1
|
Green EH, Kotrannavar SR, Rutherford ME, Lunnemann HM, Kaur H, Heiser CN, Ding H, Simmons AJ, Liu X, Lacy DB, Washington MK, Shrubsole MJ, Liu Q, Lau KS, Sears CL, Coffey RJ, Drewes JL, Markham NO. Multiomic spatial atlas shows deleted in malignant brain tumors 1 (DMBT1) glycoprotein is lost in colonic dysplasia. J Pathol 2025; 266:51-65. [PMID: 40026233 PMCID: PMC11985286 DOI: 10.1002/path.6406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/03/2024] [Accepted: 01/15/2025] [Indexed: 03/05/2025]
Abstract
Colorectal cancer (CRC) is responsible for over 900,000 annual deaths worldwide. Emerging evidence supports pro-carcinogenic bacteria in the colonic microbiome are at least promotional in CRC development and may be causal. We previously showed toxigenic C. difficile from human CRC-associated bacterial biofilms accelerates tumorigenesis in ApcMin/+ mice, both in specific pathogen-free mice and in gnotobiotic mice colonized with a defined consortium of bacteria. To further understand host-microbe interactions during colonic tumorigenesis, we combined single-cell RNA-sequencing (scRNA-seq), spatial transcriptomics, and immunofluorescence to define the molecular spatial organization of colonic dysplasia in our consortium model with or without C. difficile. Our data show a striking bipartite regulation of Deleted in Malignant Brain Tumors 1 (DMBT1) in the inflamed versus dysplastic colon. From scRNA-seq, differential gene expression analysis of normal absorptive colonocytes at 2 weeks postinoculation showed DMBT1 upregulated by C. difficile compared to colonocytes from mice without C. difficile exposure. In contrast, our spatial transcriptomic analysis showed DMBT1 dramatically downregulated in dysplastic foci compared with normal-adjacent tissue. We further integrated our datasets to generate custom colonic dysplasia scores and ligand-receptor mapping. Validation with immunofluorescence showed DMBT1 protein downregulated in dysplastic foci from three mouse models of colonic tumorigenesis and in adenomatous dysplasia from human samples. Finally, we used mouse and human organoids to implicate WNT signaling in the downregulation of DMBT1 mRNA and protein. Together, our data reveal cell type-specific regulation of DMBT1, a potential mechanistic link between bacteria and colonic tumorigenesis. Published 2025. This article is a U.S. Government work and is in the public domain in the USA. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Emily H Green
- Department of Pathology, Microbiology, and ImmunologyVanderbilt University Medical CenterNashvilleTNUSA
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
| | | | - Megan E Rutherford
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Hannah M Lunnemann
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Harsimran Kaur
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Chemical and Physical Biology ProgramVanderbilt UniversityNashvilleTNUSA
| | - Cody N Heiser
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTNUSA
| | - Hua Ding
- Department of Microbiology and Molecular ImmunologyBloomberg School of Public HealthBaltimoreMDUSA
| | - Alan J Simmons
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTNUSA
| | - Xiao Liu
- Department of BiostatisticsVanderbilt University Medical CenterNashvilleTNUSA
| | - D Borden Lacy
- Department of Pathology, Microbiology, and ImmunologyVanderbilt University Medical CenterNashvilleTNUSA
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of Veterans AffairsTennessee Valley Healthcare SystemNashvilleTNUSA
| | - M Kay Washington
- Department of Pathology, Microbiology, and ImmunologyVanderbilt University Medical CenterNashvilleTNUSA
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
| | - Martha J Shrubsole
- Vanderbilt Epidemiology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Vanderbilt‐Ingram Cancer CenterVanderbilt University Medical CenterNashvilleTNUSA
| | - Qi Liu
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of BiostatisticsVanderbilt University Medical CenterNashvilleTNUSA
| | - Ken S Lau
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTNUSA
- Vanderbilt‐Ingram Cancer CenterVanderbilt University Medical CenterNashvilleTNUSA
| | - Cynthia L Sears
- Department of Microbiology and Molecular ImmunologyBloomberg School of Public HealthBaltimoreMDUSA
- Department of Medicine, Division of Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of OncologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Robert J Coffey
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTNUSA
- Vanderbilt‐Ingram Cancer CenterVanderbilt University Medical CenterNashvilleTNUSA
| | - Julia L Drewes
- Department of Medicine, Division of Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of OncologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Nicholas O Markham
- Department of Pathology, Microbiology, and ImmunologyVanderbilt University Medical CenterNashvilleTNUSA
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
- Department of Veterans AffairsTennessee Valley Healthcare SystemNashvilleTNUSA
- Vanderbilt‐Ingram Cancer CenterVanderbilt University Medical CenterNashvilleTNUSA
| |
Collapse
|
2
|
Structure and proteomic analysis of the crown-of-thorns starfish (Acanthaster sp.) radial nerve cord. Sci Rep 2023; 13:3349. [PMID: 36849815 PMCID: PMC9971248 DOI: 10.1038/s41598-023-30425-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/22/2023] [Indexed: 03/01/2023] Open
Abstract
The nervous system of the Asteroidea (starfish or seastar) consists of radial nerve cords (RNCs) that interconnect with a ring nerve. Despite its relative simplicity, it facilitates the movement of multiple arms and numerous tube feet, as well as regeneration of damaged limbs. Here, we investigated the RNC ultrastructure and its molecular components within the of Pacific crown-of-thorns starfish (COTS; Acanthaster sp.), a well-known coral predator that in high-density outbreaks has major ecological impacts on coral reefs. We describe the presence of an array of unique small bulbous bulbs (40-100 μm diameter) that project from the ectoneural region of the adult RNC. Each comprise large secretory-like cells and prominent cilia. In contrast, juvenile COTS and its congener Acanthaster brevispinus lack these features, both of which are non-corallivorous. Proteomic analysis of the RNC (and isolated neural bulbs) provides the first comprehensive echinoderm protein database for neural tissue, including numerous secreted proteins associated with signalling, transport and defence. The neural bulbs contained several neuropeptides (e.g., bombyxin-type, starfish myorelaxant peptide, secretogranin 7B2-like, Ap15a-like, and ApNp35) and Deleted in Malignant Brain Tumor 1-like proteins. In summary, this study provides a new insight into the novel traits of COTS, a major pest on coral reefs, and a proteomics resource that can be used to develop (bio)control strategies and understand molecular mechanisms of regeneration.
