1
|
Miranda-Cervantes A, Fritzen AM, Raun SH, Hodek O, Møller LLV, Johann K, Deisen L, Gregorevic P, Gudiksen A, Artati A, Adamski J, Andersen NR, Sigvardsen CM, Carl CS, Voldstedlund CT, Kjøbsted R, Hauck SM, Schjerling P, Jensen TE, Cebrian-Serrano A, Jähnert M, Gottmann P, Burtscher I, Lickert H, Pilegaard H, Schürmann A, Tschöp MH, Moritz T, Müller TD, Sylow L, Kiens B, Richter EA, Kleinert M. Pantothenate kinase 4 controls skeletal muscle substrate metabolism. Nat Commun 2025; 16:345. [PMID: 39746949 PMCID: PMC11695632 DOI: 10.1038/s41467-024-55036-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/26/2024] [Indexed: 01/04/2025] Open
Abstract
Metabolic flexibility in skeletal muscle is essential for maintaining healthy glucose and lipid metabolism, and its dysfunction is closely linked to metabolic diseases. Exercise enhances metabolic flexibility, making it an important tool for discovering mechanisms that promote metabolic health. Here we show that pantothenate kinase 4 (PanK4) is a new conserved exercise target with high abundance in muscle. Muscle-specific deletion of PanK4 impairs fatty acid oxidation which is related to higher intramuscular acetyl-CoA and malonyl-CoA levels. Elevated acetyl-CoA levels persist regardless of feeding state and are associated with whole-body glucose intolerance, reduced insulin-stimulated glucose uptake in glycolytic muscle, and impaired glucose uptake during exercise. Conversely, increasing PanK4 levels in glycolytic muscle lowers acetyl-CoA and enhances glucose uptake. Our findings highlight PanK4 as an important regulator of acetyl-CoA levels, playing a key role in both muscle lipid and glucose metabolism.
Collapse
Affiliation(s)
- Adriana Miranda-Cervantes
- Department of Molecular Physiology of Exercise and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Andreas M Fritzen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steffen H Raun
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ondřej Hodek
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
- Swedish Metabolomics Centre, Umeå, Sweden
| | - Lisbeth L V Møller
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kornelia Johann
- Department of Molecular Physiology of Exercise and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Luisa Deisen
- Department of Molecular Physiology of Exercise and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Nuthetal, Germany
| | - Paul Gregorevic
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Vic, Australia
- Centre for Muscle Research, University of Melbourne, Melbourne, Vic, Australia
| | - Anders Gudiksen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anna Artati
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
| | - Nicoline R Andersen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Casper M Sigvardsen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christian S Carl
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christian T Voldstedlund
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Kjøbsted
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Stefanie M Hauck
- German Center for Diabetes Research (DZD), Munich, Germany
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, Neuherberg, Germany
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg-Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E Jensen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Alberto Cebrian-Serrano
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Markus Jähnert
- German Center for Diabetes Research (DZD), Munich, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Pascal Gottmann
- German Center for Diabetes Research (DZD), Munich, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Ingo Burtscher
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Heiko Lickert
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| | - Henriette Pilegaard
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), Munich, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- University of Potsdam, Institute of Nutritional Sciences, Nuthetal, Germany
| | - Matthias H Tschöp
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| | - Thomas Moritz
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Timo D Müller
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian University Munich (LMU), Munich, Germany
| | - Lykke Sylow
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Erik A Richter
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Kleinert
- Department of Molecular Physiology of Exercise and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Nuthetal, Germany.
- German Center for Diabetes Research (DZD), Munich, Germany.
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany.
- University of Potsdam, Institute of Nutritional Sciences, Nuthetal, Germany.
| |
Collapse
|
2
|
Sammut MJ, Dotzert MS, Melling CWJ. Mechanisms of insulin resistance in type 1 diabetes mellitus: A case of glucolipotoxicity in skeletal muscle. J Cell Physiol 2024; 239:e31419. [PMID: 39192756 PMCID: PMC11649966 DOI: 10.1002/jcp.31419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/16/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
Insulin resistance (IR), a hallmark of type 2 diabetes mellitus, develops in a significant number of patients with type 1 diabetes mellitus (T1DM) despite the use of insulin therapy to control glycemia. However, little is currently understood regarding the underlying mechanisms of IR in T1DM, especially within the context of chronic insulin treatment. Recent evidence suggests an important influence of glucolipotoxicity in skeletal muscle on insulin sensitivity in T1DM. Thus, this review summarizes our current knowledge regarding impairments in skeletal muscle lipid, glucose, and oxidative metabolism in the development of IR in insulin-treated T1DM.
Collapse
Affiliation(s)
- Mitchell J. Sammut
- School of Kinesiology, Faculty of Health SciencesWestern UniversityLondonOntarioCanada
| | - Michelle S. Dotzert
- School of Kinesiology, Faculty of Health SciencesWestern UniversityLondonOntarioCanada
| | - C. W. James Melling
- School of Kinesiology, Faculty of Health SciencesWestern UniversityLondonOntarioCanada
- Department of Physiology & Pharmacology, Schulich School of Medicine & DentistryWestern UniversityLondonOntarioCanada
| |
Collapse
|
3
|
Kwak SE, Wang H, Pan X, Duan D, Cartee GD. Genetic reduction of skeletal muscle glycogen synthase 1 abundance reveals that the refeeding-induced reversal of elevated insulin-stimulated glucose uptake after exercise is not attributable to achieving a high muscle glycogen concentration. FASEB J 2024; 38:e70176. [PMID: 39548965 PMCID: PMC11698010 DOI: 10.1096/fj.202401859r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/28/2024] [Accepted: 11/01/2024] [Indexed: 11/18/2024]
Abstract
One exercise session can increase subsequent insulin-stimulated glucose uptake (ISGU) by skeletal muscle. Postexercise refeeding induces reversal of postexercise (PEX)-enhanced ISGU concomitant with attaining high muscle glycogen in rats. To test the relationship between high glycogen and reversal of PEX-ISGU, we injected one epitrochlearis muscle from each rat with adeno-associated virus (AAV) small hairpin RNA (shRNA) that targets glycogen synthase 1 (GS1) and injected contralateral muscles with AAV-shRNA-Scrambled (Scr). Muscles from PEX and sedentary rats were collected at 3-hour PEX (3hPEX) or 6-hour PEX (6hPEX). Rats were either not refed or refed rat-chow during the recovery period. Isolated muscles were incubated with [3H]-3-O-methylglucose, with or without insulin. The results revealed: (1) GS1 abundance was substantially lower for AAV-shRNA-GS1-treated versus AAV-shRNA-Scr-treated muscles; (2) reduced GS1 abundance in refed-rats induced much lower glycogen in AAV-shRNA-GS1-treated versus AAV-shRNA-Scr-treated muscles at 3hPEX or 6hPEX; (3) PEX-ISGU was elevated in not refed-rats at either 3hPEX or 6hPEX versus sedentary controls, regardless of GS1 abundance; (4) PEX-ISGU was not reversed by 3 h of refeeding, regardless of GS1 abundance; (5) despite substantially lower glycogen in AAV-shRNA-GS1-treated versus AAV-shRNA-Scr-treated muscles, elevated PEX-ISGU was eliminated at 6hPEX in both of the paired muscles of refed-rats; and (6) 3hPEX versus sedentary non-refed rats had greater AMP-activated protein kinase-γ3 activity in both paired muscles, but this exercise effect was eliminated in both paired muscles by 3 h of refeeding. In conclusion, the results provided compelling evidence that the reversal of exercise-enhanced ISGU by refeeding was not attributable to the accumulation of high muscle glycogen concentration.
Collapse
Affiliation(s)
- Seong Eun Kwak
- Muscle Biology Laboratory, School of KinesiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Haiyan Wang
- Muscle Biology Laboratory, School of KinesiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Xiufang Pan
- Department of Molecular Microbiology and ImmunologyUniversity of MissouriColumbiaMissouriUSA
| | - Dongsheng Duan
- Department of Molecular Microbiology and ImmunologyUniversity of MissouriColumbiaMissouriUSA
- Department of Biomedical Sciences, College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
- Department of Neurology, School of MedicineUniversity of MissouriColumbiaMissouriUSA
- Department of Chemical and Biomedical Engineering, College of EngineeringUniversity of MissouriColumbiaMissouriUSA
| | - Gregory D. Cartee
- Muscle Biology Laboratory, School of KinesiologyUniversity of MichiganAnn ArborMichiganUSA
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
- Institute of GerontologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
4
|
Wong PY, Soh SMM, Chu WJM, Lim MXC, Jones LE, Selvaraj S, Chow KMS, Choo HWD, Aziz AR. A single all-out bout of 30-s sprint-cycle performed on 5 consecutive days per week over 6 weeks does not enhance cardiovascular fitness, maximal strength, and clinical health markers in physically active young adults. Eur J Appl Physiol 2024; 124:1861-1874. [PMID: 38233706 DOI: 10.1007/s00421-023-05411-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND This study examined the effects of a single all-out bout of 30-s sprint-cycle performed daily for 5 consecutive days per week for 6 weeks, on aerobic fitness, muscle strength and metabolic-health markers in physically active young males and females. METHODS Healthy, physically active 20-28 year olds, were randomly assigned to either experimental (EXP, N = 11) or non-training control (CON, N = 8) group. With supervision, the EXP group performed one bout of 30-s sprint-cycle daily, Mondays to Fridays over 6 weeks, while CON group continued with their usual lifestyle. The followings were measured at pre- and post-intervention: maximal aerobic power, peak torque of knee extensors and flexors at velocities 30° s-1 and 300° s-1, resting heart rate, resting blood pressure, body fat percentage, fasting lipid profile, fasting blood glucose, and fasting insulin levels. RESULTS There were no significant improvements in the EXP group for all the measured variables (all P > 0.05); except for significant interaction effects in peak torque of knee extensors at 30° s-1 (P = 0.044) and low-density lipoprotein-cholesterol (P = 0.046). Post hoc test indicate that CON group showed decline in their low-density lipo-proteins levels (P = 0.024). CONCLUSION Six weeks of one all-out bout of 30-s sprint-cycle per day, for 5 consecutive days per week, was ineffective in improving cardiovascular fitness, maximal strength, and most health markers in physically active young adults. The present results when combined with the previous literature suggest that there is a possibility of a minimum threshold for a number of sprint-cycle bouts needed to be performed before any form of cardio-metabolic-health benefit is accrued.
Collapse
Affiliation(s)
- Pei Ying Wong
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore
| | - Su Min Megan Soh
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore
| | - Wei-Jing Marina Chu
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore
| | - Ming Xian Cheval Lim
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore
| | - Lester Edmund Jones
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore
- Judith Lumley Centre, La Trobe University, Melbourne, VIC, Australia
| | - Suresh Selvaraj
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore
| | - Kin Ming Steve Chow
- Sport Science and Sport Medicine, Singapore Sport Institute, Sport Singapore, Singapore, Singapore
| | - Hui Wen Darine Choo
- Sport Science and Sport Medicine, Singapore Sport Institute, Sport Singapore, Singapore, Singapore
| | - Abdul Rashid Aziz
- Sport Science and Sport Medicine, Singapore Sport Institute, Sport Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Sammut MJ, McBey DP, Sayal AP, Melling CWJ. The Effects of Resistance Exercise Training on Skeletal Muscle Metabolism and Insulin Resistance Development in Female Rodents with Type 1 Diabetes. J Diabetes Res 2024; 2024:5549762. [PMID: 38435452 PMCID: PMC10904684 DOI: 10.1155/2024/5549762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
The etiology of insulin resistance (IR) development in type 1 diabetes mellitus (T1DM) remains unclear; however, impaired skeletal muscle metabolism may play a role. While IR development has been established in male T1DM rodents, female rodents have yet to be examined in this context. Resistance exercise training (RT) has been shown to improve IR and is associated with a lower risk of hypoglycemia onset in T1DM compared to aerobic exercise. The purpose of this study was to investigate the effects of RT on IR development in female T1DM rodents. Forty Sprague Dawley eight-week-old female rats were divided into four groups: control sedentary (CS; n = 10), control trained (CT; n = 10), T1DM sedentary (DS; n = 10), and T1DM trained (DT; n = 10). Multiple low-dose streptozotocin injections were used to induce T1DM. Blood glucose levels were maintained in the 4-9 mmol/l range with intensive insulin therapy. CT and DT underwent weighted ladder climbing 5 days/week for six weeks. Intravenous glucose tolerance tests (IVGTT) were conducted on all animals following the six-week period. Results demonstrate that DS animals exhibited significantly increased weekly blood glucose measures compared to all groups including DT (p < 0.0001), despite similar insulin dosage levels. This was concomitant with a significant increase in insulin-adjusted area under the curve following IVGTT in DS (p < 0.05), indicative of a reduction in insulin sensitivity. Both DT and DS exhibited greater serum insulin concentrations compared to CT and CS (p < 0.05). DS animals also exhibited significantly greater glycogen content in white gastrocnemius muscle compared to CS and DT (p < 0.05), whereas DT and DS animals exhibited greater p-Akt: Akt ratio in the white vastus lateralis muscle and citrate synthase activity in the red vastus lateralis muscle compared to CS and CT (p < 0.05). These results indicate that female rodents with T1DM develop poor glycemic control and IR which can be attenuated with RT, possibly related to differences in intramyocellular glycogen content.
