1
|
Rawee P, Kremer D, Nolte IM, Leuvenink HGD, Touw DJ, De Borst MH, Bakker SJL, Hanudel MR, Eisenga MF. Iron Deficiency and Nephrotoxic Heavy Metals: A Dangerous Interplay? Int J Mol Sci 2023; 24:5315. [PMID: 36982393 PMCID: PMC10049453 DOI: 10.3390/ijms24065315] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/26/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Heavy metals are common in our environment, and all individuals are exposed to them to some extent. These toxic metals have several harmful effects on the body, including the kidney, which is a very sensitive organ. Indeed, heavy metal exposure has been linked to an increased risk of chronic kidney disease (CKD) and its progression, which may be explained by the well-established nephrotoxic effects of these metals. In this hypothesis and narrative literature review, we will shed light on the potential role that another highly common problem in patients with CKD, iron deficiency, may play in the damaging effects of heavy metal exposure in this patient group. Iron deficiency has previously been linked with an increased uptake of heavy metals in the intestine due to the upregulation of iron receptors that also take up other metals. Furthermore, recent research suggests a role of iron deficiency in the retention of heavy metals in the kidney. Therefore, we hypothesize that iron deficiency plays a crucial role in the damaging effects of heavy metal exposure in patients with CKD and that iron supplementation might be a strategy to combat these detrimental processes.
Collapse
Affiliation(s)
- Pien Rawee
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Daan Kremer
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Ilja M. Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Henri G. D. Leuvenink
- Department of Surgery, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Daan J. Touw
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Martin H. De Borst
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Stephan J. L. Bakker
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Mark R. Hanudel
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Michele F. Eisenga
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| |
Collapse
|
2
|
Yu HT, Zhen J, Leng JY, Cai L, Ji HL, Keller BB. Zinc as a countermeasure for cadmium toxicity. Acta Pharmacol Sin 2021; 42:340-346. [PMID: 32284539 PMCID: PMC8027184 DOI: 10.1038/s41401-020-0396-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/15/2020] [Indexed: 12/11/2022]
Abstract
Cadmium (Cd) is an important environmental pollutant and long-term Cd exposure is closely related to autoimmune diseases, cancer, cardiovascular diseases (CVD), and hepatic dysfunction. Zinc (Zn) is an essential metal that plays key roles in protein structure, catalysis, and regulation of their function. Numerous studies have shown that Zn can reduce Cd toxicity; however, the underlying mechanisms have not been extensively explored. Preclinical studies have revealed direct competition for sarcolemmal uptake between these two metals. Multiple sarcolemmal transporters participate in Cd uptake, including Zn transporters, calcium channels, and DMT1 (divalent metal transporter 1). Zn also induces several protective mechanisms, including MT (metallothionein) induction and favorable redox homeostasis. This review summarizes current knowledge related to the role of Zn and metal transporters in reducing Cd toxicity and discusses potential future directions of related research.
Collapse
Affiliation(s)
- Hai-Tao Yu
- The First Hospital of Jilin University, Changchun, 130021, China
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Juan Zhen
- The First Hospital of Jilin University, Changchun, 130021, China
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Ji-Yan Leng
- The First Hospital of Jilin University, Changchun, 130021, China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Hong-Lei Ji
- The First Hospital of Jilin University, Changchun, 130021, China.
| | - Bradley B Keller
- Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.
- Cincinnati Children's Heart Institute, Greater Louisville and Western Kentucky Practice, Louisville, KY, 40202, USA.
| |
Collapse
|
3
|
Schmid C, Alampi I, Briggs J, Tarcza K, Stawicki TM. Mechanotransduction Activity Facilitates Hair Cell Toxicity Caused by the Heavy Metal Cadmium. Front Cell Neurosci 2020; 14:37. [PMID: 32153368 PMCID: PMC7044240 DOI: 10.3389/fncel.2020.00037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/05/2020] [Indexed: 11/13/2022] Open
Abstract
Hair cells are sensitive to many insults including environmental toxins such as heavy metals. We show here that cadmium can consistently kill hair cells of the zebrafish lateral line. Disrupting hair cell mechanotransduction genetically or pharmacologically significantly reduces the amount of hair cell death seen in response to cadmium, suggesting a role for mechanotransduction in this cell death process, possibly as a means for cadmium uptake into the cells. Likewise, when looking at multiple cilia-associated gene mutants that have previously been shown to be resistant to aminoglycoside-induced hair cell death, resistance to cadmium-induced hair cell death is only seen in those with mechanotransduction defects. In contrast to what was seen with mechanotransduction, significant protection was not consistently seen from other ions previously shown to compete for cadmium uptake into cells or tissue including zinc and copper. These results show that functional mechanotransduction activity is playing a significant role in cadmium-induced hair cell death.
Collapse
Affiliation(s)
- Caleigh Schmid
- Program in Neuroscience, Lafayette College, Easton, PA, United States
| | - Isabella Alampi
- Program in Neuroscience, Lafayette College, Easton, PA, United States
| | - Jay Briggs
- Department of Biological Structure, University of Washington, Seattle, WA, United States
| | - Kelly Tarcza
- Program in Neuroscience, Lafayette College, Easton, PA, United States
| | | |
Collapse
|
4
|
Joneidi Z, Mortazavi Y, Memari F, Roointan A, Chahardouli B, Rostami S. The impact of genetic variation on metabolism of heavy metals: Genetic predisposition? Biomed Pharmacother 2019; 113:108642. [DOI: 10.1016/j.biopha.2019.108642] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 02/08/2023] Open
|
5
|
Kim Y, Lobdell DT, Wright CW, Gocheva VV, Hudgens E, Bowler RM. Blood metal concentrations of manganese, lead, and cadmium in relation to serum ferritin levels in Ohio residents. Biol Trace Elem Res 2015; 165:1-9. [PMID: 25578336 DOI: 10.1007/s12011-014-0223-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 12/26/2014] [Indexed: 01/26/2023]
Abstract
The objectives of this study were to assess ferritin-specific profiles of blood metal concentrations such as manganese, lead, and cadmium and to evaluate whether ferritin may affect the behavior of the blood metals in relation to menstruation, menopause, or sex in Ohio residents. Recruited participants included residents from Marietta, East Liverpool, and Mt. Vernon, OH, USA, who were aged 30-75 years and lived at least 10 years in their respective town. The levels of the neurotoxic metals such as manganese, cadmium, and lead were assayed in whole blood. Serum was analyzed for ferritin level [as a biomarker of iron (Fe) status]. An association between blood metal concentrations and independent variables (age, serum ferritin, manganese exposure status, and sex) by multiple regression analysis was assessed, controlling for various covariates such as BMI, educational level, smoking, and alcohol drinking status. Overall, the geometric means of blood manganese, cadmium, and lead levels of all participants (n = 276) were 9.307 μg/L, 0.393 μg/L, and 1.276 μg/dL, respectively. Log serum ferritin concentrations were inversely associated with log blood manganese concentration (β = -0.061 log ferritin and β = 0.146 categorical ferritin) and log blood cadmium concentrations (β = -0.090 log ferritin and β = 0.256 categorical ferritin). Log serum ferritin concentrations were not associated with log blood lead concentrations. Variables of age, sex, and exposure status were not associated with log manganese concentrations; however, log blood cadmium concentrations were higher in older population, women, and smokers. Log blood lead concentrations were higher in older population, men, and postmenopausal women. Our study showed that iron deficiency is associated with increased levels of blood manganese and cadmium, but not blood lead, in Ohio residents. These metals showed different toxicokinetics in relation to age, sex, and menopausal status despite similar relationships between ferritin and metal concentrations.