Collapse
|
3
|
Jia B, Wang X, Ma F, Li X, Han X, Zhang L, Li J, Diao N, Shi K, Ge C, Yang F, Du R. The combination of SMRT sequencing and Illumina sequencing highlights organ-specific and age-specific expression patterns of miRNAs in Sika Deer. Front Vet Sci 2022; 9:1042445. [DOI: 10.3389/fvets.2022.1042445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/31/2022] [Indexed: 11/15/2022] Open
Abstract
Due to the lack of high-quality Sika Deer (Cervus nippon) transcriptome and sRNAome across multiple organs or development stages, it is impossible to comprehensively analyze the mRNA and miRNA regulatory networks related to growth, development and immunity response. In this study, we used single molecule-real time sequencing (SMRT-seq) and Illumina sequencing methods to generate transcriptome and sRNAome from ten tissues and four age groups of Sika Deer to help us understand molecular characteristics and global miRNA expression profiles. The results showed that a total of 240,846 consensus transcripts were generated with an average length of 2,784 bp. 4,329 Transcription factors (TFs), 109,000 Simple Sequence Repeats (SSRs) and 18,987 Long non-coding RNAs (LncRNAs) were identified. Meanwhile, 306 known miRNAs and 143 novel miRNAs were obtained. A large number of miRNAs showed organ-specific and age-specific differential expression patterns. In particular, we found that the organ-specific miRNAs were enriched in the brain, some of which shared only between the brain and adrenal. These miRNAs were involved in maintaining specific functions within the brain and adrenal. By constructing miRNA96mRNA interaction networks associated with Sika Deer immunity, we found that miRNAs (miR-148a, miR-26a, miR-214, let-7b, etc.) and mRNAs (CD6, TRIM38, C3, CD163, etc.) might play an important role in the immune response of Sika Deer spleen. Together, our study generated an improved transcript annotation for Sika Deer by SMRT-seq and revealed the role of miRNA in regulating the growth, development and immunity response of Sika Deer.
Collapse
|
4
|
Nexoe AB, Pedersen AA, von Huth S, Sorensen GL, Holmskov U, Jiang PP, Detlefsen S, Husby S, Rathe M. No effect of deleted in malignant brain tumors 1 deficiency on chemotherapy induced murine intestinal mucositis. Sci Rep 2021; 11:14687. [PMID: 34282203 PMCID: PMC8289998 DOI: 10.1038/s41598-021-94076-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/06/2021] [Indexed: 02/07/2023] Open
Abstract
Mucositis is a serious adverse effect of chemotherapeutic treatment. During intestinal mucositis, the mucosal barrier is compromised, increasing the risk of severe infections. Mucositis necessitates dose reduction or pauses in treatment, which affect the outcome of the treatment. Deleted in malignant brain tumors 1 (DMBT1) is a secreted scavenger protein with effects on innate immunity and epithelial regeneration. We have previously shown that jejunal DMBT1 expression is increased in piglets during chemotherapeutic treatment. We hypothesized that DMBT1 ameliorates doxorubicin-induced mucositis. Individually-caged Dmbt1+/+ (WT) and Dmbt1-/- (KO) female mouse littermates received intraperitoneal injections of either doxorubicin or saline. They were euthanized after three (D3) or seven days (D7). Weight loss was monitored every day, and serum citrulline levels were measured at termination. Intestinal tissue was analyzed for the expression of DMBT1 and proinflammatory cytokines (IL-1β, IL-6, and TNF). Specimens from the small intestines and colon were scored for inflammation and epithelial and mucosal architecture changes. We detected no effect of DMBT1 on weight loss, serum citrulline levels, expression of proinflammatory cytokines, or histologic damage. We detected a significant increase in crypt depth in WT mice compared to that in KO mice on D3. In conclusion, DMBT1 does not affect doxorubicin-induced mucositis in mice.
Collapse
Affiliation(s)
- Anders B Nexoe
- Department of Molecular Medicine, Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark
- Department of Gastroenterology, Odense University Hospital, Odense, Denmark
| | - Andreas A Pedersen
- Department of Molecular Medicine, Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark
| | - Sebastian von Huth
- Department of Molecular Medicine, Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
| | - Grith L Sorensen
- Department of Molecular Medicine, Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark
| | - Uffe Holmskov
- Department of Molecular Medicine, Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark
| | - Ping-Ping Jiang
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sönke Detlefsen
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Steffen Husby
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense C, Denmark
| | - Mathias Rathe
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense C, Denmark.
