1
|
Russu E, Arbanasi EM, Chirila TV, Muresan AV. Therapeutic strategies based on non-ionizing radiation to prevent venous neointimal hyperplasia: the relevance for stenosed arteriovenous fistula, and the role of vascular compliance. Front Cardiovasc Med 2024; 11:1356671. [PMID: 38374996 PMCID: PMC10875031 DOI: 10.3389/fcvm.2024.1356671] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
We have reviewed the development and current status of therapies based on exposure to non-ionizing radiation (with a photon energy less than 10 eV) aimed at suppressing the venous neointimal hyperplasia, and consequentially at avoiding stenosis in arteriovenous grafts. Due to the drawbacks associated with the medical use of ionizing radiation, prominently the radiation-induced cardiovascular disease, the availability of procedures using non-ionizing radiation is becoming a noteworthy objective for the current research. Further, the focus of the review was the use of such procedures for improving the vascular access function and assuring the clinical success of arteriovenous fistulae in hemodialysis patients. Following a brief discussion of the physical principles underlying radiotherapy, the current methods based on non-ionizing radiation, either in use or under development, were described in detail. There are currently five such techniques, including photodynamic therapy (PDT), far-infrared therapy, photochemical tissue passivation (PTP), Alucent vascular scaffolding, and adventitial photocrosslinking. The last three are contingent on the mechanical stiffening achievable by the exogenous photochemical crosslinking of tissular collagen, a process that leads to the decrease of venous compliance. As there are conflicting opinions on the role of compliance mismatch between arterial and venous conduits in a graft, this aspect was also considered in our review.
Collapse
Affiliation(s)
- Eliza Russu
- Clinic of Vascular Surgery, Mures County Emergency Hospital, Targu Mures, Romania
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, Targu Mures, Romania
| | - Emil-Marian Arbanasi
- Clinic of Vascular Surgery, Mures County Emergency Hospital, Targu Mures, Romania
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, Targu Mures, Romania
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, Targu Mures, Romania
- Centre for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, Targu Mures, Romania
| | - Traian V. Chirila
- Centre for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, Targu Mures, Romania
- Queensland Eye Institute, Woolloongabba, QLD, Australia
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, Targu Mures, Romania
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Institute of Bioengineering and Nanotechnology (AIBN), University of Queensland, St Lucia, QLD, Australia
| | - Adrian V. Muresan
- Clinic of Vascular Surgery, Mures County Emergency Hospital, Targu Mures, Romania
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, Targu Mures, Romania
| |
Collapse
|
2
|
Ratku B, Sebestyén V, Erdei A, Nagy EV, Szabó Z, Somodi S. Effects of adult growth hormone deficiency and replacement therapy on the cardiometabolic risk profile. Pituitary 2022; 25:211-228. [PMID: 35106704 PMCID: PMC8894188 DOI: 10.1007/s11102-022-01207-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 12/12/2022]
Abstract
Adult growth hormone deficiency (AGHD) is considered a rare endocrine disorder involving patients with childhood-onset and adult-onset growth hormone deficiency (AoGHD) and characterized by adverse cardiometabolic risk profile. Besides traditional cardiovascular risk factors, endothelial dysfunction, low-grade inflammation, impaired adipokine profile, oxidative stress and hypovitaminosis D may also contribute to the development of premature atherosclerosis and higher cardiovascular risk in patients with AGHD. Growth hormone replacement has been proved to exert beneficial effects on several cardiovascular risk factors, but it is also apparent that hormone substitution in itself does not eliminate all cardiometabolic abnormalities associated with the disease. Novel biomarkers and diagnostic techniques discussed in this review may help to evaluate individual cardiovascular risk and identify patients with adverse cardiometabolic risk profile. In the absence of disease-specific guidelines detailing how to assess the cardiovascular status of these patients, we generally recommend close follow-up of the cardiovascular status as well as low threshold for a more detailed evaluation.
Collapse
Affiliation(s)
- Balázs Ratku
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
- Department of Emergency and Oxyology, Faculty of Health, University of Debrecen, Debrecen, Hungary
| | - Veronika Sebestyén
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - Annamária Erdei
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Endre V Nagy
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Szabó
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Sándor Somodi
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary.
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
3
|
Karakaya C, van Asten JGM, Ristori T, Sahlgren CM, Loerakker S. Mechano-regulated cell-cell signaling in the context of cardiovascular tissue engineering. Biomech Model Mechanobiol 2022; 21:5-54. [PMID: 34613528 PMCID: PMC8807458 DOI: 10.1007/s10237-021-01521-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/15/2021] [Indexed: 01/18/2023]
Abstract
Cardiovascular tissue engineering (CVTE) aims to create living tissues, with the ability to grow and remodel, as replacements for diseased blood vessels and heart valves. Despite promising results, the (long-term) functionality of these engineered tissues still needs improvement to reach broad clinical application. The functionality of native tissues is ensured by their specific mechanical properties directly arising from tissue organization. We therefore hypothesize that establishing a native-like tissue organization is vital to overcome the limitations of current CVTE approaches. To achieve this aim, a better understanding of the growth and remodeling (G&R) mechanisms of cardiovascular tissues is necessary. Cells are the main mediators of tissue G&R, and their behavior is strongly influenced by both mechanical stimuli and cell-cell signaling. An increasing number of signaling pathways has also been identified as mechanosensitive. As such, they may have a key underlying role in regulating the G&R of tissues in response to mechanical stimuli. A more detailed understanding of mechano-regulated cell-cell signaling may thus be crucial to advance CVTE, as it could inspire new methods to control tissue G&R and improve the organization and functionality of engineered tissues, thereby accelerating clinical translation. In this review, we discuss the organization and biomechanics of native cardiovascular tissues; recent CVTE studies emphasizing the obtained engineered tissue organization; and the interplay between mechanical stimuli, cell behavior, and cell-cell signaling. In addition, we review past contributions of computational models in understanding and predicting mechano-regulated tissue G&R and cell-cell signaling to highlight their potential role in future CVTE strategies.