Collapse
Affiliation(s)
- Yangho Kim
- University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan, 682-060, South Korea
| | | | | | | | | | | |
Collapse
|
6
|
Kayaaltı Z, Akyüzlü DK, Söylemezoğlu T. Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels. ENVIRONMENTAL RESEARCH 2015; 137:8-13. [PMID: 25483413 DOI: 10.1016/j.envres.2014.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 06/04/2023]
Abstract
Divalent metal transporter 1 (DMT1), a member of the proton-coupled metal ion transporter family, mediates transport of ferrous iron from the lumen of the intestine into the enterocyte and export of iron from endocytic vesicles. It has an affinity not only for iron but also for other divalent cations including manganese, cobalt, nickel, cadmium, lead, copper, and zinc. DMT1 is encoded by the SLC11a2 gene that is located on chromosome 12q13 in humans and express four major mammalian isoforms (1A/+IRE, 1A/-IRE, 2/+IRE and 2/-IRE). Mutations or polymorphisms of DMT1 gene may have an impact on human health by disturbing metal trafficking. To study the possible association of DMT1 gene with the blood levels of some divalent cations such as iron, lead and cadmium, a single nucleotide polymorphism (SNP) (IVS4+44C/A) in DMT1 gene was investigated in 486 unrelated and healthy individuals in a Turkish population by method of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The genotype frequencies were found as 49.8% homozygote typical (CC), 38.3% heterozygote (CA) and 11.9% homozygote atypical (AA). Metal levels were analyzed by dual atomic absorption spectrometer system and the average levels of iron, lead and cadmium in the blood samples were 446.01 ± 81.87 ppm, 35.59 ± 17.72 ppb and 1.25 ± 0.87 ppb, respectively. Individuals with the CC genotype had higher blood iron, lead and cadmium levels than those with AA and CA genotypes. Highly statistically significant associations were detected between IVS4+44 C/A polymorphism in the DMT1 gene and iron and lead levels (p=0.001 and p=0.036, respectively), but no association was found with cadmium level (p=0.344). This study suggested that DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, lead and cadmium levels.
Collapse
Affiliation(s)
- Zeliha Kayaaltı
- Institute of Forensic Sciences, Ankara University, Dikimevi 06590, Ankara, Turkey.
| | - Dilek Kaya Akyüzlü
- Institute of Forensic Sciences, Ankara University, Dikimevi 06590, Ankara, Turkey
| | - Tülin Söylemezoğlu
- Institute of Forensic Sciences, Ankara University, Dikimevi 06590, Ankara, Turkey
| |
Collapse
|
7
|
Arredondo M, Mendiburo MJ, Flores S, Singleton ST, Garrick MD. Mouse divalent metal transporter 1 is a copper transporter in HEK293 cells. Biometals 2013; 27:115-23. [PMID: 24327293 DOI: 10.1007/s10534-013-9691-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/01/2013] [Indexed: 01/14/2023]
Abstract
Divalent Metal Transporter 1 (DMT1) is an apical Fe transporter in the duodenum and is involved in endosomal Fe export. Four protein isoforms have been described for DMT1, two from mRNA with an iron responsive element (IRE) and two from mRNA without it. The sets of two begin in exon 1A or 2. We have characterized copper transport using mouse 2/-IRE DMT1 during regulated ectopic expression. HEK293 cells carrying a TetR:Hyg element were stably transfected with pDEST31 containing a 2/-IRE construct. (64)Cu(1+) incorporation in doxycycline treated cells exhibited 18.6 and 30.0-fold increases in Cu content, respectively when were exposed to 10 and 100 μM of extracellular Cu. Cu content was ~4-fold above that of parent cells or cells carrying just the vector. (64)Cu uptake in transfected cells pre-incubated with 5 μM of Cu-His revealed a Vmax and Km of 11.98 ± 0.52 pmol mg protein(-1) min(-1) and 2.03 ± 0.03 μM, respectively. Doxycycline-stimulated Cu uptake was linear with time. The rates of apical Cu uptake decreased and transepithelial transport increased when intracellular Cu increased. The optimal pH for Cu transport was 6.5; uptake of Cu was temperature dependent. Silver does not inhibit Cu uptake in cells carrying the vector. In conclusion, Cu uptake in HEK293 cells that over-expressed the 2/-IRE isoform of DMT1 transporter supports our earlier contention that DMT1 transports Cu as Cu(1+).
Collapse
Affiliation(s)
- Miguel Arredondo
- Micronutrients Laboratory, Nutrition Institute and Food Technology (INTA), Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile,
| | | | | | | | | |
Collapse
|
8
|
Involvement of the essential metal transporter Zip14 in hepatic Cd accumulation during inflammation. Toxicol Lett 2013; 218:91-6. [DOI: 10.1016/j.toxlet.2013.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/12/2013] [Accepted: 01/15/2013] [Indexed: 12/29/2022]
|
9
|
Abstract
Cadmium is known for its toxicity in animals and man as it is not used in these species. Its only role in biology is as a zinc replacement at the catalytic site of a particular class of carbonic anhydrases in some marine diatoms. The toxicity of cadmium continues to be a significant public health concern as cadmium enters the food chain and it is taken up by tobacco smokers. The biochemical basis for its toxicity has been the objective of research for over 50 years. Cadmium damages the kidneys, the lungs upon inhalation, and interferes with bone metabolism. Evidence is accumulating that it affects the cardiovascular system. Cadmium is classified as a human carcinogen. It generates oxidative stress. This chapter discusses the chemistry and biochemistry of cadmium(II) ions, the only important state of cadmium in biology. This background is needed to interpret the countless effects of cadmium in laboratory experiments with cultured cells or with animals with regard to their significance for human health. Evaluation of the risks of cadmium exposure and the risk factors that affect cadmium's biological effects in tissues is an on-going process. It appears that the more we learn about the biochemistry of cadmium and the more sensitive assays we develop for determining exposure, the lower we need to set the upper limits for exposure to protect those at risk. But proper control of cadmium's presence and interactions with living species and the environment still needs to be based on improved knowledge about the mechanisms of cadmium toxicity; the gaps in our knowledge in this area are discussed herein.
