1
|
Murali M, MacDonald JA. Smoothelins and the Control of Muscle Contractility. ADVANCES IN PHARMACOLOGY 2018; 81:39-78. [DOI: 10.1016/bs.apha.2017.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
2
|
Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M, Morgan KG. Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders. Pharmacol Rev 2016; 68:476-532. [PMID: 27037223 PMCID: PMC4819215 DOI: 10.1124/pr.115.010652] [Citation(s) in RCA: 346] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function.
Collapse
Affiliation(s)
- F V Brozovich
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C J Nicholson
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C V Degen
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - Yuan Z Gao
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - M Aggarwal
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - K G Morgan
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| |
Collapse
|
3
|
Heidersbach A, Saxby C, Carver-Moore K, Huang Y, Ang YS, de Jong PJ, Ivey KN, Srivastava D. microRNA-1 regulates sarcomere formation and suppresses smooth muscle gene expression in the mammalian heart. eLife 2013; 2:e01323. [PMID: 24252873 PMCID: PMC3833424 DOI: 10.7554/elife.01323] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
microRNA-1 (miR-1) is an evolutionarily conserved, striated muscle-enriched miRNA. Most mammalian genomes contain two copies of miR-1, and in mice, deletion of a single locus, miR-1-2, causes incompletely penetrant lethality and subtle cardiac defects. Here, we report that deletion of miR-1-1 resulted in a phenotype similar to that of the miR-1-2 mutant. Compound miR-1 knockout mice died uniformly before weaning due to severe cardiac dysfunction. miR-1-null cardiomyocytes had abnormal sarcomere organization and decreased phosphorylation of the regulatory myosin light chain-2 (MLC2), a critical cytoskeletal regulator. The smooth muscle-restricted inhibitor of MLC2 phosphorylation, Telokin, was ectopically expressed in the myocardium, along with other smooth muscle genes. miR-1 repressed Telokin expression through direct targeting and by repressing its transcriptional regulator, Myocardin. Our results reveal that miR-1 is required for postnatal cardiac function and reinforces the striated muscle phenotype by regulating both transcriptional and effector nodes of the smooth muscle gene expression network. DOI:http://dx.doi.org/10.7554/eLife.01323.001 MicroRNAs are tiny RNAs that do not encode proteins. Instead, they regulate the expression of genes by preventing protein-encoding messenger RNAs from being translated into protein. MicroRNAs are expressed throughout the body, including the heart, where the most abundant microRNA is called miR-1. This is encoded by two nearly identical genes: miR-1-1 and miR-1-2. Mice that lack the miR-1-2 gene have various heart abnormalities, but generally survive because they still produce some miR-1 from their remaining miR-1-1 gene. Now, Heidersbach et al. have generated the first mice that specifically lack both miR-1 genes, and shown that these animals die before weaning. When viewed under the electron microscope, heart muscle from miR-1 double knockout mice lacks the characteristic ‘striped’, or striated, appearance of normal heart muscle. Additionally, miR-1 double knockout hearts have some gene expression characteristics more similar to the smooth muscle found in the gut and in the walls of blood vessels. Smooth muscle differs from striated muscle in that it lacks sarcomeres: these are bands of fibrous proteins, such as myosin, that are essential for muscle contraction. In normal mice, an enzyme called MLCK contributes to the formation and function of sarcomeres by adding phosphate groups to myosin molecules. By contrast, in smooth muscle an enzyme called Telokin promotes phosphate group removal, and thus affects the function of sarcomeres. Heidersbach et al. showed that miR-1 interacts directly with Telokin mRNA to prevent its expression in the heart, and simultaneously represses a protein called Myocardin, which directly activates transcription of Telokin. However, when miR-1 is absent, as in the miR-1 double knockout mice, Telokin is expressed in heart muscle, along with many other genes characteristic of smooth muscle. As well as improving our understanding of the development and functioning of the heart, these findings should shed new light on the role of microRNAs in maintaining the patterns of gene expression that characterize unique cell fates. DOI:http://dx.doi.org/10.7554/eLife.01323.002
Collapse
Affiliation(s)
- Amy Heidersbach
- Gladstone Institute of Cardiovascular Disease, San Francisco, United States
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Chen M, Zhang W, Lu X, Hoggatt AM, Gunst SJ, Kassab GS, Tune JD, Herring BP. Regulation of 130-kDa smooth muscle myosin light chain kinase expression by an intronic CArG element. J Biol Chem 2013; 288:34647-57. [PMID: 24151072 DOI: 10.1074/jbc.m113.510362] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The mylk1 gene encodes a 220-kDa nonmuscle myosin light chain kinase (MLCK), a 130-kDa smooth muscle MLCK (smMLCK), as well as the non-catalytic product telokin. Together, these proteins play critical roles in regulating smooth muscle contractility. Changes in their expression are associated with many pathological conditions; thus, it is important to understand the mechanisms regulating expression of mylk1 gene transcripts. Previously, we reported a highly conserved CArG box, which binds serum response factor, in intron 15 of mylk1. Because this CArG element is near the promoter that drives transcription of the 130-kDa smMLCK, we examined its role in regulating expression of this transcript. Results show that deletion of the intronic CArG region from a β-galactosidase reporter gene abolished transgene expression in mice in vivo. Deletion of the CArG region from the endogenous mylk1 gene, specifically in smooth muscle cells, decreased expression of the 130-kDa smMLCK by 40% without affecting expression of the 220-kDa MLCK or telokin. This reduction in 130-kDa smMLCK expression resulted in decreased phosphorylation of myosin light chains, attenuated smooth muscle contractility, and a 24% decrease in small intestine length that was associated with a significant reduction of Ki67-positive smooth muscle cells. Overall, these data show that the CArG element in intron 15 of the mylk1 gene is necessary for maximal expression of the 130-kDa smMLCK and that the 130-kDa smMLCK isoform is specifically required to regulate smooth muscle contractility and small intestine smooth muscle cell proliferation.
