-family of 25 G-protein coupled receptor (GPCR) isoforms that were first identified in type II taste bud cells. T2Rs are activated by a broad array of bitter agonists, which cause an increase in intracellular calcium (Ca2+) and a decrease in cyclic adenosine 3',5'-monophosphate (cAMP). Interestingly, T2Rs are expressed beyond the oral cavity, where they play diverse non-taste roles in cell physiology and disease. Here, we summarize the literature that explores the role of T2Rs in apoptosis. Activation of T2Rs with bitter agonists induces apoptosis in several cancers, the airway epithelia, smooth muscle, and more. In many of these tissues, T2R activation causes mitochondrial Ca2+ overload, a main driver of apoptosis. This response may be a result of T2R cellular localization, nuclear Ca2+ mobilization and/or a remnant of the established immunological roles of T2Rs in other cell types. T2R-induced apoptosis could be pharmacologically leveraged to treat diseases of altered cellular proliferation. Future work must explore additional extra-oral T2R-expressing tissues for apoptotic responses, develop methods for in-vivo studies, and discover high affinity bitter agonists for clinical application.
Collapse
Affiliation(s)
- Zoey A Miller
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Pharmacology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ryan M Carey
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Robert J Lee
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
Peri L, Matzov D, Huxley DR, Rainish A, Fierro F, Sapir L, Pfeiffer T, Waterloo L, Hübner H, Peleg Y, Gmeiner P, McCormick PJ, Weikert D, Niv MY, Shalev-Benami M. A bitter anti-inflammatory drug binds at two distinct sites of a human bitter taste GPCR. Nat Commun 2024; 15:9991. [PMID: 39557861 PMCID: PMC11574016 DOI: 10.1038/s41467-024-54157-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024] Open
Abstract
Bitter taste receptors (TAS2Rs), a subfamily of G-protein coupled receptors (GPCRs) expressed orally and extraorally, elicit signaling in response to a large set of tastants. Among 25 functional TAS2Rs encoded in the human genome, TAS2R14 is the most promiscuous, and responds to hundreds of chemically diverse ligands. Here we present the cryo-electron microscopy (cryo-EM) structure of the human TAS2R14 in complex with its signaling partner gustducin, and bound to flufenamic acid (FFA), a clinically approved nonsteroidal anti-inflammatory drug. The structure reveals an unusual binding mode, where two copies of FFA are bound at distinct pockets: one at the canonical receptor site within the trans-membrane bundle, and the other in the intracellular facet, bridging the receptor with gustducin. Together with a pocket-specific BRET-based ligand binding assay, these results illuminate bitter taste signaling and provide tools for a site-targeted compound design.
Collapse
Affiliation(s)
- Lior Peri
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- The Fritz Haber Research Center, and the Harvey M. Kruger Center for Nanoscience & Nanotechnology, Institute of Chemistry, The Hebrew University, Jerusalem, Israel
| | - Donna Matzov
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Dominic R Huxley
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary, University of London, Charterhouse Square, London, UK
| | - Alon Rainish
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- The Fritz Haber Research Center, and the Harvey M. Kruger Center for Nanoscience & Nanotechnology, Institute of Chemistry, The Hebrew University, Jerusalem, Israel
| | - Fabrizio Fierro
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- The Fritz Haber Research Center, and the Harvey M. Kruger Center for Nanoscience & Nanotechnology, Institute of Chemistry, The Hebrew University, Jerusalem, Israel
| | - Liel Sapir
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- The Fritz Haber Research Center, and the Harvey M. Kruger Center for Nanoscience & Nanotechnology, Institute of Chemistry, The Hebrew University, Jerusalem, Israel
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel
| | - Tara Pfeiffer
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lukas Waterloo
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Yoav Peleg
- Structural Proteomics Unit (SPU), Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot, Israel
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- FAUNeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Peter J McCormick
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary, University of London, Charterhouse Square, London, UK
- Department of Pharmacology and Therapeutics, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Dorothee Weikert
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
- FAUNeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Masha Y Niv
- The Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
- The Fritz Haber Research Center, and the Harvey M. Kruger Center for Nanoscience & Nanotechnology, Institute of Chemistry, The Hebrew University, Jerusalem, Israel.
| | - Moran Shalev-Benami
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
3
|
Servant G, Kenakin T. A Pharmacological perspective on the temporal properties of sweeteners. Pharmacol Res 2024; 204:107211. [PMID: 38744400 DOI: 10.1016/j.phrs.2024.107211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Several non-caloric sweeteners exhibit a delay in sweetness onset and a sweetness linger after sampling. These temporal properties are thought to be the result of non-specific interactions with cell membranes and proteins in the oral cavity. Data and analysis presented in this report also support the potential involvement of receptor affinity and binding kinetics to this phenomenon. In general, affected sweeteners exhibit distinctly higher binding affinity compared to carbohydrate sweeteners, which do not have temporal issues. In addition, binding kinetic simulations illustrate much slower receptor binding association and dissociation kinetics for a set of non-caloric sweeteners presenting temporal issues, in comparison to carbohydrate sweeteners. So, the higher affinity of some non-caloric sweeteners, dictating lower use levels, and affecting binding kinetics, could contribute to their delay and linger in sweetness perception. Simple pharmacology principles could explain, at least in part, some of the temporal issues of sweeteners.
Collapse
Affiliation(s)
- Guy Servant
- dsm-firmenich, 10636 Scripps Summit Court #201, San Diego, CA 92131, USA.
| | - Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, 120 Mason Farm Rd., 4042 Genetic Medicine CB #7365, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
McMahon DB, Kuek LE, Johnson ME, Johnson PO, Horn RL, Carey RM, Adappa ND, Palmer JN, Lee RJ. The bitter end: T2R bitter receptor agonists elevate nuclear calcium and induce apoptosis in non-ciliated airway epithelial cells. Cell Calcium 2022; 101:102499. [PMID: 34839223 PMCID: PMC8752513 DOI: 10.1016/j.ceca.2021.102499] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/21/2021] [Accepted: 10/31/2021] [Indexed: 01/03/2023]
Abstract
Bitter taste receptors (T2Rs) localize to airway motile cilia and initiate innate immune responses in retaliation to bacterial quorum sensing molecules. Activation of cilia T2Rs leads to calcium-driven NO production that increases cilia beating and directly kills bacteria. Several diseases, including chronic rhinosinusitis, COPD, and cystic fibrosis, are characterized by loss of motile cilia and/or squamous metaplasia. To understand T2R function within the altered landscape of airway disease, we studied T2Rs in non-ciliated airway cell lines and primary cells. Several T2Rs localize to the nucleus in de-differentiated cells that typically localize to cilia in differentiated cells. As cilia and nuclear import utilize shared proteins, some T2Rs may target to the nucleus in the absence of motile cilia. T2R agonists selectively elevated nuclear and mitochondrial calcium through a G-protein-coupled receptor phospholipase C mechanism. Additionally, T2R agonists decreased nuclear cAMP, increased nitric oxide, and increased cGMP, consistent with T2R signaling. Furthermore, exposure to T2R agonists led to nuclear calcium-induced mitochondrial depolarization and caspase activation. T2R agonists induced apoptosis in primary bronchial and nasal cells differentiated at air-liquid interface but then induced to a squamous phenotype by apical submersion. Air-exposed well-differentiated cells did not die. This may be a last-resort defense against bacterial infection. However, it may also increase susceptibility of de-differentiated or remodeled epithelia to damage by bacterial metabolites. Moreover, the T2R-activated apoptosis pathway occurs in airway cancer cells. T2Rs may thus contribute to microbiome-tumor cell crosstalk in airway cancers. Targeting T2Rs may be useful for activating cancer cell apoptosis while sparing surrounding tissue.
Collapse
Affiliation(s)
- Derek B. McMahon
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA,Correspondence: Derek B. McMahon, PhD or Robert J. Lee, PhD, Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA, 215-573-9766, (D.B.M.) or (R.J.L)
| | - Li Eon Kuek
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Madeline E. Johnson
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Paige O. Johnson
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Rachel L.J. Horn
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ryan M. Carey
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nithin D. Adappa
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - James N. Palmer
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Robert J. Lee
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA,Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA,Correspondence: Derek B. McMahon, PhD or Robert J. Lee, PhD, Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA USA, 215-573-9766, (D.B.M.) or (R.J.L)
| |
Collapse
|
5
|
Carey RM, McMahon DB, Miller ZA, Kim T, Rajasekaran K, Gopallawa I, Newman JG, Basu D, Nead KT, White EA, Lee RJ. T2R bitter taste receptors regulate apoptosis and may be associated with survival in head and neck squamous cell carcinoma. Mol Oncol 2021; 16:1474-1492. [PMID: 34717036 PMCID: PMC8978516 DOI: 10.1002/1878-0261.13131] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/16/2021] [Accepted: 10/28/2021] [Indexed: 12/02/2022] Open
Abstract
Better management of head and neck squamous cell carcinomas (HNSCCs) requires a clearer understanding of tumor biology and disease risk. Bitter taste receptors (T2Rs) have been studied in several cancers, including thyroid, salivary, and GI, but their role in HNSCC has not been explored. We found that HNSCC patient samples and cell lines expressed functional T2Rs on both the cell and nuclear membranes. Bitter compounds, including bacterial metabolites, activated T2R‐mediated nuclear Ca2+ responses leading to mitochondrial depolarization, caspase activation, and ultimately apoptosis. Buffering nuclear Ca2+ elevation blocked caspase activation. Furthermore, increased expression of T2Rs in HNSCCs from The Cancer Genome Atlas is associated with improved overall survival. This work suggests that T2Rs are potential biomarkers to predict outcomes and guide treatment selection, may be leveraged as therapeutic targets to stimulate tumor apoptosis, and may mediate tumor‐microbiome crosstalk in HNSCC.