Collapse
|
10
|
Nebert DW, Gálvez-Peralta M, Hay EB, Li H, Johansson E, Yin C, Wang B, He L, Soleimani M. ZIP14 and ZIP8 zinc/bicarbonate symporters in Xenopus oocytes: characterization of metal uptake and inhibition. Metallomics 2012; 4:1218-25. [PMID: 23090441 PMCID: PMC11709005 DOI: 10.1039/c2mt20177a] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The highly conserved human and mouse SLC39A14 and SLC39A8 genes encode the ZIP14 and ZIP8 transporters, respectively-functioning as divalent cation/bicarbonate symporters and expressed in dozens of tissues. Due to alternative splicing of exons 4, human and mouse SLC39A14 genes each encode two distinct gene products, whereas SLC39A8 produces a single product. This lab previously noted that ZIP14A and ZIP14B show highly variable expression in different cell types, suggesting differences in metal uptake function. We ligated mouse ZIP14A, ZIP14B and ZIP8 cDNA coding regions into the Xenopus-specific vector pXFRM, transcribed these in vitro, and microinjected the capped RNAs into Xenopus oocytes. K(m) and V(max) values for Cd, Zn and Fe uptake were determined. Electrogenicity studies using a potassium gradient confirmed that (just as we found previously for ZIP8) ZIP14A- and ZIP14B-mediated divalent Cd- or Zn-bicarbonate complexes are electroneutral. Competitive inhibition of Cd and Zn uptake with ten additional divalent cations showed a unique gradient of patterns for each of ZIP14A, ZIP14B and ZIP8. ZIP14 proteins are prominent in the gastrointestinal tract and ZIP8 protein is located on the surface of renal proximal tubular epithelial cells. It is known that renal Fanconi syndrome can be caused by five nonessential heavy metals: Cd(2+), Hg(2+), Pb(2+), Pt(2+) and U(2+). In the present study we show that these five divalent cations are usually competitors of ZIP14- and/or ZIP8-mediated Zn uptake; our data thus support the possible involvement of intestinal ZIP14 for uptake of these five metals into the body and ZIP8 for efficient uptake into the kidney.
Collapse
Affiliation(s)
- Daniel W Nebert
- Department of Environmental Health and Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, OH 45267-0056, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Cucu D, D'Haese PC, De Beuf A, Verhulst A. Low doses of cadmium chloride and methallothionein-1-bound cadmium display different accumulation kinetics and induce different genes in cells of the human nephron. NEPHRON EXTRA 2011; 1:24-37. [PMID: 22470376 PMCID: PMC3290857 DOI: 10.1159/000330069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background/Aims The present study was conducted to investigate the renal tubular handling of inorganic cadmium (Cd2+) by exposing primary human tubular cell cultures to physiologically relevant doses of cadmium chloride (CdCl2). Furthermore, the cellular accumulation of Cd2+ was compared to that of metallothionein-1-bound Cd (Cd7MT-1). Finally, this study aimed to investigate the effect of the accumulation of Cd (both Cd2+ and Cd7MT-1) in renal cells on the expression of genes relevant to nephrotoxic processes. Methods Cd concentration was measured using atomic absorption spectrometry. mRNA expression was evaluated by quantitative real-time RT-PCR. Results Cd2+ accumulated into human tubular cells in a concentration- and time-dependent way. Furthermore, cellular accumulation of Cd2+ was different from the cellular accumulation of Cd7MT-1, indicative for different uptake routes. Finally, mRNA expression of the genes encoding the anti-oxidative proteins metallothionein-1 (MT-1) and heme-oxygenase-1 (HO-1) as well as the pro-apoptotic Bcl-2-associated X protein (Bax) were upregulated by CdCl2 and not by Cd7MT1. Conclusion In the presence of physiologically relevant Cd concentrations, tubular accumulation of the element in its inorganic form is different from that of Cd7MT-1. Furthermore, the tubular accumulation of inorganic Cd induces mRNA expression of genes of which the protein products may play a role in Cd-associated renal toxicity.
Collapse
Affiliation(s)
- Dana Cucu
- Laboratory of Pathophysiology, Faculty of Veterinary, Biomedical, and Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | | | | | | |
Collapse
|
12
|
Nzengue Y, Candéias SM, Sauvaigo S, Douki T, Favier A, Rachidi W, Guiraud P. The toxicity redox mechanisms of cadmium alone or together with copper and zinc homeostasis alteration: its redox biomarkers. J Trace Elem Med Biol 2011; 25:171-80. [PMID: 21820296 DOI: 10.1016/j.jtemb.2011.06.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Revised: 05/01/2011] [Accepted: 06/29/2011] [Indexed: 12/27/2022]
Abstract
Cadmium (Cd) is a toxic metal and can induce and/or promote diseases in humans (cancer, aging diseases, kidney and bone diseases, etc.). Its toxicity involves many mechanisms including the alteration of copper (Cu) and zinc (Zn) homeostasis leading to reactive oxygen species (ROS) production, either directly or through the inhibition of antioxidant activities. Importantly, ROS can induce oxidative damages in cells. Cadmium, Cu and Zn are also able to induce glutathione (GSH) and metallothioneins (MT) synthesis in a cell-type-dependent manner. As a consequence, the effects induced by these three metals result simultaneously from the inhibition of antioxidant activities and the induction of other factors such as GSH and MT synthesis. MT levels are regulated not only by the p53 protein in a cell-type-dependent manner, or by transcription factors such as metal-responsive transcription factor 1 (MTF-1) and cellular Zn levels but also by cellular GSH level. As described in the literature, DNA damage, GSH and MT levels are sensitive biomarkers used to identify Cd-induced toxicity alone or together with Cu and Zn homeostasis alteration.
Collapse
Affiliation(s)
- Yves Nzengue
- INAC/SCIB UMR-E3 CEA/UJF, Laboratoire Lésions des Acides Nucléiques, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9, France.
| | | | | | | | | | | | | |
Collapse
|
13
|
Soodvilai S, Nantavishit J, Muanprasat C, Chatsudthipong V. Renal organic cation transporters mediated cadmium-induced nephrotoxicity. Toxicol Lett 2011; 204:38-42. [DOI: 10.1016/j.toxlet.2011.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 04/04/2011] [Accepted: 04/05/2011] [Indexed: 12/21/2022]
|
14
|
Kawanai T, Fujinaga M, Koizumi K, Kurotani I, Hashimoto E, Satoh M, Imai S, Miyoshi N, Oyama Y. Some characteristics of membrane Cd2+ transport in rat thymocytes: an analysis using Fluo-3. Biometals 2011; 24:903-14. [DOI: 10.1007/s10534-011-9444-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 03/17/2011] [Indexed: 01/13/2023]
|
15
|
Thévenod F. Catch me if you can! Novel aspects of cadmium transport in mammalian cells. Biometals 2010; 23:857-75. [DOI: 10.1007/s10534-010-9309-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 02/16/2010] [Indexed: 12/13/2022]
|
16
|
Potential mechanisms involved in the absorptive transport of cadmium in isolated perfused rabbit renal proximal tubules. Toxicol Lett 2009; 193:61-8. [PMID: 20018233 DOI: 10.1016/j.toxlet.2009.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 12/03/2009] [Accepted: 12/08/2009] [Indexed: 12/13/2022]
Abstract
UNLABELLED Lumen-to-cell transport, cellular accumulation, and toxicity of cadmium as ionic cadmium (Cd(2+)) or as the L-cysteine (Cys) or D,L-homocysteine (Hcy) S-conjugate of cadmium (Cys-S-Cd-S-Cys, Hcy-S-Cd-S-Hcy) were studied in isolated, perfused rabbit proximal tubular segments. When Cd(2+) (0.73 microM) or Cys-S-Cd-S-Cys (0.73 microM) was perfused through the lumen of S(2) segments of the proximal tubule, no visual evidence of cellular pathological changes was detected during 30 min of study. Cd(2+)-transport was temperature-dependent and was inhibited by Fe(2+), Zn(2+), and elevated concentrations of Ca(2+). Luminal uptake of Cys-S-Cd-S-Cys was also temperature-dependent and was inhibited by the amino acids L-cystine and L-arginine, while stimulated by L-methionine. Neither L-aspartate, L-glutamate, the synthetic dipeptide, Gly-Sar nor Zn(2+) had any effect on the rate of Cys-S-Cd-S-Cys transport. CONCLUSIONS When delivered to the luminal compartment, Cd(2+) appears to be capable of utilizing certain transporter(s) of Zn(2+) and some transport systems sensitive to Ca(2+) and Fe(2+). In addition, Cys-S-Cd-S-Cys and Hcy-S-Cd-S-Hcy appear to be transportable substrates of one or more amino acid transporters participating in luminal absorption of the amino acid L-cystine (such as system b(0,+)). These findings indicate that multiple mechanisms could be involved in the luminal absorption of cadmium (Cd) in proximal tubular segments depending on its form. These findings provide a focus for future studies of Cd absorption in the proximal tubule.
