1
|
Ameur F, Amri M, Djebbara S, Soufli I, Boussa RS, Benazzouz S, Boutemine IM, Benkhelifa S, Bouchemal M, Mekhloufi-Dahou C, Hanni F, Yakoubi M, Lefkir ST, Abdellaoui S, Arroul-Lammali A, Idris NS, Belguendouz H, Touil-Boukoffa C. Echinococcus granulosus' laminated layer immunomodulates nitric oxide, cytokines, and MMPs in PBMC from rheumatoid arthritis patients. J Helminthol 2025; 99:e21. [PMID: 39924654 DOI: 10.1017/s0022149x25000082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease that affects the joints. Treatments are symptomatic and can induce side effects in some patients. In this sense and based on previous studies, our aim was to investigate the ex vivo immunoregulatory effect of the laminated layer (LL) during rheumatoid arthritis. LL is the outside layer of parasitic cyst of the helminth Echinococcus granulosus.Our main objective was to study the effect of LL on nitric oxide (NO) and cytokines production, matrix metalloproteinases (MMPs) activities, inducible NO synthase (iNOS) and nuclear factor κappa B (NF-κB) expression. In this context, cultures of peripheral blood mononuclear cells (PBMC) from Algerian RA patients in active (ARA) and inactive (IRA) stage of the disease were stimulated with LL extract (50, 100, 150μg/mL). However, PBMC from ARA patients were stimulated with methotrexate (MTX; 0.5μg/mL) and biological disease modifying anti-rheumatic drugs (bDMARDs): anti-TNFα (10μg/mL), anti-IL6 (10μg/mL), anti-CD20 (10μg/mL), alone or combined with LL (50μg/mL).Our results showed that LL reduced NO, TNF-α, and IL-17A production, MMP9/2 activities, and iNOS/NF-κB expression in PBMC from ARA patients. Concomitantly, LL increases IL-10 and TGF-β1 production in the same cultures. Interestingly, the decrease in NO production induced by bDMARDs was greater in association with LL.Collectively, our findings indicate a strong immunoregulatory effect of LL on NO, MMPs, and cytokines. LL probably acts through the NF-κB pathway. The development of biodrugs derived from LL of E. granulosus could be a potential candidate to modulate inflammation during RA.
Collapse
Affiliation(s)
- F Ameur
- Team 'Cytokines and NO Synthases: Immunity and Pathogeny', Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene, Algiers, Algeria
| | - M Amri
- Team 'Cytokines and NO Synthases: Immunity and Pathogeny', Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene, Algiers, Algeria
| | - S Djebbara
- Team 'Cytokines and NO Synthases: Immunity and Pathogeny', Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene, Algiers, Algeria
| | - I Soufli
- Team 'Cytokines and NO Synthases: Immunity and Pathogeny', Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene, Algiers, Algeria
| | - R-S Boussa
- Team 'Cytokines and NO Synthases: Immunity and Pathogeny', Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene, Algiers, Algeria
| | - S Benazzouz
- Team 'Cytokines and NO Synthases: Immunity and Pathogeny', Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene, Algiers, Algeria
| | - I-M Boutemine
- Team 'Cytokines and NO Synthases: Immunity and Pathogeny', Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene, Algiers, Algeria
| | - S Benkhelifa
- Team 'Cytokines and NO Synthases: Immunity and Pathogeny', Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene, Algiers, Algeria
| | - M Bouchemal
- Team 'Cytokines and NO Synthases: Immunity and Pathogeny', Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene, Algiers, Algeria
| | | | - F Hanni
- Rheumatology department, Ben Aknoun Hospital, Algiers, Algeria
| | - M Yakoubi
- Orthopedic department, Ben Aknoun Hospital, Algiers, Algeria
| | - S T Lefkir
- Rheumatology department, Beni Messous Hospital, Algiers, Algeria
| | - S Abdellaoui
- Rheumatology department, Beni Messous Hospital, Algiers, Algeria
| | - A Arroul-Lammali
- Team 'Cytokines and NO Synthases: Immunity and Pathogeny', Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene, Algiers, Algeria
| | - N S Idris
- Surgery department, Djillali Belkhenchir Hospital, Algiers, Algeria
| | - H Belguendouz
- Team 'Cytokines and NO Synthases: Immunity and Pathogeny', Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene, Algiers, Algeria
| | - C Touil-Boukoffa
- Team 'Cytokines and NO Synthases: Immunity and Pathogeny', Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene, Algiers, Algeria
- Algerian Academy of Sciences and Technologies, Algiers, Algeria
| |
Collapse
|
2
|
de Oliveira DA, Oliveira R, Braga BV, Straker LC, Rodrigues LS, Bueno LL, Fujiwara RT, Lopes-Torres EJ. Experimental trichuriasis: Changes in the immune response and bacterial translocation during acute phase development illustrated with 3D model animation. PLoS Negl Trop Dis 2025; 19:e0012841. [PMID: 39899646 PMCID: PMC11805410 DOI: 10.1371/journal.pntd.0012841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 02/07/2025] [Accepted: 01/14/2025] [Indexed: 02/05/2025] Open
Abstract
Trichuriasis, a well-known type of soil-transmitted helminthiasis, is a neglected gastrointestinal nematode disease predominantly affecting children in tropical regions and is caused by Trichuris trichiura. The potential zoonotic transmission of this disease is indicated by its presence in nonhuman primates. Chronic infection leads to mucosal damage, bacterial translocation, and intense inflammatory infiltration; however, the progression of these processes remains poorly understood. This study tracks the acute phase of experimental trichuriasis, providing detailed insights into nematode tissue migration stages, inflammatory infiltration, cytokine production, and 2D/3D imaging of the bacterial translocation process. We showed a mixed immune response (Th1, Th2, and Th17) initiated by larval-induced lesions in the intestine tissue and modulated by L4 larvae and adult worms in the cecum, with systemic changes observed in the mesenteric lymph nodes, peritoneal macrophages, and spleen. Despite the disruption of the intestinal mucosa within the first 10 days post-infection (d.p.i.), bacterial invasion becomes evident only after the development of the nematode into the L3 larval stage (17 d.p.i.), intensifying with lesions caused by the L4 larvae (22 d.p.i.) and adult worms (35 d.p.i.). Our multidimensional approach, which incorporates microscopy tools, micro-CT, physiological evaluations, tissue/organ assessments, and immunological parameters, demonstrates the ability of larvae to breach the intestinal mucosa, further indicating the timing of extensive bacterial infiltration. Additionally, a 3D animation illustrates how adult worm attachment mechanisms may facilitate bacterial translocation. This study provides significant insights into the immunological and pathological mechanisms of trichuriasis progression, highlighting the complex interplay among host immune responses, the gut microbiome, and parasite survival strategies, all of which are crucial aspects for future therapeutic development.
Collapse
Affiliation(s)
- Dayane Alvarinho de Oliveira
- Laboratório de Helmintologia Romero Lascasas Porto, Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório Multiusuário de Parasitologia, Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renato Oliveira
- Laboratório de Helmintologia Romero Lascasas Porto, Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório Multiusuário de Parasitologia, Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Brunna Vianna Braga
- Laboratório de Helmintologia Romero Lascasas Porto, Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório Multiusuário de Parasitologia, Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lorian Cobra Straker
- Laboratório de Evolução e Biologia Integrativa, Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- The Francis Crick Institute, London, England, United Kingdom
| | - Luciana Silva Rodrigues
- Laboratório de Imunopatologia, Departamento de Patologia e Laboratórios, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lilian Lacerda Bueno
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Toshio Fujiwara
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eduardo José Lopes-Torres
- Laboratório de Helmintologia Romero Lascasas Porto, Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório Multiusuário de Parasitologia, Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Sun R, Ding J, Yang Y, Wu F, Wang X, Liu M, Liu X, Jin X, Liu Y. Trichinella spiralis alleviates LPS-induced acute lung injury by modulating the protective Th2 immune response. Vet Parasitol 2025; 333:110206. [PMID: 38797638 DOI: 10.1016/j.vetpar.2024.110206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Sepsis is a disorder of immune regulation caused by pathogenic microorganisms. A large number of inflammatory factors and inflammatory mediators are released, resulting in systemic inflammatory response disorder and acute lung injury (ALI). Helminths infection activate Th2 cytokines and immunomodulatory pathways, which have the function of anti-infection effector molecules. The early infection of Trichinella spiralis (T. spiralis) was mainly intestinal phase. In this study, we explored the effect of intestinal phase infection of T. spiralis on LPS-induced ALI. Compared with control mice, the serum and lung tissues of T. spiralis infected mice had a significant decrease of Th1 inflammatory cytokines, a significant increase of Th2 anti-inflammatory cytokines, and a significant decrease of inflammatory cell infiltration in lung tissue. These results suggest that T. spiralis during the intestinal phase can act on distal organs (lung) and reduce LPS-induced lung inflammation, providing evidence for a potential new pathway for immune-mediated disease in helminths and a possible role for intestinal worms in the gut-lung axis.
Collapse
Affiliation(s)
- Ruohang Sun
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jing Ding
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yaming Yang
- Department of Helminth, Yunnan Institute of Parasitic Diseases, Puer, China
| | - Fangwei Wu
- Department of Helminth, Yunnan Institute of Parasitic Diseases, Puer, China
| | - Xuelin Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Mingyuan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Xiaolei Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuemin Jin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Yi Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
4
|
Mules TC, Vacca F, Cait A, Yumnam B, Schmidt A, Lavender B, Maclean K, Noble SL, Gasser O, Camberis M, Le Gros G, Inns S. A Small Intestinal Helminth Infection Alters Colonic Mucus and Shapes the Colonic Mucus Microbiome. Int J Mol Sci 2024; 25:12015. [PMID: 39596084 PMCID: PMC11593901 DOI: 10.3390/ijms252212015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Infecting humans with controlled doses of small intestinal helminths, such as human hookworm, is proposed as a therapy for the colonic inflammatory disease ulcerative colitis. Strengthening the colonic mucus barrier is a potential mechanism by which small intestinal helminths could treat ulcerative colitis. In this study, we compare C57BL/6 mice infected with the small intestinal helminth Heligmosomoides polygyrus and uninfected controls to investigate changes in colonic mucus. Histology, gene expression, and immunofluorescent analysis demonstrate that this helminth induces goblet cell hyperplasia, and an upregulation of mucin sialylation, and goblet-cell-derived functional proteins resistin-like molecule-beta (RELM-β) and trefoil factors (TFFs), in the colon. Using IL-13 knockout mice, we reveal that these changes are predominantly IL-13-dependent. The assessment of the colonic mucus microbiome demonstrates that H. polygyrus infection increases the abundance of Ruminococcus gnavus, a commensal bacterium capable of utilising sialic acid as an energy source. This study also investigates a human cohort experimentally challenged with human hookworm. It demonstrates that TFF blood levels increase in individuals chronically infected with small intestinal helminths, highlighting a conserved mucus response between humans and mice. Overall, small intestinal helminths modify colonic mucus, highlighting this as a plausible mechanism by which human hookworm therapy could treat ulcerative colitis.
Collapse
Affiliation(s)
- Thomas C. Mules
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
- Department of Medicine, University of Otago, 23A Mein St., Newtown, Wellington 6242, New Zealand
| | - Francesco Vacca
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Alissa Cait
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Bibek Yumnam
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Alfonso Schmidt
- Hugh Green Technology Centre, Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Brittany Lavender
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Kate Maclean
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Sophia-Louise Noble
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Olivier Gasser
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Mali Camberis
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Graham Le Gros
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Stephen Inns
- Department of Medicine, University of Otago, 23A Mein St., Newtown, Wellington 6242, New Zealand
| |
Collapse
|
5
|
Lamminpää I, Boem F, Amedei A. Health-promoting worms? Prospects and pitfalls of helminth therapy. Bioessays 2024; 46:e2400080. [PMID: 39263744 DOI: 10.1002/bies.202400080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
In this manuscript, we explore the potential therapeutic use of helminths. After analyzing helminths' role in connection with human health from the perspective of their symbiotic and evolutionary relationship, we critically examine some studies on their therapeutic applications. In doing so, we focus on some prominent mechanisms of action and potential benefits, but also on the exaggerations and theoretical and methodological difficulties of such proposals. We conclude that further studies are needed to fully explore the potential benefits of this perspective, and we encourage the scientific community in doing so.
