1
|
Torshizi FF, Heravi RM, Javadmanesh A. Effect of Zinc on Blood Biochemical and mTOR Gene Expression in Rats with Polycystic Ovarian. Biol Trace Elem Res 2024:10.1007/s12011-024-04452-6. [PMID: 39614065 DOI: 10.1007/s12011-024-04452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/15/2024] [Indexed: 12/01/2024]
Abstract
Zinc (Zn) is a significant element of the reproductive system and is associated with several enzymes that regulate different metabolic pathways. Organic Zn can significantly affect polycystic ovarian syndrome (PCOS) pathogenesis. Insulin resistance (IR) is a common complication of PCOS. Mammalian target of rapamycin (mTOR), which controls crucial cell functions, is regulated by insulin and nutrients. It has two complexes, namely, mTORC1 and mTORC2. mTOR associates with its binding partner's regulatory associated protein of mTOR (Raptor) and rapamycin-insensitive companion of mTOR (Rictor), which form these distinct complexes, respectively, and is activated in PCOS. This research aimed to evaluate the effect of Zn on the expression of mTOR signaling genes (Raptor and Rictor) and IR in PCOS model rats. Different Zn supplements, including standard diet (SD): (control - or + , SD without supplementation), Zn25, Zn75, and Zn175 (daily given three levels of 25, 75, and 175 mg Zn methionine (ZnMet)/kg for 6 weeks, respectively), were applied to the control and PCOS groups. Fasting glucose (FG), fasting insulin (FI), IR indices, and Raptor and Rictor expression levels were measured in both groups. The results showed that PCOS induction dramatically increased FG, FI, IR indices, and mTOR-related gene expression; however, different Zn supplementation concentrations, especially at 75 mg/kg, reduced the effects of PCOS induction. Organic Zn collectively exerted positive effects on Estradiol Valerate (EV)-induced PCOS rats by reducing IR and mTOR signaling gene (i.e., Raptor and Rictor) expression. Moreover, this study revealed a correlation between Zn and IR. Therefore, Zn supplementation could be a valuable therapeutic method for treating PCOS.
Collapse
Affiliation(s)
- Faeze Fazel Torshizi
- Animal Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Reza Majidzadeh Heravi
- Animal Sciences Department, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Ali Javadmanesh
- Animal Sciences Department, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
2
|
Khajeh M, Hassanizadeh S, Pourteymour Fard Tabrizi F, Hassanizadeh R, Vajdi M, Askari G. Effect of Zinc Supplementation on Lipid Profile and Body Composition in Patients with Type 2 Diabetes Mellitus: A GRADE-Assessed Systematic Review and Dose-Response Meta-analysis. Biol Trace Elem Res 2024; 202:4877-4892. [PMID: 38224402 DOI: 10.1007/s12011-024-04059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
The aim of this systematic review and meta-analysis of randomized controlled trials (RCTs) is to investigate the overall effects of zinc supplementation on lipid profile and body composition such as body weight (BW), body mass index (BMI), triglycerides (TG), total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C), and high-density lipoprotein-cholesterol (HDL-C) in patients with type 2 diabetes mellitus (T2DM). Scopus, Web of Science, PubMed, and Embase databases were searched from inception through October, 2023. The I2 and Cochran's Q tests were used to assess heterogeneity between studies. Nineteen RCTs (n = 1357 participants) were included in the meta-analysis. Zinc supplementation significantly reduced TG (WMD = - 17.41 mg/dL; 95% CI: - 22.60, - 12.22; P < 0.001), TC (WMD: - 19.60 mg/dL; 95% CI: - 28.46, - 10.73, P < 0.001), LDL-C (WMD = - 8.80 mg/dL; 95% CI: - 14.80, - 2.81; P = 0.004), and BMI (WMD = - 0.53 kg/m2; 95% CI: - 1.05, - 0.01; P = 0.046) but not BW (WMD: - 0.51 kg, 95 % CI: - 1.99, 0.97, P = 0.498). Moreover, zinc supplementation increased HDL-C (WMD = 4.82 mg/dL; 95% CI: 0.88, 8.76; P = 0.016) in patients with T2DM. Our results propose that zinc supplementation may be an effective strategy for improving lipid profile and body composition in patients with T2DM.
Collapse
Affiliation(s)
- Mahsa Khajeh
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Hassanizadeh
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Reza Hassanizadeh
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Mahdi Vajdi
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Gholamreza Askari
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Nazari M, Ashtary-Larky D, Nikbaf-Shandiz M, Goudarzi K, Bagheri R, Dolatshahi S, Omran HS, Amirani N, Ghanavati M, Asbaghi O. Zinc supplementation and cardiovascular disease risk factors: A GRADE-assessed systematic review and dose-response meta-analysis. J Trace Elem Med Biol 2023; 79:127244. [PMID: 37399684 DOI: 10.1016/j.jtemb.2023.127244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND AND OBJECTIVE A deficit in zinc has been related to a higher probability of developing cardiovascular diseases (CVDs). The anti-inflammatory and anti-oxidative capabilities of zinc may have a wide range of therapeutic impacts on CVDs. We conducted a comprehensive systematic review and meta-analysis of the possible impacts that zinc supplementation may have on the risk factors associated with CVDs. METHODS To identify eligible randomized clinical trials (RCTs) evaluating the effects of zinc supplementation on CVDs risk factors, electronic databases including PubMed, Web of Science, and Scopus were systematically searched up to January 2023. The heterogeneity of trials was checked using the I2 statistic. According to the heterogeneity tests, random effects models were estimated and pooled data were defined as the weighted mean difference (WMD) with a 95% confidence interval (CI). RESULTS Of 23165 initial records, 75 studies that met inclusion criteria were analyzed in this meta-analysis. The pooled findings indicated the significant lowering effects of zinc supplementation on triglycerides (TG), total cholesterol (TC), fasting blood glucose (FBG), Hemoglobin A1C (HbA1C), Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), C-reactive protein (CRP), interleukin-6 (IL-6), Tumor necrosis factor-α (TNF-α), nitric oxide (NO), malondialdehyde (MDA), total antioxidant capacity (TAC), and glutathione (GSH), with no noticeable effects on low-density lipoprotein (LDL), high-density lipoprotein (HDL), insulin, systolic blood pressure (SBP), diastolic blood pressure (DBP), aspartate transaminase (AST), and Alanine aminotransferase (ALT). CONCLUSION Overall, zinc supplementation may boost recognized coronary risk factors that contribute to the development of CVDs. Future research should be conducted to bolster our results.
Collapse
Affiliation(s)
- Matin Nazari
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Kian Goudarzi
- Faculty of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Iran
| | - Sina Dolatshahi
- Faculty of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Hossein Salehi Omran
- Faculty of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Niusha Amirani
- Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Matin Ghanavati
- National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Sui L, Du Q, Romer A, Su Q, Chabosseau PL, Xin Y, Kim J, Kleiner S, Rutter GA, Egli D. ZnT8 Loss of Function Mutation Increases Resistance of Human Embryonic Stem Cell-Derived Beta Cells to Apoptosis in Low Zinc Condition. Cells 2023; 12:903. [PMID: 36980244 PMCID: PMC10047077 DOI: 10.3390/cells12060903] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
The rare SLC30A8 mutation encoding a truncating p.Arg138* variant (R138X) in zinc transporter 8 (ZnT8) is associated with a 65% reduced risk for type 2 diabetes. To determine whether ZnT8 is required for beta cell development and function, we derived human pluripotent stem cells carrying the R138X mutation and differentiated them into insulin-producing cells. We found that human pluripotent stem cells with homozygous or heterozygous R138X mutation and the null (KO) mutation have normal efficiency of differentiation towards insulin-producing cells, but these cells show diffuse granules that lack crystalline zinc-containing insulin granules. Insulin secretion is not compromised in vitro by KO or R138X mutations in human embryonic stem cell-derived beta cells (sc-beta cells). Likewise, the ability of sc-beta cells to secrete insulin and maintain glucose homeostasis after transplantation into mice was comparable across different genotypes. Interestingly, sc-beta cells with the SLC30A8 KO mutation showed increased cytoplasmic zinc, and cells with either KO or R138X mutation were resistant to apoptosis when extracellular zinc was limiting. These findings are consistent with a protective role of zinc in cell death and with the protective role of zinc in T2D.
Collapse
Affiliation(s)
- Lina Sui
- Departments of Pediatrics, Naomi Berrie Diabetes Center, Obstetrics and Gynecology, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (Q.D.)
| | - Qian Du
- Departments of Pediatrics, Naomi Berrie Diabetes Center, Obstetrics and Gynecology, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (Q.D.)
| | - Anthony Romer
- Departments of Pediatrics, Naomi Berrie Diabetes Center, Obstetrics and Gynecology, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (Q.D.)
| | - Qi Su
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - Yurong Xin
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Jinrang Kim
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Sandra Kleiner
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Guy A. Rutter
- CR-CHUM, Faculté de Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Section of Cell Biology, Hammersmith Hospital, Imperial College, London WI2 ONN, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Dieter Egli
- Departments of Pediatrics, Naomi Berrie Diabetes Center, Obstetrics and Gynecology, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (Q.D.)
| |
Collapse
|
5
|
Zhong J, Liu L, Zhang L, Xu Z, Peng L, Zhao X, Yang Q, Yang T, Xu D, Hong F. Association of Urinary Zinc Concentrations with Dyslipidemia and Its Subtypes: Baseline Data from the Chinese Multi-Ethnic Cohort (CMEC) Study. Biol Trace Elem Res 2022:10.1007/s12011-022-03454-6. [PMID: 36284051 DOI: 10.1007/s12011-022-03454-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/17/2022] [Indexed: 11/02/2022]
Abstract
This study elucidates the association between urinary zinc concentration and the risk of developing dyslipidemia and its subtypes in China's ethnic minority residents. Based on the baseline survey data of the Chinese Multi-Ethnic Cohort (CMEC) study, 10,620 subjects were included in the study. Logistic regression analysis evaluated the relationship between urinary zinc concentration and dyslipidemia and its subtypes. After adjustment, compared with urinary zinc concentration quartile 1 (Q1), the odds ratios (ORs) and 95% confidence intervals (95% CIs) of dyslipidemia participants in the quartile 2 (Q2), quartile 3 (Q3), and quartile 4 (Q4) groups were 1.091 (0.963, 1.237), 1.151 (1.051, 1.304), and 1.393 (1.230, 1.579), respectively (P for trend < 0.001). While that of hypertriglyceridemia participants in the Q2, Q3, and Q4 groups were 1.130 (0.979, 1.306), 1.283 (1.113, 1.480), and 1.483 (1.287, 1.709), respectively (P for trend < 0.001). Lastly, the ORs and 95% CIs of hyperbetalipoproteinemia participants in the Q2, Q3, and Q4 groups were 1.166 (0.945, 1.439), 1.238 (1.007, 1.522), and 1.381 (1.126, 1.695), respectively (P for trend < 0.002). This study found that urinary zinc concentrations were not associated with hypercholesterolemia and hypoalphalipoproteinemia. The dose-response relationship was non-linear between urinary zinc concentration and dyslipidemia, hypertriglyceridemia and hyperbetalipoproteinemia (P for trend < 0.001). In the stratified analysis, urinary zinc levels were positively associated with the risk of dyslipidemia, hypertriglyceridemia, and hyperbetalipoproteinemia in male, ≥ 60 years old, Miao nationality, hypertension, diabetes, and BMI ≥ 24.0 kg/m2 subgroups. Our study provides some possible evidence that elevated urinary zinc concentrations are associated with an increased risk of dyslipidemia, hypertriglyceridemia, hyperbetalipoproteinemia.