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
5
|
Singh P, Banerjee R, Piao S, Costa de Medeiros M, Bellile E, Liu M, Damodaran Puthiya Veettil D, Schmitd LB, Russo N, Danella E, Inglehart RC, Pineault KM, Wellik DM, Wolf G, D’Silva NJ. Squamous cell carcinoma subverts adjacent histologically normal epithelium to promote lateral invasion. J Exp Med 2021; 218:e20200944. [PMID: 33835136 PMCID: PMC8042603 DOI: 10.1084/jem.20200944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 01/04/2021] [Accepted: 02/16/2021] [Indexed: 12/26/2022] Open
Abstract
Recurrent and new tumors, attributed in part to lateral invasion, are frequent in squamous cell carcinomas and lead to poor survival. We identified a mechanism by which cancer subverts adjacent histologically normal epithelium to enable small clusters of cancer cells to burrow undetected under adjacent histologically normal epithelium. We show that suppression of DMBT1 within cancer promotes aggressive invasion and metastasis in vivo and is associated with metastasis in patients. Cancer cells via TGFβ1 and TNFα also suppress DMBT1 in adjacent histologically normal epithelium, thereby subverting it to promote invasion of a small population of tumor cells. The sufficiency of DMBT1 in this process is demonstrated by significantly higher satellite tumor nests in Dmbt1-/- compared with wild-type mice. Moreover, in patients, invasion of small tumor nests under adjacent histologically normal epithelium is associated with increased risk for recurrence and shorter disease-free survival. This study demonstrates a crucial role of adjacent histologically normal epithelium in invasion and its important role in the tumor microenvironment and opens new possibilities for therapeutic strategies that reduce tumor recurrence.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI
| | - Rajat Banerjee
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI
| | - Songlin Piao
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI
| | - Marcell Costa de Medeiros
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI
| | - Emily Bellile
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI
| | - Min Liu
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI
| | | | - Ligia B. Schmitd
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI
| | - Nickole Russo
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI
| | - Erika Danella
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI
| | - Ronald C. Inglehart
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI
| | - Kyriel M. Pineault
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI
| | - Deneen M. Wellik
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI
| | - Greg Wolf
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI
| | - Nisha J. D’Silva
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI
- Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| |
Collapse
|
6
|
Wolters-Eisfeld G, Mercanoglu B, Hofmann BT, Wolpers T, Schnabel C, Harder S, Steffen P, Bachmann K, Steglich B, Schrader J, Gagliani N, Schlüter H, Güngör C, Izbicki JR, Wagener C, Bockhorn M. Loss of complex O-glycosylation impairs exocrine pancreatic function and induces MODY8-like diabetes in mice. Exp Mol Med 2018; 50:1-13. [PMID: 30305605 PMCID: PMC6180059 DOI: 10.1038/s12276-018-0157-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023] Open
Abstract
Cosmc is ubiquitously expressed and acts as a specific molecular chaperone assisting the folding and stability of core 1 synthase. Thus, it plays a crucial role in the biosynthesis of O-linked glycosylation of proteins. Here, we show that ablation of Cosmc in the exocrine pancreas of mice causes expression of truncated O-glycans (Tn antigen), resulting in exocrine pancreatic insufficiency with decreased activities of digestive enzymes and diabetes. To understand the molecular causes of the pleiotropic phenotype, we used Vicia villosa agglutinin to enrich Tn antigen-modified proteins from Cosmc-KO pancreatic lysates and performed a proteomic analysis. Interestingly, a variety of proteins were identified, of which bile salt-activated lipase (also denoted carboxyl-ester lipase, Cel) was the most abundant. In humans, frameshift mutations in CEL cause maturity-onset diabetes of the young type 8 (MODY8), a monogenic syndrome of diabetes and pancreatic exocrine dysfunction. Here, we provide data suggesting that differentially O-glycosylated Cel could negatively affect beta cell function. Taken together, our findings demonstrate the importance of correct O-glycan formation for normal exocrine and endocrine pancreatic function, implying that aberrant O-glycans might be relevant for pathogenic mechanisms of the pancreas.
Collapse
Affiliation(s)
- Gerrit Wolters-Eisfeld
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg- Eppendorf (UKE), Hamburg, Germany.
| | - Baris Mercanoglu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg- Eppendorf (UKE), Hamburg, Germany
| | - Bianca T Hofmann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg- Eppendorf (UKE), Hamburg, Germany
| | - Thomas Wolpers
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg- Eppendorf (UKE), Hamburg, Germany
| | - Claudia Schnabel
- Metabolic Laboratory and Newborn Screening, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Sönke Harder
- Mass Spectrometric Proteomics-Institute for Clinical Chemistry & Laboratory Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Pascal Steffen
- Mass Spectrometric Proteomics-Institute for Clinical Chemistry & Laboratory Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Kai Bachmann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg- Eppendorf (UKE), Hamburg, Germany
| | - Babett Steglich
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg- Eppendorf (UKE), Hamburg, Germany
| | - Jörg Schrader
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg- Eppendorf (UKE), Hamburg, Germany
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg- Eppendorf (UKE), Hamburg, Germany
| | - Hartmut Schlüter
- Mass Spectrometric Proteomics-Institute for Clinical Chemistry & Laboratory Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Cenap Güngör
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg- Eppendorf (UKE), Hamburg, Germany
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg- Eppendorf (UKE), Hamburg, Germany
| | - Christoph Wagener
- Center for Diagnostics, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Maximilian Bockhorn
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg- Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
7
|
Chen CY, Rao SS, Ren L, Hu XK, Tan YJ, Hu Y, Luo J, Liu YW, Yin H, Huang J, Cao J, Wang ZX, Liu ZZ, Liu HM, Tang SY, Xu R, Xie H. Exosomal DMBT1 from human urine-derived stem cells facilitates diabetic wound repair by promoting angiogenesis. Am J Cancer Res 2018; 8:1607-1623. [PMID: 29556344 PMCID: PMC5858170 DOI: 10.7150/thno.22958] [Citation(s) in RCA: 277] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/12/2017] [Indexed: 12/19/2022] Open
Abstract
Chronic non-healing wounds represent one of the most common complications of diabetes and need advanced treatment strategies. Exosomes are key mediators of cell paracrine action and can be directly utilized as therapeutic agents for tissue repair and regeneration. Here, we explored the effects of exosomes from human urine-derived stem cells (USC-Exos) on diabetic wound healing and the underlying mechanism. Methods: USCs were characterized by flow cytometry and multipotent differentiation potential analyses. USC-Exos were isolated from the conditioned media of USCs and identified by transmission electron microscopy and flow cytometry. A series of functional assays in vitro were performed to assess the effects of USC-Exos on the activities of wound healing-related cells. Protein profiles in USC-Exos and USCs were examined to screen the candidate molecules that mediate USC-Exos function. The effects of USC-Exos on wound healing in streptozotocin-induced diabetic mice were tested by measuring wound closure rates, histological and immunofluorescence analyses. Meanwhile, the role of the candidate protein in USC-Exos-induced regulation of angiogenic activities of endothelial cells and diabetic wound healing was assessed. Results: USCs were positive for CD29, CD44, CD73 and CD90, but negative for CD34 and CD45. USCs were able to differentiate into osteoblasts, adipocytes and chondrocytes. USC-Exos exhibited a cup- or sphere-shaped morphology with a mean diameter of 51.57 ± 2.93 nm and positive for CD63 and TSG101. USC-Exos could augment the functional properties of wound healing-related cells including the angiogenic activities of endothelial cells. USC-Exos were enriched in the proteins that are involved in regulation of wound healing-related biological processes. Particularly, a pro-angiogenic protein called deleted in malignant brain tumors 1 (DMBT1) was highly expressed in USC-Exos. Further functional assays showed that DMBT1 protein was required for USC-Exos-induced promotion of angiogenic responses of cultured endothelial cells, as well as angiogenesis and wound healing in diabetic mice. Conclusion: Our findings suggest that USC-Exos may represent a promising strategy for diabetic soft tissue wound healing by promoting angiogenesis via transferring DMBT1 protein.
