1
|
Hosie S, Abo-Shaban T, Mou K, Balasuriya GK, Mohsenipour M, Alamoudi MU, Filippone RT, Belz GT, Franks AE, Bornstein JC, Nurgali K, Hill-Yardin EL. Faster Gastrointestinal Transit, Reduced Small Intestinal Smooth Muscle Tone and Dysmotility in the Nlgn3R451C Mouse Model of Autism. Int J Mol Sci 2024; 25:832. [PMID: 38255906 PMCID: PMC10815490 DOI: 10.3390/ijms25020832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/18/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Individuals with autism often experience gastrointestinal issues but the cause is unknown. Many gene mutations that modify neuronal synapse function are associated with autism and therefore may impact the enteric nervous system that regulates gastrointestinal function. A missense mutation in the Nlgn3 gene encoding the cell adhesion protein Neuroligin-3 was identified in two brothers with autism who both experienced severe gastrointestinal dysfunction. Mice expressing this mutation (Nlgn3R451C mice) are a well-studied preclinical model of autism and show autism-relevant characteristics, including impaired social interaction and communication, as well as repetitive behaviour. We previously showed colonic dysmotility in response to GABAergic inhibition and increased myenteric neuronal numbers in the small intestine in Nlgn3R451C mice bred on a mixed genetic background. Here, we show that gut dysfunction is a persistent phenotype of the Nlgn3 R451C mutation in mice backcrossed onto a C57BL/6 background. We report that Nlgn3R451C mice show a 30.9% faster gastrointestinal transit (p = 0.0004) in vivo and have 6% longer small intestines (p = 0.04) compared to wild-types due to a reduction in smooth muscle tone. In Nlgn3R451C mice, we observed a decrease in resting jejunal diameter (proximal jejunum: 10.6% decrease, p = 0.02; mid: 9.8%, p = 0.04; distal: 11.5%, p = 0.009) and neurally regulated dysmotility as well as shorter durations of contractile complexes (mid: 25.6% reduction in duration, p = 0.009; distal: 30.5%, p = 0.004) in the ileum. In Nlgn3R451C mouse colons, short contractions were inhibited to a greater extent (57.2% by the GABAA antagonist, gabazine, compared to 40.6% in wild-type mice (p = 0.007). The inhibition of nitric oxide synthesis decreased the frequency of contractile complexes in the jejunum (WT p = 0.0006, Nlgn3R451C p = 0.002), but not the ileum, in both wild-type and Nlgn3R451C mice. These findings demonstrate that changes in enteric nervous system function contribute to gastrointestinal dysmotility in mice expressing the autism-associated R451C missense mutation in the Neuroligin-3 protein.
Collapse
Affiliation(s)
- Suzanne Hosie
- School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne, VIC 3083, Australia (T.A.-S.)
| | - Tanya Abo-Shaban
- School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne, VIC 3083, Australia (T.A.-S.)
| | - Kevin Mou
- School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne, VIC 3083, Australia (T.A.-S.)
| | - Gayathri K. Balasuriya
- School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne, VIC 3083, Australia (T.A.-S.)
- Graduate School of Medicine, Kobe University, Kobe 657-8501, Japan
| | - Mitra Mohsenipour
- School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne, VIC 3083, Australia (T.A.-S.)
| | - Mohammed U. Alamoudi
- School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne, VIC 3083, Australia (T.A.-S.)
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | | | - Gabrielle T. Belz
- Frazer Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ashley E. Franks
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Life Sciences, La Trobe University, Melbourne, VIC 3083, Australia
| | - Joel C. Bornstein
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3021, Australia
- Department of Medicine Western Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Elisa L. Hill-Yardin
- School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne, VIC 3083, Australia (T.A.-S.)
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
2
|
Kuruppu S, Cheng LK, Nielsen PMF, Gamage TPB, Avci R, Angeli TR, Paskaranandavadivel N. High-Resolution Spatiotemporal Quantification of Intestinal Motility with Free-Form Deformation. IEEE Trans Biomed Eng 2021; 69:2077-2086. [PMID: 34910629 DOI: 10.1109/tbme.2021.3135855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To develop a method to quantify strain fields from in vivo intestinal motility recordings that mitigate accumulation of tracking error. METHODS The deforming geometry of the intestine in video sequences was modeled by a biquadratic B-spline mesh. Green-Lagrange strain fields were computed to quantify the surface deformations from motility. A nonlinear optimization scheme was applied to mitigate the accumulation of tracking error associated with image registration. RESULTS The optimization scheme maintained the RMS strain error under 1% and reduced the rate of strain error by 97% during synthetic tests. The algorithm was applied to map 64 segmental, 12 longitudinal, and 23 propagating circular contractions in the jejunum. Coordinated activity of the two muscle layers could be identified and the strain fields were able to map and quantify the anisotropic contractions of the intestine. Frequency and velocity were also quantified, from which two types of propagating circular contractions were identified: (i) -0:360:04 strain contractions that originated spontaneously and propagated at 31 mm/s in two pigs, and (ii) cyclic propagating contractions of -0:170:02 strain occurred at 11:00:6 cpm and propagated at 164 mm/s in a rabbit. CONCLUSION The algorithm simultaneously mapped the circular, longitudinal activity of the intestine with high spatial resolution and quantified anisotropic contractions and relaxations. SIGNIFICANCE The proposed algorithm can now be used to define the interactions of muscle layers during motility patterns. It can be integrated with high-resolution bioelectrical recordings to investigate the regulatory mechanisms of motility.
Collapse
|
3
|
Parsons SP, Huizinga JD. Nitric Oxide Is Essential for Generating the Minute Rhythm Contraction Pattern in the Small Intestine, Likely via ICC-DMP. Front Neurosci 2021; 14:592664. [PMID: 33488345 PMCID: PMC7817771 DOI: 10.3389/fnins.2020.592664] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/25/2020] [Indexed: 12/16/2022] Open
Abstract
Nitrergic nerves have been proposed to play a critical role in the orchestration of peristaltic activities throughout the gastrointestinal tract. In the present study, we investigated the role of nitric oxide, using spatiotemporal mapping, in peristaltic activity of the whole ex vivo mouse intestine. We identified a propulsive motor pattern in the form of propagating myogenic contractions, that are clustered by the enteric nervous system into a minute rhythm that is dependent on nitric oxide. The cluster formation was abolished by TTX, lidocaine and nitric oxide synthesis inhibition, whereas the myogenic contractions, occurring at the ICC-MP initiated slow wave frequency, remained undisturbed. Cluster formation, inhibited by block of nitric oxide synthesis, was fully restored in a highly regular rhythmic fashion by a constant level of nitric oxide generated by sodium nitroprusside; but the action of sodium nitroprusside was inhibited by lidocaine indicating that it was relying on neural activity, but not rhythmic nitrergic nerve activity. Hence, distention-induced activity of cholinergic nerves and/or a co-factor within nitrergic nerves such as ATP is also a requirement for the minute rhythm. Cluster formation was dependent on distention but was not evoked by a distention reflex. Block of gap junction conductance by carbenoxolone, dose dependently inhibited, and eventually abolished clusters and contraction waves, likely associated, not with inhibition of nitrergic innervation, but by abolishing ICC network synchronization. An intriguing feature of the clusters was the presence of bands of rhythmic inhibitions at 4-8 cycles/min; these inhibitory patches occurred in the presence of tetrodotoxin or lidocaine and hence were not dependent on nitrergic nerves. We propose that the minute rhythm is generated by nitric oxide-induced rhythmic depolarization of the musculature via ICC-DMP.
Collapse
Affiliation(s)
- Sean P. Parsons
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Jan D. Huizinga
- Department of Medicine and School of Biomedical Engineering, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
4
|
Hassan AA, Sleet B, Cousins Z, Keating CD. TRPA1 Channel Activation Inhibits Motor Activity in the Mouse Colon. Front Neurosci 2020; 14:471. [PMID: 32536851 PMCID: PMC7267031 DOI: 10.3389/fnins.2020.00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/16/2020] [Indexed: 11/26/2022] Open
Abstract
There is a growing awareness of the role that TRP channels play in regulating sensory and motor functions in the gastrointestinal tract. In this study we used an in-vitro murine model of colonic peristaltic-like complexes (CPMCs) to evaluate the role of exogenous and endogenous TRPA1 signaling processes in regulating colonic motility. Using in-vitro recordings of intraluminal pressure to monitor the presence of CPMCs in colonic segments we performed a series of experiments on male CD1 mice (2 months of age) and found that CPMC activity was attenuated by TRPA1 agonists. Bath application of the TRPA1 antagonist HC-030031 had no effect upon basal CPMC activity whereas application of the synthetic TRPA1 agonist ASP7663 caused a reversible dose dependent decrease in CPMC frequency that was blocked by HC-030031. Cinnamaldehyde and 4-hydroxy-2-nonenal elicited long lasting decreases in CPMC frequency that were blocked by HC-030031 whereas the decreased CPMC activity invoked by AITC could not be blocked by HC-030031. Our results show that any potential mechanosensory function of TRPA1 doesn’t involve contributing to distension induced colonic motor activity and that a role for TRPA1 in the colon is through regulating motility through exogenous and endogenous agonist induced inhibitory effects.