Collapse
Affiliation(s)
- Mitchell J. Sammut
- School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, Canada
| | - David P. McBey
- School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, Canada
| | - Amit P. Sayal
- School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, Canada
| | - C. W. James Melling
- School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, Canada
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| |
Collapse
|
6
|
The role of exercise and hypoxia on glucose transport and regulation. Eur J Appl Physiol 2023; 123:1147-1165. [PMID: 36690907 DOI: 10.1007/s00421-023-05135-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/06/2023] [Indexed: 01/25/2023]
Abstract
Muscle glucose transport activity increases with an acute bout of exercise, a process that is accomplished by the translocation of glucose transporters to the plasma membrane. This process remains intact in the skeletal muscle of individuals with insulin resistance and type 2 diabetes mellitus (T2DM). Exercise training is, therefore, an important cornerstone in the management of individuals with T2DM. However, the acute systemic glucose responses to carbohydrate ingestion are often augmented during the early recovery period from exercise, despite increased glucose uptake into skeletal muscle. Accordingly, the first aim of this review is to summarize the knowledge associated with insulin action and glucose uptake in skeletal muscle and apply these to explain the disparate responses between systemic and localized glucose responses post-exercise. Herein, the importance of muscle glycogen depletion and the key glucoregulatory hormones will be discussed. Glucose uptake can also be stimulated independently by hypoxia; therefore, hypoxic training presents as an emerging method for enhancing the effects of exercise on glucose regulation. Thus, the second aim of this review is to discuss the potential for systemic hypoxia to enhance the effects of exercise on glucose regulation.
Collapse
|
7
|
Hingst JR, Onslev JD, Holm S, Kjøbsted R, Frøsig C, Kido K, Steenberg DE, Larsen MR, Kristensen JM, Carl CS, Sjøberg K, Thong FSL, Derave W, Pehmøller C, Brandt N, McConell G, Jensen J, Kiens B, Richter EA, Wojtaszewski JFP. Insulin Sensitization Following a Single Exercise Bout Is Uncoupled to Glycogen in Human Skeletal Muscle: A Meta-analysis of 13 Single-Center Human Studies. Diabetes 2022; 71:2237-2250. [PMID: 36265014 DOI: 10.2337/db22-0015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022]
Abstract
Exercise profoundly influences glycemic control by enhancing muscle insulin sensitivity, thus promoting glucometabolic health. While prior glycogen breakdown so far has been deemed integral for muscle insulin sensitivity to be potentiated by exercise, the mechanisms underlying this phenomenon remain enigmatic. We have combined original data from 13 of our studies that investigated insulin action in skeletal muscle either under rested conditions or following a bout of one-legged knee extensor exercise in healthy young male individuals (n = 106). Insulin-stimulated glucose uptake was potentiated and occurred substantially faster in the prior contracted muscles. In this otherwise homogenous group of individuals, a remarkable biological diversity in the glucometabolic responses to insulin is apparent both in skeletal muscle and at the whole-body level. In contrast to the prevailing concept, our analyses reveal that insulin-stimulated muscle glucose uptake and the potentiation thereof by exercise are not associated with muscle glycogen synthase activity, muscle glycogen content, or degree of glycogen utilization during the preceding exercise bout. Our data further suggest that the phenomenon of improved insulin sensitivity in prior contracted muscle is not regulated in a homeostatic feedback manner from glycogen. Instead, we put forward the idea that this phenomenon is regulated by cellular allostatic mechanisms that elevate the muscle glycogen storage set point and enhance insulin sensitivity to promote the uptake of glucose toward faster glycogen resynthesis without development of glucose overload/toxicity or feedback inhibition.
Collapse
Affiliation(s)
- Janne R Hingst
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Johan D Onslev
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Stephanie Holm
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Kjøbsted
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christian Frøsig
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Kohei Kido
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Dorte E Steenberg
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Magnus R Larsen
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jonas M Kristensen
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christian Strini Carl
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Kim Sjøberg
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Farah S L Thong
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Wim Derave
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Christian Pehmøller
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Nina Brandt
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Glenn McConell
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Jørgen Jensen
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| | - Bente Kiens
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Erik A Richter
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Kido K, Egawa T, Watanabe S, Kawanaka K, Treebak JT, Hayashi T. Fasting potentiates insulin-mediated glucose uptake in rested and prior-contracted rat skeletal muscle. Am J Physiol Endocrinol Metab 2022; 322:E425-E435. [PMID: 35344394 DOI: 10.1152/ajpendo.00412.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A single bout of exercise can potentiate the effect of insulin on skeletal muscle glucose uptake via activation of the AMPK-TBC1 domain family member 4 (TBC1D4) pathway, which suggests a positive correlation between AMPK activation and insulin sensitization. In addition, prolonged fasting in rodents is known to upregulate and thereby synergistically enhance the effect of exercise on muscle AMPK activation. Therefore, fasting may potentiate the insulin-sensitizing effect of exercise. In the present study, we mimicked exercise by in situ muscle contraction and evaluated the effect of a 36-h fast on muscle contraction-induced insulin sensitization. Male Wistar rats weighing 150-170 g were allocated to either a 36-h fasting or feeding group. The extensor digitorum longus (EDL) muscles were electrically contracted via the common peroneal nerve for 10 min followed by a 3-h recovery period. EDL muscles were dissected and incubated in the presence or absence of submaximal insulin. Our results demonstrated that acute muscle contraction and 36 h of fasting additively upregulated AMPK pathway activation. Insulin-stimulated muscle glucose uptake and site-specific TBC1D4 phosphorylation were enhanced by prior muscle contraction in 36-h-fasted rats, but not in fed rats. Moreover, enhanced insulin-induced muscle glucose uptake and Akt phosphorylation due to 36 h of fasting were associated with a decrease in tribbles homolog 3 (TRB3), a negative regulator of Akt activation. In conclusion, fasting and prior muscle contraction synergistically enhance insulin-stimulated TBC1D4 phosphorylation and glucose uptake, which is associated with augmented AMPK pathway activation in rodents.NEW & NOTEWORTHY In this study, we revealed that 36 h of fasting additively upregulated acute muscle contraction-induced AMPK pathway activation in rats. Besides, fasting and muscle contraction synergistically enhanced insulin-stimulated site-specific TBC1D4 phosphorylation and glucose uptake, which was associated with augmented AMPK pathway activation. These results contribute to understanding the regulation of muscle insulin sensitivity.
Collapse
Affiliation(s)
- Kohei Kido
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
- Institute for Physical Activity, Fukuoka University, Fukuoka, Japan
| | - Tatsuro Egawa
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Shinya Watanabe
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Kentaro Kawanaka
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
- Institute for Physical Activity, Fukuoka University, Fukuoka, Japan
| | - Jonas T Treebak
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Tatsuya Hayashi
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Barzegar H, Arazi H, Mohebbi H, Sheykhlouvand M, Forbes SC. Caffeine co-ingested with carbohydrate on performance recovery in national-level paddlers: a randomized, double-blind, crossover, placebo-controlled trial. J Sports Med Phys Fitness 2021; 62:337-342. [PMID: 34498818 DOI: 10.23736/s0022-4707.21.12125-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Caffeine enhances muscle glycogen re-synthesis post exercise; however, the next-day effects on recovery are unknown. The present study aimed to examine the effects of carbohydrate (CHO) supplementation with or without caffeine (CAF) 24-h following exhaustive exercise on time trial performance in elite paddling athletes. METHODS Nine highly trained male paddlers (21 ± 2 y) completed three experimental trials in a randomized, double-blind, crossover manner. Following an exhaustive exercise session (20-km timed paddle) participants ingested: (i) 0.6 g/kg of carbohydrate (CHO), (ii) 0.6 g/kg of carbohydrate with 6 mg/kg of caffeine (CAF+CHO), (iii) or placebo (PLA), at four time-points (immediately after, and 2, 6, and 12-h post-exercise) in addition to their typical dietary intake. After 24 h, 5 attempts of on-water 500-m paddling time-trial was performed, and the average time was recorded. Blood samples were taken at rest and following both the 20-km and the 5×500 m exercise to determine changes in plasma cortisol, insulin, and glucose. RESULTS There was a significant main effect of condition (P<0.001), with post hoc analysis revealing that both CHO conditions (CHO: 98.7 ± 2.8 s, P = 0.0003; CAF+CHO: 97.9 ± 2.3 s, P = 0.0002) were significantly faster compared to PLA (101.0 ± 3.1 s), however CAF did not augment time trial performance compared to CHO (P = 0.16). There was no significant condition by time interactions for glucose, cortisol, or insulin before and after the 20-km depleting exercise and 500-m time trial. CONCLUSIONS In elite male paddlers, CHO, independent of caffeine, enhanced time trial performance 24 hours following exhaustive exercise.
Collapse
Affiliation(s)
- Homeyra Barzegar
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran
| | - Hamid Arazi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran -
| | - Hamid Mohebbi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran
| | - Mohsen Sheykhlouvand
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran
| | - Scott C Forbes
- Department of Physical Education Studies, Brandon University, Brandon, Manitoba, Canada
| |
Collapse
|
10
|
Sabag A, Little JP, Johnson NA. Low-volume high-intensity interval training for cardiometabolic health. J Physiol 2021; 600:1013-1026. [PMID: 33760255 DOI: 10.1113/jp281210] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/16/2021] [Indexed: 01/02/2023] Open
Abstract
High-intensity interval training (HIIT) is characterised by short bouts of high-intensity submaximal exercise interspersed with rest periods. Low-volume HIIT, typically involving less than 15 min of high-intensity exercise per session, is being increasingly investigated in healthy and clinical populations due to its time-efficient nature and purported health benefits. The findings from recent trials suggest that low-volume HIIT can induce similar, and at times greater, improvements in cardiorespiratory fitness, glucose control, blood pressure, and cardiac function when compared to more traditional forms of aerobic exercise training including high-volume HIIT and moderate intensity continuous training, despite requiring less time commitment and lower energy expenditure. Although further studies are required to elucidate the precise mechanisms of action, metabolic improvements appear to be driven, in part, by enhanced mitochondrial function and insulin sensitivity, whereas certain cardiovascular improvements are linked to increased left ventricular function as well as greater central and peripheral arterial compliance. Beyond the purported health benefits, low-volume HIIT appears to be safe and well-tolerated in adults, with high rates of reported exercise adherence and low adverse effects.
Collapse
Affiliation(s)
- Angelo Sabag
- NICM Health Research Institute, Western Sydney University, Westmead, Australia
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Nathan A Johnson
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
11
|
Sousa AC, Neiva HP, Gil MH, Izquierdo M, Rodríguez-Rosell D, Marques MC, Marinho DA. Concurrent Training and Detraining: The Influence of Different Aerobic Intensities. J Strength Cond Res 2021; 34:2565-2574. [PMID: 30946274 DOI: 10.1519/jsc.0000000000002874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Sousa, AC, Neiva, HP, Gil, MH, Izquierdo, M, Rodríguez-Rosell, D, Marques, MC, and Marinho, DA. Concurrent training and detraining: the influence of different aerobic intensities. J Strength Cond Res 34(9): 2565-2574, 2020-The aim of this study was to verify the effects of different aerobic intensities combined with the same resistance training on strength and aerobic performances. Thirty-nine men were randomly assigned to a low-intensity group (LIG), moderate-intensity group (MIG), high-intensity group (HIG), and a control group. The training program consisted of full squat, jumps, sprints, and running at 80% (LIG), 90% (MIG), or 100% (HIG) of the maximal aerobic speed for 16-20 minutes. The training period lasted for 8 weeks, followed by 4 weeks of detraining. Evaluations included 20-m sprints (0-10 m: T10; 0-20 m: T20), shuttle run, countermovement jump (CMJ), and strength (1RMest) in full squat. There were significant improvements from pre-training to post-training in T10 (LIG: 4%; MIG: 5%; HIG: 2%), T20 (3%; 4%; 2%), CMJ (9%; 10%; 7%), 1RMest (13%; 7%; 8%), and oxygen uptake (V[Combining Dot Above]O2max; 10%; 11%; 10%). Comparing the changes between the experimental groups, 1RMest gains were significantly higher in the LIG than HIG (5%) or MIG (6%). Furthermore, there was a tendency for higher gains in LIG and MIG compared with HIG, with "possibly" or "likely" positive effects in T10, T20, and CMJ. Detraining resulted in performance decrements, but minimal losses were found for V[Combining Dot Above]O2max in LIG (-1%). Concurrent training seems to be beneficial for strength and aerobic development regardless of the aerobic training intensity. However, choosing lower intensities can lead to increased strength and is recommended when the cardiorespiratory gains should be maintained for longer.
Collapse
Affiliation(s)
- António C Sousa
- Department of Sport Sciences, University of Beira Interior, UBI, Covilhã, Portugal.,Research Center in Sport Sciences, Health Sciences and Human Development, CIDESD, Portugal
| | - Henrique P Neiva
- Department of Sport Sciences, University of Beira Interior, UBI, Covilhã, Portugal.,Research Center in Sport Sciences, Health Sciences and Human Development, CIDESD, Portugal
| | - Maria H Gil
- Department of Sport Sciences, University of Beira Interior, UBI, Covilhã, Portugal.,Research Center in Sport Sciences, Health Sciences and Human Development, CIDESD, Portugal
| | - Mikel Izquierdo
- Department of Health Sciences, Public University of Navarre, Navarre, Spain; and
| | - David Rodríguez-Rosell
- Research Center on Physical and Athletic Performance, Pablo de Olavide University, Seville, Spain
| | - Mário C Marques
- Department of Sport Sciences, University of Beira Interior, UBI, Covilhã, Portugal.,Research Center in Sport Sciences, Health Sciences and Human Development, CIDESD, Portugal
| | - Daniel A Marinho
- Department of Sport Sciences, University of Beira Interior, UBI, Covilhã, Portugal.,Research Center in Sport Sciences, Health Sciences and Human Development, CIDESD, Portugal
| |
Collapse
|
12
|
Lundsgaard AM, Fritzen AM, Sjøberg KA, Kleinert M, Richter EA, Kiens B. Small Amounts of Dietary Medium-Chain Fatty Acids Protect Against Insulin Resistance During Caloric Excess in Humans. Diabetes 2021; 70:91-98. [PMID: 33122393 DOI: 10.2337/db20-0582] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/23/2020] [Indexed: 11/13/2022]
Abstract
Medium-chain fatty acids (MCFAs) have in rodents been shown to have protective effects on glucose homeostasis during high-fat overfeeding. In this study, we investigated whether dietary MCFAs protect against insulin resistance induced by a hypercaloric high-fat diet in humans. Healthy, lean men ingested a eucaloric control diet and a 3-day hypercaloric high-fat diet (increase of 75% in energy, 81-83% energy [E%] from fat) in randomized order. For one group (n = 8), the high-fat diet was enriched with saturated long-chain FAs (LCSFA-HFD), while the other group (n = 9) ingested a matched diet, but with ∼30 g (5E%) saturated MCFAs (MCSFA-HFD) in substitution for a corresponding fraction of the saturated long-chain fatty acids (LCFAs). A hyperinsulinemic-euglycemic clamp with femoral arteriovenous balance and glucose tracer was applied after the control and hypercaloric diets. In LCSFA-HFD, whole-body insulin sensitivity and peripheral insulin-stimulated glucose disposal were reduced. These impairments were prevented in MCSFA-HFD, accompanied by increased basal fatty acid oxidation, maintained glucose metabolic flexibility, increased nonoxidative glucose disposal related to lower starting glycogen content, and increased glycogen synthase activity, together with increased muscle lactate production. In conclusion, substitution of a small amount of dietary LCFAs with MCFAs rescues insulin action in conditions of lipid-induced energy excess.
