1
|
Garcia LFC, Wowk PF, Albrecht L. Unraveling the Impact of Extracellular Vesicle-Depleted Serum on Endothelial Cell Characteristics over Time. Int J Mol Sci 2024; 25:4761. [PMID: 38731980 PMCID: PMC11084606 DOI: 10.3390/ijms25094761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 05/13/2024] Open
Abstract
Extracellular vesicles (EVs) are produced by all kinds of cells, including endothelial cells. It has been observed that EVs present in fetal bovine serum (FBS), broadly used in cell culture, can be a confounding factor and lead to misinterpretation of results. To investigate this phenomenon, human brain microvascular endothelial cells (HBMECs) were cultured for 2 or 24 h in the presence of EV-depleted FBS (EVdS). Cell death, gene and protein expression, and the presence of EVs isolated from these cells were evaluated. The uptake of EVs, intercellular adhesion molecule 1 (ICAM-1) expression, and monocyte adhesion to endothelial cells exposed to EVs were also evaluated. Our results revealed higher apoptosis rates in cells cultured with EVdS for 2 and 24 h. There was an increase in interleukin 8 (IL8) expression after 2 h and a decrease in interleukin 6 (IL6) and IL8 expression after 24 h of culture. Among the proteins identified in EVs isolated from cells cultured for 2 h (EV2h), several were related to ribosomes and carbon metabolism. EVs from cells cultured for 24 h (EV24h) presented a protein profile associated with cell adhesion and platelet activation. Additionally, HBMECs exhibited increased uptake of EV2h. Treatment of endothelial cells with EV2h resulted in greater ICAM-1 expression and greater adherence to monocytes than did treatment with EV24h. According to our data, HBMEC cultivated with EVdS produce EVs with different physical characteristics and protein levels that vary over time.
Collapse
Affiliation(s)
| | - Pryscilla Fanini Wowk
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, PR, Brazil;
| | - Letusa Albrecht
- Laboratório de Pesquisa em Apicomplexa, ICC-Fiocruz-PR, Curitiba 81350-010, PR, Brazil;
| |
Collapse
|
2
|
Yao Q, Fan YY, Huang S, Hu GR, Song JK, Yang X, Zhao GH. MiR-4521 affects the propagation of Cryptosporidium parvum in HCT-8 cells through targeting foxm1 by regulating cell apoptosis. Acta Trop 2024; 249:107057. [PMID: 37913972 DOI: 10.1016/j.actatropica.2023.107057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
Cryptosporidium parvum could regulate the expression of microRNAs of epithelial cells to facilitate its intracellular propagation. MiR-4521 has been reported to play an important role during the development and progression of tumors and infectious diseases by regulating cell proliferation, apoptosis, and autophagy. However, the implication of miR-4521 during C. parvum infection was still unknown. In this study, the expression of miR-4521 was found to be upregulated in HCT-8 cells infected with C. parvum from 8 h post-infection (pi) to 48 hpi, and its upregulation would be related with the TLR/NF-κB signal pathway during C. parvum infection. One potential target of miR-4521, foxm1, was down-regulated in HCT-8 cells from 24 hpi to 48 hpi, and the expression of foxm1 was negatively regulated by miR-4521. The target relationship between miR-4521 and foxm1 was further validated by using dual luciferase reporter assay. Further studies showed that miR-4521 promoted the propagation of C. parvum in HCT-8 cells through targeting foxm1 by regulating BCL2-mediating cell apoptosis. These results contribute to further understanding of the regulatory mechanisms of host miRNAs during Cryptosporidium infection.
Collapse
Affiliation(s)
- Qian Yao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Ying-Ying Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Shuang Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Gui-Rong Hu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Jun-Ke Song
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Xin Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Guang-Hui Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Yangling 712100, China; Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling 712100, China; Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province, Yangling 712100, China.
| |
Collapse
|
3
|
Jiang Y, Zhang J, Shi C, Li X, Jiang Y, Mao R. NF- κB: a mediator that promotes or inhibits angiogenesis in human diseases? Expert Rev Mol Med 2023; 25:e25. [PMID: 37503730 DOI: 10.1017/erm.2023.20] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The nuclear factor of κ-light chain of enhancer-activated B cells (NF-κB) signaling pathway, which is conserved in invertebrates, plays a significant role in human diseases such as inflammation-related diseases and carcinogenesis. Angiogenesis refers to the growth of new capillary vessels derived from already existing capillaries and postcapillary venules. Maintaining normal angiogenesis and effective vascular function is a prerequisite for the stability of organ tissue function, and abnormal angiogenesis often leads to a variety of diseases. It has been suggested that NK-κB signalling molecules under pathological conditions play an important role in vascular differentiation, proliferation, apoptosis and tumourigenesis by regulating the transcription of multiple target genes. Many NF-κB inhibitors are being tested in clinical trials for cancer treatment and their effect on angiogenesis is summarised. In this review, we will summarise the role of NF-κB signalling in various neovascular diseases, especially in tumours, and explore whether NF-κB can be used as an attack target or activation medium to inhibit tumour angiogenesis.
Collapse
Affiliation(s)
- Yijing Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Jie Zhang
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, 30Tongyang North Road, Pingchao Town, Nantong 226361, Jiangsu, People's Republic of China
| | - Conglin Shi
- Department of Pathogenic Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Xingjuan Li
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Yongying Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| |
Collapse
|
4
|
Cai X, Tacke F, Guillot A, Liu H. Cholangiokines: undervalued modulators in the hepatic microenvironment. Front Immunol 2023; 14:1192840. [PMID: 37261338 PMCID: PMC10229055 DOI: 10.3389/fimmu.2023.1192840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Abstract
The biliary epithelial cells, also known as cholangiocytes, line the intra- and extrahepatic bile ducts, forming a barrier between intra- and extra-ductal environments. Cholangiocytes are mostly known to modulate bile composition and transportation. In hepatobiliary diseases, bile duct injury leads to drastic alterations in cholangiocyte phenotypes and their release of soluble mediators, which can vary depending on the original insult and cellular states (quiescence, senescence, or proliferation). The cholangiocyte-secreted cytokines (also termed cholangiokines) drive ductular cell proliferation, portal inflammation and fibrosis, and carcinogenesis. Hence, despite the previous consensus that cholangiocytes are bystanders in liver diseases, their diverse secretome plays critical roles in modulating the intrahepatic microenvironment. This review summarizes recent insights into the cholangiokines under both physiological and pathological conditions, especially as they occur during liver injury-regeneration, inflammation, fibrosis and malignant transformation processes.
Collapse
Affiliation(s)
- Xiurong Cai
- Department of Hematology, Oncology and Tumor Immunology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Hanyang Liu
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
- Center of Gastrointestinal Diseases, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| |
Collapse
|
5
|
Qiu Z, Wang Y, Zhang Z, Qin R, Peng Y, Tang W, Xi Y, Tian G, Zhang Y. Roles of intercellular cell adhesion molecule-1 (ICAM-1) in colorectal cancer: expression, functions, prognosis, tumorigenesis, polymorphisms and therapeutic implications. Front Oncol 2022; 12:1052672. [PMID: 36505809 PMCID: PMC9728583 DOI: 10.3389/fonc.2022.1052672] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
Colorectal cancer (CRC) is a major global health problem and one of the major causes of cancer-related death worldwide. It is very important to understand the pathogenesis of CRC for early diagnosis, prevention strategies and identification of new therapeutic targets. Intercellular adhesion molecule-1 (ICAM-1, CD54) displays an important role in the the pathogenesis of CRC. It is a cell surface glycoprotein of the immunoglobulin (Ig) superfamily and plays an essential role in cell-cell, cell-extracellular matrix interaction, cell signaling and immune process. It is also expressed by tumor cells and modulates their functions, including apoptosis, cell motility, invasion and angiogenesis. The interaction between ICAM-1 and its ligand may facilitate adhesion of tumor cells to the vascular endothelium and subsequently in the promotion of metastasis. ICAM-1 expression determines malignant potential of cancer. In this review, we will discuss the expression, function, prognosis, tumorigenesis, polymorphisms and therapeutic implications of ICAM-1 in CRC.
Collapse
Affiliation(s)
- Zhiyuan Qiu
- Department of Oncology, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yan Wang
- Department of Oncology, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhao Zhang
- Department of Oncology, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Rong Qin
- Department of Oncology, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yong Peng
- Department of Oncology, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Weifeng Tang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Yan Xi
- Department of Geriatrics, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guangyu Tian
- Department of Oncology, Jiangdu People’s Hospital Affiliated to Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Yeqing Zhang
- Department of Vascular Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
6
|
Ghafouri-Fard S, Poornajaf Y, Dashti F, Hussen BM, Taheri M, Jamali E. Interaction Between Non-Coding RNAs and Interferons: With an Especial Focus on Type I Interferons. Front Immunol 2022; 13:877243. [PMID: 35572537 PMCID: PMC9091820 DOI: 10.3389/fimmu.2022.877243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Interferons (IFNs) are a group of cellular proteins with critical roles in the regulation of immune responses in the course of microbial infections. Moreover, expressions of IFNs are dysregulated in autoimmune disorders. IFNs are also a part of immune responses in malignant conditions. The expression of these proteins and activities of related signaling can be influenced by a number of non-coding RNAs. IFN regulatory factors (IRFs) are the most investigated molecules in the field of effects of non-coding RNAs on IFN signaling. These interactions have been best assessed in the context of cancer, revealing the importance of immune function in the pathoetiology of cancer. In addition, IFN-related non-coding RNAs may contribute to the pathogenesis of neuropsychiatric conditions, systemic sclerosis, Newcastle disease, Sjögren’s syndrome, traumatic brain injury, lupus nephritis, systemic lupus erythematosus, diabetes mellitus, and myocardial ischemia/reperfusion injury. In the current review, we describe the role of microRNAs and long non-coding RNAs in the regulation of IFN signaling.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yadollah Poornajaf
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Farzaneh Dashti
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Elena Jamali
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Singh M, Thakur M, Mishra M, Yadav M, Vibhuti R, Menon AM, Nagda G, Dwivedi VP, Dakal TC, Yadav V. Gene regulation of intracellular adhesion molecule-1 (ICAM-1): A molecule with multiple functions. Immunol Lett 2021; 240:123-136. [PMID: 34715236 DOI: 10.1016/j.imlet.2021.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 01/04/2023]
Abstract
Intracellular adhesion molecule 1 (ICAM-1) is one of the most extensively studied inducible cell adhesion molecules which is responsible for several immune functions like T cell activation, extravasation, inflammation, etc. The molecule is constitutively expressed over the cell surface and is regulated up / down in response to inflammatory mediators like cellular stress, proinflammatory cytokines, viral infection. These stimuli modulate the expression of ICAM-1 primarily through regulating the ICAM-1 gene transcription. On account of the presence of various binding sites for NF-κB, AP-1, SP-1, and many other transcription factors, the architecture of the ICAM-1 promoter become complex. Transcription factors in union with other transcription factors, coactivators, and suppressors promote their assembly in a stereospecific manner on ICAM-1 promoter which mediates ICAM-1 regulation in response to different stimuli. Along with transcriptional regulation, epigenetic modifications also play a pivotal role in controlling ICAM-1 expression on different cell types. In this review, we summarize the regulation of ICAM-1 expression both at the transcriptional as well as post-transcriptional level with an emphasis on transcription factors and signaling pathways involved.