Collapse
Affiliation(s)
- Jianqin Zhong
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Leilei Liu
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Linyuan Zhang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Zixuan Xu
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Lian Peng
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Xiaolan Zhao
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Qianyuan Yang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Tingting Yang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Degan Xu
- Guiyang Center for Disease Control and Prevention, Guiyang, 550003, China
| | - Feng Hong
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
6
|
Hernández-Mendoza H, Martínez-Navarro I, Hernández-Ochoa E, Espinoza-Ruiz M, Lugo-Trampe A, Trujillo-Murillo KDC, López-García MA, Rios-Lugo MJ, Chang-Rueda C. Serum zinc levels are associated with obesity and low-density lipoprotein cholesterol in Mexican adults. J Trace Elem Med Biol 2022; 73:127002. [PMID: 35623225 DOI: 10.1016/j.jtemb.2022.127002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/24/2022] [Accepted: 05/17/2022] [Indexed: 11/15/2022]
Abstract
PURPOSE Little is known about the association between serum zinc (Zn) levels and obesity in the Mexican population. Therefore, we tested the association between serum Zn levels, obesity status, and serum lipid levels in a sample of Mexican adults. METHODS Anthropometric data and serum levels of total cholesterol, high- and low-density lipoprotein cholesterol (HDL-C and LDL-C, respectively), and triglycerides were analyzed in 96 Mexican adults. Serum Zn was measured with inductively coupled plasma mass spectrometry. An individual data meta-analysis of the association between serum Zn, overweight, and obesity status was performed in 172 adults from two different provinces in Mexico. RESULTS Serum Zn was negatively associated with body mass index (BMI, β = -0.034 ± 0.013, p = 2.0 ×10-6) and obesity (odds ratio [OR]= 0.990, 95% confidence interval [CI]= 0.980-0.999, p = 3.4 ×10-5). The association between Zn level and obesity in Mexican adults was confirmed with an individual data meta-analysis (OR= 0.977, 95% CI= 0.966-0.988, p = 3.4 ×10-5). In addition, a significant interaction effect between serum Zn level and sex was observed on LDL-C level (β = 7.010 ± 3.295, p = 0.037). Serum Zn was negatively associated with LDL-C levels in women (β = -0.188 ± 0.074, p = 0.016). CONCLUSION Our results confirm the negative association of serum Zn level with obesity. For the first time, we show a sex-specific association between serum Zn and LDL-C levels in a Mexican population. However, further studies are needed in larger and more varied Mexican cohorts to replicate and confirm our findings.
Collapse
Affiliation(s)
- Héctor Hernández-Mendoza
- Instituto de Investigación de Zonas Desérticas, UASLP, Altair 200, CP 78377 San Luis, S.L.P., Mexico; Universidad del Centro de México, Capitán Caldera 75, CP 78250 San Luis, S.L.P., Mexico
| | - Israel Martínez-Navarro
- Sección de Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de Salud y Biomedicina, UASLP, Avda Sierra Leona 550, CP 78210 San Luis, S.L.P., Mexico
| | - Edduin Hernández-Ochoa
- Instituto de Investigación de Zonas Desérticas, UASLP, Altair 200, CP 78377 San Luis, S.L.P., Mexico; Facultad de Ciencias Químicas, Campus IV, Universidad Autónoma de Chiapas, Carretera a Puerto Madero Km 1.5, CP 30580 Tapachula, Chiapas, Mexico
| | - Marisol Espinoza-Ruiz
- Facultad de Ciencias Químicas, Campus IV, Universidad Autónoma de Chiapas, Carretera a Puerto Madero Km 1.5, CP 30580 Tapachula, Chiapas, Mexico
| | - Angel Lugo-Trampe
- Escuela de Medicina Humana, Campus IV, Universidad Autónoma de Chiapas, Carretera a Puerto Madero Km 1.5, CP 30580 Tapachula, Chiapas, Mexico
| | - Karina Del C Trujillo-Murillo
- Escuela de Medicina Humana, Campus IV, Universidad Autónoma de Chiapas, Carretera a Puerto Madero Km 1.5, CP 30580 Tapachula, Chiapas, Mexico
| | - Maximiliano Arahon López-García
- Escuela de Medicina Humana, Campus IV, Universidad Autónoma de Chiapas, Carretera a Puerto Madero Km 1.5, CP 30580 Tapachula, Chiapas, Mexico
| | - María Judith Rios-Lugo
- Sección de Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de Salud y Biomedicina, UASLP, Avda Sierra Leona 550, CP 78210 San Luis, S.L.P., Mexico; Unidad de Posgrado, Facultad de Enfermería y Nutrición, UASLP, Avda. Niño Artillero 130, CP 78210 San Luis Potosí, S.L.P., Mexico.
| | - Consuelo Chang-Rueda
- Facultad de Ciencias Químicas, Campus IV, Universidad Autónoma de Chiapas, Carretera a Puerto Madero Km 1.5, CP 30580 Tapachula, Chiapas, Mexico.
| |
Collapse
|
7
|
Hosseini R, Karajibani M, Montazerifar F, Shahraki E, Babakhani K, Mohammad Mokhtari A, Sahebkar A. The impact of zinc supplementation on galectin-3 and metabolic markers in diabetic patients on hemodialysis: A randomized, double-blind, placebo-controlled trial. J Diabetes Metab Disord 2022; 21:743-750. [PMID: 35673488 PMCID: PMC9167385 DOI: 10.1007/s40200-022-01044-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/15/2022] [Indexed: 11/25/2022]
Abstract
Purpose There is little information about the association between zinc sulfate (ZnSO4) supplementation and metabolic profiles in zinc-deficient diabetic patients on hemodialysis (DHPs). Therefore, we aimed to investigate the association between ZnSO4 supplementation and serum levels of galectin-3 (Gal-3) and cardiometabolic parameters in zinc-deficient DHPs. Methods In the present randomized double-blind placebo-controlled clinical trial, 46 zinc-deficient DHPs (35-62 years) were included and assigned to receive either 220 mg/d ZnSO4 or placebo for 8 weeks. Serum levels of Gal-3, lipid profile, and blood pressure (BP) were assessed at baseline and the end of trial. Results We found a significant effect of ZnSO4 intake on the reduction of serum Gal-3 (P = < 0.001), triglycerides (P = < 0.001), total cholesterol (P = < 0.001), low-density lipoprotein cholesterol (P = < 0.001) and increased high-density lipoprotein cholesterol (P = < 0.001) as compared to the control group. Additionally, systolic blood pressure (SBP) (P = 0.006) and diastolic blood pressure (DBP) (P = 0.01) were significantly reduced following 8 weeks of ZnSO4 supplementation. Conclusion Taken together, 220 mg ZnSO4 supplementation per day for 8 weeks among zinc-deficient DHPs had beneficial effects on Gal-3 and metabolic profiles. Iranian Registry of Clinical Trials Identifier IRCT20191217045765N1, date of registration: 2020-02-09.
Collapse
Affiliation(s)
- Razieh Hosseini
- Department of Nutrition, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mansour Karajibani
- Health Promotion Research Center, Department of Nutrition, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Farzaneh Montazerifar
- Pregnancy Health Research Center, Department of Nutrition, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Elham Shahraki
- Genetics of Non-Communicable Disease Research Center, Department of Nephrology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Khatereh Babakhani
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Mohammad Mokhtari
- Department of Epidemiology and Biostatistics, School of Health, Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Choi S, Kang D, Kang J, Hong DK, Kang BS, Kho AR, Choi BY, Huh SO, Suh SW. The Role of Zinc in Axon Formation via the mTORC1 Pathway. Mol Neurobiol 2022; 59:3206-3217. [PMID: 35293604 DOI: 10.1007/s12035-022-02785-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/15/2022] [Indexed: 10/18/2022]
Abstract
Zinc is an essential micronutrient required for proper function during neuronal development because it can modulate neuronal function and structure. A fully functional description of zinc in axonal processing in the central nervous system remains elusive. Here, we define the role of intracellular zinc in axon formation and elongation, involving the mammalian target of rapamycin complex 1 (mTORC1). To investigate the involvement of zinc in axon growth, we performed an ex vivo culture of mouse hippocampal neurons and administrated ZnCl2 as a media supplement. At 2 days in vitro, the administration of zinc induced the formation of multiple and elongated axons in the ex vivo culture system. A similar outcome was witnessed in callosal projection neurons in a developing mouse brain. Treatment with extracellular zinc activated the mTORC1 signaling pathway in mouse hippocampal neuronal cultures. The zinc-dependent enhancement of neuronal processing was inhibited either by the deactivation of mTORC1 with RAPTOR shRNA or by mTOR-insensitive 4EBP1 mutants. Additionally, zinc-dependent mTORC1 activation enhanced the axonal translation of TC10 and Par3 may be responsible for axonal growth. We identified a promising role of zinc in controlling axonogenesis in the developing brain, which, in turn, may indicate a novel structural role of zinc in the cytoskeleton and developing neurons.