Collapse
Affiliation(s)
- Anne-Marie Lundsgaard
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Andreas M Fritzen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Kim A Sjøberg
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Kleinert
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Erik A Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Hansen SL, Bojsen-Møller KN, Lundsgaard AM, Hendrich FL, Nilas L, Sjøberg KA, Hingst JR, Serup AK, Olguín CH, Carl CS, Wernblad LF, Henneberg M, Lustrup KM, Hansen C, Jensen TE, Madsbad S, Wojtaszewski JFP, Richter EA, Kiens B. Mechanisms Underlying Absent Training-Induced Improvement in Insulin Action in Lean, Hyperandrogenic Women With Polycystic Ovary Syndrome. Diabetes 2020; 69:2267-2280. [PMID: 32873590 DOI: 10.2337/db20-0062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 08/24/2020] [Indexed: 11/13/2022]
Abstract
Women with polycystic ovary syndrome (PCOS) have been shown to be less insulin sensitive compared with control (CON) women, independent of BMI. Training is associated with molecular adaptations in skeletal muscle, improving glucose uptake and metabolism in both healthy individuals and patients with type 2 diabetes. In the current study, lean hyperandrogenic women with PCOS (n = 9) and healthy CON women (n = 9) completed 14 weeks of controlled and supervised exercise training. In CON, the training intervention increased whole-body insulin action by 26% and insulin-stimulated leg glucose uptake by 53% together with increased insulin-stimulated leg blood flow and a more oxidative muscle fiber type distribution. In PCOS, no such changes were found, despite similar training intensity and improvements in VO2max In skeletal muscle of CON but not PCOS, training increased GLUT4 and HKII mRNA and protein expressions. These data suggest that the impaired increase in whole-body insulin action in women with PCOS with training is caused by an impaired ability to upregulate key glucose-handling proteins for insulin-stimulated glucose uptake in skeletal muscle and insulin-stimulated leg blood flow. Still, other important benefits of exercise training appeared in women with PCOS, including an improvement of the hyperandrogenic state.
Collapse
Affiliation(s)
- Solvejg L Hansen
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Anne-Marie Lundsgaard
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Frederikke L Hendrich
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Lisbeth Nilas
- Department of Obstetrics and Gynaecology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Kim A Sjøberg
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Janne R Hingst
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Annette K Serup
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Carlos Henríquez Olguín
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christian S Carl
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Louise F Wernblad
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Marie Henneberg
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Katja M Lustrup
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christine Hansen
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E Jensen
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Jørgen F P Wojtaszewski
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Erik A Richter
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Wang G, Yu Y, Cai W, Batista TM, Suk S, Noh HL, Hirshman M, Nigro P, Li ME, Softic S, Goodyear L, Kim JK, Kahn CR. Muscle-Specific Insulin Receptor Overexpression Protects Mice From Diet-Induced Glucose Intolerance but Leads to Postreceptor Insulin Resistance. Diabetes 2020; 69:2294-2309. [PMID: 32868340 PMCID: PMC7576573 DOI: 10.2337/db20-0439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/25/2020] [Indexed: 12/22/2022]
Abstract
Skeletal muscle insulin resistance is a prominent early feature in the pathogenesis of type 2 diabetes. In attempt to overcome this defect, we generated mice overexpressing insulin receptors (IR) specifically in skeletal muscle (IRMOE). On normal chow, IRMOE mice have body weight similar to that of controls but an increase in lean mass and glycolytic muscle fibers and reduced fat mass. IRMOE mice also show higher basal phosphorylation of IR, IRS-1, and Akt in muscle and improved glucose tolerance compared with controls. When challenged with high-fat diet (HFD), IRMOE mice are protected from diet-induced obesity. This is associated with reduced inflammation in fat and liver, improved glucose tolerance, and improved systemic insulin sensitivity. Surprisingly, however, in both chow and HFD-fed mice, insulin-stimulated Akt phosphorylation is significantly reduced in muscle of IRMOE mice, indicating postreceptor insulin resistance. RNA sequencing reveals downregulation of several postreceptor signaling proteins that contribute to this resistance. Thus, enhancing early insulin signaling in muscle by overexpression of the IR protects mice from diet-induced obesity and its effects on glucose metabolism. However, chronic overstimulation of this pathway leads to postreceptor desensitization, indicating the critical balance between normal signaling and hyperstimulation of the insulin signaling pathway.
Collapse
Affiliation(s)
- Guoxiao Wang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Yingying Yu
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Weikang Cai
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY
| | - Thiago M Batista
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Sujin Suk
- Program in Molecular Medicine and Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Hye Lim Noh
- Program in Molecular Medicine and Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Michael Hirshman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Pasquale Nigro
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Mengyao Ella Li
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Samir Softic
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Divisions of Pediatric Gastroenterology and Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY
| | - Laurie Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Jason K Kim
- Program in Molecular Medicine and Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| |
Collapse
|
15
|
Abstract
The glucose transporter GLUT4 is critical for skeletal muscle glucose uptake in response to insulin and muscle contraction/exercise. Exercise increases GLUT4 translocation to the sarcolemma and t-tubule and, over the longer term, total GLUT4 protein content. Here, we review key aspects of GLUT4 biology in relation to exercise, with a focus on exercise-induced GLUT4 translocation, postexercise metabolism and muscle insulin sensitivity, and exercise effects on GLUT4 expression.
Collapse
Affiliation(s)
- Marcelo Flores-Opazo
- Laboratory of Exercise and Physical Activity Sciences, Department of Physiotherapy, University Finis Terrae, Santiago, Chile
| | - Sean L McGee
- Metabolic Research Unit, School of Medicine and Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds
| | - Mark Hargreaves
- Department of Physiology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
16
|
Lantier L, Williams AS, Williams IM, Guerin A, Bracy DP, Goelzer M, Foretz M, Viollet B, Hughey CC, Wasserman DH. Reciprocity Between Skeletal Muscle AMPK Deletion and Insulin Action in Diet-Induced Obese Mice. Diabetes 2020; 69:1636-1649. [PMID: 32439824 PMCID: PMC7372072 DOI: 10.2337/db19-1074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 05/19/2020] [Indexed: 11/13/2022]
Abstract
Insulin resistance due to overnutrition places a burden on energy-producing pathways in skeletal muscle (SkM). Nevertheless, energy state is not compromised. The hypothesis that the energy sensor AMPK is necessary to offset the metabolic burden of overnutrition was tested using chow-fed and high-fat (HF)-fed SkM-specific AMPKα1α2 knockout (mdKO) mice and AMPKα1α2lox/lox littermates (wild-type [WT]). Lean mdKO and WT mice were phenotypically similar. HF-fed mice were equally obese and maintained lean mass regardless of genotype. Results did not support the hypothesis that AMPK is protective during overnutrition. Paradoxically, mdKO mice were more insulin sensitive. Insulin-stimulated SkM glucose uptake was approximately twofold greater in mdKO mice in vivo. Furthermore, insulin signaling, SkM GLUT4 translocation, hexokinase activity, and glycolysis were increased. AMPK and insulin signaling intersect at mammalian target of rapamycin (mTOR), a critical node for cell proliferation and survival. Basal mTOR activation was reduced by 50% in HF-fed mdKO mice, but was normalized by insulin stimulation. Mitochondrial function was impaired in mdKO mice, but energy charge was preserved by AMP deamination. Results show a surprising reciprocity between SkM AMPK signaling and insulin action that manifests with diet-induced obesity, as insulin action is preserved to protect fundamental energetic processes in the muscle.
Collapse
Affiliation(s)
- Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
- Vanderbilt Mouse Metabolic Phenotyping Center, Nashville, TN
| | - Ashley S Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Ian M Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Amanda Guerin
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Deanna P Bracy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Mickael Goelzer
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Marc Foretz
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Benoit Viollet
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Curtis C Hughey
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
- Vanderbilt Mouse Metabolic Phenotyping Center, Nashville, TN
| |
Collapse
|
17
|
Mancilla R, Krook A, Schrauwen P, Hesselink MKC. Diurnal Regulation of Peripheral Glucose Metabolism: Potential Effects of Exercise Timing. Obesity (Silver Spring) 2020; 28 Suppl 1:S38-S45. [PMID: 32475086 PMCID: PMC7496481 DOI: 10.1002/oby.22811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022]
Abstract
Diurnal oscillations in energy metabolism are linked to the activity of biological clocks and contribute to whole-body glucose homeostasis. Postprandially, skeletal muscle takes up approximately 80% of circulatory glucose and hence is a key organ in maintenance of glucose homeostasis. Dysregulation of molecular clock components in skeletal muscle disrupts whole-body glucose homeostasis. Next to light-dark cycles, nonphotic cues such as nutrient intake and physical activity are also potent cues to (re)set (dys)regulated clocks. Physical exercise is one of the most potent ways to improve myocellular insulin sensitivity. Given the role of the biological clock in glucose homeostasis and the power of exercise to improve insulin sensitivity, one can hypothesize that there might be an optimal time for exercise to maximally improve insulin sensitivity and glucose homeostasis. In this review, we aim to summarize the available information related to the interaction of diurnal rhythm, glucose homeostasis, and physical exercise as a nonphotic cue to correct dysregulation of human glucose metabolism.
Collapse
Affiliation(s)
- Rodrigo Mancilla
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Anna Krook
- Department of Physiology and PharmacologySection for Integrative PhysiologyKarolinska InstitutetStockholmSweden
| | - Patrick Schrauwen
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Matthijs K. C. Hesselink
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical Centre+MaastrichtThe Netherlands
| |
Collapse
|
18
|
Murphy RM, Flores-Opazo M, Frankish BP, Garnham A, Stapleton D, Hargreaves M. No evidence of direct association between GLUT4 and glycogen in human skeletal muscle. Physiol Rep 2018; 6:e13917. [PMID: 30488593 PMCID: PMC6429973 DOI: 10.14814/phy2.13917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 11/24/2022] Open
Abstract
Previous studies have demonstrated that exercise increases whole body and skeletal muscle insulin sensitivity that is linked with increased GLUT4 at the plasma membrane following insulin stimulation and associated with muscle glycogen depletion. To assess the potential direct association between muscle glycogen and GLUT4, seven untrained, male subjects exercised for 60 min at ~75% VO2 peak, with muscle samples obtained by percutaneous needle biopsy immediately before and after exercise. Exercise reduced muscle glycogen content by ~43%. An ultracentrifugation protocol resulted in a ~2-3-fold enriched glycogen fraction from muscle samples for analysis. Total GLUT4 content was unaltered by exercise and we were unable to detect any GLUT4 in glycogen fractions, either with or without amylase treatment. In skinned muscle fiber segments, there was very little, if any, GLUT4 detected in wash solutions, except following exposure to 1% Triton X-100. Amylase treatment of single fibers did not increase GLUT4 in the wash solution and there were no differences in GLUT4 content between fibers obtained before or after exercise for any of the wash treatments. Our results indicate no direct association between GLUT4 and glycogen in human skeletal muscle, before or after exercise, and suggest that alterations in GLUT4 translocation associated with exercise-induced muscle glycogen depletion are mediated via other mechanisms.
Collapse
Affiliation(s)
- Robyn M Murphy
- Department of Biochemistry & Genetics and LaTrobe Institute for Molecular Science, LaTrobe University, Bundoora, Australia
| | - Marcelo Flores-Opazo
- Department of Physiology, The University of Melbourne, Melbourne, Australia.,Laboratory of Exercise and Physical Activity Sciences, Department of Physiotherapy, University Finis Terrae, Santiago, Chile
| | - Barnaby P Frankish
- Department of Biochemistry & Genetics and LaTrobe Institute for Molecular Science, LaTrobe University, Bundoora, Australia
| | - Andrew Garnham
- School of Exercise & Nutrition Sciences, Deakin University, Burwood, Australia
| | - David Stapleton
- Department of Physiology, The University of Melbourne, Melbourne, Australia
| | - Mark Hargreaves
- Department of Physiology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
19
|
Steenberg DE, Jørgensen NB, Birk JB, Sjøberg KA, Kiens B, Richter EA, Wojtaszewski JFP. Exercise training reduces the insulin-sensitizing effect of a single bout of exercise in human skeletal muscle. J Physiol 2018; 597:89-103. [PMID: 30325018 DOI: 10.1113/jp276735] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/11/2018] [Indexed: 12/26/2022] Open
Abstract
KEY POINTS A single bout of exercise is capable of increasing insulin sensitivity in human skeletal muscle. Whether this ability is affected by training status is not clear. Studies in mice suggest that the AMPK-TBC1D4 signalling axis is important for the increased insulin-stimulated glucose uptake after a single bout of exercise. The present study is the first longitudinal intervention study to show that, although exercise training increases insulin-stimulated glucose uptake in skeletal muscle at rest, it diminishes the ability of a single bout of exercise to enhance muscle insulin-stimulated glucose uptake. The present study provides novel data indicating that AMPK in human skeletal muscle is important for the insulin-sensitizing effect of a single bout of exercise. ABSTRACT Not only chronic exercise training, but also a single bout of exercise, increases insulin-stimulated glucose uptake in skeletal muscle. However, it is not well described how adaptations to exercise training affect the ability of a single bout of exercise to increase insulin sensitivity. Rodent studies suggest that the insulin-sensitizing effect of a single bout of exercise is AMPK-dependent (presumably via the α2 β2 γ3 AMPK complex). Whether this is also the case in humans is unknown. Previous studies have shown that exercise training decreases the expression of the α2 β2 γ3 AMPK complex and diminishes the activation of this complex during exercise. Thus, we hypothesized that exercise training diminishes the ability of a single bout of exercise to enhance muscle insulin sensitivity. We investigated nine healthy male subjects who performed one-legged knee-extensor exercise at the same relative intensity before and after 12 weeks of exercise training. Training increased V ̇ O 2 peak and expression of mitochondrial proteins in muscle, whereas the expression of AMPKγ3 was decreased. Training also increased whole body and muscle insulin sensitivity. Interestingly, insulin-stimulated glucose uptake in the acutely exercised leg was not enhanced further by training. Thus, the increase in insulin-stimulated glucose uptake following a single bout of one-legged exercise was lower in the trained vs. untrained state. This was associated with reduced signalling via confirmed α2 β2 γ3 AMPK downstream targets (ACC and TBC1D4). These results suggest that the insulin-sensitizing effect of a single bout of exercise is also AMPK-dependent in human skeletal muscle.