Collapse
Affiliation(s)
- Mona Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067 India
| | - Mony Thakur
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana-123031 India
| | - Manish Mishra
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research- Institute of Microbial Technology, Chandigarh-160036 India
| | - Manisha Yadav
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research- Institute of Microbial Technology, Chandigarh-160036 India
| | - Rajkamal Vibhuti
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana-123031 India
| | - Athira M Menon
- Genome and computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001 India
| | - Girima Nagda
- Department of Zoology, Mohanlal Sukhadia University, Udaipur, Rajasthan-313001 India
| | - Ved Prakash Dwivedi
- International Centre for Genetic Engineering and Biotechnology, ICGEB Campus, Aruna Asaf Ali Marg, New Delhi-110067 India
| | - Tikam Chand Dakal
- Genome and computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001 India
| | - Vinod Yadav
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana-123031 India
| |
Collapse
|
8
|
Liu ZN, Jiang Y, Liu XQ, Yang MM, Chen C, Zhao BH, Huang HF, Luo Q. MiRNAs in Gestational Diabetes Mellitus: Potential Mechanisms and Clinical Applications. J Diabetes Res 2021; 2021:4632745. [PMID: 34869778 PMCID: PMC8635917 DOI: 10.1155/2021/4632745] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/08/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is a common pregnancy complication which is normally diagnosed in the second trimester of gestation. With an increasing incidence, GDM poses a significant threat to maternal and offspring health. Therefore, we need a deeper understanding of GDM pathophysiology and novel investigation on the diagnosis and treatment for GDM. MicroRNAs (miRNAs), a class of endogenic small noncoding RNAs with a length of approximately 19-24 nucleotides, have been reported to exert their function in gene expression by binding to proteins or being enclosed in membranous vesicles, such as exosomes. Studies have investigated the roles of miRNAs in the pathophysiological mechanism of GDM and their potential as noninvasive biological candidates for the management of GDM, including diagnosis and treatment. This review is aimed at summarizing the pathophysiological significance of miRNAs in GDM development and their potential function in GDM clinical diagnosis and therapeutic approach. In this review, we summarized an integrated expressional profile and the pathophysiological significance of placental exosomes and associated miRNAs, as well as other plasma miRNAs such as exo-AT. Furthermore, we also discussed the practical application of exosomes in GDM postpartum outcomes and the potential function of several miRNAs as therapeutic target in the GDM pathological pathway, thus providing a novel clinical insight of these biological signatures into GDM therapeutic approach.
Collapse
Affiliation(s)
- Zhao-Nan Liu
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Ying Jiang
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, China
| | - Xuan-Qi Liu
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Meng-Meng Yang
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, China
| | - Cheng Chen
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, China
| | - Bai-Hui Zhao
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, China
| | - He-Feng Huang
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Qiong Luo
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, China
| |
Collapse
|
9
|
Non-Coding RNA: Role in Gestational Diabetes Pathophysiology and Complications. Int J Mol Sci 2020; 21:ijms21114020. [PMID: 32512799 PMCID: PMC7312670 DOI: 10.3390/ijms21114020] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Gestational Diabetes Mellitus (GDM) is defined as glucose intolerance that develops in the second or third trimester of pregnancy. GDM can lead to short-term and long-term complications both in the mother and in the offspring. Diagnosing and treating this condition is therefore of great importance to avoid poor pregnancy outcomes. There is increasing interest in finding new markers with potential diagnostic, prognostic and therapeutic utility in GDM. Non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs and circular RNAs, are critically involved in metabolic processes and their dysregulated expression has been reported in several pathological contexts. The aberrant expression of several circulating or placenta-related ncRNAs has been linked to insulin resistance and β-cell dysfunction, the key pathophysiological features of GDM. Furthermore, significant associations between altered ncRNA profiles and GDM-related complications, such as macrosomia or trophoblast dysfunction, have been observed. Remarkably, the deregulation of ncRNAs, which might be linked to a detrimental intrauterine environment, can lead to changes in the expression of target genes in the offspring, possibly contributing to the development of long-term GDM-related complications, such as metabolic and cardiovascular diseases. In this review, all the recent findings on ncRNAs and GDM are summarized, particularly focusing on the molecular aspects and the pathophysiological implications of this complex relationship.
Collapse
|
10
|
Song YJ, Cao JY, Jin Z, Hu WG, Wu RH, Tian LH, Yang B, Wang J, Xiao Y, Huang CB. Inhibition of microRNA-132 attenuates inflammatory response and detrusor fibrosis in rats with interstitial cystitis via the JAK-STAT signaling pathway. J Cell Biochem 2018; 120:9147-9158. [PMID: 30582204 DOI: 10.1002/jcb.28190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022]
Abstract
Interstitial cystitis (IC) is a heterogeneous syndrome with unknown etiology, and microRNAs (miRs) were found to be involved in IC. In our study, we aim to explore the role of miR-132 in the inflammatory response and detrusor fibrosis in IC through the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway in rat models. A rat model of IC was established and treated with the miR-132 mimic, miR-132 inhibitor, and/or JAK-STAT signaling pathway inhibitor AG490. Enzyme-linked immunosorbent assay was applied to measure the expression of interleukin (IL)-6, IL-10, interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α), and intercellular adhesion molecule-1 (ICAM-1). The urodynamic test was performed to assess urodynamic parameters, and reverse transcription quantitative polymerase chain reaction and Western blot analysis for the expression of miR-132, STAT4, suppressors of cytokine signaling 3 (SOCS3), JAK2, vascular endothelial growth factor (VEGF), IFN-γ, and TNF-α. IC rats treated with miR-132 inhibitor and AG490 had decreased collagen fiber, inflammatory cell infiltration, and mast cells, lower expression of IL-6, IL-10, IFN-γ, TNF-α, ICAM-1, collagens I and III, and alleviated urodynamic parameters and decreased expression of STAT4, VEGF, JAK2, IFN-γ, TNF-α, and increased expression of SOCS3. Taken together, our data indicate that downregulation of miR-132 alleviates inflammatory response and detrusor fibrosis in IC via the inhibition of the JAK-STAT signaling pathway.
Collapse
Affiliation(s)
- Ya-Jun Song
- Department of Urology, Xinqiao Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Jun-Ying Cao
- Department of Ultrasound, General Hospital of Shenyang Military Area Command of Chinese PLA, Shenyang, P. R. China
| | - Zhuang Jin
- Department of Ultrasound, General Hospital of Shenyang Military Area Command of Chinese PLA, Shenyang, P. R. China
| | - Wen-Gang Hu
- Department of Urology, Xinqiao Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Rong-Hua Wu
- Department of Urology, Xinqiao Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Lu-Hai Tian
- Department of Urology, Xinqiao Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Bo Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Jin Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Ya Xiao
- Department of Urology, Xinqiao Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Chi-Bing Huang
- Department of Urology, Xinqiao Hospital, Third Military Medical University, Chongqing, P. R. China
| |
Collapse
|
11
|
Sung HC, Liu CW, Hsiao CY, Lin SR, Yu IS, Lin SW, Chiang MH, Liang CJ, Pu CM, Chen YC, Lin MS, Chen YL. The effects of wild bitter gourd fruit extracts on ICAM-1 expression in pulmonary epithelial cells of C57BL/6J mice and microRNA-221/222 knockout mice: Involvement of the miR-221/-222/PI3K/AKT/NF-κB pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 42:90-99. [PMID: 29655703 DOI: 10.1016/j.phymed.2018.03.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 01/22/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The extracts from wild bitter gourd fruit (WBGE) were reported to possess numerous pharmacological activities. However, the anti-inflammatory effects of WBGE on human lung epithelial cells and the underlying mechanisms have not been determined. PURPOSE To evaluate the molecular basis of the effects of WBGE on intercellular adhesion molecule-1 (ICAM-1) expression in alveolar epithelial (A549) cells, C57BL/6 wild-type (WT) mice and microRNA (miR)-221/-222 knockout (KO) mice with or without tumor necrosis factor (TNF-α; 3 ng/ml) treatment. STUDY DESIGN/METHODS WT mice and miR-221/-222 KO mice were fed a control diet and divided into four groups (C: control mice; T: treated with TNF-α alone; WBGE/T: pretreated with WBGE and then stimulated with TNF-α; WBGE: treated with WBGE alone). The effects of WBGE on ICAM-1 expression and the related signals in A549 cells and mice with or without TNF-α treatment were examined by Western blot and immunofluorescent staining. RESULTS WBGE significantly decreased the TNF-α-induced ICAM-1 expression in A549 cells through the inhibition of phosphoinositide 3-kinase (PI3K)/ protein kinase B (AKT)/ nuclear factor- kappa B (NF-κB)/ inhibitor of NF-κB (IκB) phosphorylation and decreased leukocyte adhesion. In addition, WBGE reduced endogenous ICAM-1 expression and upregulated miR-221/-222 expression. The overexpression of miR-222 decreased PI3K/AKT/NF-κB/IκB and ICAM-1 expression, which resulted in reducing monocyte adhesion. Moreover, WBGE reduced ICAM-1 expression in lung tissues of WT mice with or without TNF-α treatment and upregulated miR-221/222. WBGE did not affect the miR-221/-222 level and had little effect on ICAM-1 expression in miR-221/-222 KO mice. CONCLUSIONS These results suggest that WBGE reduced ICAM-1 expression both under in vitro and in vivo conditions. The protective effects were mediated partly through the miR-221/-222/PI3K/AKT/NF-κB pathway.
Collapse
Affiliation(s)
- Hsin-Ching Sung
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chen-Wei Liu
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Yu Hsiao
- Department of Nutrition and Health Sciences, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shu-Rung Lin
- Department of Bioscience Technology, College of Science, Chung-Yuan Christian University, Taoyuan, Taiwan; Center for Nanotechnology and Center for Biomedical Technology, Chung-Yuan Christian University, Taoyuan, Taiwan
| | - I-Shing Yu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Hsien Chiang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chan-Jung Liang
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Taiwan
| | - Chi-Ming Pu
- Division of Plastic Surgery, Department of Surgery, Cathay General Hospital, Taipei, Taiwan
| | - Yu-Chen Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Shian Lin
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan; Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi, Taiwan.
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
12
|
Papaconstantinou I, Kapizioni C, Legaki E, Xourgia E, Karamanolis G, Gklavas A, Gazouli M. Association of miR-146 rs2910164, miR-196a rs11614913, miR-221 rs113054794 and miR-224 rs188519172 polymorphisms with anti-TNF treatment response in a Greek population with Crohn’s disease. World J Gastrointest Pharmacol Ther 2017; 8:193-200. [PMID: 29152405 PMCID: PMC5680166 DOI: 10.4292/wjgpt.v8.i4.193] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/21/2017] [Accepted: 09/15/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the correlation between rs2910164, rs11 614913, rs113054794, and rs188519172 polymorphisms and response to anti-TNF treatment in patients with Crohn’s disease (CD).
METHODS One hundred seven patients with CD based on standard clinical, endoscopic, radiological, and pathological criteria were included in the study. They all received infliximab or adalimumab intravenously or subcutaneously at standard induction doses as per international guidelines. Clinical and biochemical response was assessed using the Harvey-Bradshaw index and CRP levels respectively. Endoscopic response was evaluated by ileocolonoscopy at week 12-20 of therapy. The changes in endoscopic appearance compared to baseline were classified into four categories, and patients were classified as responders and non-responders. Whole peripheral blood was extracted and genotyping was performed by PCR.