Collapse
Affiliation(s)
- Ingrid Lamminpää
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Federico Boem
- Institut für Philosophie I, Ruhr-Universität Bochum, Bochum, Germany
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, Florence, Italy
| |
Collapse
|
6
|
Sun H, Long SR, Jiang M, Zhang HR, Wang JJ, Liao ZX, Cui J, Wang ZQ. The gut microbiota is essential for Trichinella spiralis-evoked suppression of colitis. PLoS Negl Trop Dis 2024; 18:e0012645. [PMID: 39495798 PMCID: PMC11563474 DOI: 10.1371/journal.pntd.0012645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/14/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) increases the risk of colorectal cancer, and it has the potential to diminish the quality of life. Clinical and experimental evidence demonstrate protective aspects of parasitic helminth infection against IBD. However, studies on the inhibition of inflammation by helminth infection have overlooked a key determinant of health: the gut microbiota. Although infection with helminths induces alterations in the host microbiota composition, the potential influence and mechanism of helminth infections induced changes in the gut microbiota on the development of IBD has not yet been elucidated. In this study, we analyzed the intersection of helminth Trichinella spiralis and gut bacteria in the regulation of colitis and related mechanisms. METHODOLOGY/PRINCIPAL FINDINGS T. spiralis infected mice were treated with antibiotics or cohoused with wild type mice, then challenged with dextran sodium sulfate (DSS)-colitis and disease severity, immune responses and goblet cells assessed. Gut bacteria composition was assessed by 16S rRNA sequencing and short-chain fatty acids (SCFAs) were measured. We found that protection against disease by infection with T. spiralis was abrogated by antibiotic treatment, and cohousing with T. spiralis- infected mice suppressed DSS-colitis in wild type mice. Bacterial community profiling revealed an increase in the abundance of the bacterial genus Muribaculum and unclassified_Muribaculaceae in mice with T. spiralis infection or mice cohoused with T. spiralis- infected mice. Metabolomic analysis demonstrated significantly increased propionic acid in feces from T. spiralis- infected mice. Data also showed that the gut microbiome modulated by T. spiralis exhibited enhanced goblet cell differentiation and elevated IL-10 levels in mice. CONCLUSIONS These findings identify the gut microbiome as a critical component of the anti- colitic effect of T. spiralis and gives beneficial insights into the processes by which helminth alleviates colitis.
Collapse
Affiliation(s)
- Hualei Sun
- Department of Nutrition, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shao Rong Long
- Department of Pathogen Biology, Medical College of Zhengzhou University, Zhengzhou, Henan, China
| | - Miao Jiang
- Department of Pathogen Biology, Medical College of Zhengzhou University, Zhengzhou, Henan, China
| | - Hui Ran Zhang
- Department of Pathogen Biology, Medical College of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Jing Wang
- Department of Pathogen Biology, Medical College of Zhengzhou University, Zhengzhou, Henan, China
| | - Zi Xuan Liao
- Department of Pathogen Biology, Medical College of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Cui
- Department of Pathogen Biology, Medical College of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhong Quan Wang
- Department of Pathogen Biology, Medical College of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Behnke JM, Jackson JA, Gilbert F, Mohallal EME, Bajer A. Large-bodied gastric spirurids (Nematoda, Spirurida) predict structure in the downstream gastrointestinal helminth community of wild spiny mice ( Acomys dimidiatus). Parasitology 2024; 151:808-820. [PMID: 39320851 PMCID: PMC11579037 DOI: 10.1017/s0031182024000891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 09/26/2024]
Abstract
The dominant helminths infecting spiny mice (Acomys dimidiatus) in the montane wadis of the Sinai Peninsula of Egypt are spirurid nematodes, notably Protospirura muricola and Mastophorus muris. Both are relatively large robust stomach worms that accumulate in hosts resulting in high worm burdens. To ascertain whether the presence of spirurid worms or their burdens alters the host's likelihood of infection with other helminth species, we analysed a database containing quantitative data on helminth parasites of these mice (n = 431). This comprised of worm burdens recorded during 4 surveys, conducted at 4-year intervals, in 4 wadis, during late summer of each year. The presence of spirurid worms did not significantly alter species richness with other helminth species nor the likelihood of mice carrying other nematode species. However, there was a significant association, particularly of P. muricola, with the presence of intestinal stages of cestodes, and with the acanthocephalan Moniliformis acomysi. After controlling for intrinsic and extrinsic factors, mice harbouring spirurid worms had greater worm burdens of other helminths compared with mice without spirurids. Moreover, spirurid worm burdens showed a significant positive covariation with similarly adjusted species richness of other helminths, non-spirurid helminths, non-spirurid nematodes, oxyuroid nematodes and intestinal stage cestode worm burdens. We interpret these results as an indication that the key driver for co-occurrence of spirurids with other helminths is likely to be transmission via common arthropod hosts (for cestodes and acanthocephalans), but also that mice carrying the heavier spirurid worm burdens become more susceptible to directly transmitted nematodes such as the Oxyuroidea.
Collapse
Affiliation(s)
- Jerzy M. Behnke
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Joseph A. Jackson
- School of Science, Engineering and Environment, University of Salford, Manchester M5 4WT, UK
| | - Francis Gilbert
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Eman M. E. Mohallal
- The Ecology Unit of Desert Animals, Desert Research Centre, 1 Mataf El Matareya St, El Matareya, Cairo, Egypt
| | - Anna Bajer
- Department of Eco-Epidemiology of Parasitic Diseases, Faculty of Biology, Institute of Developmental Biology and Biomedical Sciences, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
8
|
Pillay R, Mkhize-Kwitshana ZL, Horsnell WGC, Icke C, Henderson I, Selkirk ME, Berkachy R, Naidoo P, Niehaus AJ, Singh R, Cunningham AF, O'Shea MK. Excretory-secretory products from adult helminth Nippostrongylus brasiliensis have in vitro bactericidal activity. J Med Microbiol 2023; 72. [PMID: 37929930 DOI: 10.1099/jmm.0.001762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Introduction. Intestinal helminths and microbiota share the same anatomical niche during infection and are likely to interact either directly or indirectly. Whether intestinal helminths employ bactericidal strategies that influence their microbial environment is not completely understood.Hypothesis. In the present study, the hypothesis that the adult hookworm Nippostrongylus brasiliensis produces molecules that impair bacterial growth in vitro, is tested.Aim. To investigate the in vitro bactericidal activity of Nippostrongylus brasiliensis against commensal and pathogenic bacteria.Methodology. The bactericidal effect of somatic extract and excretory-secretory products of adult Nippostrongylus brasiliensis on Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli, Salmonella enterica serovar Typhimurium, and Klebsiella pneumoniae) bacteria was assessed using growth assays. Minimum inhibitory concentration and minimum bactericidal concentration assays were performed using excretory-secretory products released from the pathogen.Results. Broad-spectrum in vitro bactericidal activity in excretory-secretory products, but not somatic extract of adult Nippostrongylus brasiliensis was detected. The bactericidal activity of excretory-secretory products was concentration-dependent, maintained after heat treatment, and preserved after repeated freezing and thawing.Conclusion. The results of this study demonstrate that helminths such as Nippostrongylus brasiliensis release molecules via their excretory-secretory pathway that have broad-spectrum bactericidal activity. The mechanisms responsible for this bactericidal activity remain to be determined and further studies aimed at isolating and identifying active bactericidal molecules are needed.
Collapse
Affiliation(s)
- Roxanne Pillay
- Department of Biomedical Sciences, Faculty of Natural Sciences, Mangosuthu University of Technology, Umlazi, South Africa
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town, South Africa
| | - Zilungile L Mkhize-Kwitshana
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town, South Africa
| | - William G C Horsnell
- Institute of Infectious Disease and Molecular Medicine (IDM), Department of Pathology, Division of Immunology, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Christopher Icke
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ian Henderson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD4072, Australia
| | - Murray E Selkirk
- Department of Life Sciences, Imperial College London, London, UK
| | - Rita Berkachy
- Department of Life Sciences, Imperial College London, London, UK
| | - Pragalathan Naidoo
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town, South Africa
| | - Abraham J Niehaus
- Department of Microbiology, Ampath Laboratories, Cape Town, South Africa
| | - Ravesh Singh
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Matthew K O'Shea
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
9
|
Lane JM, Brosschot TP, Gatti DM, Gauthier CM, Lawrence KM, Pluzhnikova V, Reynolds LA. Chronic small intestinal helminth infection perturbs bile acid homeostasis and disrupts bile acid signaling in the murine small intestine. FRONTIERS IN PARASITOLOGY 2023; 2:1214136. [PMID: 39816838 PMCID: PMC11731828 DOI: 10.3389/fpara.2023.1214136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/13/2023] [Indexed: 01/18/2025]
Abstract
Intestinal helminths have evolved an abundance of immunomodulatory mechanisms to ensure long-lived infections in mammalian hosts. To manipulate mammalian immune responses helminths can directly produce immunomodulatory molecules, but helminth infection can also elicit functional changes in the intestinal microbiome which can impact immune functioning. Here we examined how bile acids (BA)s, a group of host-produced, microbiota-modified immunomodulatory metabolites, were altered in abundance and composition during a murine small intestinal helminth infection. We found that murine helminth infection resulted in consistently reduced concentrations of specific taurine-conjugated primary BAs (T-α-MCA and T-CDCA) in the small intestinal luminal contents of mice. BA transporters facilitate the uptake of BAs from the small intestinal lumen, allowing BAs to engage with nuclear BA receptors, and helminth infected mice showed reduced expression of genes encoding basal BA transporters in the small intestine. Finally, we report that there is reduced signaling through the nuclear BA receptor FXR in both the proximal small intestine and ileum of mice during small intestinal helminth infection. Together, our data reveal disruptions to BA homeostasis and signaling in the small intestine during helminth infection. As BAs are known to impact many aspects of mucosal physiology and immunity, examining the functional consequences of BA disruptions during helminth infection will be an important avenue for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lisa A. Reynolds
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
10
|
Seguel M, Budischak SA, Jolles AE, Ezenwa VO. Helminth-associated changes in host immune phenotype connect top-down and bottom-up interactions during co-infection. Funct Ecol 2023; 37:860-872. [PMID: 37214767 PMCID: PMC10195069 DOI: 10.1111/1365-2435.14237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 11/01/2022] [Indexed: 11/26/2022]
Abstract
1. Within-host parasite interactions can be mediated by the host and changes in host phenotypes often serve as indicators of the presence or intensity of parasite interactions. 2. Parasites like helminths induce a range of physiological, morphological, and immunological changes in hosts that can drive bottom-up (resource-mediated) or top-down (immune-mediated) interactions with co-infecting parasites. Although top-down and bottom-up interactions are typically studied in isolation, the diverse phenotypic changes induced by parasite infection may serve as a useful tool for understanding if, and when, these processes act in concert. 3. Using an anthelmintic treatment study of African buffalo (Syncerus caffer), we tracked changes in host immunological and morphological phenotypes during helminth-coccidia co-infection to investigate their role in driving independent and combinatorial bottom-up and top-down parasite interactions. We also examined repercussions for host fitness. 4. Clearance of a blood-sucking helminth, Haemonchus, from the host gastrointestinal tract induced a systemic Th2 immune phenotype, while clearance of a tissue-feeding helminth, Cooperia, induced a systemic Th1 phenotype. Furthermore, the Haemonchus-associated systemic Th2 immune phenotype drove simultaneous top-down and bottom-up effects that increased coccidia shedding by changing the immunological and morphological landscapes of the intestine. 5. Higher coccidia shedding was associated with lower host body condition, a lower chance of pregnancy, and older age at first pregnancy, suggesting that coccidia infection imposed significant condition and reproductive costs on the host. 6. Our findings suggest that top-down and bottom-up interactions may commonly co-occur and that tracking key host phenotypes that change in response to infection can help uncover complex pathways by which parasites interact.
Collapse
Affiliation(s)
- Mauricio Seguel
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Sarah A. Budischak
- W.M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, USA
| | - Anna E. Jolles
- Department of Biomedical Sciences and Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Vanessa O. Ezenwa
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
11
|
Smyth DJ, White MPJ, Johnston CJC, Donachie AM, Campillo Poveda M, McSorley HJ, Maizels RM. Protection from T cell-dependent colitis by the helminth-derived immunomodulatory mimic of transforming growth factor-β, Hp-TGM. DISCOVERY IMMUNOLOGY 2023; 2:kyad001. [PMID: 36855464 PMCID: PMC9958376 DOI: 10.1093/discim/kyad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/07/2022] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
In animal models of inflammatory colitis, pathology can be ameliorated by several intestinal helminth parasites, including the mouse nematode Heligmosomoides polygyrus. To identify parasite products that may exert anti-inflammatory effects in vivo, we tested H. polygyrus excretory-secretory (HES) products, as well as a recombinantly expressed parasite protein, transforming growth factor mimic (TGM), that functionally mimics the mammalian immunomodulatory cytokine TGF-β. HES and TGM showed a degree of protection in dextran sodium sulphate-induced colitis, with a reduction in inflammatory cytokines, but did not fully block the development of pathology. HES also showed little benefit in a similar acute trinitrobenzene sulphonic acid-induced model. However, in a T cell transfer-mediated model with recombination activation gene (RAG)-deficient mice, HES-reduced disease scores if administered throughout the first 2 or 4 weeks following transfer but was less effective if treatment was delayed until 14 days after T cell transfer. Recombinant TGM similarly dampened colitis in RAG-deficient recipients of effector T cells, and was effective even if introduced only once symptoms had begun to be manifest. These results are a promising indication that TGM may replicate, and even surpass, the modulatory properties of native parasite HES.