Collapse
|
5
|
Kumar U, Singh S. Role of Somatostatin in the Regulation of Central and Peripheral Factors of Satiety and Obesity. Int J Mol Sci 2020; 21:ijms21072568. [PMID: 32272767 PMCID: PMC7177963 DOI: 10.3390/ijms21072568] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity is one of the major social and health problems globally and often associated with various other pathological conditions. In addition to unregulated eating behaviour, circulating peptide-mediated hormonal secretion and signaling pathways play a critical role in food intake induced obesity. Amongst the many peptides involved in the regulation of food-seeking behaviour, somatostatin (SST) is the one which plays a determinant role in the complex process of appetite. SST is involved in the regulation of release and secretion of other peptides, neuronal integrity, and hormonal regulation. Based on past and recent studies, SST might serve as a bridge between central and peripheral tissues with a significant impact on obesity-associated with food intake behaviour and energy expenditure. Here, we present a comprehensive review describing the role of SST in the modulation of multiple central and peripheral signaling molecules. In addition, we highlight recent progress and contribution of SST and its receptors in food-seeking behaviour, obesity (orexigenic), and satiety (anorexigenic) associated pathways and mechanism.
Collapse
|
6
|
Costa M, Hibberd TJ, Keightley LJ, Wiklendt L, Arkwright JW, Dinning PG, Brookes SJH, Spencer NJ. Neural motor complexes propagate continuously along the full length of mouse small intestine and colon. Am J Physiol Gastrointest Liver Physiol 2020; 318:G99-G108. [PMID: 31709829 DOI: 10.1152/ajpgi.00185.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cyclical propagating waves of muscle contraction have been recorded in isolated small intestine or colon, referred to here as motor complexes (MCs). Small intestinal and colonic MCs are neurogenic, occur at similar frequencies, and propagate orally or aborally. Whether they can be coordinated between the different gut regions is unclear. Motor behavior of whole length mouse intestines, from duodenum to terminal rectum, was recorded by intraluminal multisensor catheter. Small intestinal MCs were recorded in 27/30 preparations, and colonic MCs were recorded in all preparations (n = 30) with similar frequencies (0.54 ± 0.03 and 0.58 ± 0.02 counts/min, respectively). MCs propagated across the ileo-colonic junction in 10/30 preparations, forming "full intestine" MCs. The cholinesterase inhibitor physostigmine increased the probability of a full intestine MC but had no significant effect on frequency, speed, or direction. Nitric oxide synthesis blockade by Nω-nitro-l-arginine, after physostigmine, increased MC frequency in small intestine only. Hyoscine-resistant MCs were recorded in the colon but not small intestine (n = 5). All MCs were abolished by hexamethonium (n = 18) or tetrodotoxin (n = 2). The enteric neural mechanism required for motor complexes is present along the full length of both the small and large intestine. In some cases, colonic MCs can be initiated in the distal colon and propagate through the ileo-colonic junction, all the way to duodenum. In conclusion, the ileo-colonic junction provides functional neural continuity for propagating motor activity that originates in the small or large intestine.NEW & NOTEWORTHY Intraluminal manometric recordings revealed motor complexes can propagate antegradely or retrogradely across the ileo-colonic junction, spanning the entire small and large intestines. The fundamental enteric neural mechanism(s) underlying cyclic motor complexes exists throughout the length of the small and large intestine.
Collapse
Affiliation(s)
- Marcello Costa
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Timothy James Hibberd
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Lauren J Keightley
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Lukasz Wiklendt
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - John W Arkwright
- Computer Science, Engineering and Mathematics, Flinders University, Adelaide, South Australia, Australia
| | - Philip G Dinning
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia.,Department of Gastroenterology and Surgery, Flinders Medical Centre, Flinders University, Adelaide, South Australia, Australia
| | - Simon J H Brookes
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Nick J Spencer
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
7
|
Abstract
Gastric acid secretion (i) facilitates digestion of protein as well as absorption of micronutrients and certain medications, (ii) kills ingested microorganisms, including Helicobacter pylori, and (iii) prevents bacterial overgrowth and enteric infection. The principal regulators of acid secretion are the gastric peptides gastrin and somatostatin. Gastrin, the major hormonal stimulant for acid secretion, is synthesized in pyloric mucosal G cells as a 101-amino acid precursor (preprogastrin) that is processed to yield biologically active amidated gastrin-17 and gastrin-34. The C-terminal active site of gastrin (Trp-Met-Asp-Phe-NH2 ) binds to gastrin/CCK2 receptors on parietal and, more importantly, histamine-containing enterochromaffin-like (ECL) cells, located in oxyntic mucosa, to induce acid secretion. Histamine diffuses to the neighboring parietal cells where it binds to histamine H2 -receptors coupled to hydrochloric acid secretion. Gastrin is also a trophic hormone that maintains the integrity of gastric mucosa, induces proliferation of parietal and ECL cells, and is thought to play a role in carcinogenesis. Somatostatin, present in D cells of the gastric pyloric and oxyntic mucosa, is the main inhibitor of acid secretion, particularly during the interdigestive period. Somatostatin exerts a tonic paracrine restraint on gastrin secretion from G cells, histamine secretion from ECL cells, and acid secretion from parietal cells. Removal of this restraint, for example by activation of cholinergic neurons during ingestion of food, initiates and maximizes acid secretion. Knowledge regarding the structure and function of gastrin, somatostatin, and their respective receptors is providing novel avenues to better diagnose and manage acid-peptic disorders and certain cancers. Published 2020. Compr Physiol 10:197-228, 2020.
Collapse
Affiliation(s)
- Mitchell L Schubert
- Division of Gastroenterology, Department of Medicine, Virginia Commonwealth University Health System, Richmond, Virginia, USA.,Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia, USA
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Billing LJ, Larraufie P, Lewis J, Leiter A, Li J, Lam B, Yeo GS, Goldspink DA, Kay RG, Gribble FM, Reimann F. Single cell transcriptomic profiling of large intestinal enteroendocrine cells in mice - Identification of selective stimuli for insulin-like peptide-5 and glucagon-like peptide-1 co-expressing cells. Mol Metab 2019; 29:158-169. [PMID: 31668387 PMCID: PMC6812004 DOI: 10.1016/j.molmet.2019.09.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022] Open
Abstract
Objective Enteroendocrine cells (EECs) of the large intestine, found scattered in the epithelial layer, are known to express different hormones, with at least partial co-expression of different hormones in the same cell. Here we aimed to categorize colonic EECs and to identify possible targets for selective recruitment of hormones. Methods Single cell RNA-sequencing of sorted enteroendocrine cells, using NeuroD1-Cre x Rosa26-EYFP mice, was used to cluster EECs from the colon and rectum according to their transcriptome. G-protein coupled receptors differentially expressed across clusters were identified, and, as a proof of principle, agonists of Agtr1a and Avpr1b were tested as candidate EEC secretagogues in vitro and in vivo. Results EECs from the large intestine separated into 7 clear clusters, 4 expressing higher levels of Tph1 (enzyme required for serotonin (5-HT) synthesis; enterochromaffin cells), 2 enriched for Gcg (encoding glucagon-like peptide-1, GLP-1, L-cells), and the 7th expressing somatostatin (D-cells). Restricted analysis of L-cells identified 4 L-cell sub-clusters, exhibiting differential expression of Gcg, Pyy (Peptide YY), Nts (neurotensin), Insl5 (insulin-like peptide 5), Cck (cholecystokinin), and Sct (secretin). Expression profiles of L- and enterochromaffin cells revealed the clustering to represent gradients along the crypt-surface (cell maturation) and proximal-distal gut axes. Distal colonic/rectal L-cells differentially expressed Agtr1a and the ligand angiotensin II was shown to selectively increase GLP-1 and PYY release in vitro and GLP-1 in vivo. Conclusion EECs in the large intestine exhibit differential expression gradients along the crypt-surface and proximal-distal axes. Distal L-cells can be differentially stimulated by targeting receptors such as Agtr1a. Large intestinal enteroendocrine cells group into subclusters by single cell RNAseq. Enteroendocrine-cell subclusters differ along crypt-surface and longitudinal axes. L-cells differ longitudinally by production of NTS (proximal colon) or INSL5 (rectum). INSL5-positive cells express distinct GPCRs enabling cluster-specific stimulation. Targeted stimulation of INSL5-producing L-cells elevates plasma GLP-1 and PYY in vivo.
Collapse
Affiliation(s)
- Lawrence J Billing
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science (IMS) & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Pierre Larraufie
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science (IMS) & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Jo Lewis
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science (IMS) & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Andrew Leiter
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Joyce Li
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Brian Lam
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science (IMS) & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Giles Sh Yeo
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science (IMS) & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Deborah A Goldspink
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science (IMS) & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Richard G Kay
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science (IMS) & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Fiona M Gribble
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science (IMS) & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom.
| | - Frank Reimann
- University of Cambridge, Wellcome Trust/MRC Institute of Metabolic Science (IMS) & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, United Kingdom.
| |
Collapse
|
9
|
Lentle RG, Hulls CM. Quantifying Patterns of Smooth Muscle Motility in the Gut and Other Organs With New Techniques of Video Spatiotemporal Mapping. Front Physiol 2018; 9:338. [PMID: 29686624 PMCID: PMC5900429 DOI: 10.3389/fphys.2018.00338] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 03/20/2018] [Indexed: 01/12/2023] Open
Abstract
The uses and limitations of the various techniques of video spatiotemporal mapping based on change in diameter (D-type ST maps), change in longitudinal strain rate (L-type ST maps), change in area strain rate (A-type ST maps), and change in luminous intensity of reflected light (I-maps) are described, along with their use in quantifying motility of the wall of hollow structures of smooth muscle such as the gut. Hence ST-methods for determining the size, speed of propagation and frequency of contraction in the wall of gut compartments of differing geometric configurations are discussed. We also discuss the shortcomings and problems that are inherent in the various methods and the use of techniques to avoid or minimize them. This discussion includes, the inability of D-type ST maps to indicate the site of a contraction that does not reduce the diameter of a gut segment, the manipulation of axis [the line of interest (LOI)] of L-maps to determine the true axis of propagation of a contraction, problems with anterior curvature of gut segments and the use of adjunct image analysis techniques that enhance particular features of the maps.
