1
|
Zhang L, Xia Z, Fu J, Yang Y. Role of the Rumen Epithelium and Associated Changes Under High-Concentrate Diets. Int J Mol Sci 2025; 26:2573. [PMID: 40141216 PMCID: PMC11941904 DOI: 10.3390/ijms26062573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Increasing the proportion of concentrate in diets can effectively improve ruminant production, and is therefore widely used. However, high-concentrate diets (HCD) enriched with rapidly fermentable carbohydrates can accelerate the production of lactate and short-chain fatty acids (SCFAs). The accumulation of lactate and SCFAs in the rumen leads to a reduction in rumen fluid pH, potentially resulting in subacute rumen acidosis (SARA), which can decrease dry matter intake (DMI), induce local and systemic inflammation, and cause other negative impacts on the host. The substantial prevalence of SARA attributable to long-term HCD causes considerable economic losses, as it can decrease DMI by up to 20%. Understanding its mechanisms and pathogenesis is essential. The rumen epithelium (RE), which is in direct contact with rumen fluid, is an important tissue in the rumen due to its roles in absorption, transport, and barrier functions. The changes that occur in RE under HCD and the subsequent impacts of these changes are worth exploring. In the short term, HCD feeding promotes RE cell proliferation and upregulates the activity of various transporter proteins, enhancing RE absorption and metabolism. However, with prolonged feeding, these functions of RE are negatively affected, accompanied by the development of inflammation. This review elucidates the structure, the functions, and the responses of RE under HCD, providing a detailed analysis of SARA pathogenesis at the cellular and molecular levels.
Collapse
Affiliation(s)
- Ling Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.Z.); (Z.X.)
| | - Zhenhua Xia
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.Z.); (Z.X.)
| | - Jicheng Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China;
| | - You Yang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.Z.); (Z.X.)
| |
Collapse
|
2
|
Dai TT, Fang W, Zhu WT, Han ZL, Sun NX, Yin G, Wang DL. Atractylenolide III ameliorates DSS-induced colitis by improving intestinal epithelial barrier via suppressing the NF-κB-Mediated MLCK-pMLC signaling pathway. Food Chem Toxicol 2025; 196:115158. [PMID: 39613239 DOI: 10.1016/j.fct.2024.115158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
This study is to demonstrate the protection of atractylenolide III (AT III) on intestinal barrier dysfunction in ulcerative colitis (UC). UC model was established by 3% dextran sulfate sodium (DSS), and TNF-α was used to induce dysfunction in the intestinal epithelial barrier. TEER, FD-4 transmembrane flux and DAI were measured. Histopathological changes was identified by H&E staining, TJ structure changes were observed by TEM, IL-1β and TNF-α contents were measured by ELISA, bacterial translocation was investigated by FISH. The expressions of ZO-1, occludin, and the proteins in the MLCK/p-MLC and NF-κB pathways were analyzed by Western blotting or immunofluorescence. The results indicated that AT III alleviate the symptoms of DSS-induced colitis, reduce the disruption of intestinal epithelial barrier, and decrease FD4. Moreover, AT III inhibited the destruction of intestinal epithelial TJ structure and bacterial translocation in UC mice. AT III reversed the high levels of IL-1β and TNF-α, the decrease of occludin, ZO-1 expressions. Furthermore, AT III showed similar effects to PDTC (pyrrolidinedithiocarbamate) in ameliorating the disruption of the TNF-α-induced TEER and FD-4 disruption, MLCK protein expression, and MLC2 phosphorylation. In conclusion, AT III mitigates the dysfunction of intestinal epithelial barrier in UC through the NF-κB-mediated MLCK/p-MLC signaling pathway.
Collapse
Affiliation(s)
| | - Wei Fang
- Anhui University of Chinese Medicine, Hefei, China
| | - Wen-Tao Zhu
- Anhui University of Chinese Medicine, Hefei, China
| | - Zhi-Li Han
- Anhui University of Chinese Medicine, Hefei, China
| | - Nian-Xia Sun
- Anhui University of Chinese Medicine, Hefei, China
| | - Gang Yin
- Anhui University of Chinese Medicine, Hefei, China
| | - Dian-Lei Wang
- Anhui University of Chinese Medicine, Hefei, China; Bozhou Vocational and Technical College, Bozhou, China.
| |
Collapse
|
3
|
Zhang Y, Zhu M, Dai Y, Gao L, Cheng L. Research Progress in Ulcerative Colitis: The Role of Traditional Chinese Medicine on Gut Microbiota and Signaling Pathways. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2277-2336. [PMID: 39756829 DOI: 10.1142/s0192415x24500885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Ulcerative colitis (UC), one among other refractory diseases worldwide, has shown an increasing trend of progression to colorectal cancer in recent years. In the treatment of UC, traditional Chinese medicine has demonstrated good efficacy, with a high cure rate, fewer adverse effects, great improvement in the quality of patient survival, and reduction in the tendency of cancerous transformation. It shows promise as a complementary and alternative therapy. This review aims to evaluate and discuss the current research on UC, signaling pathways, and gut microbiota. We also summarized the mechanisms of action of various Chinese medicines (active ingredients or extracts) and herbal formulas, through signaling pathways and gut microbiota, with the expectation that they can provide references and evidence for treating UC and preventing inflammation-associated colorectal cancer by traditional Chinese medicine. We illustrate that multiple signaling pathways, such as TLR4, STAT3, PI3K/Akt, NF-[Formula: see text]B, and Keap1/Nrf2, can be inhibited by Chinese herbal treatments through the combined regulation of signaling pathways and gut microbiota, which can act individually or synergistically to inhibit intestinal inflammatory cell infiltration, attenuate gut oxidative responses, and repair the intestinal barrier.
Collapse
Affiliation(s)
- Yuyi Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Mingfang Zhu
- Graduate School, Zunyi Medical University Zunyi, P. R. China
| | - Yueying Dai
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Longying Gao
- Department of Anorectal, The First Affiliated Hospital of Heilongjiang, University of Chinese Medicine Harbin, P. R. China
| | - Limin Cheng
- Department of Anorectal, The First Affiliated Hospital of Heilongjiang, University of Chinese Medicine Harbin, P. R. China
| |
Collapse
|
4
|
Zhang M, Liu T, Luo L, Zhang Y, Chen Q, Wang F, Xie Y. Common diagnostic biomarkers and molecular mechanisms of Helicobacter pylori infection and inflammatory bowel disease. Front Immunol 2024; 15:1492810. [PMID: 39712025 PMCID: PMC11659760 DOI: 10.3389/fimmu.2024.1492810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024] Open
Abstract
Background Helicobacter pylori (H. pylori) may be present in the intestinal mucosa of patients with inflammatory bowel disease (IBD), which is a chronic inflammation of the gastrointestinal tract. The role of H. pylori in the pathogenesis of IBD remains unclear. In this study, bioinformatics techniques were used to investigate the correlation and co-pathogenic pathways between H. pylori and IBD. Methods The following matrix data were downloaded from the GEO database: H. pylori-associated gastritis, GSE233973 and GSE27411; and IBD, GSE3365 and GSE179285. Differential gene analysis was performed via the limma software package in the R environment. A protein-protein interaction (PPI) network of DEGs was constructed via the STRING database. Cytoscape software, through the CytoHubba plugin, filters the PPI subnetwork and identifies Hub genes. Validation of the Hub genes was performed in the validation set. Immune analysis was conducted via the CIBERSORT algorithm. Transcription factor interaction and small molecule drug analyses of the Hub genes were also performed. Results Using the GSE233973 and GSE3365 datasets, 151 differentially expressed genes (DEGs) were identified. GO enrichment analysis revealed involvement in leukocyte migration and chemotaxis, response to lipopolysaccharides, response to biostimulatory stimuli, and regulation of interleukin-8 (IL-8) production. Ten Hub genes (TLR4, IL10, CXCL8, IL1B, TLR2, CXCR2, CCL2, IL6, CCR1 and MMP-9) were identified via the PPI network and Cytoscape software. Enrichment analysis of the Hub genes focused on the lipopolysaccharide response, bacterial molecular response, biostimulatory response and leukocyte movement. Validation using the GSE27411 and GSE179285 datasets revealed that MMP-9 was significantly upregulated in both the H. pylori and IBD groups. The CIBERSORT algorithm revealed immune infiltration differences between the control and disease groups of IBD patients. Additionally, the CMap database identified the top 11 small molecule compounds across 10 cell types, including TPCA-1, AS-703026 and memantine, etc. Conclusion Our study revealed the co-pathogenic mechanism between H. pylori and IBD and identified 10 Hub genes related to cellular immune regulation and signal transduction. The expression of MMP-9 is significantly upregulated in both H. pylori infection and IBD. This study provides a new perspective for exploring the prevention and treatment of H. pylori infection and IBD.
Collapse
Affiliation(s)
- Minglin Zhang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tong Liu
- Department of General Surgery, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Lijun Luo
- School of Medical Laboratory Science, Hebei North University, Zhangjiakou, Hebei, China
| | - Yi Zhang
- Department of General Surgery, The First People's Hospital of Qingzhen City, Guiyang, Guizhou, China
| | - Qijiao Chen
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Fen Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuxin Xie
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
5
|
Zhang X, Sun L, Wu M, Yu C, Zhao D, Wang L, Zhang Z, Yi D, Hou Y, Wu T. Effect of supplementation with Lactobacillus rhamnosus GG powder on intestinal and liver damage in broiler chickens challenged by lipopolysaccharide. Front Microbiol 2024; 15:1466274. [PMID: 39534507 PMCID: PMC11555397 DOI: 10.3389/fmicb.2024.1466274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024] Open
Abstract
This study explores the effect of dietary along with Lactobacillus rhamnosus GG (LGG) powder on intestinal and liver damage in broiler chickens challenged by lipopolysaccharide (LPS). A total of 100 healthy 1-day-old Ross 308 broiler chickens were selected and randomly divided into two treatments: the control group and the LGG treatment group. There were five replicates for each group, with 10 chickens per replicate. The chickens in the control group were fed a basal diet, while LGG treatment was supplemented with 1,000 mg/kg LGG along with the basal diet. The experiment lasted 29 days, and the trial included two phases. During the first 27 days, the animals were weighed on the 14th and 27th days to calculate growth performance. Then, on day 29, 2 animals from each replicate were intraperitoneally injected with 1 mg/kg BW LPS, and another 2 animals were treated with an equal volume of saline. The chickens were slaughtered 3 h later for sampling and further analysis. (1) LGG addition to the diet did not affect growth performance, including average daily gain (ADG), average daily feed intake (ADFI), and feed-to-weight ratio (F/G) of broiler chickens; (2) LPS stimulation decreased villus height (VH), and caused oxidative stress and increased the amount of diamine oxidase (DAO) in plasma, and the relative expression of intestinal inflammation genes (interleukin-8 [IL-8], interleukin 1β [IL-1β], inducible nitric oxide synthase [iNOS], and tumor necrosis factor-α [TNF-α]) and the relative expression of liver injury genes (b-cell lymphoma 2 [BCL2], heat shock protein70 [HSP70], and matrix metallopeptidase 13 [MMP13]). (3) Supplementation of LGG increased VH and the relative expression of intestinal barrier genes (mucins 2 [Mucin2] and occludin [Occludin]) and decreased the amount of DAO in plasma and the relative expression of intestinal inflammatory factors (IL-8, iNOS, and IL-1β). LGG supplementation also increased the expression of liver injury-related genes (MMP13 and MMP9). In conclusion, LGG enhanced intestinal barrier function, improved intestinal morphology, and alleviated the intestines' inflammatory response in LPS-stimulated broiler chicken, and it has a slightly protective effect on liver damage.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
6
|
Xie X, Wang Y, Deng B, Blatchley MR, Lan D, Xie Y, Lei M, Liu N, Xu F, Wei Z. Matrix metalloproteinase-responsive hydrogels with tunable retention for on-demand therapy of inflammatory bowel disease. Acta Biomater 2024; 186:354-368. [PMID: 39117116 DOI: 10.1016/j.actbio.2024.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/02/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Therapeutic options for addressing inflammatory bowel disease (IBD) include the administration of an enema to reduce intestinal inflammation and alleviate associated symptoms. However, uncontrollable retention of enemas in the intestinal tract has posed a long-term challenge for improving their therapeutic efficacy and safety. Herein we have developed a protease-labile hydrogel system as an on-demand enema vehicle with tunable degradation and drug release rates in response to varying matrix metalloproteinase-9 (MMP-9) expression. The system, composed of three tailored hydrogel networks, is crosslinked by poly (ethylene glycol) (PEG) with 2-, 4- and 8-arms through dynamic hydrazone bonds to confer injectability and generate varying network connectivity. The retention time of the hydrogels can be tuned from 12 to 36 h in the intestine due to their different degradation behaviors induced by MMP-9. The drug-releasing rate of the hydrogels can be controlled from 0.0003 mg/h to 0.278 mg/h. In addition, injection of such hydrogels in vivo resulted in significant differences in therapeutic effects including MMP-9 consumption, colon tissue repair, reduced collagen deposition, and decreased macrophage cells, for treating a mouse model of acute colitis. Among them, GP-8/5-ASA exhibits the best performance. This study validates the effectiveness of the tailored design of hydrogel architecture in response to pathological microenvironment cues, representing a promising strategy for on-demand therapy of IBD. STATEMENT OF SIGNIFICANCE: The uncontrollable retention of enemas at the delivery site poses a long-term challenge for improving therapeutic efficacy in IBD patients. MMP-9 is highly expressed in IBD and correlates with disease severity. Therefore, an MMP-9-responsive GP hydrogel system was developed as an enema by linking multi-armed PEG and gelatin through hydrazone bonds. This forms a dynamic hydrogel characterized by in situ gelation, injectability, enhanced bio-adhesion, biocompatibility, controlled retention time, and regulated drug release. GP hydrogels encapsulating 5-ASA significantly improved the intestinal phenotype of acute IBD and demonstrated notable therapeutic differences with increasing PEG arms. This method represents a promising on-demand IBD therapy strategy and provides insights into treating diseases of varying severities using endogenous stimulus-responsive drug delivery systems.