Collapse
|
8
|
Garay J, Piazuelo MB, Lopez-Carrillo L, Leal YA, Majumdar S, Li L, Cruz-Rodriguez N, Serrano-Gomez SJ, Busso CS, Schneider BG, Delgado AG, Bravo LE, Crist AM, Meadows SM, Camargo MC, Wilson KT, Correa P, Zabaleta J. Increased expression of deleted in malignant brain tumors (DMBT1) gene in precancerous gastric lesions: Findings from human and animal studies. Oncotarget 2017; 8:47076-47089. [PMID: 28423364 PMCID: PMC5564545 DOI: 10.18632/oncotarget.16792] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/16/2017] [Indexed: 12/21/2022] Open
Abstract
Helicobacter pylori infection triggers a cascade of inflammatory stages that may lead to the appearance of non-atrophic gastritis, multifocal atrophic, intestinal metaplasia, dysplasia, and cancer. Deleted in malignant brain tumors 1 (DMBT1) belongs to the group of secreted scavenger receptor cysteine-rich proteins and is considered to be involved in host defense by binding to pathogens. Initial studies showed its deletion and loss of expression in a variety of tumors but the role of this gene in tumor development is not completely understood. Here, we examined the role of DMBT1 in gastric precancerous lesions in Caucasian, African American and Hispanic individuals as well as in the development of gastric pathology in a mouse model of H. pylori infection. We found that in 3 different populations, mucosal DMBT1 expression was significantly increased (2.5 fold) in individuals with dysplasia compared to multifocal atrophic gastritis without intestinal metaplasia; the increase was also observed in individuals with advanced gastritis and positive H. pylori infection. In our animal model, H. pylori infection of Dmbt1-/- mice resulted in significantly higher levels of gastritis, more extensive mucous metaplasia and reduced Il33 expression levels in the gastric mucosa compared to H. pylori-infected wild type mice. Our data in the animal model suggest that in response to H. pylori infection DMBT1 may mediate mucosal protection reducing the risk of developing gastric precancerous lesions. However, the increased expression in human gastric precancerous lesions points to a more complex role of DMBT1 in gastric carcinogenesis.
Collapse
Affiliation(s)
- Jone Garay
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, LA, USA
| | - M Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Yelda A Leal
- Unidad de Investigación Médica Yucatán de la Unidad Médica de Alta Especialidad (UMAE) del Instituto Mexicano del Seguro Social (IMSS), Yucatán, Mexico
| | - Sumana Majumdar
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, LA, USA
| | - Li Li
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, LA, USA
| | - Nataly Cruz-Rodriguez
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, LA, USA
- Pontificia Universidad Javeriana, Bogotá, Colombia
- Grupo de Investigacion en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Silvia J Serrano-Gomez
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, LA, USA
- Pontificia Universidad Javeriana, Bogotá, Colombia
- Grupo de Investigacion en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Carlos S Busso
- Department of Otorhinolaryngology, LSUHSC, New Orleans, LA, USA
| | - Barbara G Schneider
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alberto G Delgado
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Luis E Bravo
- Department of Pathology, Universidad del Valle, Cali, Colombia
| | - Angela M Crist
- Department of Cell and Molecular Biology Tulane University, New Orleans LA, USA
| | - Stryder M Meadows
- Department of Cell and Molecular Biology Tulane University, New Orleans LA, USA
| | - M Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Pelayo Correa
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jovanny Zabaleta
- Stanley S. Scott Cancer Center, LSUHSC, New Orleans, LA, USA
- Department of Pediatrics, LSUHSC, New Orleans, LA, USA
| |
Collapse
|
9
|
Bonjoch L, Casas V, Carrascal M, Closa D. Involvement of exosomes in lung inflammation associated with experimental acute pancreatitis. J Pathol 2017; 240:235-45. [PMID: 27447723 DOI: 10.1002/path.4771] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 06/21/2016] [Accepted: 07/07/2016] [Indexed: 12/17/2022]
Abstract
A frequent complication of acute pancreatitis is the lung damage associated with the systemic inflammatory response. Although various pro-inflammatory mediators generated at both local and systemic levels have been identified, the pathogenic mechanisms of the disease are still poorly understood. In recent years, exosomes have emerged as a new intercellular communication system able to transfer encapsulated proteins and small RNAs and protect them from degradation. Using an experimental model of taurocholate-induced acute pancreatitis in rats, we aimed to evaluate the role of exosomes in the extent of the systemic inflammatory response. Induction of pancreatitis increased the concentration of circulating exosomes, which showed a different proteomic profile to those obtained from control animals. A series of tracking experiments using PKH26-stained exosomes revealed that circulating exosomes effectively reached the alveolar compartment and were internalized by macrophages. In vitro experiments revealed that exosomes obtained under inflammatory conditions activate and polarize these alveolar macrophages towards a pro-inflammatory phenotype. Interestingly, the proteomic analysis of circulating exosomes during acute pancreatitis suggested a multi-organ origin with a relevant role for the liver as a source of these vesicles. Tracking experiments also revealed that the liver retains the majority of exosomes from the peritoneal cavity. We conclude that exosomes are involved in the lung damage associated with experimental acute pancreatitis and could be relevant mediators in the systemic effects of pancreatitis. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Laia Bonjoch
- Department of Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Vanessa Casas
- Consejo Superior de Investigaciones Científicas/Universitat Autònoma de Barcelona (CSIC/UAB) Proteomics Facility, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Montserrat Carrascal
- Consejo Superior de Investigaciones Científicas/Universitat Autònoma de Barcelona (CSIC/UAB) Proteomics Facility, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Daniel Closa
- Department of Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
10
|
Sofia VM, Da Sacco L, Surace C, Tomaiuolo AC, Genovese S, Grotta S, Gnazzo M, Ciocca L, Petrocchi S, Alghisi F, Montemitro E, Martemucci L, Elce A, Lucidi V, Castaldo G, Angioni A. Extensive molecular analysis suggested the strong genetic heterogeneity of idiopathic chronic pancreatitis. Mol Med 2016; 22:300-309. [PMID: 27264265 DOI: 10.2119/molmed.2016.00010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/23/2016] [Indexed: 02/06/2023] Open
Abstract
Rationale: Genetic features of Chronic Pancreatitis (CP) have been extensively investigated mainly testing genes associated to the trypsinogen activation pathway. However, different molecular pathways involving other genes may be implicated in CP pathogenesis. Objectives: 80 patients with Idiopathic CP were investigated using Next Generation Sequencing approach with a panel of 70 genes related to six different pancreatic pathways: premature activation of trypsinogen; modifier genes of Cystic Fibrosis phenotype; pancreatic secretion and ion homeostasis; Calcium signalling and zymogen granules exocytosis; autophagy; autoimmune pancreatitis related genes. Results: We detected mutations in 34 out of 70 genes examined; 64/80 patients (80.0%) were positive for mutations in one or more genes, 16/80 patients (20.0%) had no mutations. Mutations in CFTR were detected in 32/80 patients (40.0%) and 22 of them exhibited at least one mutation in genes of other pancreatic pathways. Of the remaining 48 patients, 13/80 (16.3%) had mutations in genes involved in premature activation of trypsinogen and 19/80 (23.8%) had mutations only in genes of the other pathways: 38/64 patients positive for mutations showed variants in two or more genes (59.3%). Conclusions: Our data, although to be extended with functional analysis of novel mutations, suggest a high rate of genetic heterogeneity in chronic pancreatitis and that trans-heterozygosity may predispose to the idiopathic CP phenotype.
