1
|
Li T, Zhailauova A, Kuanyshbek A, Wachruschew I, Tulegenov S, Sazonov V, Kapyshev T. Heparin Resistance in Patients Receiving Extracorporeal Membrane Oxygenation: A Review. J Clin Med 2024; 13:7633. [PMID: 39768556 PMCID: PMC11728406 DOI: 10.3390/jcm13247633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Heparin resistance (HR) in patients on extracorporeal membrane oxygenation (ECMO) exacerbates bleeding and thrombogenesis. Thus far, there is no universal definition of what this condition entails and no unified strategy for assessing heparin's efficacy in ECMO patients. The most frequent discrepancy when it comes to defining HR is the difference in the reported doses: units per day (U/d) or per kilogram per hour (U/kg/h). Another disagreement arises with regard to the various methods of measuring unfractionated heparin (UFH) efficacy. Due to numerous processes that begin with ECMO initiation, including protein layer formation on the surface of circuits, the recruitment of immune cells, the activation of complement and contact activation systems, and platelets, assessing pure antithrombin consumption is complicated. Moreover, there is an alternative anticoagulation procedure performed by a serine protease inhibitor named heparin cofactor II, which could also contribute to heparin consumption. Considering simultaneously launched processes of inflammation and thrombogenesis in response to contact with artificial surfaces on ECMO, we listed the possible mechanisms contributing to additional antithrombin consumption. The effect of the flow on the platelets' activation and von Willebrand factor (vWF) assembly was also described. We reviewed the scientific literature from PubMed and Embase to identify possible definitions of heparin resistance during ECMO treatment among pediatric and adult cohorts. We identified 13 records describing different approaches to assessing HR and described our vision of delineating HR on ECMO.
Collapse
Affiliation(s)
- Tatyana Li
- Department of Anaesthesia and Intensive Care, Heart Center CF “University Medical Center”, Astana 010000, Kazakhstan; (A.K.); (I.W.); (S.T.)
| | - Azhar Zhailauova
- Department of Surgery, Nazarbayev University School of Medicine, Astana 010000, Kazakhstan; (V.S.); (T.K.)
| | - Aidyn Kuanyshbek
- Department of Anaesthesia and Intensive Care, Heart Center CF “University Medical Center”, Astana 010000, Kazakhstan; (A.K.); (I.W.); (S.T.)
| | - Iwan Wachruschew
- Department of Anaesthesia and Intensive Care, Heart Center CF “University Medical Center”, Astana 010000, Kazakhstan; (A.K.); (I.W.); (S.T.)
| | - Shaimurat Tulegenov
- Department of Anaesthesia and Intensive Care, Heart Center CF “University Medical Center”, Astana 010000, Kazakhstan; (A.K.); (I.W.); (S.T.)
| | - Vitaliy Sazonov
- Department of Surgery, Nazarbayev University School of Medicine, Astana 010000, Kazakhstan; (V.S.); (T.K.)
| | - Timur Kapyshev
- Department of Surgery, Nazarbayev University School of Medicine, Astana 010000, Kazakhstan; (V.S.); (T.K.)
| |
Collapse
|
2
|
Rodgers GM, Mahajerin A. Antithrombin Therapy: Current State and Future Outlook. Clin Appl Thromb Hemost 2023; 29:10760296231205279. [PMID: 37822179 PMCID: PMC10571690 DOI: 10.1177/10760296231205279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023] Open
Abstract
Antithrombin (AT) is a natural anticoagulant pivotal in inactivating serine protease enzymes in the coagulation cascade, making it a potent inhibitor of blood clot formation. AT also possesses anti-inflammatory properties by influencing anticoagulation and directly interacting with endothelial cells. Hereditary AT deficiency is one of the most severe inherited thrombophilias, with up to 85% lifetime risk of venous thromboembolism. Acquired AT deficiency arises during heparin therapy or states of hypercoagulability like sepsis and premature infancy. Optimization of AT levels in individuals with AT deficiency is an important treatment consideration, particularly during high-risk situations such as surgery, trauma, pregnancy, and postpartum. Here, we integrate the existing evidence surrounding the approved uses of AT therapy, as well as potential additional patient populations where AT therapy has been considered by the medical community, including any available consensus statements and guidelines. We also describe current knowledge regarding cost-effectiveness of AT concentrate in different contexts. Future work should seek to identify specific patient populations for whom targeted AT therapy is likely to provide the strongest clinical benefit.
Collapse
Affiliation(s)
- George M. Rodgers
- Division of Hematology, University of Utah Medical Center, Salt Lake City, UT, USA
| | - Arash Mahajerin
- Division of Hematology, Children's Hospital of Orange County, Orange, CA, USA
| |
Collapse
|
3
|
Antithrombin and Its Role in Host Defense and Inflammation. Int J Mol Sci 2021; 22:ijms22084283. [PMID: 33924175 PMCID: PMC8074369 DOI: 10.3390/ijms22084283] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
Antithrombin (AT) is a natural anticoagulant that interacts with activated proteases of the coagulation system and with heparan sulfate proteoglycans (HSPG) on the surface of cells. The protein, which is synthesized in the liver, is also essential to confer the effects of therapeutic heparin. However, AT levels drop in systemic inflammatory diseases. The reason for this decline is consumption by the coagulation system but also by immunological processes. Aside from the primarily known anticoagulant effects, AT elicits distinct anti-inflammatory signaling responses. It binds to structures of the glycocalyx (syndecan-4) and further modulates the inflammatory response of endothelial cells and leukocytes by interacting with surface receptors. Additionally, AT exerts direct antimicrobial effects: depending on AT glycosylation it can bind to and perforate bacterial cell walls. Peptide fragments derived from proteolytic degradation of AT exert antibacterial properties. Despite these promising characteristics, therapeutic supplementation in inflammatory conditions has not proven to be effective in randomized control trials. Nevertheless, new insights provided by subgroup analyses and retrospective trials suggest that a recommendation be made to identify the patient population that would benefit most from AT substitution. Recent experiment findings place the role of various AT isoforms in the spotlight. This review provides an overview of new insights into a supposedly well-known molecule.
Collapse
|
4
|
ElSaadani M, Ahmed SM, Jacovides C, Lopez A, Johnson VE, Kaplan LJ, Schwab CW, Smith DH, Pascual JL. Antithrombin III ameliorates post-traumatic brain injury cerebral leukocyte mobilization enhancing recovery of blood brain barrier integrity. J Trauma Acute Care Surg 2021; 90:274-280. [PMID: 33093292 PMCID: PMC8878290 DOI: 10.1097/ta.0000000000003000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Acute traumatic coagulopathy often accompanies traumatic brain injury (TBI) and may impair cognitive recovery. Antithrombin III (AT-III) reduces the hypercoagulability of TBI. Antithrombin III and heparinoids such as enoxaparin (ENX) demonstrate potent anti-inflammatory activity, reducing organ injury and modulating leukocyte (LEU) activation, independent of their anticoagulant effect. It is unknown what impact AT-III exerts on cerebral LEU activation and blood-brain barrier (BBB) permeability after TBI. We hypothesized that AT-III reduces live microcirculatory LEU-endothelial cell (EC) interactions and leakage at the BBB following TBI. METHODS CD1 mice (n = 71) underwent either severe TBI (controlled cortical impact (CCI), 6-m/s velocity, 1-mm depth, and 4-mm diameter) or sham craniotomy and then received either AT-III (250 IU/kg), ENX (1.5 mg/kg), or vehicle (saline) every 24 hours. Forty-eight hours post-TBI, cerebral intravital microscopy visualized in vivo penumbral microvascular LEU-EC interactions and microvascular leakage to assess BBB inflammation/permeability. Body weight loss and the Garcia neurological test (motor, sensory, reflex, balance) served as surrogates of clinical recovery. RESULTS Both AT-III and ENX similarly reduced in vivo penumbral LEU rolling and adhesion (p < 0.05). Antithrombin III also reduced live BBB leakage (p < 0.05). Antithrombin III animals demonstrated the least 48-hour body weight loss (8.4 ± 1%) versus controlled cortical impact and vehicle (11.4 ± 0.5%, p < 0.01). Garcia neurological test scores were similar among groups. CONCLUSION Antithrombin III reduces post-TBI penumbral LEU-EC interactions in the BBB leading to reduced neuromicrovascular permeability. Antithrombin III further reduced body weight loss compared with no therapy. Further study is needed to determine if these AT-III effects on neuroinflammation affect longer-term neurocognitive recovery after TBI.
Collapse
Affiliation(s)
- Mohamed ElSaadani
- From the Division of Traumatology, Surgical Critical Care and Emergency Surgery (M.E., S.M.A., C.J., A.L., L.J.K., C.W.S., J.L.P.), and Department of Neurosurgery, Center for Brain Injury and Repair (V.E.J., D.H.S., J.L.P.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Sorg H, Hoffmann JO, Hoffmann JN, Vollmar B. Analysis of the influence of antithrombin on microvascular thrombosis: anti-inflammation is crucial for anticoagulation. Intensive Care Med Exp 2015. [PMID: 26215822 PMCID: PMC4495092 DOI: 10.1186/s40635-015-0058-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose Microvascular thrombosis during septic conditions is of essential clinical relevance, but the pathomechanisms are not yet completely understood. The purpose of this study was to study the distinguished differentiation of the interactions of inflammation and coagulation using antithrombin (AT), a mediator of anticoagulation and anti-inflammation. Methods Using a thrombosis model in a cremaster muscle preparation of male C57Bl/6J mice (n = 83), we quantitatively assessed microvascular thrombus formation by using intravital fluorescence microscopy. Experimental groups consisted of animals treated with AT or with tryptophan49-blocked AT (TrypAT), which exerts only anticoagulant but no anti-inflammatory effects. To further see whether endothelial glycosaminoglycan (GAG) binding with consecutive prostacyclin (PGI2) release is mandatory for the anticoagulant process of AT, animals were administered heparin or indomethacin either alone or in combination with AT. Results The antithrombotic capacity of AT significantly differs in the experimental groups in which anti-inflammation was antagonized. This is given by the significantly prolonged occlusion times (p < 0.05) and higher patency rates in case of application of AT alone; while all other groups in which the anti-inflammatory action of AT was blocked by TrypAT, heparin or indomethacin revealed thrombus kinetics comparable to controls. Conclusions The anti-inflammatory influence of AT is essentially linked to its anticoagulant effect in the microvascular system. Those specifications of the active profile of AT characterize the intimate interactions of the anticoagulant and anti-inflammatory pathways. This might be of relevance for AT as a therapeutic agent in critically diseased patients and the clinical understanding of microvascular thrombosis.