Collapse
Affiliation(s)
- Meng Chen
- From the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Endothelial and epithelial barriers in graft-versus-host disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 763:105-31. [PMID: 23397621 DOI: 10.1007/978-1-4614-4711-5_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Endothelial and epithelial cells form selectively permeable barriers that separate tissue compartments. These cells coordinate movement between the lumen and tissue via the transcellular and paracellular pathways. The primary determinant of paracellular permeability is the tight junction, which forms an apical belt-like structure around endothelial and epithelial cells. This chapter discusses endothelial and epithelial barriers in graft-versus-host disease after allogeneic bone marrow transplantation, with a focus on the tight junction and its role in regulating paracellular permeability. Recent studies suggest that in graft-versus-host disease, pathological increases in paracellular permeability, or barrier dysfunction, are initiated by pretransplant conditioning and sustained by alloreactive cells and the proinflammatory milieu. The intestinal epithelium is a significant focus, as it is a target organ of graft-versus-host disease, and the mechanisms of barrier regulation in intestinal epithelium have been well characterized. Finally, we propose a model that incorporates endothelial and epithelial barrier dysfunction in graft-versus-host disease and discuss modulating barrier properties as a therapeutic approach.
Collapse
|
6
|
Butler T, Paul J, Europe-Finner N, Smith R, Chan EC. Role of serine-threonine phosphoprotein phosphatases in smooth muscle contractility. Am J Physiol Cell Physiol 2013; 304:C485-504. [PMID: 23325405 DOI: 10.1152/ajpcell.00161.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The degree of phosphorylation of myosin light chain 20 (MLC20) is a major determinant of force generation in smooth muscle. Myosin phosphatases (MPs) contain protein phosphatase (PP) 1 as catalytic subunits and are the major enzymes that dephosphorylate MLC20. MP regulatory targeting subunit 1 (MYPT1), the main regulatory subunit of MP in all smooth muscles, is a key convergence point of contractile and relaxatory pathways. Combinations of regulatory mechanisms, including isoform splicing, multiple phosphorylation sites, and scaffolding proteins, modulate MYPT1 activity with tissue and agonist specificities to affect contraction and relaxation. Other members of the PP1 family that do not target myosin, as well as PP2A and PP2B, dephosphorylate a range of proteins that affect smooth muscle contraction. This review discusses the role of phosphatases in smooth muscle contractility with a focus on MYPT1 in uterine smooth muscle. Myometrium shares characteristics of vascular and other visceral smooth muscles yet, during healthy pregnancy, undergoes hypertrophy, hyperplasia, quiescence, and labor as physiological processes. Myometrium presents an accessible model for the study of normal and pathological smooth muscle function, and a better understanding of myometrial physiology may allow the development of novel therapeutics for the many disorders of myometrial physiology from preterm labor to dysmenorrhea.
Collapse
Affiliation(s)
- Trent Butler
- Mothers and Babies Research Centre, Faculty of Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | | | | | |
Collapse
|
7
|
Expression and promoter analysis of a highly restricted integrin alpha gene in vascular smooth muscle. Gene 2012; 513:82-9. [PMID: 23142384 DOI: 10.1016/j.gene.2012.10.073] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 09/18/2012] [Accepted: 10/29/2012] [Indexed: 11/19/2022]
Abstract
Full genome annotation requires gene expression analysis and elucidation of promoter activity. Here, we analyzed the expression and promoter of a highly restricted integrin gene, Itga8. RNase protection and quantitative RT-PCR showed Itga8 to be expressed most abundantly in vascular smooth muscle cells (SMC). Transcription start site mapping of Itga8 revealed the immediate 5' promoter region to be poorly conserved with orthologous sequences in the human genome. Further comparative sequence analysis showed a number of conserved non-coding sequence modules around the Itga8 gene. The immediate promoter region and an upstream conserved sequence module were each found to contain a CArG box, which is a binding site for serum response factor (SRF). Luciferase reporter assays revealed activity of several Itga8 promoter constructs with no apparent restricted activity to SMC types. Further, neither SRF nor its coactivator, Myocardin (MYOCD), was able to induce several distinct Itga8 promoter constructs. Transgenic mouse studies failed to reveal Itga8 promoter activity, indicating distal regulatory elements likely control this gene's in vivo expression profile. Interestingly, although the promoter was unresponsive to SRF/MYOCD, the endogenous Itga8 gene showed increases in expression upon ectopic MYOCD expression even though knockdown of SRF both in vitro and in vivo failed to demonstrate a corresponding change in Itga8. Collectively, these data demonstrate that Itga8 expression is CArG-SRF independent, but MYOCD dependent through an as yet unknown sequence module that is distal from the promoter region.