Collapse
Affiliation(s)
- Roger G Lentle
- Physiology Department, Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| | - Corrin M Hulls
- Physiology Department, Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| |
Collapse
|
10
|
Xing YX, Yang L, Kuang HY, Gao XY, Liu HL. Function of obestatin in the digestive system. Nutrition 2017; 34:21-28. [DOI: 10.1016/j.nut.2016.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 04/18/2016] [Accepted: 08/29/2016] [Indexed: 02/07/2023]
|
11
|
Petto C, Gäbel G, Pfannkuche H. Architecture and Chemical Coding of the Inner and Outer Submucous Plexus in the Colon of Piglets. PLoS One 2015; 10:e0133350. [PMID: 26230272 PMCID: PMC4521800 DOI: 10.1371/journal.pone.0133350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 06/26/2015] [Indexed: 01/27/2023] Open
Abstract
In the porcine colon, the submucous plexus is divided into an inner submucous plexus (ISP) on the epithelial side and an outer submucous plexus (OSP) on the circular muscle side. Although both plexuses are probably involved in the regulation of epithelial functions, they might differ in function and neurochemical coding according to their localization. Therefore, we examined expression and co-localization of different neurotransmitters and neuronal markers in both plexuses as well as in neuronal fibres. Immunohistochemical staining was performed on wholemount preparations of ISP and OSP and on cryostat sections. Antibodies against choline acetyltransferase (ChAT), substance P (SP), somatostatin (SOM), neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), neuronal nitric oxide synthase (nNOS) and the pan-neuronal markers Hu C/D and neuron specific enolase (NSE) were used. The ISP contained 1,380 ± 131 ganglia per cm2 and 122 ± 12 neurons per ganglion. In contrast, the OSP showed a wider meshwork (215 ± 33 ganglia per cm2) and smaller ganglia (57 ± 3 neurons per ganglion). In the ISP, 42% of all neurons expressed ChAT. About 66% of ChAT-positive neurons co-localized SP. A small number of ISP neurons expressed SOM. Chemical coding in the OSP was more complex. Besides the ChAT/±SP subpopulation (32% of all neurons), a nNOS-immunoreactive population (31%) was detected. Most nitrergic neurons were only immunoreactive for nNOS; 10% co-localized with VIP. A small subpopulation of OSP neurons was immunoreactive for ChAT/nNOS/±VIP. All types of neurotransmitters found in the ISP or OSP were also detected in neuronal fibres within the mucosa. We suppose that the cholinergic population in the ISP is involved in the control of epithelial functions. Regarding neurochemical coding, the OSP shares some similarities with the myenteric plexus. Because of its location and neurochemical characteristics, the OSP may be involved in controlling both the mucosa and circular muscle.
Collapse
Affiliation(s)
- Carola Petto
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Gotthold Gäbel
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Helga Pfannkuche
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
- * E-mail:
| |
Collapse
|
12
|
Thompson GL, Canals M, Poole DP. Biological redundancy of endogenous GPCR ligands in the gut and the potential for endogenous functional selectivity. Front Pharmacol 2014; 5:262. [PMID: 25506328 PMCID: PMC4246669 DOI: 10.3389/fphar.2014.00262] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/12/2014] [Indexed: 01/27/2023] Open
Abstract
This review focuses on the existence and function of multiple endogenous agonists of the somatostatin and opioid receptors with an emphasis on their expression in the gastrointestinal tract. These agonists generally arise from the proteolytic cleavage of prepropeptides during peptide maturation or from degradation of peptides by extracellular or intracellular endopeptidases. In other examples, endogenous peptide agonists for the same G protein-coupled receptors can be products of distinct genes but contain high sequence homology. This apparent biological redundancy has recently been challenged by the realization that different ligands may engender distinct receptor conformations linked to different intracellular signaling profiles and, as such the existence of distinct ligands may underlie mechanisms to finely tune physiological responses. We propose that further characterization of signaling pathways activated by these endogenous ligands will provide invaluable insight into the mechanisms governing biased agonism. Moreover, these ligands may prove useful in the design of novel therapeutic tools to target distinct signaling pathways, thereby favoring desirable effects and limiting detrimental on-target effects. Finally we will discuss the limitations of this area of research and we will highlight the difficulties that need to be addressed when examining endogenous bias in tissues and in animals.
Collapse
Affiliation(s)
- Georgina L Thompson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences Parkville, VIC, Australia
| | - Meritxell Canals
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences Parkville, VIC, Australia
| | - Daniel P Poole
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences Parkville, VIC, Australia ; Department of Anatomy and Neuroscience, The University of Melbourne Parkville, VIC, Australia
| |
Collapse
|
13
|
Keating C, Ewart L, Grundy L, Valentin JP, Grundy D. Translational potential of a mouse in vitro bioassay in predicting gastrointestinal adverse drug reactions in Phase I clinical trials. Neurogastroenterol Motil 2014; 26:980-9. [PMID: 24813024 PMCID: PMC4207192 DOI: 10.1111/nmo.12349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/28/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Motility-related gastrointestinal (GI) adverse drug reactions (GADRs) such as diarrhea and constipation are a common and deleterious feature associated with drug development. Novel biomarkers of GI function are therefore required to aid decision making on the GI liability of compounds in development. METHODS Fifteen compounds associated with or without clinical GADRs were used to assess the ability of an in vitro colonic motility bioassay to predict motility-related GADRs. Compounds were examined in a blinded fashion for their effects on mouse colonic peristaltic motor complexes in vitro. For each compound concentration-response relationships were determined and the results compared to clinical data. Compounds were also assessed using GI transit measurements obtained using an in vivo rat charcoal meal model. KEY RESULTS Within a clinically relevant dosing range, the in vitro assay identified five true and three false positives, four true and three false negatives, which gave a predictive capacity of 60%. The in vivo assay detected four true and four false positives, four false and three true negatives, giving rise to a predictive capacity for this model of 47%. CONCLUSIONS & INFERENCES Overall these results imply that both assays are poor predictors of GADRs. Further analysis would benefit from a larger compound set, but the data show a clear need for improved models for use in safety pharmacology assessment of GI motility.
Collapse
Affiliation(s)
- C Keating
- Department of Biomedical Sciences, University of SheffieldSheffield, UK
| | - L Ewart
- Department of Safety Pharmacology, Global Safety Assessment, AstraZeneca R&D Alderley ParkMacclesfield, UK
| | - L Grundy
- Department of Biomedical Sciences, University of SheffieldSheffield, UK
| | - JP Valentin
- Department of Safety Pharmacology, Global Safety Assessment, AstraZeneca R&D Alderley ParkMacclesfield, UK
| | - D Grundy
- Department of Biomedical Sciences, University of SheffieldSheffield, UK
| |
Collapse
|
14
|
Tanahashi Y, Waki N, Unno T, Matsuyama H, Iino S, Kitazawa T, Yamada M, Komori S. Roles of M2 and M3 muscarinic receptors in the generation of rhythmic motor activity in mouse small intestine. Neurogastroenterol Motil 2013; 25:e687-97. [PMID: 23889852 DOI: 10.1111/nmo.12194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 06/26/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND The roles of M2 and M3 muscarinic receptor subtypes in the regulation of gut motor activity were investigated. METHODS We simultaneously recorded changes in the intraluminal pressure (IP) and longitudinal tension (LT) in small intestinal segments from M2 or M3 receptor knockout (KO) and wild-type (WT) mice. KEY RESULTS In the WT preparations, luminal distension induced a continuous rhythmic contractile activity that was characterized by synchronous rises in IP and LT, occurring periodically at a constant interval. Tetrodotoxin completely abolished the response, whereas atropine either abolished or attenuated it. In the majority of the M2 KO preparations, however, no rhythmic activity was observed in response to the luminal distention, even though networks of enteric neurons and interstitial cells of Cajal (ICC) seemed to be intact. Where rhythmic activity did occur in M2 KO preparations, it was atropine resistant. In the M3 KO preparations, the IP and LT were synchronously changed by the luminal distention, but the changes occurred at irregular intervals. The W/W(v) mutant preparations, which lack ICC in the myenteric plexus (ICC-MY), showed results similar to those of the M3 KO preparations. In some of the M2 /M3 double-KO preparations, rhythmic activity was not observed, but in the others, an atropine-resistant rhythmicity appeared. CONCLUSIONS & INFERENCES These results suggest that M2 and M3 muscarinic receptors differentially regulate the intestinal motor activity: M2 receptors play an essential role in the generation of rhythmic motor activity, and M3 receptors have a modulatory role in controlling the periodicity of the rhythmic activity together with the ICC-MY.