Collapse
Affiliation(s)
- Dorte E Steenberg
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Nichlas B Jørgensen
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Jesper B Birk
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Kim A Sjøberg
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Erik A Richter
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Hingst JR, Bruhn L, Hansen MB, Rosschou MF, Birk JB, Fentz J, Foretz M, Viollet B, Sakamoto K, Færgeman NJ, Havelund JF, Parker BL, James DE, Kiens B, Richter EA, Jensen J, Wojtaszewski JFP. Exercise-induced molecular mechanisms promoting glycogen supercompensation in human skeletal muscle. Mol Metab 2018; 16:24-34. [PMID: 30093357 PMCID: PMC6158101 DOI: 10.1016/j.molmet.2018.07.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/06/2018] [Accepted: 07/17/2018] [Indexed: 01/30/2023] Open
Abstract
Objective A single bout of exercise followed by intake of carbohydrates leads to glycogen supercompensation in prior exercised muscle. Our objective was to illuminate molecular mechanisms underlying this phenomenon in skeletal muscle of man. Methods We studied the temporal regulation of glycogen supercompensation in human skeletal muscle during a 5 day recovery period following a single bout of exercise. Nine healthy men depleted (day 1), normalized (day 2) and supercompensated (day 5) muscle glycogen in one leg while the contralateral leg served as a resting control. Euglycemic hyperinsulinemic clamps in combination with leg balance technique allowed for investigating insulin-stimulated leg glucose uptake under these 3 experimental conditions. Cellular signaling in muscle biopsies was investigated by global proteomic analyses and immunoblotting. We strengthened the validity of proposed molecular effectors by follow-up studies in muscle of transgenic mice. Results Sustained activation of glycogen synthase (GS) and AMPK in combination with elevated expression of proteins determining glucose uptake capacity were evident in the prior exercised muscle. We hypothesize that these alterations offset the otherwise tight feedback inhibition of glycogen synthesis and glucose uptake by glycogen. In line with key roles of AMPK and GS seen in the human experiments we observed abrogated ability for glycogen supercompensation in muscle with inducible AMPK deletion and in muscle carrying a G6P-insensitive form of GS in muscle. Conclusion Our study demonstrates that both AMPK and GS are key regulators of glycogen supercompensation following a single bout of glycogen-depleting exercise in skeletal muscle of both man and mouse. A single bout of exercise followed by carbohydrate intake leads to glycogen supersompensation in the prior exercised muscle. Skeletal muscle AMPK and glycogen synthase remain activated beyound normalized muscle glycogen content. Glycogen synthesis above resting levels is mediated independent of muscle insulin sensitivity.
Collapse
Affiliation(s)
- Janne R Hingst
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Lea Bruhn
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Mads B Hansen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Marie F Rosschou
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Jesper B Birk
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Joachim Fentz
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Marc Foretz
- INSERM, U1016, Institut Cochin, 75014, Paris, France; CNRS, UMR8104, 75014, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75014, Paris, France
| | - Benoit Viollet
- INSERM, U1016, Institut Cochin, 75014, Paris, France; CNRS, UMR8104, 75014, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75014, Paris, France
| | - Kei Sakamoto
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, United Kingdom
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense, Denmark
| | - Jesper F Havelund
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense, Denmark
| | - Benjamin L Parker
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia; School of Medicine, University of Sydney, Sydney, NSW, 2006, Australia
| | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Erik A Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Jørgen Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, DK-2100, Copenhagen, Denmark; Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
21
|
Lundsgaard AM, Sjøberg KA, Høeg LD, Jeppesen J, Jordy AB, Serup AK, Fritzen AM, Pilegaard H, Myrmel LS, Madsen L, Wojtaszewski JFP, Richter EA, Kiens B. Opposite Regulation of Insulin Sensitivity by Dietary Lipid Versus Carbohydrate Excess. Diabetes 2017; 66:2583-2595. [PMID: 28768703 DOI: 10.2337/db17-0046] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/27/2017] [Indexed: 11/13/2022]
Abstract
To understand the mechanisms in lipid-induced insulin resistance, a more physiological approach is to enhance fatty acid (FA) availability through the diet. Nine healthy men ingested two hypercaloric diets (in 75% excess of habitual caloric intake) for 3 days, enriched in unsaturated FA (78 energy % [E%] fat) (UNSAT) or carbohydrates (80 E% carbohydrate) (CHO) as well as a eucaloric control diet (CON). Compared with CON, the UNSAT diet reduced whole-body and leg glucose disposal during a hyperinsulinemic-euglycemic clamp, while decreasing hepatic glucose production. In muscle, diacylglycerol (DAG) and intramyocellular triacylglycerol were increased. The accumulated DAG was sn-1,3 DAG, which is known not to activate PKC, and insulin signaling was intact. UNSAT decreased PDH-E1α protein content and increased inhibitory PDH-E1α Ser300 phosphorylation and FA oxidation. CHO increased whole-body and leg insulin sensitivity, while increasing hepatic glucose production. After CHO, muscle PDH-E1α Ser300 phosphorylation was decreased, and glucose oxidation increased. After UNSAT, but not CHO, muscle glucose-6-phosphate content was 103% higher compared with CON during the clamp. Thus, PDH-E1α expression and covalent regulation, and hence the tricarboxylic acid cycle influx of pyruvate-derived acetyl-CoA relative to β-oxidation-derived acetyl-CoA, are suggested to impact on insulin-stimulated glucose uptake. Taken together, the oxidative metabolic fluxes of glucose and FA are powerful and opposite regulators of insulin action in muscle.
Collapse
Affiliation(s)
- Anne-Marie Lundsgaard
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Kim A Sjøberg
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Louise D Høeg
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Jeppesen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Andreas B Jordy
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Annette K Serup
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Andreas M Fritzen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Lene S Myrmel
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - Lise Madsen
- National Institute of Nutrition and Seafood Research, Bergen, Norway
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Erik A Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Kjøbsted R, Wojtaszewski JFP, Treebak JT. Role of AMP-Activated Protein Kinase for Regulating Post-exercise Insulin Sensitivity. ACTA ACUST UNITED AC 2017; 107:81-126. [PMID: 27812978 DOI: 10.1007/978-3-319-43589-3_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Skeletal muscle insulin resistance precedes development of type 2 diabetes (T2D). As skeletal muscle is a major sink for glucose disposal, understanding the molecular mechanisms involved in maintaining insulin sensitivity of this tissue could potentially benefit millions of people that are diagnosed with insulin resistance. Regular physical activity in both healthy and insulin-resistant individuals is recognized as the single most effective intervention to increase whole-body insulin sensitivity and thereby positively affect glucose homeostasis. A single bout of exercise has long been known to increase glucose disposal in skeletal muscle in response to physiological insulin concentrations. While this effect is identified to be restricted to the previously exercised muscle, the molecular basis for an apparent convergence between exercise- and insulin-induced signaling pathways is incompletely known. In recent years, we and others have identified the Rab GTPase-activating protein, TBC1 domain family member 4 (TBC1D4) as a target of key protein kinases in the insulin- and exercise-activated signaling pathways. Our working hypothesis is that the AMP-activated protein kinase (AMPK) is important for the ability of exercise to insulin sensitize skeletal muscle through TBC1D4. Here, we aim to provide an overview of the current available evidence linking AMPK to post-exercise insulin sensitivity.
Collapse
Affiliation(s)
- Rasmus Kjøbsted
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200, Copenhagen, Denmark
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200, Copenhagen, Denmark.
| |
Collapse
|
23
|
Irimia JM, Meyer CM, Segvich DM, Surendran S, DePaoli-Roach AA, Morral N, Roach PJ. Lack of liver glycogen causes hepatic insulin resistance and steatosis in mice. J Biol Chem 2017; 292:10455-10464. [PMID: 28483921 DOI: 10.1074/jbc.m117.786525] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/06/2017] [Indexed: 01/16/2023] Open
Abstract
Disruption of the Gys2 gene encoding the liver isoform of glycogen synthase generates a mouse strain (LGSKO) that almost completely lacks hepatic glycogen, has impaired glucose disposal, and is pre-disposed to entering the fasted state. This study investigated how the lack of liver glycogen increases fat accumulation and the development of liver insulin resistance. Insulin signaling in LGSKO mice was reduced in liver, but not muscle, suggesting an organ-specific defect. Phosphorylation of components of the hepatic insulin-signaling pathway, namely IRS1, Akt, and GSK3, was decreased in LGSKO mice. Moreover, insulin stimulation of their phosphorylation was significantly suppressed, both temporally and in an insulin dose response. Phosphorylation of the insulin-regulated transcription factor FoxO1 was somewhat reduced and insulin treatment did not elicit normal translocation of FoxO1 out of the nucleus. Fat overaccumulated in LGSKO livers, showing an aberrant distribution in the acinus, an increase not explained by a reduction in hepatic triglyceride export. Rather, when administered orally to fasted mice, glucose was directed toward hepatic lipogenesis as judged by the activity, protein levels, and expression of several fatty acid synthesis genes, namely, acetyl-CoA carboxylase, fatty acid synthase, SREBP1c, chREBP, glucokinase, and pyruvate kinase. Furthermore, using cultured primary hepatocytes, we found that lipogenesis was increased by 40% in LGSKO cells compared with controls. Of note, the hepatic insulin resistance was not associated with increased levels of pro-inflammatory markers. Our results suggest that loss of liver glycogen synthesis diverts glucose toward fat synthesis, correlating with impaired hepatic insulin signaling and glucose disposal.
Collapse
Affiliation(s)
- Jose M Irimia
- From the Departments of Biochemistry and Molecular Biology and
| | | | - Dyann M Segvich
- From the Departments of Biochemistry and Molecular Biology and
| | - Sneha Surendran
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | | | - Nuria Morral
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Peter J Roach
- From the Departments of Biochemistry and Molecular Biology and
| |
Collapse
|
24
|
Blesson CS, Chinnathambi V, Kumar S, Yallampalli C. Gestational Protein Restriction Impairs Glucose Disposal in the Gastrocnemius Muscles of Female Rats. Endocrinology 2017; 158:756-767. [PMID: 28324067 PMCID: PMC5460798 DOI: 10.1210/en.2016-1675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/23/2017] [Indexed: 01/18/2023]
Abstract
Gestational low-protein (LP) diet causes hyperglycemia and insulin resistance in adult offspring, but the mechanism is not clearly understood. In this study, we explored the role of insulin signaling in gastrocnemius muscles of gestational LP-exposed female offspring. Pregnant rats were fed a control (20% protein) or an isocaloric LP (6%) diet from gestational day 4 until delivery. Normal diet was given to mothers after delivery and to pups after weaning until necropsy. Offspring were euthanized at 4 months, and gastrocnemius muscles were treated with insulin ex vivo for 30 minutes. Messenger RNA and protein levels of molecules involved in insulin signaling were assessed at 4 months. LP females were smaller at birth but showed rapid catchup growth by 4 weeks. Glucose tolerance test in LP offspring at 3 months showed elevated serum glucose levels (P < 0.01; glycemia Δ area under the curve 342 ± 28 in LP vs 155 ± 23 in controls, mmol/L * 120 minutes) without any change in insulin levels. In gastrocnemius muscles, LP rats showed reduced tyrosine phosphorylation of insulin receptor substrate 1 upon insulin stimulation due to the overexpression of tyrosine phosphatase SHP-2, but serine phosphorylation was unaffected. Furthermore, insulin-induced phosphorylation of Akt, glycogen synthase kinase (GSK)-3α, and GSK-3β was diminished in LP rats, and they displayed an increased basal phosphorylation (inactive form) of glycogen synthase. Our study shows that gestational protein restriction causes peripheral insulin resistance by a series of phosphorylation defects in skeletal muscle in a mechanism involving insulin receptor substrate 1, SHP-2, Akt, GSK-3, and glycogen synthase causing dysfunctional GSK-3 signaling and increased stored glycogen, leading to distorted glucose homeostasis.
Collapse
Affiliation(s)
| | - Vijayakumar Chinnathambi
- Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Sathish Kumar
- Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Chandrasekhar Yallampalli
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
25
|
Lenasi H, Klonizakis M. Assessing the evidence: Exploring the effects of exercise on diabetic microcirculation. Clin Hemorheol Microcirc 2017; 64:663-678. [PMID: 27767975 DOI: 10.3233/ch-168022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Diabetes mellitus (DM) is associated with cardiovascular complications. Impairment of glycemic control induces noxious glycations, an increase in oxydative stress and dearangement of various metabolic pathways. DM leads to dysfunction of micro- and macrovessels, connected to metabolic, endothelial and autonomic nervous system. Thus, assessing vascular reactivity might be one of the clinical tools to evaluate the impact of harmful effects of DM and potential benefit of treatment; skin and skeletal muscle microcirculation have usually been tested. Physical exercise improves vascular dysfunction through various mechanisms, and is regarded as an additional effective treatment strategy of DM as it positively impacts glycemic control, improves insulin sensitivity and glucose uptake in the target tissues, thus affecting glucose and lipid metabolism, and increases the endothelium dependent vasodilation. Yet, not all patients respond in the same way so titrating the exercise type individualy would be desirable. Resistance training has, apart from aerobic one, been shown to positively correlate to glycemic control, and improve vascular reactivity. It has been prescribed in various forms or in combination with aerobic training. This review would assess the impact of different modes of exercise, the mechanisms involved, and its potential positive and negative effects on treating patients with Type I and Type II DM, focusing on the recent literature.