Collapse
Affiliation(s)
- Cansu Karakaya
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Jordy G M van Asten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Cecilia M Sahlgren
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
- Faculty of Science and Engineering, Biosciences, Åbo Akademi, Turku, Finland
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
4
|
Fulop GA, Ramirez-Perez FI, Kiss T, Tarantini S, Valcarcel Ares MN, Toth P, Yabluchanskiy A, Conley SM, Ballabh P, Martinez-Lemus LA, Ungvari Z, Csiszar A. IGF-1 Deficiency Promotes Pathological Remodeling of Cerebral Arteries: A Potential Mechanism Contributing to the Pathogenesis of Intracerebral Hemorrhages in Aging. J Gerontol A Biol Sci Med Sci 2019; 74:446-454. [PMID: 29931048 PMCID: PMC6417448 DOI: 10.1093/gerona/gly144] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Indexed: 01/01/2023] Open
Abstract
Clinical and experimental studies show that age-related decline in circulating insulin-like growth factor-1 (IGF-1) levels promotes the pathogenesis of intracerebral hemorrhages, which critically contribute to the development of vascular cognitive impairment and disability in older adults. Yet, the mechanisms by which IGF-1 deficiency compromises structural integrity of the cerebral vasculature are not completely understood. To determine the role of IGF-1 deficiency in pathological remodeling of middle cerebral arteries (MCAs), we compared alterations in vascular mechanics, morphology, and remodeling-related gene expression profile in mice with liver-specific knockdown of IGF-1 (Igf1f/f + TBG-Cre-AAV8) and control mice with or without hypertension induced by angiotensin-II treatment. We found that IGF-1 deficiency resulted in thinning of the media and decreased wall-to-lumen ratio in MCAs. MCAs of control mice exhibited structural adaptation to hypertension, manifested as a significant increase in wall thickness, vascular smooth muscle cell (VSMC) hypertrophy, decreased internal diameter and up-regulation of extracellular matrix (ECM)-related genes. IGF-1 deficiency impaired hypertension-induced adaptive media hypertrophy and dysregulated ECM remodeling, decreasing elastin content and attenuating adaptive changes in ECM-related gene expression. Thus, circulating IGF-1 plays a critical role in maintenance of the structural integrity of cerebral arteries. Alterations of VSMC phenotype and pathological remodeling of the arterial wall associated with age-related IGF-1 deficiency have important translational relevance for the pathogenesis of intracerebral hemorrhages and vascular cognitive impairment in elderly hypertensive patients.
Collapse
Affiliation(s)
- Gabor A Fulop
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Hungary
| | - Francisco I Ramirez-Perez
- Dalton Cardiovascular Research Center; Departments of Biological Engineering and Medical Pharmacology and Physiology, University of Missouri, Columbia
| | - Tamas Kiss
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Medical Physics and Informatics, University of Szeged, Hungary
| | - Stefano Tarantini
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Marta Noa Valcarcel Ares
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Peter Toth
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Neurosurgery, Medical School, University of Pecs, Hungary
| | - Andriy Yabluchanskiy
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Shannon M Conley
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City
| | - Praveen Ballabh
- Department of Pediatrics, Albert Einstein College of Medicine, New York
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center; Departments of Biological Engineering and Medical Pharmacology and Physiology, University of Missouri, Columbia
| | - Zoltan Ungvari
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Medical Physics and Informatics, University of Szeged, Hungary
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Anna Csiszar
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Medical Physics and Informatics, University of Szeged, Hungary
| |
Collapse
|
5
|
Maffei P, Dassie F, Wennberg A, Parolin M, Vettor R. The Endothelium in Acromegaly. Front Endocrinol (Lausanne) 2019; 10:437. [PMID: 31396153 PMCID: PMC6667653 DOI: 10.3389/fendo.2019.00437] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022] Open
Abstract
Growth hormone (GH) and insulin like growth factor-1 (IGF-1) excess induce well-known deleterious effects on the cardiovascular system, especially after long-term exposition. Acromegaly, a condition of chronic GH and IGF-1 hypersecretion, is frequently associated to cardiovascular complications, although recent studies have shown a reduction in the prevalence of these comorbidities in well-controlled patients and a mortality risk similar to normal aging population. Many factors could contribute to the increased cardiovascular risk of acromegaly patients. Among these factors, the endothelium plays a key role in the pathogenesis of atherosclerotic plaques and could be considered an early marker of atherosclerosis and cardiovascular dysfunction. In this review we examined the relationship between GH/IGF-1 excess and the endothelium, from basic studies to clinical evidence. Many studies involving various arterial districts (microvascular arteries of retina, kidney and brain, and major vessels as carotid and aorta) showed that GH/IGF-1 excess promotes endothelial dysfunction via several different mechanisms. Increased endothelial proliferation, dysfunction of endothelial progenitor cells, increased oxidative stress, and compromised oxidative defenses are the main factors that are associated with endothelial dysfunction. In the general population, these alterations are associated with the development of atherosclerosis with an increased incidence of coronary artery disease and cerebrovascular complications. However, in acromegaly this is still a debated issue, despite the presence of many pro-atherogenic factors and comorbidities, such as hypertension, diabetes, sleep apnoea, and metabolic syndrome. Preclinical markers of atherosclerosis as arterial intima media thickness, pulse wave velocity and flow mediated dilation seem to be impaired in acromegaly and partly mediated by the endothelium dysfunction. In conclusion, the pathophysiology of endothelial dysfunction in the condition of GH and IGF-1 excess remains a crucial area of investigation to fully dissect the association of acromegaly with cardiovascular disease complications.
Collapse
Affiliation(s)
- Pietro Maffei
- Clinica Medica 3, Department of Medicine (DIMED), Padua University Hospital, Padua, Italy
- *Correspondence: Pietro Maffei
| | - Francesca Dassie
- Clinica Medica 3, Department of Medicine (DIMED), Padua University Hospital, Padua, Italy
| | - Alexandra Wennberg
- Clinica Neurologica, Department of Neurosciences (DNS), Padua University Hospital, Padua, Italy
| | - Matteo Parolin
- Clinica Medica 3, Department of Medicine (DIMED), Padua University Hospital, Padua, Italy
| | - Roberto Vettor
- Clinica Medica 3, Department of Medicine (DIMED), Padua University Hospital, Padua, Italy
| |
Collapse
|
6
|
Nourbakhsh MR, Bell TJ, Martin JB, Arab AM. The Effects of Oscillatory Biofield Therapy on Pain and Functional Limitations Associated with Carpal Tunnel Syndrome: Randomized, Placebo-Controlled, Double-Blind Study. J Altern Complement Med 2016; 22:911-920. [PMID: 27487406 DOI: 10.1089/acm.2016.0083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Biofield treatments have been used for pain control in patients with cancer and chronic pain. However, research on the effect of biofield treatment on specific somatic disorders is lacking. This study intends to investigate the effect of oscillating biofield therapy (OBFT) on symptoms of carpal tunnel syndrome. DESIGN Randomized, placebo-controlled, double-blind study. PARTICIPANTS Thirty patients with chronic carpal tunnel syndrome participated in the study. INTERVENTION Patients were randomly assigned to active or placebo treatment groups. Those in the treatment group received six sessions of OBFT with intention to treat during a period of 2 weeks. Patients in the placebo group had the same number of treatment sessions with mock OBFT treatment. OUTCOME MEASURE The Disabilities of the Arm, Shoulder and Hand (DASH) questionnaire; Symptom Severity Scale (SSS); and Functional Status Scale (FSS) were used for outcome assessment. RESULTS Both clinically and statistically significant changes in intensity of pain with activity (95% confidence interval [CI], 2.5-4.2; p = 0.000), night pain (p = 0.000, 95% CI, 3.2-5.7), DASH questionnaire (95% CI, 12.0-21.9; p = 0.000), SSS (95% CI, 0.64-1.15; p = 0.003), and FSS (95% CI, 0.41-0.97; p = 0.029) were found between the treatment and placebo groups. Statistically significant reduction in number of patients with positive results on the Phalen test (87%; p = 0.000), Tinel sign (73%; p = 0.000), and hand paresthesia (80%; p = 0.000) was noted in the treatment group. During 6-month follow-up, 86% of patients in the treatment group remained pain free and had no functional limitations. CONCLUSION OBFT can be a viable and effective treatment for improving symptoms and functional limitations associated with chronic carpal tunnel syndrome.