Collapse
Affiliation(s)
- Heiko Sorg
- Institute for Experimental Surgery, University Medicine Rostock, Schillingallee 69a, 18057, Rostock, Germany,
| | | | | | | |
Collapse
|
6
|
Senchenkova EY, Russell J, Esmon CT, Granger DN. Roles of Coagulation and fibrinolysis in angiotensin II-enhanced microvascular thrombosis. Microcirculation 2015; 21:401-7. [PMID: 24495184 DOI: 10.1111/micc.12120] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 01/29/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVE AngII-induced HTN is associated with accelerated thrombus development in arterioles. This study assessed the contributions of different components of the coagulation cascade and fibrinolysis to AngII-mediated microvascular thrombosis. METHODS Light/dye-induced thrombus formation (the time of onset and flow cessation) was quantified in cremaster muscle arterioles of AngII infused (two weeks) WT/AngII mice, EPCR-TgN, and mice deficient in PAI-1. WT/AngII mice were also treated with either tissue factor antibody, antithrombin III, heparin, hirudin, or murine APC. RESULTS TF immunoblockade or hirudin treatment did not prevent the AngII-induced acceleration of thrombosis. While antithrombin III treatment prevented the acceleration in both thrombus onset and flow cessation, heparin only improved the time for blood flow cessation. Neither WT mice treated with murine APC nor EPCR-TgN were protected against AngII-induced thrombus development. A similar lack of protection was noted in PAI-1deficient mice. CONCLUSION These findings implicate a role for thrombin generation pathway in the accelerated thrombosis induced by AngII and suggest that an impaired protein C pathway and increased PAI-1 do not make a significant contribution to this model of microvascular thrombosis.
Collapse
Affiliation(s)
- Elena Y Senchenkova
- Department of Molecular & Cellular Physiology, LSU Health Sciences Center, Shreveport, Louisiana, USA; Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint-Petersburg, Russia
| | | | | | | |
Collapse
|
7
|
Ma Y, Wang J, Gao J, Yang H, Wang Y, Manithody C, Li J, Rezaie AR. Antithrombin up-regulates AMP-activated protein kinase signalling during myocardial ischaemia/reperfusion injury. Thromb Haemost 2015; 113:338-49. [PMID: 25230600 PMCID: PMC4308562 DOI: 10.1160/th14-04-0360] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/09/2014] [Indexed: 11/05/2022]
Abstract
Antithrombin (AT) is a protein of the serpin superfamily involved in regulation of the proteolytic activity of the serine proteases of the coagulation system. AT is known to exhibit anti-inflammatory and cardioprotective properties when it binds to heparan sulfate proteoglycans (HSPGs) on vascular cells. AMP-activated protein kinase (AMPK) plays an important cardioprotective role during myocardial ischaemia and reperfusion (I/R). To determine whether the cardioprotective signaling function of AT is mediated through the AMPK pathway, we evaluated the cardioprotective activities of wild-type AT and its two derivatives, one having high affinity and the other no affinity for heparin, in an acute I/R injury model in C57BL/6J mice in which the left anterior descending coronary artery was occluded. The serpin derivatives were given 5 minutes before reperfusion. The results showed that AT-WT can activate AMPK in both in vivo and ex vivo conditions. Blocking AMPK activity abolished the cardioprotective function of AT against I/R injury. The AT derivative having high affinity for heparin was more effective in activating AMPK and in limiting infraction, but the derivative lacking affinity for heparin was inactive in eliciting AMPK-dependent cardioprotective activity. Activation of AMPK by AT inhibited the inflammatory c-Jun N-terminal protein kinase (JNK) pathway during I/R. Further studies revealed that the AMPK activity induced by AT also modulates cardiac substrate metabolism by increasing glucose oxidation but inhibiting fatty acid oxidation during I/R. These results suggest that AT binds to HSPGs on heart tissues to invoke a cardioprotective function by triggering cardiac AMPK activation, thereby attenuating JNK inflammatory signalling pathways and modulating substrate metabolism during I/R.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ji Li
- Ji Li, PhD, Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, NY 14214, USA, Tel.: +1 716 829 5711, Fax: +1 716 829 2801, E-mail:
| | - Alireza R Rezaie
- Alireza R. Rezaie, PhD, Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA, Tel.: +1 314 977 9240, Fax: +1 314 977 9205, E-mail:
| |
Collapse
|
8
|
Torres C, Fonseca AM, Leander M, Matos R, Morais S, Campos M, Lima M. Circulating endothelial cells in patients with venous thromboembolism and myeloproliferative neoplasms. PLoS One 2013; 8:e81574. [PMID: 24339944 PMCID: PMC3855326 DOI: 10.1371/journal.pone.0081574] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 10/15/2013] [Indexed: 11/25/2022] Open
Abstract
Background Circulating endothelial cells (CEC) may be a biomarker of vascular injury and pro-thrombotic tendency, while circulating endothelial progenitor cells (CEP) may be an indicator for angiogenesis and vascular remodelling. However, there is not a universally accepted standardized protocol to identify and quantify these cells and its clinical relevancy remains to be established. Objectives To quantify CEC and CEP in patients with venous thromboembolism (VTE) and with myeloproliferative neoplasms (MPN), to characterize the CEC for the expression of activation (CD54, CD62E) and procoagulant (CD142) markers and to investigate whether they correlate with other clinical and laboratory data. Patients and Methods Sixteen patients with VTE, 17 patients with MPN and 20 healthy individuals were studied. The CEC and CEP were quantified and characterized in the blood using flow cytometry, and the demographic, clinical and laboratory data were obtained from hospital records. Results We found the CEC counts were higher in both patient groups as compared to controls, whereas increased numbers of CEP were found only in patients with MPN. In addition, all disease groups had higher numbers of CD62E+ CEC as compared to controls, whereas only patients with VTE had increased numbers of CD142+ and CD54+ CEC. Moreover, the numbers of total and CD62+ CEC correlated positively with the white blood cells (WBC) counts in both groups of patients, while the numbers of CEP correlated positively with the WBC counts only in patients with MPN. In addition, in patients with VTE a positive correlation was found between the numbers of CD54+ CEC and the antithrombin levels, as well as between the CD142+ CEC counts and the number of thrombotic events. Conclusions Our study suggests that CEC counts may reveal endothelial injury in patients with VTE and MPN and that CEC may express different activation-related phenotypes depending on the disease status.
Collapse
Affiliation(s)
- Cláudia Torres
- Laboratório de Citometria, Serviço de Hematologia Clínica, Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Porto, Portugal
- Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS/UP), Porto, Portugal
- * E-mail: (ML); (CT)
| | - Ana Mafalda Fonseca
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Magdalena Leander
- Laboratório de Citometria, Serviço de Hematologia Clínica, Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Porto, Portugal
- Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS/UP), Porto, Portugal
| | - Rui Matos
- Secção de Trombose e Hemostase, Serviço de Hematologia Clínica, Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Porto, Portugal
| | - Sara Morais
- Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS/UP), Porto, Portugal
- Secção de Trombose e Hemostase, Serviço de Hematologia Clínica, Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Porto, Portugal
| | - Manuel Campos
- Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS/UP), Porto, Portugal
- Secção de Trombose e Hemostase, Serviço de Hematologia Clínica, Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Porto, Portugal
| | - Margarida Lima
- Laboratório de Citometria, Serviço de Hematologia Clínica, Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Porto, Portugal
- Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS/UP), Porto, Portugal
- * E-mail: (ML); (CT)
| |
Collapse
|
9
|
de Morais-Zani K, Nunes FPB, da Silva JB, Ferreira MJ, Grego KF, Lopes-Ferreira M, Tanaka AS, Tanaka-Azevedo AM. The anti-inflammatory action of Bothrops jararaca snake antithrombin on acute inflammation induced by carrageenan in mice. Inflamm Res 2013; 62:733-42. [PMID: 23665851 DOI: 10.1007/s00011-013-0628-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/18/2013] [Accepted: 04/23/2013] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVE AND DESIGN Antithrombin is known as the most important natural coagulation inhibitor and has been shown to have anti-inflammatory properties. The present study aimed to investigate the effects of Bothrops jararaca antithrombin on acute inflammation induced by carrageenan in mice. METHODS We evaluated the anti-inflammatory activity of antithrombin on models of paw edema formation, cell migration and leukocyte-endothelium interaction in mice (Swiss; n = 5). Acute inflammation was induced by the administration of carrageenan (15 mg kg⁻¹). RESULTS Treatment with B. jararaca antithrombin (1 mg kg⁻¹) 1 h before or after carrageenan administration significantly inhibited paw edema formation, reduced cell influx to the peritoneal cavity due to reduction in the migration of polymorphonuclear cells, and attenuated leukocyte rolling in the microcirculation of the cremaster muscle.The effects of antithrombin on vascular and cellular events of inflammation were completely abolished by treatment with the cyclo-oxygenase inhibitor indomethacin (4 mg kg⁻¹), suggesting the involvement of prostacyclin in the mechanism of inflammation inhibition by B. jararaca antithrombin. CONCLUSION This work showed for the first time the anti-inflammatory properties of B. jararaca antithrombin on vascular and cellular events of inflammation. These findings suggest that antithrombin is effective in preventing paw edema formation, cell migration and leukocyte rolling induced by carrageenan in mice.