Collapse
Affiliation(s)
- Seunghyuk Choi
- Department of Physiology, College of Medicine, Hallym University, Hallymdaehak-gil 1, Chuncheon, 24252, Republic of Korea
| | - Donghyeon Kang
- Department of Physiology, College of Medicine, Hallym University, Hallymdaehak-gil 1, Chuncheon, 24252, Republic of Korea
| | - Jieun Kang
- Department of Pharmacology, College of Medicine, Hallym University, Hallymdaehak-gil 1, Chuncheon, 24252, Republic of Korea
| | - Dae Ki Hong
- Department of Physiology, College of Medicine, Hallym University, Hallymdaehak-gil 1, Chuncheon, 24252, Republic of Korea
| | - Beom Seok Kang
- Department of Physiology, College of Medicine, Hallym University, Hallymdaehak-gil 1, Chuncheon, 24252, Republic of Korea
| | - A Ra Kho
- Department of Physiology, College of Medicine, Hallym University, Hallymdaehak-gil 1, Chuncheon, 24252, Republic of Korea
| | - Bo Young Choi
- Department of Physiology, College of Medicine, Hallym University, Hallymdaehak-gil 1, Chuncheon, 24252, Republic of Korea
| | - Sung-Oh Huh
- Department of Pharmacology, College of Medicine, Hallym University, Hallymdaehak-gil 1, Chuncheon, 24252, Republic of Korea
| | - Sang Won Suh
- Department of Physiology, College of Medicine, Hallym University, Hallymdaehak-gil 1, Chuncheon, 24252, Republic of Korea.
| |
Collapse
|
9
|
Karandish M, Mozaffari-Khosravi H, Mohammadi SM, Cheraghian B, Azhdari M. Curcumin and zinc co-supplementation along with a loss-weight diet can improve lipid profiles in subjects with prediabetes: a multi-arm, parallel-group, randomized, double-blind placebo-controlled phase 2 clinical trial. Diabetol Metab Syndr 2022; 14:22. [PMID: 35090529 PMCID: PMC8796182 DOI: 10.1186/s13098-022-00792-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diabetes is one of the major public health concerns. Prediabetes can increase the risk of developing some non-communicable diseases such as type 2 diabetes. Given the increasing trend of prediabetes, it is critical to control it and prevent its complications. Curcumin is a major bioactive component of turmeric. Zinc is an antioxidant nutrient. The present trial aimed to evaluate the effect of curcumin and zinc co-supplementation along with a loss-weight diet on serum lipid profiles in overweight or obese patients with prediabetes. METHODS Eighty-four participants were randomized to four groups (curcumin (500 mg/day), zinc (30 mg/day), "curcumin and zinc", and placebo) for 90 days. Serum total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides (TG), non-HDL, HDL/LDL ratio, weight, BMI, waist circumstance (WC), hip circumstance (HC), physical activity (PA) and dietary intake were determined pre and post-intervention. This study will be conducted at Yazd Diabetes Research Clinic, Shahid Sadoughi University of Medical Sciences. RESULTS Totally, 82 participants were included in the final analysis. After the adjusted PA effect, changes in serum TG (adjusted p = 0.001), LDL (adjusted p = 0.035), non-HDL (adjusted p = 0.003), HDL/LDL ratio (adjusted p = 0.002), and HDL (adjusted p < 0.0001) revealed a significant difference between the groups. However, the changes in weight (adjusted p = 0.004) and BMI (adjusted p = 0.006) were significant but the changes in dietary intake, PA, WC, and HC were non-significant (adjusted p ≥ 0.05). Despite that there was a significant difference for post-intervention HDL levels (adjusted p = 0.016), other lipid profiles showed no significant difference (adjusted p ≥ 0.05). CONCLUSION The beneficial effects of "curcumin and zinc" co-supplementation was reported for the changes of some lipid profiles (TG, LDL, HDL, non-HDL, and HDL to LDL ratio), BMI, and weight with no positive effects on TC, dietary intake, PA, WC, and HC. Therefore, it may play a potential role in the prevention of macro and microvascular complications. Trial registration The project is a registered clinical trial (Registration number: IRCT20190902044671N1, Iranian Registry of Clinical Trials (IRCT), registered October 11, 2019.
Collapse
Affiliation(s)
- Majid Karandish
- Nutrition and Metabolic Diseases Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Mozaffari-Khosravi
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Seyed Mohammad Mohammadi
- Associate Professor of Endocrinology & Metabolism, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Bahman Cheraghian
- Alimentary Tract Research Center, Clinical Sciences Research Institute, Department of Biostatistics and Epidemiology, School of Health Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Azhdari
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran.
| |
Collapse
|
10
|
Asbaghi O, Sadeghian M, Fouladvand F, Panahande B, Nasiri M, Khodadost M, Shokri A, Pirouzi A, Sadeghi O. Effects of zinc supplementation on lipid profile in patients with type 2 diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis 2020; 30:1260-1271. [PMID: 32451277 DOI: 10.1016/j.numecd.2020.03.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/06/2020] [Accepted: 03/20/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIM Findings on the effects of zinc supplementation on the lipid profile in patients with type 2 diabetes mellitus (T2DM) are conflicting. The current comprehensive systematic review and meta-analysis aimed to summarize available evidence in this regard. METHODS AND RESULTS After a systematic search in the online databases, we included the randomized controlled trials (RCTs) investigating the effect of zinc supplementation on lipid profile [total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglyceride (TG)] in patients with T2DM. Altogether, 9 studies with a total sample size of 424 patients with T2DM were included in the analysis. Combining 9 effect sizes from 9 RCTs, we found a significant lowering effect of zinc supplementation on serum levels of TG (weighted mean difference (WMD): -17.08, 95% CI: -30.59, -3.58 mg/dL, P = 0.01) and TC (WMD: -26.16, 95% CI: -49.69, -2.62 mg/dL, P = 0.02). Although the overall effect of zinc supplementation on LDL-C levels was not significant, a beneficial effect was seen in studies that administered <100 mg/d zinc. Based on the non-linear dose-response analysis, a greater reduction in serum levels of TC and LDL-C following zinc supplementation was seen at <12 weeks' duration of intervention. Unlike the overall effect size, we found a significant increasing effect of zinc supplementation on serum HDL-C concentrations in most subgroups of RCTs according to the subgroup analyses. CONCLUSION We found that zinc supplementation may beneficially influence lipid profile in patients with T2DM.
Collapse
Affiliation(s)
- Omid Asbaghi
- Gerash University of Medical Sciences, Gerash, Iran; Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Mehdi Sadeghian
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran.
| | - Faezeh Fouladvand
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Bahman Panahande
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| | - Morteza Nasiri
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Operating Room Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mahmoud Khodadost
- Department of Epidemiology, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Azad Shokri
- Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | | | - Omid Sadeghi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Kondaiah P, Yaduvanshi PS, Sharp PA, Pullakhandam R. Iron and Zinc Homeostasis and Interactions: Does Enteric Zinc Excretion Cross-Talk with Intestinal Iron Absorption? Nutrients 2019; 11:nu11081885. [PMID: 31412634 PMCID: PMC6722515 DOI: 10.3390/nu11081885] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 01/01/2023] Open
Abstract
Iron and zinc are essential micronutrients required for growth and health. Deficiencies of these nutrients are highly prevalent among populations, but can be alleviated by supplementation and food fortification. Cross-sectional studies in humans showed positive association of serum zinc levels with hemoglobin and markers of iron status. Dietary restriction of zinc or intestinal specific conditional knock out of ZIP4 (SLC39A4), an intestinal zinc transporter, in experimental animals demonstrated iron deficiency anemia and tissue iron accumulation. Similarly, increased iron accumulation has been observed in cultured cells exposed to zinc deficient media. These results together suggest a potential role of zinc in modulating intestinal iron absorption and mobilization from tissues. Studies in intestinal cell culture models demonstrate that zinc induces iron uptake and transcellular transport via induction of divalent metal iron transporter-1 (DMT1) and ferroportin (FPN1) expression, respectively. It is interesting to note that intestinal cells are exposed to very high levels of zinc through pancreatic secretions, which is a major route of zinc excretion from the body. Therefore, zinc appears to be modulating the iron metabolism possibly via regulating the DMT1 and FPN1 levels. Herein we critically reviewed the available evidence to hypothesize novel mechanism of Zinc-DMT1/FPN1 axis in regulating intestinal iron absorption and tissue iron accumulation to facilitate future research aimed at understanding the yet elusive mechanisms of iron and zinc interactions.
Collapse
Affiliation(s)
- Palsa Kondaiah
- Biochemistry Division, National Institute of Nutrition, ICMR, Hyderabad 500 007, India
| | | | - Paul A Sharp
- Department of Nutritional Sciences, Kings College London, London SE1 9NH, UK.
| | - Raghu Pullakhandam
- Biochemistry Division, National Institute of Nutrition, ICMR, Hyderabad 500 007, India.
| |
Collapse
|
12
|
Allahyari S, Chaji M, Mamuie M. Investigation changes in production, some blood hormones, and metabolites, serum and colostrum IgG of calves of Holstein cows fed with two levels of zinc supplement in transitional period. JOURNAL OF APPLIED ANIMAL RESEARCH 2019. [DOI: 10.1080/09712119.2019.1653301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sina Allahyari
- Department of Animal Science, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Ahvaz, Iran
| | - Morteza Chaji
- Department of Animal Science, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Ahvaz, Iran
| | - Morteza Mamuie
- Department of Animal Science, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Ahvaz, Iran
| |
Collapse
|
13
|
Reddy VS, Palika R, Ismail A, Pullakhandam R, Reddy GB. Nutrigenomics: Opportunities & challenges for public health nutrition. Indian J Med Res 2019; 148:632-641. [PMID: 30666988 PMCID: PMC6366269 DOI: 10.4103/ijmr.ijmr_1738_18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The hierarchical information flow through DNA-RNA-protein-metabolite collectively referred to as ‘molecular fingerprint’ defines both health and disease. Environment and food (quality and quantity) are the key factors known to affect the health of an individual. The fundamental concepts are that the transition from a healthy condition to a disease phenotype must occur by concurrent alterations in the genome expression or by differences in protein synthesis, function and metabolites. In other words, the dietary components directly or indirectly modulate the molecular fingerprint and understanding of which is dealt with nutrigenomics. Although the fundamental principles of nutrigenomics remain similar to that of traditional research, a collection of comprehensive targeted/untargeted data sets in the context of nutrition offers the unique advantage of understanding complex metabolic networks to provide a mechanistic understanding of data from epidemiological and intervention studies. In this review the challenges and opportunities of nutrigenomic tools in addressing the nutritional problems of public health importance are discussed. The application of nutrigenomic tools provided numerous leads on biomarkers of nutrient intake, undernutrition, metabolic syndrome and its complications. Importantly, nutrigenomic studies also led to the discovery of the association of multiple genetic polymorphisms in relation to the variability of micronutrient absorption and metabolism, providing a potential opportunity for further research toward setting personalized dietary recommendations for individuals and population subgroups.