Collapse
Affiliation(s)
| | | | | | - Amir Massoud Arab
- 4 Department of Physical Therapy, University of Social Welfare and Rehabilitation Sciences , Tehran, Iran
| |
Collapse
|
7
|
Yu YH, Zhang L, Wu DS, Zhang Z, Huang FF, Zhang J, Chen XP, Liang DS, Zeng H, Chen FP. MiR-223 regulates human embryonic stem cell differentiation by targeting the IGF-1R/Akt signaling pathway. PLoS One 2013; 8:e78769. [PMID: 24250812 PMCID: PMC3826748 DOI: 10.1371/journal.pone.0078769] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 09/16/2013] [Indexed: 11/19/2022] Open
Abstract
Currently, there are difficulties associated with the culturing of pluripotent human embryonic stem cells (hESCs), and knowledge regarding their regulatory mechanisms is limited. MicroRNAs (miRNAs) regulate gene expression and have critical functions in stem cell self-renewal and differentiation. Moreover, fibroblast growth factor (FGF) and the insulin-like growth factor receptor (IGF-1R) are key activators of signaling in hESCs. Based on the identification of complementary binding sites in miR-223 and IGF-1R mRNA, it is proposed that miR-223 acts as a local regulator of IGF-1R. Therefore, levels of miR-223 were detected in differentiated versus undifferentiated hESCs. In addition, proliferation, apoptosis, and differentiation were assayed in these two hESC populations and were compared in the presence of exogenous miR-223 and miR-223 inhibitor. Inhibition of miR-223 was found to maintain the undifferentiated state of hESCs, while addition of miR-223 induced differentiation. Furthermore, these effects were found to be likely dependent on IGF-1R/Akt signaling.
Collapse
Affiliation(s)
- Yan-Hui Yu
- Department of Hematology, Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| | - Li Zhang
- Department of Hematology, West China Hospital, Si Chuan University, Chengdu, Sichuan, China
| | - Deng-Shu Wu
- Department of Hematology, Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Fang-Fang Huang
- Department of Hematology, Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Zhang
- Department of Hematology, Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao-Ping Chen
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - De-Sheng Liang
- State Key Laboratory of Medical Genetics of China, Central South University, Changsha, Hunan, China
| | - Hui Zeng
- Department of Hematology, Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
- * E-mail: (HZ); (FPC)
| | - Fang-Ping Chen
- Department of Hematology, Xiang-Ya Hospital, Central South University, Changsha, Hunan, China
- * E-mail: (HZ); (FPC)
| |
Collapse
|
8
|
Matsuda Y, Kawate H, Matsuzaki C, Sakamoto R, Abe I, Shibue K, Kohno M, Adachi M, Ohnaka K, Nomura M, Takayanagi R. Reduced arterial stiffness in patients with acromegaly: non-invasive assessment by the cardio-ankle vascular index (CAVI). Endocr J 2013; 60:29-36. [PMID: 22986423 DOI: 10.1507/endocrj.ej12-0189] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In patients with acromegaly, cardiovascular diseases are the most common cause of death. Arterial stiffness is increasingly recognized as a valuable surrogate marker for predicting cardiovascular events. To evaluate the vascular status of acromegalic patients, we used the cardio-ankle vascular index (CAVI) to reflect the arterial stiffness from the heart to the ankles. We analyzed 21 acromegalic patients, comprising five patients with untreated active acromegaly, one patient treated with medication and 15 patients who underwent transsphenoidal surgery. Among the 15 patients with surgery, 10 received additional therapies with dopamine agonists and/or somatostatin analogs. All patients with acromegaly unexpectedly showed significant reductions in the CAVI, indicating reduced arterial stiffness, compared with age- and sex-matched controls, regardless of whether they underwent surgery. There was a significant negative correlation between the CAVI and the serum insulin-like growth factor (IGF)-I level in these patients. Active acromegalic patients were associated with lower CAVI than controlled patients. Sequential measurements of the CAVI and serum IGF-I before and after treatment with octreotide and transsphenoidal surgery revealed that a reduced IGF-I level after treatment was accompanied by CAVI elevation. The present findings indicate that the CAVI is negatively correlated with the serum IGF-I level in acromegaly. These findings are consistent with previous reports indicating that the GH/IGF-I axis reduces peripheral vascular resistance. This non-invasive assessment can reflect the present vascular status and would be a useful marker for evaluation of therapeutic effects in patients with acromegaly.
Collapse
Affiliation(s)
- Yayoi Matsuda
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chao JT, Davis MJ. The roles of integrins in mediating the effects of mechanical force and growth factors on blood vessels in hypertension. Curr Hypertens Rep 2012; 13:421-9. [PMID: 21879361 DOI: 10.1007/s11906-011-0227-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Hypertension is characterized by a sustained increase in vasoconstriction and attenuated vasodilation in the face of elevated mechanical stress in the blood vessel wall. To adapt to the increased stress, the vascular smooth muscle cell and its surrounding environment undergo structural and functional changes known as vascular remodeling. Multiple mechanisms underlie the remodeling process, including increased expression of humoral factors and their receptors as well as adhesion molecules and their receptors, all of which appear to collaborate and interact in the response to pressure elevation. In this review, we focus on the interactions between integrin signaling pathways and the activation of growth factor receptors in the response to the increased mechanical stress experienced by blood vessels in hypertension.