Collapse
Affiliation(s)
- Karen de Morais-Zani
- Laboratório de Herpetologia, Instituto Butantan, Avenida Vital Brazil, 1500, CEP 05503-900, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Estradiol receptors agonists induced effects in rat intestinal microcirculation during sepsis. Microvasc Res 2012; 85:118-27. [PMID: 23063870 DOI: 10.1016/j.mvr.2012.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/02/2012] [Accepted: 10/03/2012] [Indexed: 01/26/2023]
Abstract
The steroid hormone estradiol is suggested to play a protective role in intestinal injury during systemic inflammation (sepsis). Our aim was to determine the effects of specific estradiol receptor (ER-α and ER-ß) agonists on the intestinal microcirculation during experimental sepsis. Male and sham ovariectomized female rats were subjected to sham colon ascendens stent peritonitis (CASP), and they were compared to male and ovariectomized female rats underwent CASP and either estradiol receptor α (ER-α) agonist propyl pyrazole triol (PPT), estradiol receptor ß (ER-ß) agonist diarylpropiolnitrile (DPN), or vehicle treatment. Intravital microscopy was performed, which is sufficiently sensitive to measure changes in the functional capillary density (FCD) as well as the major steps in leukocyte recruitment (rolling and adhesion). The leukocyte extravasations were also quantified by using histological paraffin sections of formalin fixed intestine. We found that either DPN (ER-β) or PPT (ER-α) significantly reduced (P<0.05) sepsis-induced leukocyte-endothelial interaction (rolling, adherent leukocytes and neutrophil extravasations) and improved the intestinal muscular FCD. [PPT: Female; Leukocyte rolling (n/min): V(3) 3.7±0.7 vs 0.8±0.2, Leukocyte adhesion(n/mm(2)): V(3) 131.3±22.6 vs 57.2±13.5, Neutrophil extravasations (n/10000 μm(2)): 3.1±0.7 vs 6 ±1. Male; Leukocyte adhesion (n/mm(2)): V(1) 154.8±19.2 vs 81.3±11.2, V(3) 115.5±23.1 vs 37.8±12]. [DPN: Female; neutrophil extravasations (n/10000 μm(2)) 3.8±0.6 vs 6 ±1. Male; Leukocyte adhesion (n/mm(2)) V(1) 154.8±19.2 vs 70±10.5, V(3) 115.5±23.1 vs 52.8±9.6].Those results suggest that the observed effects of estradiol receptors on different phases of leukocytes recruitment with the improvement of the functional capillary density could partially explain the previous demonstrated salutary effects of estradiol on the intestinal microcirculation during sepsis. The observed activity of this class of compounds could open up a new avenue of research into the potential treatment of sepsis.
Collapse
|
11
|
Serpin induced antiviral activity of prostaglandin synthetase-2 against HIV-1 replication. PLoS One 2011; 6:e18589. [PMID: 21533265 PMCID: PMC3075258 DOI: 10.1371/journal.pone.0018589] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 03/10/2011] [Indexed: 11/24/2022] Open
Abstract
The serine protease inhibitors (serpins) are anti-inflammatory proteins that have various functions. By screening a diverse panel of viruses, we demonstrate that the serpin antithrombin III (ATIII) has a broad-spectrum anti-viral activity for HIV-1, HCV and HSV. To investigate the mechanism of action in more detail we investigated the HIV-1 inhibition. Using gene-expression arrays we found that multiple host cell signal transduction pathways were activated by ATIII in HIV-1 infected cells but not in uninfected controls. Moreover, the signal pathways initiated by ATIII treatment, were more than 200-fold increased by the use of heparin-activated ATIII. The most up-regulated transcript in HIV-1 infected cells was prostaglandin synthetase-2 (PTGS2). Furthermore, we found that over-expression of PTGS2 reduced levels of HIV-1 replication in human PBMC. These findings suggest a central role for serpins in the host innate anti-viral response. Host factors such as PTGS2 elicited by ATIII treatment could be exploited in the development of novel anti-viral interventions.
Collapse
|
12
|
Marx G, Reinhart K. Antithrombotika: aktiviertes Protein C und Antithrombin. Hamostaseologie 2010. [DOI: 10.1007/978-3-642-01544-1_55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
13
|
Angstwurm M, Hoffmann J, Ostermann H, Frey L, Spannagl M. [Severe sepsis and disseminated intravascular coagulation. Supplementation with antithrombin]. Anaesthesist 2009; 58:171-9. [PMID: 19189066 DOI: 10.1007/s00101-008-1494-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Administration of high-dose antithrombin (AT) was investigated on a large collective of patients with severe sepsis in the KyberSept study. In the total study the administration of AT resulted in no significant reduction of the mortality rate in comparison to a placebo. However, in the protocol of this study subgroups were predefined, which when analyzed revealed that the group of patients who received AT but not simultaneously heparin did show a reduction of the mortality rate in comparison to the placebo group. The reduction of the absolute mortality rate of 15% reached statistical significance on day 90. Even patients classified as risk group grade II according to the Simplified Acute Physiology Score (SAPS), showed a significant reduction of the mortality rate of approximately 22% after 90 days without simultaneous administration of heparin. Such a positive result for administration of AT without simultaneous heparin treatment can also be found when severe sepsis complicated by disseminated intravascular coagulation (DIC) is present. Coagulation diagnostic assists the recognition of latent or fulminant DIC and also in surveillance of the course and development. The results of AT supplementation for severe sepsis and DIC are in agreement with earlier studies on smaller patient collectives and suggest that a randomized controlled clinical study should be carried out on a subcollective of severely ill patients.
Collapse
Affiliation(s)
- M Angstwurm
- Medizinische Klinik, Ziemssenstr. 1, 80336 München, Deutschland.
| | | | | | | | | |
Collapse
|
14
|
The effect of anticoagulants and the role of thrombin on neutrophil-endothelial cell interactions in septic shock. Shock 2009; 31:120-4. [PMID: 18636042 DOI: 10.1097/shk.0b013e318180ffe9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To examine the effects of anticoagulants and the role of thrombin on neutrophil-platelet-endothelial cell interactions in septic shock. Controlled experiments using phase-contrast microscopy to study neutrophil, platelet, and endothelial cell interactions in flowing cell suspensions under simulated physiologic conditions. University research laboratory. Adult patients with septic shock and normal volunteers. Microslides were coated with human umbilical vein endothelial cells. Neutrophils and platelets removed from control subjects were stimulated with plasma from patients in septic shock and perfused over endothelial cells. Heparin (H), argatroban (A), antithrombin III (ATIII), and recombinant human activated protein C (rhAPC) with and without thrombin were added to cells suspended in septic plasma and normal plasma. The number of neutrophils adherent to endothelial cells, neutrophil rolling velocity, and the number of neutrophils in aggregates were determined. Flow cytometric analysis of cells was used to identify cell activation and the formation of platelet-neutrophil aggregates. Heparin, A, ATIII, rhAPC all significantly decreased neutrophil adhesion and aggregation, and increased rolling velocity of neutrophils suspended in septic plasma. These results are similar to those observed with normal plasma but present greater absolute changes. Platelet-neutrophil aggregation, platelet activation, and neutrophil activation were significantly decreased by each of the anticoagulants. The addition of thrombin to cell suspensions containing anticoagulants reversed the effects of H, A, ATIII, rhAPC on neutrophil adhesion, adherence, and rolling velocity. In addition, thrombin attenuated the effects of each of these agents on platelet-neutrophil aggregation, platelet activation, and neutrophil activation. These data suggest that H, A, ATIII, and rhAPC decrease sepsis-induced neutrophil-endothelial cell interactions. The reversal of this effect by thrombin suggests that these agents alter neutrophil-endothelial interactions through their anticoagulant effects and the resulting decrease in thrombin activity.
Collapse
|
15
|
Knotzer H, Hasibeder W. [Microcirculation of intensive care patients. From the physiology to the bedside]. Anaesthesist 2008; 57:151-64. [PMID: 18273581 DOI: 10.1007/s00101-007-1300-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The microcirculation is unique in its anatomy and physiology and is a self-contained organ system within the human body. It is the site where gas exchange and nutrient supply takes place, but it is also the site which experiences pathological alterations during various shock states and therefore compromises the oxygen supply to tissues and organs. Systemic inflammation for example leads amongst others to increased heterogeneous blood flow, formation of interstitial edema, altered viscosity, leukocyte activation, disturbances in the coagulation system, and to a breakdown of the endothelial barrier function. These alterations inevitably lead to limitations of the oxygen supply to tissues. Without interruption of these pathomechanisms, the dysfunction of the microcirculation will consequently result in organ dysfunction. In this review article a short description of the microcirculatory physiology, the interaction between the macrocirculation and the microcirculation, as well as microcirculatory alterations generated by a systemic inflammatory response will be given. Finally, various therapy options will be described, which, experimentally, can lead to an improvement in microcirculatory dysfunction.
Collapse
Affiliation(s)
- H Knotzer
- Universitätsklinik für Anästhesiologie und Allgemeine Intensivmedizin, Medizinische Universität Innsbruck, Anichstrasse 35, 6020 Innsbruck, Osterreich.
| | | |
Collapse
|
16
|
|
17
|
Sun K, Wang CS, Guo J, Horie Y, Fang SP, Wang F, Liu YY, Liu LY, Yang JY, Fan JY, Han JY. Protective effects of ginsenoside Rb1, ginsenoside Rg1, and notoginsenoside R1 on lipopolysaccharide-induced microcirculatory disturbance in rat mesentery. Life Sci 2007; 81:509-18. [PMID: 17655881 DOI: 10.1016/j.lfs.2007.06.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 06/12/2007] [Accepted: 06/19/2007] [Indexed: 12/22/2022]
Abstract
Ginsenoside Rb1 (Rb1), ginsenoside Rg1 (Rg1), and notoginsenoside R1 (R1) are major active components of Panax notoginseng, a Chinese herb that is widely used in traditional Chinese medicine to enhance blood circulation and dissipate blood stasis. To evaluate the effect of these saponins on microcirculatory disturbance induced by lipopolysaccharide (LPS), vascular hemodynamics in rat mesentery was observed continuously during their administration using an inverted microscope and a high speed video camera system. LPS administration decreased red blood cell velocity but Rb1, Rg1, and R1 attenuated this effect. LPS administration caused leukocyte adhesion to the venular wall, mast cell degranulation, and the release of cytokines. Rb1, Rg1, and R1 reduced the number of adherent leukocytes, and inhibited mast cell degranulation and cytokine elevation. In vitro experiments using flow cytometry further demonstrated that a) the LPS-enhanced expression of CD11b/CD18 by neutrophils was significantly depressed by Rb1 and R1, and b) hydrogen peroxide (H(2)O(2)) release from neutrophils in response to LPS stimulation was inhibited by treatment with Rg1 and R1. These results suggest that the protective effect of Rb1 and R1 against leukocyte adhesion elicited by LPS may be associated with their suppressive action on the expression of CD11b/CD18 by neutrophils. The protective effect against mast cell degranulation by Rb1 and R1, and the blunting of H(2)O(2) release from neutrophils by Rg1 and R1 suggest mechanistic diversity in the effects of Panax notoginseng saponins in the attenuation of microcirculatory disturbance induced by LPS.