Collapse
Affiliation(s)
- Ryan M Carey
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Derek B McMahon
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Zoey A Miller
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - TaeBeom Kim
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Karthik Rajasekaran
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Indiwari Gopallawa
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jason G Newman
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Devraj Basu
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kevin T Nead
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elizabeth A White
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Robert J Lee
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Schienle A, Osmani F, Schlintl C. Disgust Propensity and the Bitter Aftertaste Response. CHEMOSENS PERCEPT 2020. [DOI: 10.1007/s12078-020-09283-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Abstract
Introduction
A high level of disgust propensity (the general tendency to respond with the emotion of disgust to any given situation) is associated with an increased sensitivity to bitter taste. The present study examined the relationship between disgust propensity and the sensitivity to bitter aftertaste.
Methods
A total of 200 women rinsed their mouth with concentrated wormwood tea (Artemisia absinthium). The resulting aftertaste was evaluated (intensity of bitterness and disgust) every 15 s for 10 min. A multiple linear regression analysis was calculated to capture the association between aftertaste ratings and affective variables (e.g., disgust propensity, depression symptoms).
Results
Higher disgust propensity was associated with higher initial disgust ratings and faster reduction of disgust over time. Higher depression scores were associated with a slower disgust reduction.
Conclusion
We demonstrated that affective variables predict the temporal course of the wormwood aftertaste response. Having a higher disgust propensity was associated with a shortened disgust recovery.
Implications
A shortened disgust recovery may be adaptive because it enables faster processing of new disgust stimuli.
Collapse
|
7
|
Schienle A, Gremsl A, Schwab D. Placebos can change affective contexts: An event-related potential study. Biol Psychol 2020; 150:107843. [DOI: 10.1016/j.biopsycho.2020.107843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/11/2019] [Accepted: 01/10/2020] [Indexed: 10/25/2022]
|
8
|
Gotanda M, Kamiya K, Osaki T, Fujii S, Misawa N, Miki N, Takeuchi S. Automatic Planar Asymmetric Lipid Bilayer Membrane Formation toward Biological High-Throughput Assay. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:4496-4499. [PMID: 30441350 DOI: 10.1109/embc.2018.8513135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This paper describes automation of planar lipid bilayer formation by introducing a stepping motor to a microfluidic device. Planar lipid bilayers or lipid vesicles are useful to understand biological reactions and to investigate the interaction between lipids and proteins. Therefore, to acquire large amount of the information, high-throughput production of planar lipid bilayers or giant vesicles (GVs) is necessary. The droplet split-and-contact method, which enhances the efficiencies of both planar lipid bilayer formation and GV generation, needs to be automated for increasing the throughput. Previous droplet split-and-contact devices were manipulated manually; hence, the influence of manipulation on planar lipid bilayer formation was not evaluated quantitatively. First, to develop an automated system for generating asymmetric planar lipid bilayers, a stepping motor, which allows to control the angular speed of the rotor, is integrated into the droplet split- and-contact device (Fig. $1(\mathrm{b)$). Next, we assessed planar lipid bilayer generation at various angular speeds and found the speed limit for bilayer formation. Finally, we generated asymmetric planar lipid bilayers that have different lipid composition on outer and inner leaflets using this automated device and confirmed the asymmetry of the planar lipid bilayers by generating GVs.
Collapse
|
9
|
Di Pizio A, Ben Shoshan-Galeczki Y, Hayes JE, Niv MY. Bitter and sweet tasting molecules: It's complicated. Neurosci Lett 2018; 700:56-63. [PMID: 29679682 DOI: 10.1016/j.neulet.2018.04.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/22/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022]
Abstract
"Bitter" and "sweet" are frequently framed in opposition, both functionally and metaphorically, in regard to affective responses, emotion, and nutrition. This oppositional relationship is complicated by the fact that some molecules are simultaneously bitter and sweet. In some cases, a small chemical modification, or a chirality switch, flips the taste from sweet to bitter. Molecules humans describe as bitter are recognized by a 25-member subfamily of class A G-protein coupled receptors (GPCRs) known as TAS2Rs. Molecules humans describe as sweet are recognized by a TAS1R2/TAS1R3 heterodimer of class C GPCRs. Here we characterize the chemical space of bitter and sweet molecules: the majority of bitter compounds show higher hydrophobicity compared to sweet compounds, while sweet molecules have a wider range of sizes. Importantly, recent evidence indicates that TAS1Rs and TAS2Rs are not limited to the oral cavity; moreover, some bitterants are pharmacologically promiscuous, with the hERG potassium channel, cytochrome P450 enzymes, and carbonic anhydrases as common off-targets. Further focus on polypharmacology may unravel new physiological roles for tastant molecules.
Collapse
Affiliation(s)
- Antonella Di Pizio
- The Institute of Biochemistry, Food and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, 76100, Rehovot, Israel; The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem, 91904, Israel
| | - Yaron Ben Shoshan-Galeczki
- The Institute of Biochemistry, Food and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, 76100, Rehovot, Israel; The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem, 91904, Israel
| | - John E Hayes
- Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park PA, USA
| | - Masha Y Niv
- The Institute of Biochemistry, Food and Nutrition, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, 76100, Rehovot, Israel; The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Jerusalem, 91904, Israel.
| |
Collapse
|
10
|
Behrens M, Meyerhof W. Vertebrate Bitter Taste Receptors: Keys for Survival in Changing Environments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2204-2213. [PMID: 28013542 DOI: 10.1021/acs.jafc.6b04835] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Research on bitter taste receptors has made enormous progress during recent years. Although in the early period after the discovery of this highly interesting receptor family special emphasis was placed on the deorphanization of mainly human bitter taste receptors, the research focus has shifted to sophisticated structure-function analyses, the discovery of small-molecule interactors, and the pharmacological profiling of nonhuman bitter taste receptors. These findings allowed novel perspectives on, for example, evolutionary and ecological questions that have arisen and that are discussed.
Collapse
Affiliation(s)
- Maik Behrens
- Department of Molecular Genetics , German Institute of Human Nutrition Potsdam-Rehbruecke , Arthur-Scheunert-Allee 114-116 , 14558 Nuthetal , Germany
| | - Wolfgang Meyerhof
- Department of Molecular Genetics , German Institute of Human Nutrition Potsdam-Rehbruecke , Arthur-Scheunert-Allee 114-116 , 14558 Nuthetal , Germany
| |
Collapse
|
11
|
Regulation of Rac1 GTPase activity by quinine through G-protein and bitter taste receptor T2R4. Mol Cell Biochem 2016; 426:129-136. [DOI: 10.1007/s11010-016-2886-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/10/2016] [Indexed: 01/02/2023]
|
12
|
Bachmanov AA, Bosak NP, Glendinning JI, Inoue M, Li X, Manita S, McCaughey SA, Murata Y, Reed DR, Tordoff MG, Beauchamp GK. Genetics of Amino Acid Taste and Appetite. Adv Nutr 2016; 7:806S-22S. [PMID: 27422518 PMCID: PMC4942865 DOI: 10.3945/an.115.011270] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The consumption of amino acids by animals is controlled by both oral and postoral mechanisms. We used a genetic approach to investigate these mechanisms. Our studies have shown that inbred mouse strains differ in voluntary amino acid consumption, and these differences depend on sensory and nutritive properties of amino acids. Like humans, mice perceive some amino acids as having a sweet (sucrose-like) taste and others as having an umami (glutamate-like) taste. Mouse strain differences in the consumption of some sweet-tasting amino acids (d-phenylalanine, d-tryptophan, and l-proline) are associated with polymorphisms of a taste receptor, type 1, member 3 gene (Tas1r3), and involve differential peripheral taste responsiveness. Strain differences in the consumption of some other sweet-tasting amino acids (glycine, l-alanine, l-glutamine, and l-threonine) do not depend on Tas1r3 polymorphisms and so must be due to allelic variation in other, as yet unknown, genes involved in sweet taste. Strain differences in the consumption of l-glutamate may depend on postingestive rather than taste mechanisms. Thus, genes and physiologic mechanisms responsible for strain differences in the consumption of each amino acid depend on the nature of its taste and postingestive properties. Overall, mouse strain differences in amino acid taste and appetite have a complex genetic architecture. In addition to the Tas1r3 gene, these differences depend on other genes likely involved in determining the taste and postingestive effects of amino acids. The identification of these genes may lead to the discovery of novel mechanisms that regulate amino acid taste and appetite.