Collapse
Affiliation(s)
| | - Letizia Da Sacco
- Multifactorial Diseases and Complex Phenotypes Research Area, "Bambino Gesù" Children's Hospital, IRCCS
| | - Cecilia Surace
- Laboratory of Medical Genetics, "Bambino Gesù" Children's Hospital, IRCCS
| | | | - Silvia Genovese
- Laboratory of Medical Genetics, "Bambino Gesù" Children's Hospital, IRCCS
| | - Simona Grotta
- Laboratory of Medical Genetics, "Bambino Gesù" Children's Hospital, IRCCS; Present address: S. Pietro Fatebenefratelli Hospital, UOSD Medical Genetics
| | - Maria Gnazzo
- Laboratory of Medical Genetics, "Bambino Gesù" Children's Hospital, IRCCS
| | - Laura Ciocca
- Laboratory of Medical Genetics, "Bambino Gesù" Children's Hospital, IRCCS
| | - Stefano Petrocchi
- Laboratory of Medical Genetics, "Bambino Gesù" Children's Hospital, IRCCS
| | | | - Enza Montemitro
- Cystic Fibrosis Unit, "Bambino Gesù" Children's Hospital, IRCCS
| | | | - Ausilia Elce
- Ceinge-Biotecnologie avanzate, Naples, Università Telematica Pegaso, Naples, Italy
| | | | - Giuseppe Castaldo
- Ceinge-Biotecnologie avanzate, Naples, Dipartimento di Medicina Molecolare and Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
| | - Adriano Angioni
- Laboratory of Medical Genetics, "Bambino Gesù" Children's Hospital, IRCCS, Viale di San Paolo 15, 00146 Rome, Italy, 0668592536
| |
Collapse
|
11
|
Copy number variation of scavenger-receptor cysteine-rich domains within DMBT1 and Crohn's disease. Eur J Hum Genet 2016; 24:1294-300. [PMID: 26813944 PMCID: PMC4851238 DOI: 10.1038/ejhg.2015.280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 12/21/2022] Open
Abstract
Previous work has shown that the gene DMBT1, which encodes a large secreted epithelial glycoprotein known as salivary agglutinin, gp340, hensin or muclin, is an innate immune defence protein that binds bacteria. A deletion variant of DMBT1 has been previously associated with Crohn's disease, and a DMBT1−/− knockout mouse has increased levels of colitis induced by dextran sulphate. DMBT1 has a complex copy number variable structure, with two, independent, rapidly mutating copy number variable regions, called CNV1 and CNV2. Because the copy number variable regions are predicted to affect the number of bacteria-binding domains, different alleles may alter host–microbe interactions in the gut. Our aim was to investigate the role of this complex variation in susceptibility to Crohn's disease by assessing the previously reported association. We analysed the association of both copy number variable regions with presence of Crohn's disease, and its severity, on three case–control cohorts. We also reanalysed array comparative genomic hybridisation data (aCGH) from a large case–control cohort study for both copy number variable regions. We found no association with a linear increase in copy number, nor when the CNV1 is regarded as presence or absence of a deletion allele. Taken together, we show that the DMBT1 CNV does not affect susceptibility to Crohn's disease, at least in Northern Europeans.
Collapse
|
12
|
Faecal proteomics: A tool to investigate dysbiosis and inflammation in patients with cystic fibrosis. J Cyst Fibros 2015; 15:242-50. [PMID: 26330184 DOI: 10.1016/j.jcf.2015.08.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/02/2015] [Accepted: 08/13/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Several microbial studies reported gut microbiota dysbiosis in patients with cystic fibrosis (CF). The functional consequences of this phenomenon are poorly understood. Faecal metaproteomics allows the quantitative analysis of host and microbial proteins to address functional changes resulting from this dysbiosis. METHODS We analysed faecal protein extracts from fifteen patients with CF that have pancreatic insufficiency and from their unaffected siblings by shotgun proteomics. Novel computational and statistical tools were introduced to evaluate changes in taxonomic composition and protein abundance. RESULTS Faecal protein extracts from patients with CF were dominated by host proteins involved in inflammation and mucus formation. Taxonomic analysis of the microbial proteins confirmed the strong reduction of butyrate reducers such as Faecalibacterium prausnitzii and increase of Enterobacteriaceae, Ruminococcus gnavus and Clostridia species. CONCLUSION Faecal metaproteomics provides insights in intestinal dysbiosis, inflammation in patients with CF and can be used to monitor different disease markers in parallel.