Collapse
Affiliation(s)
- Y Tanahashi
- Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhao P, Canals M, Murphy JE, Klingler D, Eriksson EM, Pelayo JC, Hardt M, Bunnett NW, Poole DP. Agonist-biased trafficking of somatostatin receptor 2A in enteric neurons. J Biol Chem 2013; 288:25689-25700. [PMID: 23913690 DOI: 10.1074/jbc.m113.496414] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Somatostatin (SST) 14 and SST 28 activate somatostatin 2A receptors (SSTR2A) on enteric neurons to control gut functions. SST analogs are treatments of neuroendocrine and bleeding disorders, cancer, and diarrhea, with gastrointestinal side effects of constipation, abdominal pain, and nausea. How endogenous agonists and drugs differentially regulate neuronal SSTR2A is unexplored. We evaluated SSTR2A trafficking in murine myenteric neurons and neuroendocrine AtT-20 cells by microscopy and determined whether agonist degradation by endosomal endothelin-converting enzyme 1 (ECE-1) controls SSTR2A trafficking and association with β-arrestins, key regulators of receptors. SST-14, SST-28, and peptide analogs (octreotide, lanreotide, and vapreotide) stimulated clathrin- and dynamin-mediated internalization of SSTR2A, which colocalized with ECE-1 in endosomes and the Golgi. After incubation with SST-14, SSTR2A recycled to the plasma membrane, which required active ECE-1 and an intact Golgi. SSTR2A activated by SST-28, octreotide, lanreotide, or vapreotide was retained within the Golgi and did not recycle. Although ECE-1 rapidly degraded SST-14, SST-28 was resistant to degradation, and ECE-1 did not degrade SST analogs. SST-14 and SST-28 induced transient interactions between SSTR2A and β-arrestins that were stabilized by an ECE-1 inhibitor. Octreotide induced sustained SSTR2A/β-arrestin interactions that were not regulated by ECE-1. Thus, when activated by SST-14, SSTR2A internalizes and recycles via the Golgi, which requires ECE-1 degradation of SST-14 and receptor dissociation from β-arrestins. After activation by ECE-1-resistant SST-28 and analogs, SSTR2A remains in endosomes because of sustained β-arrestin interactions. Therapeutic SST analogs are ECE-1-resistant and retain SSTR2A in endosomes, which may explain their long-lasting actions.
Collapse
Affiliation(s)
- Peishen Zhao
- From the Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Meritxell Canals
- From the Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jane E Murphy
- the Department of Surgery, University of California, San Francisco, San Francisco, California 94143
| | - Diana Klingler
- the Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts 02142, and
| | - Emily M Eriksson
- the Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California 94110
| | - Juan-Carlos Pelayo
- the Department of Surgery, University of California, San Francisco, San Francisco, California 94143
| | - Markus Hardt
- the Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, Massachusetts 02142, and
| | - Nigel W Bunnett
- From the Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia,.
| | - Daniel P Poole
- From the Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia,.
| |
Collapse
|
16
|
Zhou H, Gao J, Zou D, Wu W, Li Z. Effect of octreotide on enteric motor neurons in experimental acute necrotizing pancreatitis. PLoS One 2012; 7:e52163. [PMID: 23300603 PMCID: PMC3530548 DOI: 10.1371/journal.pone.0052163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 11/12/2012] [Indexed: 02/07/2023] Open
Abstract
Background/Aims Amelioration of intestinal dysmotility and stasis during the early period of acute necrotizing pancreatitis (ANP) appears to be important to reduce the risks of secondary pancreatic infection. We aimed to characterize the association between the neuropathy of the enteric nervous system and gut dysfunction and to examine the effect of octreotide on motor innervation in the early stage of ANP. Methodology/Principal Findings The rats were randomly divided into eight groups: control+saline; control+octreotide; ANP+saline and ANP+octreotide (24 h, 48 h, 72 h). The spontaneous activity of ileal segments and the response to ACh, l-NNA were recorded. The alterations of myenteric neuronal nitric oxide synthase (nNOS), choline acetyltransferase (CHAT), PGP9.5 and somatostatin receptor 2 (SSTR2) immunoreactive cells were evaluated by immunofluorescence and the protein expression of nNOS and CHAT were evaluated by western blot. We found the amplitude of spontaneous contractions at 48 h and the response to ACh at 24 h declined in the ANP+saline rats. A higher contractile response to both ACh and to l-NNA was observed in the ANP+octreotide group, compared with the ANP+saline rats at 24 h. A significant reduction in the nNOS and cholinergic neurons was observed in ANP+saline rats at the three time points. However, this reduction was greatly ameliorated in the presence of octreotide at 24 h and 48 h. The protein expression of CHAT neurons at 24 h and the nNOS neurons at 48 h in the ANP+octreotide rats was much higher than the ANP+saline rats. Conclusion The pathogenesis of ileus in the early stage of ANP may be related to the neuropathy of the enteric nervous system. Octreotide may reduce the severity of ileus by lessening the damage to enteric motor innervation.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Gastroenterology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Division of Gastroenterology, Department of Internal Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jun Gao
- Division of Gastroenterology, Department of Internal Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Duowu Zou
- Division of Gastroenterology, Department of Internal Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wenbin Wu
- Laboratory of Stress Research, Department of Internal Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhaoshen Li
- Division of Gastroenterology, Department of Internal Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
- * E-mail:
| |
Collapse
|
17
|
Octreotide ameliorates intestinal dysmotility by interstitial cells of Cajal protection in a rat acute necrotizing pancreatitis model. Pancreas 2011; 40:1226-33. [PMID: 21775919 DOI: 10.1097/mpa.0b013e318220afab] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Intestinal motility is impaired in acute necrotizing pancreatitis (ANP). The aim of present study was to investigate the effects of octreotide on the small intestinal motor function during experimentally induced ANP. METHODS L-Ornithine was intraperitoneally injected to induce ANP. Octreotide was administrated subcutaneously every 8 hours. The small intestine migrating myoelectrical complexes and slow waves in vivo were recorded before and after (24, 48, and 72 hours) ANP induction. The morphological alterations of interstitial cells of Cajal (ICCs) in deep muscular plexus were evaluated by immunohistochemistry and Western blots. RESULTS Disturbed migrating myoelectrical complex cycle length and decreased dominant frequency of slow waves exacerbated gradually with time. The bolus applications of octreotide per 8 hours attenuated these functional abnormalities. The result of morphological study suggested that octreotide might ameliorate the damage of ICCs at 48 and 72 hours after ANP induction. Decreased expression of c-Kit protein at 72 hours was also attenuated by octreotide. CONCLUSIONS The pathogenesis of the ileus in ANP may be related to the sustained deficiencies in ICCs. Octreotide may ameliorate the severity of ileus by minimizing the injury of ICCs.
Collapse
|
18
|
Gunawardene AR, Corfe BM, Staton CA. Classification and functions of enteroendocrine cells of the lower gastrointestinal tract. Int J Exp Pathol 2011; 92:219-31. [PMID: 21518048 DOI: 10.1111/j.1365-2613.2011.00767.x] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
With over thirty different hormones identified as being produced in the gastrointestinal (GI) tract, the gut has been described as 'the largest endocrine organ in the body' (Ann. Oncol., 12, 2003, S63). The classification of these hormones and the cells that produce them, the enteroendocrine cells (EECs), has provided the foundation for digestive physiology. Furthermore, alterations in the composition and function of EEC may influence digestive physiology and thereby associate with GI pathologies. Whilst there is a rapidly increasing body of data on the role and function of EEC in the upper GI tract, there is a less clear-cut understanding of the function of EEC in the lower GI. Nonetheless, their presence and diversity are indicative of a role. This review focuses on the EECs of the lower GI where new evidence also suggests a possible relationship with the development and progression of primary adenocarcinoma.
Collapse
Affiliation(s)
- Ashok R Gunawardene
- Department of Oncology, The Medical School, University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|
19
|
Fung C, Ellis M, Bornstein JC. Luminal Cholera Toxin Alters Motility in Isolated Guinea-Pig Jejunum via a Pathway Independent of 5-HT(3) Receptors. Front Neurosci 2010; 4:162. [PMID: 21048896 PMCID: PMC2967348 DOI: 10.3389/fnins.2010.00162] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Accepted: 08/16/2010] [Indexed: 12/17/2022] Open
Abstract
Cholera toxin (CT) is well established to produce diarrhea by producing hyperactivity of the enteric neural circuits that regulate water and electrolyte secretion. Its effects on intestinal motor patterns are less well understood. We examined the effects of luminal CT on motor activity of guinea-pig jejunum in vitro. Segments of jejunum were cannulated at either end and mounted horizontally. Their contractile activity was video-imaged and the recordings were used to construct spatiotemporal maps of contractile activity with CT (1.25 or 12.5 μg/ml) in the lumen. Both concentrations of CT induced propulsive motor activity in jejunal segments. The effect of 1.25 μg/ml CT was markedly enhanced by co-incubation with granisetron (5-HT3 antagonist, 1 μM), which prevents the hypersecretion induced by CT. The increased propulsive activity was not accompanied by increased segmentation and occurred very early after exposure to CT in the presence of granisetron. Luminal CT also reduced the pressure threshold for saline distension evoked propulsive reflexes, an effect resistant to granisetron. In contrast, CT prevented the induction of segmenting contractions by luminal decanoic acid, so its effects on propulsive and segmenting contractile activity are distinctly different. Thus, in addition to producing hypersecretion, CT excites propulsive motor activity with an entirely different time course and pharmacology, but inhibits nutrient-induced segmentation. This suggests that CT excites more than one enteric neural circuit and that propulsive and segmenting motor patterns are differentially regulated.