Collapse
Affiliation(s)
- Kai Sun
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Feistritzer C, Wiedermann CJ. Effects of anticoagulant strategies on activation of inflammation and coagulation. Expert Opin Biol Ther 2007; 7:855-70. [PMID: 17555371 DOI: 10.1517/14712598.7.6.855] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Acute inflammatory events, such as those that occur in sepsis, lead to dysregulation of the coagulation cascade. The hemostatic imbalance in sepsis, characterized by the excessive activation of procoagulant pathways and the impairment of anticoagulant activity, leads to disseminated intravascular coagulation and results in microvascular thrombosis, tissue hypoperfusion and, ultimately, multiple organ failure and death. Furthermore, natural anti-inflammatory mechanisms of the endogenous anticoagulants are diminished by the impaired coagulation. Supportive strategies aiming at inhibiting activation of coagulation and inflammation by treatment with exogenous anticoagulants have been found to be beneficial in experimental and initial clinical studies. This review summarizes the available experimental and clinical data regarding the interaction between coagulation and inflammation, focusing on the two anticoagulants which are in clinical use, antithrombin and activated protein C. Identification of the different biological mechanisms of the two endogenous anticoagulants might help to determine target patient populations as well as to develop new anticoagulant analogs that differ in there respective effects in coagulation and inflammation.
Collapse
Affiliation(s)
- Clemens Feistritzer
- Medical University of Innsbruck, Department of Internal Medicine, Innsbruck (Tyrol), Austria
| | | |
Collapse
|
19
|
Sorg H, Hoffmann JN, Rumbaut RE, Menger MD, Lindenblatt N, Vollmar B. Efficacy of antithrombin in the prevention of microvascular thrombosis during endotoxemia: An intravital microscopic study. Thromb Res 2007; 121:241-8. [PMID: 17512574 DOI: 10.1016/j.thromres.2007.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 04/10/2007] [Accepted: 04/11/2007] [Indexed: 11/24/2022]
Abstract
INTRODUCTION The KyberSept trial in septic patients showed that antithrombin (AT) reduced 90-day mortality significantly in a subgroup of patients not receiving concomitant heparin for thrombosis prophylaxis. Microvascular thrombosis is a key pathophysiologic mechanism during sepsis, ischemia/reperfusion and disseminated intravascular coagulation (DIC). Therefore, this study investigated the antithrombotic property of AT as potential monotherapy in an experimental endotoxemia model in order to omit concomitant heparin. MATERIALS AND METHODS Using a light/dye injury model in the ear and the cremaster muscle preparation of mice, we quantitatively assessed microvascular thrombus formation in a total of 30 endotoxemic mice by means of intravital fluorescence microscopy. Before thrombus induction animals received a single i.v. bolus of AT (100 or 250 IU/kg), heparin (100 IU/kg) or saline (NaCl). RESULTS In NaCl-treated endotoxemic animals, light/dye exposure led to complete thrombotic occlusion in arterioles and venules within <450 s in the ear model. Heparin delayed thrombotic vessel occlusion by more than 50%. AT significantly prolonged times until thrombotic vessel occlusion in a dose-dependent manner and more effectively than heparin (p<0.05 vs. NaCl and heparin). This anti-coagulative effect of AT was especially pronounced in arterioles. Upon light/dye exposure to cremaster muscle preparations in endotoxemic mice AT also caused a 4-fold delay in microvascular thrombus growth with 827+/-77 s until complete thrombotic occlusion. CONCLUSIONS We could characterize for the first time AT-mediated antithrombotic activity during endotoxemia in two models of phototoxicity-induced microvascular thrombosis. Our results clearly demonstrate an additional AT mechanism of action that may be responsible for beneficial effects observed during endotoxemia and DIC. This AT profile may allow future high-dose AT application without giving heparin for thrombosis prophylaxis, an intriguing strategy that is to be tested under clinical conditions.
Collapse
Affiliation(s)
- Heiko Sorg
- Institute for Experimental Surgery, University of Rostock, Schillingallee 69a, 18055 Rostock, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Czabanka M, Martin E, Walther A. Role of Antithrombin and Factor XIII In Leukocyte-Independent Plasma Extravasation During Endotoxemia: An Intravital-Microscopic Study in the Rat. J Surg Res 2006; 136:219-26. [PMID: 16457847 DOI: 10.1016/j.jss.2005.11.574] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 09/26/2005] [Accepted: 11/14/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Platelet-endothelial interactions have been shown to be main mediators of leukocyte-independent endothelial damage. Besides altering platelet-endothelial interactions, both antithrombin and factor XIII reduce microvascular permeability in leukocyte-dependent experimental models. Thus, it was our aim to investigate the effects of antithrombin and factor XIII on microvascular permeability during leukocyte-independent endotoxemia. MATERIAL AND METHODS In male Wistar rats, venular wall shear rate, macromolecular efflux, and leukocyte-endothelial interaction were determined in mesenteric postcapillary venules using intravital microscopy at baseline, 60, and 120 min after the start of the experiment. Fucoidin and a continuous infusion of lipopolysaccharides were used to generate leukocyte-independent endotoxemia. The experiment was divided into two parts 1) an antithrombin study and 2) a factor XIII study. RESULTS No differences between groups in leukocyte rolling and venular wall shear rate could be observed in both parts of the experiment. Pretreatment with antithrombin reduced microvascular permeability significantly compared with control subjects (120 min: Fuco [untreated]: 0.14 +/- 0.03; Fuco/ETX [control]: 0.37 +/- 0.06; Fuco + ATIII/ETX: 0.15 +/- 0.02; P < 0.05). Factor XIII reduced microvascular permeability significantly after 60 min (Fuco [untreated]: 0.10 +/- 0.03; Fuco/ETX [control]: 0.36 +/- 0.07; Fuco + FXIII/ETX: 0.13 +/- 0.04; P < 0.05). This effect diminished after 120 min (Fuco [untreated]: 0.12 +/- 0.03; Fuco/ETX [control]: 0.5 +/- 0.08; Fuco + FXIII/ETX: 0.29 +/- 0.05; P < 0.05). CONCLUSIONS Antithrombin and factor XIII reduce leukocyte-independent microvascular permeability. Yet, factor XIII also shows a nonprotective effect on a long-term basis. These data emphasize the central role of platelets in leukocyte-independent endotoxemia.
Collapse
Affiliation(s)
- Marcus Czabanka
- Department of Anesthesiology, University of Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
21
|
Wiedermann CJ. Clinical review: molecular mechanisms underlying the role of antithrombin in sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2006; 10:209. [PMID: 16542481 PMCID: PMC1550851 DOI: 10.1186/cc4822] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In disseminated intravascular coagulation (DIC) there is extensive crosstalk between activation of inflammation and coagulation. Endogenous anticoagulatory pathways are downregulated by inflammation, thus decreasing the natural anti-inflammatory mechanisms that these pathways possess. Supportive strategies aimed at inhibiting activation of coagulation and inflammation may theoretically be justified and have been found to be beneficial in experimental and initial clinical studies. This review assembles the available experimental and clinical data on biological mechanisms of antithrombin in inflammatory coagulation activation. Preclinical research has demonstrated partial interference of heparin – administered even at low doses – with the therapeutic effects of antithrombin, and has confirmed – at the level of cellular mechanisms – a regulatory role for antithrombin in DIC. Against this biological background, re-analyses of data from randomized controlled trials of antithrombin in sepsis suggest that antithrombin has the potential to be developed further as a therapeutic agent in the treatment of DIC. Even though there is a lack of studies employing satisfactory methodology, the results of investigations conducted thus far into the mechanisms of action of antithrombin allow one to infer that there is biological plausibility in the value of this agent. Final assessment of the drug's effectiveness, however, must await the availability of positive, prospective, randomized and placebo-controlled studies.
Collapse
Affiliation(s)
- Christian J Wiedermann
- 2nd Divison of Internal Medicine, Department of Medicine, Central Hospital of Bolzano, Bolzano, Italy.
| |
Collapse
|
22
|
van Veen SQ, Cheung CW, Meijers JCM, van Gulik TM, Boermeester MA. Anticoagulant and anti-inflammatory effects after peritoneal lavage with antithrombin in experimental polymicrobial peritonitis. J Thromb Haemost 2006; 4:2343-51. [PMID: 16911675 DOI: 10.1111/j.1538-7836.2006.02167.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND In sepsis, coagulation inhibition using high-dose systemic antithrombin (AT) tends to improve survival. However, systemic AT use is complicated by increased risk of bleeding (odds ratio 1,7) and clinically important survival increase is seen only in the non-heparinized subgroup. Local (intra-abdominal) inhibition of coagulation with AT may be more effective. OBJECTIVES To investigate effects of intra-abdominal high-dose recombinant human AT (rhAT) lavage on coagulation and inflammation in experimental polymicrobial sepsis. METHODS Murine cecal ligation and puncture model was used with peritoneal lavage after 24 h, containing rhAT (3 IU mL-1) or saline. Clotting time, thrombin-antithrombin complexes (TAT), D-dimers, tissue-type plasminogen activator and plasminogen activator inhibitor-1 assessed coagulation and fibrinolysis responses. Inflammation was assessed by keratinocyte-derived chemokine (KC), interleukin-1beta (IL-1beta), IL-6, tumor necrosis factor-alpha (TNF-alpha), leukocyte count, myeloperoxidase and bacterial load. RESULTS rhAT lavage prolonged abdominal clotting times and reduced D-dimers and TAT levels, indicating inhibited abdominal coagulation. Pulmonary clotting time and D-dimers decreased towards normal by rhAT lavage. Abdominal fibrinolysis was reduced after rhAT lavage, as were abdominal IL-1beta, KC, leukocytes and bacterial load. Pulmonary TNF-alpha, KC, myeloperoxidase and histopathological injury were decreased. Survival improved from 62% (saline lavage) to 83% (rhAT lavage, P<0.05). CONCLUSIONS High-dose rhAT lavage inhibited coagulation activation, and reduced inflammatory responses in both abdominal and pulmonary compartments, ultimately improving survival.