Collapse
Affiliation(s)
- V Sudhakar Reddy
- Department of Biochemistry, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Ravindranadh Palika
- Department of Biochemistry, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Ayesha Ismail
- Department of Biochemistry, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Raghu Pullakhandam
- Department of Biochemistry, ICMR-National Institute of Nutrition, Hyderabad, India
| | - G Bhanuprakash Reddy
- Department of Biochemistry, ICMR-National Institute of Nutrition, Hyderabad, India
| |
Collapse
|
14
|
Crowell KT, Kelleher SL, Soybel DI, Lang CH. Marginal dietary zinc deprivation augments sepsis-induced alterations in skeletal muscle TNF-α but not protein synthesis. Physiol Rep 2017; 4:4/21/e13017. [PMID: 27811170 PMCID: PMC5112495 DOI: 10.14814/phy2.13017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/04/2016] [Indexed: 12/11/2022] Open
Abstract
Severe zinc deficiency is associated with an increased systemic inflammatory response and mortality after sepsis. However, the impact of mild zinc deficiency, which is more common in populations with chronic illnesses and sepsis, is unknown. In this study, we hypothesized that marginal dietary Zn deprivation (ZM) would amplify tissue inflammation and exacerbate the sepsis-induced decrease in muscle protein synthesis. Adult male C57BL/6 mice were fed a zinc-adequate (ZA) or ZM diet (30 or 10 mg Zn/kg, respectively) over 4 weeks, peritonitis was induced by cecal ligation and puncture (CLP), and mice were examined at either 24 h (acute) or 5 days (chronic) post-CLP Acute sepsis decreased the in vivo rate of skeletal muscle protein synthesis and the phosphorylation of the mTOR substrate 4E-BP1. Acutely, sepsis increased TNF-α and IL-6 mRNA in muscle, and the increase in TNF-α was significantly greater in ZM mice. However, muscle protein synthesis and 4E-BP1 phosphorylation returned to baseline 5 days post-CLP in both ZA and ZM mice. Protein degradation via markers of the ubiquitin proteasome pathway was increased in acute sepsis, yet only MuRF1 mRNA was increased in chronic sepsis and ZM amplified this elevation. Our data suggest that mild zinc deficiency increases TNF-α in muscle acutely after sepsis but does not significantly modulate the rate of muscle protein synthesis.
Collapse
Affiliation(s)
- Kristen T Crowell
- Department of Surgery, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Shannon L Kelleher
- Department of Surgery, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania.,Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania.,Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania.,Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania
| | - David I Soybel
- Department of Surgery, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania.,Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania.,Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania
| | - Charles H Lang
- Department of Surgery, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania .,Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| |
Collapse
|
15
|
Kawamata T, Horie T, Matsunami M, Sasaki M, Ohsumi Y. Zinc starvation induces autophagy in yeast. J Biol Chem 2017; 292:8520-8530. [PMID: 28264932 DOI: 10.1074/jbc.m116.762948] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/22/2017] [Indexed: 12/15/2022] Open
Abstract
Zinc is an essential nutrient for all forms of life. Within cells, most zinc is bound to protein. Because zinc serves as a catalytic or structural cofactor for many proteins, cells must maintain zinc homeostasis under severely zinc-deficient conditions. In yeast, the transcription factor Zap1 controls the expression of genes required for uptake and mobilization of zinc, but to date the fate of existing zinc-binding proteins under zinc starvation remains poorly understood. Autophagy is an evolutionarily conserved cellular degradation/recycling process in which cytoplasmic proteins and organelles are sequestered for degradation in the vacuole/lysosome. In this study, we investigated how autophagy functions under zinc starvation. Zinc depletion induced non-selective autophagy, which is important for zinc-limited growth. Induction of autophagy by zinc starvation was not directly related to transcriptional activation of Zap1. Instead, TORC1 inactivation directed zinc starvation-induced autophagy. Abundant zinc proteins, such as Adh1, Fba1, and ribosomal protein Rpl37, were degraded in an autophagy-dependent manner. But the targets of autophagy were not restricted to zinc-binding proteins. When cellular zinc is severely depleted, this non-selective autophagy plays a role in releasing zinc from the degraded proteins and recycling zinc for other essential purposes.
Collapse
Affiliation(s)
- Tomoko Kawamata
- Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503
| | - Tetsuro Horie
- Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503; Research Center for Odontology, School of Life Dentistry at Tokyo, The Nippon Dental University, Chiyoda-ku, Tokyo 102-8159, Japan
| | - Miou Matsunami
- Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503
| | - Michiko Sasaki
- Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503
| | - Yoshinori Ohsumi
- Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503.
| |
Collapse
|
16
|
Blockade of Metallothioneins 1 and 2 Increases Skeletal Muscle Mass and Strength. Mol Cell Biol 2017; 37:MCB.00305-16. [PMID: 27956698 DOI: 10.1128/mcb.00305-16] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 12/02/2016] [Indexed: 12/25/2022] Open
Abstract
Metallothioneins are proteins that are involved in intracellular zinc storage and transport. Their expression levels have been reported to be elevated in several settings of skeletal muscle atrophy. We therefore investigated the effect of metallothionein blockade on skeletal muscle anabolism in vitro and in vivo We found that concomitant abrogation of metallothioneins 1 and 2 results in activation of the Akt pathway and increases in myotube size, in type IIb fiber hypertrophy, and ultimately in muscle strength. Importantly, the beneficial effects of metallothionein blockade on muscle mass and function was also observed in the setting of glucocorticoid addition, which is a strong atrophy-inducing stimulus. Given the blockade of atrophy and the preservation of strength in atrophy-inducing settings, these results suggest that blockade of metallothioneins 1 and 2 constitutes a promising approach for the treatment of conditions which result in muscle atrophy.
Collapse
|
17
|
Chakraborty S, Bhattacharyya R, Banerjee D. Infections: A Possible Risk Factor for Type 2 Diabetes. Adv Clin Chem 2017; 80:227-251. [PMID: 28431641 DOI: 10.1016/bs.acc.2016.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Diabetes mellitus is one of the biggest challenges to human health globally, with an estimated 95% of the global diabetic population having type 2 diabetes. Classical causes for type 2 diabetes, such as genetics and obesity, do not account for the high incidence of the disease. Recent data suggest that infections may precipitate insulin resistance via multiple mechanisms, such as the proinflammatory cytokine response, the acute-phase response, and the alteration of the nutrient status. Even pathogen products, such as lipopolysaccharide and peptidoglycans, can be diabetogenic. Therefore, we argue that infections that are known to contribute to insulin resistance should be considered as risk factors for type 2 diabetes.
Collapse
Affiliation(s)
- Surajit Chakraborty
- Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | | | - Dibyajyoti Banerjee
- Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| |
Collapse
|
18
|
Wang L, Urriola PE, Luo ZH, Rambo ZJ, Wilson ME, Torrison JL, Shurson GC, Chen C. Metabolomics revealed diurnal heat stress and zinc supplementation-induced changes in amino acid, lipid, and microbial metabolism. Physiol Rep 2016; 4:4/1/e12676. [PMID: 26755737 PMCID: PMC4760408 DOI: 10.14814/phy2.12676] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Heat stress (HS) dramatically disrupts the events in energy and nutrient metabolism, many of which requires zinc (Zn) as a cofactor. In this study, metabolic effects of HS and Zn supplementation were evaluated by examining growth performance, blood chemistry, and metabolomes of crossbred gilts fed with ZnNeg (no Zn supplementation), ZnIO (120 ppm ZnSO4), or ZnAA (60 ppm ZnSO4 + 60 ppm zinc amino acid complex) diets under diurnal HS or thermal‐neutral (TN) condition. The results showed that growth performance was reduced by HS but not by Zn supplementation. Among measured serum biochemicals, HS was found to increase creatinine but decrease blood urea nitrogen (BUN) level. Metabolomic analysis indicated that HS greatly affected diverse metabolites associated with amino acid, lipid, and microbial metabolism, including urea cycle metabolites, essential amino acids, phospholipids, medium‐chain dicarboxylic acids, fatty acid amides, and secondary bile acids. More importantly, many changes in these metabolite markers were correlated with both acute and adaptive responses to HS. Relative to HS‐induced metabolic effects, Zn supplementation‐associated effects were much more limited. A prominent observation was that ZnIO diet, potentially through its influences on microbial metabolism, yielded different responses to HS compared with two other diets, which included higher levels of short‐chain fatty acids (SCFAs) in cecal fluid and higher levels of lysine in the liver and feces. Overall, comprehensive metabolomic analysis identified novel metabolite markers associated with HS and Zn supplementation, which could guide further investigation on the mechanisms of these metabolic effects.