Collapse
Affiliation(s)
- Candice Fung
- Department of Physiology, University of Melbourne Parkville, VIC, Australia
| | | | | |
Collapse
|
20
|
Wang B, Mao YK, Diorio C, Pasyk M, Wu RY, Bienenstock J, Kunze WA. Luminal administration ex vivo of a live Lactobacillus species moderates mouse jejunal motility within minutes. FASEB J 2010; 24:4078-88. [PMID: 20519636 DOI: 10.1096/fj.09-153841] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gut commensals modulate host immune, endocrine, and metabolic functions. They also affect peripheral and central neural reflexes and function. We have previously shown that daily ingestion of Lactobacillus reuteri (LR) for 9 d inhibits the pseudoaffective cardiac response and spinal single-fiber discharge evoked by visceral distension, and decreases intestinal motility and myenteric AH cell slow afterhyperpolarization (sAHP) by inhibiting a Ca-activated K (IK(Ca)) channel. We tested whether luminal LR could acutely decrease motility in an ex vivo perfusion model of naive Balb/c jejunum. Live LR dose dependently decreased motor complex pressure wave amplitudes with 9- to 16-min onset latency and an IC(50) of 5 × 10(7) cells/ml Krebs. Heat-killed LR or another live commensal, Lactobacillus salivarius, were without effect. The IK(Ca) channel blocker TRAM-34, but neither the opener (DCEBIO) nor the hyperpolarization-activated cationic channel inhibitor ZD7288 (5 μM) (or TTX 1 μM), mimicked the LR effect on motility acutely ex vivo. We provide evidence for a rapid, strain-specific, dose-dependent action of a live Lactobacillus on small intestinal motility reflexes that recapitulates the long-term effects of LR ingestion. These observations may be useful as a first step to unraveling the pathways involved in bacteria to the nervous system communication.
Collapse
Affiliation(s)
- Bingxian Wang
- The McMaster Brain-Body Institutes, St Joseph's Healthcare, 50 Charlton Ave. East, Hamilton, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
21
|
Roberts RR, Ellis M, Gwynne RM, Bergner AJ, Lewis MD, Beckett EA, Bornstein JC, Young HM. The first intestinal motility patterns in fetal mice are not mediated by neurons or interstitial cells of Cajal. J Physiol 2010; 588:1153-69. [PMID: 20142273 DOI: 10.1113/jphysiol.2009.185421] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In mature animals, neurons and interstitial cells of Cajal (ICC) are essential for organized intestinal motility. We investigated motility patterns, and the roles of neurons and myenteric ICC (ICC-MP), in the duodenum and colon of developing mice in vitro. Spatiotemporal mapping revealed regular contractions that propagated in both directions from embryonic day (E)13.5 in the duodenum and E14.5 in the colon. The propagating contractions, which we termed ripples, were unaffected by tetrodotoxin and were present in the intestine of embryonic Ret null mutant mice, which lack enteric neurons. Neurally mediated motility patterns were first observed in the duodenum at E18.5. To examine the possible role of ICC-MP, three approaches were used. First, intracellular recordings from the circular muscle of the duodenum did not detect slow wave activity at E16.5, but regular slow waves were observed in some preparations of E18.5 duodenum. Second, spatiotemporal mapping revealed ripples in the duodenum of E13.5 and E16.5 W/W(v) embryos, which lack KIT+ ICC-MP and slow waves. Third, KIT-immunoreactive cells with the morphology of ICC-MP were first observed at E18.5. Hence, ripples do not appear to be mediated by ICC-MP and must be myogenic. Ripples in the duodenum and colon were abolished by cobalt chloride (1 mm). The L-type Ca(2+) channel antagonist nicardipine (2.5 microm) abolished ripples in the duodenum and reduced their frequency and size in the colon. Our findings demonstrate that prominent propagating contractions (ripples) are present in the duodenum and colon of fetal mice. Ripples are not mediated by neurons or ICC-MP, but entry of extracellular Ca(2+) through L-type Ca(2+) channels is essential. Thus, during development of the intestine, the first motor patterns to develop are myogenic.
Collapse
Affiliation(s)
- Rachael R Roberts
- Department of Physiology, University of Melbourne, 3010, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Gonkowski S, Całka J. Changes in the somatostatin (SOM)-like immunoreactivity within nervous structures of the porcine descending colon under various pathological factors. Exp Mol Pathol 2010; 88:416-23. [PMID: 20138863 DOI: 10.1016/j.yexmp.2010.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Revised: 01/27/2010] [Accepted: 01/29/2010] [Indexed: 10/19/2022]
Abstract
This study reports on changes in the somatostatin-like immunoreactive (SOM-LI) nerve structures of the enteric nervous system (ENS) in the porcine descending colon, caused by chemically driven inflammation, proliferative enteropathy (PE), which is a "natural" inflammation with proliferative changes and nerve injury (axotomy). The distribution pattern of SOM-LI structures was studied using the immunofluorescence technique in the circular muscle layer, the myenteric (MP), outer submucous (OSP) and inner submucous plexuses (ISP) and also in the mucosal layer. Under physiological conditions SOM-LI perikarya have been shown to constitute 1.97+/-0.36%, 2.06+/-0.33% and 4.23+/-0.40% in the MP, OSP and ISP, respectively. Changes in SOM-immunoreactivity depended on the pathological factor and the part of the ENS studied. Numbers of the SOM-LI perikarya amounted 1.81+/-0.30, 1.97+/-0.24 and 11.15+/-0.95 during chemically induced colitis and 3.21+/-0.37%, 4.33+/-0.33% and 4.42+/-0.32% after axotomy in MP, OSP and ISP, respectively. Moreover during PE SOM-positive cell bodies were not observed at all in MP, whereas within OSP and ISP the number of SOM-LI perikarya amounted to 3.34+/-0.36 and 10.92+/-059, respectively. All processes studied resulted in a decrease in the number of SOM-LI nerve fibers in the mucosal layer, whereas within the circular muscle layer chemically induced inflammation and axotomy caused an increase in the number of the SOM-LI nerve fibers contrary to PE, which reduced the number of such fibers. The obtained results suggest that SOM-LI nerve structures of the ENS may participate in various pathological states within the porcine descending colon and their functions probably depend on the type of pathological factor.
Collapse
Affiliation(s)
- Sławomir Gonkowski
- Division of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland.
| | | |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Somatostatin influences motility, secretion, and absorption and often has in vivo a modulating, indirect effect on target cells in the gastrointestinal tract. Knowledge on tissue-specific expression of the five somatostatin receptors (SSTRs), their capacities for internalization and downregulation, their subtype-specific intracellular messengers, and the possibility of forming functionally distinct homodimers or heterodimers, has further complicated the actual in-vivo mechanism of action of somatostatin. This review reports recent in-vivo and in-vitro studies on somatostatin effects on the gastrointestinal tract and pancreas, most of them using a new engineered animal model able to define specific roles of somatostatin and/or its receptor subtypes. RECENT FINDINGS SSTR2 knockout mice showed normal circulating gastrin and unchanged acid output, suggesting a high degree of plasticity behind gastric acid secretion. Intestinal inflammation significantly increased somatostatin mRNA in SSTR2 null compared to wild type suggesting that somatostatin mediates inflammation also in SSTR2 null mice. In pancreatic islets of SSTR1-5 null mice no variations of islet size, cellular organization or glucagon or insulin content was shown when compared with null SSTRs and control mice. SUMMARY Although none of the recent findings produced on somatostatin seem ready to be considered for clinical application, recent developments of animal models such as SSTR knockout mice have highlighted promising results to better understand the direct and indirect effects of somatostatin on gastrointestinal tract functions.
Collapse
Affiliation(s)
- Vito Domenico Corleto
- Digestive and Liver Disease, II School of Medicine, University La Sapienza, Rome, Italy.
| |
Collapse
|
24
|
Van Op den Bosch J, Torfs P, De Winter BY, De Man JG, Pelckmans PA, Van Marck E, Grundy D, Van Nassauw L, Timmermans JP. Effect of genetic SSTR4 ablation on inflammatory peptide and receptor expression in the non-inflamed and inflamed murine intestine. J Cell Mol Med 2009; 13:3283-95. [PMID: 19426160 PMCID: PMC4516485 DOI: 10.1111/j.1582-4934.2009.00760.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The recently suggested pivotal role of somatostatin (SOM) receptor 4 (SSTR4) in inflammation and nociception in several non-intestinal organs and in gastrointestinal (GI) physiology, necessitates exploration of the role of SSTR4 in GI pathophysiology. Therefore, the role of SSTR4 in GI activity was explored by investigating the effects of SSTR4 deficiency on intestinal motility, smooth muscle contractility and on the expression of SSTRs and neuropeptides in the healthy and Schistosoma mansoni-infected murine small intestine. Functional experiments revealed no differences in intestinal motility or smooth muscle cell contractility between wild-type and SSTR4 knockout (SSTR4–/–) mice in physiological conditions. As revealed by multiple immunofluorescent labellings, RT-PCR and quantitative real time RT-PCR (qPCR), genetic deficiency of SSTR4 considerably altered the expression of SOM and SSTRs in non-inflamed and inflamed conditions, affecting both extrinsic and intrinsic components of the intestinal innervation, along with SSTR expression in several non-neuronal cell types. Moreover, substance P and calcitonin gene-related peptide expression were significantly elevated in SSTR4–/– mice, confirming the modulatory role of SSTR4 on intestinal pro-inflammatory neuropeptide expression. These data suggest that SSTR4 plays a previously unexpected modulatory role in the regulation of intestinal SSTR expression. Moreover, in addition to the recently described inhibitory effects of SSTR4 on the neuronal release of pro-inflammatory peptides, SSTR4 appears also to be involved in the neuronal expression of both pro- and anti-inflammatory peptides in the murine small intestine.