Collapse
|
13
|
Gómez-Lázaro M, Rinn C, Aroso M, Amado F, Schrader M. Proteomic analysis of zymogen granules. Expert Rev Proteomics 2014; 7:735-47. [DOI: 10.1586/epr.10.31] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Diegelmann J, Czamara D, Le Bras E, Zimmermann E, Olszak T, Bedynek A, Göke B, Franke A, Glas J, Brand S. Intestinal DMBT1 expression is modulated by Crohn's disease-associated IL23R variants and by a DMBT1 variant which influences binding of the transcription factors CREB1 and ATF-2. PLoS One 2013; 8:e77773. [PMID: 24223725 PMCID: PMC3818382 DOI: 10.1371/journal.pone.0077773] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/09/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES DMBT is an antibacterial pattern recognition and scavenger receptor. In this study, we analyzed the role of DMBT1 single nucleotide polymorphisms (SNPs) regarding inflammatory bowel disease (IBD) susceptibility and examined their functional impact on transcription factor binding and downstream gene expression. METHODS Seven SNPs in the DMBT1 gene region were analyzed in 2073 individuals including 818 Crohn's disease (CD) patients and 972 healthy controls in two independent case-control panels. Comprehensive epistasis analyses for the known CD susceptibility genes NOD2, IL23R and IL27 were performed. The influence of IL23R variants on DMBT1 expression was analyzed. Functional analysis included siRNA transfection, quantitative PCR, western blot, electrophoretic mobility shift and luciferase assays. RESULTS IL-22 induces DMBT1 protein expression in intestinal epithelial cells dependent on STAT3, ATF-2 and CREB1. IL-22 expression-modulating, CD risk-associated IL23R variants influence DMBT1 expression in CD patients and DMBT1 levels are increased in the inflamed intestinal mucosa of CD patients. Several DMBT1 SNPs were associated with CD susceptibility. SNP rs2981804 was most strongly associated with CD in the combined panel (p = 3.0 × 10(-7), OR 1.42; 95% CI 1.24-1.63). All haplotype groups tested showed highly significant associations with CD (including omnibus P-values as low as 6.1 × 10(-18)). The most strongly CD risk-associated, non-coding DMBT1 SNP rs2981804 modifies the DNA binding sites for the transcription factors CREB1 and ATF-2 and the respective genomic region comprising rs2981804 is able to act as a transcriptional regulator in vitro. Intestinal DMBT1 expression is decreased in CD patients carrying the rs2981804 CD risk allele. CONCLUSION We identified novel associations of DMBT1 variants with CD susceptibility and discovered a novel functional role of rs2981804 in regulating DMBT1 expression. Our data suggest an important role of DMBT1 in CD pathogenesis.
Collapse
Affiliation(s)
- Julia Diegelmann
- Department of Medicine II - Grosshadern, Ludwig-Maximilians-University (LMU), Munich, Germany
- Department of Preventive Dentistry and Periodontology, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Darina Czamara
- Max-Planck-Institute for Psychiatry, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Emmanuelle Le Bras
- Department of Medicine II - Grosshadern, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Eva Zimmermann
- Department of Preventive Dentistry and Periodontology, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Torsten Olszak
- Department of Medicine II - Grosshadern, Ludwig-Maximilians-University (LMU), Munich, Germany
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrea Bedynek
- Department of Clinical Chemistry, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Burkhard Göke
- Department of Medicine II - Grosshadern, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Jürgen Glas
- Department of Medicine II - Grosshadern, Ludwig-Maximilians-University (LMU), Munich, Germany
- Department of Preventive Dentistry and Periodontology, Ludwig-Maximilians-University (LMU), Munich, Germany
- Department of Human Genetics, Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen, Germany
| | - Stephan Brand
- Department of Medicine II - Grosshadern, Ludwig-Maximilians-University (LMU), Munich, Germany
| |
Collapse
|
15
|
Roldán ML, Marini PE. First evidence of the interaction between deleted in malignant brain tumor 1 and galectin-3 in the mammalian oviduct. Histochem Cell Biol 2013; 141:181-90. [PMID: 24065275 DOI: 10.1007/s00418-013-1145-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2013] [Indexed: 12/26/2022]
Abstract
The oviduct supports the transport and final maturation of gametes, and harbors fertilization and early embryo development. The oviductal epithelium is responsible for providing the correct environment for these processes. Deleted in malignant brain tumor 1 (DMBT1) is expressed by multiple organisms and several cell types, and the interaction of the rabbit ortholog of DMBT1 with galectin-3 (gal-3) modulates the polarity of epithelial cells. This interaction has not yet been shown in locations other than rabbit kidney and human-cultured endothelial cells. DMBT1 and gal-3 also protect epithelial layers from pathogens and trauma, and are innate immunity components. DMBT1 has been detected in the porcine oviduct, and gal-3 has been reported in the Fallopian tube and in the cow oviduct. Interaction between both proteins would show a probable physiological function in the female reproductive tract. This work describes the presence and co-localization of DMBT1 and gal-3 mainly in the apical region of the epithelial cells of the Fallopian tube and the porcine oviduct, and co-immunoprecipitation in membrane-enriched epithelial cell extracts from the porcine oviduct. The findings strongly support a functional interaction in the mammalian oviduct, suggestive of a role on epithelial protection and homeostasis, which might be related to epithelium-gamete interaction.
Collapse
Affiliation(s)
- M L Roldán
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | | |
Collapse
|
16
|
Abstract
The intercalated cell of collecting ducts of the kidney is of two forms, the α form secretes acid, whereas the β form secretes HCO(3). Here, we review recent work that shows that the α form is derived from the β form and that the pathway is mediated by an extracellular matrix protein called hensin/DMBT1.
Collapse
Affiliation(s)
- Qais Al-Awqati
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA.
| | | |
Collapse
|
17
|
Teijeiro JM, Roldán ML, Marini PE. Molecular identification of the sperm selection involved porcine sperm binding glycoprotein (SBG) as deleted in malignant brain tumors 1 (DMBT1). Biochimie 2012; 94:263-7. [DOI: 10.1016/j.biochi.2011.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 10/13/2011] [Indexed: 01/15/2023]
|
18
|
Martínez VG, Moestrup SK, Holmskov U, Mollenhauer J, Lozano F. The conserved scavenger receptor cysteine-rich superfamily in therapy and diagnosis. Pharmacol Rev 2011; 63:967-1000. [PMID: 21880988 DOI: 10.1124/pr.111.004523] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The scavenger receptor cysteine-rich (SRCR) superfamily of soluble or membrane-bound protein receptors is characterized by the presence of one or several repeats of an ancient and highly conserved protein module, the SRCR domain. This superfamily (SRCR-SF) has been in constant and progressive expansion, now up to more than 30 members. The study of these members is attracting growing interest, which parallels that in innate immunity. No unifying function has been described to date for the SRCR domains, this being the result of the limited knowledge still available on the physiology of most members of the SRCR-SF, but also of the sequence versatility of the SRCR domains. Indeed, involvement of SRCR-SF members in quite different functions, such as pathogen recognition, modulation of the immune response, epithelial homeostasis, stem cell biology, and tumor development, have all been described. This has brought to us new information, unveiling the possibility that targeting or supplementing SRCR-SF proteins could result in diagnostic and/or therapeutic benefit for a number of physiologic and pathologic states. Recent research has provided structural and functional insight into these proteins, facilitating the development of means to modulate the activity of SRCR-SF members. Indeed, some of these approaches are already in use, paving the way for a more comprehensive use of SRCR-SF members in the clinic. The present review will illustrate some available evidence on the potential of well known and new members of the SRCR-SF in this regard.