Collapse
Affiliation(s)
- Lei Wang
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota
| | - Pedro E Urriola
- Department of Animal Science, University of Minnesota, Saint Paul, Minnesota
| | - Zhao-Hui Luo
- Department of Animal Science, University of Minnesota, Saint Paul, Minnesota
| | | | | | | | - Gerald C Shurson
- Department of Animal Science, University of Minnesota, Saint Paul, Minnesota
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota
| |
Collapse
|
19
|
Kumar J, Barhydt T, Awasthi A, Lithgow GJ, Killilea DW, Kapahi P. Zinc Levels Modulate Lifespan through Multiple Longevity Pathways in Caenorhabditis elegans. PLoS One 2016; 11:e0153513. [PMID: 27078872 PMCID: PMC4831763 DOI: 10.1371/journal.pone.0153513] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 03/30/2016] [Indexed: 12/22/2022] Open
Abstract
Zinc is an essential trace metal that has integral roles in numerous biological processes, including enzymatic function, protein structure, and cell signaling pathways. Both excess and deficiency of zinc can lead to detrimental effects on development and metabolism, resulting in abnormalities and disease. We altered the zinc balance within Caenorhabditis elegans to examine how changes in zinc burden affect longevity and healthspan in an invertebrate animal model. We found that increasing zinc levels in vivo with excess dietary zinc supplementation decreased the mean and maximum lifespan, whereas reducing zinc levels in vivo with a zinc-selective chelator increased the mean and maximum lifespan in C. elegans. We determined that the lifespan shortening effects of excess zinc required expression of DAF-16, HSF-1 and SKN-1 proteins, whereas the lifespan lengthening effects of the reduced zinc may be partially dependent upon this set of proteins. Furthermore, reducing zinc levels led to greater nuclear localization of DAF-16 and enhanced dauer formation compared to controls, suggesting that the lifespan effects of zinc are mediated in part by the insulin/IGF-1 pathway. Additionally, zinc status correlated with several markers of healthspan in worms, including proteostasis, locomotion and thermotolerance, with reduced zinc levels always associated with improvements in function. Taken together, these data support a role for zinc in regulating both development and lifespan in C. elegans, and that suggest that regulation of zinc homeostasis in the worm may be an example of antagonistic pleiotropy.
Collapse
Affiliation(s)
- Jitendra Kumar
- The Buck Institute for Research on Aging, Novato, California, United States of America
- DBT-PU-IPLS Programme, Department of Botany/Biotechnology, Patna University, Patna- 800005, Bihar, India
- * E-mail: (PK); (DWK); (JK)
| | - Tracy Barhydt
- The Buck Institute for Research on Aging, Novato, California, United States of America
| | - Anjali Awasthi
- Department of Biological Sciences, Birla Institute of Technology and Science, Rajasthan, India
| | - Gordon J. Lithgow
- The Buck Institute for Research on Aging, Novato, California, United States of America
| | - David W. Killilea
- Nutrition & Metabolism Center, Children’s Hospital of Oakland Research Institute, Oakland, California, United States of America
- * E-mail: (PK); (DWK); (JK)
| | - Pankaj Kapahi
- The Buck Institute for Research on Aging, Novato, California, United States of America
- * E-mail: (PK); (DWK); (JK)
| |
Collapse
|
20
|
Szewczyk B, Pochwat B, Rafało A, Palucha-Poniewiera A, Domin H, Nowak G. Activation of mTOR dependent signaling pathway is a necessary mechanism of antidepressant-like activity of zinc. Neuropharmacology 2015; 99:517-26. [PMID: 26297535 DOI: 10.1016/j.neuropharm.2015.08.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 07/23/2015] [Accepted: 08/16/2015] [Indexed: 12/13/2022]
Abstract
The rapid antidepressant response to the N-methyl-D-aspartate (NMDA) receptor antagonists is mediated by activation of the mammalian target of the rapamycin (mTOR) signaling pathway, an increase in the synthesis of synaptic proteins and formation of new synapses in the prefrontal cortex (PFC) of rats. Zinc (Zn), which is a potent NMDA receptor antagonist, exerts antidepressant-like effects in screening tests and models of depression. We focused these studies in investigating whether activation of the mTOR signaling pathway is also a necessary mechanism of the antidepressant-like activity of Zn. We observed that a single injection of Zn (5 mg/kg) induced an increase in the phosphorylation of mTOR and p70S6K 30 min and 3 h after Zn treatment at time points when Zn produced also an antidepressant-like effect in the forced swim test (FST). Furthermore, Zn administered 3 h before the decapitation increased the level of brain derived neurotrophic factor (BDNF), GluA1 and synapsin I. An elevated level of GluA1 and synapsin I was still observed 24 h after the Zn treatment, although Zn did not produce any effects in the FST at that time point. We also observed that pretreatment with rapamycin (mTORC1 inhibitor), LY294002 (PI3K inhibitor), H-89 (PKA inhibitor) and GF109203X (PKC inhibitor) blocked the antidepressant-like effect of Zn in FST in rats and blocks Zn-induced activation of mTOR signaling proteins (analyzed 30 min after Zn administration). These studies indicated that the antidepressant-like activity of Zn depends on the activation of mTOR signaling and other signaling pathways related to neuroplasticity, which can indirectly modulate mTOR function.
Collapse
Affiliation(s)
- Bernadeta Szewczyk
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| | - Bartłomiej Pochwat
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Anna Rafało
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Agnieszka Palucha-Poniewiera
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Helena Domin
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Gabriel Nowak
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland; Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
21
|
Ranasinghe P, Wathurapatha WS, Ishara MH, Jayawardana R, Galappatthy P, Katulanda P, Constantine GR. Effects of Zinc supplementation on serum lipids: a systematic review and meta-analysis. Nutr Metab (Lond) 2015; 12:26. [PMID: 26244049 PMCID: PMC4523910 DOI: 10.1186/s12986-015-0023-4] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/24/2015] [Indexed: 12/11/2022] Open
Abstract
Zinc is a mineral that plays a vital role in many biological processes and plays an important role in insulin action and carbohydrate metabolism. It may also have a protective role in the prevention of atherogenesis. Numerous studies have evaluated the effects of Zinc supplementation on serum lipids in humans and have demonstrated varying results. We systematically evaluated the literature and performed a meta-analysis on the effects of Zinc supplementation on serum lipids. A five staged comprehensive search of the literature was conducted in the following databases; PubMed, Web of Science and SciVerse Scopus for studies published before 31st December 2014. All controlled clinical trial in humans, that included a Zinc supplement intervention, either alone or in combination with other micronutrients and evaluated effects on serum lipids (total cholesterol [TC], triglycerides [TG], LDL cholesterol [LDL-c] and HDL cholesterol [HDL-c]). A meta-analysis of selected studies was performed using RevMan v5.3. The Jaded scale was used to assess the methodological quality of the trials included in the systematic review. A total of 24 studies were included in Meta analysis, which included a total of 33 Zinc interventions, in a total of 14,515 participants in the Zinc intervention or control group. The duration of Zinc supplementation ranged from 1 month to 7.5 years. The dose of elemental Zinc supplemented ranged from 15–240 mg/day. The pooled mean difference for TC between Zinc supplemented and placebo groups from random effects analysis was −10.92 mg/dl (95 % CI: −15.33, −6.52; p < 0.0001, I2 = 83 %), while for HDL cholesterol it was 2.12 mg/dl (95 % CI: −0.74, 4.98; p = 0.15, I2 = 83 %). The pooled mean difference for LDL-c between Zinc supplemented and placebo group from random effect analysis was −6.87 mg/dl (95 % CI: −11.16,-2.58; p < 0.001, I2 = 31) and for TG it was −10.92 mg/dl (95 % CI: −18.56, − 3.28; p < 0.01, I2 = 69 %). In conclusion, Zinc supplementation has favourable effects on plasma lipid parameters. Zinc supplementation significantly reduced total cholesterol, LDL cholesterol and triglycerides. Therefore it may have the potential to reduce the incidence of atherosclerosis related morbidity and mortality.
Collapse
Affiliation(s)
- Priyanga Ranasinghe
- Department of Pharmacology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - W S Wathurapatha
- Department of Pharmacology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - M H Ishara
- Ministry of Health Care and Nutrition, Colombo, Sri Lanka
| | - R Jayawardana
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland Australia ; Diabetes Research Unit, Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - P Galappatthy
- Department of Pharmacology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - P Katulanda
- Diabetes Research Unit, Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - G R Constantine
- Diabetes Research Unit, Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
22
|
Govindaraj J, Thirumurugan S, Reddy DS, Anbalagan K, SubbiahPandi A. Crystal structure of dichloridobis(4-ethylaniline-κ N)zinc. Acta Crystallogr E Crystallogr Commun 2015; 71:m21-2. [PMID: 25878835 PMCID: PMC4384566 DOI: 10.1107/s2056989014027832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/21/2014] [Indexed: 01/10/2025]
Abstract
The title compound, [ZnCl2(C8H11N)2], was synthesized by the reaction of zinc dichloride and 4-ethylaniline. The Zn2+ cation is coordinated by two Cl− anions and the N atoms of two 4-ethylaniline ligands, forming a distorted Zn(N2Cl2) tetrahedron. The dihedral angle between the two benzene rings is 85.3 (2)° The Zn atom lies on a twofold rotation axis. The ethyl substituents are disordered over two sets of sites in a 0.74 (2):0.26 (2) ratio. In the crystal, N—H⋯Cl hydrogen bonds link the molecules into sheets perpendicular to the a axis. C—H⋯Cl interactions also occur.
Collapse
|
23
|
ZnT2 is a critical mediator of lysosomal-mediated cell death during early mammary gland involution. Sci Rep 2015; 5:8033. [PMID: 25620235 PMCID: PMC4306139 DOI: 10.1038/srep08033] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/22/2014] [Indexed: 01/13/2023] Open
Abstract
Mammary gland involution is the most dramatic example of physiological cell death. It occurs through an initial phase of lysosomal-mediated cell death (LCD) followed by mitochondrial-mediated apoptosis. Zinc (Zn) activates both LCD and apoptosis in vitro. The Zn transporter ZnT2 imports Zn into vesicles and mitochondria and ZnT2-overexpression activates cell death in mammary epithelial cells (MECs). We tested the hypothesis that ZnT2-mediated Zn transport is critical for mammary gland involution in mice. Following weaning, ZnT2 abundance increased in lysosomes and mitochondria, which paralleled Zn accumulation in each of these organelles. Adenoviral expression of ZnT2 in lactating mouse mammary glands in vivo increased Zn in lysosomes and mitochondria and activated LCD and apoptosis, promoting a profound reduction in MECs and alveoli. Injection of TNFα, a potent activator of early involution, into the mammary gland fat pads of lactating mice increased ZnT2 and Zn in lysosomes and activated premature involution. Exposure of cultured MECs to TNFα redistributed ZnT2 to lysosomes and increased lysosomal Zn, which activated lysosomal swelling, cathepsin B release, and LCD. Our data implicate ZnT2 as a critical mediator of cell death during involution and importantly, that as an initial involution signal, TNFα redistributes ZnT2 to lysosomes to activate LCD.