Collapse
Affiliation(s)
- Danielle J Smyth
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
- Division of Cell Signalling and Immunology, University of Dundee, Dundee, UK
| | - Madeleine P J White
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | | | - Anne-Marie Donachie
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Marta Campillo Poveda
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Henry J McSorley
- Division of Cell Signalling and Immunology, University of Dundee, Dundee, UK
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| |
Collapse
|
12
|
Lundregan SL, Mäkinen H, Buer A, Holand H, Jensen H, Husby A. Infection by a helminth parasite is associated with changes in DNA methylation in the house sparrow. Ecol Evol 2022; 12:e9539. [PMID: 36447599 PMCID: PMC9702581 DOI: 10.1002/ece3.9539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022] Open
Abstract
Parasites can exert strong selective pressures on their hosts and influence the evolution of host immunity. While several studies have examined the genetic basis for parasite resistance, the role of epigenetics in the immune response to parasites is less understood. Yet, epigenetic modifications, such as changes in DNA methylation, may allow species to respond rapidly to parasite prevalence or virulence. To test the role of DNA methylation in relation to parasite infection, we examined genome-wide DNA methylation before and during infection by a parasitic nematode, Syngamus trachea, in a natural population of house sparrows (Passer domesticus) using reduced representation bisulfite sequencing (RRBS). We found that DNA methylation levels were slightly lower in infected house sparrows, and we identified candidate genes relating to the initial immune response, activation of innate and adaptive immunity, and mucus membrane functional integrity that were differentially methylated between infected and control birds. Subsequently, we used methylation-sensitive high-resolution melting (MS-HRM) analyses to verify the relationship between methylation proportion and S. trachea infection status at two candidate genes in a larger sample dataset. We found that methylation level at NR1D1, but not CLDN22, remained related to infection status and that juvenile recruitment probability was positively related to methylation level at NR1D1. This underscores the importance of performing follow-up studies on candidate genes. Our findings demonstrate that plasticity in the immune response to parasites can be epigenetically mediated and highlight the potential for epigenetic studies in natural populations to provide further mechanistic insight into host-parasite interactions.
Collapse
Affiliation(s)
- Sarah L. Lundregan
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Hannu Mäkinen
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
- Evolutionary Biology, Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| | - Amberly Buer
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Håkon Holand
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Henrik Jensen
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Arild Husby
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
- Evolutionary Biology, Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| |
Collapse
|
13
|
Yeshi K, Ruscher R, Loukas A, Wangchuk P. Immunomodulatory and biological properties of helminth-derived small molecules: Potential applications in diagnostics and therapeutics. FRONTIERS IN PARASITOLOGY 2022; 1:984152. [PMID: 39816468 PMCID: PMC11731824 DOI: 10.3389/fpara.2022.984152] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/23/2022] [Indexed: 01/18/2025]
Abstract
Parasitic helminths secrete and excrete a vast array of molecules known to help skew or suppress the host's immune response, thereby establishing a niche for sustained parasite maintenance. Indeed, the immunomodulatory potency of helminths is attributed mainly to excretory/secretory products (ESPs). The ESPs of helminths and the identified small molecules (SM) are reported to have diverse biological and pharmacological properties. The available literature reports only limited metabolites, and the identity of many metabolites remains unknown due to limitations in the identification protocols and helminth-specific compound libraries. Many metabolites are known to be involved in host-parasite interactions and pathogenicity. For example, fatty acids (e.g., stearic acid) detected in the infective stages of helminths are known to have a role in host interaction through facilitating successful penetration and migration inside the host. Moreover, excreted/secreted SM detected in helminth species are found to possess various biological properties, including anti-inflammatory activities, suggesting their potential in developing immunomodulatory drugs. For example, helminths-derived somatic tissue extracts and whole crude ESPs showed anti-inflammatory properties by inhibiting the secretion of proinflammatory cytokines from human peripheral blood mononuclear cells and suppressing the pathology in chemically-induced experimental mice model of colitis. Unlike bigger molecules like proteins, SM are ideal candidates for drug development since they are small structures, malleable, and lack immunogenicity. Future studies should strive toward identifying unknown SM and isolating the under-explored niche of helminth metabolites using the latest metabolomics technologies and associated software, which hold potential keys for finding new diagnostics and novel therapeutics.
Collapse
Affiliation(s)
- Karma Yeshi
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, QLD, Australia
| | | | | | | |
Collapse
|
14
|
Long SR, Shang WX, Jiang M, Li JF, Liu RD, Wang ZQ, Sun H, Cui J. Preexisting Trichinella spiralis infection attenuates the severity of Pseudomonas aeruginosa-induced pneumonia. PLoS Negl Trop Dis 2022; 16:e0010395. [PMID: 35500031 PMCID: PMC9098000 DOI: 10.1371/journal.pntd.0010395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/12/2022] [Accepted: 04/05/2022] [Indexed: 11/19/2022] Open
Abstract
Background A range of helminth species involve the migration of developing larvae through the lung and establish chronic infections in the host that include potent immune regulatory effects. Trichinella spiralis is one of the most successful parasitic symbiotes. After released by intestinal female adult worms, newborn larvae of T. spiralis travel through the circulatory system to the lung and finally reach skeletal muscle cells. As unique inflammation modulator of intracellular parasitism, T. spiralis shows improved responses to autoimmune disease and viral pulmonary inflammation by exerting immunomodulatory effects on innate and adaptive immune cells. Methodology/Principal findings C57BL/6 mice were divided into four groups: uninfected; helminth- T. spiralis infected; P. aeruginosa infected; and co-infected. Mice infected with T. spiralis were incubated for 6 weeks, followed by P. aeruginosa intranasal inoculation. Bronchial alveolar lavage fluid, blood and lung samples were analyzed. We found that T. spiralis induced Th2 response in the mouse lung tissue, increased lung CD4+ T cells, GATA3, IL-4, IL-5 and IL-13 expression. Pre-existing T. spiralis infection decreased lung neutrophil recruitment, inflammatory mediator IL-1β and IL-6 expression and chemokine CXCL1 and CXCL2 release during P. aeruginosa- pneumonia. Furthermore, T. spiralis co-infected mice exhibited significantly more eosinophils at 6 hours following P. aeruginosa infection, ameliorated pulmonary inflammation and improved survival in P. aeruginosa pneumonia. Conclusions These findings indicate that a prior infection with T. spiralis ameliorates experimental pulmonary inflammation and improves survival in P. aeruginosa pneumonia through a Th2-type response with eosinophils. Helminth infections elicit type 2 immunity, which influences host immune responses to additional threats, such as allergens, metabolic disease and other pathogens. Pseudomonas aeruginosa is one of the most common gram-negative pathogens causing pneumonia in immunocompromised patients. The mortality rate of ventilator associated pneumonia caused by P. aeruginosa is higher than that due to other pathogens. Trichinella spiralis is a zoonotic nematode of intracellular parasitism that infects a wide range of vertebrate hosts, including humans. There is a lung migratory phase in the life cycle of T. spiralis. In this study, we found that T. spiralis induced Th2 response in the mouse lung tissue. T. spiralis co-infected mice exhibited significantly more eosinophils and less neutrophils at 6 hours following P. aeruginosa infection, ameliorated pulmonary inflammation and improved survival in P. aeruginosa pneumonia. These findings suggest a pre-existing chronic helminth with a lung migration phase infection promotes the survival of bacterial airway co-infected host.
Collapse
Affiliation(s)
- Shao Rong Long
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, China
| | - Wen Xuan Shang
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, China
- Biology, School of Life Scence, Zhengzhou University, Zhengzhou, China
| | - Miao Jiang
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, China
| | - Jing Fei Li
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, China
| | - Hualei Sun
- Department of Nutrition, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- * E-mail: (HS); (JC)
| | - Jing Cui
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, China
- * E-mail: (HS); (JC)
| |
Collapse
|
15
|
Leontiadis GI, Longstreth GF. Evolutionary Medicine Perspectives: Helicobacter pylori, Lactose Intolerance, and 3 Hypotheses for Functional and Inflammatory Gastrointestinal and Hepatobiliary Disorders. Am J Gastroenterol 2022; 117:721-728. [PMID: 35169106 DOI: 10.14309/ajg.0000000000001681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/10/2022] [Indexed: 12/11/2022]
Abstract
Many clinicians have suboptimal knowledge of evolutionary medicine. This discipline integrates social and basic sciences, epidemiology, and clinical medicine, providing explanations, especially ultimate causes, for many conditions. Principles include genetic variation from population bottleneck and founder effects, evolutionary trade-offs, and coevolution. For example, host-microbe coevolution contributes to the inflammatory and carcinogenic variability of Helicobacter pylori. Antibiotic-resistant strains are evolving, but future therapy could target promutagenic proteins. Ancient humans practicing dairying achieved survival and reproduction advantages of postweaning lactase persistence and passed this trait to modern descendants, delegitimizing lactose intolerance as "disease" in people with lactase nonpersistence. Three evolutionary hypotheses are each relevant to multiple diseases: (i) the polyvagal hypothesis posits that prehistoric adaptation of autonomic nervous system reactions to stress is beneficial acutely but, when continued chronically, predisposes individuals to painful functional gastrointestinal disorders, in whom it may be a biomarker; (ii) the thrifty gene hypothesis proposes genetic adaptation to feast-famine cycles among Pleistocene migrants to America, which is mismatched with Indigenous Americans' current diet and physical activity, predisposing them to obesity, nonalcoholic fatty liver disease, and gallstones and their complications; and (iii) the hygiene hypothesis proposes alteration of the gut microbiome, with which humans have coevolved, in allergic and autoimmune disease pathogenesis; for example, association of microbiome-altering proton pump inhibitor use with pediatric eosinophilic esophagitis, early-life gastrointestinal infection with celiac disease, and infant antibiotic use and an economically advanced environment with inflammatory bowel disease. Evolutionary perspectives broaden physicians' understanding of disease processes, improve care, and stimulate research.
Collapse
Affiliation(s)
- Grigorios I Leontiadis
- Division of Gastroenterology and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - George F Longstreth
- Section of Gastroenterology, Veterans Administration San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
16
|
Zhao M, Ren K, Xiong X, Xin Y, Zou Y, Maynard JC, Kim A, Battist AP, Koneripalli N, Wang Y, Chen Q, Xin R, Yang C, Huang R, Yu J, Huang Z, Zhang Z, Wang H, Wang D, Xiao Y, Salgado OC, Jarjour NN, Hogquist KA, Revelo XS, Burlingame AL, Gao X, von Moltke J, Lin Z, Ruan HB. Epithelial STAT6 O-GlcNAcylation drives a concerted anti-helminth alarmin response dependent on tuft cell hyperplasia and Gasdermin C. Immunity 2022; 55:623-638.e5. [PMID: 35385697 PMCID: PMC9109499 DOI: 10.1016/j.immuni.2022.03.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/25/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022]
Abstract
The epithelium is an integral component of mucosal barrier and host immunity. Following helminth infection, the intestinal epithelial cells secrete "alarmin" cytokines, such as interleukin-25 (IL-25) and IL-33, to initiate the type 2 immune responses for helminth expulsion and tolerance. However, it is unknown how helminth infection and the resulting cytokine milieu drive epithelial remodeling and orchestrate alarmin secretion. Here, we report that epithelial O-linked N-Acetylglucosamine (O-GlcNAc) protein modification was induced upon helminth infections. By modifying and activating the transcription factor STAT6, O-GlcNAc transferase promoted the transcription of lineage-defining Pou2f3 in tuft cell differentiation and IL-25 production. Meanwhile, STAT6 O-GlcNAcylation activated the expression of Gsdmc family genes. The membrane pore formed by GSDMC facilitated the unconventional secretion of IL-33. GSDMC-mediated IL-33 secretion was indispensable for effective anti-helminth immunity and contributed to induced intestinal inflammation. Protein O-GlcNAcylation can be harnessed for future treatment of type 2 inflammation-associated human diseases.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Kaiqun Ren
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA; College of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xiwen Xiong
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yue Xin
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yujie Zou
- MOE Key Laboratory of Model Animals for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jason C Maynard
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Angela Kim
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Alexander P Battist
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Navya Koneripalli
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Yusu Wang
- MOE Key Laboratory of Model Animals for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Qianyue Chen
- MOE Key Laboratory of Model Animals for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Ruyue Xin
- MOE Key Laboratory of Model Animals for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Chenyan Yang
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Rong Huang
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jiahui Yu
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zan Huang
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Zengdi Zhang
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Haiguang Wang
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Daoyuan Wang
- College of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Yihui Xiao
- College of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Oscar C Salgado
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Nicholas N Jarjour
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Kristin A Hogquist
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xavier S Revelo
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Xiang Gao
- MOE Key Laboratory of Model Animals for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jakob von Moltke
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Zhaoyu Lin
- MOE Key Laboratory of Model Animals for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China.
| | - Hai-Bin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
| |
Collapse
|
17
|
Abstract
Viral infections are often studied in model mammalian organisms under specific pathogen-free conditions. However, in nature, coinfections are common, and infection with one organism can alter host susceptibility to infection with another. Helminth parasites share a long coevolutionary history with mammalian hosts and have shaped host physiology, metabolism, immunity, and the composition of the microbiome. Published studies suggest that helminth infection can either be beneficial or detrimental during viral infection. Here, we discuss coinfection studies in mouse models and use them to define key determinants that impact outcomes, including the type of antiviral immunity, the tissue tropism of both the helminth and the virus, and the timing of viral infection in relation to the helminth lifecycle. We also explore the current mechanistic understanding of how helminth-virus coinfection impacts host immunity and viral pathogenesis. While much attention has been placed on the impact of the gut bacterial microbiome on immunity to infection, we suggest that enteric helminths, as a part of the eukaryotic macrobiome, also represent an important modulator of disease pathogenesis and severity following virus infection.