Collapse
Affiliation(s)
- S Q van Veen
- Department of Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
23
|
Nitescu N, Grimberg E, Ricksten SE, Marcussen N, Nordlinder H, Guron G. Effects of thrombin inhibition with melagatran on renal hemodynamics and function and liver integrity during early endotoxemia. Am J Physiol Regul Integr Comp Physiol 2006; 292:R1117-24. [PMID: 17068159 DOI: 10.1152/ajpregu.00471.2006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sepsis is associated with an activation of the coagulation system and multiorgan failure. The aim of the study was to examine the effects of selective thrombin inhibition with melagatran on renal hemodynamics and function, and liver integrity, during early endotoxemia. Endotoxemia was induced in thiobutabarbital-anesthetized rats by an intravenous bolus dose of lipopolysaccharide (LPS; 6 mg/kg). Sham-Saline, LPS-Saline, and LPS-Melagatran study groups received isotonic saline or melagatran immediately before (0.75 micromol/kg iv) and continuously during (0.75 micromol.kg(-1).h(-1) iv) 4.5 h of endotoxemia. Kidney function, renal blood flow (RBF), and intrarenal cortical and outer medullary perfusion (OMLDF) measured by laser-Doppler flowmetry were analyzed throughout. Markers of liver injury and tumor necrosis factor (TNF)-alpha were measured in plasma after 4.5 h of endotoxemia. In addition, liver histology and gene expression were examined. Melagatran treatment prevented the decline in OMLDF observed in the LPS-Saline group (P < 0.05, LPS-Melagatran vs. LPS-Saline). However, melagatran did not ameliorate reductions in mean arterial pressure, RBF, renal cortical perfusion, and glomerular filtration rate or attenuate tubular dysfunctions during endotoxemia. Melagatran reduced the elevated plasma concentrations of aspartate aminotransferase (-34 +/- 11%, P < 0.05), alanine aminotransferase (-21 +/- 7%, P < 0.05), bilirubin (-44 +/- 9%, P < 0.05), and TNF-alpha (-32 +/- 14%, P < 0.05) in endotoxemia. Melagatran did not diminish histological abnormalities in the liver or the elevated hepatic gene expression of TNF-alpha, intercellular adhesion molecule-1, and inducible nitric oxide synthase in endotoxemic rats. In summary, thrombin inhibition with melagatran preserved renal OMLDF, attenuated liver dysfunction, and reduced plasma TNF-alpha levels during early endotoxemia.
Collapse
Affiliation(s)
- Nicoletta Nitescu
- Department of Anesthesiology and Intensive Care, Institute of Clinical Sciences, Sahlgrenska University Hospital, S-413 45 Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
24
|
Loncar R, Kalina U, Stoldt V, Thomas V, Scharf RE, Vodovnik A. Antithrombin significantly influences platelet adhesion onto immobilized fibrinogen in an in-vitro system simulating low flow. Thromb J 2006; 4:19. [PMID: 17040572 PMCID: PMC1618384 DOI: 10.1186/1477-9560-4-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Accepted: 10/13/2006] [Indexed: 11/12/2022] Open
Abstract
Background Adhesion of platelets onto immobilized fibrinogen is of importance in initiation and development of thrombosis. According to a recent increase in evidence of a multiple biological property of antithrombin, we evaluated the influence of antithrombin on platelet adhesion onto immobilized fibrinogen using an in-vitro flow system. Methods Platelets in anticoagulated whole blood (29 healthy blood donors) were labelled with fluorescence dye and perfused through a rectangular flow chamber (shear rates of 13 s-1 to 1500 s-1). Platelet adhesion onto fibrinogen-coated slips was assessed using a fluorescence laser-scan microscope and compared to the plasma antithrombin activity. Additionally the effect of supraphysiological AT supplementation on platelets adhesion rate was evaluated. Results Within a first minute of perfusion, an inverse correlation between platelet adhesion and plasma antithrombin were observed at 13 s-1 and 50 s-1 (r = -0.48 and r = -0.7, p < 0.05, respectively). Significant differences in platelet adhesion related to low (92 ± 3.3%) and high (117 ± 4.1%) antithrombin activity (1786 ± 516 U vs. 823 ± 331 U, p < 0.05) at low flow rate (13 s-1, within first minute) have been found. An in-vitro supplementation of whole blood with antithrombin increased the antithrombin activity up to 280% and platelet adhesion rate reached about 65% related to the adhesion rate in a non-supplemented blood (1.25 ± 0.17 vs. 1.95 ± 0.4 p = 0.008, respectively). Conclusion It appears that antithrombin in a low flow system suppresses platelet adhesion onto immobilized fibrinogen independently from its antithrombin activity. A supraphysiological substitution of blood with antithrombin significantly reduces platelet adhesion rate. This inhibitory effect might be of clinical relevance.
Collapse
Affiliation(s)
- Robert Loncar
- Department of Hemostasis and Transfusion Medicine, Heinrich Heine University Medical Center Duesseldorf, Germany
| | - Uwe Kalina
- Research ZLB Behring, Emil von Behring Strasse 76, 35041 Marburg, Germany
| | - Volker Stoldt
- Department of Hemostasis and Transfusion Medicine, Heinrich Heine University Medical Center Duesseldorf, Germany
| | - Volker Thomas
- Department of Hemostasis and Transfusion Medicine, Heinrich Heine University Medical Center Duesseldorf, Germany
| | - Rüdiger E Scharf
- Department of Hemostasis and Transfusion Medicine, Heinrich Heine University Medical Center Duesseldorf, Germany
| | - Aleksandar Vodovnik
- Department of Histopathology, The Calderdale Royal Hospital, HX3 0PA Halifax, UK
| |
Collapse
|
25
|
Hoffmann JN, Fertmann JM, Jauch KW. Microcirculatory disorders in sepsis and transplantation: therapy with natural coagulatory inhibitors antithrombin and activated protein C. Curr Opin Crit Care 2006; 12:426-30. [PMID: 16943720 DOI: 10.1097/01.ccx.0000244121.54495.f7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Modern technologies allow visualization of microcirculatory disorders. This review describes how the coagulatory inhibitors antithrombin and activated protein C (APC) can improve microcirculation in sepsis and transplantation. RECENT FINDINGS The effects of antithrombin and APC on microcirculatory disorders in ischemia reperfusion and experimental sepsis have been reported recently. In addition, antithrombin has recently been clinically used to reduce graft pancreatitis after pancreas-kidney transplantation, and to improve kidney perfusion. It was demonstrated that septic capillary perfusion failure as well as leukocyte-endothelial cell interactions can be reversed by high-dose prophylactic antithrombin application. APC was also highly effective in this context. Thus, APC could improve microcirculatory blood flow in septic patients as recently measured by in-vivo orthogonal polarization spectral imaging techniques. For antithrombin, comparable measurements in humans are currently not available. SUMMARY Microcirculatory dysfunction plays a key role in the development of organ dysfunction in septic patients and after solid organ transplantation. The exogenous application of coagulatory inhibitors may provide a new important strategy for prevention and treatment of microcirculatory disorders. This mode of action may be the reason why coagulatory inhibitors could improve mortality in septic patients without directly influencing inflammatory mediator concentrations.
Collapse
|
26
|
Maksan SM, Ulger Z, Gebhard MM, Schmidt J. Impact of antithrombin III on hepatic and intestinal microcirculation in experimental liver cirrhosis and bowel inflammation: An in vivo analysis. World J Gastroenterol 2005; 11:4997-5001. [PMID: 16124052 PMCID: PMC4321916 DOI: 10.3748/wjg.v11.i32.4997] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyze the hepatic and intestinal microcirculation in an animal model of liver cirrhosis and inflammatory bowel disease (IBD) and to characterize the anti-inflammatory action of antithrombin III (ATIII) on leukocyte kinetics and liver damage.
METHODS: Hepatic and intestinal microcirculation was investigated by intravital videomicroscopy. Standardized models of experimental chronic liver cirrhosis and bowel inflammation were employed. Animals were divided into four groups (n = 6/group): controls, animals with cirrhosis, animals with cirrhosis and IBD, animals with cirrhosis and IBD treated with ATIII.
RESULTS: Cirrhosis facilitated leukocyte rolling and sticking in hepatic sinusoids (1.91±0.28 sticker/µm vs 0.5±0.5 sticker/µm in controls, P<0.05). The effect enhanced in animals with cirrhosis and IBD (5.4±1.65 sticker/µm), but reversed after ATIII application (3.97±1.04 sticker/µm, P<0.05). Mucosal blood flow showed no differences in cirrhotic animals and controls (5.3±0.31 nL/min vs 5.4±0.25 nL/min) and was attenuated in animals with cirrhosis and IBD significantly (3.49±0.6 nL/min). This effect was normalized in the treatment group (5.13±0.4 nL/min, P<0.05). Enzyme values rose during development of cirrhosis and bowel inflammation, and reduced after ATIII application (P<0.05).
CONCLUSION: Liver cirrhosis in the presence of IBD leads to a significant reduction in mucosal blood flow and an increase in hepatic leukocyte adherence with consecutive liver injury, which can be prevented by administration of ATIII.
Collapse
|
27
|
Hoffmann JN, Mühlbayer D, Jochum M, Inthorn D. Effect of long-term and high-dose antithrombin supplementation on coagulation and fibrinolysis in patients with severe sepsis. Crit Care Med 2004; 32:1851-9. [PMID: 15343012 DOI: 10.1097/01.ccm.0000139691.54108.1f] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Sepsis is frequently associated with coagulatory activation, which may contribute to deteriorated organ function. Antithrombin is one important endogenous coagulation inhibitor that is therapeutically applied during sepsis. This study investigates the effect of 14-day antithrombin application on coagulatory variables. DESIGN Prospective study. SETTING Surgical intensive care unit of a university hospital. PATIENTS Forty patients with severe sepsis. INTERVENTIONS Patients with severe sepsis were randomly assigned to receive either conventional intensive care treatment (n = 20, controls) or antithrombin substitution that aimed at a plasma antithrombin activity > or =120% during a long-term (14-day) study period (n = 20, antithrombin). To allow comparative analysis of laboratory variables over time, all patients who did not survive the 14-day-period (five controls and six antithrombin patients) were prospectively excluded from the final evaluation. Their data were included in an intent-to-treat analysis. MEASUREMENTS AND MAIN RESULTS Antithrombin supplementation normalized global coagulation tests and increased prothrombin activity as well as fibrinogen concentration, reflecting less coagulation factor consumption (percent change from baseline in prothrombin activity, p <.01 vs. controls at days 9, 11-14 of antithrombin vs. controls [unpaired Student's t-test]; fibrinogen concentration, p <.01 vs. controls at days 10, 11, 13, and 14 of antithrombin). Simultaneously, antithrombin reduced contact system activation as indicated by increasing prekallikrein activities over time (% change, p <.01 vs. controls at days 6, 9-14) and increased protein C activities when compared with controls (% change, p <.01 vs. controls at days 10-14). Most changes occurred from day 7 to day 14 of antithrombin supplementation. Antithrombin did not influence C1 esterase inhibitor, plasminogen, alpha2 antiplasmin, or platelet counts (p >.01). CONCLUSION In this first study on long-term antithrombin therapy, antithrombin significantly reduced septic coagulatory response in patients with severe sepsis when given over 14 days.