Collapse
Affiliation(s)
- Vanesa Gabriela Martínez
- Center Esther Koplowitz, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | | | | | | |
Collapse
|
19
|
Leito JTD, Ligtenberg AJM, van Houdt M, van den Berg TK, Wouters D. The bacteria binding glycoprotein salivary agglutinin (SAG/gp340) activates complement via the lectin pathway. Mol Immunol 2011; 49:185-90. [PMID: 21920605 DOI: 10.1016/j.molimm.2011.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 08/10/2011] [Accepted: 08/17/2011] [Indexed: 01/24/2023]
Abstract
Salivary agglutinin (SAG), also known as gp-340 and Deleted in Malignant Brain Tumours 1, is a glycoprotein that is present in tears, lung fluid and mucosal surfaces along the gastrointestinal tract. It is encoded by the Deleted in Malignant Brain Tumours 1 gene, a member of the Scavenger Receptor Cysteine Rich group B protein superfamily. SAG aggregates bacteria thus promoting their clearance from the oral cavity and activates the complement system. Complement proteins may enter the oral cavity in case of serum leakage, which occurs after mucosal damage. The purpose of this study was to investigate the mode of complement activation. We showed a dose-dependent C4 deposition on SAG-coated microplates showing that either the classical or lectin pathway of complement was activated. Antibodies against mannose binding lectin inhibited C4 deposition and SAG induced no C4 deposition in MBL deficient sera showing SAG activated complement through the MBL pathway. Periodate treatment of SAG abolished MBL pathway activation consistent with an involvement of SAG glycans in complement activation. This provides the first evidence for a role of SAG in complement activation through the MBL pathway and suggests a potential role of SAG as a complement activating factor at the mucosal epithelia.
Collapse
Affiliation(s)
- Jelani T D Leito
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
20
|
Masui T, Swift GH, Deering T, Shen C, Coats WS, Long Q, Elsässer HP, Magnuson MA, MacDonald RJ. Replacement of Rbpj with Rbpjl in the PTF1 complex controls the final maturation of pancreatic acinar cells. Gastroenterology 2010; 139:270-80. [PMID: 20398665 PMCID: PMC2902682 DOI: 10.1053/j.gastro.2010.04.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 03/17/2010] [Accepted: 04/02/2010] [Indexed: 01/13/2023]
Abstract
BACKGROUND & AIMS The mature pancreatic acinar cell is dedicated to the production of very large amounts of digestive enzymes. The early stages of pancreatic development require the Rbpj form of the trimeric Pancreas Transcription Factor 1 complex (PTF1-J). As acinar development commences, Rbpjl gradually replaces Rbpj; in the mature pancreas, PTF1 contains Rbpjl (PTF1-L). We investigated whether PTF1-L controls the expression of genes that complete the final stage of acinar differentiation. METHODS We analyzed acinar development and transcription in mice with disrupted Rbpjl (Rbpjl(ko/ko) mice). We performed comprehensive analyses of the messenger RNA population and PTF1 target genes in pancreatic acinar cells from these and wild-type mice. RESULTS In Rbpjl(ko/ko) mice, acinar differentiation was incomplete and characterized by decreased expression (as much as 99%) of genes that encode digestive enzymes or proteins of regulated exocytosis and mitochondrial metabolism. Whereas PTF1-L bound regulatory sites of genes in normal adult pancreatic cells, the embryonic form (PTF1-J) persisted in the absence of Rbpjl and replaced PTF1-L; the extent of replacement determined gene expression levels. Loss of PTF1-L reduced expression (>2-fold) of only about 50 genes, 90% of which were direct targets of PTF1-L. The magnitude of the effects on individual digestive enzyme genes correlated with the developmental timing of gene activation. Absence of Rbpjl increased pancreatic expression of liver-restricted messenger RNA. CONCLUSIONS Replacement of Rbpj by Rbpjl in the PTF1 complex drives acinar differentiation by maximizing secretory protein synthesis, stimulating mitochondrial metabolism and cytoplasmic creatine-phosphate energy stores, completing the packaging and secretory apparatus, and maintaining acinar-cell homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiaoming Long
- Department of Molecular Physiology and Biophysics and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Hans-Peter Elsässer
- Department of Cell Biology and Cell Pathology, Philipps University, D-35037 Marburg, Germany
| | - Mark A. Magnuson
- Department of Molecular Physiology and Biophysics and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | | |
Collapse
|
21
|
Abstract
From epidemiological data, based on concordance data in family studies, via linkage analysis to genome-wide association studies, we and others have accumulated robust evidence implicating more than 30 distinct genomic loci involved in the genetic susceptibility to Crohn's disease (CD). These loci encode genes involved in a number of homeostatic mechanisms: innate pattern recognition receptors (NOD2/CARD15, TLR4, CARD9), the differentiation of Th17-lymphocytes (IL-23R, JAK2, STAT3, CCR6, ICOSLG), autophagy (ATG16L1, IRGM, LRRK2), maintenance of epithelial barrier integrity (IBD5, DLG5, PTGER4, ITLN1, DMBT1, XBP1), and the orchestration of the secondary immune response (HLA-region, TNFSF15/TL1A, IRF5, PTPN2, PTPN22, NKX2-3, IL-12B, IL-18RAP, MST1). While many of these loci also predispose to pediatric CD, an additional number of childhood-onset loci have been identified recently (e.g., TNFRSF6B). Not only has the identification of these loci improved our understanding of the pathophysiology of CD, this knowledge also holds real promise for clinical practice.