Collapse
Affiliation(s)
| | | | - John I Glendinning
- Department of Biology, Barnard College, Columbia University, New York, NY
| | - Masashi Inoue
- Monell Chemical Senses Center, Philadelphia, PA; Laboratory of Cellular Neurobiology, School of Life Sciences, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | - Xia Li
- Monell Chemical Senses Center, Philadelphia, PA
| | - Satoshi Manita
- Monell Chemical Senses Center, Philadelphia, PA; Laboratory of Cellular Neurobiology, School of Life Sciences, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | | | - Yuko Murata
- Monell Chemical Senses Center, Philadelphia, PA; National Research Institute of Fisheries Science, Yokohama, Japan; and
| | | | | | - Gary K Beauchamp
- Monell Chemical Senses Center, Philadelphia, PA; Department of Psychology and School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
13
|
Bitter taste receptors: Novel insights into the biochemistry and pharmacology. Int J Biochem Cell Biol 2016; 77:184-96. [PMID: 26995065 DOI: 10.1016/j.biocel.2016.03.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 01/14/2023]
Abstract
Bitter taste receptors (T2Rs) belong to the super family of G protein-coupled receptors (GPCRs). There are 25 T2Rs expressed in humans, and these interact with a large and diverse group of bitter ligands. T2Rs are expressed in many extra-oral tissues and can perform diverse physiological roles. Structure-function studies led to the identification of similarities and dissimilarities between T2Rs and Class A GPCRs including amino acid conservation and novel motifs. However, the efficacy of most of the T2R ligands is not yet elucidated and the biochemical pharmacology of T2Rs is poorly understood. Recent studies on T2Rs characterized novel ligands including blockers for these receptors that include inverse agonist and antagonists. In this review we discuss the techniques used for elucidating bitter blockers, concept of ligand bias, generic amino acid numbering, the role of cholesterol, and conserved water molecules in the biochemistry and pharmacology of T2Rs.
Collapse
|
14
|
French A, Ali Agha M, Mitra A, Yanagawa A, Sellier MJ, Marion-Poll F. Drosophila Bitter Taste(s). Front Integr Neurosci 2015; 9:58. [PMID: 26635553 PMCID: PMC4658422 DOI: 10.3389/fnint.2015.00058] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 10/30/2015] [Indexed: 11/13/2022] Open
Abstract
Most animals possess taste receptors neurons detecting potentially noxious compounds. In humans, the ligands which activate these neurons define a sensory space called “bitter”. By extension, this term has been used in animals and insects to define molecules which induce aversive responses. In this review, based on our observations carried out in Drosophila, we examine how bitter compounds are detected and if bitter-sensitive neurons respond only to molecules bitter to humans. Like most animals, flies detect bitter chemicals through a specific population of taste neurons, distinct from those responding to sugars or to other modalities. Activating bitter-sensitive taste neurons induces aversive reactions and inhibits feeding. Bitter molecules also contribute to the suppression of sugar-neuron responses and can lead to a complete inhibition of the responses to sugar at the periphery. Since some bitter molecules activate bitter-sensitive neurons and some inhibit sugar detection, bitter molecules are represented by two sensory spaces which are only partially congruent. In addition to molecules which impact feeding, we recently discovered that the activation of bitter-sensitive neurons also induces grooming. Bitter-sensitive neurons of the wings and of the legs can sense chemicals from the gram negative bacteria, Escherichia coli, thus adding another biological function to these receptors. Bitter-sensitive neurons of the proboscis also respond to the inhibitory pheromone, 7-tricosene. Activating these neurons by bitter molecules in the context of sexual encounter inhibits courting and sexual reproduction, while activating these neurons with 7-tricosene in a feeding context will inhibit feeding. The picture that emerges from these observations is that the taste system is composed of detectors which monitor different “categories” of ligands, which facilitate or inhibit behaviors depending on the context (feeding, sexual reproduction, hygienic behavior), thus considerably extending the initial definition of “bitter” tasting.
Collapse
Affiliation(s)
- Alice French
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay Gif-sur-Yvette, France
| | - Moutaz Ali Agha
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay Gif-sur-Yvette, France
| | - Aniruddha Mitra
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay Gif-sur-Yvette, France
| | - Aya Yanagawa
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay Gif-sur-Yvette, France ; Research Institute for Sustainable Humanosphere, Kyoto University Uji City, Japan
| | - Marie-Jeanne Sellier
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay Gif-sur-Yvette, France
| | - Frédéric Marion-Poll
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay Gif-sur-Yvette, France ; AgroParisTech Paris, France
| |
Collapse
|
15
|
Roura E, Aldayyani A, Thavaraj P, Prakash S, Greenway D, Thomas WG, Meyerhof W, Roudnitzky N, Foster SR. Variability in Human Bitter Taste Sensitivity to Chemically Diverse Compounds Can Be Accounted for by Differential TAS2R Activation. Chem Senses 2015; 40:427-35. [PMID: 25999325 DOI: 10.1093/chemse/bjv024] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The human population displays high variation in taste perception. Differences in individual taste sensitivity may also impact on nutrient intake and overall appetite. A well-characterized example is the variable perception of bitter compounds such as 6-n-propylthiouracil (PROP) and phenylthiocarbamide (PTC), which can be accounted for at the molecular level by polymorphic variants in the specific type 2 taste receptor (TAS2R38). This phenotypic variation has been associated with influencing dietary preference and other behaviors, although the generalization of PROP/PTC taster status as a predictor of sensitivity to other tastes is controversial. Here, we proposed that the taste sensitivities of different bitter compounds would be correlated only when they activate the same bitter taste receptor. Thirty-four volunteers were exposed to 8 bitter compounds that were selected based on their potential to activate overlapping and distinct repertoires of TAS2Rs. Taste intensity ratings were evaluated using the general Labeled Magnitude Scale. Our data demonstrate a strong interaction between the intensity for bitter substances when they activate common TAS2Rs. Consequently, PROP/PTC sensitivity was not a reliable predictor of general bitter sensitivity. In addition, our findings provide a novel framework to predict taste sensitivity based on their specific T2R activation profile.
Collapse
Affiliation(s)
- Eugeni Roura
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4072, Australia,
| | - Asya Aldayyani
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4072, Australia, School of Agriculture and Food Science, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Pridhuvi Thavaraj
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Sangeeta Prakash
- School of Agriculture and Food Science, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Delma Greenway
- School of Agriculture and Food Science, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Walter G Thomas
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia and
| | - Wolfgang Meyerhof
- Department of Molecular Genetics, German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Nuthetal, Germany
| | - Natacha Roudnitzky
- Department of Molecular Genetics, German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Nuthetal, Germany
| | - Simon R Foster
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia and
| |
Collapse
|
16
|
Abstract
In flies and humans, bitter chemicals are known to inhibit sugar detection, but the adaptive role of this inhibition is often overlooked. At best, this inhibition is described as contributing to the rejection of potentially toxic food, but no studies have addressed the relative importance of the direct pathway that involves activating bitter-sensitive cells versus the indirect pathway represented by the inhibition of sugar detection. Using toxins to selectively ablate or inactivate populations of bitter-sensitive cells, we assessed the behavioral responses of flies to sucrose mixed with strychnine (which activates bitter-sensitive cells and inhibits sugar detection) or with L-canavanine (which only activates bitter-sensitive cells). As expected, flies with ablated bitter-sensitive cells failed to detect L-canavanine mixed with sucrose in three different feeding assays (proboscis extension responses, capillary feeding, and two-choice assays). However, such flies were still able to avoid strychnine mixed with sucrose. By means of electrophysiological recordings, we established that bitter molecules differ in their potency to inhibit sucrose detection and that sugar-sensing inhibition affects taste cells on the proboscis and the legs. The optogenetic response of sugar-sensitive cells was not reduced by strychnine, thus suggesting that this inhibition is linked directly to sugar transduction. We postulate that sugar-sensing inhibition represents a mechanism in insects to prevent ingesting harmful substances occurring within mixtures.