Collapse
|
24
|
Figueroa JAL, Vignesh KS, Deepe GS, Caruso J. Selectivity and specificity of small molecule fluorescent dyes/probes used for the detection of Zn2+ and Ca2+ in cells. Metallomics 2014; 6:301-15. [PMID: 24356796 DOI: 10.1039/c3mt00283g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fluorescent dyes are widely used in the detection of labile (free or exchangeable) Zn(2+) and Ca(2+) in living cells. However, their specificity over other cations and selectivity for detection of labile vs. protein-bound metal in cells remains unclear. We characterized these important properties for commonly used Zn(2+) and Ca(2+) dyes in a cellular environment. By tracing the fluorescence emission signal along with UV-Vis and size exclusion chromatography-inductively coupled plasma mass spectrometry (SEC-ICP-MS) in tandem, we demonstrated that among the dyes used for Zn(2+), Zinpyr-1 fluoresces in the low molecular mass (LMM) region containing labile Zn(2+), but also fluoresces in different molecular mass regions where zinc ion is detected. However, FluoZin™-3 AM, Newport Green™ DCF and Zinquin ethyl ester display weak fluorescence, lack of metal specificity and respond strongly in the high molecular mass (HMM) region. Four Ca(2+) dyes were studied in an unperturbed cellular environment, and two of these were tested for binding behavior under an intracellular Ca(2+) release stimulus. A majority of Ca(2+) was in the labile form as tested by SEC-ICP-MS, but the fluorescence from Calcium Green-1™ AM, Oregon Green® 488 BAPTA-1, Fura red™ AM and Fluo-4 NW dyes in cells did not correspond to free Ca(2+) detection. Instead, the dyes showed non-specific fluorescence in the mid- and high-molecular mass regions containing Zn, Fe and Cu. Proteomic analysis of one of the commonly seen fluorescing regions showed the possibility for some dyes to recognize Zn and Cu bound to metallothionein 2. These studies indicate that Zn(2+) and Ca(2+) binding dyes manifest fluorescence responses that are not unique to recognition of labile metals and bind other metals, leading to suboptimal specificity and selectivity.
Collapse
Affiliation(s)
- Julio A Landero Figueroa
- Metallomics Research Center, Department of Chemistry, McMicken College of Arts and Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.
| | | | | | | |
Collapse
|
25
|
Grattan BJ, Freake HC. Zinc and cancer: implications for LIV-1 in breast cancer. Nutrients 2012; 4:648-75. [PMID: 22852056 PMCID: PMC3407987 DOI: 10.3390/nu4070648] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 06/07/2012] [Accepted: 06/27/2012] [Indexed: 01/21/2023] Open
Abstract
Zinc is a trace mineral which is vital for the functioning of numerous cellular processes, is critical for growth, and may play an important role in cancer etiology and outcome. The intracellular levels of this mineral are regulated through the coordinated expression of zinc transporters, which modulate both zinc influx as well as efflux. LIV-1 (ZIP6) was first described in 1988 as an estrogen regulated gene with later work suggesting a role for this transporter in cancer growth and metastasis. Despite evidence of its potential utility as a target gene for cancer prognosis and treatment, LIV-1 has received relatively little attention, with only three prior reviews being published on this topic. Herein, the physiological effects of zinc are reviewed in light of this mineral’s role in cancer growth with specific attention being given to LIV-1 and the potential importance of this transporter to breast cancer etiology.
Collapse
Affiliation(s)
- Bruce J. Grattan
- Department of Family Medicine, Stony Brook University Hospital Medical Center, Stony Brook, New York, NY 11597, USA
- Authors to whom correspondence should be addressed; (B.J.G.); (H.C.F.); Tel.: +1-631-444-8245; Fax: +1-631-444-7552
| | - Hedley C. Freake
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06268, USA
- Authors to whom correspondence should be addressed; (B.J.G.); (H.C.F.); Tel.: +1-631-444-8245; Fax: +1-631-444-7552
| |
Collapse
|
26
|
Xi J, Tian W, Zhang L, Jin Y, Xu Z. Morphine prevents the mitochondrial permeability transition pore opening through NO/cGMP/PKG/Zn2+/GSK-3beta signal pathway in cardiomyocytes. Am J Physiol Heart Circ Physiol 2009; 298:H601-7. [PMID: 19966058 DOI: 10.1152/ajpheart.00453.2009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to test whether morphine prevents the mitochondrial permeability transition pore (mPTP) opening through Zn(2+) and glycogen synthase kinase 3beta (GSK-3beta). Fluorescence dyes including Newport Green Dichlorofluorescein (DCF), 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM), and tetramethylrhodamine ethyl ester (TMRE) were used to image free Zn(2+), nitric oxide (NO), and mitochondrial membrane potential (DeltaPsi(m)), respectively. Fluorescence images were obtained with confocal microscopy. Cardiomyocytes treated with morphine for 10 min showed a significant increase in Newport Green DCF fluorescence intensity, an effect that was reversed by the NO synthase inhibitor N (G)-nitro-L-arginine methyl ester (L-NAME), indicating that morphine mobilizes Zn(2+) via NO. Morphine rapidly produced NO. ODQ and NS2028, the inhibitors of guanylyl cyclase, prevented Zn(2+) release by morphine, implying that cGMP is involved in the action of morphine. The effect of morphine on Zn(2+) release was also abolished by KT5823, a specific inhibitor of protein kinase G (PKG). Morphine prevented oxidant-induced loss of DeltaPsi(m), indicating that morphine can modulate the mPTP opening. The effect of morphine on the mPTP was reversed by KT5823 and the Zn(2+) chelator N,N,N',N'-tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN). The action of morphine on the mPTP was lost in cells transfected with the constitutively active GSK-3beta mutant, suggesting that morphine may prevent the mPTP opening by inactivating GSK-3beta. In support, morphine significantly enhanced phosphorylation of GSK-3beta at Ser(9), and this was blocked by TPEN. GSK-3beta small interfering RNA prevented the pore opening in the control cardiomyocytes but failed to enhance the effect of morphine on the mPTP opening. In conclusion, morphine mobilizes intracellular Zn(2+) through the NO/cGMP/PKG signaling pathway and prevents the mPTP opening by inactivating GSK-3beta through Zn(2+).
Collapse
Affiliation(s)
- Jinkun Xi
- Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | |
Collapse
|
27
|
Cell-type-specific roles of IGF-1R and EGFR in mediating Zn2+-induced ERK1/2 and PKB phosphorylation. J Biol Inorg Chem 2009; 15:399-407. [PMID: 19946718 DOI: 10.1007/s00775-009-0612-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 11/04/2009] [Indexed: 12/18/2022]
Abstract
Zn(2+) exerts insulin-mimetic and antidiabetic effects in rodent models of insulin resistance, and activates extracellular-signal-regulated kinases 1 and 2 (ERK1/2) and protein kinase B (PKB), key components of the insulin signaling pathway. Zn(2+)-induced signaling has been shown to be associated with an increase in the tyrosine phosphorylation of insulin receptor (IR), as well as of insulin-like growth factor 1 receptor (IGF-1R) and epidermal growth factor receptor (EGFR) in several cell types. However, the specific contribution of these receptor protein tyrosine kinases (R-PTKs) in mediating Zn(2+)-induced responses in a cell-specific fashion remains to be established. Therefore, using a series of pharmacological inhibitors and genetically engineered cells, we have investigated the roles of various R-PTKs in Zn(2+)-induced ERK1/2 and PKB phosphorylation. Pretreatment of Chinese hamster ovary (CHO) cells overexpressing a human IR (CHO-HIR cells) with AG1024, an inhibitor for IR protein tyrosine kinase (PTK) and IGF-1R-PTK, blocked Zn(2+)-induced ERK1/2 and PKB phosphorylation, but AG1478, an inhibitor for EGFR, was without effect in CHO cells. On the other hand, both of these inhibitors were able to attenuate Zn(2+)-induced phosphorylation of ERK1/2 and PKB in A10 vascular smooth muscle cells. In addition, in CHO cells overexpressing tyrosine kinase deficient IR, Zn(2+) was still able to induce the phosphorylation of these two signaling molecules, whereas the insulin effect was significantly attenuated. Furthermore, both Zn(2+) and insulin-like growth factor 1 failed to stimulate ERK1/2 and PKB phosphorylation in IGF-1R knockout cells. Also, Zn(2+)-induced responses in CHO-HIR cells were not associated with an increase in the tyrosine phosphorylation of the IR beta-subunit and insulin receptor substrate 1 in CHO-HIR cells. Taken together, these data suggest that distinct R-PTKs mediate Zn(2+)-evoked ERK1/2 and PKB phosphorylation in a cell-specific manner.
Collapse
|
28
|
Cameron AR, Anil S, Sutherland E, Harthill J, Rena G. Zinc-dependent effects of small molecules on the insulin-sensitive transcription factor FOXO1a and gluconeogenic genes. Metallomics 2009; 2:195-203. [PMID: 21069157 DOI: 10.1039/b914984h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Metal-binding compounds have recently been reported to have anti-hyperglycaemic properties in vivo. In the current study, we have investigated the ability of these compounds and related structures to induce insulin-like signal transduction to downstream effectors such as the transcription factor FOXO1a and the key gluconeogenic regulatory enzymes phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase (G6Pase). Our results indicate that β-thujaplicin, diethyldithiocarbamate (DEDTC) and its clinically-used dimer disulfiram, induce insulin-like dose-dependent effects on signalling to FOXO1a in a manner that is strictly dependent on the presence of zinc ions, as other ions including aluminium, cobalt, copper, lithium and manganese cannot substitute. The most potent compound tested on gluconeogenesis is disulfiram, which in the presence of 10 μM zinc, inhibited both PEPCK and G6Pase with an IC50 of 4 μM. Our results demonstrate that metal-binding compounds with diverse structures can induce zinc-dependent insulin-like effects on signal transduction and gene expression.