Collapse
Affiliation(s)
- Pritesh Desai
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States,Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO, United States,Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, United States,The Andrew M. And Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States
| | - Larissa B. Thackray
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States,CONTACT Larissa B. Thackray Department of Medicine, Washington University School of Medicine, Saint Louis, MO63110, United States
| |
Collapse
|
18
|
Small Intestinal Levels of the Branched Short-Chain Fatty Acid Isovalerate Are Elevated during Infection with Heligmosomoides polygyrus and Can Promote Helminth Fecundity. Infect Immun 2021; 89:e0022521. [PMID: 34460289 DOI: 10.1128/iai.00225-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heligmosomoides polygyrus is a helminth which naturally infects mice and is widely used as a laboratory model of chronic small intestinal helminth infection. While it is known that infection with H. polygyrus alters the composition of the host's bacterial microbiota, the functional implications of this alteration are unclear. We investigated the impact of H. polygyrus infection on short-chain fatty acid (SCFA) levels in the mouse intestine and sera. We found that helminth infection resulted in significantly upregulated levels of the branched SCFA isovaleric acid, exclusively in the proximal small intestine, which is the site of H. polygyrus colonization. We next set out to test the hypothesis that elevating local levels of isovaleric acid was a strategy used by H. polygyrus to promote its own fitness within the mammalian host. To test this, we supplemented the drinking water of mice with isovalerate during H. polygyrus infection and examined whether this affected helminth fecundity or chronicity. We did not find that isovaleric acid supplementation affected helminth chronicity; however, we found that it did promote helminth fecundity, as measured by helminth egg output in the feces of mice. Through antibiotic treatment of helminth-infected mice, we found that the bacterial microbiota was required in order to support elevated levels of isovaleric acid in the proximal small intestine during helminth infection. Overall, our data reveal that during H. polygyrus infection there is a microbiota-dependent localized increase in the production of isovaleric acid in the proximal small intestine and that this supports helminth fecundity in the murine host.
Collapse
|
19
|
Jay P. Tuft cells: sentinels of the intestinal mucosa. C R Biol 2021; 344:263-273. [DOI: 10.5802/crbiol.60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022]
|
20
|
Smyth DJ, Ren B, White MPJ, McManus C, Webster H, Shek V, Evans C, Pandhal J, Fields F, Maizels RM, Mayfield S. Oral delivery of a functional algal-expressed TGF-β mimic halts colitis in a murine DSS model. J Biotechnol 2021; 340:1-12. [PMID: 34390759 PMCID: PMC8516079 DOI: 10.1016/j.jbiotec.2021.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease (IBD) is a set of immunological disorders which can generate chronic pain and fatigue associated with the inflammatory symptoms. The treatment of IBD remains a significant hurdle with current therapies being only partially effective or having significant side effects, suggesting that new therapies that elicit different modes of action and delivery strategies are required. TGM1 is a TGF-β mimic that was discovered from the intestinal helminth parasite Heligmosomoides polygyrus and is thought to be produced by the parasite to suppress the intestinal inflammation response to help evade host immunity, making it an ideal candidate to be developed as a novel anti-inflammatory bio-therapeutic. Here we utilized the expression system of the edible green algae Chlamydomonas reinhardtii in order to recombinantly produce active TGM1 in a form that could be ingested. C. reinhardtii robustly expressed TGM1, and the resultant recombinant protein is biologically active as measured by regulatory T cell induction. When delivered orally to mice, the algal expressed TGM1 is able to ameliorate weight loss, lymphadenopathy, and disease symptoms in a mouse model of DSS-induced colitis, demonstrating the potential of this biologic as a novel treatment of IBD.
Collapse
Affiliation(s)
- Danielle J Smyth
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, UK
| | - Bijie Ren
- California Center for Algae Biotechnology, Division of Biological Sciences, University of California, San Diego, USA
| | - Madeleine P J White
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, UK
| | - Caitlin McManus
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, UK
| | - Holly Webster
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, UK
| | - Vivien Shek
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, UK
| | - Caroline Evans
- Bioanalytical Facility, Dept Chemical and Biological Engineering, University of Sheffield, UK
| | - Jagroop Pandhal
- Bioanalytical Facility, Dept Chemical and Biological Engineering, University of Sheffield, UK
| | - Francis Fields
- California Center for Algae Biotechnology, Division of Biological Sciences, University of California, San Diego, USA
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, UK.
| | - Stephen Mayfield
- California Center for Algae Biotechnology, Division of Biological Sciences, University of California, San Diego, USA.
| |
Collapse
|
21
|
The COVID-19 Prevalence among Children: Hypotheses for Low Infection Rate and Few Severe Forms among This Age Group in Sub-Saharan Africa. Interdiscip Perspect Infect Dis 2021; 2021:4258414. [PMID: 34675974 PMCID: PMC8526265 DOI: 10.1155/2021/4258414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/04/2021] [Indexed: 01/12/2023] Open
Abstract
Despite some cases of severe or critical manifestations of the coronavirus disease 2019 (COVID-19) described among children, the prevalence of this infection in the pediatric population is quite low worldwide, particularly in sub-Saharan Africa. Current data suggest indeed that, independent of the population considered overall, severe and critical cases of COVID-19 are rare among children. This observation prompted us to discuss the possible hypotheses which could explain the low prevalence of COVID-19 among children; amongst others, we discuss (1) immunomodulation by the Bacillus Calmette–Guerin vaccine or by some parasitic infections such as malaria, schistosomiasis, and helminthiasis and (2) cross immunization with other coronaviruses commonly found in the sub-Saharan African setting.
Collapse
|
22
|
Rodrigues VF, Camelo GMA, de Rezende MC, Maggi L, Silva JKAO, Rodrigues JGM, Araújo MSS, Martins-Filho OA, Negrão-Corrêa D. Infection by Strongyloides venezuelensis attenuates chronic colitis induced by Dextran Sodium Sulfate ingestion in BALB/c mice. Immunobiology 2021; 226:152129. [PMID: 34433129 DOI: 10.1016/j.imbio.2021.152129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/02/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
Inflammatory bowel diseases (IBD) are chronic health problems of difficult management and treatment. Epidemiological studies indicate an inverse association between helminth infections and IBD, and experimental data confirm that helminth infections modulate the severity of experimental acute colitis in mice. However, the effects of helminth infections on chronic colitis, which is clinically more relevant, have been poorly explored. Herein, we investigated whether Strongyloides venezuelensis infection in BALB/c mice can ameliorate chronic colitis induced by the ingestion of water containing 2.5% Dextran Sodium Sulfate (DSS) over three seven-day treatment cycles, with an interval of fourteen days between cycles. Infected-only, DSS-exposed-only, and non-exposed/uninfected experimental groups served as controls for comparing the severity of colitis and intestinal inflammation among different groups. Our data showed that S. venezuelensis infection in mice with DSS-induced chronic colitis reduced clinical signs, attenuated colon shortening and inflammation, and prevented mucus ablation. The modulatory effect was accompanied by a low concentration of IFN-γ, high concentrations of TGF-β, IL-22, and IL-33 in the colon, and a significant increase of the percentage of CD4+CD25+Foxp3+ Treg cells in the mesenteric lymph node (MLN). In conclusion, S. venezuelensis infection can reduce the severity of DSS-induced chronic colitis in mice possibly through the stimulation of Treg cells and modulatory cytokines, and induction of mucosal repair mechanisms.
Collapse
Affiliation(s)
| | | | | | - Laura Maggi
- Departamento de Parasitologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | | | - Márcio Sobreira Silva Araújo
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou/FIOCRUZ - MG, Belo Horizonte, Minas Gerais, Brazil
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou/FIOCRUZ - MG, Belo Horizonte, Minas Gerais, Brazil
| | - Deborah Negrão-Corrêa
- Departamento de Parasitologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.
| |
Collapse
|
23
|
Li S, Rajeev S, Wang A, McKay DM. Infection with Hymenolepis diminuta Blocks Colitis and Hastens Recovery While Colitis Has Minimal Impact on Expulsion of the Cestode from the Mouse Host. Pathogens 2021; 10:pathogens10080994. [PMID: 34451458 PMCID: PMC8401575 DOI: 10.3390/pathogens10080994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 12/16/2022] Open
Abstract
Two experimental paradigms were adopted to explore host-helminth interactions involved in the regulation of colitis and to understand if colitis affects the outcome of helminth infection. First, male BALB/c mice infected with H. diminuta were challenged 4 days later with dinitrobenzene sulphonic acid (DNBS) and necropsied 3 days later. Second, mice were infected with H. diminuta 3 days after DNBS treatment and necropsied 11 or 14 days post-DNBS. Mice were assessed for colitic disease severity and infectivity with H. diminuta upon necropsy. Supporting the concept of helminth therapy, mice are protected from DNBS-colitis when infected with H. diminuta only 4 days previously, along with parallel increases in splenic production of Th2 cytokines. In the treatment regimen, H. diminuta infection produced a subtle, statistically significant, enhanced recovery from DNBS. Mice regained body weight quicker, had normalized colon lengths, and showed no overt signs of disease, in comparison to the DNBS-only mice, some of which displayed signs of mild disease at 14 days post-DNBS. Unexpectedly, colitis did not affect the hosts' anti-worm response. The impact of inflammatory disease on helminth infection is deserving of study in a variety of models as auto-inflammatory diseases emerge in world regions where parasitic helminths are endemic.
Collapse
|
24
|
Braseth AL, Elliott DE, Ince MN. Parasitic Infections of the Gastrointestinal Track and Liver. Gastroenterol Clin North Am 2021; 50:361-381. [PMID: 34024446 PMCID: PMC11095845 DOI: 10.1016/j.gtc.2021.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Parasites have coevolved with humans. Several of them colonize the human body and establish a symbiotic relationship. Other parasites cause severe and lethal diseases. Prevalence of parasitic infections is decreased in highly industrialized countries, largely due to enforced hygienic practices. In contrast, parasites cause significant morbidity and mortality in parts of the world with barriers to effective public hygiene. Some parasites have emerged as potent pathogens in specific patient populations, such as immune suppressed individuals, regardless of sanitation. This article reviews common parasites encountered in clinical practice and, in the setting of host-parasite symbiosis, discusses their immune regulatory role.