Collapse
|
17
|
Malach E, Shaul ME, Peri I, Huang L, Spielman AI, Seger R, Naim M. Membrane-permeable tastants amplify β2-adrenergic receptor signaling and delay receptor desensitization via intracellular inhibition of GRK2's kinase activity. Biochim Biophys Acta Gen Subj 2015; 1850:1375-88. [PMID: 25857770 DOI: 10.1016/j.bbagen.2015.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Amphipathic sweet and bitter tastants inhibit purified forms of the protein kinases GRK2, GRK5 and PKA activities. Here we tested whether membrane-permeable tastants may intracellularly interfere with GPCR desensitization at the whole cell context. METHODS β2AR-transfected cells and cells containing endogenous β2AR were preincubated with membrane-permeable or impermeable tastants and then stimulated with isoproterenol (ISO). cAMP formation, β2AR phosphorylation and β2AR internalization were monitored in response to ISO stimulation. IBMX and H89 inhibitors and GRK2 silencing were used to explore possible roles of PDE, PKA, and GRK2 in the tastants-mediated amplification of cAMP formation and the tastant delay of β2AR phosphorylation and internalization. RESULTS Membrane-permeable but not impermeable tastants amplified the ISO-stimulated cAMP formation in a concentration- and time-dependent manner. Without ISO stimulation, amphipathic tastants, except caffeine, had no effect on cAMP formation. The amplification of ISO-stimulated cAMP formation by the amphipathic tastants was not affected by PDE and PKA activities, but was completely abolished by GRK2 silencing. Amphipathic tastants delayed the ISO-induced GRK-mediated phosphorylation of β2ARs and GRK2 silencing abolished it. Further, tastants also delayed the ISO-stimulated β2AR internalization. CONCLUSION Amphipathic tastants significantly amplify β2AR signaling and delay its desensitization via their intracellular inhibition of GRK2. GENERAL SIGNIFICANCE Commonly used amphipathic tastants may potentially affect similar GPCR pathways whose desensitization depends on GRK2's kinase activity. Because GRK2 also modulates phosphorylation of non-receptor components in multiple cellular pathways, these gut-absorbable tastants may permeate into various cells, and potentially affect GRK2-dependent phosphorylation processes in these cells as well.
Collapse
Affiliation(s)
- Einav Malach
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Merav E Shaul
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Irena Peri
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Liquan Huang
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | | | - Rony Seger
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | - Michael Naim
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
18
|
Improving the controlled delivery formulations of caffeine in alginate hydrogel beads combined with pectin, carrageenan, chitosan and psyllium. Food Chem 2015; 167:378-86. [DOI: 10.1016/j.foodchem.2014.07.011] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/02/2014] [Accepted: 07/02/2014] [Indexed: 11/22/2022]
|
19
|
König C, Schleyer M, Leibiger J, El-Keredy A, Gerber B. Bitter-sweet processing in larval Drosophila. Chem Senses 2014; 39:489-505. [PMID: 24833133 DOI: 10.1093/chemse/bju016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
"Sweet-" and "bitter-" tasting substances distinctively support attractive and aversive choice behavior, respectively, and therefore are thought to be processed by distinct pathways. Interestingly, electrophysiological recordings in adult Drosophila suggest that bitter and salty tastants, in addition to activating bitter, salt, or bitter/salt sensory neurons, can also inhibit sweet-sensory neurons. However, the behavioral significance of such a potential for combinatorial coding is little understood. Using larval Drosophila as a study case, we find that the preference towards fructose is inhibited when assayed in the background of the bitter tastant quinine. When testing the influence of quinine on the preference to other, equally preferred sweet tastants, we find that these sweet tastants differ in their susceptibility to be inhibited by quinine. Such stimulus specificity argues that the inhibitory effect of quinine is not due to general effects on locomotion or nausea. In turn, not all bitter tastants have the same potency to inhibit sweet preference; notably, their inhibitory potency is not determined by the strength of the avoidance of them. Likewise, equally avoided concentrations of sodium chloride differ in their potency to inhibit sugar preference. Furthermore, Gr33a-Gal4-positive neurons, while being necessary for bitter avoidance, are dispensable for inhibition of the sweet pathway. Thus, interactions across taste modalities are behaviorally significant and, as we discuss, arguably diverse in mechanism. These results suggest that the coding of tastants and the organization of gustatory behavior may be more combinatorial than is generally acknowledged.
Collapse
Affiliation(s)
- Christian König
- Department of Genetics, Institute of Biology, University of Leipzig, Talstr. 33, 04103 Leipzig, Germany, Research Group Molecular Systems Biology of Learning, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - Michael Schleyer
- Department of Genetics, Institute of Biology, University of Leipzig, Talstr. 33, 04103 Leipzig, Germany, Department of Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - Judith Leibiger
- Department of Genetics, Institute of Biology, University of Leipzig, Talstr. 33, 04103 Leipzig, Germany, Department of Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - Amira El-Keredy
- Department of Genetics, Faculty of Agriculture, Tanta University, Tanta-Kafr El-Sheikh Road, Seberbay Campus, 31527 Tanta, Egypt
| | - Bertram Gerber
- Department of Genetics of Learning and Memory, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany, Institute of Biology, Otto von Guericke University of Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany and Center for Behavioral Brain Sciences, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
20
|
Gees M, Alpizar YA, Luyten T, Parys JB, Nilius B, Bultynck G, Voets T, Talavera K. Differential Effects of Bitter Compounds on the Taste Transduction Channels TRPM5 and IP3 Receptor Type 3. Chem Senses 2014; 39:295-311. [DOI: 10.1093/chemse/bjt115] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
21
|
Bachmanov AA, Bosak NP, Lin C, Matsumoto I, Ohmoto M, Reed DR, Nelson TM. Genetics of taste receptors. Curr Pharm Des 2014; 20:2669-83. [PMID: 23886383 PMCID: PMC4764331 DOI: 10.2174/13816128113199990566] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/24/2013] [Indexed: 12/19/2022]
Abstract
Taste receptors function as one of the interfaces between internal and external milieus. Taste receptors for sweet and umami (T1R [taste receptor, type 1]), bitter (T2R [taste receptor, type 2]), and salty (ENaC [epithelial sodium channel]) have been discovered in the recent years, but transduction mechanisms of sour taste and ENaC-independent salt taste are still poorly understood. In addition to these five main taste qualities, the taste system detects such noncanonical "tastes" as water, fat, and complex carbohydrates, but their reception mechanisms require further research. Variations in taste receptor genes between and within vertebrate species contribute to individual and species differences in taste-related behaviors. These variations are shaped by evolutionary forces and reflect species adaptations to their chemical environments and feeding ecology. Principles of drug discovery can be applied to taste receptors as targets in order to develop novel taste compounds to satisfy demand in better artificial sweeteners, enhancers of sugar and sodium taste, and blockers of bitterness of food ingredients and oral medications.
Collapse
|
22
|
Xu J, Cao J, Iguchi N, Riethmacher D, Huang L. Functional characterization of bitter-taste receptors expressed in mammalian testis. Mol Hum Reprod 2012; 19:17-28. [PMID: 22983952 DOI: 10.1093/molehr/gas040] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mammalian spermatogenesis and sperm maturation are susceptible to the effects of internal and external factors. However, how male germ cells interact with and respond to these elements including those potentially toxic substances is poorly understood. Here, we show that many bitter-taste receptors (T2rs), which are believed to function as gatekeepers in the oral cavity to detect and innately prevent the ingestion of poisonous bitter-tasting compounds, are expressed in mouse seminiferous tubules. Our in situ hybridization results indicate that Tas2r transcripts are expressed postmeiotically. Functional analysis showed that mouse spermatids and spermatozoa responded to both naturally occurring and synthetic bitter-tasting compounds by increasing intracellular free calcium concentrations, and individual male germ cells exhibited different ligand-activation profiles, indicating that each cell may express a unique subset of T2r receptors. These calcium responses could be suppressed by a specific bitter-tastant blocker or abolished by the knockout of the gene for the G protein subunit α-gustducin. Taken together, our data strongly suggest that male germ cells, like taste bud cells in the oral cavity and solitary chemosensory cells in the airway, utilize T2r receptors to sense chemicals in the milieu that may affect sperm behavior and fertilization.