Collapse
|
17
|
He L, Wang B, Hay EB, Nebert DW. Discovery of ZIP transporters that participate in cadmium damage to testis and kidney. Toxicol Appl Pharmacol 2009; 238:250-7. [PMID: 19265717 PMCID: PMC2789294 DOI: 10.1016/j.taap.2009.02.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 02/10/2009] [Accepted: 02/13/2009] [Indexed: 12/16/2022]
Abstract
It has been known for decades that cadmium (Cd) must enter the cell to cause damage, but there was no mechanism to explain genetic differences in response to Cd toxicity until 2005. Starting with the mouse Cdm locus associated with differences in Cd-induced testicular necrosis between inbred strains, a 24.6-centiMorgan region on chromosome 3 was reduced ultimately to 880 kb; in this segment is the Slc39a8 gene encoding the ZIP8 Zn(2+)/HCO(3)(-) symporter. In endothelial cells of the testis vasculature, Cd-sensitive mice exhibit high ZIP8 expression, Cd-resistant mice exhibit very low expression. A 168.7-kb bacterial artificial chromosome (BAC) from a 129S6 (Cd-sensitive) BAC library containing the Slc39a8 gene was inserted into the Cd-resistant C57BL/6J genome: Cd treatment produced testicular necrosis in BAC-transgenic BTZIP8-3 mice but not in non-transgenic littermates, thereby proving that the Slc39a8 gene is indeed the Cdm locus. Cd-induced renal failure also occurred in these BTZIP8-3 mice. Immunohistochemistry showed highly expressed ZIP8 protein in the renal proximal tubular epithelial apical surface, suggesting that ZIP8 participates in Cd-induced renal failure. Slc39a14, most closely evolutionarily related to Slc39a8, encodes differentially-spliced products ZIP14A and ZIP14B that display properties similar to ZIP8. ZIP8 in alveolar cells brings environmental Cd into the organism and ZIP14 in intestinal enterocytes carries Cd into the organism and into the hepatocyte. We believe these two transporters function endogenously as Zn(2+)/HCO(3)(-) symporters important in combating inflammation and carrying out other physiological functions; Cd is able to displace the endogenous cation, enter the cell, and produce tissue damage and disease.
Collapse
Affiliation(s)
| | - Bin Wang
- Department of Environmental Health, and Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, OH 45267-0056, USA
| | - Everett B. Hay
- Department of Environmental Health, and Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, OH 45267-0056, USA
| | - Daniel W. Nebert
- Department of Environmental Health, and Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, OH 45267-0056, USA
| |
Collapse
|
18
|
Iron transport and the kidney. Biochim Biophys Acta Gen Subj 2008; 1790:724-30. [PMID: 19041692 DOI: 10.1016/j.bbagen.2008.10.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 10/05/2008] [Accepted: 10/22/2008] [Indexed: 01/13/2023]
Abstract
Over the last decade there has been an explosion in our understanding of the proteins that modulate iron homeostasis. Much research has focused on the tissues classically associated with iron absorption and metabolism, namely the duodenum, the liver and the reticulo-endothelial system. Expression profiling has highlighted that many of the components associated with iron homeostasis, are also expressed in tissues which hitherto have received relatively little attention in terms of iron research. These include, testis, lung and, the subject of this review, the kidney. The latter is of great interest because other than a source of erythropoietin, a function that is of course of utmost importance for iron homeostasis, the kidney is regarded as more or less irrelevant in terms of iron handling. However, the fact that the kidneys of our favourite subjects, namely rats, mice and humans, contain many if not all of the proteins that are central to iron balance, that in some cases are expressed in considerable amounts, implies that the kidney handles iron in some way that has demanded evolutionary conservation and therefore is likely to be of importance. This review will document the evidence of iron transporter expression in the kidney, detail data showing the expression of other proteins associated with iron homeostasis and discuss the relevance of renal iron transport to pathophysiological states. Based on these data, a hypothetical model of renal iron handling will be presented.
Collapse
|
19
|
Wyman S, Simpson RJ, McKie AT, Sharp PA. Dcytb (Cybrd1) functions as both a ferric and a cupric reductase in vitro. FEBS Lett 2008; 582:1901-6. [DOI: 10.1016/j.febslet.2008.05.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 04/18/2008] [Accepted: 05/07/2008] [Indexed: 10/22/2022]
|
20
|
Girijashanker K, He L, Soleimani M, Reed JM, Li H, Liu Z, Wang B, Dalton TP, Nebert DW. Slc39a14 gene encodes ZIP14, a metal/bicarbonate symporter: similarities to the ZIP8 transporter. Mol Pharmacol 2008; 73:1413-23. [PMID: 18270315 PMCID: PMC2753210 DOI: 10.1124/mol.107.043588] [Citation(s) in RCA: 262] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mouse and human genomes contain 14 highly conserved SLC39 genes. Viewed from an evolutionary perspective, SLC39A14 and SLC39A8 are the most closely related, each having three noncoding exons 1. However, SLC39A14 has two exons 4, giving rise to Zrt- and Irt-related protein (ZIP)ZIP14A and ZIP14B alternatively spliced products. C57BL/6J mouse ZIP14A expression is highest in liver, duodenum, kidney, and testis; ZIP14B expression is highest in liver, duodenum, brain, and testis; and ZIP8 is highest in lung, testis, and kidney. We studied ZIP14 stably retroviral-infected mouse fetal fibroblast cultures and transiently transfected Madin-Darby canine kidney (MDCK) polarized epithelial cells. Our findings include: 1) ZIP14-mediated cadmium uptake is proportional to cell toxicity, but manganese is not; 2) ZIP14B has a higher affinity than ZIP14A toward Cd(2+) (K(m) = 0.14 versus 1.1 microM) and Mn(2+) uptake (K(m) = 4.4 versus 18.2 microM); 3) ZIP14A- and ZIP14B-mediated Cd(2+) uptake is most inhibited by Zn(2+), and next by Mn(2+) and Cu(2+); 4) like ZIP8, ZIP14A- and ZIP14B-mediated Cd(2+) uptake is dependent on extracellular HCO(3)(-); 5) like ZIP8, ZIP14 transporters are localized on the apical surface of MDCK-ZIP cells; and 6) like ZIP8, ZIP14 proteins are glycosylated. Tissues such as intestine and liver, located between the environment and the animal, show high levels of ZIP14; given the high affinity for ZIP14, Cd(2+) is likely to act as a rogue hitchhiker-displacing Zn(2+) or Mn(2+) and entering the body to cause unwanted cell damage and disease.