Collapse
Affiliation(s)
- Annie L Braseth
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA
| | - David E Elliott
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Iowa, Carver College of Medicine, 4546 JCP, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - M Nedim Ince
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Iowa, Carver College of Medicine, 4546 JCP, 200 Hawkins Drive, Iowa City, IA 52242, USA.
| |
Collapse
|
25
|
Qin X, Liu CY, Xiong YL, Bai T, Zhang L, Hou XH, Song J. The clinical features of chronic intestinal schistosomiasis-related intestinal lesions. BMC Gastroenterol 2021; 21:12. [PMID: 33407185 PMCID: PMC7789259 DOI: 10.1186/s12876-020-01591-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chronic intestinal schistosomiasis has been reported to be associated with colonic polyps, colorectal cancer and ulcerative colitis. We aim to investigate the clinical characteristics of intestinal-related lesions caused by chronic intestinal schistosomiasis japonicum. METHODS Patients with and without chronic intestinal schistosomiasis were retrospectively enrolled from the endoscopy center of Wuhan Union Hospital from September 1, 2014, to June 30, 2019 with a ratio of 4:1. The characteristics of infected intestinal segments were analyzed in patients with chronic intestinal schistosomiasis. We also compared the characteristics of intestinal-related lesions, including colorectal polyps, colorectal cancer (CRC), ulceration or erosion of the intestinal mucosa and hemorrhoids, between the two groups. RESULTS A total of 248 patients with chronic intestinal schistosomiasis and 992 patients without chronic intestinal schistosomiasis were analyzed. The most common sites of chronic intestinal schistosomiasis were the sigmoid colon (79.0%) and rectum (84.7%). The frequency of intestinal polyps (64.5% vs. 42.8%, p < 0.001), especially rectal polyps (62.5% vs. 45.0%, p = 0.002), in the intestinal schistosomiasis group was significantly higher than that in the control group. Morphologically, type IIa polyps were more common in the schistosomiasis enteropathy group (68.5% vs. 60.7%, p = 0.001). Female patients with intestinal schistosomiasis had a higher detection rate of CRC than women in the control group (13.8% vs. 5.4%, p = 0.017). There was no significant difference in the incidence of ulcerative colitis between the two groups (0.8% vs. 0.6%, p = 0.664). In addition, the schistosomiasis enteropathy patients had a higher detection rate of internal hemorrhoids (58.9% vs. 51.0%, p = 0.027). CONCLUSIONS Chronic intestinal schistosomiasis mainly involved the rectum and sigmoid colon and was more likely to induce intestinal polyps, especially rectal polyps and internal hemorrhoids. Women with chronic schistosomiasis have a higher risk of colorectal cancer.
Collapse
Affiliation(s)
- Xian Qin
- Division of Gastroenterology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Cai-Yuan Liu
- Division of Gastroenterology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Yi-Lin Xiong
- Division of Gastroenterology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Tao Bai
- Division of Gastroenterology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Lei Zhang
- Division of Gastroenterology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Xiao-Hua Hou
- Division of Gastroenterology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China
| | - Jun Song
- Division of Gastroenterology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, China.
| |
Collapse
|
26
|
Toychiev A, Navruzov B, Pazylova D, Davis N, Badalova N, Osipova S. Intestinal protozoa and helminths in ulcerative colitis and the influence of anti-parasitic therapy on the course of the disease. Acta Trop 2021; 213:105755. [PMID: 33188747 DOI: 10.1016/j.actatropica.2020.105755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE The aim of this study is to determine the prevalence of intestinal helminths and protozoa in patients with ulcerative colitis (UC) and to estimate the influence of the anti-parasitic therapy on the course of the disease. METHODS The study was conducted at the Research Institute of Epidemiology, Microbiology and Infectious Diseases and Coloproctology Department of the Republic Clinical Hospital №1 of the Ministry of Health of the Republic of Uzbekistan. One hundred UC patients and 200 healthy individuals were examined by triple coproscopy. Additionally, 20, 25 and 22 UC patients with Blastocystis infection were treated with nitazoxanide (1.0 g/day), mesalazine (1.5-2 g/day) or a combination of nitazoxanide (1.0 g/day) and mesalazine (≥1.5-2 g/day) for 14 consecutive days, respectively. Parasitological, clinical and endoscopic examinations were conducted before therapy, immediately after and 6 and 12 weeks after therapy completion. RESULTS The overall prevalence of helminths in UC patients and control individuals was not significantly different: 14±3.4% and 8.5±1.9%, respectively (OR: 1.7524; 95% CI: 0.8258 to 3.7186; P=0.1). Giardia lamblia was the most prevalent parasite in both groups, but the difference compared to the control was insignificant (OR: 0.4565; 95% CI: 0.2020 to 1.0318; P=0.05). A significantly higher prevalence of Blastocystis sp., Chilomastix mesnili and Iodamoeba butschlii in UC patients compared to control individuals was found (P<0.0005): 65.0%, 14.0% and 22.0%, respectively. During all follow-up periods, the clinical response and clinical remission were not statistically different between the groups (P>0.05). Mucosal healing immediately and 6 weeks after therapy with a combination of nitazoxanide with mesalazine was significantly better than with a monotherapy of nitazoxanide, respectively (P<0.05). UC patients treated with a combination of nitazoxanide with mesalazine showed better mucosal healing than in patients treated with a monotherapy of mesalazine (P>0.05). CONCLUSIONS Diagnosis of Blastocystis sp. should be introduced in the complex examination of UC patients. Further clinical studies are necessary for assessment of the efficiency of anti-Blastocystis therapy in UC patients.
Collapse
|
27
|
Schistosoma mansoni eggs induce Wnt/β-catenin signaling and activate the protooncogene c-Jun in human and hamster colon. Sci Rep 2020; 10:22373. [PMID: 33361772 PMCID: PMC7758332 DOI: 10.1038/s41598-020-79450-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022] Open
Abstract
Schistosomiasis (bilharzia) is a neglected tropical disease caused by parasitic flatworms of the genus Schistosoma, with considerable morbidity in parts of the Middle East, South America, Southeast Asia, in sub-Saharan Africa, and particularly also in Europe. The WHO describes an increasing global health burden with more than 290 million people threatened by the disease and a potential to spread into regions with temperate climates like Corsica, France. The aim of our study was to investigate the influence of S. mansoni infection on colorectal carcinogenic signaling pathways in vivo and in vitro. S. mansoni infection, soluble egg antigens (SEA) and the Interleukin-4-inducing principle from S. mansoni eggs induce Wnt/β-catenin signaling and the protooncogene c-Jun as well as downstream factor Cyclin D1 and markers for DNA-damage, such as Parp1 and γH2a.x in enterocytes. The presence of these characteristic hallmarks of colorectal carcinogenesis was confirmed in colon biopsies from S. mansoni-infected patients demonstrating the clinical relevance of our findings. For the first time it was shown that S. mansoni SEA may be involved in the induction of colorectal carcinoma-associated signaling pathways.
Collapse
|
28
|
Nishimoto A, Wohlgemuth N, Rosch J, Schultz-Cherry S, Cortez V, Rowe HM. Transkingdom Interactions Important for the Pathogenesis of Human Viruses. J Infect Dis 2020; 223:S201-S208. [PMID: 33330907 DOI: 10.1093/infdis/jiaa735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The bacterial, fungal, and helminthic species that comprise the microbiome of the mammalian host have profound effects on health and disease. Pathogenic viruses must contend with the microbiome during infection and likely have evolved to exploit or evade the microbiome. Both direct interactions between the virions and the microbiota and immunomodulation and tissue remodeling caused by the microbiome alter viral pathogenesis in either host- or virus-beneficial ways. Recent insights from in vitro and murine models of viral pathogenesis have highlighted synergistic and antagonistic, direct and indirect interactions between the microbiome and pathogenic viruses. This review will focus on the transkingdom interactions between human gastrointestinal and respiratory viruses and the constituent microbiome of those tissues.
Collapse
Affiliation(s)
- Andrew Nishimoto
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Nicholas Wohlgemuth
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jason Rosch
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Valerie Cortez
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Hannah M Rowe
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
29
|
Wang Z, Hao C, Zhuang Q, Zhan B, Sun X, Huang J, Cheng Y, Zhu X. Excretory/Secretory Products From Trichinella spiralis Adult Worms Attenuated DSS-Induced Colitis in Mice by Driving PD-1-Mediated M2 Macrophage Polarization. Front Immunol 2020; 11:563784. [PMID: 33117347 PMCID: PMC7575908 DOI: 10.3389/fimmu.2020.563784] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/12/2020] [Indexed: 12/14/2022] Open
Abstract
Helminth-modulated macrophages contribute to attenuating inflammation in inflammatory bowel diseases. The programmed death 1 (PD-1) plays an important role in macrophage polarization and is essential in the maintenance of immune system homeostasis. Here, we investigate the role of PD-1-mediated polarization of M2 macrophages and the protective effects of excretory/secretory products from Trichinella spiralis adult worms (AES) on DSS-induced colitis in mice. Colitis in mice was induced by oral administration of dextran sodium sulfate (DSS) daily. Mice with DSS-induced colitis were treated with T. spiralis AES intraperitoneally, and pathological manifestations were evaluated. Macrophages in mice were depleted with liposomal clodronate. Markers for M1-type (iNOS, TNF-α) and M2-type (CD206, Arg-1) macrophages were detected by qRT-PCR and flow cytometry. Macrophage expression of PD-1 was quantified by flow cytometry; RAW 264.7 cells and peritoneal macrophages were used for in vitro tests, and PD-1 gene knockout mice were used for in vivo investigation of the role of PD-1 in AES-induced M2 macrophage polarization. Macrophage depletion was found to reduce DSS-induced colitis in mice. Treatment with T. spiralis AES significantly increased macrophage expression of CD206 and Arg-1 and simultaneously attenuated colitis severity. We found T. spiralis AES to enhance M2 macrophage polarization; these findings were confirmed studying in vitro cultures of RAW264.7 cells and peritoneal macrophages from mice. Further experimentation revealed that AES upregulated PD-1 expression, primarily on M2 macrophages expressing CD206. The AES-induced M2 polarization was found to be decreased in PD-1 deficient macrophages, and the therapeutic effects of AES on colitis was reduced in PD-1 knockout mice. In conclusion, the protective effects of T. spiralis AES on DSS-induced colitis were found to associate with PD-1 upregulation and M2 macrophage polarization. Thus, PD-1-mediated M2 macrophage polarization is a key mechanism of helminth-induced modulation of the host immune system.
Collapse
Affiliation(s)
- Zixia Wang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chunyue Hao
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Qinghui Zhuang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bin Zhan
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Ximeng Sun
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jingjing Huang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yuli Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xinping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
30
|
Duque-Correa MA, Schreiber F, Rodgers FH, Goulding D, Forrest S, White R, Buck A, Grencis RK, Berriman M. Development of caecaloids to study host-pathogen interactions: new insights into immunoregulatory functions of Trichuris muris extracellular vesicles in the caecum. Int J Parasitol 2020; 50:707-718. [PMID: 32659277 PMCID: PMC7435689 DOI: 10.1016/j.ijpara.2020.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
The caecum, an intestinal appendage in the junction of the small and large intestines, displays a unique epithelium that serves as an exclusive niche for a range of pathogens including whipworms (Trichuris spp.). While protocols to grow organoids from small intestine (enteroids) and colon (colonoids) exist, the conditions to culture organoids from the caecum have yet to be described. Here, we report methods to grow, differentiate and characterise mouse adult stem cell-derived caecal organoids, termed caecaloids. We compare the cellular composition of caecaloids with that of enteroids, identifying differences in intestinal epithelial cell populations that mimic those found in the caecum and small intestine. The remarkable similarity in the intestinal epithelial cell composition and spatial conformation of caecaloids and their tissue of origin enables their use as an in vitro model to study host interactions with important caecal pathogens. Thus, exploiting this system, we investigated the responses of caecal intestinal epithelial cells to extracellular vesicles secreted/excreted by the intracellular helminth Trichuris muris. Our findings reveal novel immunoregulatory effects of whipworm extracellular vesicles on the caecal epithelium, including the downregulation of responses to nucleic acid recognition and type-I interferon signalling.
Collapse
Affiliation(s)
| | | | - Faye H Rodgers
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - David Goulding
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Sally Forrest
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Ruby White
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Amy Buck
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Richard K Grencis
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell Matrix Research and Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| |
Collapse
|
31
|
Scotti R, Southern S, Boinett C, Jenkins TP, Cortés A, Cantacessi C. MICHELINdb: a web-based tool for mining of helminth-microbiota interaction datasets, and a meta-analysis of current research. MICROBIOME 2020; 8:10. [PMID: 32008578 PMCID: PMC6996195 DOI: 10.1186/s40168-019-0782-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/27/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND The complex network of interactions occurring between gastrointestinal (GI) and extra-intestinal (EI) parasitic helminths of humans and animals and the resident gut microbial flora is attracting increasing attention from biomedical researchers, because of the likely implications for the pathophysiology of helminth infection and disease. Nevertheless, the vast heterogeneity of study designs and microbial community profiling strategies, and of bioinformatic and biostatistical approaches for analyses of metagenomic sequence datasets hinder the identification of bacterial targets for follow-up experimental investigations of helminth-microbiota cross-talk. Furthermore, comparative analyses of published datasets are made difficult by the unavailability of a unique repository for metagenomic sequence data and associated metadata linked to studies aimed to explore potential changes in the composition of the vertebrate gut microbiota in response to GI and/or EI helminth infections. RESULTS Here, we undertake a meta-analysis of available metagenomic sequence data linked to published studies on helminth-microbiota cross-talk in humans and veterinary species using a single bioinformatic pipeline, and introduce the 'MICrobiome HELminth INteractions database' (MICHELINdb), an online resource for mining of published sequence datasets, and corresponding metadata, generated in these investigations. CONCLUSIONS By increasing data accessibility, we aim to provide the scientific community with a platform to identify gut microbial populations with potential roles in the pathophysiology of helminth disease and parasite-mediated suppression of host inflammatory responses, and facilitate the design of experiments aimed to disentangle the cause(s) and effect(s) of helminth-microbiota relationships. Video abstract.