Collapse
Affiliation(s)
- Johan Van Limbergen
- Department of Pediatric Gastroenterology and Nutrition, Royal Hospital for Sick Children, Edinburgh EH9 1LF, United Kingdom.
| | | | | |
Collapse
|
22
|
Zhang GB, He T, Zhang N. Effects of DMTB1 over-expression on the biological behavior of esophagus carcinoma cell line EC9706. Shijie Huaren Xiaohua Zazhi 2009; 17:1759-1763. [DOI: 10.11569/wcjd.v17.i17.1759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To establish the cell line EC9706 of esophagus carcinoma with stable expression of a new candidate tumor suppressor gene DMBT1 and to analyze cell invasiveness and cell proliferation compared to the control group so as to provide any insights into the function of the newly-discovered tumor suppressor gene.
METHODS: The full-length DMBT1 expression plasmid pTRexDest30_DMBT18kb.2 was transfected into esophagus carcinoma cell line EC9706 with Lipofectamine 2000 which was subsequently screened with G418. DMBT1 transcript and protein were determined by semi-quantitative RT-PCR and Western blot; then cell growth and proliferation was evaluated with MTT; finally transwell assay was applied to evaluate the ability of its migration before and after the transfection.
RESULTS: After transfection, the levels of DMBT1 protein and mRNA were 3.2 times higher than control group. There was significant difference between transfection group and the control group. The growth curves mapped with MTT indicated that the group transfected with pTRexDest30_DMBT1 showed slower speed of proliferation versus the vector control and the untreated group. In addition, cell survival in serum-free medium was markedly inhibited compared to the vector control. Transwell assay further confirmed conspicuous discrepancy in migration (206 ± 25 vs 367 ± 42, P < 0.01), the experimental group versus the control group.
CONCLUSION: The biological model that stably expresses DMBT1 was successfully established; DMBT1 over-expression significantly inhibits the proliferation and invasive process of esophagus carcinoma cell line in vitro.
Collapse
|
23
|
Wagner CA, Devuyst O, Bourgeois S, Mohebbi N. Regulated acid–base transport in the collecting duct. Pflugers Arch 2009; 458:137-56. [DOI: 10.1007/s00424-009-0657-z] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 02/22/2009] [Accepted: 02/24/2009] [Indexed: 02/07/2023]
|
24
|
End C, Bikker F, Renner M, Bergmann G, Lyer S, Blaich S, Hudler M, Helmke B, Gassler N, Autschbach F, Ligtenberg AJM, Benner A, Holmskov U, Schirmacher P, Nieuw Amerongen AV, Rosenstiel P, Sina C, Franke A, Hafner M, Kioschis P, Schreiber S, Poustka A, Mollenhauer J. DMBT1 functions as pattern-recognition molecule for poly-sulfated and poly-phosphorylated ligands. Eur J Immunol 2009; 39:833-842. [PMID: 19189310 DOI: 10.1002/eji.200838689] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Deleted in malignant brain tumors 1 (DMBT1) is a secreted glycoprotein displaying a broad bacterial-binding spectrum. Recent functional and genetic studies linked DMBT1 to the suppression of LPS-induced TLR4-mediated NF-kappaB activation and to the pathogenesis of Crohn's disease. Here, we aimed at unraveling the molecular basis of its function in mucosal protection and of its broad pathogen-binding specificity. We report that DMBT1 directly interacts with dextran sulfate sodium (DSS) and carrageenan, a structurally similar sulfated polysaccharide, which is used as a texturizer and thickener in human dietary products. However, binding of DMBT1 does not reduce the cytotoxic effects of these agents to intestinal epithelial cells in vitro. DSS and carrageenan compete for DMBT1-mediated bacterial aggregation via interaction with its bacterial-recognition motif. Competition and ELISA studies identify poly-sulfated and poly-phosphorylated structures as ligands for this recognition motif, such as heparansulfate, LPS, and lipoteichoic acid. Dose-response studies in Dmbt1(-/-) and Dmbt1(+/+) mice utilizing the DSS-induced colitis model demonstrate a differential response only to low but not to high DSS doses. We propose that DMBT1 functions as pattern-recognition molecule for poly-sulfated and poly-phosphorylated ligands providing a molecular basis for its broad bacterial-binding specificity and its inhibitory effects on LPS-induced TLR4-mediated NF-kappaB activation.
Collapse
Affiliation(s)
- Caroline End
- Division of Molecular Genome Analysis, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Receptor-mediated signal transduction pathways and the regulation of pancreatic acinar cell function. Curr Opin Gastroenterol 2008; 24:573-9. [PMID: 19122497 DOI: 10.1097/mog.0b013e32830b110c] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Recent studies on pancreatic acinar cell function have led to a more detailed understanding of the signal transduction mechanisms regulating digestive enzyme synthesis and secretion as well as pancreatic growth. This review identifies and puts into context these recent studies, which further understanding in these areas. RECENT FINDINGS Receptors present on acinar cells, particularly those for cholecystokinin and secretin, have been better characterized as to the molecular nature of the ligand-receptor interaction. Other reports have described the receptors for natriuretic peptides and fibroblast growth factor on acini. Intracellular Ca(2+) signaling remains at the center of stimulus secretion coupling and its regulation by inositol 1,4,5-trisphosphate, nicotinic acid adenine dinucleotide phosphate and cyclic ADP-ribose has been further defined. Work downstream of intracellular mediators has focused on molecular mechanisms of exocytosis particularly involving small G proteins, soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins and cytoskeletal proteins. Considerable progress has been made defining the complex in acinar cells and its regulation. In addition to secretion, recent studies have further defined the regulation of pancreatic growth both in adaptive regulation to diet and hormones, particularly cholecystokinin, and in the regeneration that occurs after pancreatitis or partial pancreatectomy. This regulation involves calcineurin-nuclear factor of activated T cells, mammalian target of rapamycin, mitogen-activated protein kinase, Notch signaling pathways as well as various tyrosine kinases. SUMMARY Understanding the mechanisms that regulate pancreatic acinar cell function is contributing to our knowledge of normal pancreatic function and alterations in diseases such as pancreatitis and pancreatic cancer.
Collapse
|