Collapse
Affiliation(s)
- Kuppuswami Girijashanker
- Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267-0056, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Liu Z, Li H, Soleimani M, Girijashanker K, Reed JM, He L, Dalton TP, Nebert DW. Cd2+ versus Zn2+ uptake by the ZIP8 HCO3--dependent symporter: kinetics, electrogenicity and trafficking. Biochem Biophys Res Commun 2008; 365:814-20. [PMID: 18037372 PMCID: PMC2212618 DOI: 10.1016/j.bbrc.2007.11.067] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Accepted: 11/13/2007] [Indexed: 12/31/2022]
Abstract
The mouse Slc39a8 gene encodes the ZIP8 transporter, which has been shown to be a divalent cation/HCO3- symporter. Using ZIP8 cRNA-injected Xenopus oocyte cultures, we show herein that: [a] ZIP8-mediated cadmium (Cd(2+)) and zinc (Zn(2+)) uptake have V(max) values of 1.8+/-0.08 and 1.0+/-0.08 pmol/oocyte/h, and K(m) values of 0.48+/-0.08 and 0.26+/-0.09 microM, respectively; [b] ZIP8-mediated Cd(2+) uptake is most inhibited by Zn(2+), second-best inhibited by Cu(2+), Pb(2+) and Hg(2+), and not inhibited by Mn(2+) or Fe(2+); and [c] electrogenicity studies demonstrate an influx of two HCO3- anions per one Cd(2+) (or one Zn(2+)) cation, i.e. electroneutral complexes. Using Madin-Darby canine kidney (MDCK) polarized epithelial cells retrovirally infected with ZIP8 cDNA and tagged with hemagglutinin at the C-terminus, we show that-similar to ZIP4-the ZIP8 eight-transmembrane protein is largely internalized during Zn(2+) homeostasis, but moves predominantly to the cell surface membrane (trafficking) under conditions of Zn(2+) depletion.
Collapse
Affiliation(s)
- Zhiwei Liu
- Department of Environmental Health and Center for Environmental Genetics (CEG) University of Cincinnati Medical Center, Cincinnati OH 45267−0056
| | | | | | - Kuppuswami Girijashanker
- Department of Environmental Health and Center for Environmental Genetics (CEG) University of Cincinnati Medical Center, Cincinnati OH 45267−0056
| | - Jodie M. Reed
- Department of Environmental Health and Center for Environmental Genetics (CEG) University of Cincinnati Medical Center, Cincinnati OH 45267−0056
| | - Lei He
- Department of Environmental Health and Center for Environmental Genetics (CEG) University of Cincinnati Medical Center, Cincinnati OH 45267−0056
| | - Timothy P. Dalton
- Department of Environmental Health and Center for Environmental Genetics (CEG) University of Cincinnati Medical Center, Cincinnati OH 45267−0056
| | - Daniel W. Nebert
- Department of Environmental Health and Center for Environmental Genetics (CEG) University of Cincinnati Medical Center, Cincinnati OH 45267−0056
| |
Collapse
|
22
|
Garrick MD, Kuo HC, Vargas F, Singleton S, Zhao L, Smith JJ, Paradkar P, Roth JA, Garrick LM. Comparison of mammalian cell lines expressing distinct isoforms of divalent metal transporter 1 in a tetracycline-regulated fashion. Biochem J 2006; 398:539-46. [PMID: 16737442 PMCID: PMC1559468 DOI: 10.1042/bj20051987] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 05/18/2006] [Accepted: 06/01/2006] [Indexed: 01/12/2023]
Abstract
DMT1 (divalent metal transporter; also known as SLC11A2, DCT1 or Nramp2) is responsible for ferrous iron uptake in the duodenum, iron exit from endosomes during the transferrin cycle and some transferrin-independent iron uptake in many cells. Four protein isoforms differ by starting in exon 1A or 2 and ending with alternative peptides encoded by mRNA that contains or lacks an IRE (iron responsive element; +/-IRE). We have compared 1A/+IRE and 2/-IRE DMT1 during regulated ectopic expression. HEK-293-F (human embryonic kidney-293-fast growing variant) cells were stably transfected with each construct expressed from a tetracycline-regulated CMV promoter. Reverse transcriptase-PCR analysis showed that construct expression responded to doxycycline. Immunofluorescence staining of cells, using antibodies specific for DMT1 isoforms, confirmed an increase in expression in the plasma membrane and cytosolic vesicles after doxycycline treatment, but with isoform specific distributions. Immunoblotting also revealed stimulation of expression. Nevertheless, both DMT1 isoforms performed similarly in assays for functional properties based on 54Mn2+ and 59Fe2+ uptake. Mn incorporation after doxycycline treatment was approximately 10-fold greater than that of untreated cells, while expression in the untreated cells was approximately 5-fold greater than in the untransfected cells. Uptake of Mn depended on addition of doxycycline, with half maximal response at approximately 1 nM doxycycline. Doxycycline-stimulated Mn and Fe uptake was linear with time for 10 min but not over longer periods. Transport exhibited a pH optimum at approximately 5.5 and dependence on incubation temperature and Mn or Fe concentration. The new cell lines should prove useful for research on metal homoeostasis, toxicological studies and efforts to identify distinctive properties of the isoforms.
Collapse
Key Words
- dmt1
- iron
- iron response element (ire)
- manganese
- metal transport
- tetracycline induction
- cmv, cytomegalovirus
- dct1, divalent cation transporter 1
- dmt1, divalent metal transporter 1
- fbs, foetal bovine serum
- hek-293-f, human embryonic kidney 293-fast growing variant
- ire, iron responsive element
- ireg1, iron regulated protein 1
- mtp1, metal transport protein 1
- nramp, natural resistance associated macrophage protein
- ntbi, non-transferrin bound iron
- rt, reverse transcription
- slc11a2, solute carrier 11 group a member 2
- tetres, tetracycline responsive
Collapse
|
23
|
Fotakis G, Timbrell JA. Role of trace elements in cadmium chloride uptake in hepatoma cell lines. Toxicol Lett 2006; 164:97-103. [PMID: 16406389 DOI: 10.1016/j.toxlet.2005.11.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 11/29/2005] [Accepted: 11/30/2005] [Indexed: 11/16/2022]
Abstract
Cadmium coexists with other metals in various products. Releases of cadmium in the environment occur in parallel to the release of other metals including copper, iron and zinc which also have an essential role in human homeostasis as they participate in various biochemical pathways. We studied the interaction of iron, copper, zinc and calcium channel blockers (nifedipine and verapamil) with cadmium chloride in two hepatoma cell lines (HepG2 and HTC cells) in order to determine if these trace elements can affect CdCl(2) uptake and interfere with its toxicity. Both cell lines were initially exposed to CdCl(2) (0-200 microM) for 2h and the uptake of the metal was determined. Cadmium chloride uptake by HepG2 and HTC cells shows an increase with increasing doses of the metal. Cells were also pretreated with 100 uM of FeCl(2) or ZnCl(2) or CuCl(2) or with a nifedipine/verapamil (100 uM) mixture for 2h and then exposed to 200 uM CdCl(2) for 1h in the presence of the trace elements. The uptake of CdCl(2) was determined as well as the membrane integrity (LDH leakage assay), the cell viability (neutral red assay) and cell proliferation (protein assay). Zinc and calcium channel blockers inhibited the uptake of cadmium chloride by both cell lines. On the other hand iron loading resulted in increased uptake of CdCl(2) by both cell lines whereas copper loading increased the uptake of cadmium chloride from HTC cells and inhibited the uptake by HepG2 cells. These findings are of importance when the effects of cadmium on living organisms are examined since co-exposure to cadmium and other metals can occur.