Collapse
Affiliation(s)
- Xueyong Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yaohui Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Bo Deng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Michael R Blatchley
- Department of Chemical and Biological Engineering, University of Colorado Boulder 3415 Colorado Ave, Boulder, CO 80303, USA
| | - Dongwei Lan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yizhou Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Meng Lei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Na Liu
- Department of Gastroenterology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
7
|
Gangaiah D, Gu M, Zaparte A, Will O, Dolan LC, Goering A, Pillai J, Mane SP, Plata G, Helmes EB, Welsh DA, Mahajan AK. Effects of Limosilactobacillus reuteri strains PTA-126787 and PTA-126788 on intestinal barrier integrity and immune homeostasis in an alcohol-induced leaky gut model. Sci Rep 2024; 14:19584. [PMID: 39179898 PMCID: PMC11344072 DOI: 10.1038/s41598-024-70549-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024] Open
Abstract
Intestinal barrier is a first line of defense that prevents entry of various harmful substances from the lumen into the systemic environment. Impaired barrier function with consequent translocation of harmful substances into systemic circulation ("leaky gut") is a central theme in many gastrointestinal, autoimmune, mental, and metabolic diseases. Probiotics have emerged as a promising strategy to maintain intestinal integrity and address "leaky gut". Using in silico, in vitro and avian in vivo analyses, we previously showed that two novel L. reuteri strains, PTA-126787 (L. reuteri 3630) and PTA-126788 (L. reuteri 3632), isolated from broiler chickens possess favorable safety profiles. Consistent with a recent study, here we show that L. reuteri 3630 and 3632 are phylogenetically similar to human L. reuteri strains. Daily administration of high doses of L. reuteri 3630 and 3632 to Sprague Dawley rats for 28 days was found to be safe with no adverse effects. More importantly, administration of L. reuteri 3630 and 3632 significantly reduced markers associated with alcohol-induced leaky gut, by downregulating inflammatory cytokines and upregulating anti-inflammatory cytokines in an alcohol model of leaky gut in mice. While L. reuteri 3630 cells and supernatant showed no activation, L. reuteri 3632 cells but not supernatant showed activation of AhR, a key transcription factor that regulates gut and immune homeostasis. L. reuteri 3630 is creamish white in morphology typical of Lactobacillus species and L. reuteri 3632 displays a unique orange pigmentation, which was stable even after passaging for 480 generations. We identified a rare polyketide biosynthetic gene cluster in L. reuteri 3632 that likely encodes for the orange-pigmented secondary metabolite. Similar to L. reuteri 3632 cells, the purified orange metabolite activated AhR. All together, these data provide evidence on the phylogenetic relatedness, safety, efficacy, and one of the likely mechanisms of action of L. reuteri 3630 and 3632 for potential probiotic applications to address "leaky gut" and associated pathologies in humans.
Collapse
Affiliation(s)
| | - Min Gu
- Department of Medicine, LSU Health Sciences Center, New Orleans, LA, 70112, USA
| | - Aline Zaparte
- Department of Medicine, LSU Health Sciences Center, New Orleans, LA, 70112, USA
| | - Olaf Will
- Elanco Animal Health, Inc., Alfred-Nobel-Strasse 50, 40789, Monheim Am Rhein, Germany
| | - Laurie C Dolan
- GRAS Associates, 1180 Grand Park Avenue, North Bethesda, MD, 20852, USA
| | | | - Jason Pillai
- MicroMGx, Inc., 3440 S Dearborn St, Chicago, IL, 60616, USA
| | | | - German Plata
- BiomEdit, LLC, 2710 Innovation Way, Greenfield, IN, 46140, USA
| | - Emily B Helmes
- BiomEdit, LLC, 2710 Innovation Way, Greenfield, IN, 46140, USA
| | - David A Welsh
- Department of Medicine, LSU Health Sciences Center, New Orleans, LA, 70112, USA
| | | |
Collapse
|
8
|
Xie DY, Lin M, Luo YM, Dong L, Wei Y, Gao JM, Zhu YZ, Gong QH. Trilobatin suppresses aging-induced cognitive impairment by targeting SIRT2: Involvement of remodeling gut microbiota to mediate the brain-gut axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155744. [PMID: 38763011 DOI: 10.1016/j.phymed.2024.155744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Aging is associated with learning and memory disorder, affecting multiple brain areas, especially the hippocampus. Previous studies have demonstrated trilobatin (TLB), as a natural food additive, can extend the life of Caenorhabditis elegans and exhibit neuroprotection in Alzheimer's disease mice. However, the possible significance of TLB in anti-aging remains elusive. PURPOSE This study aimed to delve into the physiological mechanism by which TLB ameliorated aging-induced cognitive impairment in senescence-accelerated mouse prone 8 (SAMP8) mice. METHODS 6-month-old SAMP8 mice were administrated with TLB (5, 10, 20 mg/kg/day, i.g.) for 3 months. The therapeutic effect of TLB on aging-induced cognitive impairment was assessed in mice using behavioral tests and aging score. The gut microbiota composition in fecal samples was analyzed by metagenomic analysis. The protective effects of TLB on blood-brain barrier (BBB) and intestinal barrier were detected by transmission electron microscope, H&E staining and western blot (WB) assay. The inhibitive effects of TLB on inflammation in brain and intestine were assessed using immunofluorescence, WB and ELISA assay. Molecular docking and surface plasma resonance (SPR) assay were utilized to investigate interaction between TLB and sirtuin 2 (SIRT2). RESULTS Herein, the findings exhibited TLB mitigated aging-induced cognitive impairment, neuron injury and neuroinflammation in hippocampus of aged SAMP8 mice. Moreover, TLB treatment repaired imbalance of gut microbiota in aged SAMP8 mice. Furthermore, TLB alleviated the damage to BBB and intestinal barrier, concomitant with reducing the expression of SIRT2, phosphorylated levels of c-Jun NH2 terminal kinases (JNK) and c-Jun, and expression of MMP9 protein in aged SAMP8 mice. Molecular docking and SPR unveiled TLB combined with SIRT2 and down-regulated SIRT2 protein expression. Mechanistically, the potential mechanism of SIRT2 in TLB that exerted anti-aging effect was validated in vitro. As expected, SIRT2 deficiency attenuated phosphorylated level of JNK in HT22 cells treated with d-galactose. CONCLUSION These findings reveal, for the first time, SIRT2-mediated brain-gut barriers contribute to aging and aging-related diseases, and TLB can rescue aging-induced cognitive impairment by targeting SIRT2 and restoring gut microbiota disturbance to mediate the brain-gut axis. Overall, this work extends the potential application of TLB as a natural food additive in aging-related diseases.
Collapse
Affiliation(s)
- Dian-You Xie
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Macau SAR, Taipa, 999078, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, 6 Xuefu West Road, Zunyi, Guizhou 563006, China
| | - Mu Lin
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Macau SAR, Taipa, 999078, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, 6 Xuefu West Road, Zunyi, Guizhou 563006, China; Guizhou Aerospace Hospital, Zunyi 563000, China
| | - Yun-Mei Luo
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Macau SAR, Taipa, 999078, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, 6 Xuefu West Road, Zunyi, Guizhou 563006, China
| | - Lan Dong
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Macau SAR, Taipa, 999078, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, 6 Xuefu West Road, Zunyi, Guizhou 563006, China
| | - Yu Wei
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563099, China
| | - Jian-Mei Gao
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Macau SAR, Taipa, 999078, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, 6 Xuefu West Road, Zunyi, Guizhou 563006, China
| | - Yi Zhun Zhu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Macau SAR, Taipa, 999078, China.
| | - Qi-Hai Gong
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Macau SAR, Taipa, 999078, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, 6 Xuefu West Road, Zunyi, Guizhou 563006, China.
| |
Collapse
|
9
|
Haque M, Kaminsky L, Abdulqadir R, Engers J, Kovtunov E, Rawat M, Al-Sadi R, Ma TY. Lactobacillus acidophilus inhibits the TNF-α-induced increase in intestinal epithelial tight junction permeability via a TLR-2 and PI3K-dependent inhibition of NF-κB activation. Front Immunol 2024; 15:1348010. [PMID: 39081324 PMCID: PMC11286488 DOI: 10.3389/fimmu.2024.1348010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Defective intestinal epithelial tight junction (TJ), characterized by an increase in intestinal TJ permeability, has been shown to play a critical role in the pathogenesis of inflammatory bowel disease (IBD). Tumor necrosis factor-α (TNF-α) is a key pro-inflammatory cytokine involved in the immunopathology of IBD and has been shown to cause an increase in intestinal epithelial TJ permeability. Although TNF-α antibodies and other biologics have been advanced for use in IBD treatment, these therapies are associated with severe side effects and have limited efficacy, and there is an urgent need for therapies with benign profiles and high therapeutic efficacy. Probiotic bacteria have beneficial effects and are generally safe and represent an important class of potential therapeutic agents in IBD. Lactobacillus acidophilus (LA) is one of the most used probiotics for wide-ranging health benefits, including in gastrointestinal, metabolic, and inflammatory disorders. A specific strain of LA, LA1, was recently demonstrated to have protective and therapeutic effects on the intestinal epithelial TJ barrier. However, the mechanisms of actions of LA1 remain largely unknown. METHODS The primary aim of this study was to investigate microbial-epithelial interactions and novel signaling pathways that regulate the effect of LA1 on TNF-α-induced increase in intestinal epithelial TJ permeability, using cell culture and animal model systems. RESULTS AND CONCLUSION Pre-treatment of filter-grown Caco-2 monolayers with LA1 prevented the TNF-α-induced increase in intestinal epithelial TJ permeability by inhibiting TNF-α-induced activation of NF-κB p50/p65 and myosin light chain kinase (MLCK) gene and kinase activity in a TLR-2-dependent manner. LA1 produced a TLR-2- and MyD88-dependent activation of NF-κB p50/p65 in immune cells; however, LA1, in intestinal cells, inhibited the NF-κB p50/p65 activation in a TLR-2-dependent but MyD88-independent manner. In addition, LA1 inhibition of NF-κB p50/p65 and MLCK gene was mediated by TLR-2 pathway activation of phosphatidylinositol 3-kinase (PI3K) and IKK-α phosphorylation. Our results demonstrated novel intracellular signaling pathways by which LA1/TLR-2 suppresses the TNF-α pathway activation of NF-κB p50/p65 in intestinal epithelial cells and protects against the TNF-α-induced increase in intestinal epithelial TJ permeability.
Collapse
Affiliation(s)
- Mohammad Haque
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Lauren Kaminsky
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Raz Abdulqadir
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Jessica Engers
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Evgeny Kovtunov
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Manmeet Rawat
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Rana Al-Sadi
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Thomas Y. Ma
- Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
| |
Collapse
|
10
|
Tan X, Cui J, Liu N, Wang X, Li H, Liu Y, Zhang W, Ma W, Lu D, Fan Y. Study on the immune-enhancing and inhabiting transmissible gastroenteritis virus effects of polysaccharides from Cimicifuga rhizoma. Microb Pathog 2024; 192:106719. [PMID: 38810768 DOI: 10.1016/j.micpath.2024.106719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Cimicifugae rhizoma is a traditional Chinese herbal medicine in China, and modern pharmacological research showed that it has obvious antiviral activity. Many polysaccharides have been proved to have immune enhancement and antiviral activity, but there are few studies on the biological activity of Cimicifuga rhizoma polysaccharide (CRP). The aim was to explore the character of CRP and its effects on improving immune activity and inhibiting transmissible gastroenteritis virus (TGEV). The monosaccharide composition, molecular weight, fourier transform infrared spectra and electron microscopy analysis of CRP was measured. The effect of CRP on immune activity in lymphocytes and RAW264.7 cells were studied by colorimetry, FITC-OVA fluorescent staining and ELISA. The effect of CRP on TGEV-infected PK-15 cells was determined using Real-time PCR, Hoechst fluorescence staining, trypan blue staining, acridine orange staining, Annexin V-FITC/PI fluorescent staining, DCFH-DA loading probe, and JC-1 staining. Network pharmacology was used to predict the targets of CRP in enhancing immunity and anti-TGEV, and molecular docking was used to further analyze the binding mode between CPR and core targets. The results showed that CRP was mainly composed of glucose and galactose, and its molecular weight was 64.28 kDa. The content of iNOS and NO in CRP group were significantly higher than the control group. CRP (125 and 62.5 μg/mL) could significantly enhance the phagocytic capacity of RAW264.7 cells, and imprive the content of IL-1β content compared with control group. 250 μg/mL of CRP possessed the significant inhibitory effect on TGEV, which could significantly reduce the apoptosis compared to TGVE group and inhibit the decrease in mitochondrial membrane potential compared to TGVE group. The mRNA expression of TGEV N gene in CRP groups was significantly lower than TGEV group. PPI showed that the core targets of immune-enhancing were AKT1, MMP9, HSP90AA1, etc., and the core targets of TGE were CASP3, MMP9, EGFR, etc. Molecular docking show that CRP has binding potential with target. These results indicated that CRP possessed the better immune enhancement effect and anti-TGEV activity.