Collapse
Affiliation(s)
- Riccardo Scotti
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
- Present address: Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Stuart Southern
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Christine Boinett
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Timothy P Jenkins
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Alba Cortés
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.
| |
Collapse
|
32
|
Yasuda K, Kuroda E. Role of eosinophils in protective immunity against secondary nematode infections. Immunol Med 2019; 42:148-155. [DOI: 10.1080/25785826.2019.1697135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Koubun Yasuda
- Department of Immunology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Etsushi Kuroda
- Department of Immunology, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
33
|
Santos JHA, Bührer-Sékula S, Melo GC, Cordeiro-Santos M, Pimentel JPD, Gomes-Silva A, Costa AG, Saraceni V, Da-Cruz AM, Lacerda MVG. Ascaris lumbricoides coinfection reduces tissue damage by decreasing IL-6 levels without altering clinical evolution of pulmonary tuberculosis or Th1/Th2/Th17 cytokine profile. Rev Soc Bras Med Trop 2019; 52:e20190315. [PMID: 31800922 DOI: 10.1590/0037-8682-0315-2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/06/2019] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Immunological control of Mycobacterium tuberculosis infection is dependent on the cellular immune response, mediated predominantly by Th1 type CD4+ T cells. Polarization of the immune response to Th2 can inhibit the host immune protection against pathogens. Patients with tuberculosis coinfected with helminths demonstrate more severe pulmonary symptoms, a deficiency in the immune response against tuberculosis, and an impaired response to anti-tuberculosis therapy. METHODS We evaluated the cellular immune response and the impact of the presence of Ascaris lumbricoides on the immune and clinical response in pulmonary tuberculosis patients. Ninety-one individuals were included in the study: 38 tuberculosis patients, 11 tuberculosis patients coinfected with Ascaris lumbricoides and other helminths, 10 Ascaris lumbricoides patients, and 34 non-infected control individuals. Clinical evolution of pulmonary tuberculosis was studied on 0, 30, 60, and 90 days post-diagnosis of Mycobacterium tuberculosis and Ascaris lumbricoides. Furthermore, immune cells and plasma cytokine profiles were examined in mono/coinfection by Mycobacterium tuberculosis and Ascaris lumbricoides using flow cytometry. RESULTS There were no statistical differences in any of the evaluated parameters and the results indicated that Ascaris lumbricoides infection does not lead to significant clinical repercussions in the presentation and evolution of pulmonary tuberculosis. CONCLUSIONS The association with Ascaris lumbricoides did not influence the Th1, Th2, and Th17 type responses, or the proportions of T lymphocyte subpopulations. However, higher serum levels of IL-6 in tuberculosis patients may explain the pulmonary parenchymal damage.
Collapse
Affiliation(s)
- João Hugo Abdalla Santos
- Universidade do Estado do Amazonas, Programa de Pós-Graduação em Medicina Tropical, Manaus, AM, Brasil.,Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus, AM, Brasil
| | - Samira Bührer-Sékula
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus, AM, Brasil.,Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia, GO, Brasil
| | - Gisely Cardoso Melo
- Universidade do Estado do Amazonas, Programa de Pós-Graduação em Medicina Tropical, Manaus, AM, Brasil.,Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus, AM, Brasil
| | - Marcelo Cordeiro-Santos
- Universidade do Estado do Amazonas, Programa de Pós-Graduação em Medicina Tropical, Manaus, AM, Brasil.,Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus, AM, Brasil
| | - João Paulo Diniz Pimentel
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas, Diretora de Ensino e Pesquisa, Manaus, AM, Brasil
| | - Adriano Gomes-Silva
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório Interdisciplinar de Pesquisas Médicas, Rio de Janeiro, RJ, Brasil.,Fundação Oswaldo Cruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Pesquisa Clínica em Micobacterioses, Rio de Janeiro, RJ, Brasil
| | - Allyson Guimarães Costa
- Universidade do Estado do Amazonas, Programa de Pós-Graduação em Medicina Tropical, Manaus, AM, Brasil.,Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus, AM, Brasil.,Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas, Diretora de Ensino e Pesquisa, Manaus, AM, Brasil.,Universidade Federal do Amazonas, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Imunologia Básica e Aplicada, Manaus, AM, Brasil
| | - Valeria Saraceni
- Prefeitura da Cidade do Rio de Janeiro, Secretaria Municipal de Saúde, Rio de Janeiro, RJ, Brasil
| | - Alda Maria Da-Cruz
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório Interdisciplinar de Pesquisas Médicas, Rio de Janeiro, RJ, Brasil
| | - Marcus Vinícius Guimarães Lacerda
- Universidade do Estado do Amazonas, Programa de Pós-Graduação em Medicina Tropical, Manaus, AM, Brasil.,Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus, AM, Brasil.,Fundação Oswaldo Cruz, Instituto de Pesquisas Leônidas & Maria Deane, Manaus, AM, Brasil
| |
Collapse
|
34
|
Sun X, Li Y, Naqvi MAUH, Naqvi SZ, Chu W, Xu L, Song X, Li X, Yan R. Succinate Coenzyme A Ligase Beta-Like Protein from Trichinella spiralis Suppresses the Immune Functions of Rat PBMCs in Vitro and Inhibits the Secretions of Interleukin-17 in Vivo. Vaccines (Basel) 2019; 7:vaccines7040167. [PMID: 31684056 PMCID: PMC6963543 DOI: 10.3390/vaccines7040167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 10/29/2019] [Indexed: 12/16/2022] Open
Abstract
Succinate Coenzyme A ligase beta-like protein (SUCLA-β) is a subunit of Succinyl-coenzyme A synthetase, which is involved in substrate synergism, unusual kinetic reaction in which the presence of SUCLA-β for one partial reaction stimulates another partial reaction. Trichinella spiralis is a parasitic nematode, which may hinder the development of autoimmune diseases. Immunomodulatory effects of SUCLA-β from Trichinella spiralis in the parasite-host interaction are unidentified. In this study the gene encoding T. spiralis SUCLA-β was cloned and expressed. Binding activities of recombinant T. spiralis SUCLA-β (rTs-SUCLA-β) to rat peripheral blood mononuclear cells (PBMCs) were checked by immunofluorescence assay (IFA) and the immuno-regulatory effects of rTs-SUCLA-β on cell migration, cell proliferation, nitric oxide (NO) production and apoptosis were observed by co-incubation of rTs-SUCLA-β with rat PBMCs in vitro, while cytokine secretions in rTs-SUCLA-β treated rats were evaluated in vivo. Furthermore, phagocytosis of monocytes was detected by flow cytometry and effects of rTs-SUCLA-β-induced protective immunity on T. spiralis adult worms and muscle larva were evaluated in rats. The IFA results revealed that rTs-SUCLA-β could bind to rat PBMCs. Treatment of PBMCs with rTs-SUCLA-β significantly decreased the monocyte phagocytosis, cell migration and cell proliferation, while NO production and apoptosis of PBMCs were unaffected. Results of the in vivo study showed that the IL-17 secretion decreased significantly after rTs-SUCLA-β administration in rats, while no significant effects were observed on the secretions of IFN-γ, IL-9, TGF-β and IL-4. Moreover, significant reduction of T. spiralis muscle larvae burden and significant increase in anti-rTs-SUCLA-β immunoglobulin level of IgG, IgG1 and IgG2a was observed in rTs-SUCLA-β-administered rats. The results indicated that rTs-SUCLA-β may be a potential target for controlling T. spiralis infection by suppressing the immune functions of the rat PBMCs and by reducing the parasite burden. Additionally it may also contribute to the treatment of autoimmune diseases and graft rejection by suppressing IL-17 immune response in the host.
Collapse
Affiliation(s)
- Xiaoke Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yin Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Muhammad Ali-Ul-Husnain Naqvi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Sana Zahra Naqvi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wen Chu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
35
|
Long SR, Lanter BB, Pazos MA, Mou H, Barrios J, Su CW, Wang ZQ, Walker WA, Hurley BP, Shi HN. Intestinal helminth infection enhances bacteria-induced recruitment of neutrophils to the airspace. Sci Rep 2019; 9:15703. [PMID: 31673002 PMCID: PMC6823376 DOI: 10.1038/s41598-019-51991-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 10/08/2019] [Indexed: 12/15/2022] Open
Abstract
Intestinal helminth infections elicit Th2-type immunity, which influences host immune responses to additional threats, such as allergens, metabolic disease, and other pathogens. Th2 immunity involves a shift of the CD4+ T-cell population from type-0 to type-2 (Th2) with increased abundance of interleukin (IL)-4 and IL-13. This study sought to investigate if existing gut-restricted intestinal helminth infections impact bacterial-induced acute airway neutrophil recruitment. C57BL/6 mice were divided into four groups: uninfected; helminth-Heligmosomoides polygyrus infected; Pseudomonas aeruginosa infected; and coinfected. Mice infected with H. polygyrus were incubated for 2 weeks, followed by P. aeruginosa intranasal inoculation. Bronchial alveolar lavage, blood, and lung samples were analyzed. Interestingly, infection with gut-restricted helminths resulted in immunological and structural changes in the lung. These changes include increased lung CD4+ T cells, increased Th2 cytokine expression, and airway goblet cell hyperplasia. Furthermore, coinfected mice exhibited significantly more airspace neutrophil infiltration at 6 hours following P. aeruginosa infection and exhibited an improved rate of survival compared with bacterial infected alone. These results suggest that chronic helminth infection of the intestines can influence and enhance acute airway neutrophil responses to P. aeruginosa infection.
Collapse
Affiliation(s)
- Shao Rong Long
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, Henan, China
| | - Bernard B Lanter
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Michael A Pazos
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Hongmei Mou
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Juliana Barrios
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Chien-Wen Su
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Zhong Quan Wang
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, Henan, China
| | - W Allan Walker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Bryan P Hurley
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| | - Hai Ning Shi
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
36
|
Abstract
Purpose of Review This paper constitutes an update of recent studies on the general biology, molecular genetics, and cellular biology of Strongyloides spp. and related parasitic nematodes. Recent Findings Increasingly, human strongyloidiasis is considered the most neglected of neglected tropical diseases. Despite this, the last 5 years has seen remarkable advances in the molecular biology of Strongyloides spp. Genome sequences for S. stercoralis, S. ratti, S. venezuelensis, S. papillosus, and the related parasite Parastrongyloides trichosuri were created, annotated, and analyzed. These genomic resources, along with a practical transgenesis platform for Strongyloides spp., aided a major achievement, the advent of targeted mutagenesis via CRISPR/Cas9 in S. stercoralis and S. ratti. The genome sequences have also enabled significant molecular epidemiologic and phylogenetic findings on human strongyloidiasis, including the first genetic evidence of zoonotic transmission of S. stercoralis between dogs and humans. Studies of molecular signaling pathways identified the nuclear receptor Ss-DAF-12 as one that can be manipulated in the parasite by exogenous application of its steroid ligands. The chemotherapeutic implications of this were unscored by a study in which a Ss-DAF-12 ligand suppressed autoinfection by S. stercoralis in a new murine model of human strongyloidiasis. Summary Seminal advances in genomics of Strongyloides spp. have transformed research into strongyloidiasis, facilitating fundamental phylogenetic and epidemiologic studies and aiding the deployment of CRISPR/Cas9 gene disruption and editing as functional genomic tools in Strongyloides spp. Studies of Ss-DAF-12 signaling in S. stercoralis demonstrated the potential of this pathway as a novel chemotherapeutic target in parasitic nematodes.