Collapse
Affiliation(s)
- Helena Lenasi
- Institute of Physiology, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Markos Klonizakis
- Centre for Sport and Exercise Science, Sheffield Hallam University, UK
| |
Collapse
|
26
|
Kjøbsted R, Munk-Hansen N, Birk JB, Foretz M, Viollet B, Björnholm M, Zierath JR, Treebak JT, Wojtaszewski JFP. Enhanced Muscle Insulin Sensitivity After Contraction/Exercise Is Mediated by AMPK. Diabetes 2017; 66:598-612. [PMID: 27797909 DOI: 10.2337/db16-0530] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 10/24/2016] [Indexed: 12/11/2022]
Abstract
Earlier studies have demonstrated that muscle insulin sensitivity to stimulate glucose uptake is enhanced several hours after an acute bout of exercise. Using AICAR, we recently demonstrated that prior activation of AMPK is sufficient to increase insulin sensitivity in mouse skeletal muscle. Here we aimed to determine whether activation of AMPK is also a prerequisite for the ability of muscle contraction to increase insulin sensitivity. We found that prior in situ contraction of m. extensor digitorum longus (EDL) and treadmill exercise increased muscle and whole-body insulin sensitivity in wild-type (WT) mice, respectively. These effects were not found in AMPKα1α2 muscle-specific knockout mice. Prior in situ contraction did not increase insulin sensitivity in m. soleus from either genotype. Improvement in muscle insulin sensitivity was not associated with enhanced glycogen synthase activity or proximal insulin signaling. However, in WT EDL muscle, prior in situ contraction enhanced insulin-stimulated phosphorylation of TBC1D4 Thr649 and Ser711 Such findings are also evident in prior exercised and insulin-sensitized human skeletal muscle. Collectively, our data suggest that the AMPK-TBC1D4 signaling axis is likely mediating the improved muscle insulin sensitivity after contraction/exercise and illuminates an important and physiologically relevant role of AMPK in skeletal muscle.
Collapse
Affiliation(s)
- Rasmus Kjøbsted
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nanna Munk-Hansen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jesper B Birk
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Marc Foretz
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Benoit Viollet
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marie Björnholm
- Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jonas T Treebak
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Fyfe JJ, Bishop DJ, Zacharewicz E, Russell AP, Stepto NK. Concurrent exercise incorporating high-intensity interval or continuous training modulates mTORC1 signaling and microRNA expression in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1297-311. [DOI: 10.1152/ajpregu.00479.2015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 04/06/2016] [Indexed: 12/14/2022]
Abstract
We compared the effects of concurrent exercise, incorporating either high-intensity interval training (HIT) or moderate-intensity continuous training (MICT), on mechanistic target of rapamycin complex 1 (mTORC1) signaling and microRNA expression in skeletal muscle, relative to resistance exercise (RE) alone. Eight males (mean ± SD: age, 27 ± 4 yr; V̇o2 peak, 45.7 ± 9 ml·kg−1·min−1) performed three experimental trials in a randomized order: 1) RE (8 × 5 leg press repetitions at 80% 1-repetition maximum) performed alone and RE preceded by either 2) HIT cycling [10 × 2 min at 120% lactate threshold (LT); HIT + RE] or 3) work-matched MICT cycling (30 min at 80% LT; MICT + RE). Vastus lateralis muscle biopsies were obtained immediately before RE, either without (REST) or with (POST) preceding endurance exercise and +1 h (RE + 1 h) and +3 h (RE + 3 h) after RE. Prior HIT and MICT similarly reduced muscle glycogen content and increased ACCSer79 and p70S6KThr389 phosphorylation before subsequent RE (i.e., at POST). Compared with MICT, HIT induced greater mTORSer2448 and rps6Ser235/236 phosphorylation at POST. RE-induced increases in p70S6K and rps6 phosphorylation were not influenced by prior HIT or MICT; however, mTOR phosphorylation was reduced at RE + 1 h for MICT + RE vs. both HIT + RE and RE. Expression of miR-133a, miR-378, and miR-486 was reduced at RE + 1 h for HIT + RE vs. both MICT + RE and RE. Postexercise mTORC1 signaling following RE is therefore not compromised by prior HIT or MICT, and concurrent exercise incorporating HIT, but not MICT, reduces postexercise expression of miRNAs implicated in skeletal muscle adaptation to RE.
Collapse
Affiliation(s)
- Jackson J. Fyfe
- Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Australia
- College of Sport and Exercise Science, Victoria University, Melbourne, Australia; and
| | - David J. Bishop
- Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Australia
- College of Sport and Exercise Science, Victoria University, Melbourne, Australia; and
| | - Evelyn Zacharewicz
- Centre for Physical Activity and Nutrition Research, School of Nutrition and Exercise Sciences, Deakin University, Melbourne, Australia
| | - Aaron P. Russell
- Centre for Physical Activity and Nutrition Research, School of Nutrition and Exercise Sciences, Deakin University, Melbourne, Australia
| | - Nigel K. Stepto
- Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Australia
- College of Sport and Exercise Science, Victoria University, Melbourne, Australia; and
| |
Collapse
|
28
|
Mason SA, Della Gatta PA, Snow RJ, Russell AP, Wadley GD. Ascorbic acid supplementation improves skeletal muscle oxidative stress and insulin sensitivity in people with type 2 diabetes: Findings of a randomized controlled study. Free Radic Biol Med 2016; 93:227-38. [PMID: 26774673 DOI: 10.1016/j.freeradbiomed.2016.01.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 01/06/2016] [Accepted: 01/12/2016] [Indexed: 12/25/2022]
Abstract
AIM/HYPOTHESIS Skeletal muscle insulin resistance and oxidative stress are characteristic metabolic disturbances in people with type 2 diabetes. Studies in insulin resistant rodents show an improvement in skeletal muscle insulin sensitivity and oxidative stress following antioxidant supplementation. We therefore investigated the potential ameliorative effects of antioxidant ascorbic acid (AA) supplementation on skeletal muscle insulin sensitivity and oxidative stress in people with type 2 diabetes. METHODS Participants with stable glucose control commenced a randomized cross-over study involving four months of AA (2 × 500 mg/day) or placebo supplementation. Insulin sensitivity was assessed using a hyperinsulinaemic, euglycaemic clamp coupled with infusion of 6,6-D2 glucose. Muscle biopsies were measured for AA concentration and oxidative stress markers that included basal measures (2',7'-dichlorofluorescin [DCFH] oxidation, ratio of reduced-to-oxidized glutathione [GSH/GSSG] and F2-Isoprostanes) and insulin-stimulated measures (DCFH oxidation). Antioxidant concentrations, citrate synthase activity and protein abundances of sodium-dependent vitamin C transporter 2 (SVCT2), total Akt and phosphorylated Akt (ser473) were also measured in muscle samples. RESULTS AA supplementation significantly increased insulin-mediated glucose disposal (delta rate of glucose disappearance; ∆Rd) (p=0.009), peripheral insulin-sensitivity index (p=0.046), skeletal muscle AA concentration (p=0.017) and muscle SVCT2 protein expression (p=0.008); but significantly decreased skeletal muscle DCFH oxidation during hyperinsulinaemia (p=0.007) when compared with placebo. Total superoxide dismutase activity was also lower following AA supplementation when compared with placebo (p=0.006). Basal oxidative stress markers, citrate synthase activity, endogenous glucose production, HbA1C and muscle Akt expression were not significantly altered by AA supplementation. CONCLUSIONS/INTERPRETATION In summary, oral AA supplementation ameliorates skeletal muscle oxidative stress during hyperinsulinaemia and improves insulin-mediated glucose disposal in people with type 2 diabetes. Findings implicate AA supplementation as a potentially inexpensive, convenient, and effective adjunct therapy in the treatment of insulin resistance in people with type 2 diabetes.
Collapse
Affiliation(s)
- Shaun A Mason
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia
| | - Paul A Della Gatta
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia
| | - Rod J Snow
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia
| | - Aaron P Russell
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia
| | - Glenn D Wadley
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, Victoria 3125, Australia.
| |
Collapse
|
29
|
Cartee GD. Mechanisms for greater insulin-stimulated glucose uptake in normal and insulin-resistant skeletal muscle after acute exercise. Am J Physiol Endocrinol Metab 2015; 309:E949-59. [PMID: 26487009 PMCID: PMC4816200 DOI: 10.1152/ajpendo.00416.2015] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/14/2015] [Indexed: 02/08/2023]
Abstract
Enhanced skeletal muscle and whole body insulin sensitivity can persist for up to 24-48 h after one exercise session. This review focuses on potential mechanisms for greater postexercise and insulin-stimulated glucose uptake (ISGU) by muscle in individuals with normal or reduced insulin sensitivity. A model is proposed for the processes underlying this improvement; i.e., triggers initiate events that activate subsequent memory elements, which store information that is relayed to mediators, which translate memory into action by controlling an end effector that directly executes increased insulin-stimulated glucose transport. Several candidates are potential triggers or memory elements, but none have been conclusively verified. Regarding potential mediators in both normal and insulin-resistant individuals, elevated postexercise ISGU with a physiological insulin dose coincides with greater Akt substrate of 160 kDa (AS160) phosphorylation without improved proximal insulin signaling at steps from insulin receptor binding to Akt activity. Causality remains to be established between greater AS160 phosphorylation and improved ISGU. The end effector for normal individuals is increased GLUT4 translocation, but this remains untested for insulin-resistant individuals postexercise. Following exercise, insulin-resistant individuals can attain ISGU values similar to nonexercising healthy controls, but after a comparable exercise protocol performed by both groups, ISGU for the insulin-resistant group has been consistently reported to be below postexercise values for the healthy group. Further research is required to fully understand the mechanisms underlying the improved postexercise ISGU in individuals with normal or subnormal insulin sensitivity and to explain the disparity between these groups after similar exercise.
Collapse
Affiliation(s)
- Gregory D Cartee
- Muscle Biology Laboratory, School of Kinesiology, Department of Molecular and Integrative Physiology, and Institute of Gerontology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
30
|
Justice TD, Hammer GL, Davey RJ, Paramalingam N, Guelfi KJ, Lewis L, Davis EA, Jones TW, Fournier PA. Effect of antecedent moderate-intensity exercise on the glycemia-increasing effect of a 30-sec maximal sprint: a sex comparison. Physiol Rep 2015; 3:3/5/e12386. [PMID: 26019290 PMCID: PMC4463820 DOI: 10.14814/phy2.12386] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
This study investigated whether a prior bout of moderate-intensity exercise attenuates the glycemia-increasing effect of a maximal 30-sec sprint. A secondary aim was to determine whether the effect of antecedent exercise on the glucoregulatory response to sprinting is affected by sex. Participants (men n = 8; women n = 7) were tested on two occasions during which they either rested (CON) or cycled for 60-min at a moderate intensity of ~65% (EX) before performing a 30-sec maximal cycling effort 195 min later. In response to the sprint, blood glucose increased to a similar extent between EX and CON trials, peaking at 10 min of recovery, with no difference between sexes (P > 0.05). Blood glucose then declined at a faster rate in EX, and this was associated with a glucose rate of disappearance (Rd) that exceeded the glucose rate of appearance (Ra) earlier in EX compared with CON, although the overall glucose Ra and Rd profile was higher in men compared with women (P < 0.05). The response of growth hormone was attenuated during recovery from EX compared with CON (P < 0.05), with a lower absolute response in women compared with men (P < 0.05). The response of epinephrine and norepinephrine was also lower in women compared with men (P < 0.05) but similar between trials. In summary, a prior bout of moderate-intensity exercise does not affect the magnitude of the glycemia-increasing response to a 30-sec sprint; however, the subsequent decline in blood glucose is more rapid. This blood glucose response is similar between men and women, despite less pronounced changes in glucose Ra and Rd, and a lower response of plasma catecholamines and growth hormone to sprinting in women.