Collapse
Affiliation(s)
- George Fotakis
- 150 Stamford street, Franklin Wilkins Building, Pharmacy Department, King's College London, London SE1 8WA, UK.
| | | |
Collapse
|
24
|
Abouhamed M, Gburek J, Liu W, Torchalski B, Wilhelm A, Wolff NA, Christensen EI, Thévenod F, Smith CP. Divalent metal transporter 1 in the kidney proximal tubule is expressed in late endosomes/lysosomal membranes: implications for renal handling of protein-metal complexes. Am J Physiol Renal Physiol 2006; 290:F1525-33. [PMID: 16449358 DOI: 10.1152/ajprenal.00359.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The H+-coupled polyligand transport protein divalent metal transporter 1 (DMT1) plays a key role in mammalian iron homeostasis. It has a widespread pattern of expression including tissues associated with iron acquisition and storage. Interestingly, it is also highly expressed in the kidney, yet its function in this tissue is unknown. The aim of this study was to determine the cellular location of DMT1 in proximal tubule cells as a first step to determining the role of this protein in the kidney. To do this we performed RT-PCR and immunostaining experiments using rat kidney and the S1 proximal tubule-derived WKPT-0293 Cl.2 cell line. RT-PCR revealed that mRNAs encoding all four DMT1 splice variants were present in RNA extracted from rat kidney cortex or WKPT-0293 Cl.2 cells. Immunostaining of rat kidney cortex or WKPT-0293 Cl.2 cells showed that DMT1 protein was expressed intracellularly and was not present in the plasma membrane. Expression of DMT1 partially colocalized with the late endosomal/lysosomal proteins LAMP1 and cathepsin-L. Using immunogold labeling, DMT1 was shown to be expressed in the membranes of late endosomes/lysosomes. Uptake of Alexa Fluor 546-transferrin was only observed following application to the apical membrane of WKPT-0293 Cl.2 cells. Within these cells, Alexa Fluor 546-transferrin colocalized with DMT1. In conclusion, renal proximal tubular cells express DMT1 in the membranes of organelles, including late endosomes/lysosomes, associated with processing of apically sequestered transferrin. These findings have implications for renal iron handling and possibly for the handling of nephrotoxic metals that are also DMT1 ligands, including Cd2+.
Collapse
Affiliation(s)
- Marouan Abouhamed
- Department of Physiology and Pathophysiology, Faculty of Medicine, Univ. of Witten/Herdecke, Witten, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ong WY, He X, Chua LH, Ong CN. Increased uptake of divalent metals lead and cadmium into the brain after kainite-induced neuronal injury. Exp Brain Res 2006; 173:468-74. [PMID: 16552559 DOI: 10.1007/s00221-006-0390-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2005] [Accepted: 02/01/2006] [Indexed: 10/24/2022]
Abstract
An increase in iron level, number of iron positive cells and ferritin expression has been observed in the rat hippocampus after neuronal injury induced by the excitotoxin, kainate. This is accompanied by an increased expression of divalent metal transporter-1 (DMT1) in the lesioned hippocampus, suggesting that the transporter may be partially responsible for the iron accumulation. DMT1 has a broad substrate range that includes other divalent metals such as lead (Pb) and cadmium (Cd), and the present study was carried out to elucidate the uptake of these metals in the kainate-injected brain. The technique of atomic absorption spectroscopy was used for analyses. Significantly higher lead and cadmium levels were detected in the hippocampus and other brain areas of intracerebroventricular kainate-injected rats treated with lead and cadmium in the drinking water, compared to intracerebroventricular saline-injected rats treated with lead and cadmium in the drinking water. Since very low levels of lead and cadmium are present in the normal animal, these results indicate increased uptake of lead and cadmium into brain areas as a result of the kainate injections. Increased iron levels were also detected in the hippocampus of the kainate-injected rats. The above results show increased uptake of divalent metals into brain areas undergoing neurodegeneration.
Collapse
Affiliation(s)
- W Y Ong
- Department of Anatomy, National University of Singapore, Singapore, Singapore.
| | | | | | | |
Collapse
|
26
|
Bridges CC, Zalups RK. Molecular and ionic mimicry and the transport of toxic metals. Toxicol Appl Pharmacol 2005; 204:274-308. [PMID: 15845419 PMCID: PMC2409291 DOI: 10.1016/j.taap.2004.09.007] [Citation(s) in RCA: 525] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Accepted: 09/08/2004] [Indexed: 01/11/2023]
Abstract
Despite many scientific advances, human exposure to, and intoxication by, toxic metal species continues to occur. Surprisingly, little is understood about the mechanisms by which certain metals and metal-containing species gain entry into target cells. Since there do not appear to be transporters designed specifically for the entry of most toxic metal species into mammalian cells, it has been postulated that some of these metals gain entry into target cells, through the mechanisms of ionic and/or molecular mimicry, at the site of transporters of essential elements and/or molecules. The primary purpose of this review is to discuss the transport of selective toxic metals in target organs and provide evidence supporting a role of ionic and/or molecular mimicry. In the context of this review, molecular mimicry refers to the ability of a metal ion to bond to an endogenous organic molecule to form an organic metal species that acts as a functional or structural mimic of essential molecules at the sites of transporters of those molecules. Ionic mimicry refers to the ability of a cationic form of a toxic metal to mimic an essential element or cationic species of an element at the site of a transporter of that element. Molecular and ionic mimics can also be sub-classified as structural or functional mimics. This review will present the established and putative roles of molecular and ionic mimicry in the transport of mercury, cadmium, lead, arsenic, selenium, and selected oxyanions in target organs and tissues.