Collapse
Affiliation(s)
- Tegegn G. Jaleta
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James B. Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
37
|
Metagonimus miyatai ameliorates dextran sodium sulfate-induced colitis in mice. Parasitol Int 2019; 74:101924. [PMID: 31075526 DOI: 10.1016/j.parint.2019.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 12/19/2022]
Abstract
Inflammatory bowel disease (IBD) is an inflammatory disease caused by the activity of effector immune cells, such as the overproduction of inflammatory cytokines. Helminth immunomodulation in the host has been shown to have therapeutic implications in IBD. In the present study, we investigated whether Metagonimus miyatai infection could ameliorate inflammatory diseases. Mice were infected with M. miyatai, and colitis was then induced through oral administration of dextran sulfate sodium (DSS). Weight loss, stool consistency, gross bleeding, colon length, and tissue inflammation were assessed by macroscopic and microscopic examinations. In addition, regulatory cytokine expression was observed in colon tissue by reverse transcription polymerase chain reaction. The results showed that M. miyatai infection decreased the clinical severity of DSS-induced colitis, including weight loss, bloody diarrhea, shortening of the colon, and colon tissue damage in mice (p < .05). The expression levels of tumor necrosis factor-α, interleukin-1b, and cyclooxygenase-2 in mice infected with helminth were lower than those in DSS-treated mice without helminthic infection (p < .05). The results of the research showed that pre-infection with M. miyatai ameliorated DSS-induced colitis in mice and may be a novel therapeutic strategy for the treatment of immunological diseases.
Collapse
|
38
|
Simioni J, Skare TL, Campos APB, Kotze L, Messias-Reason I, Ioshii SO, Nisihara R. Fecal Calprotectin, Gut Inflammation and Spondyloarthritis. Arch Med Res 2019; 50:41-46. [PMID: 31101242 DOI: 10.1016/j.arcmed.2019.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/12/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Gut inflammation is closely related to spondyloarthritis (SpA) pathophysiology. Fecal calprotectin has been used to measure the degree of gut inflammation. The phenotype of SpA may change according to studied population. AIM To study the fecal calprotectin levels in a sample of SpA in Brazilian patients and its relationship with epidemiological, clinical and treatment variables as well as with the macro and microscopic degree of gut inflammation. METHODS Eighty five SpA patients were studied for epidemiological and clinical features, functional and inflammatory indexes and fecal calprotectin levels measured using a ELISA kit. Colonoscopy with intestinal biopsies were performed in 39 of them. At time of colonoscopy a second calprotectin level was done after suspension of at least 3 weeks of used anti-inflammatory nonsteroidal drugs (NSAIDs). RESULTS Fecal calprotectin levels were higher in Ankylosing Spondylitis (AS) patients (p <0.0001) and in those with axial involvement (p = 0.002). No relationship was found with SpA inflammatory and functional parameters (all p = ns). After suspension of NSAIDs, a drop in fecal calprotectin levels was observed (from median levels of 215.0-76.0 μg/g; p = 0.01). In the colonoscopy, 33.3% had macroscopic signs of inflammation and these patients had higher calprotectin (p = 0.009) than others. Microscopic examination showed that all patients had lymphoplasmacytic infiltrate and eosinophilic infiltrate; epithelial erosion was present in 27.2%. CONCLUSIONS Patients with ankylosing spondylitis and axial forms of diseases have higher fecal calprotectin levels. Patients with all types of SpA have microscopic inflammatory changes in the gut.
Collapse
Affiliation(s)
- Juliana Simioni
- Rheumatology Unit, Evangelical University Mackenzie of Paraná, Curitiba, Paraná, Brazil; Internal Medicine Post Graduate, Clinical Hospital, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Thelma L Skare
- Rheumatology Unit, Evangelical University Mackenzie of Paraná, Curitiba, Paraná, Brazil
| | - Ana Paula B Campos
- Rheumatology Unit, Evangelical University Mackenzie of Paraná, Curitiba, Paraná, Brazil
| | - Lorete Kotze
- Internal Medicine Post Graduate, Clinical Hospital, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Iara Messias-Reason
- Internal Medicine Post Graduate, Clinical Hospital, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Sergio O Ioshii
- Division of Pathology, Federal University of Paraná, Postgraduate Program in Technology in Health, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, Brazil
| | - Renato Nisihara
- Rheumatology Unit, Evangelical University Mackenzie of Paraná, Curitiba, Paraná, Brazil; Internal Medicine Post Graduate, Clinical Hospital, Federal University of Paraná, Curitiba, Paraná, Brazil; Department of Medicine, Positivo University, Curitiba, Paraná, Brazil.
| |
Collapse
|
39
|
Abstract
This paper surveys some of the important insights that molecular evolution has contributed to evolutionary medicine; they include phage therapy, cancer biology, helminth manipulation of the host immune system, quality control of gametes, and pathogen outbreaks. Molecular evolution has helped to revolutionize our understanding of cancer, of autoimmune disease, and of the origin, spread, and pathogenesis of emerging diseases, where it has suggested new therapies, illuminated mechanisms, and revealed historical processes: all have practical therapeutic implications. While much has been accomplished, much remains to be done.
Collapse
Affiliation(s)
- Stephen C Stearns
- Department of Ecology and Evolutionary Biology, Yale University, PO Box 208106, New Haven, CT, 06520-8106, USA.
| |
Collapse
|
40
|
Hookworm-Derived Metabolites Suppress Pathology in a Mouse Model of Colitis and Inhibit Secretion of Key Inflammatory Cytokines in Primary Human Leukocytes. Infect Immun 2019; 87:IAI.00851-18. [PMID: 30670556 DOI: 10.1128/iai.00851-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/15/2019] [Indexed: 12/13/2022] Open
Abstract
Iatrogenic hookworm therapy shows promise for treating disorders that result from a dysregulated immune system, including inflammatory bowel disease (IBD). Using a murine model of trinitrobenzenesulfonic acid-induced colitis and human peripheral blood mononuclear cells, we demonstrated that low-molecular-weight metabolites derived from both somatic extracts (LMWM-SE) and excretory-secretory products (LMWM-ESP) of the hookworm, Ancylostoma caninum, display anti-inflammatory properties. Administration to mice of LMWM-ESP as well as sequentially extracted fractions of LMWM-SE using both methanol (SE-MeOH) and hexane-dichloromethane-acetonitrile (SE-HDA) resulted in significant protection against T cell-mediated immunopathology, clinical signs of colitis, and impaired histological colon architecture. To assess bioactivity in human cells, we stimulated primary human leukocytes with lipopolysaccharide in the presence of hookworm extracts and showed that SE-HDA suppressed ex vivo production of inflammatory cytokines. Gas chromatography-mass spectrometry (MS) and liquid chromatography-MS analyses revealed the presence of 46 polar metabolites, 22 fatty acids, and five short-chain fatty acids (SCFAs) in the LMWM-SE fraction and 29 polar metabolites, 13 fatty acids, and six SCFAs in the LMWM-ESP fraction. Several of these small metabolites, notably the SCFAs, have been previously reported to have anti-inflammatory properties in various disease settings, including IBD. This is the first report showing that hookworms secrete small molecules with both ex vivo and in vivo anti-inflammatory bioactivity, and this warrants further exploration as a novel approach to the development of anti-inflammatory drugs inspired by coevolution of gut-dwelling hookworms with their vertebrate hosts.
Collapse
|
41
|
Abdoli A. Therapeutic Potential of Helminths and Helminth-Derived Antigens for Resolution of Inflammation in Inflammatory Bowel Disease. Arch Med Res 2019; 50:58-59. [PMID: 30879759 DOI: 10.1016/j.arcmed.2019.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/04/2019] [Indexed: 12/19/2022]
Abstract
Inflammation plays a pivotal role in the pathogenesis of inflammatory bowel disease (IBD), and treatment of IBD mainly targets on inhibition of pro-inflammatory mediators. Helminth-based therapy is a novel strategy for resolution of inflammation in IBD, because helminths have great immunomodulatory properties. Helminth-based therapy may be efficacious as a vaccine for patients with IBD. This article is a highlight on the therapeutic potential of helminths in IBD.
Collapse
Affiliation(s)
- Amir Abdoli
- Department of Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran; Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran; Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran.
| |
Collapse
|
42
|
Guler R, Mpotje T, Ozturk M, Nono JK, Parihar SP, Chia JE, Abdel Aziz N, Hlaka L, Kumar S, Roy S, Penn-Nicholson A, Hanekom WA, Zak DE, Scriba TJ, Suzuki H, Brombacher F. Batf2 differentially regulates tissue immunopathology in Type 1 and Type 2 diseases. Mucosal Immunol 2019; 12:390-402. [PMID: 30542107 PMCID: PMC7051910 DOI: 10.1038/s41385-018-0108-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 10/04/2018] [Accepted: 10/07/2018] [Indexed: 02/04/2023]
Abstract
Basic leucine zipper transcription factor 2 (Batf2) activation is detrimental in Type 1-controlled infectious diseases, demonstrated during infection with Mycobacterium tuberculosis (Mtb) and Listeria monocytogenes Lm. In Batf2-deficient mice (Batf2-/-), infected with Mtb or Lm, mice survived and displayed reduced tissue pathology compared to infected control mice. Indeed, pulmonary inflammatory macrophage recruitment, pro-inflammatory cytokines and immune effectors were also decreased during tuberculosis. This explains that batf2 mRNA predictive early biomarker found in active TB patients is increased in peripheral blood. Similarly, Lm infection in human macrophages and mouse spleen and liver also increased Batf2 expression. In striking contrast, Type 2-controlled schistosomiasis exacerbates during infected Batf2-/- mice with increased intestinal fibro-granulomatous inflammation, pro-fibrotic immune cells, and elevated cytokine production leading to wasting disease and early death. Together, these data strongly indicate that Batf2 differentially regulates Type 1 and Type 2 immunity in infectious diseases.
Collapse
Affiliation(s)
- Reto Guler
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aDepartment of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aWellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa
| | - Thabo Mpotje
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aDepartment of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aDepartment of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa
| | - Justin K. Nono
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aDepartment of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa ,0000 0004 0595 6917grid.500526.4The Medical Research Centre, Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Suraj P. Parihar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aDepartment of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aWellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aDivision of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa
| | - Julius Ebua Chia
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aDepartment of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa
| | - Nada Abdel Aziz
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aDepartment of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa ,0000 0004 0639 9286grid.7776.1Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt
| | - Lerato Hlaka
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aDepartment of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa
| | - Santosh Kumar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aDepartment of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa
| | - Sugata Roy
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
| | - Adam Penn-Nicholson
- 0000 0004 1937 1151grid.7836.aSouth African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925 South Africa
| | - Willem A. Hanekom
- 0000 0004 1937 1151grid.7836.aSouth African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925 South Africa
| | - Daniel E. Zak
- 0000 0004 0463 2611grid.53964.3dThe Center for Infectious Disease Research, Seattle, WA 98109 USA
| | - Thomas J. Scriba
- 0000 0004 1937 1151grid.7836.aSouth African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7925 South Africa
| | - Harukazu Suzuki
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aDepartment of Pathology, University of Cape Town, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa ,0000 0004 1937 1151grid.7836.aWellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, 7925 South Africa
| |
Collapse
|
43
|
A new level of complexity in parasite-host interaction: The role of extracellular vesicles. ADVANCES IN PARASITOLOGY 2019; 104:39-112. [PMID: 31030771 DOI: 10.1016/bs.apar.2019.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Humans and animals have co-existed with parasites in a battle of constant adaptation to one another. It is becoming increasingly clear that extracellular vesicles (EVs) play important roles in this co-existence and pathology. This chapter reviews the current research on EVs released by protozoa, nematodes, trematodes, and cestodes with a special focus on EVs in parasite life cycles. The environmental changes experienced by the parasite during its life cycle is associated with distinct changes in EV release and content. The function of these EV seems to have a significant influence on parasite pathology and survival in the host by concomitantly modulating host immune responses and triggering parasite differentiation. The role of EVs in communication between the parasites and the host adds a new level of complexity in our understanding of parasite biology, which may be a key to further understand the complexity behind host-parasite interactions and communication. This increased understanding can, in turn, open up new avenues for vaccine, diagnostic, and therapeutic development for a wide variety of diseases such as parasite infection, cancers, and immunological disorders.
Collapse
|
44
|
Mast cell deficiency in mice results in biomass overgrowth and delayed expulsion of the rat tapeworm Hymenolepis diminuta. Biosci Rep 2018; 38:BSR20180687. [PMID: 30341242 PMCID: PMC6265620 DOI: 10.1042/bsr20180687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/11/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023] Open
Abstract
Infection with helminth parasites evokes a complex cellular response in the host, where granulocytes (i.e. eosinophils, basophils and mast cells (MCs)) feature prominently. In addition to being used as markers of helminthic infections, MCs have been implicated in worm expulsion since animals defective in c-kit signaling, which results in diminished MC numbers, can have delayed worm expulsion. The role of MCs in the rejection of the rat tapeworm, Hymenolepsis diminuta, from the non-permissive mouse host is not known. MC-deficient mice display a delay in the expulsion of H. diminuta that is accompanied by a less intense splenic Th2 response, as determined by in vitro release of interleukin (IL)-4, IL-5 and IL-13 cytokines. Moreover, worms retrieved from MC-deficient mice were larger than those from wild-type (WT) mice. Assessment of gut-derived IL-25, IL-33, thymic stromal lymphopoietin revealed lower levels in uninfected MC-deficient mice compared with WT, suggesting a role for MCs in homeostatic control of these cytokines: differences in these gut cytokines between the mouse strains were not observed after infection with H. diminuta. Finally, mice infected with H. diminuta display less severe dinitrobenzene sulphonic acid (DNBS)-induced colitis, and this beneficial effect of the worm was unaltered in MC-deficient mice challenged with DNBS, as assessed by a macroscopic disease score. Thus, while MCs are not essential for rejection of H. diminuta from mice, their absence slows the kinetics of expulsion allowing the development of greater worm biomass prior to successful rejection of the parasitic burden.