Collapse
Affiliation(s)
- Amy R Cameron
- Centre for Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland
| | | | | | | | | |
Collapse
|
29
|
Marzani B, Balage M, Vénien A, Astruc T, Papet I, Dardevet D, Mosoni L. Antioxidant supplementation restores defective leucine stimulation of protein synthesis in skeletal muscle from old rats. J Nutr 2008; 138:2205-11. [PMID: 18936220 DOI: 10.3945/jn.108.094029] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aging is characterized by a progressive loss of muscle mass that could be partly explained by a defect in the anabolic effect of food intake. We previously reported that this defect resulted from a decrease in the protein synthesis response to leucine in muscles from old rats. Because aging is associated with changes in oxidative status, we hypothesized that reactive oxygen species-induced oxidative damage may be involved in the impairment of the anabolic effect of leucine with age. The present study assessed the effect of antioxidant supplementation on leucine-regulated protein metabolism in muscles from adult and old rats. Four groups of 8- and 20-mo-old male rats were supplemented or not for 7 wk with an antioxidant mixture containing rutin, vitamin E, vitamin A, zinc, and selenium. At the end of supplementation, muscle protein metabolism was examined in vitro using epitrochlearis muscles incubated with increasing leucine concentrations. In old rats, the ability of leucine to stimulate muscle protein synthesis was significantly decreased compared with adults. This defect was reversed when old rats were supplemented with antioxidants. It was not related to increased oxidative damage to 70-kDa ribosomal protein S6 kinase that is involved in amino acid signaling. These effects could be mediated through a reduction in the inflammatory state, which decreased with antioxidant supplementation. Antioxidant supplementation could benefit muscle protein metabolism during aging, but further studies are needed to determine the mechanism involved and to establish if it could be a useful nutritional tool to slow down sarcopenia with longer supplementation.
Collapse
Affiliation(s)
- Barbara Marzani
- INRA, Centre de Clermont-Ferrand-Theix, UMR 1019, Unité Nutrition Humaine, Saint Genès Champanelle, F-63122 France
| | | | | | | | | | | | | |
Collapse
|
30
|
Ondrousková E, Slovácková J, Pelková V, Procházková J, Soucek K, Benes P, Smarda J. Heavy metals induce phosphorylation of the Bcl-2 protein by Jun N-terminal kinase. Biol Chem 2008; 390:49-58. [PMID: 19007308 DOI: 10.1515/bc.2009.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Bcl-2 protein is one of the key components of biochemical pathways controlling programmed cell death. The function of this protein can be regulated by posttranslational modifications. Phosphorylation of Bcl-2 has been considered to be significantly associated with cell cycle arrest in the G2/M phase of the cell cycle, and with cell death caused by defects of microtubule dynamics. This study shows that phosphorylation of Bcl-2 can be induced by heavy metals due to activation of the Jun N-terminal kinase pathway that is not linked to the G2/M cell cycle arrest. Furthermore, we demonstrate that hyperphosphorylated Bcl-2 protein is a more potent inhibitor of zinc-induced cell death than its hypophosphorylated mutant form. These data suggest that regulation of Bcl-2 protein function by phosphorylation is an important part of cell responses to stress.
Collapse
Affiliation(s)
- Eva Ondrousková
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Kotlárská 2, CZ-611 37 Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
31
|
Chanoit G, Lee S, Xi J, Zhu M, McIntosh RA, Mueller RA, Norfleet EA, Xu Z. Exogenous zinc protects cardiac cells from reperfusion injury by targeting mitochondrial permeability transition pore through inactivation of glycogen synthase kinase-3beta. Am J Physiol Heart Circ Physiol 2008; 295:H1227-H1233. [PMID: 18660440 DOI: 10.1152/ajpheart.00610.2008] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The purpose of this study was to determine whether exogenous zinc prevents cardiac reperfusion injury by targeting the mitochondrial permeability transition pore (mPTP) via glycogen synthase kinase-3beta (GSK-3beta). The treatment of cardiac H9c2 cells with ZnCl2 (10 microM) in the presence of zinc ionophore pyrithione for 20 min significantly enhanced GSK-3beta phosphorylation at Ser9, indicating that exogenous zinc can inactivate GSK-3beta in H9c2 cells. The effect of zinc on GSK-3beta activity was blocked by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY-294002 but not by the mammalian target of rapamycin (mTOR) inhibitor rapamycin or the PKC inhibitor chelerythrine, implying that PI3K but not mTOR or PKC accounts for the action of zinc. In support of this interpretation, zinc induced a significant increase in Akt but not mTOR phosphorylation. Further experiments found that zinc also increased mitochondrial GSK-3beta phosphorylation. This may indicate an involvement of the mitochondria in the action of zinc. The effect of zinc on mitochondrial GSK-3beta phosphorylation was not altered by the mitochondrial ATP-sensitive K+ channel blocker 5-hydroxydecanoic acid. Zinc applied at reperfusion reduced cell death in cells subjected to simulated ischemia/reperfusion, indicating that zinc can prevent reperfusion injury. However, zinc was not able to exert protection in cells transfected with the constitutively active GSK-3beta (GSK-3beta-S9A-HA) mutant, suggesting that zinc prevents reperfusion injury by inactivating GSK-3beta. Cells transfected with the catalytically inactive GSK-3beta (GSK-3beta-KM-HA) also revealed a significant decrease in cell death, strongly supporting the essential role of GSK-3beta inactivation in cardioprotection. Moreover, zinc prevented oxidant-induced mPTP opening through the inhibition of GSK-3beta. Taken together, these data suggest that zinc prevents reperfusion injury by modulating the mPTP opening through the inactivation of GSK-3beta. The PI3K/Akt signaling pathway is responsible for the inactivation of GSK-3beta by zinc.
Collapse
Affiliation(s)
- Guillaume Chanoit
- Department of Anesthesiology, CB #7010, The Univ. of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Molecular mechanism of antidiabetic zinc–allixin complexes: regulations of glucose utilization and lipid metabolism. J Biol Inorg Chem 2008; 13:675-84. [DOI: 10.1007/s00775-008-0352-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 02/05/2008] [Indexed: 01/03/2023]
|
33
|
Fukushima H, Miwa Y, Shiraki M, Gomi I, Toda K, Kuriyama S, Nakamura H, Wakahara T, Era S, Moriwaki H. Oral branched-chain amino acid supplementation improves the oxidized/reduced albumin ratio in patients with liver cirrhosis. Hepatol Res 2007; 37:765-70. [PMID: 17573945 DOI: 10.1111/j.1872-034x.2007.00123.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM Branched-chain amino acid (BCAA) supplementation improves hypoalbuminemia in decompensated cirrhotics. Recently, it was clarified that the ratio of oxidized albumin within total albumin rises with progression of liver cirrhosis. We conducted a feasibility study to investigate whether BCAA supplementation might improve this ratio. METHODS Seven cirrhotic patients (age: 70 +/-> 6 years; M/F = 4/3; etiology: hepatitis C in six and non-B/non-C hepatitis virus in one; Child-Pugh classification: A in six and B in one) were enrolled consecutively in this study in October 2004 to March 2005. Patients were given 4 g BCAA after each meal for 8 weeks. Serum total, oxidized and reduced albumin, plasma amino acids, glutathione, zinc, selenium, and lipid peroxide concentrations were measured every 2 weeks. RESULTS Low total albumin, high oxidized albumin, and low reduced albumin levels were observed at entry. After 8 weeksBCAA supplementation, the ratio of oxidized albumin within total albumin decreased significantly and that of reduced albumin increased significantly (P < 0.05, respectively). Total albumin tended to rise and lipid peroxide concentrations tended to fall, but not significantly. CONCLUSION BCAA supplementation improved the oxidized/reduced state of serum albumin. This intervention is effective to maintain the quality of serum albumin in cirrhotic patients.
Collapse
Affiliation(s)
- Hideki Fukushima
- Department of Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
McClung JP, Tarr TN, Barnes BR, Scrimgeour AG, Young AJ. Effect of supplemental dietary zinc on the mammalian target of rapamycin (mTOR) signaling pathway in skeletal muscle and liver from post-absorptive mice. Biol Trace Elem Res 2007; 118:65-76. [PMID: 17848732 DOI: 10.1007/s12011-007-0018-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 01/03/2007] [Accepted: 01/08/2007] [Indexed: 11/26/2022]
Abstract
Zinc (Zn) is an essential trace element that functions in cellular signaling. The mammalian target of rapamycin (mTOR) regulates the initiation of protein synthesis. The objective of this study was to determine whether Zn could stimulate protein phosphorylation in the mTOR pathway in vivo. Mice (C57BL/6J, n = 30) were fed Zn marginal diets (ZM, 5 mg/kg) for 4 weeks, followed by fasting (F) and/or refeeding with ZM or Zn supplemental (300 mg/kg, ZS) diets for 3 or 6 h. Plasma insulin was greater (P < 0.05) in refed animals as compared to F animals. Protein phosphorylation was detected using multiplex analysis and Western blotting. Multiplex analysis indicated greater (P < 0.05) p70 S6 kinase (p70S6K) and glycogen synthase kinase 3 (GSK-3 alpha/beta) phosphorylation in livers from 6-h refed ZS animals as compared to F animals. Western blots indicated increased (P < 0.05) Akt (Ser 473) phosphorylation in skeletal muscle from animals refed ZS diets for 3 and 6 h as compared to F animals. The ZS diet affected phosphorylation of GSK-3 (alpha/beta) in liver, as 3-h ZS refed animals had greater (P < 0.01) phosphorylation than F animals. These findings indicate that Zn may contribute to the initiation of protein synthesis as a signaling molecule in vivo.