Collapse
Affiliation(s)
- Joeri Van Op den Bosch
- Laboratory of Cell Biology & Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Van Op den Bosch J, Adriaensen D, Van Nassauw L, Timmermans JP. The role(s) of somatostatin, structurally related peptides and somatostatin receptors in the gastrointestinal tract: a review. ACTA ACUST UNITED AC 2009; 156:1-8. [PMID: 19362110 DOI: 10.1016/j.regpep.2009.04.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 04/05/2009] [Indexed: 12/19/2022]
Abstract
Extensive functional and morphological research has demonstrated the pivotal role of somatostatin (SOM) in the regulation of a wide variety of gastrointestinal activities. In addition to its profound inhibitory effects on gastrointestinal motility and exocrine and endocrine secretion processes along the entire gastrointestinal tract, SOM modulates several organ-specific activities. In contrast to these well-known SOM-dependent effects, knowledge on the SOM receptors (SSTR) involved in these effects is much less conclusive. Experimental data on the identities of the SSTRs, although species- and tissue-dependent, point towards the involvement of multiple receptor subtypes in the vast majority of gastrointestinal SOM-mediated effects. Recent evidence demonstrating the role of SOM in intestinal pathologies has extended the interest of gastrointestinal research in this peptide even further. More specifically, SOM is supposed to suppress intestinal inflammatory responses by interfering with the extensive bidirectional communication between mucosal mast cells and neurons. This way, SOM not only acts as a powerful inhibitor of the inflammatory cascade at the site of inflammation, but exerts a profound antinociceptive effect through the modulation of extrinsic afferent nerve fibres. The combination of these physiological and pathological activities opens up new opportunities to explore the potential of stable SOM analogues in the treatment of GI inflammatory pathologies.
Collapse
Affiliation(s)
- Joeri Van Op den Bosch
- Laboratory of Cell Biology & Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | | | | | | |
Collapse
|
26
|
Neal KB, Parry LJ, Bornstein JC. Strain-specific genetics, anatomy and function of enteric neural serotonergic pathways in inbred mice. J Physiol 2008; 587:567-86. [PMID: 19064621 DOI: 10.1113/jphysiol.2008.160416] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Serotonin (5-HT) powerfully affects small intestinal motility and 5-HT-immunoreactive (IR) neurones are highly conserved between species. 5-HT synthesis in central neurones and gastrointestinal mucosa depends on tissue-specific isoforms of the enzyme tryptophan hydroxylase (TPH). RT-PCR identified strain-specific expression of a polymorphism (1473C/G) of the tph2 gene in longitudinal muscle-myenteric plexus preparations of C57Bl/6 and Balb/c mice. The former expressed the high-activity C allele, the latter the low-activity G allele. Confocal microscopy was used to examine close contacts between 5-HT-IR varicosities and myenteric neurones immunoreactive for neuronal nitric oxide synthase (NOS) or calretinin in these two strains. Significantly more close contacts were identified to NOS- (P < 0.05) and calretinin-IR (P < 0.01) neurones in C57Bl/6 jejunum (NOS 1.6 +/- 0.3, n = 52; calretinin 5.2 +/- 0.4, n = 54), than Balb/c jejunum (NOS 0.9 +/- 0.2, n = 78; calretinin 3.5 +/- 0.3, n = 98). Propagating contractile complexes (PCCs) were identified in the isolated jejunum by constructing spatiotemporal maps from video recordings of cannulated segments in vitro. These clusters of contractions usually arose towards the anal end and propagated orally. Regular PCCs were initiated at intraluminal pressures of 6 cmH(2)O, and abolished by tetrodotoxin (1 microm). Jejunal PCCs from C57Bl/6 mice were suppressed by a combination of granisetron (1 microm, 5-HT(3) antagonist) and SB207266 (10 nm, 5-HT(4) antagonist), but PCCs from Balb/c mice were unaffected. There were, however, no strain-specific differences in sensitivity of longitudinal muscle contractions to exogenous 5-HT or blockade of 5-HT(3) and 5-HT(4) receptors. These data associate a genetic difference with significant structural and functional consequences for enteric neural serotonergic pathways in the jejunum.
Collapse
Affiliation(s)
- Kathleen B Neal
- Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia.
| | | | | |
Collapse
|
27
|
Zeyda T, Hochgeschwender U. Null mutant mouse models of somatostatin and cortistatin, and their receptors. Mol Cell Endocrinol 2008; 286:18-25. [PMID: 18206294 DOI: 10.1016/j.mce.2007.11.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 08/25/2007] [Accepted: 11/28/2007] [Indexed: 01/08/2023]
Abstract
Somatostatin (somatotropin release inhibitory factor, SRIF) and the related cortistatin (CST) are multifunctional peptide molecules attributed with neurohormone, neurotransmitter/modulator, and autocrine/paracrine actions. The physiological responses of SRIF and CST are mediated by five widely distributed G protein-coupled receptors (sst1-5) which have been implicated in regulating numerous biological processes. Much of the information on the effects of somatostatin has been gained through pharmacological studies with analogs and antagonists. The possibility of targeted mutagenesis in the mouse has resulted, over the last 10 years, in the generation of mouse models which genetically lack somatostatin ligands or receptors. We will review here the mouse models generated, the studies undertaken with them, and what has been learned so far.
Collapse
Affiliation(s)
- T Zeyda
- John A. Burns School of Medicine, Honolulu, HI, USA
| | | |
Collapse
|
28
|
Bornstein JC. Purinergic mechanisms in the control of gastrointestinal motility. Purinergic Signal 2007; 4:197-212. [PMID: 18368521 DOI: 10.1007/s11302-007-9081-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 09/06/2007] [Indexed: 02/08/2023] Open
Abstract
For many years, ATP and adenosine have been implicated in movement regulation of the gastrointestinal tract. They act through three major receptor subtypes: adenosine or P1 receptors, P2X receptors and P2Y receptors. Each of these major receptor types can be subdivided into several different classes and is widely distributed amongst various neurons, muscle types, glia and interstitial cells that regulate intestinal functions. Several key roles for the different receptors and their endogenous ligands have been identified in physiological and pharmacological studies. For example, adenosine acting at A(1) receptors appears to inhibit intestinal motility in various pathological conditions. Similarly, ATP acting at P2Y receptors is an important component of inhibitory neuromuscular transmission, acting as a cotransmitter with nitric oxide. ATP acting at P2X and P2Y(1) receptors is important for synaptic transmission in simple descending excitatory and inhibitory reflex pathways. Some P2Y receptor subtypes prefer uridine nucleotides over purine nucleotides. Thus, roles for UTP and UDP as enteric transmitters in place of ATP cannot be excluded. ATP also appears to be important for sensory transduction, especially in chemosensitive pathways that initiate local inhibitory reflexes. Despite this evidence, data are lacking about the roles of either adenosine or ATP in more complex motility patterns such as segmentation or the interdigestive migrating motor complex. Clarification of roles for purinergic transmission in these common, but understudied, motility patterns will depend on the use of subtype-specific antagonists that in some cases have not yet been developed.
Collapse
Affiliation(s)
- J C Bornstein
- Department of Physiology, University of Melbourne, Parkville, VIC, 3010, Australia,
| |
Collapse
|
29
|
Cervia D, Bagnoli P. An update on somatostatin receptor signaling in native systems and new insights on their pathophysiology. Pharmacol Ther 2007; 116:322-41. [PMID: 17719647 DOI: 10.1016/j.pharmthera.2007.06.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 06/28/2007] [Indexed: 12/20/2022]
Abstract
The peptide somatostatin (SRIF) has important physiological effects, mostly inhibitory, which have formed the basis for the clinical use of SRIF compounds. SRIF binding to its 5 guanine nucleotide-binding proteins-coupled receptors leads to the modulation of multiple transduction pathways. However, our current understanding of signaling exerted by receptors endogenously expressed in different cells/tissues reflects a rather complicated picture. On the other hand, the complexity of SRIF receptor signaling in pathologies, including pituitary and nervous system diseases, may be studied not only as alternative intervention points for the modulation of SRIF function but also to exploit new chemical space for drug-like molecules.