Collapse
|
28
|
Abstract
Activation of the coagulation cascade during invasive infection can result in purpura fulminans, with rapid progression of tissue ischemia, or may manifest as abnormal clotting indices alone. Although severe derangements in coagulation are associated with organ dysfunction and increased mortality, the contribution of coagulopathy to the pathophysiology of sepsis remains incompletely understood. Over the past decade, investigators have evaluated several therapeutic anticoagulant strategies in sepsis, and manipulation of the coagulation system has emerged as a key concept in the current management of this disease. Clinical observations during treatment of septic patients with the endogenous anticoagulant activated protein C have stimulated additional study of interactions between endothelial injury, coagulation, and inflammation. This review describes clotting abnormalities during sepsis and discusses the clinical experience with therapeutic strategies intended to oppose excessive coagulation.
Collapse
Affiliation(s)
- Tonya Jagneaux
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
29
|
Harder Y, Amon M, Erni D, Menger MD. Evolution of ischemic tissue injury in a random pattern flap: A new mouse model using intravital microscopy. J Surg Res 2004; 121:197-205. [PMID: 15501459 DOI: 10.1016/j.jss.2004.03.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Indexed: 11/22/2022]
Abstract
BACKGROUND Dissection of random pattern flaps may cause microcirculatory dysfunction and ischemia, which jeopardize wound healing due to impaired tissue viability. The aim of this study was to develop an in vivo model that enables continuous monitoring of the interplay between microcirculatory dysfunction, ischemia, and tissue injury by intravital microscopy. MATERIALS AND METHODS A laterally based random pattern skin flap (15 x 11 mm) including the panniculus carnosus was raised in the back of mice and fixed into a dorsal skinfold chamber (n = 10). Arteriolar blood flow, functional capillary density, number of apoptotic cells, and area of tissue necrosis were analyzed by intravital fluorescence microscopy in the proximal, middle, and distal part of the flap at day 1, 3, 5, and 7 after surgery. Chamber preparations without flap harvesting served as controls (n = 6). RESULTS At day 1, the distal part of the flap showed a decreased arteriolar blood flow (266 +/- 124 pl/s versus controls: 1418 +/- 351 pl/s; P < 0.05), which resulted in severe alteration of functional capillary density (43 +/- 11 cm/cm2 versus 270 +/- 7 cm/cm2; P < 0.001). The impaired microcirculation was associated with apoptotic cell death (277 +/- 50 cells/mm2 versus 50 +/- 5 cells/mm2; P < 0.05). Microcirculatory dysfunction persisted over 7 days, and, finally, resulted in 49 +/- 3% flap necrosis. CONCLUSIONS This new model enables repetitive and simultaneous in vivo microscopic evaluation of microvascular hypoperfusion, apoptosis, and tissue necrosis in a random pattern flap. By the use of gene-targeted mice, it bears great potential to analyze distinct mechanisms of flap failure. It further represents an ideal tool to study novel protective strategies, including induction of angiogenesis, heat shock proteins, and HIF-1alpha.
Collapse
Affiliation(s)
- Y Harder
- Institute for Clinical and Experimental Surgery, University of Saarland, D-66421 Homburg/Saar, Germany.
| | | | | | | |
Collapse
|
30
|
Schoots IG, Levi M, van Vliet AK, Maas AM, Roossink EHP, van Gulik TM. Inhibition of coagulation and inflammation by activated protein C or antithrombin reduces intestinal ischemia/reperfusion injury in rats. Crit Care Med 2004; 32:1375-83. [PMID: 15187522 DOI: 10.1097/01.ccm.0000128567.57761.e9] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To examine whether administration of activated protein C or antithrombin reduces local splanchnic derangement of coagulation and inflammation and attenuates intestinal dysfunction and injury following intestinal ischemia/reperfusion. DESIGN Randomized prospective animal study. SETTING University research institute. SUBJECTS Adult male Wistar rats, weighing 300-325 g (n = 72). INTERVENTIONS Rats were subjected to superior mesenteric artery occlusion consisting of 20 or 40 mins of ischemia and 3 hrs of reperfusion. A randomized intravenous administration of vehicle (0.9% NaCl), heparin, antithrombin, or activated protein C was performed during ischemia, 15 mins before reperfusion. Coagulation and fibrinolysis variables obtained from portal blood were correlated with mucosal fibrin deposition (determined by anti-rat fibrin antibody staining), intestinal function (glucose/water clearance), and intestinal injury (histologic evaluation by Park/Chiu score). MEASUREMENTS AND MAIN RESULTS Activated protein C- or antithrombin-treated animals demonstrated less ischemia/reperfusion-induced intestinal dysfunction and histologic changes compared with control animals, whereas intravenous administration of heparin only showed less histologic derangement. Activated protein C- or antithrombin-treated animals showed less thrombin generation, fibrin degradation products, and fibrin deposition compared with control animals, as confirmed by histologic examination, whereas heparin administration showed only a limited reduction of portal fibrin degradation product concentrations. Furthermore, activated protein C or antithrombin administration markedly inhibited the inflammatory response, as reflected by reduced interleukin-6 plasma concentrations to baseline values, whereas heparin had no effect. CONCLUSIONS Administration of activated protein C or antithrombin inhibited local and systemic derangement of coagulation and inflammation following intestinal ischemia/reperfusion, diminished mucosal fibrin deposition, and attenuated ischemia/reperfusion-induced intestinal injury. These observations suggest that activated protein C or antithrombin reduces ischemia/reperfusion-induced intestinal injury, both through their anticoagulant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Ivo G Schoots
- Department of Surgery, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
31
|
Hoffmann JN, Vollmar B, Laschke MW, Inthorn D, Fertmann J, Schildberg FW, Menger MD. Microhemodynamic and cellular mechanisms of activated protein C action during endotoxemia. Crit Care Med 2004; 32:1011-7. [PMID: 15071394 DOI: 10.1097/01.ccm.0000120058.88975.42] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To characterize microcirculatory actions of activated protein C in an endotoxemia rodent model that allows in vivo studies of microvascular inflammation and perfusion dysfunction. DESIGN Animal study using intravital microscopy. SETTING Animal research facility. SUBJECTS Male Syrian golden hamsters, 6-8 wks old with a body weight of 60-80 g. INTERVENTIONS In skinfold preparations, endotoxemia was induced by intravenous administration of 2 mg/kg endotoxin (lipopolysaccharide, Escherichia coli). Intravital microscopy allowed quantitative analysis of arteriolar and venular leukocyte adhesion and functional capillary density (cm) that served as a measure of microvascular perfusion failure. Activated protein C (APC group, n = 8, 24 microg/kg intravenously) was substituted continuously during 8 hrs after lipopolysaccharide, whereas endotoxemic buffer-treated animals (control, n = 7) served as controls. MEASUREMENTS AND MAIN RESULTS Lipopolysaccharide increased leukocyte adhesion and decreased functional capillary density to 50% of baseline values (p <.01 vs. baseline). Activated protein C treatment inhibited (p <.05) lipopolysaccharide-mediated leukocytic response and attenuated (p <.05) endotoxic perfusion failure in nutritive capillaries. CONCLUSIONS Activated protein C-induced protection from lipopolysaccharide-mediated microcirculatory dysfunction was characterized in vivo for the first time. The impressive modification of leukocyte cross-talk indicates systemic anti-inflammatory activated protein C effects on leukocytes and the endothelium, subsequently improving capillary perfusion. These actions could represent the in vivo mechanism of activated protein C interactions observed in patients with severe sepsis.
Collapse
Affiliation(s)
- Johannes N Hoffmann
- Department of Surgery, Klinikum Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Feistritzer C, Kaneider NC, Sturn DH, Wiedermann CJ. Syndecan-4-dependent migration of human eosinophils. Clin Exp Allergy 2004; 34:696-703. [PMID: 15144459 DOI: 10.1111/j.1365-2222.2004.1853.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Heparan sulphate proteoglycans (HSPGs) are important participants in cell surface signalling and critical in controlling cell behaviour. They modulate inflammatory cell maturation and activation, leucocyte rolling, adhesion to endothelium as well as extravasation and chemotaxis. Whether eosinophil's function is affected has not yet been reported. OBJECTIVE We investigated the effects of transgenic, recombinant anti-thrombin III and Kybernin P, an anti-thrombin III concentrate, as HSPG ligands on spontaneous and chemokine-triggered migration of normal eosinophils from human peripheral blood in modified Boyden chamber micropore filter assays. METHODS Eosinophils from human peripheral blood were purified using magnetic antibody cell sorting. The signalling mechanisms required for anti-thrombin-dependent migration were studied using signalling enzyme blockers. Expression of HSPG core protein mRNA was studied by PCR. RESULTS Pre-treatment of eosinophils with anti-thrombin III inhibited chemotaxis toward optimal concentrations of eotaxin or RANTES (regulated upon activation normal T cell expressed and activated). In the absence of the chemokines, direct exposure to gradients of anti-thrombin III stimulated eosinophil migration. The effects of anti-thrombin III were abolished by pre-treating cells with heparinase-1, chondroitinase, sodium chlorate and anti-syndecan-4 antibodies. Syndecan-4 gene expression in eosinophils was confirmed in PCR. In the presence of pentasaccharide, anti-thrombin III lost its effect on the cells. Functional responses were also abrogated by inhibition of protein kinase C, phosphatidylinositol 3-kinase and phosphodiesterase. CONCLUSION Data indicate that anti-thrombin III affects eosinophil motility via the effects of its heparin-binding site on cell surface syndecan-4. Ligation of syndecan-4 with anti-thrombin III induces eosinophil migration and deactivates motility toward chemokines. These observations suggest that syndecan-4-dependent signalling may control eosinophil locomotion.