Collapse
Affiliation(s)
- Tara D Justice
- School of Sport Science, Exercise, and Health The University of Western Australia, Crawley, Western Australia, Australia
| | - Greta L Hammer
- School of Sport Science, Exercise, and Health The University of Western Australia, Crawley, Western Australia, Australia
| | - Raymond J Davey
- School of Sport Science, Exercise, and Health The University of Western Australia, Crawley, Western Australia, Australia Telethon Kids Institute The University of Western Australia, Crawley, Western Australia, Australia School of Paediatrics and Child Health The University of Western Australia, Perth, Western Australia, Australia
| | - Nirubasini Paramalingam
- Telethon Kids Institute The University of Western Australia, Crawley, Western Australia, Australia Department of Endocrinology and Diabetes, Princess Margaret Hospital, Perth, Western Australia, Australia
| | - Kym J Guelfi
- School of Sport Science, Exercise, and Health The University of Western Australia, Crawley, Western Australia, Australia
| | - Lynley Lewis
- Department of Medicine, Christchurch Heart Institute The University of Otago, Dunedin, New Zealand
| | - Elizabeth A Davis
- Telethon Kids Institute The University of Western Australia, Crawley, Western Australia, Australia School of Paediatrics and Child Health The University of Western Australia, Perth, Western Australia, Australia Department of Endocrinology and Diabetes, Princess Margaret Hospital, Perth, Western Australia, Australia
| | - Timothy W Jones
- Telethon Kids Institute The University of Western Australia, Crawley, Western Australia, Australia School of Paediatrics and Child Health The University of Western Australia, Perth, Western Australia, Australia Department of Endocrinology and Diabetes, Princess Margaret Hospital, Perth, Western Australia, Australia
| | - Paul A Fournier
- School of Sport Science, Exercise, and Health The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
31
|
Kolnes AJ, Birk JB, Eilertsen E, Stuenæs JT, Wojtaszewski JFP, Jensen J. Epinephrine-stimulated glycogen breakdown activates glycogen synthase and increases insulin-stimulated glucose uptake in epitrochlearis muscles. Am J Physiol Endocrinol Metab 2015; 308:E231-40. [PMID: 25465888 DOI: 10.1152/ajpendo.00282.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epinephrine increases glycogen synthase (GS) phosphorylation and decreases GS activity but also stimulates glycogen breakdown, and low glycogen content normally activates GS. To test the hypothesis that glycogen content directly regulates GS phosphorylation, glycogen breakdown was stimulated in condition with decreased GS activation. Saline or epinephrine (0.02 mg/100 g rat) was injected subcutaneously in Wistar rats (∼130 g) with low (24-h-fasted), normal (normal diet), and high glycogen content (fasted-refed), and epitrochlearis muscles were removed after 3 h and incubated ex vivo, eliminating epinephrine action. Epinephrine injection reduced glycogen content in epitrochlearis muscles with high (120.7 ± 17.8 vs. 204.6 ± 14.5 mmol/kg, P < 0.01) and normal glycogen (89.5 ± 7.6 vs. 152 ± 8.1 mmol/kg, P < 0.01), but not significantly in muscles with low glycogen (90.0 ± 5.0 vs. 102.8 ± 7.8 mmol/kg, P = 0.17). In saline-injected rats, GS phosphorylation at sites 2+2a, 3a+3b, and 1b was higher and GS activity lower in muscles with high compared with low glycogen. GS sites 2+2a and 3a+3b phosphorylation decreased and GS activity increased in muscles where epinephrine decreased glycogen content; these parameters were unchanged in epitrochlearis from fasted rats where epinephrine injection did not decrease glycogen content. Incubation with insulin decreased GS site 3a+3b phosphorylation independently of glycogen content. Insulin-stimulated glucose uptake was increased in muscles where epinephrine injection decreased glycogen content. In conclusion, epinephrine stimulates glycogenolysis in epitrochlearis muscles with normal and high, but not low, glycogen content. Epinephrine-stimulated glycogenolysis decreased GS phosphorylation and increased GS activity. These data for the first time document direct regulation of GS phosphorylation by glycogen content.
Collapse
Affiliation(s)
- Anders J Kolnes
- Charles University Third Faculty of Medicine, Prague, Czech Republic
| | - Jesper B Birk
- Molecular Physiology Group, The August Krogh Centre, Department of Nutrition, Exercise and Sports, Copenhagen University, Copenhagen, Denmark
| | - Einar Eilertsen
- National Institute of Occupational Health, Oslo, Norway; and
| | - Jorid T Stuenæs
- National Institute of Occupational Health, Oslo, Norway; and
| | - Jørgen F P Wojtaszewski
- Molecular Physiology Group, The August Krogh Centre, Department of Nutrition, Exercise and Sports, Copenhagen University, Copenhagen, Denmark
| | - Jørgen Jensen
- Molecular Physiology Group, The August Krogh Centre, Department of Nutrition, Exercise and Sports, Copenhagen University, Copenhagen, Denmark; Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| |
Collapse
|
32
|
Interference between concurrent resistance and endurance exercise: molecular bases and the role of individual training variables. Sports Med 2014; 44:743-62. [PMID: 24728927 DOI: 10.1007/s40279-014-0162-1] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Concurrent training is defined as simultaneously incorporating both resistance and endurance exercise within a periodized training regime. Despite the potential additive benefits of combining these divergent exercise modes with regards to disease prevention and athletic performance, current evidence suggests that this approach may attenuate gains in muscle mass, strength, and power compared with undertaking resistance training alone. This has been variously described as the interference effect or concurrent training effect. In recent years, understanding of the molecular mechanisms mediating training adaptation in skeletal muscle has emerged and provided potential mechanistic insight into the concurrent training effect. Although it appears that various molecular signaling responses induced in skeletal muscle by endurance exercise can inhibit pathways regulating protein synthesis and stimulate protein breakdown, human studies to date have not observed such molecular 'interference' following acute concurrent exercise that might explain compromised muscle hypertrophy following concurrent training. However, given the multitude of potential concurrent training variables and the limitations of existing evidence, the potential roles of individual training variables in acute and chronic interference are not fully elucidated. The present review explores current evidence for the molecular basis of the specificity of training adaptation and the concurrent interference phenomenon. Additionally, insights provided by molecular and performance-based concurrent training studies regarding the role of individual training variables (i.e., within-session exercise order, between-mode recovery, endurance training volume, intensity, and modality) in the concurrent interference effect are discussed, along with the limitations of our current understanding of this complex paradigm.
Collapse
|
33
|
Chen SS, Otero YF, Mulligan KX, Lundblad TM, Williams PE, McGuinness OP. Liver, but not muscle, has an entrainable metabolic memory. PLoS One 2014; 9:e86164. [PMID: 24465939 PMCID: PMC3900485 DOI: 10.1371/journal.pone.0086164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 12/06/2013] [Indexed: 02/05/2023] Open
Abstract
Hyperglycemia in the hospitalized setting is common, especially in patients that receive nutritional support either continuously or intermittently. As the liver and muscle are the major sites of glucose disposal, we hypothesized their metabolic adaptations are sensitive to the pattern of nutrient delivery. Chronically catheterized, well-controlled depancreatized dogs were placed on one of three isocaloric diets: regular chow diet once daily (Chow) or a simple nutrient diet (ND) that was given either once daily (ND-4) or infused continuously (ND-C). Intraportal insulin was infused to maintain euglycemia. After 5 days net hepatic (NHGU) and muscle (MGU) glucose uptake and oxidation were assessed at euglycemia (120 mg/dl) and hyperglycemia (200 mg/dl) in the presence of basal insulin. While hyperglycemia increased both NHGU and MGU in Chow, NHGU was amplified in both groups receiving ND. The increase was associated with enhanced activation of glycogen synthase, glucose oxidation and suppression of pyruvate dehydrogenase kinase-4 (PDK-4). Accelerated glucose-dependent muscle glucose uptake was only evident with ND-C. This was associated with a decrease in PDK-4 expression and an increase in AMP-activated protein kinase (AMPK) phosphorylation. Interestingly, ND-C markedly increased hepatic FGF-21 expression. Thus, augmentation of carbohydrate disposal in the liver, as opposed to the muscle, is not dependent on the pattern of nutrient delivery.
Collapse
Affiliation(s)
- Sheng-Song Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Yolanda F. Otero
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Kimberly X. Mulligan
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Tammy M. Lundblad
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Phillip E. Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Owen P. McGuinness
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
34
|
Abstract
Glucose is an important fuel for contracting muscle, and normal glucose metabolism is vital for health. Glucose enters the muscle cell via facilitated diffusion through the GLUT4 glucose transporter which translocates from intracellular storage depots to the plasma membrane and T-tubules upon muscle contraction. Here we discuss the current understanding of how exercise-induced muscle glucose uptake is regulated. We briefly discuss the role of glucose supply and metabolism and concentrate on GLUT4 translocation and the molecular signaling that sets this in motion during muscle contractions. Contraction-induced molecular signaling is complex and involves a variety of signaling molecules including AMPK, Ca(2+), and NOS in the proximal part of the signaling cascade as well as GTPases, Rab, and SNARE proteins and cytoskeletal components in the distal part. While acute regulation of muscle glucose uptake relies on GLUT4 translocation, glucose uptake also depends on muscle GLUT4 expression which is increased following exercise. AMPK and CaMKII are key signaling kinases that appear to regulate GLUT4 expression via the HDAC4/5-MEF2 axis and MEF2-GEF interactions resulting in nuclear export of HDAC4/5 in turn leading to histone hyperacetylation on the GLUT4 promoter and increased GLUT4 transcription. Exercise training is the most potent stimulus to increase skeletal muscle GLUT4 expression, an effect that may partly contribute to improved insulin action and glucose disposal and enhanced muscle glycogen storage following exercise training in health and disease.
Collapse
Affiliation(s)
- Erik A Richter
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
35
|
Vendelbo MH, Clasen BFF, Treebak JT, Møller L, Krusenstjerna-Hafstrøm T, Madsen M, Nielsen TS, Stødkilde-Jørgensen H, Pedersen SB, Jørgensen JOL, Goodyear LJ, Wojtaszewski JFP, Møller N, Jessen N. Insulin resistance after a 72-h fast is associated with impaired AS160 phosphorylation and accumulation of lipid and glycogen in human skeletal muscle. Am J Physiol Endocrinol Metab 2012; 302:E190-200. [PMID: 22028408 PMCID: PMC4971894 DOI: 10.1152/ajpendo.00207.2011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During fasting, human skeletal muscle depends on lipid oxidation for its energy substrate metabolism. This is associated with the development of insulin resistance and a subsequent reduction of insulin-stimulated glucose uptake. The underlying mechanisms controlling insulin action on skeletal muscle under these conditions are unresolved. In a randomized design, we investigated eight healthy subjects after a 72-h fast compared with a 10-h overnight fast. Insulin action on skeletal muscle was assessed by a hyperinsulinemic euglycemic clamp and by determining insulin signaling to glucose transport. In addition, substrate oxidation, skeletal muscle lipid content, regulation of glycogen synthesis, and AMPK signaling were assessed. Skeletal muscle insulin sensitivity was reduced profoundly in response to a 72-h fast and substrate oxidation shifted to predominantly lipid oxidation. This was associated with accumulation of both lipid and glycogen in skeletal muscle. Intracellular insulin signaling to glucose transport was impaired by regulation of phosphorylation at specific sites on AS160 but not TBC1D1, both key regulators of glucose uptake. In contrast, fasting did not impact phosphorylation of AMPK or insulin regulation of Akt, both of which are established upstream kinases of AS160. These findings show that insulin resistance in muscles from healthy individuals is associated with suppression of site-specific phosphorylation of AS160, without Akt or AMPK being affected. This impairment of AS160 phosphorylation, in combination with glycogen accumulation and increased intramuscular lipid content, may provide the underlying mechanisms for resistance to insulin in skeletal muscle after a prolonged fast.
Collapse
Affiliation(s)
| | - B. F. F. Clasen
- Departments of 1Internal Medicine and Endocrinology and
- 2Clinical Pharmacology, Aarhus University Hospital, Aarhus;
| | - J. T. Treebak
- 3Molecular Physiology Group, Department of Exercise and Sport Sciences, University of Copenhagen, Copenhagen;
| | - L. Møller
- Departments of 1Internal Medicine and Endocrinology and
| | | | - M. Madsen
- Departments of 1Internal Medicine and Endocrinology and
| | - T. S. Nielsen
- Departments of 1Internal Medicine and Endocrinology and
- 2Clinical Pharmacology, Aarhus University Hospital, Aarhus;
| | | | | | | | - L. J. Goodyear
- 5Joslin Diabetes Center and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - J. F. P. Wojtaszewski
- 3Molecular Physiology Group, Department of Exercise and Sport Sciences, University of Copenhagen, Copenhagen;
| | - N. Møller
- Departments of 1Internal Medicine and Endocrinology and
| | - N. Jessen
- Departments of 1Internal Medicine and Endocrinology and
- 2Clinical Pharmacology, Aarhus University Hospital, Aarhus;
| |
Collapse
|
36
|
Jensen J, Rustad PI, Kolnes AJ, Lai YC. The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise. Front Physiol 2011; 2:112. [PMID: 22232606 PMCID: PMC3248697 DOI: 10.3389/fphys.2011.00112] [Citation(s) in RCA: 265] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 12/09/2011] [Indexed: 12/12/2022] Open
Abstract
Glycogen is the storage form of carbohydrates in mammals. In humans the majority of glycogen is stored in skeletal muscles (∼500 g) and the liver (∼100 g). Food is supplied in larger meals, but the blood glucose concentration has to be kept within narrow limits to survive and stay healthy. Therefore, the body has to cope with periods of excess carbohydrates and periods without supplementation. Healthy persons remove blood glucose rapidly when glucose is in excess, but insulin-stimulated glucose disposal is reduced in insulin resistant and type 2 diabetic subjects. During a hyperinsulinemic euglycemic clamp, 70-90% of glucose disposal will be stored as muscle glycogen in healthy subjects. The glycogen stores in skeletal muscles are limited because an efficient feedback-mediated inhibition of glycogen synthase prevents accumulation. De novo lipid synthesis can contribute to glucose disposal when glycogen stores are filled. Exercise physiologists normally consider glycogen's main function as energy substrate. Glycogen is the main energy substrate during exercise intensity above 70% of maximal oxygen uptake ([Formula: see text]) and fatigue develops when the glycogen stores are depleted in the active muscles. After exercise, the rate of glycogen synthesis is increased to replete glycogen stores, and blood glucose is the substrate. Indeed insulin-stimulated glucose uptake and glycogen synthesis is elevated after exercise, which, from an evolutional point of view, will favor glycogen repletion and preparation for new "fight or flight" events. In the modern society, the reduced glycogen stores in skeletal muscles after exercise allows carbohydrates to be stored as muscle glycogen and prevents that glucose is channeled to de novo lipid synthesis, which over time will causes ectopic fat accumulation and insulin resistance. The reduction of skeletal muscle glycogen after exercise allows a healthy storage of carbohydrates after meals and prevents development of type 2 diabetes.