Collapse
Affiliation(s)
- Jiang Xu
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
23
|
Immunohistochemical detection of TAS2R38 protein in human taste cells. PLoS One 2012; 7:e40304. [PMID: 22792271 PMCID: PMC3391245 DOI: 10.1371/journal.pone.0040304] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 06/05/2012] [Indexed: 12/14/2022] Open
Abstract
The sense of taste plays an important role in the evaluation of the nutrient composition of consumed food. Bitter taste in particular is believed to serve a warning function against the ingestion of poisonous substances. In the past years enormous progress was made in the characterization of bitter taste receptors, including their gene expression patterns, pharmacological features and presumed physiological roles in gustatory as well as in non-gustatory tissues. However, due to a lack in TAS2R-specifc antibodies the localization of receptor proteins within gustatory tissues has never been analyzed. In the present study we have screened a panel of commercially available antisera raised against human bitter taste receptors by immunocytochemical experiments. One of these antisera was found to be highly specific for the human bitter taste receptor TAS2R38. We further demonstrate that this antibody is able to detect heterologously expressed TAS2R38 protein on Western blots. The antiserum is, however, not able to interfere significantly with TAS2R38 function in cell based calcium imaging analyses. Most importantly, we were able to demonstrate the presence of TAS2R38 protein in human gustatory papillae. Using double immunofluorescence we show that TAS2R38-positive cells form a subpopulation of PLCbeta2 expressing cells. On a subcellular level the localization of this bitter taste receptor is neither restricted to the cell surface nor particularly enriched at the level of the microvilli protruding into the pore region of the taste buds, but rather evenly distributed over the entire cell body.
Collapse
|
24
|
Tucker RM, Mattes RD. Are free fatty acids effective taste stimuli in humans? Presented at the symposium "The Taste for Fat: New Discoveries on the Role of Fat in Sensory Perception, Metabolism, Sensory Pleasure and Beyond" held at the iNstitute of Food Technologists 2011 Annual Meeting, New Orleans, LA, June 12, 2011. J Food Sci 2012; 77:S148-51. [PMID: 22384969 DOI: 10.1111/j.1750-3841.2011.02518.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The popularity of low- and reduced-fat foods has increased as consumers seek to decrease their energy consumption. Fat replacers may be used in fat-reduced products to maintain their sensory properties. However, these ingredients have been largely formulated to replicate nongustatory properties of fats to foods and have only achieved moderate success. There is increasing evidence that fats also activate the taste system and uniquely evoke responses that may influence product acceptance. Work supporting a taste component of fat has prompted questions about whether fat constitutes an additional "primary" or "basic" taste quality. This review briefly summarizes this evidence, focusing on human studies, when possible. Effective stimuli, possible receptors, and physiological changes due to oral fat exposure are discussed. Some studies suggest that there are fatty acid tasters and nontasters and if verified could have implications for targeted product development.
Collapse
Affiliation(s)
- Robin M Tucker
- Dept. of Nutrition Science, Purdue Univ., 212 Stone Hall, 700 W. State St., West Lafayette, IN 47907-2059, USA
| | | |
Collapse
|
25
|
Industry-Relevant Approaches for Minimising the Bitterness of Bioactive Compounds in Functional Foods: A Review. FOOD BIOPROCESS TECH 2012. [DOI: 10.1007/s11947-012-0829-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Mubashshir MD, Ahmed F, Sumoona S, Ovais M. Analyzing the responses of saccharin in context with melatonin receptors on the melanophores of the fish Labeo rohita (Ham.). J Recept Signal Transduct Res 2012; 32:114-9. [PMID: 22404113 DOI: 10.3109/10799893.2012.660533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The hormone melatonin regulates the biological clock and assist in various other physiologies of vertebrates. Present work is intended to check the affinity of saccharin towards the melatonin receptors and the possible role of saccharin interference in the melatonin physiology. The present in vitro study is based on the working model of isolated scale melanophores in the dorso-lateral region of Labeo rohita. The pigment cells were incubated in the agonist and the antagonists within a limited time frame and subsequently their Melanophore Size Index (MSI) were calculated. The inferences were drafted through the observed signal transduction upshots in pigment translocations within the melanophores. Saccharin, in a wide dose range, has consistently induced a concentration-related aggregation similar to the aggregatory effect as shown by melatonin on the melanophores. Binding of saccharin with the receptors and eliciting its aggregatory effect is partially dependent on the release of neurotransmitters. The aggregatory effects were found to be significantly blocked by luzindole, K185, and prazosin, which are the potent melatonin receptor blockers, at the higher concentrations of saccharin. Hence, all the three subtypes of melatonin receptors viz. MT₁, MT₂, and MT₃ are participating in saccharin-mediated aggregations. Blocking by neomycin shows that Ca²⁺ ions are very crucial in dispensing the aggregatory effect of the sweetener. This research demands that an intensive and careful thorough study should be made about saccharin, specifically its effects upon melatonin physiology, before its unwarranted use as the food ingredients for human use.
Collapse
Affiliation(s)
- M D Mubashshir
- Department of Biosciences, Barkatullah University, Bhopal, India
| | | | | | | |
Collapse
|
27
|
Mattes RD. Accumulating evidence supports a taste component for free fatty acids in humans. Physiol Behav 2011; 104:624-31. [PMID: 21557960 PMCID: PMC3139746 DOI: 10.1016/j.physbeh.2011.05.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/13/2011] [Accepted: 05/03/2011] [Indexed: 01/22/2023]
Abstract
The requisite criteria for what constitutes a taste primary have not been established. Recent advances in understanding of the mechanisms and functions of taste have prompted suggestions for an expanded list of unique taste sensations, including fat, or more specifically, free fatty acids (FFA). A set of criteria are proposed here and the data related to FFA are reviewed on each point. It is concluded that the data are moderate to strong that there are: A) adaptive advantages to FFA detection in the oral cavity; B) adequate concentrations of FFA to serve as taste stimuli; C) multiple complimentary putative FFA receptors on taste cells; D) signals generated by FFA that are conveyed by gustatory nerves; E) sensations generated by FFA that can be detected and scaled by psychophysical methods in humans when non-gustatory cues are masked; and F) physiological responses to oral fat/FFA exposure. On no point is there strong evidence challenging these observations. The reviewed findings are suggestive, albeit not definitive, that there is a taste component for FFA.
Collapse
Affiliation(s)
- Richard D Mattes
- Department of Foods and Nutrition, Purdue University, 700 W State Street, West Lafayette, IN 47907-2059, USA.
| |
Collapse
|
28
|
Rudnitskaya A, Nieuwoudt HH, Muller N, Legin A, du Toit M, Bauer FF. Instrumental measurement of bitter taste in red wine using an electronic tongue. Anal Bioanal Chem 2010; 397:3051-60. [DOI: 10.1007/s00216-010-3885-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 05/26/2010] [Accepted: 05/27/2010] [Indexed: 11/28/2022]
|
29
|
Tepper BJ, White EA, Koelliker Y, Lanzara C, d'Adamo P, Gasparini P. Genetic variation in taste sensitivity to 6-n-propylthiouracil and its relationship to taste perception and food selection. Ann N Y Acad Sci 2009; 1170:126-39. [PMID: 19686122 DOI: 10.1111/j.1749-6632.2009.03916.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability to taste bitter thiourea compounds and related chemicals is a well-known human trait. The majority of individuals perceive these compounds, typified by the bitterness of 6-n-propylthiouracil (PROP) and phenylthiocarbamide (PTC), as moderately-to-extremely bitter. Approximately 30% of the population is taste blind to these substances. It has been hypothesized that PROP/PTC tasters are more sensitive to other bitter tastes, sweet taste, the pungency of chili peppers, the astringency of alcohol, and the texture of fats. Tasters may also show lower preferences for foods with these taste qualities than nontasters who show the opposite set of responses (i.e., lower taste sensitivities and higher preferences for these sensory qualities). This pathway is illustrated in the following model: PROP Sensitivity --> Food Perception -->Preference --> Selection. Robust associations between PROP status and taste perceptions have been well documented. However, subsequent links to food preferences and diet selection have been more difficult to demonstrate. This is not surprising given the complexity of human ingestive behavior that is influenced by numerous factors including health attitudes, personality traits, and cultural norms. Our laboratory has been using PROP screening to investigate individual differences in the selection of bitter foods, especially bitter tasting vegetables and fruits that may have long-term health implications. This chapter will discuss new and recent findings addressing the following issues: 1) whether PROP-related differences in perception of bitter compounds predict the perception and liking of bitter foods; 2) the role of bitter taste modifiers; and 3) the influence of personal characteristics such as food attitudes and cultural background on PROP-related food preferences.