RESULTS One hundred and seven patients were included in the study. Seventy two (67.3%) patients were classified as complete responders, 22 (20.5%) as partial while 13 (12.1%) were primary non-responders. No correlation was detected between response to anti-TNF agents and patients’ characteristics such as gender, age and disease duration while clinical and biochemical indexes used were associated with endoscopic response. Concerning prevalence of rs2910164, rs11614913, and rs188519172 polymorphisms of miR-146, miR-196a and miR-224 respectively no statistically important difference was found between complete, partial, and non-responders to anti-TNF treatment. Actually CC genotype of rs2910164 was not detected in any patient. Regarding rs113054794 of miR-221, normal CC genotype was the only one detected in all studied patients, suggesting this polymorphism is highly rare in the studied population.
CONCLUSION No correlation is detected between studied polymorphisms and patients’ response to anti-TNF treatment. Polymorphism rs113054794 is not detected in our population.
Collapse
Affiliation(s)
- Ioannis Papaconstantinou
- 2nd Department of Surgery, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Christina Kapizioni
- Gastroenterology Department, Tzaneion General Hospital, 18536 Piraeus, Greece
| | - Evangelia Legaki
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Elena Xourgia
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George Karamanolis
- Gastroenterology Unit, 2nd Department of Surgery, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Antonios Gklavas
- 2nd Department of Surgery, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
13
|
Gusar VA, Timofeeva AV, Zhanin IS, Shram SI, Pinelis VG. Estimation of time-dependent microRNA expression patterns in brain tissue, leukocytes, and blood plasma of rats under photochemically induced focal cerebral ischemia. Mol Biol 2017. [DOI: 10.1134/s0026893317040100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Liu CW, Sung HC, Lin SR, Wu CW, Lee CW, Lee IT, Yang YF, Yu IS, Lin SW, Chiang MH, Liang CJ, Chen YL. Resveratrol attenuates ICAM-1 expression and monocyte adhesiveness to TNF-α-treated endothelial cells: evidence for an anti-inflammatory cascade mediated by the miR-221/222/AMPK/p38/NF-κB pathway. Sci Rep 2017; 7:44689. [PMID: 28338009 PMCID: PMC5364502 DOI: 10.1038/srep44689] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/13/2017] [Indexed: 01/12/2023] Open
Abstract
Resveratrol, an edible polyphenolic phytoalexin, improves endothelial dysfunction and attenuates inflammation. However, the mechanisms have not been thoroughly elucidated. Therefore, we investigated the molecular basis of the effects of resveratrol on TNF-α-induced ICAM-1 expression in HUVECs. The resveratrol treatment significantly attenuated the TNF-α-induced ICAM-1 expression. The inhibition of p38 phosphorylation mediated the reduction in ICAM-1 expression caused by resveratrol. Resveratrol also decreased TNF-α-induced IκB phosphorylation and the phosphorylation, acetylation, and translocation of NF-κB p65. Moreover, resveratrol induced the AMPK phosphorylation and the SIRT1 expression in TNF-α-treated HUVECs. Furthermore, TNF-α significantly suppressed miR-221/-222 expression, which was reversed by resveratrol. miR-221/-222 overexpression decreased p38/NF-κB and ICAM-1 expression, which resulted in reduced monocyte adhesion to TNF-α-treated ECs. In a mouse model of acute TNF-α-induced inflammation, resveratrol effectively attenuated ICAM-1 expression in the aortic ECs of TNF-α-treated wild-type mice. These beneficial effects of resveratrol were lost in miR-221/222 knockout mice. Our data showed that resveratrol counteracted the TNF-α-mediated reduction in miR-221/222 expression and decreased the TNF-α-induced activation of p38 MAPK and NF-κB, thereby suppressing ICAM-1 expression and monocyte adhesion. Collectively, our results show that resveratrol attenuates endothelial inflammation by reducing ICAM-1 expression and that the protective effect was mediated partly through the miR-221/222/AMPK/p38/NF-κB pathway.
Collapse
Affiliation(s)
- Chen-Wei Liu
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Ching Sung
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shu-Rung Lin
- Department of Bioscience Technology, College of Science, Chung-Yuan Christian University, Taoyuan, Taiwan.,Center for Nanotechnology and Center for Biomedical Technology, Chung-Yuan Christian University, Taoyuan, Taiwan
| | - Chun-Wei Wu
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chiang-Wen Lee
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi, Taiwan
| | - I-Ta Lee
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Fan Yang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - I-Shing Yu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Hsien Chiang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chan-Jung Liang
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Taiwan
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
15
|
MiR-222 in Cardiovascular Diseases: Physiology and Pathology. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4962426. [PMID: 28127557 PMCID: PMC5239839 DOI: 10.1155/2017/4962426] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/07/2016] [Accepted: 12/13/2016] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs and miRs) are endogenous 19–22 nucleotide, small noncoding RNAs with highly conservative and tissue specific expression. They can negatively modulate target gene expressions through decreasing transcription or posttranscriptional inducing mRNA decay. Increasing evidence suggests that deregulated miRNAs play an important role in the genesis of cardiovascular diseases. Additionally, circulating miRNAs can be biomarkers for cardiovascular diseases. MiR-222 has been reported to play important roles in a variety of physiological and pathological processes in the heart. Here we reviewed the recent studies about the roles of miR-222 in cardiovascular diseases. MiR-222 may be a potential cardiovascular biomarker and a new therapeutic target in cardiovascular diseases.
Collapse
|
16
|
Calvopina DA, Coleman MA, Lewindon PJ, Ramm GA. Function and Regulation of MicroRNAs and Their Potential as Biomarkers in Paediatric Liver Disease. Int J Mol Sci 2016; 17:ijms17111795. [PMID: 27801781 PMCID: PMC5133796 DOI: 10.3390/ijms17111795] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/18/2016] [Accepted: 10/20/2016] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs involved in biological and pathological processes of every cell type, including liver cells. Transcribed from specific genes, miRNA precursors are processed in the cytoplasm into mature miRNAs and as part of the RNA-induced silencing complex (RISC) complex binds to messenger RNA (mRNA) by imperfect complementarity. This leads to the regulation of gene expression at a post-transcriptional level. The function of a number of different miRNAs in fibrogenesis associated with the progression of chronic liver disease has recently been elucidated. Furthermore, miRNAs have been shown to be both disease-and tissue-specific and are stable in the circulation, which has led to increasing investigation on their utility as biomarkers for the diagnosis of chronic liver diseases, including those in children. Here, we review the current knowledge on the biogenesis of microRNA, the mechanisms of translational repression and the use of miRNA as circulatory biomarkers in chronic paediatric liver diseases including cystic fibrosis associated liver disease, biliary atresia and viral hepatitis B.
Collapse
Affiliation(s)
- Diego A Calvopina
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, QLD 4006, Australia.
| | - Miranda A Coleman
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, QLD 4006, Australia.
| | - Peter J Lewindon
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, QLD 4006, Australia.
- Department of Gastroenterology and Hepatology, Lady Cilento Children's Hospital, 501 Stanley St, South Brisbane, QLD 4101, Australia.
- Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, QLD 4006, Australia.
| | - Grant A Ramm
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, QLD 4006, Australia.
- Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, QLD 4006, Australia.
| |
Collapse
|
17
|
Kashyap M, Pore S, Chancellor M, Yoshimura N, Tyagi P. Bladder overactivity involves overexpression of MicroRNA 132 and nerve growth factor. Life Sci 2016; 167:98-104. [PMID: 27789288 DOI: 10.1016/j.lfs.2016.10.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 10/21/2016] [Accepted: 10/23/2016] [Indexed: 11/15/2022]
Abstract
AIM Here, we assessed the expression of non-protein coding microRNAs (miRs), nerve growth factor and inflammatory molecules in the rat model of acetic acid induced bladder overactivity. MAIN METHODS Under isoflurane anesthesia, adult female Sprague-Dawley rats were instilled for 30min with either saline or NGF antisense oligonucleotide complexed with liposomes. 24h later, treated rats were exposed to either intravesical infusion of saline or saline containing 0.25% acetic acid at the rate of 0.04mL/min for 2h under urethane anesthesia (1g/kg; s.c). After CMG, bladder was harvested to study expression of NGF, cytokines and 8 specific miRNAs involved in bladder dysfunctions. The role of miR-132 in bladder overactivity was independently assessed through bladder wall transfection of plasmid encoding miR-132. KEY FINDINGS NGF overexpression in bladder overactivity was associated with ~2-fold upregulation and downregulation of miR-132 and miR-221, respectively. Pretreatment with NGF antisense restored the expression of miR-221 and miR-132 to control levels and also reduced the expression of NGF and cytokines (MCP-1 and sICAM-1). There was insignificant alteration in the expression of miR-199a-5p, and expression of, miR-210, miR-212, miR-155, miR-134 and miR-206 remained similar across the experimental groups. Bladder wall transfection of miR-132 plasmid in absence of acetic acid exposure was able to independently induce bladder overactivity, bladder hypertrophy and upregulate the expression of NGF and other cytokines. SIGNIFICANCE Overall, our work sheds light on the role of miR-132 in bladder overactivity, bladder hypertrophy, NGF signaling and expression of inflammatory mediators. Findings demonstrate that aberrant expression of NGF and miR-132 is involved in voiding dysfunctions.
Collapse
Affiliation(s)
- Mahendra Kashyap
- Department of Urology, University of Pittsburgh, Pittsburgh, United States
| | - Subrata Pore
- Department of Urology, University of Pittsburgh, Pittsburgh, United States
| | - Michael Chancellor
- Department of Urology, University of Pittsburgh, Pittsburgh, United States
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh, Pittsburgh, United States
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh, Pittsburgh, United States.
| |
Collapse
|
18
|
The regulation roles of miR-125b, miR-221 and miR-27b in porcine Salmonella infection signalling pathway. Biosci Rep 2016; 36:BSR20160243. [PMID: 27474500 PMCID: PMC5006312 DOI: 10.1042/bsr20160243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 07/28/2016] [Indexed: 11/17/2022] Open
Abstract
miRNAs are non-coding RNA molecules typically 18-22 nucleotides long that can suppress the expression of their target genes. Several laboratories have attempted to identify miRNAs from the pig that are involved in Salmonella infection. These bioinformatics strategies using the newly available genomic sequence are generally successful. Here, we report an in silico identification of miRNAs in pig focusing on the Salmonella infection pathway, and further investigated the differential expression of those miRNAs by quantitative real-time PCR during pre- and post-natal stage of Salmonella inoculation from the peripheral blood of commercially breed pigs. We identified 29 miRNAs that have predicted targets in the Salmonella infection pathway and nine of them were not yet described in pig. In addition, the expression of nine selected miRNAs was validated in the peripheral blood by northern blotting. Through expression analyses, differences were found between pre- and post-natal stages of Salmonella inoculation for miR-221, miR-125b and miR-27b-all of them were suppressed 2 days after Salmonella inoculation. The predicted targets of those three miRNAs were validated by luciferase reporter assays. We show that FOS is a direct target of miR-221, miR-125b can suppress MAPK14, and miR-27b can target IFNG. These findings will be helpful in understanding the function and processing of these miRNAs in Salmonella infection. The miRNA differentially expressed in the peripheral blood of commercial breed pigs suggest that it can be used as genetic markers for salmonella infection resistance in pigs.