Collapse
Affiliation(s)
- Xuewen Tan
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Jing Cui
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Nishang Liu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Xingchen Wang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Huicong Li
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Yingqiu Liu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Wuren Ma
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Dezhang Lu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China.
| | - Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China.
| |
Collapse
|
11
|
Vilardi A, Przyborski S, Mobbs C, Rufini A, Tufarelli C. Current understanding of the interplay between extracellular matrix remodelling and gut permeability in health and disease. Cell Death Discov 2024; 10:258. [PMID: 38802341 PMCID: PMC11130177 DOI: 10.1038/s41420-024-02015-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/25/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
The intestinal wall represents an interactive network regulated by the intestinal epithelium, extracellular matrix (ECM) and mesenchymal compartment. Under healthy physiological conditions, the epithelium undergoes constant renewal and forms an integral and selective barrier. Following damage, the healthy epithelium is restored via a series of signalling pathways that result in remodelling of the scaffolding tissue through finely-regulated proteolysis of the ECM by proteases such as matrix metalloproteinases (MMPs). However, chronic inflammation of the gastrointestinal tract, as occurs in Inflammatory Bowel Disease (IBD), is associated with prolonged disruption of the epithelial barrier and persistent damage to the intestinal mucosa. Increased barrier permeability exhibits distinctive signatures of inflammatory, immunological and ECM components, accompanied by increased ECM proteolytic activity. This narrative review aims to bring together the current knowledge of the interplay between gut barrier, immune and ECM features in health and disease, discussing the role of barrier permeability as a discriminant between homoeostasis and IBD.
Collapse
Affiliation(s)
- Aurora Vilardi
- Cancer Research Centre, University of Leicester, Leicester, LE2 7LX, United Kingdom
| | - Stefan Przyborski
- Department of Biosciences, Durham University, Durham, DH1 3LE, United Kingdom
| | - Claire Mobbs
- Department of Biosciences, Durham University, Durham, DH1 3LE, United Kingdom
| | - Alessandro Rufini
- Cancer Research Centre, University of Leicester, Leicester, LE2 7LX, United Kingdom.
- Department of Biosciences, University of Milan, Milan, 20133, Italy.
| | - Cristina Tufarelli
- Cancer Research Centre, University of Leicester, Leicester, LE2 7LX, United Kingdom.
| |
Collapse
|
12
|
Akinsuyi OS, Xhumari J, Ojeda A, Roesch LFW. Gut permeability among Astronauts during Space missions. LIFE SCIENCES IN SPACE RESEARCH 2024; 41:171-180. [PMID: 38670644 DOI: 10.1016/j.lssr.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/02/2024] [Accepted: 03/13/2024] [Indexed: 04/28/2024]
Abstract
The space environment poses substantial challenges to human physiology, including potential disruptions in gastrointestinal health. Gut permeability has only recently become widely acknowledged for its potential to cause adverse effects on a systemic level, rendering it a critical factor to investigate in the context of spaceflight. Here, we propose that astronauts experience the onset of leaky gut during space missions supported by transcriptomic and metagenomic analysis of human and murine samples. A genetic map contributing to intestinal permeability was constructed from a systematic review of current literature. This was referenced against our re-analysis of three independent transcriptomic datasets which revealed significant changes in gene expression patterns associated with the gut barrier. Specifically, in astronauts during flight, we observed a substantial reduction in the expression genes that are crucial for intestinal barrier function, goblet cell development, gut microbiota modulation, and immune responses. Among rodent spaceflight studies, differential expression of cytokines, chemokines, and genes which regulate mucin production and post-translational modifications suggest a similar dysfunction of intestinal permeability. Metagenomic analysis of feces from two murine studies revealed a notable reduction probiotic, short chain fatty acid-producing bacteria and an increase in the Gram-negative pathogens, including Citrobacter rodentium, Enterobacter cloacea, Klebsiella aerogenes, and Proteus hauseri which promote LPS circulation, a recipe for barrier disruption and systemic inflammatory activation. These findings emphasize the critical need to understand the underlying mechanisms and develop interventions to maintain gastrointestinal health in space.
Collapse
Affiliation(s)
- Oluwamayowa S Akinsuyi
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA
| | - Jessica Xhumari
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA
| | - Amanda Ojeda
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA
| | - Luiz F W Roesch
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA.
| |
Collapse
|
13
|
Hou JJ, Ding L, Yang T, Yang YF, Jin YP, Zhang XP, Ma AH, Qin YH. The proteolytic activity in inflammatory bowel disease: insight from gut microbiota. Microb Pathog 2024; 188:106560. [PMID: 38272327 DOI: 10.1016/j.micpath.2024.106560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic, recurrent inflammatory disease caused by the destruction of the intestinal mucosal epithelium that affects a growing number of people worldwide. Although the etiology of IBD is complex and still elucidated, the role of dysbiosis and dysregulated proteolysis is well recognized. Various studies observed altered composition and diversity of gut microbiota, as well as increased proteolytic activity (PA) in serum, plasma, colonic mucosa, and fecal supernatant of IBD compared to healthy individuals. The imbalance of intestinal microecology and intestinal protein hydrolysis were gradually considered to be closely related to IBD. Notably, the pivotal role of intestinal microbiota in maintaining proteolytic balance received increasing attention. In summary, we have speculated a mesmerizing story, regarding the hidden role of PA and microbiota-derived PA hidden in IBD. Most importantly, we provided the diagnosis and therapeutic targets for IBD as well as the formulation of new treatment strategies for other digestive diseases and protease-related diseases.
Collapse
Affiliation(s)
- Jun-Jie Hou
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - Liang Ding
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - Tao Yang
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - Yan-Fei Yang
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - Yue-Ping Jin
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - Xiao-Ping Zhang
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - A-Huo Ma
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - Yue-Hua Qin
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China.
| |
Collapse
|
14
|
Wenying S, Jing H, Ying L, Hui D. The role of TLR4/MyD88/NF-κB in the protective effect of ulinastatin on the intestinal mucosal barrier in mice with sepsis. BMC Anesthesiol 2023; 23:414. [PMID: 38102579 PMCID: PMC10722746 DOI: 10.1186/s12871-023-02374-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
OBJECTIVE To investigate the effect of the TLR4/MyD88/NF-κB (Toll-like receptor 4/myeloid differentiation factor/nuclear factor kappa B) signalling pathway on the protective effect of ulinastatin on the intestinal mucosal barrier in mice with sepsis. METHODS A mouse model of sepsis was established by classical caecal ligation and perforation. Forty-four SPF C57BL/6 mice were randomly divided into the following four groups with 11 mice in each group: the control group (Con group), ulinastatin group (Uti group), Uti + LPS (lipopolysaccharide, LPS) group (Uti + LPS group) and LPS group. Mice in the Con group and Uti group received saline or ulinastatin injected 2 h after modelling; Mice in the Uti + LPS group received LPS injected 0 h after modelling, other procedures were the same as in the Uti group; Mice in the LPS group received LPS only. At 48 h after surgery, the levels of TNF-α (tumour necrosis factor-α, TNF-α), IL-6 (interleukin-6, IL-6) and IL-1β (interleukin-1β, IL-1β) in vein, and the expression of TLR4, MyD88 and NF-κB mRNA in small intestinal mucosa tissues using ELISA and RT‒PCR. RESULTS The pathological specimens showed increased inflammatory injury in the Con and LPS groups, while these injuries and changes improved in the Uti group. The scores of intestinal mucosal injury at 48 h of Uti injection were significantly lower than those of the Con group (P < 0.001), while the scores of intestinal mucosal injury of Uti + LPS were significantly higher than those of the Uti group (P = 0.044). The expression of TNF-α, IL-6 and IL-1β in the Uti decreased significantly at 48 h after surgery than that in the Con group (P = 0.001, P = 0.014, P = 0.004), while the expression of TNF-α, IL-6 and IL-1β in the Uti + LPS group increased significantly after surgery than that in the Uti group (P = 0.026, P = 0.040, P = 0.039). The expression of TLR4, MyD88 and NF-κB mRNA in the Uti group decreased significantly compared with that in the Con group (P = 0.001, P = 0.021, P = 0.007), while the expression of TLR4, MyD88 and NF-κB mRNA in the Uti + LPS group was higher than that in the Uti group (P = 0.023, P = 0.040, P = 0.045). CONCLUSION These findings indicate that the protective effect of ulinastatin on the intestinal mucosal barrier against sepsis may be mediated through the TLR4/MyD88/NF-κB pathway.
Collapse
Affiliation(s)
- Song Wenying
- Department of Anesthesiology, Shaanxi Provincial Hospital, The Third Affiliated Hospital of Xi'an JiaoTong University, Xi'an, 710068, Shaanxi Province, People's Republic of China
| | - Huang Jing
- Xi'an Medical University, Xi'an 710068, Shaanxi Province, People's Republic of China
| | - Li Ying
- Xi'an Medical University, Xi'an 710068, Shaanxi Province, People's Republic of China
| | - Ding Hui
- Department of Anesthesiology, Shaanxi Provincial Hospital, The Third Affiliated Hospital of Xi'an JiaoTong University, Xi'an, 710068, Shaanxi Province, People's Republic of China.
| |
Collapse
|
15
|
Bae CH, Kim HY, Seo JE, Lee H, Kim S. In Silico Analysis of Pyeongwi-San Involved in Inflammatory Bowel Disease Treatment Using Network Pharmacology, Molecular Docking, and Molecular Dynamics. Biomolecules 2023; 13:1322. [PMID: 37759722 PMCID: PMC10526905 DOI: 10.3390/biom13091322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGOUND Pyeongwi-san (PWS) is a widely used formula for treating digestive disorders in Korea and China. Inflammatory bowel disease (IBD) is characterized by progressive inflammation of the gastrointestinal tract. Emerging evidence supports the protective effect of PWS against IBD, but specific mechanisms are still elusive. METHODS Active compounds of PWS were screened from the medicinal materials and chemical compounds in Northeast Asian traditional medicine (TM-MC) in the consideration of drug-likeness and oral bioavailability. Target candidates of active compounds were predicted using the ChEMBL database. IBD-related targets were obtained from the GeneCards and DisGeNET databases. The network of composition-targets-disease was constructed. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were analyzed. Molecular docking was used to simulate the binding affinity of active compounds on target proteins and molecular dynamics was used to validate the molecular docking result. RESULTS A total of 26 core target proteins of PWS were related to IBD. Enrichment analysis suggested that PWS is highly associated with tumor necrosis factor signaling pathway, apoptosis, and the collapse of tight junctions. Moreover, molecular docking and molecular dynamics simulation proposed β-eudesmol and (3R,6R,7S)-1,10-bisaboladien-3-ol to ameliorate IBD through the binding to TNF and MMP9, respectively. CONCLUSION Present in silico analysis revealed potential pathways and insight of PWS to regulate IBD. These results imply that the therapeutic effect of PWS might be achieved via an inhibitory effect.
Collapse
Affiliation(s)
- Chang-Hwan Bae
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (C.-H.B.); (J.E.S.); (H.L.)
| | - Hee-Young Kim
- Korean Medicine Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Ji Eun Seo
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (C.-H.B.); (J.E.S.); (H.L.)
| | - Hanul Lee
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (C.-H.B.); (J.E.S.); (H.L.)
| | - Seungtae Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (C.-H.B.); (J.E.S.); (H.L.)
- Korean Medicine Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea;
| |
Collapse
|
16
|
Choudhury R, Gu Y, Bolhuis JE, Kleerebezem M. Early feeding leads to molecular maturation of the gut mucosal immune system in suckling piglets. Front Immunol 2023; 14:1208891. [PMID: 37304274 PMCID: PMC10248722 DOI: 10.3389/fimmu.2023.1208891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Diet-microbiota-host interactions are increasingly studied to comprehend their implications in host metabolism and overall health. Keeping in mind the importance of early life programming in shaping intestinal mucosal development, the pre-weaning period can be utilised to understand these interactions in suckling piglets. The objective of this study was to investigate the consequences of early life feeding on the time-resolved mucosal transcriptional program as well as mucosal morphology. Methods A customised fibrous feed was provided to piglets (early-fed or EF group; 7 litters) from five days of age until weaning (29 days of age) in addition to sow's milk, whereas control piglets (CON; 6 litters) suckled mother's milk only. Rectal swabs, intestinal content, and mucosal tissues (jejunum, colon) were obtained pre- and post-weaning for microbiota analysis (16S amplicon sequencing) and host transcriptome analysis (RNA sequencing). Results Early feeding accelerated both microbiota colonisation as well as host transcriptome, towards a more "mature state", with a more pronounced response in colon compared to jejunum. Early feeding elicited the largest impact on the colon transcriptome just before weaning (compared to post-weaning time-points), exemplified by the modulation of genes involved in cholesterol and energy metabolism and immune response. The transcriptional impact of early feeding persisted during the first days post-weaning and was highlighted by a stronger mucosal response to the weaning stress, via pronounced activation of barrier repair reactions, which is a combination of immune activation, epithelial migration and "wound-repair" like processes, compared to the CON piglets. Discussion Our study demonstrates the potential of early life nutrition in neonatal piglets as a means to support their intestinal development during the suckling period, and to improve adaptation during the weaning transition.