Collapse
Affiliation(s)
- James P McClung
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine (USARIEM), Natick, MA 01760, USA.
| | | | | | | | | |
Collapse
|
35
|
Moncayo R, Moncayo H. A musculoskeletal model of low grade connective tissue inflammation in patients with thyroid associated ophthalmopathy (TAO): the WOMED concept of lateral tension and its general implications in disease. BMC Musculoskelet Disord 2007; 8:17. [PMID: 17319961 PMCID: PMC1820789 DOI: 10.1186/1471-2474-8-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 02/23/2007] [Indexed: 12/16/2022] Open
Abstract
Background Low level connective tissue inflammation has been proposed to play a role in thyroid associated ophthalmopathy (TAO). The aim of this study was to investigate this postulate by a musculoskeletal approach together with biochemical parameters. Methods 13 patients with TAO and 16 controls were examined. Erythrocyte levels of Zn, Cu, Ca2+, Mg, and Fe were determined. The musculoskeletal evaluation included observational data on body posture with emphasis on the orbit-head region. The angular foot position in the frontal plane was quantified following gait observation. The axial orientation of the legs and feet was evaluated in an unloaded supine position. Functional propioceptive tests based on stretch stimuli were done by using foot inversion and foot rotation. Results Alterations in the control group included neck tilt in 3 cases, asymmetrical foot angle during gait in 2, and a reaction to foot inversion in 5 cases. TAO patients presented facial asymmetry with displaced eye fissure inclination (mean 9.1°) as well as tilted head-on-neck position (mean 5.7°). A further asymmetry feature was external rotation of the legs and feet (mean 27°). Both foot inversion as well as foot rotation induced a condition of neuromuscular deficit. This condition could be regulated by gentle acupressure either on the lateral abdomen or the lateral ankle at the acupuncture points gall bladder 26 or bladder 62, respectively. In 5 patients, foot rotation produced a phenomenon of moving toes in the contra lateral foot. In addition foot rotation was accompanied by an audible tendon snapping. Lower erythrocyte Zn levels and altered correlations between Ca2+, Mg, and Fe were found in TAO. Conclusion This whole body observational study has revealed axial deviations and body asymmetry as well as the phenomenon of moving toes in TAO. The most common finding was an arch-like displacement of the body, i.e. eccentric position, with foot inversion and head tilt to the contra lateral side and tendon snapping. We propose that eccentric muscle action over time can be the basis for a low grade inflammatory condition. The general implications of this model and its relations to Zn and Se will be discussed.
Collapse
Affiliation(s)
- Roy Moncayo
- WOMED, Karl-Kapferer-Strasse 5, A-6020 Innsbruck, Austria
| | - Helga Moncayo
- WOMED, Karl-Kapferer-Strasse 5, A-6020 Innsbruck, Austria
| |
Collapse
|
36
|
Malaiyandi LM, Honick AS, Rintoul GL, Wang QJ, Reynolds IJ. Zn2+ inhibits mitochondrial movement in neurons by phosphatidylinositol 3-kinase activation. J Neurosci 2006; 25:9507-14. [PMID: 16221861 PMCID: PMC6725691 DOI: 10.1523/jneurosci.0868-05.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mitochondria have been identified as targets of the neurotoxic actions of zinc, possibly through decreased mitochondrial energy production and increased reactive oxygen species accumulation. It has been hypothesized that impairment of mitochondrial trafficking may be a mechanism of neuronal injury. Here, we report that elevated intraneuronal zinc impairs mitochondrial trafficking. At concentrations just sufficient to cause injury, zinc rapidly inhibited mitochondrial movement without altering morphology. Zinc chelation initially restored movement, but the actions of zinc became insensitive to chelator in <10 min. A search for downstream signaling events revealed that inhibitors of phosphatidylinositol (PI) 3-kinase prevented this zinc effect on movement. Moreover, transient inhibition of PI 3-kinase afforded neuroprotection against zinc-mediated toxicity. These data illustrate a novel mechanism that regulates mitochondrial trafficking in neurons and also suggest that mitochondrial trafficking may be closely coupled to neuronal viability.
Collapse
Affiliation(s)
- Latha M Malaiyandi
- Department of Pharmacology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
37
|
Cho HJ, Park J, Lee HW, Lee YS, Kim JB. Regulation of adipocyte differentiation and insulin action with rapamycin. Biochem Biophys Res Commun 2004; 321:942-8. [PMID: 15358118 DOI: 10.1016/j.bbrc.2004.07.050] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Indexed: 10/26/2022]
Abstract
Here, we demonstrated that inhibition of mTOR with rapamycin has negative effects on adipocyte differentiation and insulin signaling. Rapamycin significantly reduced expression of most adipocyte marker genes including PPARgamma, adipsin, aP2, ADD1/SREBP1c, and FAS, and decreased intracellular lipid accumulation in 3T3-L1 and 3T3-F442A cells, suggesting that rapamycin would affect both lipogenesis and adipogenesis. Contrary to the previous report that suppressive effect of rapamycin on adipogenesis is limited to the clonal expansion, we revealed that its inhibitory effect persisted throughout the process of adipocyte differentiation. Thus, it is likely that constitutive activation of mTOR might be required for the execution of adipogenic programming. In differentiated 3T3-L1 adipocytes, chronic treatment of rapamycin blunted the phosphorylation of AKT and GSK, which is stimulated by insulin, and reduced insulin-dependent glucose uptake activity. Taken together, these results suggest that rapamycin not only prevents adipocyte differentiation by decrease of adipogenesis and lipogenesis but also downregulates insulin action in adipocytes, implying that mTOR would play important roles in adipogenesis and insulin action.
Collapse
Affiliation(s)
- Hye Jin Cho
- School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | |
Collapse
|
38
|
Up-regulation of phosphorylated/activated p70 S6 kinase and its relationship to neurofibrillary pathology in Alzheimer's disease. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:591-607. [PMID: 12875979 PMCID: PMC1868198 DOI: 10.1016/s0002-9440(10)63687-5] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ribosomal S6 protein kinase p70 S6 kinase is known for its role in modulating cell-cycle progression, cell size, and cell survival. In response to mitogen stimulation, p70 S6 kinase activation up-regulates ribosomal biosynthesis and enhances the translational capacity of the cell. In Alzheimer's disease (AD), there is a marked increase in total tau protein in the form of abnormally hyperphosphorylated tau (PHF-tau) in neurons with neurofibrillary tangles (NFTs). In the present study, we investigated whether p70 S6 kinase activation is associated with PHF-tau accumulation in AD. By immunohistochemistry, we found that the levels of phosphorylated p70 S6 kinase (at Thr389 or at Thr421/Ser424) were increased in accordance with the progressive sequence of neurofibrillary changes according to Braak's criteria. Confocal microscopy showed that in AD brain, phosphorylated p70 S6 kinase appeared especially in neurons that are known to later develop NFTs. This pattern of neurons showed dot-like structures of phosphorylated p70 S6 kinase and hyperphosphorylated tau, which partially correlated with rab5 (endosome marker), lamp-1 (lysosome marker), and ubiquitin (ubiquitin-proteasomal system marker). By indirect enzyme-linked immunosorbent assay, phosphorylated p70 S6 kinase (Thr389 or Thr421/Ser424), total tau, and PHF-tau were found to be significantly increased in AD brain as compared to control cases. The levels of total p70 S6 kinase and p70 S6 kinase phosphorylated at Thr421/Ser424 showed significant correlations with the levels of both total tau and PHF-tau. Regression analyses revealed a significant dependence of total tau or PHF-tau on p70 S6 kinase phosphorylated at Thr421/Ser424 rather than at Thr389. The levels of ribosomal protein S6 as well as the levels of markers for the proteolytic system were also significantly increased in AD as compared to control brain. Using a SH-SY5Y neuroblastoma cell model, we found that 100 micro mol/L zinc sulfate could induce p70 S6 kinase phosphorylation and activation, in particular at Thr421/Ser424. This up-regulation of the activated kinase resulted in an increased expression and phosphorylation of tau. Pretreatment of cells with rapamycin (an inhibitor of FRAP/mTOR which is the immediate upstream kinase of the p70 S6 kinase) attenuated the effects induced by zinc. In primary cultured neurons of rat cortical cortex, zinc sulfate treatment could repeat p70 S6 kinase phosphorylation and activation at Thr421/Ser424, followed by increased expression and phosphorylation of tau. Taken together, these data suggest that activated p70 S6 kinase could mediate an up-regulation of tau translation. The partial co-localization of phosphorylated p70 S6 kinase with rab5, lamp-1 and ubiquitin, or PHF-tau with ubiquitin suggests that the activated proteolytic system might not be sufficient to degrade the over-produced and over-phosphorylated tau protein. A p70 S6 kinase modulated up-regulation of tau translation might contribute to PHF-tau accumulation in neurons with neurofibrillary changes.
Collapse
|
39
|
Lynch CJ, Patson BJ, Anthony J, Vaval A, Jefferson LS, Vary TC. Leucine is a direct-acting nutrient signal that regulates protein synthesis in adipose tissue. Am J Physiol Endocrinol Metab 2002; 283:E503-13. [PMID: 12169444 DOI: 10.1152/ajpendo.00084.2002] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In freshly isolated rat adipocytes, leucine or its analog norleucine activates the mammalian target of rapamycin (mTOR)-signaling pathway. This results in phosphorylation of the ribosomal protein S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E-binding protein-1 (4E-BP1), two proteins involved in the initiation phase of protein synthesis. The purpose of the studies reported herein was to address the question of whether or not these in vitro effects of leucine and norleucine on adipocytes could be extended to the intact animal and to other tissues. To accomplish this, food-deprived (18 h) male Sprague-Dawley rats were orally administered solutions (2.5 ml/100 g body wt) containing normal saline (0.9% NaCl), a carbohydrate mixture (26.2% D-glucose and 26.2% sucrose), leucine (5.4%), or norleucine (5.4%). The protein synthetic responses of adipose tissue were measured and compared with those of other tissues. In addition, S6K1 and 4E-BP1 phosphorylation was measured, as was the plasma concentration of insulin and tissue ATP concentrations. Leucine administration stimulated protein synthesis in adipose tissue, gastrocnemius, and kidney but not in liver and heart. Norleucine stimulated protein synthesis in all of the tissues tested but, in contrast to leucine, without affecting plasma insulin concentrations. The carbohydrate meal had no effect on protein synthesis in any tissue tested but elicited a robust increase in plasma insulin. These findings provide support for a role of leucine as a direct-acting nutrient signal for stimulation of protein synthesis in adipose tissue as well as other select tissues. In adipose tissue, the effects of the different treatment conditions on the acute regulation of protein synthesis closely correlated with changes in phosphorylation of S6K1 and 4E-BP1; however, this correlation did not exist in all tissues examined. This result implies that leucine or norleucine may acutely stimulate protein synthesis, at least in some tissues, by a mechanism that is independent of both S6K1 and 4E-BP1 phosphorylation.
Collapse
Affiliation(s)
- Christopher J Lynch
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | | | | | | | |
Collapse
|