Collapse
|
19
|
Lopez-Ramirez MA, Reijerkerk A, de Vries HE, Romero IA. Regulation of brain endothelial barrier function by microRNAs in health and neuroinflammation. FASEB J 2016; 30:2662-72. [PMID: 27118674 DOI: 10.1096/fj.201600435rr] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/12/2016] [Indexed: 02/05/2023]
Abstract
Brain endothelial cells constitute the major cellular element of the highly specialized blood-brain barrier (BBB) and thereby contribute to CNS homeostasis by restricting entry of circulating leukocytes and blood-borne molecules into the CNS. Therefore, compromised function of brain endothelial cells has serious consequences for BBB integrity. This has been associated with early events in the pathogenesis of several disorders that affect the CNS, such as multiple sclerosis, HIV-associated neurologic disorder, and stroke. Recent studies demonstrate that brain endothelial microRNAs play critical roles in the regulation of BBB function under normal and neuroinflammatory conditions. This review will focus on emerging evidence that indicates that brain endothelial microRNAs regulate barrier function and orchestrate various phases of the neuroinflammatory response, including endothelial activation in response to cytokines as well as restoration of inflamed endothelium into a quiescent state. In particular, we discuss novel microRNA regulatory mechanisms and their contribution to cellular interactions at the neurovascular unit that influence the overall function of the BBB in health and during neuroinflammation.-Lopez-Ramirez, M. A., Reijerkerk, A., de Vries, H. E., Romero, I. A. Regulation of brain endothelial barrier function by microRNAs in health and neuroinflammation.
Collapse
Affiliation(s)
| | | | - Helga E de Vries
- Blood-Brain Barrier Research Group, Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Ignacio Andres Romero
- Department of Life, Health, and Chemical Sciences, Biomedical Research Network, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
20
|
Luo Y, Feng J, Xu Q, Wang W, Wang X. NSun2 Deficiency Protects Endothelium From Inflammation via mRNA Methylation of ICAM-1. Circ Res 2016; 118:944-56. [PMID: 26838785 DOI: 10.1161/circresaha.115.307674] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/29/2016] [Indexed: 12/31/2022]
Abstract
RATIONALE Vascular endothelial inflammation, including the expression of intercellular adhesion molecule 1 (ICAM-1), is a key event in vascular diseases. However, the mechanisms underlying the regulation of ICAM-1 are largely unknown. OBJECTIVE To investigate the mechanisms on the regulation of ICAM-1 by NOP2/Sun domain family, member 2 (NSun2)-mediated mRNA methylation and the impact of NSun2-ICAM-1 regulatory process in vascular inflammation and allograft arteriosclerosis. METHODS AND RESULTS By using in vitro, in cells, and in vivo methylation assays, we showed that the tRNA methyltransferase NSun2 methylated the ICAM-1 mRNA. Methylation by NSun2 promoted the translation of ICAM-1, thereby increasing the adhesion of leukocytes to endothelial cells. Tumor necrosis factor-α or homocysteine activated the methyltransferase activity of NSun2 by repressing the phosphorylation of NSun2 by Aurora-B. The levels of ICAM-1 induction and of leukocyte adhesion to vascular endothelium observed with homocysteine treatment in wild-type rats were markedly decreased in NSun2(-/-) rats. In a rat model of aortic allograft, the lack of donor NSun2 impaired the formation of allograft arteriosclerosis. CONCLUSIONS NSun2 upregulates the expression of ICAM-1 by methylating ICAM-1 mRNA. This regulatory process impacts on vascular inflammation and allograft arteriosclerosis.
Collapse
Affiliation(s)
- Yuhong Luo
- From the Department of Physiology and Pathophysiology, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, P.R. China (Y.L., J.F., X.W.); Cardiovascular Division, BHF Centre for Vascular Regeneration, King's College London, United Kingdom (Q.X.); and Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, P.R. China (W.W.)
| | - Juan Feng
- From the Department of Physiology and Pathophysiology, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, P.R. China (Y.L., J.F., X.W.); Cardiovascular Division, BHF Centre for Vascular Regeneration, King's College London, United Kingdom (Q.X.); and Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, P.R. China (W.W.)
| | - Qingbo Xu
- From the Department of Physiology and Pathophysiology, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, P.R. China (Y.L., J.F., X.W.); Cardiovascular Division, BHF Centre for Vascular Regeneration, King's College London, United Kingdom (Q.X.); and Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, P.R. China (W.W.)
| | - Wengong Wang
- From the Department of Physiology and Pathophysiology, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, P.R. China (Y.L., J.F., X.W.); Cardiovascular Division, BHF Centre for Vascular Regeneration, King's College London, United Kingdom (Q.X.); and Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, P.R. China (W.W.).
| | - Xian Wang
- From the Department of Physiology and Pathophysiology, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, P.R. China (Y.L., J.F., X.W.); Cardiovascular Division, BHF Centre for Vascular Regeneration, King's College London, United Kingdom (Q.X.); and Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, P.R. China (W.W.).
| |
Collapse
|
21
|
Díaz-Pérez FI, Hiden U, Gauster M, Lang I, Konya V, Heinemann A, Lögl J, Saffery R, Desoye G, Cvitic S. Post-transcriptional down regulation of ICAM-1 in feto-placental endothelium in GDM. Cell Adh Migr 2016; 10:18-27. [PMID: 26761204 DOI: 10.1080/19336918.2015.1127467] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Maternal gestational diabetes (GDM) is associated with hyperglycaemia and hyperinsulinemia in the fetal circulation which consequently may induce endothelial dysfunction in the feto-placental vasculature. In fact, feto-placental vasculature reveals various morphological changes in response to GDM. The cell adhesion molecules (CAMs) ICAM-1, VCAM-1 and E-selectin promote attachment and trans-endothelial migration of leukocytes, and are up regulated in inflammation and endothelial dysfunction. Thus, we hypothesized that the GDM environment upregulates ICAM-1, VCAM-1 and E-selectin in the feto-placental endothelium. We isolated primary feto-placental endothelial cells (fpEC) after normal (n=18) and GDM pregnancy (n=11) and analyzed mRNA (RT-qPCR) and protein expression (Immunoblot) of ICAM-1, VCAM-1 and E-selectin. While other CAMs were unchanged on mRNA and protein levels, ICAM-1 protein was decreased by GDM. Further analysis revealed also a decrease in the release of soluble ICAM-1 (sICAM-1), whose levels correlated negatively with maternal BMI. We conclude that this reduction of ICAM-1 protein species is the result of post-translational regulation, since ICAM-1 mRNA expression was unchanged. In fact, miRNAs targeting ICAM-1 were upregulated in GDM fpEC. Immunohistochemistry showed weaker ICAM-1 staining in the placental endothelium after GDM pregnancies, and demonstrated ICAM-1 binding partners CD11a and CD18 expressed on leukocytes in fetal circulation and on placental tissue macrophages. This study identified reduction of ICAM-1 protein in fpEC in GDM pregnancy, which was regulated post-transcriptionally. Low ICAM-1 protein production may represent a protective, placenta-specific mechanism to avoid leukocyte transmigration into the placenta in response to GDM.
Collapse
Affiliation(s)
| | - Ursula Hiden
- a Department of Obstetrics and Gynecology , Medical University of Graz , Austria
| | - Martin Gauster
- b Institute of Cell Biology, Histology and Embryology, Medical University of Graz , Austria
| | - Ingrid Lang
- b Institute of Cell Biology, Histology and Embryology, Medical University of Graz , Austria
| | - Viktoria Konya
- c Institute of Experimental and Clinical Pharmacology, Medical University of Graz , Austria
| | - Akos Heinemann
- c Institute of Experimental and Clinical Pharmacology, Medical University of Graz , Austria
| | - Jelena Lögl
- a Department of Obstetrics and Gynecology , Medical University of Graz , Austria
| | - Richard Saffery
- d Cancer and Disease Epigenetics, Murdoch Children's Research Institute , Parkville , Victoria , Australia.,e Department of Pediatrics , University of Melbourne , Victoria , Australia
| | - Gernot Desoye
- a Department of Obstetrics and Gynecology , Medical University of Graz , Austria
| | - Silvija Cvitic
- a Department of Obstetrics and Gynecology , Medical University of Graz , Austria
| |
Collapse
|
22
|
Kotagama K, Babb CS, Wolter JM, Murphy RP, Mangone M. A human 3'UTR clone collection to study post-transcriptional gene regulation. BMC Genomics 2015; 16:1036. [PMID: 26645212 PMCID: PMC4673713 DOI: 10.1186/s12864-015-2238-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/24/2015] [Indexed: 11/16/2022] Open
Abstract
Background 3′untranslated regions (3′UTRs) are poorly understood portions of eukaryotic mRNAs essential for post-transcriptional gene regulation. Sequence elements in 3′UTRs can be target sites for regulatory molecules such as RNA binding proteins and microRNAs (miRNAs), and these interactions can exert significant control on gene networks. However, many such interactions remain uncharacterized due to a lack of high-throughput (HT) tools to study 3′UTR biology. HT cloning efforts such as the human ORFeome exemplify the potential benefits of genomic repositories for studying human disease, especially in relation to the discovery of biomarkers and targets for therapeutic agents. Currently there are no publicly available human 3′UTR libraries. To address this we have prepared the first version of the human 3′UTRome (h3′UTRome v1) library. The h3′UTRome is produced to a single high quality standard using the same recombinational cloning technology used for the human ORFeome, enabling universal operating methods and high throughput experimentation. The library is thoroughly sequenced and annotated with simple online access to information, and made publically available through gene repositories at low cost to all scientists with minimal restriction. Results The first release of the h3′UTRome library comprises 1,461 human 3′UTRs cloned into Gateway® entry vectors, ready for downstream analyses. It contains 3′UTRs for 985 transcription factors, 156 kinases, 171 RNA binding proteins, and 186 other genes involved in gene regulation and in disease. We demonstrate the feasibility of the h3′UTRome library by screening a panel of 87 3′UTRs for targeting by two miRNAs: let-7c, which is implicated in tumorigenesis, and miR-221, which is implicated in atherosclerosis and heart disease. The panel is enriched with genes involved in the RAS signaling pathway, putative novel targets for the two miRNAs, as well as genes implicated in tumorigenesis and heart disease. Conclusions The h3′UTRome v1 library is a modular resource that can be utilized for high-throughput screens to identify regulatory interactions between trans-acting factors and 3′UTRs, Importantly, the library can be customized based on the specifications of the researcher, allowing the systematic study of human 3′UTR biology. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2238-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kasuen Kotagama
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ, USA.
| | - Cody S Babb
- Virginia G. Piper Center For Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, AZ, USA.
| | - Justin M Wolter
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ, USA.
| | - Ronan P Murphy
- School of Health & Human Performance, Dublin City University, Dublin, Ireland.
| | - Marco Mangone
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ, USA. .,Virginia G. Piper Center For Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
23
|
Galore-Haskel G, Nemlich Y, Greenberg E, Ashkenazi S, Hakim M, Itzhaki O, Shoshani N, Shapira-Fromer R, Ben-Ami E, Ofek E, Anafi L, Besser MJ, Schachter J, Markel G. A novel immune resistance mechanism of melanoma cells controlled by the ADAR1 enzyme. Oncotarget 2015; 6:28999-9015. [PMID: 26338962 PMCID: PMC4745707 DOI: 10.18632/oncotarget.4905] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/10/2015] [Indexed: 12/21/2022] Open
Abstract
The blossom of immunotherapy in melanoma highlights the need to delineate mechanisms of immune resistance. Recently, we have demonstrated that the RNA editing protein, adenosine deaminase acting on RNA-1 (ADAR1) is down-regulated during metastatic transition of melanoma, which enhances melanoma cell proliferation and tumorigenicity. Here we investigate the role of ADAR1 in melanoma immune resistance.Importantly, knockdown of ADAR1 in human melanoma cells induces resistance to tumor infiltrating lymphocytes in a cell contact-dependent mechanism. We show that ADAR1, in an editing-independent manner, regulates the biogenesis of miR-222 at the transcription level and thereby Intercellular Adhesion Molecule 1 (ICAM1) expression, which consequently affects melanoma immune resistance. ADAR1 thus has a novel, pivotal, role in cancer immune resistance. Corroborating with these results, the expression of miR-222 in melanoma tissue specimens was significantly higher in patients who had no clinical benefit from treatment with ipilimumab as compared to patients that responded clinically, suggesting that miR-222 could function as a biomarker for the prediction of response to ipilimumab.These results provide not only novel insights on melanoma immune resistance, but also pave the way to the development of innovative personalized tools to enable optimal drug selection and treatment.