Collapse
Affiliation(s)
- Raka Choudhury
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Yuner Gu
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - J. Elizabeth Bolhuis
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Michiel Kleerebezem
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
17
|
Yang FY, Chan WH, Gao CY, Zheng YT, Ke CH. Transabdominal ultrasound alleviates LPS-induced neuroinflammation by modulation of TLR4/NF-κB signaling and tight junction protein expression. Life Sci 2023; 325:121769. [PMID: 37178865 DOI: 10.1016/j.lfs.2023.121769] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
AIM Inflammatory bowel disease (IBD) may be a risk factor in the development of brain inflammation. It has been demonstrated noninvasive neuromodulation through sub-organ ultrasound stimulation. The purpose of this study was to investigate whether abdominal low-intensity pulsed ultrasound (LIPUS) alleviates lipopolysaccharide (LPS)-induced cortical inflammation via inhibition of colonic inflammation. MATERIALS AND METHODS Colonic and cortical inflammation was induced in mice by LPS (0.75 mg/kg, i.p. injection) for 7 days, followed by application of LIPUS (0.5 and 1.0 W/cm2) to the abdominal area for 6 days. Biological samples were collected for Western blot analysis, gelatin zymography, colon length measurement, and histological evaluation. KEY FINDINGS LIPUS treatment significantly attenuated LPS-induced increases in IL-6, IL-1β, COX-2, and cleaved caspase-3 expression in the colon and cortex of mice. Moreover, LIPUS significantly increased the levels of tight junction proteins in the epithelial barrier in the mouse colon and cortex with LPS-induced inflammation. Compared to the group treated only with LPS, the LIPUS-treated groups showed decreased muscle thickness and increased crypt length and colon length. Furthermore, LIPUS treatment reduced inflammation by inhibiting the LPS-induced activation of TLR4/NF-κB inflammatory signaling in the brain. SIGNIFICANCE We found that LIPUS alleviated LPS-induced colonic and cortical inflammation through abdominal stimulation of mice. These results suggest that abdominal LIPUS stimulation may be a novel therapeutic strategy against neuroinflammation via enhancement of tight junction protein levels and inhibition of inflammatory responses in the colon.
Collapse
Affiliation(s)
- Feng-Yi Yang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Wan-Hsuan Chan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cong-Yong Gao
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yin-Ting Zheng
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Hua Ke
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
18
|
Rodríguez-Viso P, Domene A, Vélez D, Devesa V, Monedero V, Zúñiga M. Oral exposure to inorganic mercury or methylmercury elicits distinct pro-inflammatory and pro-oxidant intestinal responses in a mouse model system. Food Chem Toxicol 2023; 177:113801. [PMID: 37137463 DOI: 10.1016/j.fct.2023.113801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/14/2023] [Accepted: 04/23/2023] [Indexed: 05/05/2023]
Abstract
Humans are mainly exposed to mercury (Hg) through contaminated foodstuffs. However, the effects of Hg on the intestinal tract have received little attention. We performed a subchronic exposure to inorganic mercury or methylmercury in mice through drinking water (1, 5 or 10 mg/L for four months) to evaluate their intestinal impact. Histological, biochemical and gene expression analyses showed that both Hg species induced oxidative stress in small intestine and colon, while inflammation was mainly detected in the colon. Increased fecal albumin content indicated a compromised epithelial barrier. Mucus production was possibly also affected, as an increase in Muc2 expression was detected. However, differential effects were detected between both Hg species. Activation of p38 MAPK and increased crypt depth were detected in colon only with MeHg. Minor differences in microbiota composition were detected between unexposed and exposed mice. Although significant differences were detected between both Hg species at 10 mg/L, only the relative abundances of low abundance taxa were affected. Concentrations of microbial-derived short-chain fatty acids were decreased, suggesting an effect on microbial metabolism or increased demand by the intestinal epithelium. Results obtained confirm previous in vitro studies and highlights the intestinal mucosa as an initial target of Hg.
Collapse
Affiliation(s)
- Pilar Rodríguez-Viso
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Adrián Domene
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Dinoraz Vélez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Vicenta Devesa
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Vicente Monedero
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Manuel Zúñiga
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
19
|
Wang X, Chen S, Wang J, Chen Y, Guo Y, Wang Q, Liu Z, Zeng H, Xu C. Olfactomedin-4 deletion exacerbates DSS-induced colitis through a matrix metalloproteinase-9-dependent mechanism. Int J Biol Sci 2023; 19:2150-2166. [PMID: 37151883 PMCID: PMC10158032 DOI: 10.7150/ijbs.80441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/30/2023] [Indexed: 05/09/2023] Open
Abstract
Background and Aims: Olfactomedin-4 is a glycoprotein that is upregulated in inflamed gastrointestinal tissues. This study aimed to investigate the role and underlying mechanisms of olfactomedin-4 in ulcerative colitis. Methods: C57BL/6 mice and olfactomedin-4 knockout mice were fed dextran sulfate sodium in drinking water to establish a colitis model. An in vitro inflammation model was constructed in HCT116 and NCM460 cells stimulated with lipopolysaccharide. The expression of olfactomedin-4 was detected by Western blotting, immunohistochemistry staining, and qRT‒PCR. The differences in the severity of colitis between olfactomedin-4 knockout mice and wild-type mice were compared, and the underlying mechanisms were explored. Results: Olfactomedin-4 expression was significantly upregulated in colonic tissues of active ulcerative colitis patients and in cellular and mouse models of colitis. Compared with wild-type littermates, olfactomedin-4 knockout mice were more susceptible to dextran sulfate sodium-induced colitis and produced higher levels of proinflammatory cytokines and chemokines. In addition, olfactomedin-4 deficiency significantly promoted intestinal epithelial cell apoptosis and increased intestinal permeability, which was mediated by the p53 pathway. Moreover, olfactomedin-4 directly interacted with and negatively regulated matrix metalloproteinase-9. Inhibiting matrix metalloproteinase-9 significantly decreased colonic p53 expression and ameliorated experimental colitis in olfactomedin-4 knockout mice, while overexpression of matrix metalloproteinase-9 aggravated colitis. Further experiments showed that matrix metalloproteinase-9 regulated p53 through the Notch1 signaling pathway to promote ulcerative colitis progression. Conclusions: Olfactomedin-4 is significantly upregulated in ulcerative colitis and may protect against colitis by directly inhibiting matrix metalloproteinase-9 and further decreasing p53-mediated apoptosis via Notch1 signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chengfu Xu
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
20
|
Abou Diwan M, Lahimer M, Bach V, Gosselet F, Khorsi-Cauet H, Candela P. Impact of Pesticide Residues on the Gut-Microbiota–Blood–Brain Barrier Axis: A Narrative Review. Int J Mol Sci 2023; 24:ijms24076147. [PMID: 37047120 PMCID: PMC10094680 DOI: 10.3390/ijms24076147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Accumulating evidence indicates that chronic exposure to a low level of pesticides found in diet affects the human gut-microbiota–blood–brain barrier (BBB) axis. This axis describes the physiological and bidirectional connection between the microbiota, the intestinal barrier (IB), and the BBB. Preclinical observations reported a gut microbial alteration induced by pesticides, also known as dysbiosis, a condition associated not only with gastrointestinal disorders but also with diseases affecting other distal organs, such as the BBB. However, the interplay between pesticides, microbiota, the IB, and the BBB is still not fully explored. In this review, we first consider the similarities/differences between these two physiological barriers and the different pathways that link the gut microbiota and the BBB to better understand the dialogue between bacteria and the brain. We then discuss the effects of chronic oral pesticide exposure on the gut-microbiota-BBB axis and raise awareness of the danger of chronic exposure, especially during the perinatal period (pregnant women and offspring).
Collapse
Affiliation(s)
- Maria Abou Diwan
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, CEDEX 1, 80054 Amiens, France; (M.A.D.); (M.L.); (V.B.); (H.K.-C.)
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, University of Artois, 62300 Lens, France;
| | - Marwa Lahimer
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, CEDEX 1, 80054 Amiens, France; (M.A.D.); (M.L.); (V.B.); (H.K.-C.)
| | - Véronique Bach
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, CEDEX 1, 80054 Amiens, France; (M.A.D.); (M.L.); (V.B.); (H.K.-C.)
| | - Fabien Gosselet
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, University of Artois, 62300 Lens, France;
| | - Hafida Khorsi-Cauet
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, CEDEX 1, 80054 Amiens, France; (M.A.D.); (M.L.); (V.B.); (H.K.-C.)
| | - Pietra Candela
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, University of Artois, 62300 Lens, France;
- Correspondence:
| |
Collapse
|
21
|
Qian W, Li W, Chen X, Cui L, Liu X, Yao J, Wang X, Liu Y, Li C, Wang Y, Wang W. Exploring the mechanism of Xingpi Capsule in diarrhea predominant-irritable bowel syndrome treatment based on multiomics technology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154653. [PMID: 36641976 DOI: 10.1016/j.phymed.2023.154653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Xingpi Capsule (XP), a commercially available over-the-counter herbal medicine in China, plays a prominent role in treating diarrhea-predominant irritable bowel syndrome (IBS-D). Nevertheless, the potential mechanisms remain unclear. PURPOSE This study aimed to investigate XP efficacy in IBS-D and elucidate the underlying molecular mechanisms. METHODS A rat IBS-D model was established by senna decoction gavage combined with restraint stress and swimming exhaustion. The changes in rat body weight and stool were recorded daily. Colon pathological changes and the number of colonic goblet cells of rats were observed by hematoxylin-eosin (HE) staining and Alcian blue plus periodic acid-Schiff (AB-PAS) staining, respectively. The expression of Occludin, a tight-junction-associated protein, was examined via immunohistochemistry. Images of colonic microvilli were obtained by TEM. Western blotting (WB) was used to analyze the protein expression of the ASK1/P38 MAPK pathway. The composition of the rat intestinal microbiota was detected by 16S rRNA sequencing. Changes in colonic metabolites were evaluated by liquid chromatography-mass spectrometry (LC-MS). Changes in colon RNA expression were assessed by RNA sequencing (RNA-Seq). The nontoxic range of hypoxanthine (HPX) was screened by Cell Counting Kit-8 (CCK8), the cell model of human colonic epithelial cells (NCM460) induced by lipopolysaccharide (LPS) was established, and the effective concentration of HPX was screened by CCK8. After transfection of pcDNA3.1-MAP3K5, Hoechst 33,342 staining, flow cytometry to detect cell apoptosis, and immunofluorescence to detect the fluorescence changes of ASK1 and ZO-1. WB detection of ASK1/P38 MAPK pathway protein expression changes. RESULTS XP increased the body weight of IBS-D patients and reduced the loose stool rate, loose stool index, and Bristo score. In addition, XP mitigated colon lesions, increased the number of goblet cells and the expression of Occludin, and prevented severe distortion and effacement of the microvillous structure. Specifically, 16S rRNA gene sequence analysis showed that XP decreased the abundance of Desulfurium and Prevotella 9 at the phylum and genus levels while increasing the abundance of Bacteroides at the genus level. RNA-Seq combined with WB validation showed that XP exerted antidiarrheal effects by inhibiting the ASK1/P38 MAPK signaling pathway. Additionally, XP also increased the relative expression level of the metabolite HPX, as revealed by untargeted metabolomics analysis. Impressively, the correlation analysis between 16S rRNA sequencing and LC-MS suggested that HPX and Prevotella 9 are negatively correlated, which indicated that XP might increase the content of HPX by reducing the abundance of Prevotella 9. Meanwhile, a negative correlation between HPX and ASK1 was indicated through RNA-Seq and LC-MS, which suggested that the inhibition of ASK1 (Map3k5) may be ascribed to the increase in HPX after XP treatment. In vitro experiments have proven that HPX can alleviate LPS-induced NCM460 damage, specifically manifested as enhancing cell viability, reducing cell apoptosis, increasing ZO-1 expression, reducing the fluorescence intensity of MAP3K5 in the model group, and inhibiting the expression of ASK1/P38 MAPK pathway proteins. The protective effect of HPX was reversed after transfection with pcDNA 3.1-MAP3K5, which fully demonstrated that the protective mechanism of HPX was achieved by inhibiting MAP3K5 and its downstream pathways. CONCLUSION XP displayed multifaceted protection against IBS-D in rats by regulating the intestinal microbiota, increasing the relative expression level of HPX, a metabolite of the microbiota, and inhibiting the ASK1/P38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Weina Qian
- School of Basic Medical Sciences, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Weili Li
- School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoyang Chen
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Lingwen Cui
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiangning Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Junkai Yao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoping Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yizhou Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yong Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Wei Wang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Beijing Key Laboratory of Syndrome and Formula, Beijing 100029, China; Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing 100029, China.
| |
Collapse
|
22
|
Mavrogeni ME, Asadpoor M, Henricks PAJ, Keshavarzian A, Folkerts G, Braber S. Direct Action of Non-Digestible Oligosaccharides against a Leaky Gut. Nutrients 2022; 14:4699. [PMID: 36364961 PMCID: PMC9655944 DOI: 10.3390/nu14214699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 10/28/2023] Open
Abstract
The epithelial monolayer is the primary determinant of mucosal barrier function, and tight junction (TJ) complexes seal the paracellular space between the adjacent epithelial cells and represent the main "gate-keepers" of the paracellular route. Impaired TJ functionality results in increased permeation of the "pro-inflammatory" luminal contents to the circulation that induces local and systemic inflammatory and immune responses, ultimately triggering and/or perpetuating (chronic) systemic inflammatory disorders. Increased gut leakiness is associated with intestinal and systemic disease states such as inflammatory bowel disease and neurodegenerative diseases such as Parkinson's disease. Modulation of TJ dynamics is an appealing strategy aiming at inflammatory conditions associated with compromised intestinal epithelial function. Recently there has been a growing interest in nutraceuticals, particularly in non-digestible oligosaccharides (NDOs). NDOs confer innumerable health benefits via microbiome-shaping and gut microbiota-related immune responses, including enhancement of epithelial barrier integrity. Emerging evidence supports that NDOs also exert health-beneficial effects on microbiota independently via direct interactions with intestinal epithelial and immune cells. Among these valuable features, NDOs promote barrier function by directly regulating TJs via AMPK-, PKC-, MAPK-, and TLR-associated pathways. This review provides a comprehensive overview of the epithelial barrier-protective effects of different NDOs with a special focus on their microbiota-independent modulation of TJs.