Collapse
|
8
|
The promise of inhibition of smooth muscle tone as a treatment for erectile dysfunction: where are we now? Int J Impot Res 2011; 24:49-60. [PMID: 21975566 DOI: 10.1038/ijir.2011.49] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ten years ago, the inhibition of Rho kinase by intracavernosal injection of Y-27632 was found to induce an erectile response. This effect did not require activation of nitric oxide-mediated signaling, introducing a novel target pathway for the treatment of erectile dysfunction (ED), with potential added benefit in cases where nitric oxide bioavailability is attenuated (and thus phosphodiesterase type 5 (PDE5) inhibitors are less efficacious). Rho-kinase antagonists are currently being developed and tested for a wide range of potential uses. The inhibition of this calcium-sensitizing pathway results in blood vessel relaxation. It is also possible that blockade of additional smooth muscle contractile signaling mechanisms may have the same effect. In this review, we conducted an extensive search of pertinent literature using PUBMED. We have outlined the various pathways involved in the maintenance of penile smooth muscle tone and discussed the current potential benefit for the pharmacological inhibition of these targets for the treatment of ED.
Collapse
|
9
|
SWI/SNF complexes containing Brahma or Brahma-related gene 1 play distinct roles in smooth muscle development. Mol Cell Biol 2011; 31:2618-31. [PMID: 21518954 DOI: 10.1128/mcb.01338-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SWI/SNF ATP-dependent chromatin-remodeling complexes containing either Brahma-related gene 1 (Brg1) or Brahma (Brm) play important roles in mammalian development. In this study we examined the roles of Brg1 and Brm in smooth muscle development, in vivo, through generation and analysis of mice harboring a smooth muscle-specific knockout of Brg1 on wild-type and Brm null backgrounds. Knockout of Brg1 from smooth muscle in Brg1(flox/flox) mice expressing Cre recombinase under the control of the smooth muscle myosin heavy-chain promoter resulted in cardiopulmonary defects, including patent ductus arteriosus, in 30 to 40% of the mice. Surviving knockout mice exhibited decreased expression of smooth muscle-specific contractile proteins in the gastrointestinal tract, impaired contractility, shortened intestines, disorganized smooth muscle cells, and an increase in apoptosis of intestinal smooth muscle cells. Although Brm knockout mice had normal intestinal structure and function, knockout of Brg1 on a Brm null background exacerbated the effects of knockout of Brg1 alone, resulting in an increase in neonatal lethality. These data show that Brg1 and Brm play critical roles in regulating development of smooth muscle and that Brg1 has specific functions within vascular and gastrointestinal smooth muscle that cannot be performed by Brm.
Collapse
|
10
|
Abstract
The control of force production in vascular smooth muscle is critical to the normal regulation of blood flow and pressure, and altered regulation is common to diseases such as hypertension, heart failure, and ischemia. A great deal has been learned about imbalances in vasoconstrictor and vasodilator signals, e.g., angiotensin, endothelin, norepinephrine, and nitric oxide, that regulate vascular tone in normal and disease contexts. In contrast there has been limited study of how the phenotypic state of the vascular smooth muscle cell may influence the contractile response to these signaling pathways dependent upon the developmental, tissue-specific (vascular bed) or disease context. Smooth, skeletal, and cardiac muscle lineages are traditionally classified into fast or slow sublineages based on rates of contraction and relaxation, recognizing that this simple dichotomy vastly underrepresents muscle phenotypic diversity. A great deal has been learned about developmental specification of the striated muscle sublineages and their phenotypic interconversions in the mature animal under the control of mechanical load, neural input, and hormones. In contrast there has been relatively limited study of smooth muscle contractile phenotypic diversity. This is surprising given the number of diseases in which smooth muscle contractile dysfunction plays a key role. This review focuses on smooth muscle contractile phenotypic diversity in the vascular system, how it is generated, and how it may determine vascular function in developmental and disease contexts.
Collapse
Affiliation(s)
- Steven A Fisher
- Department of Medicine, and Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio 44106-7290, USA.
| |
Collapse
|
11
|
Madden JA, Dantuma MW, Sorokina EA, Weihrauch D, Kleinman JG. Telokin expression and the effect of hypoxia on its phosphorylation status in smooth muscle cells from small and large pulmonary arteries. Am J Physiol Lung Cell Mol Physiol 2008; 294:L1166-73. [PMID: 18375742 DOI: 10.1152/ajplung.00375.2007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Small pulmonary arteries (SPA), <500 microm diameter of the cat, constrict when exposed to hypoxia, whereas larger arteries (large pulmonary arteries; LPA), >800 microm diameter, show little or no response. It is unknown why different contractile responses occur within the same vascular bed, but activator or repressor proteins within the smooth muscle cell (SMC) can modify myosin phosphatase and myosin light chain kinase (MLCK), thereby influencing the phosphorylation state of myosin light chain (MLC) and ultimately, contraction. Telokin, a protein with a sequence identical to the COOH-terminal domain of MLCK, is expressed in smooth muscle where in its phosphorylated state it inhibits myosin phosphatase, binds to unphosphorylated myosin, and helps maintain smooth muscle relaxation. We measured telokin mRNA and telokin protein in smooth muscle from different diameter feline pulmonary arteries and sought to determine whether changes in the phosphorylation status of telokin and MLC occurred during hypoxia. In pulmonary arteries, telokin expression varied inversely with artery diameter, but cerebral arteries showed neither telokin protein nor telokin mRNA. Although telokin and MLC were distributed uniformly throughout the SPA muscle cell cytoplasm, they were not colocalized. During hypoxia, telokin dephosphorylated, and MLC became increasingly phosphorylated in SPA SMC, whereas in LPA SMC there was no change in either telokin or MLC phosphorylation. When LPA SMC were exposed to phenylephrine, MLC phosphorylation increased with no change in telokin phosphorylation. These results suggest that in SPA, phosphorylated telokin may help maintain relaxation under unstimulated conditions, whereas in LPA, telokin's function remains undetermined.