Collapse
Affiliation(s)
- Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences Oslo, Norway
| | | | | | | |
Collapse
|
37
|
Towards the minimal amount of exercise for improving metabolic health: beneficial effects of reduced-exertion high-intensity interval training. Eur J Appl Physiol 2011; 112:2767-75. [PMID: 22124524 DOI: 10.1007/s00421-011-2254-z] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/16/2011] [Indexed: 02/07/2023]
Abstract
High-intensity interval training (HIT) has been proposed as a time-efficient alternative to traditional cardiorespiratory exercise training, but is very fatiguing. In this study, we investigated the effects of a reduced-exertion HIT (REHIT) exercise intervention on insulin sensitivity and aerobic capacity. Twenty-nine healthy but sedentary young men and women were randomly assigned to the REHIT intervention (men, n = 7; women, n = 8) or a control group (men, n = 6; women, n = 8). Subjects assigned to the control groups maintained their normal sedentary lifestyle, whilst subjects in the training groups completed three exercise sessions per week for 6 weeks. The 10-min exercise sessions consisted of low-intensity cycling (60 W) and one (first session) or two (all other sessions) brief 'all-out' sprints (10 s in week 1, 15 s in weeks 2-3 and 20 s in the final 3 weeks). Aerobic capacity ([Formula: see text]) and the glucose and insulin response to a 75-g glucose load (OGTT) were determined before and 3 days after the exercise program. Despite relatively low ratings of perceived exertion (RPE 13 ± 1), insulin sensitivity significantly increased by 28% in the male training group following the REHIT intervention (P < 0.05). [Formula: see text] increased in the male training (+15%) and female training (+12%) groups (P < 0.01). In conclusion we show that a novel, feasible exercise intervention can improve metabolic health and aerobic capacity. REHIT may offer a genuinely time-efficient alternative to HIT and conventional cardiorespiratory exercise training for improving risk factors of T2D.
Collapse
|
38
|
Maarbjerg SJ, Sylow L, Richter EA. Current understanding of increased insulin sensitivity after exercise - emerging candidates. Acta Physiol (Oxf) 2011; 202:323-35. [PMID: 21352505 DOI: 10.1111/j.1748-1716.2011.02267.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Exercise counteracts insulin resistance and improves glucose homeostasis in many ways. Apart from increasing muscle glucose uptake quickly, exercise also clearly increases muscle insulin sensitivity in the post-exercise period. This review will focus on the mechanisms responsible for this increased insulin sensitivity. It is believed that increased sarcolemmal content of the glucose transporter GLUT4 can explain the phenomenon to some extent. Surprisingly no improvement in the proximal insulin signalling pathway is observed at the level of the insulin receptor, IRS1, PI3K or Akt. Recently more distal signalling component in the insulin signalling pathway such as aPKC, Rac1, TBC1D4 and TBC1D1 have been described. These are all affected by both insulin and exercise which means that they are likely converging points in promoting GLUT4 translocation and therefore possible candidates for regulating insulin sensitivity after exercise. Whereas TBC1D1 does not appear to regulate insulin sensitivity after exercise, correlative evidence in contrast suggests TBC1D4 to be a relevant candidate. Little is known about aPKC and Rac1 in relation to insulin sensitivity after exercise. Besides mechanisms involved in signalling to GLUT4 translocation, factors influencing the trans-sarcolemmal glucose concentration gradient might also be important. With regard to the interstitial glucose concentration microvascular perfusion is particular relevant as correlative evidence supports a connection between insulin sensitivity and microvascular perfusion. Thus, there are new candidates at several levels which collectively might explain the phenomenon.
Collapse
Affiliation(s)
- S J Maarbjerg
- Molecular Physiology Group, Department of Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
39
|
Brandon AE, Hoy AJ, Wright LE, Turner N, Hegarty BD, Iseli TJ, Julia Xu X, Cooney GJ, Saha AK, Ruderman NB, Kraegen EW. The evolution of insulin resistance in muscle of the glucose infused rat. Arch Biochem Biophys 2011; 509:133-41. [PMID: 21420928 PMCID: PMC3087290 DOI: 10.1016/j.abb.2011.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 03/14/2011] [Accepted: 03/15/2011] [Indexed: 11/17/2022]
Abstract
Glucose infusion into rats causes skeletal muscle insulin resistance that initially occurs without changes in insulin signaling. The aim of the current study was to prolong glucose infusion and evaluate other events associated with the transition to muscle insulin resistance. Hyperglycemia was produced in rats by glucose infusion for 3, 5 and 8 h. The rate of infusion required to maintain hyperglycemia was reduced at 5 and 8 h. Glucose uptake into red quadriceps (RQ) and its incorporation into glycogen decreased between 3 and 5 h, further decreasing at 8 h. The earliest observed change in RQ was decreased AMPKα2 activity associated with large increases in muscle glycogen content at 3 h. Activation of the mTOR pathway occurred at 5 h. Akt phosphorylation (Ser(473)) was decreased at 8 h compared to 3 and 5, although no decrease in phosphorylation of downstream GSK-3β (Ser(9)) and AS160 (Thr(642)) was observed. White quadriceps showed a similar but delayed pattern, with insulin resistance developing by 8 h and decreased AMPKα2 activity at 5 h. These results indicate that, in the presence of a nutrient overload, alterations in muscle insulin signaling occur, but after insulin resistance develops and appropriate changes in energy/nutrient sensing pathways occur.
Collapse
Affiliation(s)
- Amanda E Brandon
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Winnick JJ, An Z, Ramnanan CJ, Smith M, Irimia JM, Neal DW, Moore MC, Roach PJ, Cherrington AD. Hepatic glycogen supercompensation activates AMP-activated protein kinase, impairs insulin signaling, and reduces glycogen deposition in the liver. Diabetes 2011; 60:398-407. [PMID: 21270252 PMCID: PMC3028338 DOI: 10.2337/db10-0592] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The objective of this study was to determine how increasing the hepatic glycogen content would affect the liver's ability to take up and metabolize glucose. RESEARCH DESIGN AND METHODS During the first 4 h of the study, liver glycogen deposition was stimulated by intraportal fructose infusion in the presence of hyperglycemic-normoinsulinemia. This was followed by a 2-h hyperglycemic-normoinsulinemic control period, during which the fructose infusion was stopped, and a 2-h experimental period in which net hepatic glucose uptake (NHGU) and disposition (glycogen, lactate, and CO(2)) were measured in the absence of fructose but in the presence of a hyperglycemic-hyperinsulinemic challenge including portal vein glucose infusion. RESULTS Fructose infusion increased net hepatic glycogen synthesis (0.7 ± 0.5 vs. 6.4 ± 0.4 mg/kg/min; P < 0.001), causing a large difference in hepatic glycogen content (62 ± 9 vs. 100 ± 3 mg/g; P < 0.001). Hepatic glycogen supercompensation (fructose infusion group) did not alter NHGU, but it reduced the percent of NHGU directed to glycogen (79 ± 4 vs. 55 ± 6; P < 0.01) and increased the percent directed to lactate (12 ± 3 vs. 29 ± 5; P = 0.01) and oxidation (9 ± 3 vs. 16 ± 3; P = NS). This change was associated with increased AMP-activated protein kinase phosphorylation, diminished insulin signaling, and a shift in glycogenic enzyme activity toward a state discouraging glycogen accumulation. CONCLUSIONS These data indicate that increases in hepatic glycogen can generate a state of hepatic insulin resistance, which is characterized by impaired glycogen synthesis despite preserved NHGU.
Collapse
Affiliation(s)
- Jason J Winnick
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Toyoda T, An D, Witczak CA, Koh HJ, Hirshman MF, Fujii N, Goodyear LJ. Myo1c regulates glucose uptake in mouse skeletal muscle. J Biol Chem 2010; 286:4133-40. [PMID: 21127070 DOI: 10.1074/jbc.m110.174938] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Contraction and insulin promote glucose uptake in skeletal muscle through GLUT4 translocation to cell surface membranes. Although the signaling mechanisms leading to GLUT4 translocation have been extensively studied in muscle, the cellular transport machinery is poorly understood. Myo1c is an actin-based motor protein implicated in GLUT4 translocation in adipocytes; however, the expression profile and role of Myo1c in skeletal muscle have not been investigated. Myo1c protein abundance was higher in more oxidative skeletal muscles and heart. Voluntary wheel exercise (4 weeks, 8.2 ± 0.8 km/day), which increased the oxidative profile of the triceps muscle, significantly increased Myo1c protein levels by ∼2-fold versus sedentary controls. In contrast, high fat feeding (9 weeks, 60% fat) significantly reduced Myo1c by 17% in tibialis anterior muscle. To study Myo1c regulation of glucose uptake, we expressed wild-type Myo1c or Myo1c mutated at the ATPase catalytic site (K111A-Myo1c) in mouse tibialis anterior muscles in vivo and assessed glucose uptake in vivo in the basal state, in response to 15 min of in situ contraction, and 15 min following maximal insulin injection (16.6 units/kg of body weight). Expression of wild-type Myo1c or K111A-Myo1c had no effect on basal glucose uptake. However, expression of wild-type Myo1c significantly increased contraction- and insulin-stimulated glucose uptake, whereas expression of K111A-Myo1c decreased both contraction-stimulated and insulin-stimulated glucose uptake. Neither wild-type nor K111A-Myo1c expression altered GLUT4 expression, and neither affected contraction- or insulin-stimulated signaling proteins. Myo1c is a novel mediator of both insulin-stimulated and contraction-stimulated glucose uptake in skeletal muscle.
Collapse
Affiliation(s)
- Taro Toyoda
- Section on Integrative Physiology and Metabolism, the Joslin Diabetes Center, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Lai YC, Zarrinpashneh E, Jensen J. Additive effect of contraction and insulin on glucose uptake and glycogen synthase in muscle with different glycogen contents. J Appl Physiol (1985) 2010; 108:1106-15. [PMID: 20185632 DOI: 10.1152/japplphysiol.00401.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Insulin and contraction regulate glucose uptake and glycogen synthase (GS) via distinct mechanisms in skeletal muscles, and an additive effect has been reported. Glycogen content is known to influence both contraction- and insulin-stimulated glucose uptake and GS activity. Our study reports that contraction and insulin additively stimulate glucose uptake in rat epitrochlearis muscles with normal (NG) and high (HG) glycogen contents, but the additive effect was only partial. In muscles with low glycogen (LG) content no additive effect was seen, but glucose uptake was higher in LG than in NG and HG during contraction, insulin stimulation, and when the two stimuli were combined. In LG, contraction-stimulated AMP-activated protein kinase (AMPK) activity and insulin-stimulated PKB phosphorylation were higher than in NG and HG, but phosphorylation of Akt substrate of 160 kDa was not elevated correspondingly. GLUT4 content was 50% increased in LG (rats fasted 24 h), which may explain the increased glucose uptake. Contraction and insulin also additively increased GS fractional activity in NG and HG but not in LG. GS fractional activity correlated most strongly with GS Ser641 phosphorylation (R -0.94, P<0.001). GS fractional activity also correlated with GS Ser7,10 phosphorylation, but insulin did not reduce GS Ser7,10 phosphorylation. In conclusion, an additive effect of contraction and insulin on glucose uptake and GS activity occurs in muscles with normal and high glycogen content but not in muscles with low glycogen content. Furthermore, contraction, insulin, and glycogen content all regulate GS Ser641 phosphorylation and GS fractional activity in concert.
Collapse
Affiliation(s)
- Yu-Chiang Lai
- Department of Physiology, National Institute of Occupational Health, Oslo, Norway
| | | | | |
Collapse
|
43
|
Lai YC, Lin FC, Jensen J. Glycogen content regulates insulin- but not contraction-mediated glycogen synthase activation in the rat slow-twitch soleus muscles. Acta Physiol (Oxf) 2009; 197:139-50. [PMID: 19432592 DOI: 10.1111/j.1748-1716.2009.01998.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM The aim of this study was to investigate the effect of glycogen content on glycogen synthase (GS) activation and phosphorylation in the slow-twitch soleus muscles after contraction, during insulin stimulation and when these two stimuli were combined. METHODS Glycogen content was manipulated in vivo with 24 h fasting and fasting followed by 24 h refeeding. Soleus strips were electrically stimulated for 30 min in vitro, and GS activation and phosphorylation were investigated after an additional 30 min incubation with or without insulin. RESULTS Fasting reduced glycogen content in soleus muscle by 40% and refeeding enhanced by 40%, compared to rats with free access to chow. Insulin-stimulated GS fractional activity was inversely correlated with glycogen content (R = -0.95, P < 0.001, n = 24) and rate of glycogen synthesis was also inversely correlated with glycogen content (R = -0.70, P < 0.001, n = 36). After contraction, GS fractional activity was increased to similar levels in muscles with low, normal and high glycogen content; rate of glycogen synthesis after contraction was also similar. After contraction, insulin additively increased GS activation at all glycogen contents. Group means of GS fractional activity was inversely correlated with GS Ser(641) (R = -0.93, P < 0.001) and Ser(645,649,653,657) (R = -0.85, P < 0.001) phosphorylation, but not with Ser(7) phosphorylation. CONCLUSION Glycogen content regulates insulin- but not contraction-stimulated GS activation and glycogen synthesis in soleus muscles. Furthermore, phosphorylation of GS Ser(641) and Ser(645,649,653,657) seems to regulate GS activity in soleus.
Collapse
Affiliation(s)
- Y-C Lai
- Department of Physiology, National Institute of Occupational Health, Oslo, Norway
| | | | | |
Collapse
|
44
|
Winnick JJ, An Z, Moore MC, Ramnanan CJ, Farmer B, Shiota M, Cherrington AD. A physiological increase in the hepatic glycogen level does not affect the response of net hepatic glucose uptake to insulin. Am J Physiol Endocrinol Metab 2009; 297:E358-66. [PMID: 19470836 PMCID: PMC2724107 DOI: 10.1152/ajpendo.00043.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine the effect of an acute increase in hepatic glycogen on net hepatic glucose uptake (NHGU) and disposition in response to insulin in vivo, studies were performed on two groups of dogs fasted 18 h. During the first 4 h of the study, somatostatin was infused peripherally, while insulin and glucagon were replaced intraportally in basal amounts. Hyperglycemia was brought about by glucose infusion, and either saline (n = 7) or fructose (n = 7; to stimulate NHGU and glycogen deposition) was infused intraportally. A 2-h control period then followed, during which the portal fructose and saline infusions were stopped, allowing NHGU and glycogen deposition in the fructose-infused animals to return to rates similar to those of the animals that received the saline infusion. This was followed by a 2-h experimental period, during which hyperglycemia was continued but insulin infusion was increased fourfold in both groups. During the initial 4-h glycogen loading period, NHGU averaged 1.18 +/- 0.27 and 5.55 +/- 0.53 mg x kg(-1) x min(-1) and glycogen synthesis averaged 0.72 +/- 0.24 and 3.98 +/- 0.57 mg x kg(-1) x min(-1) in the saline and fructose groups, respectively (P < 0.05). During the 2-h hyperinsulinemic period, NHGU rose from 1.5 +/- 0.4 and 0.9 +/- 0.2 to 3.1 +/- 0.6 and 2.5 +/- 0.5 mg x kg(-1) x min(-1) in the saline and fructose groups, respectively, a change of 1.6 mg x kg(-1) x min(-1) in both groups despite a significantly greater liver glycogen level in the fructose-infused group. Likewise, the metabolic fate of the extracted glucose (glycogen, lactate, or carbon dioxide) was not different between groups. These data indicate that an acute physiological increase in the hepatic glycogen content does not alter liver glucose uptake and storage under hyperglycemic/hyperinsulinemic conditions in the dog.