Collapse
Affiliation(s)
- Maria Eleni Mavrogeni
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Mostafa Asadpoor
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Paul A. J. Henricks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Ali Keshavarzian
- Division of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
23
|
Opdenakker G, Vermeire S, Abu El-Asrar A. How to place the duality of specific MMP-9 inhibition for treatment of inflammatory bowel diseases into clinical opportunities? Front Immunol 2022; 13:983964. [PMID: 36164340 PMCID: PMC9509204 DOI: 10.3389/fimmu.2022.983964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Crohn’s disease (CD) and ulcerative colitis (UC) are inflammatory bowel diseases (IBD) with the involvement of immune cells and molecules, including cytokines, chemokines and proteases. A previous extensive review about the molecular biology of matrix metalloproteases (MMPs) and tissue inhibitors of metalloproteases (TIMPs), related to intestinal barrier destruction and restoration functions in IBD, is here complemented with the literature from the last five years. We also compare IBD as a prototypic mucosal inflammation of an epithelial barrier against microorganisms with inflammatory retinopathy as a disease with a barrier dysfunction at the level of blood vessels. Multiple reasons are at the basis of halting clinical trials with monoclonal antibodies against MMP-9 for IBD treatment. These include (i) the absence of a causative role of MMP-9 in the pathology in animal models of IBD, (ii) the fact that endotoxins, crossing the intestinal barrier, induce massive local release of both neutrophil collagenase (MMP-8) and gelatinase B (MMP-9), (iii) insufficient recognition that MMPs modify the activities of cytokines, chemokines and their receptors, (iv) ignorance that MMPs exist as mixtures of proteoforms with different posttranslational modifications and with different specific activities and (v) the fact that MMPs and TIMPs act in an interactive network, possibly having also beneficial effects on IBD evolution. Nevertheless, inhibition of MMPs may be a useful therapeutic approach during specific IBD disease phases or in specific sub-phenotypes. This temporary “window of opportunity” for MMP-9 inhibition may be complemented by a locoregional one, provided that the pharmacological agents are targeted in time to affected tissues, as is achieved in ophthalmological inflammation. Thus, in order to discover spatial and temporal windows of opportunity for MMP inhibition as treatment of IBD, more preclinical work including well controlled animal studies will be further needed. In this respect, MMP-9/NGAL complex analysis in various body compartments is helpful for better stratification of IBD patients who may benefit from anti-MMP-9.
Collapse
Affiliation(s)
- Ghislain Opdenakker
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- University Hospitals Leuven, KU Leuven, Leuven, Belgium
- Department of Ophthalmology, King Saud University, Riyadh, Saudi Arabia
- *Correspondence: Ghislain Opdenakker,
| | | | | |
Collapse
|
24
|
Meng Y, Wang Q, Ma Z, Li W, Niu K, Zhu T, Lin H, Lu C, Fan H. Streptococcal autolysin promotes dysfunction of swine tracheal epithelium by interacting with vimentin. PLoS Pathog 2022; 18:e1010765. [PMID: 35921364 PMCID: PMC9377611 DOI: 10.1371/journal.ppat.1010765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/15/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Streptococcus suis serotype 2 (SS2) is a major zoonotic pathogen resulting in manifestations as pneumonia and septic shock. The upper respiratory tract is typically thought to be the main colonization and entry site of SS2 in pigs, but the mechanism through which it penetrates the respiratory barrier is still unclear. In this study, a mutant with low invasive potential to swine tracheal epithelial cells (STECs) was screened from the TnYLB-1 transposon insertion mutant library of SS2, and the interrupted gene was identified as autolysin (atl). Compared to wild-type (WT) SS2, Δatl mutant exhibited lower ability to penetrate the tracheal epithelial barrier in a mouse model. Purified Atl also enhanced SS2 translocation across STEC monolayers in Transwell inserts. Furthermore, Atl redistributed the tight junctions (TJs) in STECs through myosin light chain kinase (MLCK) signaling, which led to increased barrier permeability. Using mass spectrometry, co-immunoprecipitation (co-IP), pull-down, bacterial two-hybrid and saturation binding experiments, we showed that Atl binds directly to vimentin. CRISPR/Cas9-targeted deletion of vimentin in STECs (VIM KO STECs) abrogated the capacity of SS2 to translocate across the monolayers, SS2-induced phosphorylation of myosin II regulatory light chain (MLC) and MLCK transcription, indicating that vimentin is indispensable for MLCK activation. Consistently, vimentin null mice were protected from SS2 infection and exhibited reduced tracheal and lung injury. Thus, MLCK-mediated epithelial barrier opening caused by the Atl-vimentin interaction is found to be likely the key mechanism by which SS2 penetrates the tracheal epithelium. Streptococcus suis serotype 2 (SS2), an emerging zoonotic agent, can breach the respiratory barrier and cause invasive disease in pigs. Here, we identified the novel role of autolysin Atl in penetration of the respiratory barrier by SS2 and its systemic dissemination and identified its binding partner, vimentin, a type III intermediate filament protein. Atl contributed to the MLCK-triggered redistribution of tight junctions to open the tracheal epithelial barrier. Knockout of vimentin abolished the ability of SS2 to penetrate the monolayer barrier and the activation of MLCK. Furthermore, vimentin null mice were protected from infection by intranasally administered SS2. This study is the first to demonstrate that the interaction between the GBS Bsp-like domain of Atl and vimentin promotes MLCK-mediated dysfunction of the epithelial barrier, which may provide theoretical information for prophylactic and/or therapeutic treatments against diseases caused by similar respiratory pathogens.
Collapse
Affiliation(s)
- Yu Meng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qing Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Weiyi Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kai Niu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ting Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Chengping Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- * E-mail:
| |
Collapse
|
25
|
Yan Q, Jia L, Wen B, Wu Y, Zeng Y, Wang Q. Clostridium butyricum Protects Against Pancreatic and Intestinal Injury After Severe Acute Pancreatitis via Downregulation of MMP9. Front Pharmacol 2022; 13:919010. [PMID: 35924043 PMCID: PMC9342915 DOI: 10.3389/fphar.2022.919010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Evidence have shown that gut microbiota plays an important role in the development of severe acute pancreatitis (SAP). In addition, matrix metalloproteinase-9 (MMP9) plays an important role in intestinal injury in SAP. Thus, we aimed to determine whether gut microbiota could regulate the intestinal injury during SAP via modulating MMP9.Methods: In this study, the fecal samples of patients with SAP (n = 72) and healthy controls (n = 32) were analyzed by 16S rRNA gene sequencing. In addition, to investigate the association between gut microbiota and MMP9 in intestinal injury during SAP, we established MMP9 stable knockdown Caco2 and HT29 cells in vitro and generated a MMP9 knockout (MMP9−/−) mouse model of SAP in vivo.Results: We found that the abundance of Clostridium butyricum (C. butyricum) was significantly decreased in the SAP group. In addition, overexpression of MMP9 notably downregulated the expressions of tight junction proteins and upregulated the expressions of p-p38 and p-ERK in Caco2 and HT29 cells (p < 0.05). However, C. butyricum or butyrate treatment remarkably upregulated the expressions of tight junction proteins and downregulated the expressions of MMP9, p-p38 and p-ERK in MMP9-overexpressed Caco2 and HT29 cells (p < 0.05). Importantly, C. butyricum or butyrate could not affect the expressions of tight junction proteins, and MMP9, p-p38 and p-ERK proteins in MMP9-knockdown cells compared with MMP9-knockdown group. Consistently, C. butyricum or butyrate could not attenuate pancreatic and intestinal injury during SAP in MMP9−/− mice compared with the SAP group.Conclusion: Collectively, C. butyricum could protect against pancreatic and intestinal injury after SAP via downregulation of MMP9 in vitro and in vivo.
Collapse
Affiliation(s)
- Qingqing Yan
- Department of Gastroenterology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Lin Jia
- Department of Gastroenterology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Lin Jia,
| | - Biyan Wen
- Department of Gastroenterology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yao Wu
- Department of Gastroenterology, The First Affiliated Hospital of Nan Chang University, Nanchang, China
| | - Yanbo Zeng
- Department of Gastroenterology, Changhai Hospital, Shanghai, China
| | - Qing Wang
- Department of Gastroenterology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
26
|
Yang K, Li C, Wang Y, Hao J. Micro-Vibration Environment Promotes Bone Marrow Mesenchymal Stem Cells (BMSCs) Healing of Fracture Ends and Matrix Metalloproteinase-9 (MMP-9) Expression. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
When the muscle is stimulated by micro-vibration environment, it will produce a mechanical effect on skeletal muscle, thereby promoting growth of skeletal muscle cells. Bone marrow mesenchymal stem cells (BMSCs), as mechanically sensitive cells, have ability to multipolarize and multiple
tropisms. This experiment explores the effect of BMSC cells on fracture end healing in fracture rats in a micro-vibration environment, and further explores whether it promotes the healing of fracture end to provide biological treatment ideas for the clinical repair of fracture patients. After
modeling, SD rats were assigned into blank group, control group, and experimental group (treated with BMSCs) followed by analysis of bone volume fraction and bone trabecular thickness and number by Micro-CT, callus growth by H&E staining, and expression of p38 and MMP-9 by immunohistochemical
staining. The BV/TV value of experimental group was (0.41±0.06), Tb.Th value (0.08±0.01), Tb.N value (3.96±0.48) and was higher than other two groups (P < 0.05). The growth of capillaries, trabecular bone, fibrous callus and cartilaginous callus in experimental
group showed increased growth and the calcification was observed at the edge of cartilage callus. In addition, experimental group showed increased distribution area of MMP-9 and elevated expression of MMP-9 and p38MAPK. In conclusion, the micro-vibration environment can effectively promote
the chemotaxis of BMSC cells to the fracture site to activate ossification, thereby promoting the proliferation and ossification and differentiation of BMSC, and further promoting the repair of fracture ends.
Collapse
Affiliation(s)
- Kai Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Chengguan District, Lanzhou City, Gansu Province, 730030, China
| | - Chenmei Li
- Department of Orthopedics, Lanzhou University Second Hospital, Chengguan District, Lanzhou City, Gansu Province, 730030, China
| | - Yapeng Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Chengguan District, Lanzhou City, Gansu Province, 730030, China
| | - Junlong Hao
- Department of Orthopedics, Lanzhou University Second Hospital, Chengguan District, Lanzhou City, Gansu Province, 730030, China
| |
Collapse
|
27
|
Czajkowska A, Guzinska-Ustymowicz K, Pryczynicz A, Lebensztejn D, Daniluk U. Are Matrix Metalloproteinase-9 and Tissue Inhibitor of Metalloproteinase-1 Useful as Markers in Diagnostic Management of Children with Newly Diagnosed Ulcerative Colitis? J Clin Med 2022; 11:jcm11092655. [PMID: 35566780 PMCID: PMC9103541 DOI: 10.3390/jcm11092655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 02/06/2023] Open
Abstract
Matrix Metaloproteinase-9 (MMP-9) and Tissue Inhibitor of Metaloproteinase-1 (TIMP-1), enzymes involved in tissue remodelling, have been previously reported to be overexpressed in the colonic mucosa of patients with Ulcerative colitis (UC). The aim of this study was to determine the relation of MMP-9 and TIMP-1 with UC phenotypes, the disease activity index and routinely tested inflammatory markers in newly diagnosed paediatric patients. The study group comprised 35 children diagnosed with UC and 20 control groups. Serum and faecal concentrations of MMP-9 and TIMP-1 were estimated using enzyme-like immunosorbent assay kits and correlated to the disease activity index (Paediatric Ulcerative Colitis Activity Index, PUCAI), UC phenotype (Paris Classification), inflammatory markers and endoscopic score (Mayo score). Children with UC presented with significantly higher serum and faecal concentrations of studied markers compared to the control group. Both serums, MMP-9 and TIMP-1, were higher in children with more extended and severe lesions in the colon. Furthermore, serum MMP-9 correlated with the Mayo score, Paris classification and C-reactive protein (CRP) levels. Serum TIMP-1 showed correlation with PUCAI, Paris Classification, CRP levels and the erythrocyte sedimentation rate. Serum and faecal levels of MMP-9 and TIMP-1 are useful in discriminating UC patients and non-invasive assessments of disease phenotypes. It seemed that simultaneous measurement of these proteins in combination with other common markers of inflammation could be applied in clinical practice.
Collapse
Affiliation(s)
- Aleksandra Czajkowska
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition and Allergology, Medical University of Bialystok, 17 Waszyngtona Street, 15-274 Bialystok, Poland; (D.L.); (U.D.)