Collapse
Affiliation(s)
- Gilli Galore-Haskel
- Ella Lemelbaum Institute of Melanoma, Sheba Medical Center, Israel
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Yael Nemlich
- Ella Lemelbaum Institute of Melanoma, Sheba Medical Center, Israel
| | - Eyal Greenberg
- Ella Lemelbaum Institute of Melanoma, Sheba Medical Center, Israel
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Shira Ashkenazi
- Ella Lemelbaum Institute of Melanoma, Sheba Medical Center, Israel
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Motti Hakim
- cCAM Biotherapeutics, Misgav Industrial Park, Misgav, Israel
| | - Orit Itzhaki
- Ella Lemelbaum Institute of Melanoma, Sheba Medical Center, Israel
| | - Noa Shoshani
- Ella Lemelbaum Institute of Melanoma, Sheba Medical Center, Israel
| | | | - Eytan Ben-Ami
- Ella Lemelbaum Institute of Melanoma, Sheba Medical Center, Israel
| | - Efrat Ofek
- Institute of Pathology, Sheba Medical Center, Israel
| | - Liat Anafi
- Institute of Pathology, Sheba Medical Center, Israel
| | - Michal J. Besser
- Ella Lemelbaum Institute of Melanoma, Sheba Medical Center, Israel
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Jacob Schachter
- Ella Lemelbaum Institute of Melanoma, Sheba Medical Center, Israel
| | - Gal Markel
- Ella Lemelbaum Institute of Melanoma, Sheba Medical Center, Israel
- Talpiot Medical Leadership Program, Sheba Medical Center, Israel
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
24
|
Sehgal M, Zeremski M, Talal AH, Ginwala R, Elrod E, Grakoui A, Li QG, Philip R, Khan ZK, Jain P. IFN-α-Induced Downregulation of miR-221 in Dendritic Cells: Implications for HCV Pathogenesis and Treatment. J Interferon Cytokine Res 2015; 35:698-709. [PMID: 26090579 PMCID: PMC4560851 DOI: 10.1089/jir.2014.0211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/19/2015] [Indexed: 12/19/2022] Open
Abstract
Although interferon (IFN)-α is known to exert immunomodulatory and antiproliferative effects on dendritic cells (DCs) through induction of protein-coding IFN-stimulated genes (ISGs), little is known about IFN-α-regulated miRNAs in DCs. Since several miRNAs are involved in regulating DC functions, it is important to investigate whether IFN-α's effects on DCs are mediated through miRNAs as well. In this study, we examined miRNA expression patterns in myeloid DCs (mDCs) and plasmacytoid DCs after exposing them to IFN-α. We report that IFN-α downregulates miR-221 in both DC subsets via inhibition of STAT3. We validated proapoptotic proteins BCL2L11 and CDKN1C as miR-221 targets suggesting that IFN-α can induce DC apoptosis via miR-221 downregulation. In addition, we validated another miR-221 target, SOCS1, which is known to be a negative regulator of JAK/STAT signaling. Consistent with this, miR-221 overexpression in mDCs enhanced the secretion of proinflammatory cytokines IL-6 and TNF-α. In peripheral blood mononuclear cells (PBMCs) of HIV-1/HCV co-infected individuals undergoing IFN-α-based treatment the baseline miR-221 expression was lower in non-responders compared with responders; and miR-221 expression directly correlated with DC frequency and IL-6/TNF-α secretion. In addition to PBMCs, we isolated total liver cells and kupffer cells from HCV-infected individuals and individuals with alcoholic cirrhosis. We found that both total liver cells and kupffer cells from HCV-infected individuals had significantly higher miR-221 levels compared with individuals with cirrhosis. Overall, we demonstrate that IFN-α exerts both antiproliferative and immunomodulatory effects on mDCs via miR-221 downregulation; and IFN-miR-221 axis can play important role in HCV pathogenesis and treatment.
Collapse
Affiliation(s)
- Mohit Sehgal
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | | | - Andrew H. Talal
- School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Rashida Ginwala
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | | | | | - Qi-Ging Li
- Duke University Medical Center, Durham, North Carolina
| | - Ramila Philip
- Immunotope, Inc., Pennsylvania Biotechnology Center, Doylestown, Pennsylvania
| | - Zafar K. Khan
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Pooja Jain
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
25
|
Heidari N, Saki N, De Filippis L, Shahjahani M, Teimouri A, Ahmadzadeh A. Central nervous system niche involvement in the leukemia. Clin Transl Oncol 2015; 18:240-50. [DOI: 10.1007/s12094-015-1370-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 12/25/2022]
|
26
|
Chistiakov DA, Sobenin IA, Orekhov AN, Bobryshev YV. Human miR-221/222 in Physiological and Atherosclerotic Vascular Remodeling. BIOMED RESEARCH INTERNATIONAL 2015; 2015:354517. [PMID: 26221589 PMCID: PMC4499635 DOI: 10.1155/2015/354517] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/29/2014] [Indexed: 12/11/2022]
Abstract
A cluster of miR-221/222 is a key player in vascular biology through exhibiting its effects on vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). These miRNAs contribute to vascular remodeling, an adaptive process involving phenotypic and behavioral changes in vascular cells in response to vascular injury. In proliferative vascular diseases such as atherosclerosis, pathological vascular remodeling plays a prominent role. The miR-221/222 cluster controls development and differentiation of ECs but inhibits their proangiogenic activation, proliferation, and migration. miR-221/222 are primarily implicated in maintaining endothelial integrity and supporting quiescent EC phenotype. Vascular expression of miR-221/222 is upregulated in initial atherogenic stages causing inhibition of angiogenic recruitment of ECs and increasing endothelial dysfunction and EC apoptosis. In contrast, these miRNAs stimulate VSMCs and switching from the VSMC "contractile" phenotype to the "synthetic" phenotype associated with induction of proliferation and motility. In atherosclerotic vessels, miR-221/222 drive neointima formation. Both miRNAs contribute to atherogenic calcification of VSMCs. In advanced plaques, chronic inflammation downregulates miR-221/222 expression in ECs that in turn could activate intralesion neoangiogenesis. In addition, both miRNAs could contribute to cardiovascular pathology through their effects on fat and glucose metabolism in nonvascular tissues such as adipose tissue, liver, and skeletal muscles.
Collapse
Affiliation(s)
- Dmitry A. Chistiakov
- Department of Medical Nanobiotechnology, Pirogov Russian State Medical University, Moscow 117997, Russia
- The Mount Sinai Community Clinical Oncology Program, Mount Sinai Comprehensive Cancer Center, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Igor A. Sobenin
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia
- Laboratory of Medical Genetics, Russian Cardiology Research and Production Complex, Moscow 121552, Russia
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia
| | - Yuri V. Bobryshev
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia
- Faculty of Medicine and St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, NSW 2052, Australia
- School of Medicine, University of Western Sydney, Campbelltown, NSW 2560, Australia
| |
Collapse
|
27
|
Marques-Rocha JL, Samblas M, Milagro FI, Bressan J, Martínez JA, Marti A. Noncoding RNAs, cytokines, and inflammation-related diseases. FASEB J 2015; 29:3595-611. [PMID: 26065857 DOI: 10.1096/fj.14-260323] [Citation(s) in RCA: 360] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 06/02/2015] [Indexed: 12/15/2022]
Abstract
Chronic inflammation is involved in the onset and development of many diseases, including obesity, atherosclerosis, type 2 diabetes, osteoarthritis, autoimmune and degenerative diseases, asthma, periodontitis, and cirrhosis. The inflammation process is mediated by chemokines, cytokines, and different inflammatory cells. Although the molecules and mechanisms that regulate this primary defense mechanism are not fully understood, recent findings offer a putative role of noncoding RNAs, especially microRNAs (miRNAs), in the progression and management of the inflammatory response. These noncoding RNAs are crucial for the stability and maintenance of gene expression patterns that characterize some cell types, tissues, and biologic responses. Several miRNAs, such as miR-126, miR-132, miR-146, miR-155, and miR-221, have emerged as important transcriptional regulators of some inflammation-related mediators. Additionally, little is known about the involvement of long noncoding RNAs, long intergenic noncoding RNAs, and circular RNAs in inflammation-mediated processes and the homeostatic imbalance associated with metabolic disorders. These noncoding RNAs are emerging as biomarkers with diagnosis value, in prognosis protocols, or in the personalized treatment of inflammation-related alterations. In this context, this review summarizes findings in the field, highlighting those noncoding RNAs that regulate inflammation, with emphasis on recognized mediators such as TNF-α, IL-1, IL-6, IL-18, intercellular adhesion molecule 1, VCAM-1, and plasminogen activator inhibitor 1. The down-regulation or antagonism of the noncoding RNAs and the administration of exogenous miRNAs could be, in the near future, a promising therapeutic strategy in the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- José Luiz Marques-Rocha
- *Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil; Department of Nutrition, Food Science, and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Physiopathology of Obesity, Carlos III Institute, Madrid, Spain; and Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Mirian Samblas
- *Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil; Department of Nutrition, Food Science, and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Physiopathology of Obesity, Carlos III Institute, Madrid, Spain; and Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Fermin I Milagro
- *Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil; Department of Nutrition, Food Science, and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Physiopathology of Obesity, Carlos III Institute, Madrid, Spain; and Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Josefina Bressan
- *Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil; Department of Nutrition, Food Science, and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Physiopathology of Obesity, Carlos III Institute, Madrid, Spain; and Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - J Alfredo Martínez
- *Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil; Department of Nutrition, Food Science, and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Physiopathology of Obesity, Carlos III Institute, Madrid, Spain; and Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Amelia Marti
- *Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil; Department of Nutrition, Food Science, and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Physiopathology of Obesity, Carlos III Institute, Madrid, Spain; and Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
28
|
Szade A, Grochot-Przeczek A, Florczyk U, Jozkowicz A, Dulak J. Cellular and molecular mechanisms of inflammation-induced angiogenesis. IUBMB Life 2015; 67:145-59. [PMID: 25899846 DOI: 10.1002/iub.1358] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/20/2015] [Indexed: 02/06/2023]
Abstract
Blood vessel formation is a fundamental process for the development of organism and tissue regeneration. Of importance, angiogenesis occurring during postnatal development is usually connected with inflammation. Here, we review how molecular and cellular mechanisms underlying inflammatory reactions regulate angiogenesis. Inflamed tissues are characterized by hypoxic conditions and immune cell infiltration. In this review, we describe an interplay of hypoxia-inducible factors (HIFs), HIF1 and HIF2, as well as NF-κB and nitric oxide in the regulation of angiogenesis. The mobilization of macrophages and the differential role of M1 and M2 macrophage subsets in angiogenesis are also discussed. Next, we present the current knowledge about microRNA regulation of inflammation in the context of new blood vessel formation. Finally, we describe how the mechanisms involved in inflammation influence tumor angiogenesis. We underlay and discuss the role of NF-E2-related factor 2/heme oxygenase-1 pathway as crucial in the regulation of inflammation-induced angiogenesis.