Collapse
Affiliation(s)
- Davide Cervia
- Department of Environmental Sciences, University of Tuscia, largo dell'Università snc, blocco D, 01100 Viterbo, Italy.
| | | |
Collapse
|
30
|
Van Op den Bosch J, van Nassauw L, Lantermann K, van Marck E, Timmermans JP. Effect of intestinal inflammation on the cell-specific expression of somatostatin receptor subtypes in the murine ileum. Neurogastroenterol Motil 2007; 19:596-606. [PMID: 17593141 DOI: 10.1111/j.1365-2982.2007.00931.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite our knowledge of somatostatin (SOM) in gastrointestinal functions, little information is available on the SOM receptors (SSTRs) mediating these effects. This study focussed on the expression of SSTRs in non-inflamed and Schistosoma mansoni-infected murine ileum using immunocytochemistry, reverse transcriptase (RT)-PCR and quantitative real time RT-PCR (qPCR). In the non-inflamed ileum, SSTRs showed a widespread, cell-type specific expression pattern. For instance, SSTR2A immunoreactivity was detected in a minor population of submucous but not myenteric glial cells. In the inflamed ileum, significant changes in the expression pattern of SSTRs occurred, with SSTR1 and SSTR3 expression on mucosal mast cells (MMCs) and mucosal nerve fibres. SSTR4-immunoreactive nerve fibres were detected in granulomas and the lamina propria. qPCR experiments indicated significantly increased mRNA levels for SOM, SSTR1 and SSTR3 in inflamed ileum. This study reveals that SSTRs are expressed in specific cell types in murine ileum. Expression of SSTR1 and SSTR3 on MMCs and increased density of SOM-expressing nerve fibres in the lamina propria during inflammation, support the hypothesis that SOM is implicated in the physiological control of MMCs during intestinal inflammation. Evidence is provided that in mouse mainly SSTR1, SSTR3 and SSTR4 are involved in the somatostatinergic inflammatory effects during intestinal schistosomiasis.
Collapse
Affiliation(s)
- J Van Op den Bosch
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | | | | | | | | |
Collapse
|
31
|
Satoh Y, Okishio Y, Azuma YT, Nakajima H, Hata F, Takeuchi T. Orexin A affects ascending contraction depending on downstream cholinergic neurons and descending relaxation through independent pathways in mouse jejunum. Neuropharmacology 2006; 51:466-73. [PMID: 16762378 DOI: 10.1016/j.neuropharm.2006.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 03/16/2006] [Accepted: 04/07/2006] [Indexed: 01/06/2023]
Abstract
The involvement of orexin in neural pathways for peristalsis was examined in mouse jejunal segments. Localized distension of the segments using a small balloon resulted in ascending contraction and descending relaxation. Ascending contraction was abolished by atropine and tetrodotoxin. Desensitization to orexin A (OXA) and SB-334867-A, an orexin-1 receptor antagonist, significantly inhibited ascending contraction. Hexamethonium also produced a significant inhibition. Exogenous administration of either OXA or nicotine induced a transient contraction that was completely inhibited by atropine and tetrodotoxin. The OXA-induced contraction was significantly inhibited by hexamethonium and SB-334867-A, whereas the nicotine-induced contraction was not inhibited by SB-334867-A. Descending relaxation was either partially or completely inhibited by l-nitroarginine and tetrodotoxin, respectively. Both SB-334867-A and hexamethonium partially inhibited descending relaxation. A combination of SB-334867-A and hexamethonium had an additive inhibitory effect on descending relaxation. Exogenous OXA, in the presence of atropine, induced a relaxation that was significantly inhibited by both l-nitroarginine and SB-334867-A, but not by hexamethonium. Nicotine in the presence of atropine relaxed the jejunal segment. SB-334867-A, unlike hexamethonium, did not affect nicotine-induced relaxation. These results suggest that OXA plays an important role in the ascending and descending neural reflexes in the mouse jejunum.
Collapse
Affiliation(s)
- Yuji Satoh
- Department of Veterinary Pharmacology, Graduate school of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho 1-1, Sakai 599-9531, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Huizinga JD, McKay CM, White EJ. The many facets of intestinal peristalsis. Am J Physiol Gastrointest Liver Physiol 2006; 290:G1347-9; author reply G1348-9. [PMID: 16687580 DOI: 10.1152/ajpgi.00060.2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
33
|
Cremonini F, Camilleri M, Gonenne J, Stephens D, Oenning L, Baxter K, Foxx-Orenstein A, Burton D. Effect of somatostatin analog on postprandial satiation in obesity. ACTA ACUST UNITED AC 2005; 13:1572-9. [PMID: 16222060 DOI: 10.1038/oby.2005.193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Altered satiation may impact postprandial symptoms and potentially change food intake in obesity. Our aim was to compare effects of octreotide and placebo on postprandial symptoms, satiation, and gastric volumes in obesity. RESEARCH METHODS AND PROCEDURES In a randomized, parallel-group, double-blind, placebo-controlled study, 26 obese but otherwise healthy participants received 100 mug of octreotide or placebo subcutaneously 30 minutes before each study. Studies were performed on 2 separate days and included validated non-invasive techniques: (99m)Tc-single photon emission computed tomography imaging to measure fasting stomach volume and gastric volume changes after 90 mL of water and 240 mL of Ensure and a standardized nutrient drink test to measure the maximum tolerated volume and postprandial symptoms. RESULTS Relative to placebo, octreotide increased gastric volume after 90 mL of water; however, fasting and gastric volume change post-Ensure and maximum tolerated volume of Ensure were not different. Octreotide decreased sensations of fullness (p = 0.035) and bloating (p = 0.05) and tended to reduce aggregate symptoms (p = 0.07) after the fully satiating meal. DISCUSSION In obese individuals, somatostatin analog significantly reduced postprandial sensations after a satiating meal without altering maximum tolerated meal volume or postnutrient gastric volume, suggesting an effect on upper gut sensation. The role of somatostatin as a permissive factor in the development of obesity by reducing postprandial sensations deserves further study.
Collapse
Affiliation(s)
- Filippo Cremonini
- Clinical Enteric Neuroscience Translational and Epidemiological Research Program, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Seerden TC, Lammers WJEP, De Winter BY, De Man JG, Pelckmans PA. Spatiotemporal electrical and motility mapping of distension-induced propagating oscillations in the murine small intestine. Am J Physiol Gastrointest Liver Physiol 2005; 289:G1043-51. [PMID: 16099869 DOI: 10.1152/ajpgi.00205.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Since the development of knockout animals, the mouse has become an important model to study gastrointestinal motility. However, little information is available on the electrical and contractile activities induced by distension in the murine small intestine. Spatiotemporal electrical mapping and mechanical recordings were made from isolated intestinal segments from different regions of the murine small intestine during distension. The electrical activity was recorded with 16 extracellular electrodes while motility was assessed simultaneously by tracking the border movements with a digital camera. Distension induced propagating oscillatory contractions in isolated intestinal segments. These propagating contractions were dictated by the underlying propagating slow wave with superimposed spikes. The frequencies, velocities, and direction of the propagating oscillations strongly correlated with the frequencies (r = 0.86), velocities (r = 0.84), and direction (r = 1) of the electrical slow waves. N(omega)-nitro-L-arginine methyl ester decreased the maximal diameter of the segment and reduced the peak contraction amplitude of the propagating oscillatory contractions, whereas atropine and verapamil blocked the propagating oscillations. Tetrodotoxin had little effect on the maximal diameter and peak contraction amplitude. In conclusion, distension in the murine small intestine does not initiate peristaltic reflexes but induces a propagating oscillatory motor pattern that is determined by propagating slow waves with superimposed spikes. These spikes are cholinergic and calcium dependent.
Collapse
Affiliation(s)
- T C Seerden
- Division of Gastroenterology, University of Antwerp, Wilrijk, Belgium
| | | | | | | | | |
Collapse
|
35
|
Low MJ. Clinical endocrinology and metabolism. The somatostatin neuroendocrine system: physiology and clinical relevance in gastrointestinal and pancreatic disorders. Best Pract Res Clin Endocrinol Metab 2004; 18:607-22. [PMID: 15533778 DOI: 10.1016/j.beem.2004.08.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Somatostatin is produced in enteroendocrine D cells and intrinsic neurons of the stomach, intestines and pancreas. Its physiologic actions are mediated primarily by somatostatin receptors type 2 and 5, and include the inhibition of secretion of most endocrine and exocrine factors. Diseases directly attributable to somatostatin excess or deficiency are rare, although there is a complex pathogenic relationship between persistent Helicobacter pylori infection and reduced somatostatin in chronic gastritis. Abundant somatostatin receptors on many neoplastic and inflammatory cells are the basis for sensitive in vivo imaging with radiolabeled somatostatin analogs and provide a therapeutic target. Current indications for somatostatin therapy include hormone-expressing neuroendocrine tumors, intractable diarrhea and variceal bleeding secondary to portal hypertension. Exciting advances are being made in the development of high-affinity nonpeptide analogs with receptor-subtype selectivity and increased bioavailability. Somatostatin analogs coupled to high-energy radionuclides show promise as novel cytotoxic agents for certain metastatic tumors.
Collapse
Affiliation(s)
- Malcolm J Low
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
36
|
Abstract
Most gut peptides exert their effects through G protein-coupled receptors, a family of about 700 membrane proteins, 87 of which are presently known to have peptide ligands. Three additional gut peptide receptors are not G protein-coupled receptors but regulate intracellular cyclic GMP accumulation. The aim of this review is to illustrate how the sequencing of the human genome and other recent advances in genomics has contributed to our understanding of the role of peptides and their receptors in gastrointestinal function. Recent discoveries include the identification of receptors for the peptides motilin and neuromedin U, and new physiological ligands for the PTH2 receptor, the CRF(2) receptor and the growth hormone secretagogue receptor. Knockout mice lacking specific peptide receptors or their ligands provide informative animal models in which to determine the functions of the numerous peptide-receptor systems in the gut and to predict which of them may be the most fruitful for drug development. Some peptide-receptor signalling systems may be more important in disease states than they are in normal physiology. For example, substance P, galanin, bradykinin and opioids play important roles in visceral pain and inflammation. Other peptides may have developmental roles: for example, disruption of endothelin-3 signalling prevents the normal development of the enteric nervous system and contributes to the pathogenesis of Hirschsprung disease.