Collapse
Affiliation(s)
- Jane A Madden
- Department of Neurology, Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin 53295, USA.
| | | | | | | | | |
Collapse
|
12
|
Touw K, Hoggatt AM, Simon G, Herring BP. Hprt-targeted transgenes provide new insights into smooth muscle-restricted promoter activity. Am J Physiol Cell Physiol 2007; 292:C1024-32. [PMID: 17079332 DOI: 10.1152/ajpcell.00445.2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mouse telokin and SM22alpha promoters have previously been shown to direct smooth muscle cell-specific expression of transgenes in vivo in adult mice. However, the activity of these promoters is highly dependent on the integration site of the transgene. In the current study, we found that the ectopic expression of telokin promoter transgenes could be abolished by flanking the transgene with insulator elements from the H19 gene. However, the insulator elements did not increase the proportion of mouse lines that exhibited consistent, detectable levels of transgene expression. In contrast, when transgenes were targeted to the hprt locus, both telokin and SM22alpha promoters resulted in reproducible patterns and levels of transgene expression in all lines of mice examined. Telokin promoter transgene expression was restricted to smooth muscle tissues in adult and embryonic mice. As reported previously, SM22alpha transgenes were expressed at high levels specifically in arterial smooth muscle cells; however, in contrast to randomly integrated transgenes, the hprt-targeted SM22alpha transgenes were also expressed at high levels in smooth muscle cells in veins, bladder, and gallbladder. Using hprt-targeted transgenes, we further analyzed elements within the telokin promoter required for tissue specific activity in vivo. Analysis of these transgenes revealed that the CArG element in the telokin promoter is required for promoter activity in all tissues and that the CArG element and adjacent AT-rich region are sufficient to drive transgene expression in bladder but not intestinal smooth muscle cells.
Collapse
Affiliation(s)
- Ketrija Touw
- Dept. of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
13
|
Ross JJ, Hong Z, Willenbring B, Zeng L, Isenberg B, Lee EH, Reyes M, Keirstead SA, Weir EK, Tranquillo RT, Verfaillie CM. Cytokine-induced differentiation of multipotent adult progenitor cells into functional smooth muscle cells. J Clin Invest 2006; 116:3139-49. [PMID: 17099777 PMCID: PMC1635164 DOI: 10.1172/jci28184] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Accepted: 09/19/2006] [Indexed: 12/17/2022] Open
Abstract
Smooth muscle formation and function are critical in development and postnatal life. Hence, studies aimed at better understanding SMC differentiation are of great importance. Here, we report that multipotent adult progenitor cells (MAPCs) isolated from rat, murine, porcine, and human bone marrow demonstrate the potential to differentiate into cells with an SMC-like phenotype and function. TGF-beta1 alone or combined with PDGF-BB in serum-free medium induces a temporally correct expression of transcripts and proteins consistent with smooth muscle development. Furthermore, SMCs derived from MAPCs (MAPC-SMCs) demonstrated functional L-type calcium channels. MAPC-SMCs entrapped in fibrin vascular molds became circumferentially aligned and generated force in response to KCl, the L-type channel opener FPL64176, or the SMC agonists 5-HT and ET-1, and exhibited complete relaxation in response to the Rho-kinase inhibitor Y-27632. Cyclic distention (5% circumferential strain) for 3 weeks increased responses by 2- to 3-fold, consistent with what occurred in neonatal SMCs. These results provide evidence that MAPC-SMCs are phenotypically and functionally similar to neonatal SMCs and that the in vitro MAPC-SMC differentiation system may be an ideal model for the study of SMC development. Moreover, MAPC-SMCs may lend themselves to tissue engineering applications.
Collapse
Affiliation(s)
- Jeffrey J. Ross
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
Veterans Affairs Medical Center, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Zhigang Hong
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
Veterans Affairs Medical Center, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ben Willenbring
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
Veterans Affairs Medical Center, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lepeng Zeng
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
Veterans Affairs Medical Center, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brett Isenberg
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
Veterans Affairs Medical Center, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Eu Han Lee
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
Veterans Affairs Medical Center, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Morayma Reyes
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
Veterans Affairs Medical Center, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Susan A. Keirstead
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
Veterans Affairs Medical Center, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - E. Kenneth Weir
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
Veterans Affairs Medical Center, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Robert T. Tranquillo
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
Veterans Affairs Medical Center, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Catherine M. Verfaillie
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
Veterans Affairs Medical Center, University of Minnesota, Minneapolis, Minnesota, USA.
Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
14
|
Herring BP, El-Mounayri O, Gallagher PJ, Yin F, Zhou J. Regulation of myosin light chain kinase and telokin expression in smooth muscle tissues. Am J Physiol Cell Physiol 2006; 291:C817-27. [PMID: 16774989 PMCID: PMC2836780 DOI: 10.1152/ajpcell.00198.2006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The mylk1 gene is a large gene spanning approximately 250 kb and comprising at least 31 exons. The mylk1 gene encodes at least four protein products: two isoforms of the 220-kDa myosin light chain kinase (MLCK), a 130-kDa MLCK, and telokin. Transcripts encoding these products are derived from four independent promoters within the mylk1 gene. The kinases expressed from the mylk1 gene have been extensively characterized and function to regulate the activity of nonmuscle and smooth muscle myosin II. Activation of these myosin motors by MLCK modulates a variety of contractile processes, including smooth muscle contraction, cell adhesion, migration, and proliferation. Dysregulation of these processes contributes to a number of diseases. The noncatalytic gene product telokin also has been shown to modulate contraction in smooth muscle cells through its ability to inhibit myosin light chain phosphatase. Given the crucial role of the products of the mylk1 gene in regulating numerous contractile processes, it seems intuitive that alterations in the transcriptional activity of the mylk1 gene also will have a significant impact on many physiological and pathological processes. In this review we highlight some of the recent studies that have described the transcriptional regulation of mylk1 gene products in smooth muscle tissues and discuss the implications of these findings for regulation of expression of other smooth muscle-specific genes.
Collapse
Affiliation(s)
- B Paul Herring
- Dept. of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202-5120, USA.
| | | | | | | | | |
Collapse
|
15
|
Yin F, Hoggatt AM, Zhou J, Herring BP. 130-kDa smooth muscle myosin light chain kinase is transcribed from a CArG-dependent, internal promoter within the mouse mylk gene. Am J Physiol Cell Physiol 2006; 290:C1599-C1609. [PMID: 16407417 DOI: 10.1152/ajpcell.00289.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The 130-kDa smooth muscle myosin light chain kinase (smMLCK) is a Ca2+/CaM-regulated enzyme that plays a pivotal role in the initiation of smooth muscle contraction and regulation of cellular migration and division. Despite the critical importance of smMLCK in these processes, little is known about the mechanisms regulating its expression. In this study, we have identified the proximal promoter of smMLCK within an intron of the mouse mylk gene. The mylk gene encodes at least two isoforms of MLCK (130 and 220 kDa) and telokin. Luciferase reporter gene assays demonstrated that a 282-bp fragment (-167 to +115) of the smMLCK promoter was sufficient for maximum activity in A10 smooth muscle cells and 10T1/2 fibroblasts. Deletion of the 16 bp between -167 and -151, which included a CArG box, resulted in a nearly complete loss of promoter activity. Gel mobility shift assays and chromatin immunoprecipitation assays demonstrated that serum response factor (SRF) binds to this CArG box both in vitro and in vivo. SRF knockdown by short hairpin RNA decreased endogenous smMLCK expression in A10 cells. Although the SRF coactivator myocardin induced smMLCK expression in 10T1/2 cells, myocardin activated the promoter only two- to fourfold in reporter gene assays. Addition of either intron 1 or 6 kb of the 5' upstream sequence did not lead to any further activation of the promoter by myocardin. The proximal smMLCK promoter also contains a consensus GATA-binding site that bound GATA-6. GATA-6 binding to this site decreased endogenous smMLCK expression, inhibited promoter activity in smooth muscle cells, and blocked the ability of myocardin to induce smMLCK expression. Altogether, these data suggest that SRF and SRF-associated factors play a key role in regulating the expression of smMLCK.
Collapse
Affiliation(s)
- Feng Yin
- Dept. of Cellular and Integrative Physiology, Indiana Univ. School of Medicine, 635 Barnhill Dr., Indianapolis, IN 46202-5120, USA
| | | | | | | |
Collapse
|
16
|
Zhou J, Hu G, Herring BP. Smooth muscle-specific genes are differentially sensitive to inhibition by Elk-1. Mol Cell Biol 2005; 25:9874-85. [PMID: 16260603 PMCID: PMC1280275 DOI: 10.1128/mcb.25.22.9874-9885.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Understanding the mechanism of smooth muscle cell (SMC) differentiation will provide the foundation for elucidating SMC-related diseases, such as atherosclerosis, restenosis, and asthma. In the current study, overexpression of Elk-1 in SMCs down-regulated expression of several endogenous smooth muscle-restricted proteins, including telokin, SM22alpha, and smooth muscle alpha-actin. In contrast, down-regulation of endogenous Elk-1 in smooth muscle cells increased the expression of only telokin and SM22alpha, suggesting that smooth muscle-specific promoters are differentially sensitive to the inhibitory effects of Elk-1. Consistent with this, overexpression of the DNA binding domain of Elk-1, which acts as a dominant-negative protein by displacing endogenous Elk-1, enhanced the expression of telokin and SM22alpha without affecting expression of smooth muscle alpha-actin. Elk-1 suppressed the activity of smooth muscle-restricted promoters, including the telokin promoter that does not contain a consensus Elk-1 binding site, through its ability to block myocardin-induced activation of the promoters. Gel mobility shift and chromatin immunoprecipitation assays revealed that Elk-1 binds to a nonconsensus binding site in the telokin promoter and Elk-1 binding is dependent on serum response factor (SRF) binding to a nearby CArG box. Although overexpression of the SRF-binding B-box domain of Elk-1 is sufficient to repress the myocardin activation of the telokin promoter, this repression is not as complete as that seen with an Elk-1 fragment that includes the DNA binding domain. In addition, reporter gene assays demonstrate that an intact Elk-1 binding site in the telokin promoter is required for Elk-1 to maximally inhibit promoter activity. Together, these data suggest that the differential sensitivity of smooth muscle-specific genes to inhibition by Elk-1 may play a role in the complex changes in smooth muscle-specific protein expression that are observed under pathological conditions.