- Correspondence: or
| | | | - Anna Pryczynicz
- Department of General Pathomorphology, Medical University of Bialystok, 15-089 Bialystok, Poland; (K.G.-U.); (A.P.)
| | - Dariusz Lebensztejn
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition and Allergology, Medical University of Bialystok, 17 Waszyngtona Street, 15-274 Bialystok, Poland; (D.L.); (U.D.)
| | - Urszula Daniluk
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition and Allergology, Medical University of Bialystok, 17 Waszyngtona Street, 15-274 Bialystok, Poland; (D.L.); (U.D.)
| |
Collapse
|
28
|
Song D, Lai L, Lu J, Tong J, Ran Z. Interleukin-26 Expression in Inflammatory Bowel Disease and Its Immunoregulatory Effects on Macrophages. Front Med (Lausanne) 2022; 9:797135. [PMID: 35463017 PMCID: PMC9019154 DOI: 10.3389/fmed.2022.797135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Aim Interleukin-26 (IL-26) has been implicated in several chronic inflammatory diseases. However, its role in inflammatory bowel disease (IBD) remains to be elucidated. We aimed to investigate IL-26 expression in IBD and its immunoregulatory effects on macrophages. Methods We assessed IL-26 expression in the intestinal mucosa and blood samples of IBD patients and healthy controls (HC). The associations between the clinical characteristics of IBD and IL-26 expression levels in serum and peripheral blood mononuclear cells (PBMCs) were investigated. In addition, the transcriptional changes in THP-1 macrophages exposed to IL-26 were determined by RNA sequencing and validated with qRT-PCR, ELISA and western blots. Results Compared with HC, in IBD patients, IL-26 expression levels were elevated in the inflamed intestinal mucosa, and reduced in serum and PBMCs. IL-26 mRNA levels in PBMCs, but not serum IL-26 levels, were inversely correlated with disease activity in IBD. Furthermore, IL-26 mRNA levels in PBMCs were significantly lower in patients with complicated Crohn's disease. A total of 1,303 differentially expressed protein-coding genes were identified between untreated and IL-26-treated macrophages. The up-regulated genes showed enrichment in some inflammatory and immune-related processes and pathways. Additionally, GSEA showed that neutrophil, monocyte, and lymphocyte chemotaxis was significantly enriched in IL-26-treated macrophages. Further validation revealed that IL-26 promotes the secretion of multiple inflammatory cytokines and chemokines and upregulates the expression of adhesion molecules, MMP-8, and MMP-9 while inhibiting MMP-1 in macrophages. Conclusion Compared with HC, in IBD patients, IL-26 levels were elevated in the inflamed intestinal mucosa, and reduced in the peripheral blood. The transcriptional changes in macrophages exposed to IL-26 suggest that IL-26 may amplify the aberrant immune response in IBD by activating macrophages.
Collapse
Affiliation(s)
- Dongjuan Song
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Lijie Lai
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Juntao Lu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jinlu Tong
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhihua Ran
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
29
|
Augoff K, Hryniewicz-Jankowska A, Tabola R, Stach K. MMP9: A Tough Target for Targeted Therapy for Cancer. Cancers (Basel) 2022; 14:cancers14071847. [PMID: 35406619 PMCID: PMC8998077 DOI: 10.3390/cancers14071847] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 02/01/2023] Open
Abstract
Having the capability to proteolyze diverse structural and signaling proteins, matrix metalloproteinase 9 (MMP9), one of the best-studied secretory endopeptidases, has been identified as a crucial mediator of processes closely associated with tumorigenesis, such as the extracellular matrix reorganization, epithelial to mesenchymal transition, cell migration, new blood vessel formation, and immune response. In this review, we present the current state of knowledge on MMP9 and its role in cancer growth in the context of cell adhesion/migration, cancer-related inflammation, and tumor microenvironment formation. We also summarize recent achievements in the development of selective MMP9 inhibitors and the limitations of using them as anticancer drugs.
Collapse
Affiliation(s)
- Katarzyna Augoff
- Department of Surgical Education, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Department of Chemistry and Immunochemistry, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Correspondence:
| | | | - Renata Tabola
- Department of Thoracic Surgery, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Kamilla Stach
- Department of Chemistry and Immunochemistry, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| |
Collapse
|
30
|
Hrabia A, Miska KB, Schreier LL, Proszkowiec-Weglarz M. Altered gene expression of selected matrix metalloproteinase system proteins in the broiler chicken gastrointestinal tract during post-hatch development and coccidia infection*. Poult Sci 2022; 101:101915. [PMID: 35687960 PMCID: PMC9190011 DOI: 10.1016/j.psj.2022.101915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 11/20/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of proteases, that can process extracellular matrix (ECM) components and non-ECM molecules. MMPs can also function intracellularly in proteolytic and nonproteolytic functions. The participation of MMPs in the remodeling of the chicken gastrointestinal tract is largely unknown. The aim of the present study was to examine 1) the early neonatal developmental changes and effect of delayed access to feed immediately post-hatch (PH) and 2) the effect of Eimeria infection on mRNA expression of selected MMPs, their tissue inhibitors (TIMPs), and a disintegrin and metalloproteinase (ADAM) metallopeptidase with thrombospondin type 1 motif 8 (ADAMTS8) in the gastrointestinal tract of chicken. Protein localization of MMPs and TIMPs was also carried out in the normal ileal wall at −48, 24, and 336 h relative to hatch using immunofluorescence. In experiment 1, newly hatched Ross 708 chicks received feed and water immediately PH or were subjected to 48 h delayed access to feed. Chickens were sampled at −48, 0, 4, 24, 48, 72, 96, 144, 192, 240, 288, and 336 h PH. Ileum was collected for investigation of gene expression or fixed in paraformaldehyde for immunofluorescence. In experiments 2 and 3, Ross 708 male broilers were infected, at 21 d of age with Eimeria maxima or E. acervulina or sham-infected with water. Intestinal tissues were collected at 7 and 10 d postinfection for gene expression analysis. In general, mRNA expression patterns of all examined genes showed downregulation during the first 2 wk PH and were not affected by delay in feed access. These development-dependent changes in expression and tissue-dependent localization in the ileum of selected MMPs and TIMPs indicate that these molecules participate in the remodeling of chicken intestinal tissues during PH development. Increased expression of MMP-7 and MMP-9 transcripts in the intestine of Eimeria infected birds suggests an important role for these enzymes in the process of tissue remodeling and destruction in pathological conditions. The findings of this study are important for understanding the relationship between the expression of the MMP system and intestinal development, as well its role in gastrointestinal infection and subsequent recovery.
Collapse
Affiliation(s)
- Anna Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Poland
| | - Katarzyna B Miska
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Northeast Area (NEA), Animal Biosciences and Biotechnology Laboratory (ABBL), Beltsville, MD 20705, USA
| | - Lori L Schreier
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Northeast Area (NEA), Animal Biosciences and Biotechnology Laboratory (ABBL), Beltsville, MD 20705, USA
| | - Monika Proszkowiec-Weglarz
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Northeast Area (NEA), Animal Biosciences and Biotechnology Laboratory (ABBL), Beltsville, MD 20705, USA.
| |
Collapse
|
31
|
Hoke A, Chakraborty N, Gautam A, Hammamieh R, Jett M. Acute and Delayed Effects of Stress Eliciting Post-Traumatic Stress-Like Disorder Differentially Alters Fecal Microbiota Composition in a Male Mouse Model. Front Cell Infect Microbiol 2022; 12:810815. [PMID: 35300376 PMCID: PMC8921487 DOI: 10.3389/fcimb.2022.810815] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/04/2022] [Indexed: 11/19/2022] Open
Abstract
The association between the shift in fecal resident microbiome and social conflicts with long-term consequences on psychological plasticity, such as the development of post-traumatic stress disorder (PTSD), is yet to be comprehended. We developed an aggressor-exposed (Agg-E) social stress (SS) mouse model to mimic warzone-like conflicts, where random life-threatening interactions took place between naïve intruder mice and aggressive resident mice. Gradually these Agg-E mice developed distinct characteristics simulating PTSD-like aspects, whereas the control mice not exposed to Agg-E SS demonstrated distinct phenotypes. To further investigate the role of Agg-E SS on the resident microbiome, 16S rRNA gene sequencing was assayed using fecal samples collected at pre-, during, and post-SS time points. A time agonist shift in the fecal microbial composition of Agg-E mice in contrast to its controls suggested a persistent impact of Agg-E SS on resident microbiota. At the taxonomic level, Agg-E SS caused a significant shift in the time-resolved ratios of Firmicutes and Bacteroidetes abundance. Furthermore, Agg-E SS caused diverging shifts in the relative abundances of Verrucomicrobia and Actinobacteria. An in silico estimation of genomic potential identified a potentially perturbed cluster of bioenergetic networks, which became increasingly enriched with time since the termination of Agg-E SS. Supported by a growing number of studies, our results indicated the roles of the microbiome in a wide range of phenotypes that could mimic the comorbidities of PTSD, which would be directly influenced by energy deficiency. Together, the present work suggested the fecal microbiome as a potential tool to manage long-term effects of social conflicts, including the management of PTSD.
Collapse
Affiliation(s)
- Allison Hoke
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, United States
- Medical Readiness Systems Biology Branch, Center for Military Psychiatry and Neuroscience Research (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
| | - Nabarun Chakraborty
- Medical Readiness Systems Biology Branch, Center for Military Psychiatry and Neuroscience Research (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- *Correspondence: Nabarun Chakraborty, ; Aarti Gautam,
| | - Aarti Gautam
- Medical Readiness Systems Biology Branch, Center for Military Psychiatry and Neuroscience Research (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- *Correspondence: Nabarun Chakraborty, ; Aarti Gautam,
| | - Rasha Hammamieh
- Medical Readiness Systems Biology Branch, Center for Military Psychiatry and Neuroscience Research (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
| | - Marti Jett
- Medical Readiness Systems Biology Branch, Center for Military Psychiatry and Neuroscience Research (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
| |
Collapse
|
32
|
Mecocci S, Ottaviani A, Razzuoli E, Fiorani P, Pietrucci D, De Ciucis CG, Dei Giudici S, Franzoni G, Chillemi G, Cappelli K. Cow Milk Extracellular Vesicle Effects on an In Vitro Model of Intestinal Inflammation. Biomedicines 2022; 10:biomedicines10030570. [PMID: 35327370 PMCID: PMC8945533 DOI: 10.3390/biomedicines10030570] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/19/2022] [Accepted: 02/27/2022] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer nano-dimensional spherical structures and act mainly as signaling mediators between cells, in particular modulating immunity and inflammation. Milk-derived EVs (mEVs) can have immunomodulatory and anti-inflammatory effects, and milk is one of the most promising food sources of EVs. In this context, this study aimed to evaluate bovine mEVs anti-inflammatory and immunomodulating effects on an in vitro co-culture (Caco-2 and THP-1) model of intestinal inflammation through gene expression evaluation with RT-qPCR and cytokine release through ELISA. After establishing a pro-inflammatory environment due to IFN-γ and LPS stimuli, CXCL8, IL1B, TNFA, IL12A, IL23A, TGFB1, NOS2, and MMP9 were significantly up-regulated in inflamed Caco-2 compared to the basal co-culture. Moreover, IL-17, IL-1β, IL-6, TNF-α release was increased in supernatants of THP-1. The mEV administration partially restored initial conditions with an effective anti-inflammatory activity. Indeed, a decrease in gene expression and protein production of most of the tested cytokines was detected, together with a significant gene expression decrease in MMP9 and the up-regulation of MUC2 and TJP1. These results showed a fundamental capability of mEVs to modulate inflammation and their potential beneficial effect on the intestinal mucosa.
Collapse
Affiliation(s)
- Samanta Mecocci
- Department of Veterinary Medicine, University of Perugia, 06123 Perugia, Italy;
- Sports Horse Research Center (CRCS), University of Perugia, 06123 Perugia, Italy
| | - Alessio Ottaviani
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Elisabetta Razzuoli
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy;
- Correspondence: (E.R.); (G.C.); (K.C.); Tel.: +39-010-542274 (E.R.); +39-0761-357429 (G.C.); +39-075-5857722 (K.C.)
| | - Paola Fiorani
- Institute of Translational Pharmacology, National Research Council, CNR, 00133 Rome, Italy;
| | - Daniele Pietrucci
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, IBIOM, National Research Council, CNR, 70126 Bari, Italy;
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Chiara Grazia De Ciucis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy;
| | - Silvia Dei Giudici
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (G.F.)
| | - Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (G.F.)
| | - Giovanni Chillemi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, IBIOM, National Research Council, CNR, 70126 Bari, Italy;
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
- Correspondence: (E.R.); (G.C.); (K.C.); Tel.: +39-010-542274 (E.R.); +39-0761-357429 (G.C.); +39-075-5857722 (K.C.)
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, 06123 Perugia, Italy;
- Sports Horse Research Center (CRCS), University of Perugia, 06123 Perugia, Italy
- Correspondence: (E.R.); (G.C.); (K.C.); Tel.: +39-010-542274 (E.R.); +39-0761-357429 (G.C.); +39-075-5857722 (K.C.)
| |
Collapse
|
33
|
Craig CF, Filippone RT, Stavely R, Bornstein JC, Apostolopoulos V, Nurgali K. Neuroinflammation as an etiological trigger for depression comorbid with inflammatory bowel disease. J Neuroinflammation 2022; 19:4. [PMID: 34983592 PMCID: PMC8729103 DOI: 10.1186/s12974-021-02354-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023] Open
Abstract
Patients with inflammatory bowel disease (IBD) suffer from depression at higher rates than the general population. An etiological trigger of depressive symptoms is theorised to be inflammation within the central nervous system. It is believed that heightened intestinal inflammation and dysfunction of the enteric nervous system (ENS) contribute to impaired intestinal permeability, which facilitates the translocation of intestinal enterotoxins into the blood circulation. Consequently, these may compromise the immunological and physiological functioning of distant non-intestinal tissues such as the brain. In vivo models of colitis provide evidence of increased blood–brain barrier permeability and enhanced central nervous system (CNS) immune activity triggered by intestinal enterotoxins and blood-borne inflammatory mediators. Understanding the immunological, physiological, and structural changes associated with IBD and neuroinflammation may aid in the development of more tailored and suitable pharmaceutical treatment for IBD-associated depression.