Collapse
|
45
|
The diabetes pandemic and associated infections: suggestions for clinical microbiology. ACTA ACUST UNITED AC 2018; 30:1-17. [PMID: 30662163 PMCID: PMC6319590 DOI: 10.1097/mrm.0000000000000155] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/08/2017] [Indexed: 12/15/2022]
Abstract
There are 425 million people with diabetes mellitus in the world. By 2045, this figure will grow to over 600 million. Diabetes mellitus is classified among noncommunicable diseases. Evidence points to a key role of microbes in diabetes mellitus, both as infectious agents associated with the diabetic status and as possible causative factors of diabetes mellitus. This review takes into account the different forms of diabetes mellitus, the genetic determinants that predispose to type 1 and type 2 diabetes mellitus (especially those with possible immunologic impact), the immune dysfunctions that have been documented in diabetes mellitus. Common infections occurring more frequently in diabetic vs. nondiabetic individuals are reviewed. Infectious agents that are suspected of playing an etiologic/triggering role in diabetes mellitus are presented, with emphasis on enteroviruses, the hygiene hypothesis, and the environment. Among biological agents possibly linked to diabetes mellitus, the gut microbiome, hepatitis C virus, and prion-like protein aggregates are discussed. Finally, preventive vaccines recommended in the management of diabetic patients are considered, including the bacillus calmette-Guerin vaccine that is being tested for type 1 diabetes mellitus. Evidence supports the notion that attenuation of immune defenses (both congenital and secondary to metabolic disturbances as well as to microangiopathy and neuropathy) makes diabetic people more prone to certain infections. Attentive microbiologic monitoring of diabetic patients is thus recommendable. As genetic predisposition cannot be changed, research needs to identify the biological agents that may have an etiologic role in diabetes mellitus, and to envisage curative and preventive ways to limit the diabetes pandemic.
Collapse
|
46
|
Jenkins TP, Formenti F, Castro C, Piubelli C, Perandin F, Buonfrate D, Otranto D, Griffin JL, Krause L, Bisoffi Z, Cantacessi C. A comprehensive analysis of the faecal microbiome and metabolome of Strongyloides stercoralis infected volunteers from a non-endemic area. Sci Rep 2018; 8:15651. [PMID: 30353019 PMCID: PMC6199319 DOI: 10.1038/s41598-018-33937-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/05/2018] [Indexed: 02/08/2023] Open
Abstract
Data from recent studies support the hypothesis that infections by human gastrointestinal (GI) helminths impact, directly and/or indirectly, on the composition of the host gut microbial flora. However, to the best of our knowledge, these studies have been conducted in helminth-endemic areas with multi-helminth infections and/or in volunteers with underlying gut disorders. Therefore, in this study, we explore the impact of natural mono-infections by the human parasite Strongyloides stercoralis on the faecal microbiota and metabolic profiles of a cohort of human volunteers from a non-endemic area of northern Italy (S+), pre- and post-anthelmintic treatment, and compare the findings with data obtained from a cohort of uninfected controls from the same geographical area (S-). Analyses of bacterial 16S rRNA high-throughput sequencing data revealed increased microbial alpha diversity and decreased beta diversity in the faecal microbial profiles of S+ subjects compared to S-. Furthermore, significant differences in the abundance of several bacterial taxa were observed between samples from S+ and S- subjects, and between S+ samples collected pre- and post-anthelmintic treatment. Faecal metabolite analysis detected marked increases in the abundance of selected amino acids in S+ subjects, and of short chain fatty acids in S- subjects. Overall, our work adds valuable knowledge to current understanding of parasite-microbiota associations and will assist future mechanistic studies aimed to unravel the causality of these relationships.
Collapse
Affiliation(s)
- Timothy P Jenkins
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Fabio Formenti
- Centre for Tropical Diseases, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar, Verona, Italy
| | - Cecilia Castro
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Chiara Piubelli
- Centre for Tropical Diseases, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar, Verona, Italy
| | - Francesca Perandin
- Centre for Tropical Diseases, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar, Verona, Italy
| | - Dora Buonfrate
- Centre for Tropical Diseases, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar, Verona, Italy
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Julian L Griffin
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Lutz Krause
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - Zeno Bisoffi
- Centre for Tropical Diseases, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar, Verona, Italy
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
47
|
Rodrigues VF, Bahia MPS, Cândido NR, Moreira JMP, Oliveira VG, Araújo ES, Rodrigues Oliveira JL, Rezende MDC, Correa A, Negrão-Corrêa D. Acute infection with Strongyloides venezuelensis increases intestine production IL-10, reduces Th1/Th2/Th17 induction in colon and attenuates Dextran Sulfate Sodium-induced colitis in BALB/c mice. Cytokine 2018; 111:72-83. [PMID: 30118915 DOI: 10.1016/j.cyto.2018.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 07/26/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022]
Abstract
Helminth infection can reduce the severity of inflammatory bowel disease. However, the modulatory mechanisms elicited by helminth infection are not yet fully understood and vary depending on the experimental model. Herein we evaluated the effect of acute infection of BALB/c mice with Strongyloides venezuelensis on the clinical course of ulcerative colitis induced by Dextran Sulfate Sodium (DSS) treatment of these animals. For the experiments, S. venezuelensis-infected BALB/c mice were treated orally with 4% DSS solution for seven days. As controls, we used untreated S. venezuelensis infected, DSS-treated uninfected, and untreated/uninfected BALB/c mice. During DSS treatment, mice from the different groups were compared with regards to the clinical signs related to the severity of colitis and intestinal inflammation. Mice acutely infected with S. venezulensis and treated with DSS had reduced clinical score, shortening of the colon, and tissue inflammation. Moreover, DSS-treated and infected mice showed reduced IL-4, INF-γ, and IL-17 levels and increase of IL-10 production in the colon and/or in the supernatant of mesenteric lymph nodes cell cultures that resulted in lower eosinophil peroxidase and myeloperoxidase activity in colon homogenates, when compared with DSS-treated uninfected mice. DSS-treated infected mice also preserved the intestine architecture and had normal differentiation of goblet cells and mucus production in the colon mucosa. In conclusion, the data indicate that the clinical improvement reported in DSS-treated infected mice was accompanied by the lower production of Th1/Th2/Th17 pro-inflammatory cytokines, stimulation of IL-10, and induction of mucosal repair mechanisms.
Collapse
Affiliation(s)
- Vanessa Fernandes Rodrigues
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Márcia Paulliny Soares Bahia
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Núbia Rangel Cândido
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - João Marcelo Peixoto Moreira
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Vinicius Gustavo Oliveira
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Emília Souza Araújo
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Jailza Lima Rodrigues Oliveira
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Michelle de Carvalho Rezende
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Ary Correa
- Departments of Microbiology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Deborah Negrão-Corrêa
- Departments of Parasitology, Biological Science Institute of the Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil.
| |
Collapse
|
48
|
Midha A, Janek K, Niewienda A, Henklein P, Guenther S, Serra DO, Schlosser J, Hengge R, Hartmann S. The Intestinal Roundworm Ascaris suum Releases Antimicrobial Factors Which Interfere With Bacterial Growth and Biofilm Formation. Front Cell Infect Microbiol 2018; 8:271. [PMID: 30131945 PMCID: PMC6090379 DOI: 10.3389/fcimb.2018.00271] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/19/2018] [Indexed: 12/14/2022] Open
Abstract
Ascariasis is a widespread soil-transmitted helminth infection caused by the intestinal roundworm Ascaris lumbricoides in humans, and the closely related Ascaris suum in pigs. Progress has been made in understanding interactions between helminths and host immune cells, but less is known concerning the interactions of parasitic nematodes and the host microbiota. As the host microbiota represents the direct environment for intestinal helminths and thus a considerable challenge, we studied nematode products, including excretory-secretory products (ESP) and body fluid (BF), of A. suum to determine their antimicrobial activities. Antimicrobial activities against gram-positive and gram-negative bacterial strains were assessed by the radial diffusion assay, while effects on biofilm formation were assessed using the crystal violet static biofilm and macrocolony assays. In addition, bacterial neutralizing activity was studied by an agglutination assay. ESP from different A. suum life stages (in vitro-hatched L3, lung-stage L3, L4, and adult) as well as BF from adult males were analyzed by mass spectrometry. Several proteins and peptides with known and predicted roles in nematode immune defense were detected in ESP and BF samples, including members of A. suum antibacterial factors (ASABF) and cecropin antimicrobial peptide families, glycosyl hydrolase enzymes such as lysozyme, as well as c-type lectin domain-containing proteins. Native, unconcentrated nematode products from intestine-dwelling L4-stage larvae and adults displayed broad-spectrum antibacterial activity. Additionally, adult A. suum ESP interfered with biofilm formation by Escherichia coli, and caused bacterial agglutination. These results indicate that A. suum uses a variety of factors with broad-spectrum antibacterial activity to affirm itself within its microbe-rich environment in the gut.
Collapse
Affiliation(s)
- Ankur Midha
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Katharina Janek
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Shared Facility for Mass Spectrometry, Berlin, Germany
| | - Agathe Niewienda
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Shared Facility for Mass Spectrometry, Berlin, Germany
| | - Petra Henklein
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Berlin, Germany
| | - Sebastian Guenther
- Department of Veterinary Medicine, Institute of Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany.,Department of Pharmaceutical Biology, Institute of Pharmacy, Ernst-Moritz-Arndt-Universität Greifswald, Greifswald, Germany
| | - Diego O Serra
- Institute of Biology/Microbiology, Humboldt-Universität-zu-Berlin, Berlin, Germany
| | - Josephine Schlosser
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Regine Hengge
- Institute of Biology/Microbiology, Humboldt-Universität-zu-Berlin, Berlin, Germany
| | - Susanne Hartmann
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
49
|
Kearns PKA, Casey HA, Leach JP. Hypothesis: Multiple sclerosis is caused by three-hits, strictly in order, in genetically susceptible persons. Mult Scler Relat Disord 2018; 24:157-174. [PMID: 30015080 DOI: 10.1016/j.msard.2018.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/25/2018] [Accepted: 06/18/2018] [Indexed: 12/15/2022]
Abstract
Multiple Sclerosis is a chronic, progressive and debilitating neurological disease which, despite extensive study for over 100 years, remains of enigmatic aetiology. Drawn from the epidemiological evidence, there exists a consensus that there are environmental (possibly infectious) factors that contribute to disease pathogenesis that have not yet been fully elucidated. Here we propose a three-tiered hypothesis: 1) a clinic-epidemiological model of multiple sclerosis as a rare late complication of two sequential infections (with the temporal sequence of infections being important); 2) a proposal that the first event is helminthic infection with Enterobius Vermicularis, and the second is Epstein Barr Virus infection; and 3) a proposal for a testable biological mechanism, involving T-Cell exhaustion for Epstein-Barr Virus protein LMP2A. We believe that this model satisfies some of the as-yet unexplained features of multiple sclerosis epidemiology, is consistent with the clinical and neuropathological features of the disease and is potentially testable by experiment. This model may be generalizable to other autoimmune diseases.
Collapse
|
50
|
Brosschot TP, Reynolds LA. The impact of a helminth-modified microbiome on host immunity. Mucosal Immunol 2018; 11:1039-1046. [PMID: 29453411 DOI: 10.1038/s41385-018-0008-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 02/04/2023]
Abstract
Intestinal helminths have well-characterized modulatory effects on mammalian immune pathways. Ongoing helminth infection has been associated with both the suppression of allergies and an altered susceptibility to microbial infections. Enteric helminths share a niche with the intestinal microbiota, and the presence of helminths alters the microbiota composition and the metabolic signature of the host. Recent studies have demonstrated that the helminth-modified intestinal microbiome has the capacity to modify host immune responses even in the absence of live helminth infection. This article discusses the mechanisms by which helminths modify the intestinal microbiome of mammals, and reviews the evidence for a helminth-modified microbiome directly influencing host immunity during infectious and inflammatory diseases. Understanding the multifaceted mechanisms that underpin helminth immunomodulation will pave the way for novel therapies to combat infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Tara P Brosschot
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Lisa A Reynolds
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8P 5C2, Canada.
| |
Collapse
|