Collapse
Affiliation(s)
- C Feistritzer
- Division of General Internal Medicine, Department of Internal Medicine, University of Innsbruck, Innsbruck, Austria
| | | | | | | |
Collapse
|
33
|
Minamiya Y, Saito S, Kalina U, Saito H, Terada K, Ogawa JI. Antithrombin III Diminishes Production of Oxygen Radical in Endotoxin-Infused Rat Lung. Shock 2004; 21:139-43. [PMID: 14752287 DOI: 10.1097/01.shk.0000104267.15342.6b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The interaction of antithrombin III (AT) with cell surface glycosaminoglycans is known to have an inhibitory effect on inflammatory processes. We evaluated the effect of AT on endotoxin-induced production of oxygen radical in the pulmonary circulation using a fluorescent imaging technique. Also measured was the myeloperoxidase content of the lung, which served as an index of neutrophil accumulation, and neutrophil F-actin levels. Four groups of rats were infused for 2 h with endotoxin at 4.5 mg/kg/h (Et group), physiological saline (CT group), 100 U/kg of AT + endotoxin (AT group), or 100 U/kg of low-heparin-affinity latent-AT + endotoxin (L-AT group), respectively. Production of oxygen radical, neutrophil accumulation, and neutrophil F-actin levels were all significantly higher in the ET and L-AT groups than in the CT or AT group. Moreover; the levels of myeloperoxidase within the lung were well correlated with levels of oxygen radical production, which was consistent with the electron microscopic finding that cerium was deposited almost exclusively around neutrophils. Thus, it appears that AT most likely reduces F-actin formation in neutrophil by binding to glycosaminoglycans (e.g., syndecan-4) on the neutrophil, thereby reducing neutrophil accumulation in the lung, which would in turn inhibit oxygen radical production in the lung.
Collapse
Affiliation(s)
- Yoshihiro Minamiya
- Division of Thoracic Surgery, Department of Surgery, Akita University School of Medicine, 1-1-1 Hondo Akita City 010-8543, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Cell surface heparan sulfate (HS) influences a multitude of molecules, cell types, and processes relevant to inflammation. HS binds to cell surface and matrix proteins, cytokines, and chemokines. These interactions modulate inflammatory cell maturation and activation, leukocyte rolling, and tight adhesion to endothelium, as well as extravasation and chemotaxis. The syndecan family of transmembrane proteoglycans is the major source of cell surface HS on all cell types. Recent in vitro and in vivo data suggest the involvement of syndecans in the modulation of leukocyte-endothelial interactions and extravasation, the formation of chemokine and kininogen gradients, participation in chemokine and growth factor signaling, as well as repair processes. Thus, the complex role of HS in inflammation is reflected by multiple functions of its physiological carriers, the syndecans. Individual and common functions of the four mammalian syndecan family members can be distinguished. Recently generated transgenic and knockout mouse models will facilitate analysis of the individual processes that each syndecan is involved in.
Collapse
|
35
|
Opal SM, Esmon CT. Bench-to-bedside review: functional relationships between coagulation and the innate immune response and their respective roles in the pathogenesis of sepsis. Crit Care 2003; 7:23-38. [PMID: 12617738 PMCID: PMC154114 DOI: 10.1186/cc1854] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The innate immune response system is designed to alert the host rapidly to the presence of an invasive microbial pathogen that has breached the integument of multicellular eukaryotic organisms. Microbial invasion poses an immediate threat to survival, and a vigorous defense response ensues in an effort to clear the pathogen from the internal milieu of the host. The innate immune system is able to eradicate many microbial pathogens directly, or innate immunity may indirectly facilitate the removal of pathogens by activation of specific elements of the adaptive immune response (cell-mediated and humoral immunity by T cells and B cells). The coagulation system has traditionally been viewed as an entirely separate system that has arisen to prevent or limit loss of blood volume and blood components following mechanical injury to the circulatory system. It is becoming increasingly clear that coagulation and innate immunity have coevolved from a common ancestral substrate early in eukaryotic development, and that these systems continue to function as a highly integrated unit for survival defense following tissue injury. The mechanisms by which these highly complex and coregulated defense strategies are linked together are the focus of the present review.
Collapse
Affiliation(s)
- Steven M Opal
- Infectious Disease Division, Brown University School of Medicine, Providence, Rhode Island, USA.
| | | |
Collapse
|
36
|
Roemisch J, Gray E, Hoffmann JN, Wiedermann CJ. Antithrombin: a new look at the actions of a serine protease inhibitor. Blood Coagul Fibrinolysis 2002; 13:657-70. [PMID: 12441904 DOI: 10.1097/00001721-200212000-00001] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Antithrombin (AT) is a plasma-derived, single-chain glycoprotein with a molecular weight of 58 kDa. It is a serine protease inhibitor (serpin), sharing about 30% homology in amino acid sequence with other serpins. AT is a complex molecule with multiple biologically important properties. It is a potent anticoagulant that has been demonstrated to provide benefit in animal models and small cohorts of patients with coagulation disorders. AT also has remarkable anti-inflammatory properties, several of which result from its actions in the coagulation cascade. Activated coagulation proteases like activated factor X and thrombin contribute to inflammation; for instance, by the release of pro-inflammatory mediators. Inhibition of these proteases by AT prevents their specific interaction with cells and subsequent reactions. Anti-inflammatory properties of AT independent of coagulation involve direct interactions with cells leading to the release of, for instance, prostacyclin. Binding of AT to a recently identified cellular receptor, syndecan-4, leads to the interference with the intracellular signal induced by mediators like lipopolysaccharides and, thereby, to a down-modulation of the inflammatory response. AT has been shown to be effective in prospective and well-controlled small-scale studies of patients with inflammatory conditions, including sepsis. Although AT did not decrease overall patient mortality in a double-blind, placebo-controlled, phase III trial of patients with sepsis, it is important to note that AT improved the survival of individuals in this study not receiving heparin as a prophylactic regimen, which can be explained by the impaired interaction of AT with its cellular receptor in the presence of heparin, resulting in the reduction of the anti-inflammatory properties. Accordingly, the supplementation of AT without concomitant heparin may be beneficial in disorders with inflammatory characteristics, which has to be demonstrated in further clinical studies. Finally, recent results suggest that latent AT can induce apoptosis of endothelial cells by disrupting cell-matrix interactions. Further investigations will have to demonstrate whether latent and/or cleaved AT are physiological means to control angiogenesis. A potential prophylactic or therapeutic use as an anti-angiogenic and antitumor agent merits further exploration, including whether the growth of vessels in tumor tissues or close to tumors can be controlled by latent AT without affecting the formation of blood vessels during wound healing processes.
Collapse
Affiliation(s)
- J Roemisch
- Aventis Behring GmbH, Research, Marburg, Germany
| | | | | | | |
Collapse
|
37
|
Affiliation(s)
- Toshiaki Iba
- Department of Surgery, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan
| | | |
Collapse
|
38
|
Wiedermann CJ, Römisch J. The anti-inflammatory actions of antithrombin--a review. ACTA MEDICA AUSTRIACA 2002; 29:89-92. [PMID: 12168569 DOI: 10.1046/j.1563-2571.2002.02012.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Leukocyte-endothelial cell interaction and microvascular perfusion failure are characteristic deteriorations of the microcirculation in endotoxaemia and are known to play a crucial role in the development of septic multiple organ dysfunction. Recent studies have indicated that antithrombin III treatment is capable of significantly ameliorating these microcirculatory disorders. Endothelial cells have important anticoagulant systems, including the heparan sulfate-antithrombin system. Antithrombin III stimulates prostacyclin generation in endothelial cells by interacting with heparan sulfate of endothelial cells and inhibits cytokine and tissue factor production in endothelial cells and monocytes. Similar mechanisms may be involved in cellular actions of antithrombin III causing desensitization of chemoattractant receptors of leukocytes by activating the heparan sulfate proteoglycan, syndecan-4. Thus, antithrombin III might be among the useful agents for treating coagulation abnormalities associated with sepsis or other inflammation because it inhibits not only coagulation but also downregulation of anticoagulant activities of endothelial cells and affects leukocyte activation.
Collapse
Affiliation(s)
- Ch J Wiedermann
- Division of General Internal Medicine, Department of Internal Medicine, University of Innsbruck
| | | |
Collapse
|
39
|
|
40
|
Nakamura K, Ito T, Yoneda M, Takamoto S, Nakade Y, Okamoto S, Okada M, Yokohama S, Aso K, Makino I. Antithrombin III prevents concanavalin A-induced liver injury through inhibition of macrophage inflammatory protein-2 release and production of prostacyclin in mice. J Hepatol 2002; 36:766-73. [PMID: 12044526 DOI: 10.1016/s0168-8278(02)00059-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND/AIMS Recently, we have reported that macrophage inflammatory protein-2 (MIP-2) plays a pivotal role in concanavalin A (Con A)-induced liver injury. In this study, we investigated the effect of antithrombin III (AT-III) on liver damage, and production of MIP-2 and prostacyclin in this model. METHODS Liver injury was induced by intravenous injection of Con A (15 mg/kg) and AT-III was administered (50, 250 and 500 units/kg, iv) 30 mm before Con A injection. Plasma levels of alanine aminotransferase (ALT), MIP-2 and 6-keto-prostaglandin F1alpha (6k-PG-F1alpha), stable metabolite of prostaglandin I(2) (prostacyclin), were determined. RESULTS The elevated plasma ALT levels 8, 16, 24 h after Con A injection were inhibited by AT-III pretreatment. The elevated plasma MIP-2 levels were significantly inhibited by AT-III pretreatment compared with vehicle treatment. The inhibitory effect of AT-III on plasma ALT and MIP-2 in Con A-induced liver injury was attenuated by indomethacin (5 mg/kg, ip). Plasma concentration of 6k-PG-F1alpha at 2 h after AT-III injection was significantly elevated compared with baseline and vehicle pretreatment. CONCLUSIONS These findings suggest that AT-III prevents Con A-induced liver injury through an inhibition of MIP-2 release and a production of prostacyclin.