Collapse
Affiliation(s)
- Colin F Craig
- Institute for Heath and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia
| | - Rhiannon T Filippone
- Institute for Heath and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia
| | - Rhian Stavely
- Institute for Heath and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia.,Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Joel C Bornstein
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Australia
| | - Vasso Apostolopoulos
- Institute for Heath and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia.,Immunology Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Kulmira Nurgali
- Institute for Heath and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia. .,Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia. .,Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia. .,Institute for Health and Sport, Victoria University, Level 4 Research Labs, Western Centre for Health Research and Education, Sunshine Hospital, 176 Furlong Road, St Albans, VIC, 3021, Australia.
| |
Collapse
|
34
|
Al-Sadi R, Dharmaprakash V, Nighot P, Guo S, Nighot M, Do T, Ma TY. Bifidobacterium bifidum Enhances the Intestinal Epithelial Tight Junction Barrier and Protects against Intestinal Inflammation by Targeting the Toll-like Receptor-2 Pathway in an NF-κB-Independent Manner. Int J Mol Sci 2021; 22:8070. [PMID: 34360835 PMCID: PMC8347470 DOI: 10.3390/ijms22158070] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Defective intestinal tight junction (TJ) barrier is a hallmark in the pathogenesis of inflammatory bowel disease (IBD). To date, there are no effective therapies that specifically target the intestinal TJ barrier. Among the various probiotic bacteria, Bifidobacterium, is one of the most widely studied to have beneficial effects on the intestinal TJ barrier. The main purpose of this study was to identify Bifidobacterium species that cause a sustained enhancement in the intestinal epithelial TJ barrier and can be used therapeutically to target the intestinal TJ barrier and to protect against or treat intestinal inflammation. Our results showed that Bifidobacterium bifidum caused a marked, sustained enhancement in the intestinal TJ barrier in Caco-2 monolayers. The Bifidobacterium bifidum effect on TJ barrier was strain-specific, and only the strain designated as BB1 caused a maximal enhancement in TJ barrier function. The mechanism of BB1 enhancement of intestinal TJ barrier required live bacterial cell/enterocyte interaction and was mediated by the BB1 attachment to Toll-like receptor-2 (TLR-2) at the apical membrane surface. The BB1 enhancement of the intestinal epithelial TJ barrier function was mediated by the activation of the p38 kinase pathway, but not the NF-κB signaling pathway. Moreover, the BB1 caused a marked enhancement in mouse intestinal TJ barrier in a TLR-2-dependent manner and protected against dextran sodium sulfate (DSS)-induced increase in mouse colonic permeability, and treated the DSS-induced colitis in a TJ barrier-dependent manner. These studies show that probiotic bacteria BB1 causes a strain-specific enhancement of the intestinal TJ barrier through a novel mechanism involving BB1 attachment to the enterocyte TLR-2 receptor complex and activation of p38 kinase pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Thomas Y. Ma
- Department of Medicine, Penn State College of Medicine, Hershey Medical Center, Penn State University, Hershey, PA 17033, USA; (R.A.-S.); (V.D.); (P.N.); (S.G.); (M.N.); (T.D.)
| |
Collapse
|
35
|
Reisinger N, Wendner D, Schauerhuber N, Mayer E. Effect of Lipopolysaccharides (LPS) and Lipoteichoic Acid (LTA) on the Inflammatory Response in Rumen Epithelial Cells (REC) and the Impact of LPS on Claw Explants. Animals (Basel) 2021; 11:ani11072058. [PMID: 34359186 PMCID: PMC8300308 DOI: 10.3390/ani11072058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/25/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Endotoxins, often referred to as lipopolysaccharides (LPS), are bacterial toxins and play an essential role in several diseases in ruminants. One of the most common disorders in dairy cows, sub-acute rumen acidosis (SARA), is associated with a substantial increase of ruminal and intestinal endotoxin load. Other potentially harmful substances, e.g., lipoteichoic acid (LTA), derived from the cell wall of Gram-positive bacteria, might play an essential role during SARA as well. Besides the potential local effect of LPS, translocation to the blood can induce a strong immune response in cattle. Furthermore, LPS might reach the claw tissue after translocation. In our study, we used a cell culture model with epithelial cells isolated from rumen tissue to assess the effects of LPS and LTA. Furthermore, we evaluated the effects of LPS on claw tissue with an explant model. LPS and LTA could induce an inflammatory response in rumen epithelial cells. However, the effect of LPS was more substantial and seen at an earlier time point compared to LTA. Furthermore, in claw explants, LPS negatively affected the separation force, an indicator for tissue integrity, which decreased with increasing LPS concentrations. Overall, our data suggest that especially endotoxins can impact local inflammatory response in the rumen. Furthermore, if endotoxins reach the claw tissue, it might affect claw health. Abstract Endotoxins play a crucial role in ruminant health due to their deleterious effects on animal health. The study aimed to evaluate whether LPS and LTA can induce an inflammatory response in rumen epithelial cells. For this purpose, epithelial cells isolated from rumen tissue (REC) were stimulated with LPS and LTA for 1, 2, 4, and 24 h. Thereafter, the expression of selected genes of the LPS and LTA pathway and inflammatory response were evaluated. Furthermore, it was assessed whether LPS affects inflammatory response and structural integrity of claw explants. Therefore, claw explants were incubated with LPS for 4 h to assess the expression of selected genes and for 24 h to evaluate tissue integrity via separation force. LPS strongly affected the expression of genes related to inflammation (NFkB, TNF-α, IL1B, IL6, CXCL8, MMP9) in REC. LTA induced a delayed and weaker inflammatory response than LPS. In claw explants, LPS affected tissue integrity, as there was a concentration-dependent decrease of separation force. Incubation time had a strong effect on inflammatory genes in claw explants. Our data suggest that endotoxins can induce a local inflammatory response in the rumen epithelium. Furthermore, translocation of LPS might negatively impact claw health.
Collapse
|
36
|
The diverse roles of myeloid derived suppressor cells in mucosal immunity. Cell Immunol 2021; 365:104361. [PMID: 33984533 DOI: 10.1016/j.cellimm.2021.104361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
The mucosal immune system plays a vital role in protecting the host from the external environment. Its major challenge is to balance immune responses against harmful and harmless agents and serve as a 'homeostatic gate keeper'. Myeloid derived suppressor cells (MDSCs) are a heterogeneous population of undifferentiated cells that are characterized by an immunoregulatory and immunosuppressive phenotype. Herein we postulate that MDSCs may be involved in shaping immune responses related to mucosal immunity, due to their immunomodulatory and tissue remodeling functions. Until recently, MDSCs were investigated mainly in cancerous diseases, where they induce and contribute to an immunosuppressive and inflammatory environment that favors tumor development. However, it is now becoming clear that MDSCs participate in non-cancerous conditions such as chronic infections, autoimmune diseases, pregnancy, aging processes and immune tolerance to commensal microbiota at mucosal sites. Since MDSCs are found in the periphery only in small numbers under normal conditions, their role is highlighted during pathologies characterized by acute or chronic inflammation, when they accumulate and become activated. In this review, we describe several aspects of the current knowledge characterizing MDSCs and their involvement in the regulation of the mucosal epithelial barrier, their crosstalk with commensal microbiota and pathogenic microorganisms, and their complex interactions with a variety of surrounding regulatory and effector immune cells. Finally, we discuss the beneficial and harmful outcomes of the MDSC regulatory functions in diseases affecting mucosal tissues. We wish to illuminate the pivotal role of MDSCs in mucosal immunity, the limitations in our understanding of all the players and the intricate challenges stemming from the complex interactions of MDSCs with their environment.
Collapse
|
37
|
Al-Sadi R, Engers J, Haque M, King S, Al-Omari D, Ma TY. Matrix Metalloproteinase-9 (MMP-9) induced disruption of intestinal epithelial tight junction barrier is mediated by NF-κB activation. PLoS One 2021; 16:e0249544. [PMID: 33826658 PMCID: PMC8026081 DOI: 10.1371/journal.pone.0249544] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/20/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Matrix Metalloproteinase-9 (MMP-9) has been shown to play a key role in mediating inflammation and tissue damage in inflammatory bowel disease (IBD). In patients with IBD, the intestinal tight junction (TJ) barrier is compromised as characterized by an increase in intestinal permeability. MMP-9 is elevated in intestinal tissue, serum and stool of patients with IBD. Previous studies from our laboratory showed that MMP-9 causes an increase in intestinal epithelial TJ permeability and that the MMP-9 induced increase in intestinal permeability is an important pathogenic factor contributing to the development of intestinal inflammation in IBD. However, the intracellular mechanisms that mediate the MMP-9 modulation of intestinal barrier function remain unclear. AIMS The main aim of this study was to further elucidate the molecular mechanisms involved in MMP-9 induced increase in intestinal epithelial TJ permeability using Caco-2 monolayers as an in-vitro model system. RESULTS MMP-9 induced increase in Caco-2 TJ permeability was associated with activation and cytoplasmic-to-nuclear translocation of NF-κB p65. Knocking-down NF-κB p65 by siRNA transfection prevented the MMP-9 induced expression of the NF-κB target gene IL-8, myosin light chain kinase (MLCK) protein expression, and subsequently prevented the increase in Caco-2 TJ permeability. In addition, the effect of MMP-9 on Caco-2 intestinal epithelial TJ barrier function was not mediated by apoptosis or necrosis. CONCLUSION Our data show that the MMP-9 induced disruption of Caco-2 intestinal epithelial TJ barrier function is regulated by NF-κB pathway activation of MLCK.
Collapse
Affiliation(s)
- Rana Al-Sadi
- Department of Medicine, Penn State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
- * E-mail:
| | - Jessica Engers
- Department of Medicine, Penn State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Mohammad Haque
- Department of Medicine, Penn State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Steven King
- Department of Medicine, Penn State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Deemah Al-Omari
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Thomas Y. Ma
- Department of Medicine, Penn State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| |
Collapse
|
38
|
Mariaule V, Kriaa A, Soussou S, Rhimi S, Boudaya H, Hernandez J, Maguin E, Lesner A, Rhimi M. Digestive Inflammation: Role of Proteolytic Dysregulation. Int J Mol Sci 2021; 22:ijms22062817. [PMID: 33802197 PMCID: PMC7999743 DOI: 10.3390/ijms22062817] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of the proteolytic balance is often associated with diseases. Serine proteases and matrix metalloproteases are involved in a multitude of biological processes and notably in the inflammatory response. Within the framework of digestive inflammation, several studies have stressed the role of serine proteases and matrix metalloproteases (MMPs) as key actors in its pathogenesis and pointed to the unbalance between these proteases and their respective inhibitors. Substantial efforts have been made in developing new inhibitors, some of which have reached clinical trial phases, notwithstanding that unwanted side effects remain a major issue. However, studies on the proteolytic imbalance and inhibitors conception are directed toward host serine/MMPs proteases revealing a hitherto overlooked factor, the potential contribution of their bacterial counterpart. In this review, we highlight the role of proteolytic imbalance in human digestive inflammation focusing on serine proteases and MMPs and their respective inhibitors considering both host and bacterial origin.
Collapse
Affiliation(s)
- Vincent Mariaule
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (V.M.); (A.K.); (S.S.); (S.R.); (H.B.); (E.M.)
| | - Aicha Kriaa
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (V.M.); (A.K.); (S.S.); (S.R.); (H.B.); (E.M.)
| | - Souha Soussou
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (V.M.); (A.K.); (S.S.); (S.R.); (H.B.); (E.M.)
| | - Soufien Rhimi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (V.M.); (A.K.); (S.S.); (S.R.); (H.B.); (E.M.)
| | - Houda Boudaya
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (V.M.); (A.K.); (S.S.); (S.R.); (H.B.); (E.M.)
| | - Juan Hernandez
- Department of Clinical Sciences, Nantes-Atlantic College of Veterinary Medicine and Food Sciences (Oniris), University of Nantes, 101 Route de Gachet, 44300 Nantes, France;
| | - Emmanuelle Maguin
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (V.M.); (A.K.); (S.S.); (S.R.); (H.B.); (E.M.)
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, PL80-308 Gdansk, Poland;
| | - Moez Rhimi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (V.M.); (A.K.); (S.S.); (S.R.); (H.B.); (E.M.)