Collapse
Affiliation(s)
- Jiliang Zhou
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202-5120, USA
| | | | | |
Collapse
|
17
|
El-Mounayri O, Triplett JW, Yates CW, Herring BP. Regulation of smooth muscle-specific gene expression by homeodomain proteins, Hoxa10 and Hoxb8. J Biol Chem 2005; 280:25854-63. [PMID: 15886193 DOI: 10.1074/jbc.m501044200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Smooth muscle cells arise from different populations of precursor cells during embryonic development. The mechanisms that specify the smooth muscle cell phenotype in each of these populations of cells are largely unknown. In many tissues and organs, homeodomain transcription factors play a key role in directing cell specification. However, little is known about how these proteins regulate smooth muscle differentiation. Using degenerate reverse transcription-PCR coupled to cDNA library screening we identified two homeodomain proteins, Hoxa10 and Hoxb8, which are expressed in adult mouse smooth muscle tissues. All three of the previously described transcripts of the Hoxa10 gene, Hoxa10-1, Hoxa10-2, and Hoxa10-3, were identified. Hoxa10-1 directly activated the smooth muscle-specific telokin promoter but did not activate the SM22alpha, smooth muscle alpha-actin, or smooth muscle myosin heavy chain promoters. Small interfering RNA-mediated knock-down of Hoxa10-1 demonstrated that Hoxa10-1 is required for high levels of telokin expression in smooth muscle cells from uterus and colon. On the other hand, Hoxb8 inhibited the activity of the telokin, SM22alpha, and smooth muscle alpha-actin promoters. Cotransfection of Hoxa10-1 together with Hoxa10-2 or Hoxb8 suggested that Hoxa10-2 and Hoxb8 act as competitive inhibitors of Hoxa10-1. Results from gel mobility shift assays demonstrated that Hoxa10-1, Hoxa10-2, and Hoxb8 bind directly to multiple sites in the telokin promoter. Mutational analysis of telokin promoter reporter genes demonstrated that the three homeodomain protein binding sites located between -80 and -75, +2 and +6, and +14 and +17 were required for maximal promoter activation by Hoxa10-1 and maximal inhibition by Hoxb8. Together these data demonstrate that the genes encoding smooth muscle-restricted proteins are direct transcriptional targets of clustered homeodomain proteins and that different homeodomain proteins have distinct effects on the promoters of these genes.
Collapse
Affiliation(s)
- Omar El-Mounayri
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|
18
|
Yin F, Herring BP. GATA-6 can act as a positive or negative regulator of smooth muscle-specific gene expression. J Biol Chem 2005; 280:4745-4752. [PMID: 15550397 DOI: 10.1074/jbc.m411585200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The GATA-4/5/6 family of transcription factors is important for the development of the cardiovascular system and the visceral endoderm. GATA-6 is the only family member expressed in vascular smooth muscle cells and has been shown to be important for controlling the phenotype of these cells following vascular injury. To clarify further the role of GATA-6 in regulating vascular smooth muscle differentiation, we directly examined its ability to regulate the promoters of smooth muscle-specific genes. This analysis revealed that GATA-6 strongly repressed telokin promoter activity. In contrast, GATA-6 activated the smooth muscle myosin heavy chain and smooth muscle alpha-actin promoters and had no significant effect on the SM22alpha promoter. Gel mobility shift assays demonstrate that GATA-6 binds to a consensus site adjacent to the CArG box in the telokin promoter. GATA-6 did not interfere with the serum-response factor-stimulated promoter activity but blocked myocardin-induced activation of the telokin promoter. In contrast, GATA-6 and myocardin resulted in synergistic activation of the smooth muscle myosin heavy chain promoter. Consistent with these findings, overexpression of GATA-6 in smooth muscle cells selectively inhibited expression of endogenous telokin, while simultaneously increasing expression of other smooth muscle proteins. These data suggest that GATA-6 selectively inhibits telokin expression by triggering the displacement of myocardin from the serum-response factor. As GATA-6 is expressed at high levels in vascular smooth muscle, this finding may explain the relatively low levels of telokin expression in the vascular system. These data also reveal a novel transcription regulatory mechanism by which GATA-6 can modulate the activity of the myocardin-serum-response factor complexes.