Collapse
Affiliation(s)
- Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | | | | | |
Collapse
|
29
|
Egaña-Gorroño L, Escribà T, Boulanger N, Guardo AC, León A, Bargalló ME, Garcia F, Gatell JM, Plana M, Arnedo M. Differential microRNA expression profile between stimulated PBMCs from HIV-1 infected elite controllers and viremic progressors. PLoS One 2014; 9:e106360. [PMID: 25225963 PMCID: PMC4165582 DOI: 10.1371/journal.pone.0106360] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 08/06/2014] [Indexed: 12/28/2022] Open
Abstract
Background The emerging relationship between microRNAs (miRNA) and viral-control is a topic of interest in the field of HIV. Host-genome might play an important role in the control of viremia. The aim of this study was to assess the specific miRNA profile that could contribute to the control of HIV replication in Elite Controllers Results After adequate normalization, expression profile of 286 human miRNAs (hsa-miR) was evaluated in phytohaemagglutinin-stimulated PBMCs from 29 individuals classified in 4 groups: 8 elite controllers (EC; viral load <50 cp/ml without treatment), 8 viremic progressors (VP; VL>5000 cp/ml without treatment), 8 patients under antiretroviral treatment (ART; VL<200 cp/ml) and 5 uninfected individuals (HIV-) through TaqMan Array Human microRNA Cards v3.0. A differential expression pattern consisting of 23 miRNAs became significantly different when comparing EC and VP. Profiling analysis segregated the population in two different blocks: while EC and HIV- clustered together in the same block (EC/HIV-_block 1), VP and ART individuals clustered together in a second block (VP/ART_block 2). Two inversely expressed miRNA patterns were determined within those two blocks: a set of 4 miRNAs (hsa-miR-221, -27a, -27b and -29b) was up-expressed in EC/HIV-_block and down-expressed in VP/ART_block while 19 miRNAs were down-expressed in block 1 and up-expressed in block 2. Differential miRNAs were successfully validated through individual RT-qPCR assays. Conclusions Profile in EC resembled HIV- and differentially clusters with VP and ART. Therefore, differential clustering does not rely on undetectable viremia.
Collapse
Affiliation(s)
- Lander Egaña-Gorroño
- Group of Genomics and Pharmacogenomics, AIDS Research Group, Catalan project for the development of an HIV vaccine (HIVACAT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Tuixent Escribà
- Group of Genomics and Pharmacogenomics, AIDS Research Group, Catalan project for the development of an HIV vaccine (HIVACAT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Nicolas Boulanger
- Group of Genomics and Pharmacogenomics, AIDS Research Group, Catalan project for the development of an HIV vaccine (HIVACAT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Centro Nacional de Análisis Genómico, Scientific Park of Barcelona, Barcelona, Spain
| | - Alberto Crespo Guardo
- Immunopathology and Cellular Immunology, AIDS Research Group, Catalan project for the development of an HIV vaccine (HIVACAT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Agathe León
- Department of Infectious Diseases, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Manel Enric Bargalló
- Immunopathology and Cellular Immunology, AIDS Research Group, Catalan project for the development of an HIV vaccine (HIVACAT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Felipe Garcia
- Department of Infectious Diseases, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - José María Gatell
- Department of Infectious Diseases, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Montserrat Plana
- Immunopathology and Cellular Immunology, AIDS Research Group, Catalan project for the development of an HIV vaccine (HIVACAT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Mireia Arnedo
- Group of Genomics and Pharmacogenomics, AIDS Research Group, Catalan project for the development of an HIV vaccine (HIVACAT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- * E-mail:
| | | |
Collapse
|
30
|
MiRNA-296-3p-ICAM-1 axis promotes metastasis of prostate cancer by possible enhancing survival of natural killer cell-resistant circulating tumour cells. Cell Death Dis 2013; 4:e928. [PMID: 24263102 PMCID: PMC3847334 DOI: 10.1038/cddis.2013.458] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/06/2013] [Accepted: 10/21/2013] [Indexed: 01/28/2023]
Abstract
Natural killer (NK) cells are important in host to eliminate circulating tumour cells (CTCs) in turn preventing the development of tumour cells into metastasis but the mechanisms are very poorly defined. Here we find that the expression level of miR-296-3p is much lower in the non-metastatic human prostate cancer (PCa) cell line P69 than that in the highly metastatic cell line M12, which is derived from P69. We demonstrate that miR-296-3p directly targets and inhibits the expression of intercellular adhesion molecule 1 (ICAM-1) in the malignant M12. The data from clinical tissue microarrays also show that miR-296-3p is frequently upregulated and ICAM-1 is reversely downregulated in PCa. Interestingly, ectopic expression of miR-296-3p in P69 increases the tolerance to NK cells whereas knockdown of miR-296-3p in M12 reduces the resistance to NK cells, which both phenotypes can be rescued by re-expression or silencing of ICAM-1 in P69 and M12, respectively. These results are also manifested in vivo by the decrease in the incidence of pulmonary tumour metastasis exhibited by knockdown of miR-296-3p in M12 when injected into athymic nude mice via tail vein, and consistently down-expression of ICAM-1 reverses this to increase extravasation of CTCs into lungs. Above results suggest that this newly identified miR-296-3p-ICAM-1 axis has a pivotal role in mediating PCa metastasis by possible enhancing survival of NK cell-resistant CTC. Our findings provide novel potential targets for PCa therapy and prognosis.
Collapse
|
31
|
Hydrogen Sulfide Suppresses High Glucose–Induced Expression of Intercellular Adhesion Molecule-1 in Endothelial Cells. J Cardiovasc Pharmacol 2013; 62:278-84. [DOI: 10.1097/fjc.0b013e31829875ef] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Mruk DD, Xiao X, Lydka M, Li MWM, Bilinska B, Cheng CY. Intercellular adhesion molecule 1: recent findings and new concepts involved in mammalian spermatogenesis. Semin Cell Dev Biol 2013; 29:43-54. [PMID: 23942142 DOI: 10.1016/j.semcdb.2013.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 01/05/2023]
Abstract
Spermatogenesis, the process of spermatozoa production, is regulated by several endocrine factors, including testosterone, follicle stimulating hormone, luteinizing hormone and estradiol 17β. For spermatogenesis to reach completion, developing germ cells must traverse the seminiferous epithelium while remaining transiently attached to Sertoli cells. If germ cell adhesion were to be compromised for a period of time longer than usual, germ cells would slough from the seminiferous epithelium and infertility would result. Presently, Sertoli-germ cell adhesion is known to be mediated largely by classical and desmosomal cadherins. More recent studies, however, have begun to expand long-standing concepts and to examine the roles of other proteins such as intercellular adhesion molecules. In this review, we focus on the biology of intercellular adhesion molecules in the mammalian testis, hoping that this information is useful in the design of future studies.
Collapse
Affiliation(s)
- Dolores D Mruk
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, United States.
| | - Xiang Xiao
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, United States
| | - Marta Lydka
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, United States
| | - Michelle W M Li
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, United States
| | - Barbara Bilinska
- Institute of Zoology, Department of Endocrinology, The Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - C Yan Cheng
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, United States
| |
Collapse
|
33
|
Duan M, Yao H, Hu G, Chen X, Lund AK, Buch S. HIV Tat induces expression of ICAM-1 in HUVECs: implications for miR-221/-222 in HIV-associated cardiomyopathy. PLoS One 2013; 8:e60170. [PMID: 23555914 PMCID: PMC3610892 DOI: 10.1371/journal.pone.0060170] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/21/2013] [Indexed: 12/11/2022] Open
Abstract
Cardiac involvement is a well-documented complication of human immunodeficiency virus-1 (HIV-1) infection. Previous studies have demonstrated increased adhesion of monocytes to human vascular endothelial cells in HIV-infected individuals. HIV Tat protein, which is the transactivator of transcription (Tat), plays a key role in activating endothelial cells. In the present study, we demonstrated that exposure of HUVECs to HIV Tat protein resulted in induced expression of cell adhesion molecules specifically ICAM-1, leading to increased adhesion of monocytes to the endothelium. This effect of Tat was mediated through activation of mitogen-activated protein kinases and downstream transcription factor NF-κB. Increased expression of ICAM-1 was regulated by microRNA (miRNA) miR-221 and to some extent by miR-222, both of which are known to target ICAM-1. Functional inhibition of the respective miRNAs with anti-miR oligonucleotides resulted in induction of ICAM-1 protein in HUVECs. Furthermore, Tat-stimulated regulation of ICAM-1 via miR-221/-222 involved the NF-kB-dependent pathway. Functional implication and specificity of up-regulated ICAM-1 was confirmed using the ICAM-1 neutralizing antibody in the in vitro cell adhesion assays. These findings were further confirmed in vivo using the HIV transgenic (Tg) rats. These animals not only demonstrated increased expression of ICAM-1 mRNA, with a concomitant reduction in the expression of miR-221 in the aorta and heart, but also had increased expression of the ICAM-1 protein that was predominantly in the endothelial cell layer. Taken together, these findings implicate that Tat-mediated induction of ICAM-1 expression plays a critical role in monocyte adhesion observed in HIV-1-associated cardiomyopathies.
Collapse
Affiliation(s)
- Ming Duan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Key Laboratory for Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Honghong Yao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Guoku Hu
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| | - XianMing Chen
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| | - Amie K. Lund
- Cardiopulmonary and Environmental Toxicology Department, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, United States of America
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
34
|
Veksler-Lublinsky I, Shemer-Avni Y, Meiri E, Bentwich Z, Kedem K, Ziv-Ukelson M. Finding quasi-modules of human and viral miRNAs: a case study of human cytomegalovirus (HCMV). BMC Bioinformatics 2012. [PMID: 23206407 PMCID: PMC3598692 DOI: 10.1186/1471-2105-13-322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background MicroRNAs (miRNAs) are important regulators of gene expression encoded by a variety of organisms, including viruses. Although the function of most of the viral miRNAs is currently unknown, there is evidence that both viral and host miRNAs contribute to the interactions between viruses and their hosts. miRNAs constitute a complex combinatorial network, where one miRNA may target many genes and one gene may be targeted by multiple miRNAs. In particular, viral and host miRNAs may also have mutual target genes. Based on published evidence linking viral and host miRNAs there are three modes of mutual regulation: competing, cooperating, and compensating modes. Results In this paper we explore the compensating mode of mutual regulation upon Human Cytomegalovirus (HCMV) infection, when host miRNAs are down regulated and viral miRNAs compensate by mimicking their function. To achieve this, we develop a new algorithm which finds groups, called quasi-modules, of viral and host miRNAs and their mutual target genes, and use a new host miRNA expression data for HCMV-infected and uninfected cells. For two of the reported quasi-modules, supporting evidence from biological and medical literature is provided. Conclusions The modules found by our method may advance the understanding of the role of miRNAs in host-viral interactions, and the genes in these modules may serve as candidates for further experimental validation.