- Correspondence:
| |
Collapse
|
39
|
Ewing LE, Skinner CM, Pathak R, Yee EU, Krager K, Gurley PC, Melnyk S, Boerma M, Hauer-Jensen M, Koturbash I. Dietary Methionine Supplementation Exacerbates Gastrointestinal Toxicity in a Mouse Model of Abdominal Irradiation. Int J Radiat Oncol Biol Phys 2021; 109:581-593. [PMID: 33002540 PMCID: PMC7855316 DOI: 10.1016/j.ijrobp.2020.09.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND PURPOSE Identification of appropriate dietary strategies for prevention of weight and muscle loss in cancer patients is crucial for successful treatment and prolonged patient survival. High-protein oral nutritional supplements decrease mortality and improve indices of nutritional status in cancer patients; however, high-protein diets are often rich in methionine, and experimental evidence indicates that a methionine-supplemented diet (MSD) exacerbates gastrointestinal toxicity after total body irradiation. Here, we sought to investigate whether MSD can exacerbate gastrointestinal toxicity after local abdominal irradiation, an exposure regimen more relevant to clinical settings. MATERIALS AND METHODS Male CBA/CaJ mice fed either a methionine-adequate diet or MSD (6.5 mg methionine/kg diet vs 19.5 mg/kg) received localized abdominal X-irradiation (220 kV, 13 mA) using the Small Animal Radiation Research Platform, and tissues were harvested 4, 7, and 10 days after irradiation. RESULTS MSD exacerbated gastrointestinal toxicity after local abdominal irradiation with 12.5 Gy. This was evident as impaired nutrient absorption was paralleled by reduced body weight recovery. Mechanistically, significant shifts in the gut ecology, evident as decreased microbiome diversity, and substantially increased bacterial species that belong to the genus Bacteroides triggered proinflammatory responses. The latter were evident as increases in circulating neutrophils with corresponding decreases in lymphocytes and associated molecular alterations, exhibited as increases in mRNA levels of proinflammatory genes Icam1, Casp1, Cd14, and Myd88. Altered expression of the tight junction-related proteins Cldn2, Cldn5, and Cldn6 indicated a possible increase in intestinal permeability and bacterial translocation to the liver. CONCLUSIONS We report that dietary supplementation with methionine exacerbates gastrointestinal syndrome in locally irradiated mice. This study demonstrates the important roles registered dieticians should play in clinical oncology and further underlines the necessity of preclinical and clinical investigations in the role of diet in the success of cancer therapy.
Collapse
Affiliation(s)
- Laura E Ewing
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas; Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Charles M Skinner
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas; Center for Dietary Supplements Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Rupak Pathak
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Eric U Yee
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Kim Krager
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Patrick C Gurley
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Stepan Melnyk
- Arkansas Children's Research Institute, Little Rock, Arkansas
| | - Marjan Boerma
- Center for Dietary Supplements Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas; Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Martin Hauer-Jensen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas; Center for Dietary Supplements Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
| |
Collapse
|
40
|
Wu H, Chen QY, Wang WZ, Chu S, Liu XX, Liu YJ, Tan C, Zhu F, Deng SJ, Dong YL, Yu T, Gao F, He HX, Leng XY, Fan H. Compound sophorae decoction enhances intestinal barrier function of dextran sodium sulfate induced colitis via regulating notch signaling pathway in mice. Biomed Pharmacother 2021; 133:110937. [PMID: 33217689 DOI: 10.1016/j.biopha.2020.110937] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/18/2020] [Accepted: 10/25/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Compound sophorae decoction (CSD), a Chinese Herbal decoction, is frequently clinically prescribed for patients suffered from ulcerative colitis (UC) characterized by bloody diarrhea. Yet, the underlying mechanism about how this formulae works is remain elusive. METHODS In the present study, the experimental colitis in C57BL/6 J mice was induced by oral administration of standard diets containing 3% dextran sodium sulfate (DSS), and CSD was given orally for treatment at the same time. The clinical symptoms including stool and body weight were recorded each day, and colon length and its histopathological changes were observed. Apoptosis of colonic epithelium was studied by detecting protein expression of cleaved caspase-3, and cell proliferation by Ki-67 immunohistochemistry. Tight junction complex like ZO-1 and occludin were also determined by transmission electron microscope and immunofluorescence. The concentration of FITC-dextran 4000 was measured to evaluate intestinal barrier permeability and possible signaling pathway was investigated. Mucin2 (MUC2) and notch pathway were tested through western blot. The M1/M2 ratio in spleen and mesenteric lymph nodes were detected by flow cytometry. And the mRNA levels of iNOS and Arg1 were examined by qRT-PCR. RESULTS CSD could significantly alleviate the clinical manifestations and pathological damage. Body weight loss and DAI score of mice with colitis were improved and shortening of colon was inhibited. The administration of CSD was able to reduce apoptotic epithelial cells and facilitate epithelial cell regeneration. Increased intestinal permeability was reduced in DSS-induced colitis mice. In addition, CSD treatment obviously up-regulated the expression of ZO-1 and occludin and the secretion of MUC2, regulated notch signaling, and decreased the ratio of M1/M2. CONCLUSIONS These data together suggest that CSD can effectively mitigate intestinal inflammation, promote phenotypic change in macrophage phenotype and enhance colonic mucosal barrier function by, at least in part, regulating notch signaling in mice affected by DSS-induced colitis.
Collapse
Affiliation(s)
- Hui Wu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qian-Yun Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wen-Zhu Wang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Si Chu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xing-Xing Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu-Jin Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chen Tan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feng Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuang-Jiao Deng
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ya-Lan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ting Yu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fei Gao
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hong-Xia He
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xue-Yuan Leng
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
41
|
Tu J, Xie Y, Xu K, Qu L, Lin X, Ke C, Yang D, Cao G, Zhou Z, Liu Y. Treatment of Spleen-Deficiency Syndrome With Atractyloside A From Bran-Processed Atractylodes lancea by Protection of the Intestinal Mucosal Barrier. Front Pharmacol 2020; 11:583160. [PMID: 33658928 PMCID: PMC7919195 DOI: 10.3389/fphar.2020.583160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Atractylodes lancea (Thunb.) DC. (AL) is used in traditional Chinese medicine for the treatment of spleen-deficiency syndrome (SDS). Bran-processed Atractylodes lancea (BAL) has been found to be more effective than unprocessed AL. However, the compound in BAL active against SDS remains unclear. The pharmacological efficacy of BAL and its mechanism of action against SDS were investigated by HPLC-ELSD. Candidate compound AA (atractyloside A) in AL and BAL extracts was identified by HPLC-MS analysis. AA was tested in a rat model of SDS in which body weight, gastric residual rate, and intestinal propulsion were measured, and motilin (MTL), gastrin (GAS), and c-Kit were quantified by enzyme-linked immunosorbent assay. Potential targets and associated pathways were identified based on network pharmacology analysis. mRNA expression levels were measured by qRT-PCR and protein expression levels were measured by Western blot analysis and immunohistochemistry. AA increased body weight, intestinal propulsion, MTL, GAS, and c-Kit levels, while decreasing gastric residual volume and intestinal tissue damage, as same as Epidermal Growth Factor Receptor and Proliferating Cell Nuclear Antigen levels. Seventy-one potential pharmacologic targets were identified. Analysis of protein interaction, Gene Ontology (GO) functional analysis, pathway enrichment analysis, and docking and molecular interactions highlighted MAPK signaling as the potential signal transduction pathway. Validation experiments indicated that treatment with AA increased MTL, GAS, ZO-1, and OCLN levels, while reducing AQP1, AQP3, and FGF2 levels. In addition, phosphorylation of p38 and myosin light-chain kinase (MLCK) expression were inhibited. AA improved gastrointestinal function by protecting the intestinal mucosal barrier via inhibition of the p38 MAPK pathway. The results have clinical implications for the therapy of SDS.
Collapse
Affiliation(s)
- Jiyuan Tu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Research Center of Chinese Materia Medica Processing Engineering and Technology, Hubei University of Chinese Medicine, Wuhan, China
| | - Ying Xie
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Kang Xu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Linghang Qu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiong Lin
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Chang Ke
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Desen Yang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Guosheng Cao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhongshi Zhou
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yanju Liu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Research Center of Chinese Materia Medica Processing Engineering and Technology, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
42
|
Efficacy of theobromine in preventing intestinal CaCo-2 cell damage induced by oxysterols. Arch Biochem Biophys 2020; 694:108591. [DOI: 10.1016/j.abb.2020.108591] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022]
|
43
|
Clinical Significance of CD147 in Children with Inflammatory Bowel Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7647181. [PMID: 33015178 PMCID: PMC7516708 DOI: 10.1155/2020/7647181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/24/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Abstract
Background CD147/basigin (Bsg), a transmembrane glycoprotein, activates matrix metalloproteinases and promotes inflammation. Objective The aim of this study is to explore the clinical significance of CD147 in the pathogenesis of inflammatory bowel disease (IBD). Results In addition to monocytes, the clinical analysis showed that there is no significance obtained in leucocyte, neutrophil, eosinophil, basophil, and erythrocyte between IBD and controls. Immunohistochemistry analysis showed that CD147 was increased in intestinal tissue of patients with active IBD compared to that in the control group. What is more, CD147 is involved in intestinal barrier function and intestinal inflammation, which was attributed to the fact that it has an influence on MCT4 expression, a regulator of intestinal barrier function and intestinal inflammation, in HT-29 and CaCO2 cells. Most importantly, serum level of CD147 content is higher in active IBD than that in inactive IBD or healthy control, which could be a biomarker of IBD. Conclusion The data suggested that increased CD147 level could be a biomarker of IBD in children.
Collapse
|
44
|
Lechuga S, Ivanov AI. Actin cytoskeleton dynamics during mucosal inflammation: a view from broken epithelial barriers. CURRENT OPINION IN PHYSIOLOGY 2020; 19:10-16. [PMID: 32728653 DOI: 10.1016/j.cophys.2020.06.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Disruption of epithelial barriers is a key pathogenic event of mucosal inflammation: It ignites the exaggerated immune response and accelerates tissue damage. Loss of barrier function is attributed to the abnormal structure and permeability of epithelial adherens junctions and tight junctions, driven by inflammatory stimuli through a variety of cellular mechanisms. This review focuses on roles of the actin cytoskeleton in mediating disruption of epithelial junctions and creation of leaky barriers in inflamed tissues. We summarize recent advances in understanding the role of cytoskeletal remodeling driven by actin filament turnover and myosin II-dependent contractility in the homeostatic regulation of epithelial barriers and barrier disruption during mucosal inflammation. We also discuss how the altered biochemical and physical environment of the inflamed tissues could affect the dynamics of the junction-associated actomyosin cytoskeleton, leading to the disruption of epithelial barriers.
Collapse
Affiliation(s)
- Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Andrei I Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute of Cleveland Clinic Foundation, Cleveland, OH 44195
| |
Collapse
|
45
|
O’Sullivan S, Wang J, Radomski MW, Gilmer JF, Medina C. Novel Barbiturate-Nitrate Compounds Inhibit the Upregulation of Matrix Metalloproteinase-9 Gene Expression in Intestinal Inflammation through a cGMP-Mediated Pathway. Biomolecules 2020; 10:biom10050808. [PMID: 32466182 PMCID: PMC7277209 DOI: 10.3390/biom10050808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinase-9 is upregulated in inflammatory bowel disease. Barbiturate nitrate hybrid compounds have been designed to inhibit MMP secretion and enzyme activity. In this study, we investigated the mechanism of action of barbiturate-nitrate hybrid compounds and their component parts using models of intestinal inflammation in vitro. Cytokine-stimulated Caco-2 cells were used in all in vitro experiments. The NO donors SNAP and DETA-NONOate were used to study the effect of NO on MMP-9 mRNA. Mechanistic elucidation was carried out using the soluble guanylate cyclase (sGC) inhibitor, ODQ, and the cGMP analogue, 8-Bromo-cGMP. Further experiments were carried out to elucidate the role of NF-κB. NO donors exerted an inhibitory effect on MMP-9 mRNA in cytokine-stimulated cells. While the non-nitrate barbiturates had a limited effect on MMP-9 expression, the hybrid compounds inhibited MMP-9 expression through its NO-mimetic properties. No effect could be observed on mRNA for MMP-1 or MMP-2. The sGC inhibitior, ODQ, abolished the nitrate-barbiturate inhibition of MMP-9 gene expression, an effect which was reversed by 8-Br-cGMP. This study shows that the barbiturate scaffold is suitable for hybrid design as an MMP-9 inhibitor in cytokine-stimulated Caco-2 cells. The inhibition of MMP-9 levels was largely mediated through a reduction in its mRNA by a sGC/cGMP pathway mediated mechanism.
Collapse
|
46
|
Braun DJ, Bachstetter AD, Sudduth TL, Wilcock DM, Watterson DM, Van Eldik LJ. Genetic knockout of myosin light chain kinase (MLCK210) prevents cerebral microhemorrhages and attenuates neuroinflammation in a mouse model of vascular cognitive impairment and dementia. GeroScience 2019; 41:671-679. [PMID: 31104189 PMCID: PMC6885026 DOI: 10.1007/s11357-019-00072-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022] Open
Abstract
The blood-brain barrier (BBB) is critical in maintenance of brain homeostasis, and loss of its functional integrity is a key feature across a broad range of neurological insults. This includes both acute injuries such as traumatic brain injury and stroke, as well as more chronic pathologies associated with aging, such as vascular cognitive impairment and dementia (VCID). A specific form of myosin light chain kinase (MLCK210) is a major regulator of barrier integrity in general, including the BBB. Studies have demonstrated the potential of MLCK210 as a therapeutic target for peripheral disorders involving tissue barrier dysfunction, but less is known about its potential as a target for chronic neurologic disorders. We report here that genetic knockout (KO) of MLCK210 protects against cerebral microhemorrhages and neuroinflammation induced by chronic dietary hyperhomocysteinemia. Overall, the results are consistent with an accumulating body of evidence supporting MLCK210 as a potential therapeutic target for tissue barrier dysfunction and specifically implicate it in BBB dysfunction and neuroinflammation in a model of VCID.
Collapse
Affiliation(s)
- David J Braun
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA
| | - Adam D Bachstetter
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Tiffany L Sudduth
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA
- Department of Physiology, University of Kentucky, Lexington, KY, 40536, USA
| | - Donna M Wilcock
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA
- Department of Physiology, University of Kentucky, Lexington, KY, 40536, USA
| | - D Martin Watterson
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA.
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA.
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|