Collapse
Affiliation(s)
- Beverly J Tepper
- Department of Food Science, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901-8520, USA.
| | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Instrumental measurement of beer taste attributes using an electronic tongue. Anal Chim Acta 2009; 646:111-8. [DOI: 10.1016/j.aca.2009.05.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 05/06/2009] [Accepted: 05/07/2009] [Indexed: 11/21/2022]
|
32
|
Mattes RD. Oral thresholds and suprathreshold intensity ratings for free fatty acids on 3 tongue sites in humans: implications for transduction mechanisms. Chem Senses 2009; 34:415-23. [PMID: 19357229 PMCID: PMC2720690 DOI: 10.1093/chemse/bjp015] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2009] [Indexed: 12/29/2022] Open
Abstract
Multiple putative free fatty acid (FFA) transduction mechanisms have been identified in the oral cavity. They reportedly differ in their distribution on the tongue and each has a unique range of ligand specificities. This suggests that there should be regional differences in sensory responses to varying FFAs. This was assessed through spatial testing with caproic (C), lauric (L), and stearic (S) FFAs among 35 healthy adults. Stimuli were applied to the fungiform (FU), foliate (FO), and circumvallate (CV) papillae with a cotton-tipped applicator. Oral detection thresholds were measured by an ascending, 3-alternative, forced-choice, sip and spit procedure. Intensity ratings were obtained on the general labeled magnitude scale. Nongustatory cues were minimized by testing with the nares blocked, eyes covered, and by masking tactile cues with the addition of gum acacia and mineral oil to the stimuli vehicle. Thresholds were obtained from nearly all individuals at each site, and the concentration was similar across the 3 FFAs. Absolute intensity ratings differed significantly with C > L > S overall and at the CV and FO papillae. At the FU papillae, the L and S ratings were comparable. Ratings were highest at the FU followed by the CV and then the FO papillae. Slopes of the concentration-intensity rating functions were higher for L compared with C and S at the CV papillae as well as both L and C compared with S at the FO papillae. However, overall, slopes were comparable across sites. These findings strengthen evidence for oral FFA perception in humans by replicating threshold sensitivity findings and documenting monotonic scaling ability for these stimuli. Further, they challenge current views on transduction as sensory responsiveness was observed at tongue sites not predicted to support FFA detection.
Collapse
Affiliation(s)
- Richard D Mattes
- Department of Foods and Nutrition, Purdue University, West Lafayette, IN 47907-2059, USA.
| |
Collapse
|
33
|
Abstract
Taste is a chemical sense that aids in the detection of nutrients and guides food choice. A limited number of primary qualities comprise taste. Accumulating evidence has raised a question about whether fat should be among them. Most evidence indicates triacylglycerol is not an effective taste stimulus, though it clearly contributes sensory properties to foods by carrying flavor compounds and altering texture. However, there is increasing anatomical, electrophysiological, animal behavior, imaging, metabolic, and psychophysical evidence that free fatty acids are detectable when non-taste cues are minimized. Free fatty acids varying in saturation and chain length are detectable, suggesting the presence of multiple transduction mechanisms and/or a nonspecific mechanism in the oral cavity. However, confirmation of "fatty" as a taste primary will require additional studies that verify these observations are taste specific. Oral exposure to free fatty acids likely serves as a warning signal to discourage intake and influences lipid metabolism.
Collapse
|
34
|
Mattes RD. Oral detection of short-, medium-, and long-chain free fatty acids in humans. Chem Senses 2008; 34:145-50. [PMID: 19091695 DOI: 10.1093/chemse/bjn072] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
There is increasing evidence supporting an oral chemosensory detection system for free fatty acids (FFA). The presumptive transduction mechanisms have different ligand specificities. Psychophysical studies with FFA varying in chain length and saturation may aid in identifying the presence and functionality of these mechanisms in humans. Oral detection thresholds were measured for linoleic, stearic, lauric, and caproic acids in 32 healthy adults by an ascending, 3-alternative, forced-choice, sip and spit procedure. Thresholds were obtained for all fatty acids from all participants, but the distributions were wide and nonnormal. Thresholds were not correlated between fatty acids nor with thresholds for sucrose (taste), butanol (olfactory), mineral oil, or gum acacia (both somatosensory). These data demonstrate human oral sensitivity to short-, medium-, and long-chain FFA and suggest the presence of multiple transduction mechanisms. The findings are consistent with, but do not definitively demonstrate, a role for taste that may have a genetic basis.
Collapse
Affiliation(s)
- Richard D Mattes
- Department of Foods and Nutrition, Purdue University, 212 Stone Hall, 700 West State Street, West Lafayette, IN 47907-2059, USA.
| |
Collapse
|
35
|
Zhao FL, Herness S. Resynthesis of phosphatidylinositol 4,5-bisphosphate mediates adaptation of the caffeine response in rat taste receptor cells. J Physiol 2008; 587:363-77. [PMID: 19047199 DOI: 10.1113/jphysiol.2008.165167] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Caffeine, a prototypic bitter stimulus, produces several physiological actions on taste receptor cells that include inhibition of KIR and KV potassium currents and elevations of intracellular calcium. These responses display adaptation, i.e. their magnitude diminishes in the sustained presence of the stimulus. Levels of the membrane lipid phosphatidylinositol-4,5-bisphosphate (PIP2) are well known to modulate many potassium channels, activating the channel by stabilizing its open state. Here we investigate a putative relationship of KIR and KV with PIP2 levels hypothesizing that inhibition of these currents by caffeine might be allayed by PIP2 resynthesis. Using standard patch-clamp techniques, recordings of either potassium current from rat posterior taste receptor cells produced essentially parallel results when PIP2 levels were manipulated pharmacologically. Increasing PIP2 levels by blocking phosphoinositide-3 kinase with wortmannin or LY294002, or by blocking phospholipase C with U73122 all significantly increased the incidence of adaptation for both KIR and KV. Conversely, lowering PIP2 synthesis by blocking PI4K or using the PIP2 scavengers polylysine or bovine serum albumin reduced the incidence of adaptation. Adaptation could be modulated by activation of protein kinase C but not calcium calmodulin kinase. Collectively, these data support two highly novel conclusions: potassium currents in taste receptor cells are significantly modulated by PIP2 levels and PIP2 resynthesis may play a central role in the gustatory adaptation process at the primary receptor cell level.
Collapse
Affiliation(s)
- Fang-Li Zhao
- College of Dentistry, Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
36
|
The capsaicin receptor participates in artificial sweetener aversion. Biochem Biophys Res Commun 2008; 376:653-7. [PMID: 18804451 DOI: 10.1016/j.bbrc.2008.09.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 09/05/2008] [Indexed: 11/22/2022]
Abstract
Artificial sweeteners such as saccharin, aspartame, acesulfame-K, and cyclamate produce at high concentrations an unpleasant after-taste that is generally attributed to bitter and metallic taste sensations. To identify receptors involved with the complex perception of the above compounds, preference tests were performed in wild-type mice and mice lacking the TRPV1 channel or the T1R3 receptor, the latter being necessary for the perception of sweet taste. The sweeteners, including cyclamate, displayed a biphasic response profile, with the T1R3 mediated component implicated in preference. At high concentrations imparting off-taste, omission of TRPV1 reduced aversion. In a heterologous expression system the Y511A point mutation in the vanilloid pocket of TRPV1 did not affect saccharin and aspartame responses but abolished cyclamate and acesulfame-K activities. The results rationalize artificial sweetener tastes and off-tastes by showing that at low concentrations, these molecules stimulate the gustatory system through the hedonically positive T1R3 pathway, and at higher concentrations, their aversion is partly mediated by TRPV1.
Collapse
|
37
|
|
38
|
|
39
|
Talavera K, Yasumatsu K, Yoshida R, Margolskee RF, Voets T, Ninomiya Y, Nilius B. The taste transduction channel TRPM5 is a locus for bitter-sweet taste interactions. FASEB J 2007; 22:1343-55. [PMID: 18070821 DOI: 10.1096/fj.07-9591com] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ordinary gustatory experiences, which are usually evoked by taste mixtures, are determined by multiple interactions between different taste stimuli. The most studied model for these gustatory interactions is the suppression of the responses to sweeteners by the prototype bitter compound quinine. Here we report that TRPM5, a cation channel involved in sweet taste transduction, is inhibited by quinine (EC(50)=50 microM at -50 mV) owing to a decrease in the maximal whole-cell TRPM5 conductance and an acceleration of channel closure. Notably, quinine inhibits the gustatory responses of sweet-sensitive gustatory nerves in wild-type (EC(50)= approximately 1.6 mM) but not in Trpm5 knockout mice. Quinine induces a dose- and time-dependent inhibition of TRPM5-dependent responses of single sweet-sensitive fibers to sucrose, according to the restricted diffusion of the drug into the taste tissue. Quinidine, the stereoisomer of quinine, has similar effects on TRPM5 currents and on sweet-induced gustatory responses. In contrast, the chemically unrelated bitter compound denatonium benzoate has an approximately 100-fold weaker effect on TRPM5 currents and, accordingly, at 10 mM it does not alter gustatory responses to sucrose. The inhibition of TRPM5 by bitter compounds constitutes the molecular basis of a novel mechanism of taste interactions, whereby the bitter tastant inhibits directly the sweet transduction pathway.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Dept. of Molecular Cell Biology, Herestraat 49, Campus Gasthuisberg, O&N1, KU Leuven, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
40
|
Pronin AN, Xu H, Tang H, Zhang L, Li Q, Li X. Specific Alleles of Bitter Receptor Genes Influence Human Sensitivity to the Bitterness of Aloin and Saccharin. Curr Biol 2007; 17:1403-8. [PMID: 17702579 DOI: 10.1016/j.cub.2007.07.046] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 07/01/2007] [Accepted: 07/13/2007] [Indexed: 11/21/2022]
Abstract
Variation in human taste is a well-known phenomenon. However, little is known about the molecular basis for it. Bitter taste in humans is believed to be mediated by a family of 25 G protein-coupled receptors (hT2Rs, or TAS2Rs). Despite recent progress in the functional expression of hT2Rs in vitro, up until now, hT2R38, a receptor for phenylthiocarbamide (PTC), was the only gene directly linked to variations in human bitter taste. Here we report that polymorphism in two hT2R genes results in different receptor activities and different taste sensitivities to three bitter molecules. The hT2R43 gene allele, which encodes a protein with tryptophan in position 35, makes people very sensitive to the bitterness of the natural plant compounds aloin and aristolochic acid. People who do not possess this allele do not taste these compounds at low concentrations. The same hT2R43 gene allele makes people more sensitive to the bitterness of an artificial sweetener, saccharin. In addition, a closely related gene's (hT2R44's) allele also makes people more sensitive to the bitterness of saccharin. We also demonstrated that some people do not possess certain hT2R genes, contributing to taste variation between individuals. Our findings thus reveal new examples of variations in human taste and provide a molecular basis for them.