Collapse
Affiliation(s)
- Feng Yin
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120, USA
| | | |
Collapse
|
19
|
Zhou J, Herring BP. Mechanisms responsible for the promoter-specific effects of myocardin. J Biol Chem 2005; 280:10861-9. [PMID: 15657056 DOI: 10.1074/jbc.m411586200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Understanding the mechanism of smooth muscle cell (SMC) differentiation will provide the foundation for elucidating SMC-related diseases such as atherosclerosis, restenosis, and asthma. Recent studies have demonstrated that the interaction of SRF with the co-activator myocardin is a critical determinant of smooth muscle development. It has been proposed that the specific transcriptional activation of smooth muscle-restricted genes (as opposed to other SRF-dependent genes) by myocardin results from the presence of multiple CArG boxes in smooth muscle genes that facilitate myocardin homodimer formation. This proposal was further tested in the current study. Our results show that the SMC-specific telokin promoter, which contains only a single CArG box, is strongly activated by myocardin. Furthermore, myocardin and a dimerization defective mutant myocardin induce expression of endogenous telokin but not c-fos in 10T1/2 fibroblast cells. Knocking down myocardin by small interfering RNA decreased telokin promoter activity and expression in A10 SMCs. A series of telokin and c-fos promoter chimeric and mutant reporter genes was generated to determine the mechanisms responsible for the promoter-specific effects of myocardin. Data from these experiments demonstrated that the ets binding site in the c-fos promoter partially blocks the activation of this promoter by myocardin. However, the binding of ets factors alone was not sufficient to explain the promoter-specific effects of myocardin. Elements 3' of the CArG box in the c-fos promoter act in concert with the ets binding site to block the ability of myocardin to activate the promoter. Conversely, elements 5' and 3' of the CArG box in the telokin promoter act in concert with the CArG box to facilitate myocardin stimulation of the promoter. Together these data suggest that the promoter specificity of myocardin is dependent on complex combinatorial interactions of multiple cis elements and their trans binding factors.
Collapse
Affiliation(s)
- Jiliang Zhou
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, Indiana 46202-5120, USA
| | | |
Collapse
|
20
|
Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 2004; 84:767-801. [PMID: 15269336 DOI: 10.1152/physrev.00041.2003] [Citation(s) in RCA: 2629] [Impact Index Per Article: 125.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The focus of this review is to provide an overview of the current state of knowledge of molecular mechanisms/processes that control differentiation of vascular smooth muscle cells (SMC) during normal development and maturation of the vasculature, as well as how these mechanisms/processes are altered in vascular injury or disease. A major challenge in understanding differentiation of the vascular SMC is that this cell can exhibit a wide range of different phenotypes at different stages of development, and even in adult organisms the cell is not terminally differentiated. Indeed, the SMC is capable of major changes in its phenotype in response to changes in local environmental cues including growth factors/inhibitors, mechanical influences, cell-cell and cell-matrix interactions, and various inflammatory mediators. There has been much progress in recent years to identify mechanisms that control expression of the repertoire of genes that are specific or selective for the vascular SMC and required for its differentiated function. One of the most exciting recent discoveries was the identification of the serum response factor (SRF) coactivator gene myocardin that appears to be required for expression of many SMC differentiation marker genes, and for initial differentiation of SMC during development. However, it is critical to recognize that overall control of SMC differentiation/maturation, and regulation of its responses to changing environmental cues, is extremely complex and involves the cooperative interaction of many factors and signaling pathways that are just beginning to be understood. There is also relatively recent evidence that circulating stem cell populations can give rise to smooth muscle-like cells in association with vascular injury and atherosclerotic lesion development, although the exact role and properties of these cells remain to be clearly elucidated. The goal of this review is to summarize the current state of our knowledge in this area and to attempt to identify some of the key unresolved challenges and questions that require further study.
Collapse
MESH Headings
- Aging/metabolism
- Animals
- Arteriosclerosis/genetics
- Cell Differentiation
- Cellular Senescence
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Humans
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/embryology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Vascular Diseases/genetics
- Vascular Diseases/metabolism
- Vascular Diseases/pathology
Collapse
Affiliation(s)
- Gary K Owens
- Dept. of Molecular Physiology and Biological Physics, Univ. of Virginia School of Medicine, 415 Lane Rd., Medical Research Building 5, Rm. 1220, PO Box 801394, Charlottesville, VA 22908, USA.
| | | | | |
Collapse
|
21
|
Zhou J, Hoggatt AM, Herring BP. Activation of the smooth muscle-specific telokin gene by thyrotroph embryonic factor (TEF). J Biol Chem 2004; 279:15929-37. [PMID: 14702338 DOI: 10.1074/jbc.m313822200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription of the telokin gene is restricted to smooth muscle cells throughout development, making this gene an excellent model for unraveling the mechanisms that regulate gene expression in smooth muscle tissues. To identify proteins that bind to the telokin promoter, the AT-rich/CArG core of the promoter was used as a probe to perform a Southwestern screen of a mouse bladder cDNA library. Four clones corresponding to two distinct isoforms of mouse thyrotroph embryonic factor (TEFalpha and TEFbeta) were identified from this screen. The two TEF isoforms differ from each other at their amino termini and result from alternative promoter usage. An RNase protection assay showed that both TEF isoforms are expressed at high levels in mouse lung, bladder, kidney, gut, and brain. Gel mobility shift assays demonstrated that purified TEF protein can specifically bind to an AT-rich region within the core of the telokin promoter. Furthermore, when overexpressed in 10T1/2 cells, TEF significantly increased the activity of a telokin promoter-reporter gene; this activation was further augmented by elevated intracellular calcium levels. In contrast, overexpression of TEF had no effect on reporter genes driven by SM22alpha, smooth muscle alpha-actin, or smooth muscle myosin heavy chain promoters. Consistent with these results, overexpression of TEFalpha and TEFbeta in A10 cells, using adenoviral vectors, increased expression of endogenous telokin without altering expression of myosin light chain 20, SM22alpha, smooth muscle alpha-actin, or calponin. These findings suggest that TEF factors contribute to the activation of the telokin promoter in smooth muscle cells in a calcium-dependent manner. These data also suggest that distinct transcription factors are required to control the expression of different smooth muscle genes in a single tissue.