Collapse
Affiliation(s)
- Jun-Tzu Chao
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, 1 Hospital Drive, Columbia, MO 65212, USA
| | | |
Collapse
|
10
|
Schad JF, Meltzer KR, Hicks MR, Beutler DS, Cao TV, Standley PR. Cyclic strain upregulates VEGF and attenuates proliferation of vascular smooth muscle cells. Vasc Cell 2011; 3:21. [PMID: 21929819 PMCID: PMC3189867 DOI: 10.1186/2045-824x-3-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 09/19/2011] [Indexed: 12/01/2022] Open
Abstract
Objective Vascular smooth muscle cell (VSMC) hypertrophy and proliferation occur in response to strain-induced local and systemic inflammatory cytokines and growth factors which may contribute to hypertension, atherosclerosis, and restenosis. We hypothesize VSMC strain, modeling normotensive arterial pressure waveforms in vitro, results in attenuated proliferative and increased hypertrophic responses 48 hrs post-strain. Methods Using Flexcell Bioflex Systems we determined the morphological, hyperplastic and hypertrophic responses of non-strained and biomechanically strained cultured rat A7R5 VSMC. We measured secretion of nitric oxide, key cytokine/growth factors and intracellular mediators involved in VSMC proliferation via fluorescence spectroscopy and protein microarrays. We also investigated the potential roles of VEGF on VSMC strain-induced proliferation. Results Protein microarrays revealed significant increases in VEGF secretion in response to 18 hours mechanical strain, a result that ELISA data corroborated. Apoptosis-inducing nitric oxide (NO) levels also increased 43% 48 hrs post-strain. Non-strained cells incubated with exogenous VEGF did not reproduce the antimitogenic effect. However, anti-VEGF reversed the antimitogenic effect of mechanical strain. Antibody microarrays of strained VSMC lysates revealed MEK1, MEK2, phospo-MEK1T385, T291, T298, phospho-Erk1/2T202+Y204/T185+T187, and PKC isoforms expression were universally increased, suggesting a proliferative/inflammatory signaling state. Conversely, VSMC strain decreased expression levels of Cdk1, Cdk2, Cdk4, and Cdk6 by 25-50% suggesting a partially inhibited proliferative signaling cascade. Conclusions Subjecting VSMC to cyclic biomechanical strain in vitro promotes cell hypertrophy while attenuating cellular proliferation. We also report an upregulation of MEK and ERK activation suggestive of a proliferative phenotype. Hhowever, the proliferative response appears to be aborogated by enhanced antimitogenic cytokine VEGF, NO secretion and downregulation of Cdk expression. Although exogenous VEGF alone is not sufficient to promote the quiescent VSMC phenotype, we provide evidence suggesting that strain is a necessary component to induce VSMC response to the antimitogenic effects of VEGF. Taken together these data indicate that VEGF plays a critical role in mechanical strain-induced VSMC proliferation and vessel wall remodeling. Whether VEGF and/or NO inhibit signaling distal to Erk 1/2 is currently under investigation.
Collapse
Affiliation(s)
- Joseph F Schad
- Department of Biomedical Sciences, Midwestern University - Glendale, AZ, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Gupta GK, Dhar K, Del Core MG, Hunter WJ, Hatzoudis GI, Agrawal DK. Suppressor of cytokine signaling-3 and intimal hyperplasia in porcine coronary arteries following coronary intervention. Exp Mol Pathol 2011; 91:346-52. [PMID: 21540027 PMCID: PMC3139760 DOI: 10.1016/j.yexmp.2011.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 04/13/2011] [Indexed: 11/21/2022]
Abstract
AIMS The growth and differentiation of cells is regulated by cytokines by binding to cell-surface receptors and activating intracellular signal transduction cascade. Suppressor of cytokine signaling (SOCS)-3 is a negative regulator of cytokines. In this study we examined the expression of SOCS-3 in porcine coronary artery smooth muscle cells (PCASMCs) in vitro and in proliferating smooth muscle cells of neointimal lesions after coronary artery intervention in a swine model. METHODS AND RESULTS PCASMCs were cultured and stimulated with TNF-α and/or IGF-1 individually or in combination. Protein expression of SOCS-3 was examined using Western blot. For in vivo studies, six female Yucatan miniswine were fed with special high cholesterol diet for 8 months. At 4 months of high cholesterol diet, animals underwent coronary balloon angioplasty. At the end of 8 months animals were euthanized, coronary arteries were isolated and morphological and histological studies were performed. Western blot data revealed significantly high SOCS-3 expression in PCASMCs in the presence of either TNF-α or IGF-1 (5-6 fold) alone. However, in the presence of both TNF-α and IGF-1 the SOCS-3 expression was significantly decreased (4-5 fold). Results from morphological studies including, H&E and Masson's trichrome stain showed typical lesions with significant neointimal proliferation. Histological evaluation showed expression of smooth muscle α-actin and significantly increased proliferating cell nuclear antigen (PCNA) in neointimal lesion. Interestingly, there was significantly decreased expression of SOCS-3 in smooth muscle cells of neointima as compared to control. CONCLUSIONS These data suggest that SOCS-3 expression is decreased in proliferating smooth muscle cells of neointimal lesions. This leads to uncontrolled growth of vascular smooth muscle cells in injured arteries leading to restenosis. Therefore, local delivery of SOCS-3 gene at the site of injury after coronary artery intervention could regulate the proliferation of vascular smooth muscle cells and help in preventing the neointimal hyperplasia and restenosis.
Collapse
MESH Headings
- Actins/metabolism
- Angioplasty, Balloon, Coronary/adverse effects
- Animals
- Cell Proliferation
- Cells, Cultured
- Cholesterol, Dietary/administration & dosage
- Coronary Vessels/drug effects
- Coronary Vessels/injuries
- Coronary Vessels/metabolism
- Coronary Vessels/pathology
- Disease Models, Animal
- Female
- Hyperplasia
- Insulin-Like Growth Factor I/pharmacology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/injuries
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Proliferating Cell Nuclear Antigen/metabolism
- Suppressor of Cytokine Signaling Proteins/metabolism
- Swine
- Swine, Miniature
- Tumor Necrosis Factor-alpha/pharmacology
- Tunica Intima/drug effects
- Tunica Intima/injuries
- Tunica Intima/metabolism
- Tunica Intima/pathology
Collapse
Affiliation(s)
- Gaurav K Gupta
- Department of Biomedical Sciences and Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA
| | | | | | | | | | | |
Collapse
|
12
|
Beamish JA, He P, Kottke-Marchant K, Marchant RE. Molecular regulation of contractile smooth muscle cell phenotype: implications for vascular tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2011; 16:467-91. [PMID: 20334504 DOI: 10.1089/ten.teb.2009.0630] [Citation(s) in RCA: 297] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The molecular regulation of smooth muscle cell (SMC) behavior is reviewed, with particular emphasis on stimuli that promote the contractile phenotype. SMCs can shift reversibly along a continuum from a quiescent, contractile phenotype to a synthetic phenotype, which is characterized by proliferation and extracellular matrix (ECM) synthesis. This phenotypic plasticity can be harnessed for tissue engineering. Cultured synthetic SMCs have been used to engineer smooth muscle tissues with organized ECM and cell populations. However, returning SMCs to a contractile phenotype remains a key challenge. This review will integrate recent work on how soluble signaling factors, ECM, mechanical stimulation, and other cells contribute to the regulation of contractile SMC phenotype. The signal transduction pathways and mechanisms of gene expression induced by these stimuli are beginning to be elucidated and provide useful information for the quantitative analysis of SMC phenotype in engineered tissues. Progress in the development of tissue-engineered scaffold systems that implement biochemical, mechanical, or novel polymer fabrication approaches to promote contractile phenotype will also be reviewed. The application of an improved molecular understanding of SMC biology will facilitate the design of more potent cell-instructive scaffold systems to regulate SMC behavior.
Collapse
Affiliation(s)
- Jeffrey A Beamish
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7207, USA
| | | | | | | |
Collapse
|
13
|
Pyle AL, Young PP. Atheromas feel the pressure: biomechanical stress and atherosclerosis. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:4-9. [PMID: 20558573 DOI: 10.2353/ajpath.2010.090615] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Atherosclerosis, a chronic vascular disease, is the underlying cause of over half the deaths in the United States each year. Variations in local vascular hemodynamics predispose select sites in the vasculature to atherosclerosis, and the atherosclerotic lesions, in turn alter the biomechanical functioning of the local microenvironment, the consequences of which are not well understood on a molecular level. Further progress in the field of atherosclerosis will require an understanding of the relationship between biomechanics, the tissue microenvironment, and the cellular and molecular response to these factors. This review summarizes this field, particularly within the context of the vascular smooth muscle cell.