Collapse
Affiliation(s)
- Christy C Bridges
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA.
| | | |
Collapse
|
27
|
Ballatori N, Madejczyk MS. Transport of nonessential metals across mammalian cell membranes. TOPICS IN CURRENT GENETICS 2005. [DOI: 10.1007/4735_102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
28
|
Bressler JP, Olivi L, Cheong JH, Kim Y, Bannona D. Divalent Metal Transporter 1 in Lead and Cadmium Transport. Ann N Y Acad Sci 2004; 1012:142-52. [PMID: 15105261 DOI: 10.1196/annals.1306.011] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effect of exposure to cadmium (Cd) and lead (Pb) on human health has been recognized for many years and recent information suggests that minimal exposure levels are themselves too high. Common scenarios for Pb exposure include occupational, residential, and/or behavioral (hand-to-mouth activity) settings. The main source of Cd exposure for nonsmokers is dietary, through plants or animals that accumulate the metal. Specific cellular importers for Pb and Cd are unlikely as these metals are nonessential and toxic. Accordingly, in the intestine, the operational mechanism is assumed to be inadvertent uptake through pathways intended for essential nutrients such as iron. Results from experimental and epidemiological studies indicated that diets low in iron (Fe) result in increased absorption of Pb and Cd, suggesting common molecular mechanisms of Cd and Pb transport. Indeed, recent mechanistic studies found that the intestinal transporter for nonheme iron, divalent metal transporter 1 (DMT1), mediates the transport of Pb and Cd. DMT1 is regulated, in part, by dietary iron, and chemical species of Cd and Pb that are transported by DMT1 would be made available through digestion and are also found in plasma. Accordingly, the involvement of DMT1 in metal uptake offers a mechanistic explanation for why an iron-deficient diet is a risk factor for Pb and Cd poisoning. It also suggests that diets rich in iron-containing food could be protective against heavy metal poisoning.
Collapse
Affiliation(s)
- Joseph P Bressler
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.
| | | | | | | | | |
Collapse
|
29
|
Wang XS, Ong WY, Connor JR. Quinacrine attenuates increases in divalent metal transporter-1 and iron levels in the rat hippocampus, after kainate-induced neuronal injury. Neuroscience 2003; 120:21-9. [PMID: 12849737 DOI: 10.1016/s0306-4522(03)00293-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present investigation was carried out to elucidate the effect of the antimalarial drug quinacrine on levels of expression of the non-heme iron transporter, divalent metal transporter-1 (DMT1) and iron, in the hippocampus of rats after kainate treatment. The untreated hippocampus was lightly stained for DMT1, while an increase in DMT1 staining in astrocytes in the degenerating cornu ammonis (CA) fields, after kainate lesions. The increased DMT1 immunoreactivity was correlated with increased levels of Fe3+ and Fe2+ staining in the CA fields, as demonstrated by iron histochemistry (Perl's and Turnbull's blue stain for Fe3+ and Fe2+). The increases in DMT1 and iron staining were significantly attenuated by quinacrine. Rats injected with kainate and daily i.p. injections of quinacrine (5 mg/kg) for 7 days or 2 weeks showed significantly lower levels of DMT1 immunoreactivity and iron staining, compared with rats injected with kainate and saline. These results show that DMT1 expression is closely linked to iron levels, and provide further support for a crucial role that DMT1 plays in iron accumulation in the degenerating hippocampus.
Collapse
Affiliation(s)
- X S Wang
- Department of Anatomy, National University of Singapore, Singapore, 119260 Singapore
| | | | | |
Collapse
|
30
|
Regunathan A, Glesne DA, Wilson AK, Song J, Nicolae D, Flores T, Bhattacharyya MH. Microarray analysis of changes in bone cell gene expression early after cadmium gavage in mice. Toxicol Appl Pharmacol 2003; 191:272-93. [PMID: 13678660 DOI: 10.1016/s0041-008x(03)00163-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We developed an in vivo model for cadmium-induced bone loss in which mice excrete bone mineral in feces beginning 8 h after cadmium gavage. Female mice of three strains [CF1, MTN (metallothionein-wild-type), and MT1,2KO (MT1,2-deficient)] were placed on a low-calcium diet for 2 weeks. Each mouse was gavaged with 200 microg Cd or vehicle only. Fecal calcium was monitored daily for 9 days, beginning 4 days before cadmium gavage, to document the bone response. For CF1 mice, bones were taken from four groups: +/- Cd, 2 h after Cd and +/- Cd, 4 h after Cd. MTN and MT1,2KO strains had two groups each: +/-Cd, 4 h after Cd. PolyA+ RNA preparations from marrow-free shafts of femura and tibiae of each +/- Cd pair were submitted to Incyte Genomics for microarray analysis. Fecal Ca results showed that bone calcium excreted after cadmium differed for the three mouse strains: CF1, 0.24 +/- 0.08 mg; MTN, 0.92 +/- 0.22 mg; and MT1,2KO, 1.7 +/- 0.4 mg. Gene array results showed that nearly all arrayed genes were unaffected by cadmium. However, MT1 and MT2 had Cd+/Cd- expression ratios >1 in all four groups, while all ratios for MT3 were essentially 1, showing specificity. Both probes for MAPK 14 (p38 MAPK) had expression ratios >1, while no other MAPK responded to cadmium. Vacuolar proton pump ATPase and integrin alpha v (osteoclast genes), transferrin receptor, and src-like adaptor protein genes were stimulated by Cd; other src-related genes were unaffected. Genes for bone formation, stress response, growth factors, and signaling molecules showed little or no response to cadmium. Results support the hypothesis that Cd stimulates bone demineralization via a p38 MAPK pathway involving osteoclast activation.
Collapse
Affiliation(s)
- Akhila Regunathan
- Biosciences Division, Argonne National Laboratory, Argonne, IL 60439-4833, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Arredondo M, Muñoz P, Mura CV, Nùñez MT. DMT1, a physiologically relevant apical Cu1+ transporter of intestinal cells. Am J Physiol Cell Physiol 2003; 284:C1525-30. [PMID: 12734107 DOI: 10.1152/ajpcell.00480.2002] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite important advances in the understanding of copper secretion and excretion, the molecular components of intestinal copper absorption remain a mystery. DMT1, also known as Nramp2 and DCT1, is the transporter responsible for intestinal iron uptake. Electrophysiological evidence suggests that DMT1 can also be a copper transporter. Thus we examined the potential role of DMT1 as a copper transporter in intestinal Caco-2 cells. Treatment of cells with a DMT1 antisense oligonucleotide resulted in 80 and 48% inhibition of iron and copper uptake, respectively. Cells incorporated considerable amounts of copper as Cu(1+), whereas Cu(2+) transport was about 10-fold lower. Cu(1+) inhibited apical Fe(2+) transport. Fe(2+), but not Fe(3+), effectively inhibited Cu(1+) uptake. The iron content of the cells influenced both copper and iron uptake. Cells with low iron content transported fourfold more iron and threefold more copper than cells with high iron content. These results demonstrate that DMT1 is a physiologically relevant Cu(1+) transporter in intestinal cells, indicating that intestinal absorption of copper and iron are intertwined.