Collapse
Affiliation(s)
- Jiliang Zhou
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120, USA
| | | | | |
Collapse
|
22
|
Miano JM. Mammalian smooth muscle differentiation: origins, markers and transcriptional control. Results Probl Cell Differ 2003; 38:39-59. [PMID: 12132398 DOI: 10.1007/978-3-540-45686-5_2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Joseph M Miano
- Center for Cardiovascular Research, Box 679, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York 14642, USA
| |
Collapse
|
23
|
Hoggatt AM, Simon GM, Herring BP. Cell-specific regulatory modules control expression of genes in vascular and visceral smooth muscle tissues. Circ Res 2002; 91:1151-9. [PMID: 12480816 DOI: 10.1161/01.res.0000047508.30800.4f] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A novel approach with chimeric SM22alpha/telokin promoters was used to identify gene regulatory modules that are required for regulating the expression of genes in distinct smooth muscle tissues. Conventional deletion or mutation analysis of promoters does not readily distinguish regulatory elements that are required for basal gene expression from those required for expression in specific smooth muscle tissues. In the present study, the mouse telokin gene was isolated, and a 370-bp (-190 to 180) minimal promoter was identified that directs visceral smooth muscle-specific expression in vivo in transgenic mice. The visceral smooth muscle-specific expression of the telokin promoter transgene is in marked contrast to the reported arterial smooth muscle-specific expression of a 536-bp minimal SM22alpha (-475 to 61) promoter transgene. To begin to identify regulatory elements that are responsible for the distinct tissue-specific expression of these promoters, a chimeric promoter in which a 172-bp SM22alpha gene fragment (-288 to -116) was fused to the minimal telokin promoter was generated and characterized. The -288 to -116 SM22alpha gene fragment significantly increased telokin promoter activity in vascular smooth muscle cells in vitro and in vivo. Conversely, a fragment of the telokin promoter (-94 to -49) increased the activity of the SM22alpha promoter in visceral smooth muscle cells of the bladder. Together, these data demonstrate that both vascular- and visceral smooth muscle-specific regulatory modules direct gene expression in subsets of smooth muscle tissues.
Collapse
MESH Headings
- AT Rich Sequence/physiology
- Animals
- Animals, Newborn
- Brain/metabolism
- Cells, Cultured
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Gene Expression Regulation/physiology
- Gene Targeting
- Genes, Reporter
- Mice
- Mice, Transgenic
- Microfilament Proteins/genetics
- Molecular Sequence Data
- Muscle Proteins/genetics
- Muscle, Smooth/cytology
- Muscle, Smooth/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myosin-Light-Chain Kinase
- Organ Specificity
- Peptide Fragments
- Peptides
- Promoter Regions, Genetic/genetics
- Regulatory Sequences, Nucleic Acid/genetics
- Sequence Analysis, DNA
- Transfection
- Transgenes
- Urinary Bladder/metabolism
- Viscera/metabolism
Collapse
Affiliation(s)
- April M Hoggatt
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | |
Collapse
|
24
|
Khatri JJ, Joyce KM, Brozovich FV, Fisher SA. Role of myosin phosphatase isoforms in cGMP-mediated smooth muscle relaxation. J Biol Chem 2001; 276:37250-7. [PMID: 11486008 DOI: 10.1074/jbc.m105275200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In vitro experiments showing the activation of the myosin phosphatase via heterophilic leucine zipper interactions between its targeting subunit (MYPT1) and cGMP-dependent protein kinase I suggested a pathway for smooth muscle relaxation (Surks, H. K., Mochizuki, N., Kasai, Y., Georgescu, S. P., Tang, K. M., Ito, M., Lincoln, T. M., and Mendelsohn, M. E. (1999) Science 286, 1583-1587). The relationship between MYPT1 isoform expression and smooth muscle responses to cGMP signaling in vivo has not been explored. MYPT1 isoforms that contain or lack a C-terminal leucine zipper are generated in birds and mammals by cassette-type alternative splicing of a 31-nucleotide exon. The avian and mammalian C-terminal isoforms are highly conserved and expressed in a tissue-specific fashion. In the mature chicken the tonic contracting aorta and phasic contracting gizzard exclusively express the leucine zipper positive and negative MYPT1 isoforms, respectively. Expression of the MYPT1 isoforms is also developmentally regulated in the gizzard, which switches from leucine zipper positive to negative isoforms around the time of hatching. This switch coincides with the development in the gizzard of a cGMP-resistant phenotype, i.e. inability to dephosphorylate myosin and relax in response to 8-bromo-cGMP after calcium activation. Furthermore, association of cGMP-dependent protein kinase I with MYPT1 is detected by immunoprecipitation only in the tissue that expresses the leucine zipper positive isoform of MYPT1. These results suggest that the regulated splicing of MYPT1 is an important determinant of smooth muscle phenotypic diversity and the variability in the response of smooth muscles to the calcium desensitizing effect of cGMP signaling.
Collapse
Affiliation(s)
- J J Khatri
- Department of Medicine (Cardiology), Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4958, USA
| | | | | | | |
Collapse
|