Collapse
Affiliation(s)
- Anthony J Harmar
- Division of Neuroscience and Centre for Neuroscience Research, University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK.
| |
Collapse
|
37
|
Sun FP, Song YG, Qin HR. Alterations of gastrin, somatostatin, G and D cells in rat gastric ulcer. Shijie Huaren Xiaohua Zazhi 2004; 12:363-366. [DOI: 10.11569/wcjd.v12.i2.363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the alterations of gastrin secretion of G cells, somatostatin secretion of D cells and the change of G (D) cells in rat gastric ulcer.
METHODS: An acetic-acid-induced rat gastric ulcer model was established. The histological structure of rat antral mucosa and the ultrastructure of mucosal cells were observed generally, through microscope and through electron microscope. The content of gastrin or somatostatin in serum or in antral tissue was measured via radioimmunoassay. The shape, number, size of G (D) cells, and the ratio of number and size of G/D cells were viewed and analyzed with immunohistochemical technique and image analysis system. G (D) cells and the secretive gastrin (somatostatin) granules in G (D) cells were observed through immunoel-ectron microscope and analyzed in image analysis system.
RESULTS: G (D) cells and the secretive gastrin (somatostatin) granules in G (D) cells were observed through immunoelectron microscope successfully. In gastric ulcer rat the secretive gastrin in G cells increased, the secretive somatostatin in D cells declined, the number of G cells increases and the size of G cells declined; both the number and the size of D cells declined, both the ratio of the number and size of G/D cells increased, both the content of gastrin in serum and in antral tissue increased, and both the content of somatostatin in serum and in antral tissue declined.
CONCLUSION: The rat gastric ulcer induces the changes of G cells and D cells, secretive gastrin in G cells and secretive somatostatin in D cells, as well as the contents of gastrin and somatostatin.
Collapse
|
38
|
Ren J, Bian X, DeVries M, Schnegelsberg B, Cockayne DA, Ford APDW, Galligan JJ. P2X2 subunits contribute to fast synaptic excitation in myenteric neurons of the mouse small intestine. J Physiol 2003; 552:809-21. [PMID: 12937291 PMCID: PMC2343442 DOI: 10.1113/jphysiol.2003.047944] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
P2X receptors are ATP-gated cation channels composed of one or more of seven different subunits. ATP acts at P2X receptors to contribute to fast excitatory postsynaptic potentials (fEPSPs) in myenteric neurons but the subunit composition of enteric P2X receptors is unknown. These studies used tissues from P2X2 wild-type (P2X2+/+) and P2X2 gene knockout (P2X2-/-) mice to investigate the role of this subunit in enteric neurotransmission. Intracellular electrophysiological methods were used to record synaptic and drug-induced responses from ileal myenteric neurons in vitro. Drug-induced longitudinal muscle contractions and peristaltic contractions of ileal segments were also studied in vitro. Gastrointestinal transit was measured as the progression in 30 min of a liquid radioactive marker administered by gavage to fasted mice. RT-PCR analysis of mRNA from intestinal tissues and data from immunohistochemical studies verified P2X2 gene deletion. The fEPSPs recorded from S neurons in tissues from P2X2+/+ mice were reduced by mecamylamine (nicotinic cholinergic receptor antagonist) and PPADS (P2X receptor antagonist). The fEPSPs recorded from S neurons from P2X2-/- mice were unaffected by PPADS but were blocked by mecamylamine. ATP depolarized S and AH neurons from P2X2+/+ mice. ATP depolarized AH but not S neurons from P2X2-/- mice. alpha,beta-Methylene ATP (alpha,beta-mATP)(an agonist at P2X3 subunit-containing receptors) did not depolarize S neurons but it did depolarize AH neurons in P2X2+/+ and P2X2-/- mice. Peristalsis was inhibited in ileal segments from P2X2-/- mice but longitudinal muscle contractions caused by nicotine and bethanechol were similar in segments from P2X2+/+ and P2X2-/- mice. Gastrointestinal transit was similar in P2X2+/+ and P2X2-/- mice. It is concluded that P2X2 homomeric receptors contribute to fEPSPs in neural pathways underlying peristalsis studied in vitro.
Collapse
Affiliation(s)
- Jianhua Ren
- Department of Pharmacology and Toxicology and the Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Bian X, Ren J, DeVries M, Schnegelsberg B, Cockayne DA, Ford APDW, Galligan JJ. Peristalsis is impaired in the small intestine of mice lacking the P2X3 subunit. J Physiol 2003; 551:309-22. [PMID: 12813150 PMCID: PMC2343160 DOI: 10.1113/jphysiol.2003.044172] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
P2X receptors are ATP-gated cation channels composed of one or more of seven different subunits. P2X receptors participate in intestinal neurotransmission but the subunit composition of enteric P2X receptors is unknown. In this study, we used tissues from P2X3 wild-type (P2X3+/+) mice and mice in which the P2X3 subunit gene had been deleted (P2X3-/-) to investigate the role of this subunit in neurotransmission in the intestine. RT-PCR analysis of mRNA from intestinal tissues verified P2X3 gene deletion. Intracellular electrophysiological methods were used to record synaptic and drug-induced responses from myenteric neurons in vitro. Drug-induced longitudinal muscle contractions were studied in vitro. Intraluminal pressure-induced reflex contractions (peristalsis) of ileal segments were studied in vitro using a modified Trendelenburg preparation. Gastrointestinal transit was measured as the progression in 30 min of a liquid radioactive marker administered by gavage to fasted mice. Fast excitatory postsynaptic potentials recorded from S neurons (motoneurons and interneurons) were similar in tissues from P2X3+/+ and P2X3-/- mice. S neurons from P2X3+/+ and P2X3-/- mice were depolarized by application of ATP but not alpha,beta-methylene ATP, an agonist of P2X3 subunit-containing receptors. ATP and alpha,beta-methylene ATP induced depolarization of AH (sensory) neurons from P2X3+/+ mice. ATP, but not alpha,beta-methylene ATP, caused depolarization of AH neurons from P2X3-/- mice. Peristalsis was inhibited in ileal segments from P2X3-/- mice but longitudinal muscle contractions caused by nicotine and bethanechol were similar in segments from P2X3+/+ and P2X3-/- mice. Gastrointestinal transit was similar in P2X3+/+ and P2X3-/- mice. It is concluded that P2X3 subunit-containing receptors participate in neural pathways underlying peristalsis in the mouse intestine in vitro. P2X3 subunits are localized to AH (sensory) but not S neurons. P2X3 receptors may contribute to detection of distention or intraluminal pressure increases and initiation of reflex contractions.
Collapse
Affiliation(s)
- Xiaochun Bian
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Allen JP, Canty AJ, Schulz S, Humphrey PPA, Emson PC, Young HM. Identification of cells expressing somatostatin receptor 2 in the gastrointestinal tract of Sstr2 knockout/lacZ knockin mice. J Comp Neurol 2002; 454:329-40. [PMID: 12442323 DOI: 10.1002/cne.10466] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Somatostatin is found in neurons and endocrine cells in the gastrointestinal tract. The actions of somatostatin are mediated by a family of G-protein-coupled receptors that compose five subtypes (SSTR1-5), each of which is encoded by a separate gene. lacZ "knockin" mice, in which the reporter gene lacZ was engineered into the genomic locus of Sstr2 by gene targeting, were used to examine the expression pattern of Sstr2 and identify potential targets for neurally released and hormonal somatostatin in the gastrointestinal tract. In the body of the stomach, a large proportion of epithelial cells and subpopulations of myenteric neurons expressed Sstr2. Double- or triple-labeling with antisera to H(+)K(+)ATPase (to identify parietal cells) and/or histidine decarboxylase (to identify enterochromaffin-like [ECL] cells) combined with beta-galactosidase staining revealed that both parietal cells and ECL cells expressed Sstr2, and these two cell types accounted for almost all of the Sstr2-expressing epithelial cells. Somatostatin inhibits gastric acid secretion. The presence of SSTR2 on both parietal and ECL cells suggests that somatostatin acting on SSTR2 may reduce acid secretion by both acting directly on parietal cells and by reducing histamine release from ECL cells. In the small and large intestine, subpopulations of neurons in the myenteric and submucosal plexuses expressed Sstr2, and many of the Sstr2-expressing myenteric neurons also showed SSTR2(a) immunostaining. Most of Sstr2-expressing neurons in the myenteric plexus showed nitric oxide synthase (NOS) immunoreactivity. Previous studies have shown that NOS neurons are descending interneurons and anally projecting, inhibitory motor neurons. Thus, somatostatin acting at SSTR2 receptors on NOS neurons might modulate descending relaxation.
Collapse
Affiliation(s)
- Jeremy P Allen
- Department of Neurobiology, The Babraham Institute, Babraham, Cambridge, CB2 4AT, United Kingdom
| | | | | | | | | | | |
Collapse
|