Collapse
Affiliation(s)
- Amy L Pyle
- Vanderbilt University School of Medicine, Department of Pathology, 1161 21 Ave. South. C2217A MCN, Nashville, TN 37232, USA
| | | |
Collapse
|
14
|
Meltzer KR, Cao TV, Schad JF, King H, Stoll ST, Standley PR. In vitro modeling of repetitive motion injury and myofascial release. J Bodyw Mov Ther 2010; 14:162-71. [PMID: 20226363 PMCID: PMC2853774 DOI: 10.1016/j.jbmt.2010.01.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Revised: 11/12/2009] [Accepted: 12/31/2009] [Indexed: 01/23/2023]
Abstract
OBJECTIVE In this study we modeled repetitive motion strain (RMS) and myofascial release (MFR) in vitro to investigate possible cellular and molecular mechanisms to potentially explain the immediate clinical outcomes associated with RMS and MFR. METHOD Cultured human fibroblasts were strained with 8h RMS, 60s MFR and combined treatment; RMS+MFR. Fibroblasts were immediately sampled upon cessation of strain and evaluated for cell morphology, cytokine secretions, proliferation, apoptosis, and potential changes to intracellular signaling molecules. RESULTS RMS-induced fibroblast elongation of lameopodia, cellular decentralization, reduction of cell to cell contact and significant decreases in cell area to perimeter ratios compared to all other experimental groups (p<0.0001). Cellular proliferation indicated no change among any treatment group; however RMS resulted in a significant increase in apoptosis rate (p<0.05) along with increases in death-associated protein kinase (DAPK) and focal adhesion kinase (FAK) phosphorylation by 74% and 58% respectively, when compared to control. These responses were not observed in the MFR and RMS+MFR group. Of the 20 cytokines measured there was a significant increase in GRO secretion in the RMS+MFR group when compared to control and MFR alone. CONCLUSION Our modeled injury (RMS) appropriately displayed enhanced apoptosis activity and loss of intercellular integrity that is consistent with pro-apoptotic dapk-2 and FAK signaling. Treatment with MFR following RMS resulted in normalization in apoptotic rate and cell morphology both consistent with changes observed in dapk-2. These in vitro studies build upon the cellular evidence base needed to fully explain clinical efficacy of manual manipulative therapies.
Collapse
Affiliation(s)
- Kate R. Meltzer
- Department of Basic Medical Sciences, University of Arizona-College of Medicine, Phoenix, AZ 85004
| | - Thanh V. Cao
- Department of Basic Medical Sciences, University of Arizona-College of Medicine, Phoenix, AZ 85004
| | - Joseph F. Schad
- Arizona College of Medicine, Midwestern University, Glendale, AZ 85308
| | - Hollis King
- A.T. Still University, School of Osteopathic Medicine, Mesa, Arizona
| | - Scott T. Stoll
- University of North Texas Health Sciences Center-Texas College of Osteopathic Medicine, Fort Worth, TX 76107
| | - Paul R. Standley
- Department of Basic Medical Sciences, University of Arizona-College of Medicine, Phoenix, AZ 85004
| |
Collapse
|
15
|
MESH Headings
- Animals
- Cell Proliferation
- Coronary Artery Bypass
- Early Growth Response Protein 1/genetics
- Early Growth Response Protein 1/metabolism
- Elasticity/physiology
- Humans
- Hyperplasia/pathology
- Mechanotransduction, Cellular/physiology
- Mice
- Mice, Knockout
- Models, Animal
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Receptor, IGF Type 1/metabolism
- Tunica Intima/metabolism
- Tunica Intima/pathology
- Tunica Intima/physiopathology
- Veins/pathology
- Veins/physiopathology
- Veins/transplantation
Collapse
Affiliation(s)
- Samuel Lee
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Richard T. Lee
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA
| |
Collapse
|
16
|
Huang J, Davis EC, Chapman SL, Budatha M, Marmorstein LY, Word RA, Yanagisawa H. Fibulin-4 deficiency results in ascending aortic aneurysms: a potential link between abnormal smooth muscle cell phenotype and aneurysm progression. Circ Res 2009; 106:583-92. [PMID: 20019329 DOI: 10.1161/circresaha.109.207852] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Loss of fibulin-4 during embryogenesis results in perinatal lethality because of aneurysm rupture, and defective elastic fiber assembly has been proposed as an underlying cause for the aneurysm phenotype. However, aneurysms are never seen in mice deficient for elastin, or for fibulin-5, which absence also leads to compromised elastic fibers. OBJECTIVE We sought to determine the mechanism of aneurysm development in the absence of fibulin-4 and establish the role of fibulin-4 in aortic development. METHODS AND RESULTS We generated germline and smooth muscle cell (SMC)-specific deletion of the fibulin-4 gene in mice (Fbln4(GKO) and Fbln4(SMKO), respectively). Fbln4(GKO) and Fbln4(SMKO) aortic walls fail to fully differentiate, exhibiting reduced expression of SM-specific contractile genes and focal proliferation of SMCs accompanied by degenerative changes of the medial wall. Marked upregulation of extracellular signal-regulated kinase 1/2 signaling pathway was observed in the aneurysmal wall of Fbln4(GKO) and Fbln4(SMKO) mice and both mutants developed aneurysm predominantly in the ascending thoracic aorta. In vitro, Fbln4(GKO) SMCs exhibit an immature SMC phenotype with a marked reduction of SM-myosin heavy chain and increased proliferative capacity. CONCLUSIONS The vascular phenotype in Fbln4 mutant mice is remarkably similar to a subset of human thoracic aortic aneurysms caused by mutations in SMC contractile genes. Our study provides a potential link between the intrinsic properties of SMCs and aneurysm progression in vivo and supports the dual role of fibulin-4 in the formation of elastic fibers as well as terminal differentiation and maturation of SMCs in the aortic wall.
Collapse
Affiliation(s)
- Jianbin Huang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Kona S, Chellamuthu P, Xu H, Hills SR, Nguyen KT. Effects of cyclic strain and growth factors on vascular smooth muscle cell responses. Open Biomed Eng J 2009; 3:28-38. [PMID: 19812708 PMCID: PMC2757671 DOI: 10.2174/1874120700903010028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 07/06/2009] [Accepted: 07/09/2009] [Indexed: 01/09/2023] Open
Abstract
Under physiological and pathological conditions, vascular smooth muscle cells (SMC) are exposed to different biochemical factors and biomechanical forces. Previous studies pertaining to SMC responses have not investigated the effects of both factors on SMCs. Thus, in our research we investigated the combined effects of growth factors like Bfgf (basic fibroblast growth factor), TGF-β (transforming growth factor β) and PDGF (platelet-derived growth factor) along with physiological cyclic strain on SMC responses. Physiological cyclic strain (10% strain) significantly reduced SMC proliferation compared to static controls while addition of growth factors bFGF, TGF-β or PDGF-AB had a positive influence on SMC growth compared to strain alone. Microarray analysis of SMCs exposed to these growth factors and cyclic strain showed that several bioactive genes (vascular endothelial growth factor, epidermal growth factor receptor, etc.) were altered upon exposure. Further work involving biochemical and pathological cyclic strain stimulation will help us better understand the role of cyclic strain and growth factors in vascular functions and development of vascular disorders.