Collapse
Affiliation(s)
- Jason J Winnick
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6015, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Volek JS, Fernandez ML, Feinman RD, Phinney SD. Dietary carbohydrate restriction induces a unique metabolic state positively affecting atherogenic dyslipidemia, fatty acid partitioning, and metabolic syndrome. Prog Lipid Res 2008; 47:307-18. [DOI: 10.1016/j.plipres.2008.02.003] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/22/2008] [Accepted: 02/29/2008] [Indexed: 01/14/2023]
|
46
|
Finocchietto P, Barreyro F, Holod S, Peralta J, Franco MC, Méndez C, Converso DP, Estévez A, Carreras MC, Poderoso JJ. Control of muscle mitochondria by insulin entails activation of Akt2-mtNOS pathway: implications for the metabolic syndrome. PLoS One 2008; 3:e1749. [PMID: 18335029 PMCID: PMC2258147 DOI: 10.1371/journal.pone.0001749] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 01/24/2008] [Indexed: 11/19/2022] Open
Abstract
Background In the metabolic syndrome with hyperinsulinemia, mitochondrial inhibition facilitates muscle fat and glycogen accumulation and accelerates its progression. In the last decade, nitric oxide (NO) emerged as a typical mitochondrial modulator by reversibly inhibiting citochrome oxidase and oxygen utilization. We wondered whether insulin-operated signaling pathways modulate mitochondrial respiration via NO, to alternatively release complete glucose oxidation to CO2 and H2O or to drive glucose storage to glycogen. Methodology/Principal Findings We illustrate here that NO produced by translocated nNOS (mtNOS) is the insulin-signaling molecule that controls mitochondrial oxygen utilization. We evoke a hyperinsulinemic-normoglycemic non-invasive clamp by subcutaneously injecting adult male rats with long-lasting human insulin glargine that remains stable in plasma by several hours. At a precise concentration, insulin increased phospho-Akt2 that translocates to mitochondria and determines in situ phosphorylation and substantial cooperative mtNOS activation (+4–8 fold, P<.05), high NO, and a lowering of mitochondrial oxygen uptake and resting metabolic rate (−25 to −60%, P<.05). Comparing in vivo insulin metabolic effects on gastrocnemius muscles by direct electroporation of siRNA nNOS or empty vector in the two legs of the same animal, confirmed that in the silenced muscles disrupted mtNOS allows higher oxygen uptake and complete (U-14C)-glucose utilization respect to normal mtNOS in the vector-treated ones (respectively 37±3 vs 10±1 µmolO2/h.g tissue and 13±1 vs 7.2±1 µmol 3H2O/h.g tissue, P<.05), which reciprocally restricted glycogen-synthesis by a half. Conclusions/Significance These evidences show that after energy replenishment, insulin depresses mitochondrial respiration in skeletal muscle via NO which permits substrates to be deposited as macromolecules; at discrete hyperinsulinemia, persistent mtNOS activation could contribute to mitochondrial dysfunction with insulin resistance and obesity and therefore, to the progression of the metabolic syndrome.
Collapse
Affiliation(s)
- Paola Finocchietto
- Laboratory of Oxygen Metabolism, University Hospital, Buenos Aires, Argentina
- Department of Medicine, University Hospital, University of Buenos Aires, Buenos Aires, Argentina
| | - Fernando Barreyro
- Laboratory of Oxygen Metabolism, University Hospital, Buenos Aires, Argentina
- Department of Medicine, University Hospital, University of Buenos Aires, Buenos Aires, Argentina
| | - Silvia Holod
- Laboratory of Oxygen Metabolism, University Hospital, Buenos Aires, Argentina
- Department of Clinical Biochemistry, School of Pharmacy and Biochemistry, University Hospital, University of Buenos Aires, Buenos Aires, Argentina
| | - Jorge Peralta
- Laboratory of Oxygen Metabolism, University Hospital, Buenos Aires, Argentina
- Department of Medicine, University Hospital, University of Buenos Aires, Buenos Aires, Argentina
| | - María C. Franco
- Laboratory of Oxygen Metabolism, University Hospital, Buenos Aires, Argentina
| | - Carlos Méndez
- Department of Human Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Daniela P. Converso
- Laboratory of Oxygen Metabolism, University Hospital, Buenos Aires, Argentina
| | - Alvaro Estévez
- Burke Medical Research Institute, Cornell University, Ithaca, New York, United States of America
| | - Maria C. Carreras
- Laboratory of Oxygen Metabolism, University Hospital, Buenos Aires, Argentina
- Department of Clinical Biochemistry, School of Pharmacy and Biochemistry, University Hospital, University of Buenos Aires, Buenos Aires, Argentina
| | - Juan J. Poderoso
- Laboratory of Oxygen Metabolism, University Hospital, Buenos Aires, Argentina
- Department of Medicine, University Hospital, University of Buenos Aires, Buenos Aires, Argentina
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
47
|
Hoy AJ, Bruce CR, Cederberg A, Turner N, James DE, Cooney GJ, Kraegen EW. Glucose infusion causes insulin resistance in skeletal muscle of rats without changes in Akt and AS160 phosphorylation. Am J Physiol Endocrinol Metab 2007; 293:E1358-64. [PMID: 17785505 DOI: 10.1152/ajpendo.00133.2007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperglycemia is a defining feature of Type 1 and 2 diabetes. Hyperglycemia also causes insulin resistance, and our group (Kraegen EW, Saha AK, Preston E, Wilks D, Hoy AJ, Cooney GJ, Ruderman NB. Am J Physiol Endocrinol Metab Endocrinol Metab 290: E471-E479, 2006) has recently demonstrated that hyperglycemia generated by glucose infusion results in insulin resistance after 5 h but not after 3 h. The aim of this study was to investigate possible mechanism(s) by which glucose infusion causes insulin resistance in skeletal muscle and in particular to examine whether this was associated with changes in insulin signaling. Hyperglycemia (~10 mM) was produced in cannulated male Wistar rats for up to 5 h. The glucose infusion rate required to maintain this hyperglycemia progressively lessened over 5 h (by 25%, P < 0.0001 at 5 h) without any alteration in plasma insulin levels consistent with the development of insulin resistance. Muscle glucose uptake in vivo (44%; P < 0.05) and glycogen synthesis rate (52%; P < 0.001) were reduced after 5 h compared with after 3 h of infusion. Despite these changes, there was no decrease in the phosphorylation state of multiple insulin signaling intermediates [insulin receptor, Akt, AS160 (Akt substrate of 160 kDa), glycogen synthase kinase-3beta] over the same time course. In isolated soleus strips taken from control or 1- or 5-h glucose-infused animals, insulin-stimulated 2-deoxyglucose transport was similar, but glycogen synthesis was significantly reduced in the 5-h muscle sample (68% vs. 1-h sample; P < 0.001). These results suggest that the reduced muscle glucose uptake in rats after 5 h of acute hyperglycemia is due more to the metabolic effects of excess glycogen storage than to a defect in insulin signaling or glucose transport.
Collapse
Affiliation(s)
- Andrew J Hoy
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
48
|
Cuthbertson DJ, Babraj JA, Mustard KJW, Towler MC, Green KA, Wackerhage H, Leese GP, Baar K, Thomason-Hughes M, Sutherland C, Hardie DG, Rennie MJ. 5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside acutely stimulates skeletal muscle 2-deoxyglucose uptake in healthy men. Diabetes 2007; 56:2078-84. [PMID: 17513706 DOI: 10.2337/db06-1716] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Activation of AMP-activated protein kinase (AMPK) in rodent muscle by exercise, metformin, 5-aminoimidazole-4-carboxamide 1-beta-d-ribofuranoside (AICAR), and adiponectin increases glucose uptake. The aim of this study was to determine whether AICAR stimulates muscle glucose uptake in humans. We studied 29 healthy men (aged 26 +/- 8 years, BMI 25 +/- 4 kg/m(2) [mean +/- SD]). Rates of muscle 2-deoxyglucose (2DG) uptake were determined by measuring accumulation of total muscle 2DG (2DG and 2DG-6-phosphate) during a primed, continuous 2DG infusion. The effects of AICAR and exercise on muscle AMPK activity/phosphorylation and 2DG uptake were determined. Whole-body glucose disposal was compared before and during AICAR with the euglycemic-hyperinsulinemic clamp. Muscle 2DG uptake was linear over 9 h (R(2) = 0.88 +/- 0.09). After 3 h, 2DG uptake increased 2.1 +/- 0.8- and 4.7 +/- 1.7-fold in response to AICAR or bicycle exercise, respectively. AMPK alpha(1) and alpha(2) activity or AMPK phosphorylation was unchanged after 20 min or 3 h of AICAR, but AMPK phosphorylation significantly increased immediately and 3 h after bicycle exercise. AICAR significantly increased phosphorylation of extracellular signal-regulated kinase 1/2, but phosphorylation of beta-acetyl-CoA carboxylase, glycogen synthase, and protein kinase B or insulin receptor substrate-1 level was unchanged. Mean whole-body glucose disposal increased by 7% with AICAR from 9.3 +/- 0.6 to 10 +/- 0.6 mg x kg(-1) x min(-1) (P < 0.05). In healthy people, AICAR acutely stimulates muscle 2DG uptake with a minor effect on whole-body glucose disposal.
Collapse
Affiliation(s)
- Daniel J Cuthbertson
- Department of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Venables MC, Shaw CS, Jeukendrup AE, Wagenmakers AJM. Effect of acute exercise on glucose tolerance following post-exercise feeding. Eur J Appl Physiol 2007; 100:711-7. [PMID: 17624545 DOI: 10.1007/s00421-007-0464-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2007] [Indexed: 11/30/2022]
Abstract
It is well documented that a single bout of endurance exercise (EE) can improve insulin sensitivity, whereas relatively little is known about the acute effects of resistance exercise (RE) in humans. The objective of this study is to investigate the insulin and glucose responses to an oral glucose tolerance test (OGTT) following a high intensity bout of either EE or RE followed by post-exercise carbohydrate-protein hydrolysate ingestion. Eighteen participants were divided into two groups: a group in which nine participants completed 1 h of EE (cycle ergometry at 75% W (max)) and a RE group in which nine participants completed a RE circuit (3 sets of 10 repetitions). Participants ingested 1.5 l of a carbohydrate (200 g)-protein hydrolysate (50 g) beverage within 1 h of exercise completion. An OGTT was performed 6 h post-exercise. On the control day the endurance and resistance groups performed the above protocol without the prior exercise (CEE or CRE). The control and exercise days were counterbalanced. RE reduced plasma glucose AUC (822 +/- 68 vs. 694 +/- 23 mmol l(-1).120 min; CRE vs. RE, respectively; P < 0.05) but EE did not lead to a change (784 +/- 40 vs. 835 +/- 59 mmol l(-1).120 min; CEE vs. EE, respectively). Plasma insulin AUC remained unchanged compared to the control in both the RE and EE groups. The results suggest that the benefit of RE on glucose tolerance following CHO intake remains for 6 h even when a carbohydrate-protein hydrolysate beverage was ingested within 1 h after exercise, while the well documented benefit of EE was not observed.
Collapse
Affiliation(s)
- Michelle C Venables
- Human Performance Laboratory, School of Sport and Exercise Sciences, The University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | |
Collapse
|
50
|
Litherland GJ, Morris NJ, Walker M, Yeaman SJ. Role of glycogen content in insulin resistance in human muscle cells. J Cell Physiol 2007; 211:344-52. [PMID: 17167773 DOI: 10.1002/jcp.20942] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We have used primary human muscle cell cultures to investigate the role of glycogen loading in cellular insulin resistance. Insulin pre-treatment for 2 h markedly impaired insulin signaling, as assessed by protein kinase B (PKB) phosphorylation. In contrast, insulin-dependent glycogen synthesis, glycogen synthase (GS) activation, and GS sites 3 de-phosphorylation were impaired only after 5 h of insulin pre-treatment, whereas 2-deoxyglucose transport was only decreased after 18 h pre-treatment. Insulin-resistant glycogen synthesis was associated closely with maximal glycogen loading. Both glucose limitation and 5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside (AICAR) treatment during insulin pre-treatment curtailed glycogen accumulation, and concomitantly restored insulin-sensitive glycogen synthesis and GS activation, although GS de-phosphorylation and PKB phosphorylation remained impaired. Conversely, glycogen super-compensation diminished insulin-sensitive glycogen synthesis and GS activity. Insulin acutely promoted GS translocation to particulate subcellular fractions; this was abolished by insulin pre-treatment, as was GS dephosphorylation therein. Limiting glycogen accumulation during insulin pre-treatment re-instated GS dephosphorylation in particulate fractions, whereas glycogen super-compensation prevented insulin-stimulated GS translocation and dephosphorylation. Our data suggest that diminished insulin signaling alone is insufficient to impair glucose disposal, and indicate a role for glycogen accumulation in inducing insulin resistance in human muscle cells.
Collapse
Affiliation(s)
- Gary J Litherland
- Institute of Cellular Medicine, The Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | | | | | | |
Collapse
|