Collapse
Affiliation(s)
- Kimihide Nakamura
- Second Department of Internal Medicine, Asahikawa Medical College, Midorigaoka Higashi 2-1-1-1, Asahikawa 078-8510, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Oelschläger C, Römisch J, Staubitz A, Stauss H, Leithäuser B, Tillmanns H, Hölschermann H. Antithrombin III inhibits nuclear factor kappaB activation in human monocytes and vascular endothelial cells. Blood 2002; 99:4015-20. [PMID: 12010802 DOI: 10.1182/blood.v99.11.4015] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The serpin antithrombin III (AT III), the most important natural inhibitor of thrombin activity, has been shown to exert marked anti-inflammatory properties and proven to be efficacious in experimental models of sepsis, septic shock, and disseminated intravascular coagulation. Moreover, clinical observations suggest a possible therapeutic role for AT III in septic disorders. The molecular mechanism, however, by which AT III attenuates inflammatory events is not yet entirely understood. We show here that AT III potently blocks the activation of nuclear factor kappaB (NF-kappaB), a transcription factor involved in immediate early gene activation during inflammation. AT III inhibited agonist-induced DNA binding of NF-kappaB in cultured human monocytes and endothelial cells in a dose-dependent manner, suggesting that AT III interferes with signal transduction leading to NF-kappaB activation. This idea was supported by demonstrating that AT III prevents the phosphorylation and proteolytic degradation of the inhibitor protein IkappaBalpha. In parallel to reducing NF-kappaB activity, AT III inhibited the expression of interleukin-6, tumor necrosis factor-alpha, and tissue factor, genes known to be under the control of NF-kappaB. The observation that chemically modified AT III that lacks heparin-binding capacity had no effect on NF-kappaB activation supports the current understanding that the inhibitory potency of AT III depends on the interaction of AT III with heparinlike cell surface glycosaminoglycans. This hypothesis was underscored by the finding that the AT III beta-isoform, known to have higher affinity for glycosaminoglycans, is more effective in preventing NF-kappaB transactivation than alpha-AT III. These data indicate that AT III can alter inflammatory processes via inhibition of NF-kappaB activation.
Collapse
Affiliation(s)
- Christian Oelschläger
- Division of Cardiology, Department of Internal Medicine, University of Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
OBJECTIVES To review the experimental and clinical evidence that antithrombin has multiple mechanisms for both its anticoagulant and anti-inflammatory properties. The interaction between antithrombin and specific polysulfated, acidic oligosaccharide moieties found on heparin and related proteoglycan molecules within the circulation and on endothelial surfaces will also be examined. DATA SOURCES Review of the literature relating to antithrombin published during the past 25 yrs. DATA SUMMARY Antithrombin is the most abundant endogenous anticoagulant circulating in human plasma. This serine protease inhibitor participates in the regulation of clotting in both physiologic and pathologic states. Reduced antithrombin activity in the early phases of sepsis contributes to a procoagulant state with excess activation of the innate immune response. Antithrombin binds to specific pentasaccharides expressed on heparin, glycosaminoglycans, and related proteoglycans within the circulation and along endothelial surfaces. The functions of neutrophils, monocytes, and endothelial cells are altered as a result of their interaction with antithrombin. These effects are mediated by the enzyme inhibitory action of antithrombin and its ability to function as a ligand for antithrombin receptors on cell surfaces. In addition, antithrombin exerts anti-inflammatory properties by both prostacyclin-dependent and prostacyclin-independent actions; heparin interferes with these anti-inflammatory properties. The role of antithrombin in sepsis, its therapeutic utility in severe sepsis, and its combination with heparin remain the subject of considerable debate. The results of a recent phase 3 clinical trials with high-dose antithrombin in sepsis suggested a beneficial effect in patients who did not concomitantly receive heparin, thereby generating new challenges in the understanding of interactions between antithrombin and heparin or heparin-like proteoglycans. CONCLUSIONS Antithrombin has complex interactions with host coagulopathic and systemic inflammatory responses under physiologic conditions and in sepsis. The impact of these interactions in critically ill patients and the therapeutic implications of administration of antithrombin, and various doses and types of heparin in such patients, need further clarification.
Collapse
Affiliation(s)
- Steven M Opal
- Infectious Disease Division, Brown Medical School, Providence, RI 02860, USA.
| | | | | | | |
Collapse
|
43
|
Hoffmann JN, Vollmar B, Römisch J, Inthorn D, Schildberg FW, Menger MD. Antithrombin effects on endotoxin-induced microcirculatory disorders are mediated mainly by its interaction with microvascular endothelium. Crit Care Med 2002; 30:218-25. [PMID: 11902265 DOI: 10.1097/00003246-200201000-00031] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To investigate whether the protective effect of antithrombin III, which has been shown to exert beneficial effects during septic disorders, including reduction of endotoxin-associated leukocyte/endothelial cell interaction and capillary perfusion failure, is mainly based on its anticoagulant capacity or direct effects on the microvascular endothelium. DESIGN Animal study with three treatment groups. SETTING Animal research facility. SUBJECTS Syrian golden hamsters, 6-8 wks old with a body weight of 60-80 g. INTERVENTIONS In skinfold preparations of hamsters, normotensive endotoxemia was induced by intravenous administration of 2 mg/kg endotoxin (lipopolysaccharide, 2 mg/kg). Antithrombin III (n = 7 animals; 250 units/kg) or tryptophan49-blocked antithrombin III (n = 6; 250 units/kg) was substituted intravenously 5 mins before lipopolysaccharide administration. Saline-treated animals (n = 11), receiving only lipopolysaccharide, served as controls. Tryptophan49-blocked antithrombin III binds to glycosaminoglycans at the endothelial surface to a significantly lower extent while retaining its progressive anticoagulant effects. MEASUREMENTS AND MAIN RESULTS Compared with controls, antithrombin III significantly reduced lipopolysaccharide-induced arteriolar and venular leukocyte adherence (p < .01) and prevented depression of functional capillary density (p < .01), whereas tryptophan49-blocked antithrombin III failed to significantly improve both variables. As measured in vivo by a monoclonal fluorescein isothiocyanate-labeled anti-antithrombin III antibody and intravital microscopy, the lack of effect of tryptophan49-blocked antithrombin III was associated with significantly lower antithrombin III/endothelium binding coefficients after 1 hr, 3 hrs, and 24 hrs of endotoxemia (p < .01). CONCLUSIONS We conclude that specific antithrombin III interactions with cell-surface glycosaminoglycans on the endothelium rather than anticoagulant properties are the mechanism of antithrombin III-mediated attenuation of leukocyte/endothelial cell interaction and capillary perfusion failure.
Collapse
Affiliation(s)
- Johannes N Hoffmann
- Department of Surgery, Klinikum Grosshadern, Ludwig-Maximilians University, Munich, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Kaneider NC, Reinisch CM, Dunzendorfer S, Römisch J, Wiedermann CJ, Wiederman CJ. Syndecan-4 mediates antithrombin-induced chemotaxis of human peripheral blood lymphocytes and monocytes. J Cell Sci 2002; 115:227-36. [PMID: 11801740 DOI: 10.1242/jcs.115.1.227] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antithrombin inhibits chemokine-induced migration of neutrophils by activating heparan sulfate proteoglycan-dependent signaling. Whether antithrombin affects migration of other types of leukocytes is not known. We investigated the effects of antithrombin on spontaneous and chemokine-triggered migration of lymphocytes and monocytes from human peripheral blood in modified Boyden chamber micropore filter assays. Lymphocyte and monocyte populations from human peripheral blood were purified using magnetic antibody cell sorting. The signaling mechanisms required for antithrombin-dependent migration were studied using signaling enzyme blockers. Expression of heparan sulfate proteoglycan core protein was studied by RT-PCR and flow cytometry. The antithrombins used were Kybernin®P from human plasma and a monoclonal-antibody-purified preparation from this plasma. Pretreatment of lymphocytes and monocytes with antithrombin inhibited chemotaxis toward optimal concentrations of interleukin-8 or Rantes (regulated upon activation normal T-cell expressed and activated) at concentrations of antithrombin as low as 10 nU/ml. In the absence of the chemokines, direct exposure of cells to gradients of antithrombin stimulated migration. Effects of antithrombin were abolished by pretreating cells with heparinase-1, chondroitinase, sodium chlorate and anti-syndecan-4 antibodies. Expression of syndecan-4 mRNA and protein in monocytes and lymphocytes was demonstrated in RT-PCR and anti-syndecan-4 immunoreactivity assays, respectively. In the presence of pentasaccharide, antithrombin lost its effect on cells. Data indicate that antithrombin directly inhibits chemokine-stimulated migration of monocytes and lymphocytes via the effects of its heparin-binding site on cell surface syndecan-4 by activation of protein kinase C and Rho signaling.
Collapse
Affiliation(s)
- Nicole C Kaneider
- Division of General Internal Medicine, Department of Internal Medicine, University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
45
|
Levi M. Pathogenesis and treatment of disseminated intravascular coagulation in the septic patient. J Crit Care 2001; 16:167-77. [PMID: 11815902 DOI: 10.1053/jcrc.2001.30666] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The incidence of sepsis and complications stemming from septicemia has remained constant in recent years despite improved levels of monitoring and care. Disseminated intravascular coagulation (DIC), a syndrome that occurs frequently in septic patients, is associated with increased mortality. Organ dysfunction is also a common sequela that is strongly correlated with DIC. Cytokines released early in the course of sepsis stimulate a procoagulant state that causes development of intravascular fibrin deposition. In a later stage of DIC, bleeding may occur in parallel because of consumption of clotting factors and inhibitors. Therapeutic strategies to attenuate or reverse these conditions have focused on multiple stages of the molecular cascade of events, including preventing cytokine induction, inhibiting coagulation processes, and promoting fibrinolysis. Recent clinical trials have supported the use of antithrombin and activated protein C supplementation in DIC associated with severe sepsis. Studies of other novel therapeutic avenues are still ongoing. Future efforts may be directed at combining 2 or more agents to achieve prompt and successful reversal of DIC.
Collapse
Affiliation(s)
- M Levi
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|