Collapse
Affiliation(s)
- Soujanya Kona
- Department of Bioengineering, University of Texas at Arlington and University of Texas Southwestern Medical Center at Dallas, USA
| | | | | | | | | |
Collapse
|
18
|
Pannu H, Tran-Fadulu V, Papke CL, Scherer S, Liu Y, Presley C, Guo D, Estrera AL, Safi HJ, Brasier AR, Vick GW, Marian A, Raman C, Buja LM, Milewicz DM. MYH11 mutations result in a distinct vascular pathology driven by insulin-like growth factor 1 and angiotensin II. Hum Mol Genet 2007; 16:2453-62. [PMID: 17666408 PMCID: PMC2905218 DOI: 10.1093/hmg/ddm201] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Non-syndromic thoracic aortic aneurysms and dissections (TAADs) are inherited in an autosomal dominant manner in approximately 20% of cases. Familial TAAD is genetically heterogeneous and four loci have been mapped for this disease to date, including a locus at 16p for TAAD associated with patent ductus arteriosus (PDA). The defective gene at the 16p locus has recently been identified as the smooth muscle cell (SMC)-specific myosin heavy chain gene (MYH11). On sequencing MYH11 in 93 families with TAAD alone and three families with TAAD/PDA, we identified novel mutations in two families with TAAD/PDA, but none in families with TAAD alone. Histopathological analysis of aortic sections from two individuals with MYH11 mutations revealed SMC disarray and focal hyperplasia of SMCs in the aortic media. SMC hyperplasia leading to significant lumen narrowing in some of the vessels of the adventitia was also observed. Insulin-like growth factor-1 (IGF-1) was upregulated in mutant aortas as well as explanted SMCs, but no increase in transforming growth factor-beta expression or downstream targets was observed. Enhanced expression of angiotensin-converting enzyme and markers of Angiotensin II (Ang II) vascular inflammation (macrophage inflammatory protein-1alpha and beta) were also found. These data suggest that MYH11 mutations are likely to be specific to the phenotype of TAAD/PDA and result in a distinct aortic and occlusive vascular pathology potentially driven by IGF-1 and Ang II.
Collapse
Affiliation(s)
- Hariyadarshi Pannu
- Department of Internal Medicine and Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Van Tran-Fadulu
- Department of Internal Medicine and Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Christina L. Papke
- Department of Internal Medicine and Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Steve Scherer
- Human Genetics Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Yaozhong Liu
- Department of Internal Medicine and Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Caroline Presley
- Department of Internal Medicine and Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dongchuan Guo
- Department of Internal Medicine and Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anthony L. Estrera
- Department of Cardiothoracic and Vascular Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hazim J. Safi
- Department of Cardiothoracic and Vascular Surgery, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Allan R. Brasier
- Department of Medicine, The University of Texas Medical Branch, Galveston, TX, USA
| | - G. Wesley Vick
- Lillie Frank Abercrombie Section of Pediatric Cardiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
| | - A.J. Marian
- Department of Internal Medicine and Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - C.S. Raman
- Department of Biochemistry, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - L. Maximilian Buja
- Department of Pathology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dianna M. Milewicz
- Department of Internal Medicine and Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
19
|
Spassova MA, Hewavitharana T, Xu W, Soboloff J, Gill DL. A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci U S A 2006; 103:16586-91. [PMID: 17056714 PMCID: PMC1637625 DOI: 10.1073/pnas.0606894103] [Citation(s) in RCA: 365] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The TRP family of ion channels transduce an extensive range of chemical and physical signals. TRPC6 is a receptor-activated nonselective cation channel expressed widely in vascular smooth muscle and other cell types. We report here that TRPC6 is also a sensor of mechanically and osmotically induced membrane stretch. Pressure-induced activation of TRPC6 was independent of phospholipase C. The stretch responses were blocked by the tarantula peptide, GsMTx-4, known to specifically inhibit mechanosensitive channels by modifying the external lipid-channel boundary. The GsMTx-4 peptide also blocked the activation of TRPC6 channels by either receptor-induced PLC activation or by direct application of diacylglycerol. The effects of the peptide on both stretch- and diacylglycerol-mediated TRPC6 activation indicate that the mechanical and chemical lipid sensing by the channel has a common molecular mechanism that may involve lateral-lipid tension. The mechanosensing properties of TRPC6 channels highly expressed in smooth muscle cells are likely to play a key role in regulating myogenic tone in vascular tissue.
Collapse
Affiliation(s)
- Maria A. Spassova
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
- *To whom correspondence may be addressed at:
Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD 21201. E-mail:
or
| | - Thamara Hewavitharana
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Wen Xu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Jonathan Soboloff
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Donald L. Gill
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
- *To whom correspondence may be addressed at:
Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD 21201. E-mail:
or
| |
Collapse
|
20
|
Stegemann JP, Hong H, Nerem RM. Mechanical, biochemical, and extracellular matrix effects on vascular smooth muscle cell phenotype. J Appl Physiol (1985) 2005; 98:2321-7. [PMID: 15894540 DOI: 10.1152/japplphysiol.01114.2004] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The vascular smooth muscle cell (VSMC) is surrounded by a complex extracellular matrix that provides and modulates a variety of biochemical and mechanical cues that guide cell function. Conventional two-dimensional monolayer culture systems recreate only a portion of the cellular environment, and therefore there is increasing interest in developing more physiologically relevant three-dimensional culture systems. This review brings together recent studies on how mechanical, biochemical, and extracellular matrix stimulation can be applied to study VSMC function and how the combination of these factors leads to changes in phenotype. Particular emphasis is placed on in vitro experimental studies in which multiple stimuli are combined, especially in three-dimensional culture systems and in vascular tissue engineering applications. These studies have provided new insight into how VSMC phenotype is controlled, and they have underscored the interdependence of biochemical and mechanical signaling. Future improvements in creating more complex in vitro culture environments will lead to a better understanding of VSMC biology, new treatments for vascular disease, as well as improved blood vessel substitutes.