Collapse
|
35
|
Abstract
OBJECTIVES Because post-transcriptional mechanisms modulate levels of p16 (encoded by CDKN2A) and p15 (encoded by CDKN2B), we tested whether interferon-γ regulates the expression of these proteins and the effect of the 9p21 genotype. BACKGROUND The mechanism whereby the common variant at chromosome 9p21.3 confers risk for coronary artery disease (CAD) remains uncertain. A recent report proposed that 9p21.3 confers differential activation of adjacent genes in response to interferon-γ, and reported that mRNA levels of CDKN2B are reduced in response to interferon-γ. METHODS Human umbilical vein endothelial cells (HUVECs), aortic smooth muscle cells, HeLa cells, HEK293 cells, and 16 human lymphoblastoid cell lines, all genotyped for the 9p21.3 locus, were treated with interferon-γ and analyzed by immunoblot. RESULTS In all cells tested--except HUVECs where expression was not modulated by interferon-γ--regardless of 9p21.3 genotype, interferon-γ increased the expression of p16 and p15. Northern blot analysis confirmed that interferon-γ has little effect on mRNA levels of CDKN2A and CDKN2B. CONCLUSIONS The 9p21.3 risk genotype does not affect the activation of cyclin-dependent kinase inhibitors p15 and p16 by interferon-γ. Thus, another mechanism is likely to account for the CAD risk associated with this locus.
Collapse
|
36
|
Simon-Keller K, Mößinger K, Bohlender AL, Ströbel P, Marx A. Variable Resistance of RMS to Interferon γ Signaling. ISRN ONCOLOGY 2012; 2012:789152. [PMID: 22919516 PMCID: PMC3420146 DOI: 10.5402/2012/789152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 04/10/2012] [Indexed: 11/24/2022]
Abstract
Aims. Chimeric T cells directed to the γ-subunit of the fetal acetylcholine receptor (fAChR) produce large amounts of interferon-γ (IFNγ) on coculture with fAChR-expressing rhabdomyosarcoma (RMS) cells prior to RMS cell death. The aim of this study was to elucidate whether IFNγ blocks proliferation and survival of RMS cells and modulates expression of genes with relevance for cytotoxicity of chimeric T cells. Methods. Expression levels of IFNγ receptor (IFNGR), AChR, MHCI, MHCII, and CIITA (class II transactivator) by RMS were checked by flow cytometry, qRT-PCR, and western blot. Proliferation and cell survival were investigated by annexin V and propidium iodide staining and MTT (thiazolyl-blue-tetrazolium-bromide) assay. Key phosphorylation and binding sites of IFNGRs were checked by DNA sequencing. Results. IFNγ treatment blocked proliferation in 3 of 6 RMS cell lines, but reduced survival in only one. IFNGR was expressed at levels comparable to controls and binding sites for JAK and STAT1 were intact. Induction of several target genes (e.g., AChR, MHCI, and MHCII) by IFNγ was detected on the RNA level but not protein level. Conclusions. IFNγ does not significantly contribute to the killing of RMS cells by fAChR directed chimeric T cells. Signalling downstream of the IFNR receptor, including the posttranscriptional level, is impaired in most RMS cell lines.
Collapse
Affiliation(s)
- Katja Simon-Keller
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, 68135 Mannheim, Germany
| | | | | | | | | |
Collapse
|
37
|
Guan J, Wang G, Tam LS, Kwan BCH, Li EKM, Chow KM, Li PKT, Szeto CC. Urinary sediment ICAM-1 level in lupus nephritis. Lupus 2012; 21:1190-5. [PMID: 22685016 DOI: 10.1177/0961203312451334] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Urinary intercellular adhesion molecule-1 (ICAM-1) level is potentially a valuable biomarker of lupus nephritis (LN), but because ICAM-1 is a cell-surface molecule, soluble ICAM-1 level in urinary supernatant measured by ELISA may not be biologically relevant. METHODS The ICAM-1 level in urine sediment of 12 LN patients, 10 patients with pauci-immune necrotizing glomerulonephritis (NecGN), and six healthy controls were determined with a polymerase chain reaction (PCR)-based assay. The urinary sediment levels of miR-221, miR-222, miR-339-3P and miR-339-5P, which are involved in the regulation of ICAM-1 production, were also quantified. RESULTS LN patients had lower urinary sediment ICAM-1 levels than the other two groups (overall p = 0.034). In addition, urinary sediment ICAM-1 level inversely correlated with the estimated glomerular filtration rate (GFR) (r = -0.474, p = 0.026) but not other markers of lupus activity, or urinary sediment levels of miR-221, miR-222, miR-339-3P, or miR-339-5P. However, serum anti-dsDNA level inversely correlated with urinary sediment levels of miR-221 (r = -0.591, p = 0.043) and miR-222 (r = -0.689, p = 0.013), while urinary sediment miR-221 level also correlated with serum C3 level (r = 0.658, p = 0.02). CONCLUSIONS We conclude that urinary sediment ICAM-1 level was significantly reduced in LN, and the level inversely correlated with renal function. Urinary sediment miR-221 and miR-222 levels correlate with lupus disease activity and may serve as biomarkers of LN.
Collapse
Affiliation(s)
- J Guan
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kan AA, van Erp S, Derijck AAHA, de Wit M, Hessel EVS, O'Duibhir E, de Jager W, Van Rijen PC, Gosselaar PH, de Graan PNE, Pasterkamp RJ. Genome-wide microRNA profiling of human temporal lobe epilepsy identifies modulators of the immune response. Cell Mol Life Sci 2012; 69:3127-45. [PMID: 22535415 PMCID: PMC3428527 DOI: 10.1007/s00018-012-0992-7] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/22/2012] [Accepted: 04/02/2012] [Indexed: 10/28/2022]
Abstract
Mesial temporal lobe epilepsy (mTLE) is a chronic neurological disorder characterized by recurrent seizures. The pathogenic mechanisms underlying mTLE may involve defects in the post-transcriptional regulation of gene expression. MicroRNAs (miRNAs) are non-coding RNAs that control the expression of genes at the post-transcriptional level. Here, we performed a genome-wide miRNA profiling study to examine whether miRNA-mediated mechanisms are affected in human mTLE. miRNA profiles of the hippocampus of autopsy control patients and two mTLE patient groups were compared. This revealed segregated miRNA signatures for the three different patient groups and 165 miRNAs with up- or down-regulated expression in mTLE. miRNA in situ hybridization detected cell type-specific changes in miRNA expression and an abnormal nuclear localization of select miRNAs in neurons and glial cells of mTLE patients. Of several cellular processes implicated in mTLE, the immune response was most prominently targeted by deregulated miRNAs. Enhanced expression of inflammatory mediators was paralleled by a reduction in miRNAs that were found to target the 3'-untranslated regions of these genes in reporter assays. miR-221 and miR-222 were shown to regulate endogenous ICAM1 expression and were selectively co-expressed with ICAM1 in astrocytes in mTLE patients. Our findings suggest that miRNA changes in mTLE affect the expression of immunomodulatory proteins thereby further facilitating the immune response. This mechanism may have broad implications given the central role of astrocytes and the immune system in human neurological disease. Overall, this work extends the current concepts of human mTLE pathogenesis to the level of miRNA-mediated gene regulation.
Collapse
Affiliation(s)
- Anne A Kan
- Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Saba R, Gushue S, Huzarewich RLCH, Manguiat K, Medina S, Robertson C, Booth SA. MicroRNA 146a (miR-146a) is over-expressed during prion disease and modulates the innate immune response and the microglial activation state. PLoS One 2012; 7:e30832. [PMID: 22363497 PMCID: PMC3281888 DOI: 10.1371/journal.pone.0030832] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 12/27/2011] [Indexed: 12/03/2022] Open
Abstract
Increasing evidence supports the involvement of microRNAs (miRNAs) in inflammatory and immune processes in prion neuropathogenesis. MiRNAs are small, non-coding RNA molecules which are emerging as key regulators of numerous cellular processes. We established miR-146a over-expression in prion-infected mouse brain tissues concurrent with the onset of prion deposition and appearance of activated microglia. Expression profiling of a variety of central nervous system derived cell-lines revealed that miR-146a is preferentially expressed in cells of microglial lineage. Prominent up-regulation of miR-146a was evident in the microglial cell lines BV-2 following TLR2 or TLR4 activation and also EOC 13.31 via TLR2 that reached a maximum 24–48 hours post-stimulation, concomitant with the return to basal levels of transcription of induced cytokines. Gain- and loss-of-function studies with miR-146a revealed a substantial deregulation of inflammatory response pathways in response to TLR2 stimulation. Significant transcriptional alterations in response to miR-146a perturbation included downstream mediators of the pro-inflammatory transcription factor, nuclear factor-kappa B (NF-κB) and the JAK-STAT signaling pathway. Microarray analysis also predicts a role for miR-146a regulation of morphological changes in microglial activation states as well as phagocytic mediators of the oxidative burst such as CYBA and NOS3. Based on our results, we propose a role for miR-146a as a potent modulator of microglial function by regulating the activation state during prion induced neurodegeneration.
Collapse
Affiliation(s)
- Reuben Saba
- Molecular PathoBiology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shantel Gushue
- Molecular PathoBiology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rhiannon L. C. H. Huzarewich
- Molecular PathoBiology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Kathy Manguiat
- Molecular PathoBiology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Sarah Medina
- Molecular PathoBiology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Catherine Robertson
- Molecular PathoBiology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Stephanie A. Booth
- Molecular PathoBiology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
40
|
Zhao J, Gong AY, Zhou R, Liu J, Eischeid AN, Chen XM. Downregulation of PCAF by miR-181a/b provides feedback regulation to TNF-α-induced transcription of proinflammatory genes in liver epithelial cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:1266-74. [PMID: 22219331 DOI: 10.4049/jimmunol.1101976] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aberrant cellular responses to proinflammatory cytokines, such as TNF-α, are pathogenic features in most chronic inflammatory diseases. A variety of extracellular and intracellular feedback pathways has evolved to prevent an inappropriate cellular reaction to these proinflammatory cytokines. In this study, we report that TNF-α treatment of human and mouse cholangiocytes and hepatocytes downregulated expression of p300/CBP-associated factor (PCAF), a coactivator and an acetyltransferase that promotes histone acetylation and gene transcription. Of these upregulated microRNAs in TNF-α-treated cells, miR-181a/b (miR-181a and miR-181b) suppressed translation of PCAF mRNA. Functional manipulation of miR-181a/b caused reciprocal alterations in PCAF protein expression in cultured cholangiocytes and hepatocytes. Inhibition of miR-181a/b function with anti-miRs blocked TNF-α-induced suppression of PCAF expression. Promoter recruitment of PCAF was shown to be associated with TNF-α-induced transcription of inflammatory genes. Intriguingly, pretreatment of cells with TNF-α inhibited transcription of inflammatory genes in response to subsequent TNF-α stimulation. Overexpression of PCAF or inhibition of miR-181a/b function with anti-miRs attenuated the inhibitory effects of TNF-α pretreatment on epithelial inflammatory response to subsequent TNF-α stimulation. Downregulation of PCAF and the inhibitory effects of TNF-α pretreatment on liver epithelial inflammatory response were further confirmed in a mouse model of TNF-α i.p. injection. These data suggest that PCAF is a target for miR-181a/b, and downregulation of PCAF by TNF-α provides negative feedback regulation to inflammatory reactions in liver epithelial cells, a process that may be relevant to the epigenetic fine-tuning of epithelial inflammatory processes in general.