Collapse
Affiliation(s)
- Alexey N Pronin
- Senomyx, 4767 Nexus Centre Drive, San Diego, California 92121, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Brockhoff A, Behrens M, Massarotti A, Appendino G, Meyerhof W. Broad tuning of the human bitter taste receptor hTAS2R46 to various sesquiterpene lactones, clerodane and labdane diterpenoids, strychnine, and denatonium. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:6236-43. [PMID: 17595105 DOI: 10.1021/jf070503p] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Sesquiterpene lactones are a major class of natural bitter compounds occurring in vegetables and culinary herbs as well as in aromatic and medicinal plants, where they often represent the main gustatory and pharmacologically active component. Investigations on sesquiterpene lactones have mainly focused on their bioactive potential rather than on their sensory properties. In the present study, we report about the stimulation of heterologously expressed human bitter taste receptors, hTAS2Rs, by the bitter sesquiterpene lactone herbolide D. A specific response to herbolide D was observed i.a. for hTAS2R46, a so far orphan bitter taste receptor without any known ligand. By further investigation of its agonist pattern, we characterized hTAS2R46 as a bitter receptor broadly tuned to sesquiterpene lactones and to clerodane and labdane diterpenoids as well as to the unrelated bitter substances strychnine and denatonium.
Collapse
Affiliation(s)
- Anne Brockhoff
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | | | | | | | | |
Collapse
|
42
|
Riera CE, Vogel H, Simon SA, le Coutre J. Artificial sweeteners and salts producing a metallic taste sensation activate TRPV1 receptors. Am J Physiol Regul Integr Comp Physiol 2007; 293:R626-34. [PMID: 17567713 DOI: 10.1152/ajpregu.00286.2007] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Throughout the world many people use artificial sweeteners (AS) for the purpose of reducing caloric intake. The most prominently used of these molecules include saccharin, aspartame (Nutrasweet), acesulfame-K, and cyclamate. Despite the caloric advantage they provide, one key concern in their use is their aversive aftertaste that has been characterized on a sensory level as bitter and/or metallic. Recently, it has been shown that the activation of particular T2R bitter taste receptors is partially involved with the bitter aftertaste sensation of saccharin and acesulfame-K. To more fully understand the biology behind these phenomena we have addressed the question of whether AS could stimulate transient receptor potential vanilloid-1 (TRPV1) receptors, as these receptors are activated by a large range of structurally different chemicals. Moreover, TRPV1 receptors and/or their variants are found in taste receptor cells and in nerve terminals throughout the oral cavity. Hence, TRPV1 activation could be involved in the AS aftertaste or even contribute to the poorly understood metallic taste sensation. Using Ca(2+) imaging on TRPV1 receptors heterologously expressed in the human embryonic kidney (HEK) 293 cells and on dissociated primary sensory neurons, we find that in both systems, AS activate TRPV1 receptors, and, moreover, they sensitize these channels to acid and heat. We also found that TRPV1 receptors are activated by CuSO(4), ZnSO(4), and FeSO(4), three salts known to produce a metallic taste sensation. In summary, our results identify a novel group of compounds that activate TRPV1 and, consequently, provide a molecular mechanism that may account for off tastes of sweeteners and metallic tasting salts.
Collapse
Affiliation(s)
- Céline E Riera
- Nestlé Research Center, P.O. Box 44, CH-1000 Lausanne 26, Switzerland
| | | | | | | |
Collapse
|
43
|
Keast RSJ, Roper J. A complex relationship among chemical concentration, detection threshold, and suprathreshold intensity of bitter compounds. Chem Senses 2007; 32:245-53. [PMID: 17220518 DOI: 10.1093/chemse/bjl052] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Detection thresholds and psychophysical curves were established for caffeine, quinine-HCl (QHCl), and propylthiouracil (PROP) in a sample of 33 subjects (28 female mean age 24 +/- 4). The mean detection threshold (+/-standard error) for caffeine, QHCl, and PROP was 1.2 +/- 0.12, 0.0083 +/- 0.001, and 0.088 +/- 0.07 mM, respectively. Pearson product-moment analysis revealed no significant correlations between detection thresholds of the compounds. Psychophysical curves were constructed for each bitter compound over 6 concentrations. There were significant correlations between incremental points of the individual psychophysical curves for QHCl and PROP. Regarding caffeine, there was a specific concentration (6 mM) below and above which the incremental steps in bitterness were correlated. Between compounds, analysis of psychophysical curves revealed no correlations with PROP, but there were significant correlations between the bitterness of caffeine and QHCl at higher concentrations on the psychophysical curve (P<0.05). Correlation analysis of detection threshold and suprathreshold intensity within a compound revealed a significant correlation between PROP threshold and suprathreshold intensity (r=0.46-0.4, P<0.05), a significant negative correlation for QHCl (r=-0.33 to -0.4, P<0.05), and no correlation for caffeine. The results suggest a complex relationship between chemical concentration, detection threshold, and suprathreshold intensity.
Collapse
Affiliation(s)
- Russell S J Keast
- School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia.
| | | |
Collapse
|
44
|
Geran LC, Travers SP. Single neurons in the nucleus of the solitary tract respond selectively to bitter taste stimuli. J Neurophysiol 2006; 96:2513-27. [PMID: 16899635 DOI: 10.1152/jn.00607.2006] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Molecular data suggest that receptors for all bitter ligands are coexpressed in the same taste receptor cells (TRCs), whereas physiological results indicate that individual TRCs respond to only a subset of bitter stimuli. It is also unclear to what extent bitter-responsive neurons are stimulated by nonbitter stimuli. To explore these issues, single neuron responses were recorded from the rat nucleus of the solitary tract (NST) during whole mouth stimulation with a variety of bitter compounds: 10 microM cycloheximide, 7 mM propylthiouracil, 10 mM denatonium benzoate, and 3 mM quinine hydrochloride at intensities matched for behavioral effectiveness. Stimuli representing the remaining putative taste qualities were also tested. Particular emphasis was given to activating taste receptors in the foliate papillae innervated by the quinine-sensitive glossopharyngeal nerve. This method revealed a novel population of bitter-best (B-best) cells with foliate receptive fields and significant selectivity for bitter tastants. Across all neurons, multidimensional scaling depicted bitter stimuli as loosely clustered yet clearly distinct from nonbitter tastants. When neurons with posterior receptive fields were analyzed alone, bitter stimuli formed a tighter cluster. Nevertheless, responses to bitter stimuli were variable across B-best neurons, with cycloheximide the most, and quinine the least frequent optimal stimulus. These results indicate heterogeneity for the processing of ionic and nonionic bitter tastants, which is dependent on receptive field. Further, they suggest that neurons selective for bitter substances could contribute to taste coding.