Collapse
Affiliation(s)
- Jan P Stegemann
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | |
Collapse
|
21
|
Wang H, Nawata J, Kakudo N, Sugimura K, Suzuki J, Sakuma M, Ikeda J, Shirato K. The upregulation of ICAM-1 and P-selectin requires high blood pressure but not circulating renin–angiotensin system in vivo. J Hypertens 2004; 22:1323-32. [PMID: 15201548 DOI: 10.1097/01.hjh.0000125437.28861.40] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the separate contributions of blood pressure and the circulating renin-angiotensin system to the upregulation of vascular endothelial adhesion molecules in vivo. METHODS One or 4 weeks after constriction of the abdominal aortas of Wistar rats, the expressions of intercellular adhesion molecule-1 (ICAM-1), P-selectin, nuclear factor (NF) kappa B p65 subunit and monocytes were assessed at sites proximal and distal to the site of constriction, by western blot, immunohistochemistry, or both. RESULTS At 1 week, the mean arterial pressure was increased significantly at the cervical artery in the group with aortic constriction (160 +/- 4 mmHg, compared with 104 +/- 2 mmHg before constriction), but not at the femoral artery (111 +/- 10 mmHg, compared with 100 +/- 2 mmHg before constriction) (P < 0.05), and circulating angiotensin II was increased significantly only in the group with aortic constriction (124 +/- 28 pg/ml, compared with 14 +/- 2 pg/ml in the sham-operated group; P < 0.05). In the aorta-constricted group, the expressions of ICAM-1, P-selectin, and NF-kappa B p65 subunit were significantly upregulated (2-3.1-fold) at the aorta proximal to the constriction compared with those distal to it, which were the same as those in the sham-operated group. Immunolocalization of these molecules was observed to be on the endothelial cells. Adhesive monocytes on the endothelium were also increased significantly only proximal to the constriction in the aorta-constricted group. At 4 weeks the findings were the same, except that circulating angiotensin II was within the normal range in both the aorta-constricted and the sham-operated groups. CONCLUSIONS Our results indicate that the high blood pressure, but not the circulating renin-angiotensin system, upregulates the expression of ICAM-1 and P-selectin, suggesting that mechanical forces may be more important than humoral factors in the upregulation of adhesion molecules in hypertension.
Collapse
Affiliation(s)
- Huan Wang
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Goldman J, Zhong L, Liu SQ. Degradation of alpha-actin filaments in venous smooth muscle cells in response to mechanical stretch. Am J Physiol Heart Circ Physiol 2003; 284:H1839-47. [PMID: 12531720 DOI: 10.1152/ajpheart.00470.2002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanical stretch has been shown to induce the degradation of alpha-actin filaments in smooth muscle cells (SMC) of experimental vein grafts. Here, we investigate the possible role of ERK1/2 and p38 MAPK in regulating this process using an ex vivo venous culture model that simulates an experimental vein graft. An exposure of a vein to arterial pressure induced a significant increase in the medial circumferential strain, which induced rapid alpha-actin filament disruption, followed by degradation. The percentage of SMC alpha-actin filament coverage was reduced significantly under arterial pressure (91 +/- 1%, 43 +/- 13%, 51 +/- 5%, 28 +/- 3%, and 19 +/- 5% at 1, 6, 12, 24, and 48 h, respectively), whereas it did not change significantly in specimens under venous pressure at theses times. The degradation of SMC alpha-actin filaments paralleled an increase in the relative activity of caspase 3 (3.0 +/- 0.7- and 1.7 +/- 0.4-fold increase relative to the control level at 6 and 12 h, respectively) and a decrease in SMC density (from the control level of 1,368 +/- 66 cells/mm(2) at time 0 to 1,205 +/- 90, 783 +/- 129, 845 +/- 61, 637 +/- 55, and 432 +/- 125 cells/mm(2) at 1, 6, 12, 24, and 48 h of exposure to arterial pressure, respectively). Treatment with a p38 MAPK inhibitor (SB-203580) significantly reduced the stretch-induced activation of caspase 3 at 6 h (from 3.0 +/- 0.7- to 2.2 +/- 0.3-fold) in conjunction with a significant rescue of alpha-actin filament degradation (from 43 +/- 13% to 69 +/- 15%) at the same time. Treatment with an inhibitor for the ERK1/2 activator (PD-98059), however, did not induce a significant change in the activity of caspase 3 or the percentage of SMC alpha-actin filament coverage. These results suggest that p38 MAPK and caspase 3 may mediate stretch-dependent degradation of alpha-actin filaments in vascular SMCs.
Collapse
Affiliation(s)
- Jeremy Goldman
- Biomedical Engineering Department, Northwestern University, 2145 North Sheridan Road, Evanston, IL 60208-3107, USA.
| | | | | |
Collapse
|
23
|
Hayashi K, Mori K, Miyazaki H. Biomechanical response of femoral vein to chronic elevation of blood pressure in rabbits. Am J Physiol Heart Circ Physiol 2003; 284:H511-8. [PMID: 12388229 DOI: 10.1152/ajpheart.00620.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Venous diseases like iliofemoral deep vein thrombosis and valvular dysfunction induce venous hypertension. To know the effects of the hypertension on venous mechanics, blood pressure in the left femoral vein in the rabbit was chronically elevated by the constriction of the left external iliac vein. Wall dimensions and biomechanical properties of the femoral vein were studied in vitro at 1, 2, or 4 wk after surgery. Blood pressure measured immediately before the animal was killed was significantly higher in the left femoral vein than in the sham-operated, contralateral vein. Wall thickness was increased by blood pressure elevation even at 1 wk, which restored circumferential wall stress to a control level. The stress was kept at normal up to 4 wk. Vascular tone and vascular contractility were increased by the elevation of blood pressure; however, wall elasticity and compliance were kept at a normal level. These results are very similar to those observed in hypertensive arteries, indicating that not only arteries but veins optimally operate against blood pressure elevation.
Collapse
Affiliation(s)
- K Hayashi
- Biomechanics Laboratory, Division of Mechanical Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan.
| | | | | |
Collapse
|
24
|
Galvin DJ, Watson RWG, Gillespie JI, Brady H, Fitzpatrick JM. Mechanical stretch regulates cell survival in human bladder smooth muscle cells in vitro. Am J Physiol Renal Physiol 2002; 283:F1192-9. [PMID: 12388384 DOI: 10.1152/ajprenal.00168.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Our understanding of the pathophysiology of the overactive bladder is poor. It has been proposed that localized contractions result in the abnormal stretching of bladder smooth muscle. We hypothesize that stretch regulates the cellular processes that determine tissue size. The purpose of this study was to investigate the effect of stretch on apoptosis, proliferation, cell hypertrophy, and growth factor production in human bladder smooth muscle cells in vitro. Normal human detrusor muscle was obtained from patients undergoing radical cystectomy for invasive bladder cancer, and primary cultures were established. Cells were mechanically stretched on flexible plates at a range of pressures and times. Apoptosis was assessed by propidium iodide incorporation and flow cytometry. Radiolabeled thymidine and amino acid incorporation were used to assess proliferation and cell hypertrophy. ELISA and RT-PCR were used to assess growth factor production. Mechanical stretch inhibits apoptosis in a time- and dose-dependent manner and was associated with increases in the antiapoptotic proteins heat shock protein-70 and cIAP-1. Stretch also increases smooth muscle cell proliferation and hypertrophy, but hypertrophy is the more dominant response. These changes were associated with increases in IGF-1 and basic FGF and a decrease in transforming growth factor-beta1. Mechanical stretch regulates apoptosis, proliferation, and cell hypertrophy in human bladder smooth muscle cells.