Collapse
Affiliation(s)
- Miguel Arredondo
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
32
|
Ducoudret O, Barbier O, Tauc M, Fuchs M, Poujeol P. Characterization of Zn(2+) transport in Madin-Darby canine kidney cells. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1611:171-9. [PMID: 12659958 DOI: 10.1016/s0005-2736(03)00052-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of this study was to characterize the mechanism implicated in Zn(2+) transport in MDCK cells. Trace elements such as Zn(2+), Cd(2+) or Cu(2+) induced MDCK cell depolarization at the micromolar level as demonstrated by bis-oxonol fluorescence and whole-cell patch experiments. This depolarization was inhibited by La(3+) and Gd(3+) and was not related to the activation of Na(+) or Cl(-) channels. Uptake of 65Zn was assessed under initial rate conditions. The kinetic parameters obtained at 37 degrees C were a K(m) of 18.9 microM and a V(max) of 0.48 nmol min(-1) (mg protein(-1)). Intracellular pH measurements using BCECF probe demonstrated that Zn(2+) transport induced a cytoplasmic acidification. The cytoplasmic acidification resulting from Zn(2+) uptake activated Na(+)/H(+) antiporter, which allowed for the recycling of protons. These data suggest that Zn(2+) enters MDCK cells through a proton-coupled metal-ion transporter, the characteristics of which are slightly different from those described for the metal transporter DCT1. This mechanism could be in part responsible of the metal transport evidenced in the distal parts of the renal tubule.
Collapse
Affiliation(s)
- Olivier Ducoudret
- UMR-CNRS 6548, Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice Cedex, France
| | | | | | | | | |
Collapse
|
33
|
Abstract
Cadmium (Cd) is an industrial and environmental pollutant that affects adversely a number of organs in humans and other mammals, including the kidneys, liver, lungs, pancreas, testis, and placenta. The liver and kidneys, which are the primary organs involved in the elimination of systemic Cd, are especially sensitive to the toxic effects of Cd. Because Cd ions possess a high affinity for sulfhydryl groups and thiolate anions, the cellular and molecular mechanisms involved in the handling and toxicity of Cd in target organs can be defined largely by the molecular interactions that occur between Cd ions and various sulfhydryl-containing molecules that are present in both the intracellular and extracellular compartments. A great deal of scientific data have been collected over the years to better define the toxic effects of Cd in the primary target organs. Notwithstanding all of the new developments made and information gathered, it is surprising that very little is known about the cellular and molecular mechanisms involved in the uptake, retention, and elimination of Cd in target epithelial cells. Therefore, the primary purpose of this review is to summarize and put into perspective some of the more salient current findings, assertions, and hypotheses pertaining to the transport and handling of Cd in the epithelial cells of target organs. Particular attention has been placed on the molecular mechanisms involved in the absorption, retention, and secretion of Cd in small intestinal enterocytes, hepatocytes, and tubular epithelial cells lining both proximal and distal portions of the nephron. The purpose of this review is not only to provide a summary of published findings but also to provide speculations and testable hypotheses based on contemporary findings made in other areas of research, with the hope that they may promote and serve as the impetus for future investigations designed to define more precisely the cellular mechanisms involved in the transport and handling of Cd within the body.
Collapse
Affiliation(s)
- Rudolfs K Zalups
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA.
| | | |
Collapse
|
34
|
Abstract
Understanding the role of transporters in placental handling of xenobiotics across the maternal-fetal interface is essential to evaluate the pharmacological and toxicological potential of therapeutic agents, drugs of abuse, and other xenobiotics to which the mother is exposed during pregnancy. Therefore, the purpose of this study was to assess mRNA levels of various transporters in placenta and to compare these to levels in maternal liver and kidney, predominant organs of excretion, to determine which transporters are likely to have a role in xenobiotic transfer within the placenta. During late stage pregnancy, relative amounts of mRNA levels of 40 genes representing 11 families/group of transporters were assessed in placenta with respect to relative maternal liver and kidney mRNA levels. Members of the following transporter families were assessed: three multidrug resistance (Mdr), six multidrug resistance-associated protein (Mrp), eight organic anion-transporting polypeptide (Oatp), three organic anion transporters (Oat), five organic cation transporters (Oct), two bile acid transporters (Na(+)/taurocholate-cotransporting polypeptide and bile salt export protein), four metal (ZnT1, divalent metal transporter 1, Menkes and Wilsons), a prostaglandin, two peptide, two sterolin, and four nucleoside transporters. Of the 40 genes evaluated, 16 [Mdr1a and 1b, Mrp1 and 5, Oct3 and Octn1, Oatp3 and 12, four metal, a prostaglandin, AbcG8, equilibrative nucleoside transporter 1 (ENT1), and ENT2] were expressed in placenta at concentrations similar to or higher than in maternal liver and kidney. The abundance of these mRNA transcripts in placenta suggests a role for these transporters in placental transport of xenobiotics and supports their role in the transport of endogenous substances.
Collapse
Affiliation(s)
- Tyra M Leazer
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160-7417, USA
| | | |
Collapse
|
35
|
Bannon DI, Abounader R, Lees PSJ, Bressler JP. Effect of DMT1 knockdown on iron, cadmium, and lead uptake in Caco-2 cells. Am J Physiol Cell Physiol 2003; 284:C44-50. [PMID: 12388109 DOI: 10.1152/ajpcell.00184.2002] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DMT1 (divalent metal transporter 1) is a hydrogen-coupled divalent metal transporter with a substrate preference for iron, although the protein when expressed in frog oocytes transports a broad range of metals, including the toxic metals cadmium and lead. Wild-type Caco-2 cells displayed saturable transport of lead and iron that was stimulated by acid. Cadmium and manganese inhibited transport of iron, but zinc and lead did not. The involvement of DMT1 in the transport of toxic metals was examined by establishing clonal DMT1 knockdown and control Caco-2 cell lines. Knockdown cell lines displayed much lower levels of DMT1 mRNA and a smaller V(max) for iron uptake compared with control cell lines. One clone was further characterized and found to display an approximately 50% reduction in uptake of iron across a pH range from 5.5 to 7.4. Uptake for cadmium also decreased 50% across the same pH range, but uptake for lead did not. These results show that DMT1 is important in iron and cadmium transport in Caco-2 cells but that lead enters these cells through an independent hydrogen-driven mechanism.
Collapse
Affiliation(s)
- Desmond I Bannon
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
36
|
I Bannon D, Portnoy ME, Olivi L, Lees PSJ, Culotta VC, Bressler JP. Uptake of lead and iron by divalent metal transporter 1 in yeast and mammalian cells. Biochem Biophys Res Commun 2002; 295:978-84. [PMID: 12127992 DOI: 10.1016/s0006-291x(02)00756-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although the divalent metal transporter (DMT1) was suggested to transport a wide range of metals in Xenopus oocytes, recent studies in other models have provided contrasting results. Here, we provide direct evidence demonstrating that DMT1 expressed in yeast mutants defective for high affinity iron transport facilitates the transport of iron with an 'apparent K(m)' of approximately 1.2 microM, and transport of lead with an 'apparent K(m)' of approximately 1.8 microM. DMT1-dependent lead transport was H(+)-dependent and was inhibited by iron. Human embryonic kidney fibroblasts (HEK293 cells) overexpressing DMT1 also showed a higher uptake of lead than HEK293 cells without overexpressing DMT1. These results show that DMT1 transports lead and iron with similar affinity in a yeast model suggesting that DMT1 is a transporter for lead.
Collapse
|