Collapse
Affiliation(s)
- Laura C Geran
- Section of Oral Biology, College of Dentistry, Ohio State University, 305 W. 12th Ave. Postle Hall, Columbus, OH 43210, USA
| | | |
Collapse
|
45
|
Abstract
Humans will eat almost anything, from caribou livers to rutabagas, but there are some types of foods, and their associated taste qualities, that are preferred by large groups of people regardless of culture or experience. When many choices are available, humans chose foods that taste good, that is, create pleasing sensations in the mouth. The concept of good taste for most people encompasses both flavor and texture of food, and these sensations merge with taste proper to form the concept of goodness. Although we acknowledge the universality of the goodness (sweet) or badness (bitter) of basic taste qualities, we also find that people differ, sometimes extremely so, in their ability to perceive and enjoy these qualities and, by extension, food and drink. The reasons for these differences among people are not clear but are probably due to a combination of experience beginning at an early age, perhaps in utero; learning, for example, as with conditioned taste aversions; sex and maturity; and perceptual differences that arise from genetic variation. In this review, we focus on individual variations that arise from genetic differences and review two domains of science: recent developments in the molecular biology of taste transduction, with a focus on the genes involved and second, studies that examine biological relatives to determine the heritability of taste perception. Because the receptors for sweet, savory (umami), and bitter have recently been discovered, we summarize what is known about their function by reviewing the effect of naturally occurring and man-made alleles of these receptors, their shape and function based on receptor modeling techniques, and how they differ across animal species that vary in their ability to taste certain qualities. We discuss this literature in the context of how taste genes may differ among people and give rise to individuated taste experience, and what is currently known about the genetic effects on taste perception in humans.
Collapse
Affiliation(s)
- Danielle R. Reed
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, United States
| | | | - Amanda H. McDaniel
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, United States
| |
Collapse
|
46
|
Dotson CD, Roper SD, Spector AC. PLCbeta2-independent behavioral avoidance of prototypical bitter-tasting ligands. Chem Senses 2005; 30:593-600. [PMID: 16135743 PMCID: PMC3712829 DOI: 10.1093/chemse/bji053] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using a brief-access taste assay, we show in the present report that although phospholipase C beta2 knockout (PLCbeta2 KO) mice are unresponsive to low- and midrange concentrations of quinine and denatonium, they do significantly avoid licking higher concentrations of these aversive compounds. PLCbeta2 KO mice displayed no concentration-dependent licking of the prototypical sweetener sucrose but were similar to wild-type mice in their responses to citric acid and NaCl, notwithstanding some interesting exceptions. Although these findings confirm an essential role for PLCbeta2 in taste responsiveness to sucrose and to low- to midrange concentrations of quinine and denatonium in mice as previously reported, they importantly suggest that higher concentrations of the latter two compounds, which are bitter to humans, can engage a PLCbeta2-independent taste transduction pathway.
Collapse
Affiliation(s)
- Cedrick D. Dotson
- Department of Psychology and Center for Smell and Taste, University of Florida, Gainesville, FL 32611-2250, USA
| | - Stephen D. Roper
- Department of Physiology and Biophysics, and Neuroscience Program, University of Miami School of Medicine, 1600 NW 10th Avenue, Miami, FL 33136, USA
| | - Alan C. Spector
- Department of Psychology and Center for Smell and Taste, University of Florida, Gainesville, FL 32611-2250, USA
| |
Collapse
|
47
|
Zubare-Samuelov M, Shaul ME, Peri I, Aliluiko A, Tirosh O, Naim M. Inhibition of signal termination-related kinases by membrane-permeant bitter and sweet tastants: potential role in taste signal termination. Am J Physiol Cell Physiol 2005; 289:C483-92. [PMID: 15829560 DOI: 10.1152/ajpcell.00547.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sweet and bitter taste sensations are believed to be initiated by the tastant-stimulated T1R and T2R G protein-coupled receptor (GPCR) subfamilies, respectively, which occur in taste cells. Although such tastants, with their significantly diverse chemical structures (e.g., sugar and nonsugar sweeteners), may share the same or similar T1Rs, some nonsugar sweeteners and many bitter tastants are amphipathic and produce a significant delay in taste termination (lingering aftertaste). We report that such tastants may permeate rat taste bud cells rapidly in vivo and inhibit known signal termination-related kinases in vitro, such as GPCR kinase (GRK)2, GRK5, and PKA. GRK5 and perhaps GRK2 and GRK6 are present in taste cells. A new hypothesis is proposed in which membrane-permeant tastants not only interact with taste GPCRs but also interact intracellularly with the receptors' downstream shutoff components to inhibit signal termination.
Collapse
Affiliation(s)
- Meirav Zubare-Samuelov
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
48
|
Ley JP, Krammer G, Reinders G, Gatfield IL, Bertram HJ. Evaluation of bitter masking flavanones from Herba Santa (Eriodictyon californicum (H. and A.) Torr., Hydrophyllaceae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:6061-6. [PMID: 16028996 DOI: 10.1021/jf0505170] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Products made from Herba Santa (Eriodictyon californicum (H. & A.) Torr.) have been used as bitter remedies for some pharmaceutical applications for many years, but they are actually too aromatic to be useful for many food or pharmaceutical applications. In sensory studies flavanones homoeriodictyol (1), its sodium salt (1-Na), sterubin (2), and eriodictyol (4) could significantly decrease the bitter taste of caffeine without exhibiting intrinsic strong flavors or taste characteristics. Further investigations on 1-Na elicited a broad masking activity between 10 and 40% toward different chemical classes of bitter molecules (e.g. salicin, amarogentin, paracetamol, quinine) but not toward bitter linoleic acid emulsions. For caffeine and amarogentin, dose-response studies were performed; the masking activity toward bitter taste for both compounds reached a plateau at higher concentrations of 1-Na. Due to these facts, homoeriodictyol sodium salt (1-Na) seems to be a very interesting new taste modifier for food applications and pharmaceuticals.
Collapse
Affiliation(s)
- Jakob P Ley
- Research and Development, Symrise GmbH & Company, KG, P.O. Box 1253, 37601 Holzminden, Germany.
| | | | | | | | | |
Collapse
|
49
|
St John SJ, Hallagan LD. Psychophysical investigations of cetylpyridinium chloride in rats: its inherent taste and modifying effects on salt taste. Behav Neurosci 2005; 119:265-79. [PMID: 15727531 DOI: 10.1037/0735-7044.119.1.265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Salts are transduced by at least 2 mechanisms: (a) antagonized by amiloride and (b) antagonized by cetylpyridinium chloride (CPC). The authors report on 4 behavioral experiments in rats that characterize the orosensory properties of CPC itself as well as its effect in suppressing the intensity of NaCl and KCl taste. Experiments 1 and 2 indicated that CPC has a quinine-like taste quality. Experiments 3 and 4 demonstrated that the recognition of KCl, but not NaCl, is modestly reduced by mixture with CPC. However, control experiments call into question the mechanism of the salt suppression of CPC, because both CPC-salt and quinine-salt mixtures had similar effects. The relevance of these studies for understanding salt and bitter taste coding is discussed.
Collapse
Affiliation(s)
- Steven J St John
- Department of Psychology, Reed College, Portland, OR 97202, USA.
| | | |
Collapse
|
50
|
Liscia A, Masala C, Crnjar R, Sollai G, Solari P. Saccharin stimulates the "deterrent" cell in the blowfly: behavioral and electrophysiological evidence. Physiol Behav 2004; 80:637-46. [PMID: 14984797 DOI: 10.1016/j.physbeh.2003.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2003] [Revised: 10/29/2003] [Accepted: 11/13/2003] [Indexed: 11/24/2022]
Abstract
In the attempt to gain more information on the mechanisms underlying bitter and/or sweet taste reception, we have investigated the responses of labellar chemosensilla in the blowfly Protophormia terraenovae to Na-saccharin, as compared to sweet stimuli (sucrose or fructose) and bitter stimuli (denatonium benzoate or amiloride). Electrophysiological and behavioral results indicate that the sweetener Na-saccharin inhibits the "sugar" cell in the labellar taste sensilla of the blowfly P. terraenovae. In multichoice preference tests, flies ingested more of the solutions containing sugar to those with sugar+Na-saccharin. This finding is in good agreement with the spike frequency reduction observed for the "sugar" cell activity. Analysis of the spike discharges also shows a positive dose-response for the "deterrent" cell following stimulation with Na-saccharin and denatonium benzoate. Flies drank any of the Na-saccharin solutions, regardless of their concentration, less than water, thus indicating a weak deterring effect on water drinking. The prevailing activation of the "deterrent" cell by stimulation with Na-saccharin is not directly coupled with a coherent behavioral output. Cross adaptation was found to occur between responses to Na-saccharin and denatonium benzoate or amiloride regardless of the order of adapting stimuli. In the case of sweet stimuli, cross adaptation occurred when the adapting stimulus was Na-saccharin, but it did not when the adapting stimuli were sucrose or fructose. Addition of Na-saccharin to both sugars significantly depressed the spike firing frequency, while an increase was observed with denatonium benzoate or amiloride.
Collapse
Affiliation(s)
- A Liscia
- Dipartimento di Biologia Sperimentale, Sezione di Fisiologia Generale, Università di Cagliari, Cittadella Universitaria di Monserrato, SS. 554 Km 4.500, I-09042 Monserrato, CA, Italy.
| | | | | | | | | |
Collapse
|