Collapse
Affiliation(s)
- David J Galvin
- Department of Surgery, Mater Misericordiea Hospital, Conway Institute of Biomolecular and Biomedical Research, University College, 47 Eccles Street, Dublin 7, Ireland
| | | | | | | | | |
Collapse
|
25
|
Standley PR, Cammarata A, Nolan BP, Purgason CT, Stanley MA, Camaratta A. Cyclic stretch induces vascular smooth muscle cell alignment via NO signaling. Am J Physiol Heart Circ Physiol 2002; 283:H1907-14. [PMID: 12384468 DOI: 10.1152/ajpheart.01043.2001] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the effects of cyclic stretch on vascular smooth muscle cell (VSMC) alignment and potential overlap of signaling modalities with stretch-induced proliferation. VSMC were subjected to graded stretch (1 Hz at 100-124% of resting length) for 48 h. Graded stretch resulted in graded VSMC alignment from a minimum of completely random orientation to a maximum of ~80-85 degrees to the stretch vector. Alignment was reversible within 48 h of stretch cessation and independent of signaling modalities mediating stretch-induced proliferation: modulation of IGF-1, MAPK, phosphatidylinositol 3-kinase, tyrosine kinase, and stretch-activated calcium channels did not affect alignment. Nitric oxide (NO) synthase (NOS) blockade uncoupled alignment. Neither the NO donor, cytokine-induced NOS activity, nor L-citrulline affected alignment, but inhibited VSMC proliferation. Therefore, stretch-induced proliferation and alignment are differentially regulated, with NO a common signaling molecule for both. Targeting NOS in states such as restenosis and hypertension may prove to be beneficial.
Collapse
Affiliation(s)
- Paul R Standley
- Department of Physiology, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Standley PR, Stanley MA, Senechal P. Activation of mitogenic and antimitogenic pathways in cyclically stretched arterial smooth muscle. Am J Physiol Endocrinol Metab 2001; 281:E1165-71. [PMID: 11701430 DOI: 10.1152/ajpendo.2001.281.6.e1165] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Biophysical forces regulate vascular smooth muscle cell (VSMC) physiology and evoke vascular remodeling. Two VSMC autocrine molecules, insulin-like growth factor I (IGF-I) and nitric oxide (NO), are implicated in remodeling attributable to VSMC hyperplasia. We investigated the role of in vitro cyclic stretch on rat VSMC IGF-I, NO, and cellular growth. Cyclic stretch (1 Hz at 120% resting length for 48 h) stimulated VSMC proliferation 2.5-fold vs. unstretched cells and was accompanied by a 1.8-fold increase in VSMC IGF-I secretion. Despite activation of this proliferative pathway, cyclic stretch induced inducible (i) nitric oxide synthase (NOS) expression and a twofold increase in NO secretion, a molecule with documented antiproliferative effects. Cytokine treatment enhanced iNOS expression and NO secretion while inhibiting vascular growth by approximately 50% in static cells. Cytokine treatment of stretched VSMC enhanced NO secretion 2.5-fold while inhibiting growth by approximately 80%. Exogenous IGF-I increased NOS activity 1.5-fold and NO secretion 8.5-fold in static cells. In turn, iNOS inhibition increased IGF-I secretion 1.6-fold and enhanced VSMC growth 1.6-fold in stretched cells. An NO donor (sodium nitroprusside) similarly inhibited VSMC proliferation in static (24%) and stretched (50%) VSMC while also inhibiting IGF-I secretion from stretched cells by approximately 35%. Thus cyclic stretch stimulates mitogenic (IGF-I) and antimitogenic (NO) pathways in VSMC. These two molecules regulate each other's secretory rates, providing tight regulation of VSMC proliferation. These data may have profound implications in understanding vascular growth alterations in vascular injury and hypertension.
Collapse
Affiliation(s)
- P R Standley
- Department of Physiology, Midwestern University, Glendale, Arizona 85308, USA.
| | | | | |
Collapse
|
27
|
Abstract
Vascular smooth muscle cells (VSMC) exhibit several growth responses to agonists that regulate their function including proliferation (hyperplasia with an increase in cell number), hypertrophy (an increase in cell size without change in DNA content), endoreduplication (an increase in DNA content and usually size), and apoptosis. Both autocrine growth mechanisms (in which the individual cell synthesizes and/or secretes a substance that stimulates that same cell type to undergo a growth response) and paracrine growth mechanisms (in which the individual cells responding to the growth factor synthesize and/or secrete a substance that stimulates neighboring cells of another cell type) are important in VSMC growth. In this review I discuss the autocrine and paracrine growth factors important for VSMC growth in culture and in vessels. Four mechanisms by which individual agonists signal are described: direct effects of agonists on their receptors, transactivation of tyrosine kinase-coupled receptors, generation of reactive oxygen species, and induction/secretion of other growth and survival factors. Additional growth effects mediated by changes in cell matrix are discussed. The temporal and spatial coordination of these events are shown to modulate the environment in which other growth factors initiate cell cycle events. Finally, the heterogeneous nature of VSMC developmental origin provides another level of complexity in VSMC growth mechanisms.
Collapse
Affiliation(s)
- B C Berk
- Center for Cardiovascular Research, University of Rochester, School of Medicine and Dentistry, Rochester, New York 14642, USA.
| |
Collapse
|
28
|
Loennechen JP, Støylen A, Beisvag V, Wisløff U, Ellingsen O. Regional expression of endothelin-1, ANP, IGF-1, and LV wall stress in the infarcted rat heart. Am J Physiol Heart Circ Physiol 2001; 280:H2902-10. [PMID: 11356651 DOI: 10.1152/ajpheart.2001.280.6.h2902] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We hypothesized that myocardial infarction induces regional and temporal differences in endothelin-1 (ET-1), atrial natriuretic peptide (ANP), and insulin-like growth factor-1 (IGF-1) gene expression that correlate with left ventricular (LV) wall stress. Echocardiography and LV pressure measurements were performed in coronary artery-ligated or sham-operated rats. Gene expression was measured by competitive RT-PCR in the infarct, border zone, and remote area and in regionally isolated cardiomyocytes. ET-1 and IGF-1 expression was highest in the infarcted myocardium, whereas ANP expression was highest in noninfarcted myocardium. For all genes, remote area expression was highest after 7 days. At 42 days, ANP maintained maximum expression, ET-1 decreased to 50% of peak levels, and IGF-1 was normalized. Cardiomyocyte expression followed the same pattern as in the myocardium except for a markedly lower IGF-1 expression. Diastolic wall stress was the best hemodynamic variable to predict ET-1 and ANP expression in the remote area. We conclude that ET-1, ANP, and IGF-1 are expressed in different patterns in the infarcted heart in relation to time, functional regions, cellular distribution, and mechanical load.
Collapse
Affiliation(s)
- J P Loennechen
- Department of Physiology and Biomedical Engineering, Norwegian University of Science and Technology, N-7489 Trondheim, Norway
| | | | | | | | | |
Collapse
|