Collapse
Affiliation(s)
- Jian Zhao
- Key Laboratory of Biological Resource and Ecological Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610064, China
| | | | | | | | | | | |
Collapse
|
41
|
Fong YC, Lin CY, Su YC, Chen WC, Tsai FJ, Tsai CH, Huang CY, Tang CH. CCN6 enhances ICAM-1 expression and cell motility in human chondrosarcoma cells. J Cell Physiol 2011; 227:223-32. [PMID: 21391218 DOI: 10.1002/jcp.22720] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chondrosarcoma is a type of highly malignant tumor with a potent capacity to invade locally and cause distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. CCN6 is a cysteine-rich protein that belongs to the CCN (Cyr61, CTGF, and Nov) family of matricellular proteins. However, the effects of CCN6 on human chondrosarcoma cells are largely unknown. In this study, we found that CCN6 increased the migration and the expression of intercellular adhesion molecule-1 (ICAM-1) in human chondrosarcoma cells. αvβ3 and αvβ5 integrin monoclonal antibody and mitogen-activated protein kinase (MEK) inhibitors (PD98059 and U0126) inhibited the CCN6-induced increase of the migration and ICAM-1 up-regulation of chondrosarcoma cells. CCN6 stimulation increased the phosphorylation of focal adhesion kinase (FAK), MEK, and extracellular signal-regulated kinase (ERK). In addition, activator protein-1 (AP-1) inhibitors suppressed the cell migration and ICAM-1 expression enhanced by CCN6. Moreover, CCN6 increased AP-1 luciferase activity and binding of c-Jun to the AP-1 element on the ICAM-1 promoter. Taken together, our results indicate that CCN6 enhances the migration of chondrosarcoma cells by increasing ICAM-1 expression through the αvβ3 and αvβ5 integrin receptor, FAK, MEK, ERK, c-Jun, and AP-1 signal transduction pathway.
Collapse
Affiliation(s)
- Yi-Chin Fong
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Hanin G, Soreq H. Cholinesterase-Targeting microRNAs Identified in silico Affect Specific Biological Processes. Front Mol Neurosci 2011; 4:28. [PMID: 22007158 PMCID: PMC3186941 DOI: 10.3389/fnmol.2011.00028] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 09/14/2011] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRs) have emerged as important gene silencers affecting many target mRNAs. Here, we report the identification of 244 miRs that target the 3′-untranslated regions of different cholinesterase transcripts: 116 for butyrylcholinesterase (BChE), 47 for the synaptic acetylcholinesterase (AChE-S) splice variant, and 81 for the normally rare splice variant AChE-R. Of these, 11 and 6 miRs target both AChE-S and AChE-R, and AChE-R and BChE transcripts, respectively. BChE and AChE-S showed no overlapping miRs, attesting to their distinct modes of miR regulation. Generally, miRs can suppress a number of targets; thereby controlling an entire battery of functions. To evaluate the importance of the cholinesterase-targeted miRs in other specific biological processes we searched for their other experimentally validated target transcripts and analyzed the gene ontology enriched biological processes these transcripts are involved in. Interestingly, a number of the resulting categories are also related to cholinesterases. They include, for BChE, response to glucocorticoid stimulus, and for AChE, response to wounding and two child terms of neuron development: regulation of axonogenesis and regulation of dendrite morphogenesis. Importantly, all of the AChE-targeting miRs found to be related to these selected processes were directed against the normally rare AChE-R splice variant, with three of them, including the neurogenesis regulator miR-132, also directed against AChE-S. Our findings point at the AChE-R splice variant as particularly susceptible to miR regulation, highlight those biological functions of cholinesterases that are likely to be subject to miR post-transcriptional control, demonstrate the selectivity of miRs in regulating specific biological processes, and open new venues for targeted interference with these specific processes.
Collapse
Affiliation(s)
- Geula Hanin
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem Jerusalem, Israel
| | | |
Collapse
|
43
|
Buitrago D, Keutgen XM, Crowley M, Filicori F, Aldailami H, Hoda R, Liu YF, Hoda RS, Scognamiglio T, Jin M, Fahey TJ, Zarnegar R. Intercellular adhesion molecule-1 (ICAM-1) is upregulated in aggressive papillary thyroid carcinoma. Ann Surg Oncol 2011; 19:973-80. [PMID: 21879273 DOI: 10.1245/s10434-011-2029-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Indexed: 01/08/2023]
Abstract
BACKGROUND Intercellular adhesion molecule-1 (ICAM-1) is implicated in carcinogenesis. In this study we examined the expression of ICAM-1 in papillary thyroid cancer (PTC). We hypothesized that ICAM-1 correlates with indicators of tumor aggressiveness in PTC. METHODS Thirty-five primary and metastatic PTCs, five follicular adenomas, five Hashimoto thyroiditis, five nodular hyperplasia, and eight normal thyroid tissue samples were analyzed for ICAM-1 gene expression using quantitative reverse-transcription polymerase chain reaction (RT-PCR). ICAM-1 gene expression was analyzed at protein level by immunohistochemistry (IHC) using a semiquantitative score. Gene expression and intensity levels were correlated with markers of tumor aggressiveness including BRAF V600E mutation, tumor size, extrathyroidal extension (ETE), angiolymphatic invasion, and lymph node metastasis. RESULTS ICAM-1 gene expression was higher in PTC (p = 0.01) and lymph node metastases (p = 0.03) when compared with benign tumors and Hashimoto's. Furthermore, PTCs exhibiting BRAF V600E mutation (p = 0.01), ETE (p < 0.01), and lymph node metastasis (p = 0.02) were associated with higher ICAM-1 levels. Gene expression correlated with protein levels on IHC. Additionally, poorly differentiated thyroid carcinoma had a higher ICAM-1 intensity score compared with well-differentiated carcinoma (p = 0.03). CONCLUSIONS ICAM-1 expression is upregulated in papillary thyroid carcinoma. Furthermore, ICAM-1 upregulation correlated with aggressive tumor features such as BRAF V600E mutation, ETE, and lymph node metastasis, suggesting that ICAM-1 plays a role in thyroid cancer progression.
Collapse
Affiliation(s)
- D Buitrago
- Division of Endocrine and Minimally Invasive Surgery, Department of Surgery, New York Presbyterian Hospital-Weill Cornell Medical College, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Valastyan S, Weinberg RA. Roles for microRNAs in the regulation of cell adhesion molecules. J Cell Sci 2011; 124:999-1006. [PMID: 21402873 DOI: 10.1242/jcs.081513] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Maintenance of appropriate cell adhesion is crucial for normal cellular and organismal homeostasis. Certain microRNAs have recently been found capable of regulating molecules that oversee the fundamental cell biological events that drive cellular adhesion. It is now apparent that microRNAs play crucial roles in the great majority of biochemical pathways that contribute to normal cell adhesion. In this Commentary, we describe the latest advances within this still-emerging field, and highlight connections between the deregulation of microRNAs that affect cell-adhesion-associated molecules and the pathogenesis of several human diseases. Current evidence suggests that the ability of certain microRNAs--notably miR-17, miR-29, miR-31, miR-124 and miR-200--to pleiotropically regulate multiple molecular components of the cell adhesion machinery endows these microRNAs with the capacity to function as key modulators of adhesion-associated processes. This, in turn, holds important implications for our understanding of both the basic biology of cell adhesion and the etiology of multiple pathological conditions.
Collapse
Affiliation(s)
- Scott Valastyan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | |
Collapse
|
45
|
Zhou R, O'Hara SP, Chen XM. MicroRNA regulation of innate immune responses in epithelial cells. Cell Mol Immunol 2011; 8:371-9. [PMID: 21725335 DOI: 10.1038/cmi.2011.19] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mucosal surface epithelial cells are equipped with several defense mechanisms that guard against pathogens. Recent studies indicate that microRNAs (miRNAs) mediate post-transcriptional gene suppression and may be a critical component of the complex regulatory networks in epithelial immune responses. Transcription of miRNA genes in epithelial cells can be elaborately controlled through pathogen recognition receptors, such as Toll-like receptors (TLRs), and associated nuclear factor kappaB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, and ultimately nuclear transcription factor associated-transactivation and transrepression. Activation of these intracellular signaling pathways may also modulate the process of miRNA maturation. Functionally, miRNAs may modulate epithelial immune responses at every step of the innate immune network, including production and release of cytokines/chemokines, expression of adhesion and costimulatory molecules, shuttling of miRNAs through release of exosomes and feedback regulation of immune homeostasis. Therefore, miRNAs act as critical regulators to the fine-tuning of epithelial immune responses.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, USA
| | | | | |
Collapse
|
46
|
MicroRNA-221 controls expression of intercellular adhesion molecule-1 in epithelial cells in response to Cryptosporidium parvum infection. Int J Parasitol 2011; 41:397-403. [PMID: 21236259 DOI: 10.1016/j.ijpara.2010.11.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 10/29/2010] [Accepted: 11/05/2010] [Indexed: 11/24/2022]
Abstract
Cryptosporidium parvum is a protozoan parasite that infects gastrointestinal epithelial cells and causes diarrhoeal disease in humans and animals globally. Pathological changes following C. parvum infection include crypt hyperplasia and a modest inflammatory reaction with increased infiltration of lymphocytes into intestinal mucosa. Expression of adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1), on infected epithelial cell surfaces may facilitate adhesion and recognition of lymphocytes at infection sites. MicroRNAs (miRNAs) are small RNA molecules of 23 nucleotides that negatively regulate protein-coding gene expression via translational suppression or mRNA degradation. We recently reported that microRNA-221 (miR-221) regulates ICAM-1 translation through targeting the ICAM-1 3'-untranslated region (UTR). In this study, we tested the role of miR-221 in regulating ICAM-1 expression in epithelial cells in response to C. parvum infection using an in vitro model of human biliary cryptosporidiosis. Up-regulation of ICAM-1 at both message and protein levels was detected in epithelial cells following C. parvum infection. Inhibition of ICAM-1 transcription with actinomycin D could only partially block C. parvum-induced ICAM-1 expression at the protein level. Cryptosporidium parvum infection decreased miR-221 expression in infected epithelial cells. When cells were transfected with a luciferase reporter construct covering the miR-221 binding site in the ICAM-1 3'-UTR and then exposed to C. parvum, an enhanced luciferase activity was detected. Transfection of miR-221 precursor abolished C. parvum-stimulated ICAM-1 protein expression. In addition, expression of ICAM-1 on infected epithelial cells facilitated epithelial adherence of co-cultured Jurkat cells. These results indicate that miR-221-mediated translational suppression controls ICAM-1 expression in epithelial cells in response to C. parvum infection.
Collapse
|
47
|
Mechanisms of mRNA translation of interferon stimulated genes. Cytokine 2010; 52:123-7. [DOI: 10.1016/j.cyto.2010.03.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 03/30/2010] [Indexed: 01/06/2023]
|