1
|
Gardner CC, James PF. Na +/H + Exchangers (NHEs) in Mammalian Sperm: Essential Contributors to Male Fertility. Int J Mol Sci 2023; 24:14981. [PMID: 37834431 PMCID: PMC10573352 DOI: 10.3390/ijms241914981] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Na+/H+ exchangers (NHEs) are known to be important regulators of pH in multiple intracellular compartments of eukaryotic cells. Sperm function is especially dependent on changes in pH and thus it has been postulated that NHEs play important roles in regulating the intracellular pH of these cells. For example, in order to achieve fertilization, mature sperm must maintain a basal pH in the male reproductive tract and then alkalize in response to specific signals in the female reproductive tract during the capacitation process. Eight NHE isoforms are expressed in mammalian testis/sperm: NHE1, NHE3, NHE5, NHE8, NHA1, NHA2, NHE10, and NHE11. These NHE isoforms are expressed at varying times during spermatogenesis and localize to different subcellular structures in developing and mature sperm where they contribute to multiple aspects of sperm physiology and male fertility including proper sperm development/morphogenesis, motility, capacitation, and the acrosome reaction. Previous work has provided evidence for NHE3, NHE8, NHA1, NHA2, and NHE10 being critical for male fertility in mice and NHE10 has recently been shown to be essential for male fertility in humans. In this article we review what is known about each NHE isoform expressed in mammalian sperm and discuss the physiological significance of each NHE isoform with respect to male fertility.
Collapse
Affiliation(s)
| | - Paul F. James
- Department of Biology, Miami University, Oxford, OH 45056, USA;
| |
Collapse
|
2
|
The SLC9C2 Gene Product (Na+/H+ Exchanger Isoform 11; NHE11) Is a Testis-Specific Protein Localized to the Head of Mature Mammalian Sperm. Int J Mol Sci 2023; 24:ijms24065329. [PMID: 36982403 PMCID: PMC10049371 DOI: 10.3390/ijms24065329] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Na+/H+ exchangers (NHEs) are a family of ion transporters that regulate the pH of various cell compartments across an array of cell types. In eukaryotes, NHEs are encoded by the SLC9 gene family comprising 13 genes. SLC9C2, which encodes the NHE11 protein, is the only one of the SLC9 genes that is essentially uncharacterized. Here, we show that SLC9C2 exhibits testis/sperm-restricted expression in rats and humans, akin to its paralog SLC9C1 (NHE10). Similar to NHE10, NHE11 is predicted to contain an NHE domain, a voltage sensing domain, and finally an intracellular cyclic nucleotide binding domain. An immunofluorescence analysis of testis sections reveals that NHE11 localizes with developing acrosomal granules in spermiogenic cells in both rat and human testes. Most interestingly, NHE11 localizes to the sperm head, likely the plasma membrane overlaying the acrosome, in mature sperm from rats and humans. Therefore, NHE11 is the only known NHE to localize to the acrosomal region of the head in mature sperm cells. The physiological role of NHE11 has yet to be demonstrated but its predicted functional domains and unique localization suggests that it could modulate intracellular pH of the sperm head in response to changes in membrane potential and cyclic nucleotide concentrations that are a result of sperm capacitation events. If NHE11 is shown to be important for male fertility, it will be an attractive target for male contraceptive drugs due to its exclusive testis/sperm-specific expression.
Collapse
|
3
|
Nwia SM, Li XC, Leite APDO, Hassan R, Zhuo JL. The Na +/H + Exchanger 3 in the Intestines and the Proximal Tubule of the Kidney: Localization, Physiological Function, and Key Roles in Angiotensin II-Induced Hypertension. Front Physiol 2022; 13:861659. [PMID: 35514347 PMCID: PMC9062697 DOI: 10.3389/fphys.2022.861659] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/25/2022] [Indexed: 01/29/2023] Open
Abstract
The sodium (Na+)/hydrogen (H+) exchanger 3 (NHE3) is one of the most important Na+/H+ antiporters in the small intestines of the gastrointestinal tract and the proximal tubules of the kidney. The roles of NHE3 in the regulation of intracellular pH and acid-base balance have been well established in cellular physiology using in vitro techniques. Localized primarily on the apical membranes in small intestines and proximal tubules, the key action of NHE3 is to facilitate the entry of luminal Na+ and the extrusion of intracellular H+ from intestinal and proximal tubule tubular epithelial cells. NHE3 is, directly and indirectly, responsible for absorbing the majority of ingested Na+ from small and large intestines and reabsorbing >50% of filtered Na+ in the proximal tubules of the kidney. However, the roles of NHE3 in the regulation of proximal tubular Na+ transport in the integrative physiological settings and its contributions to the basal blood pressure regulation and angiotensin II (Ang II)-induced hypertension have not been well studied previously due to the lack of suitable animal models. Recently, novel genetically modified mouse models with whole-body, kidney-specific, or proximal tubule-specific deletion of NHE3 have been generated by us and others to determine the critical roles and underlying mechanisms of NHE3 in maintaining basal body salt and fluid balance, blood pressure homeostasis, and the development of Ang II-induced hypertension at the whole-body, kidney, or proximal tubule levels. The objective of this invited article is to review, update, and discuss recent findings on the critical roles of intestinal and proximal tubule NHE3 in maintaining basal blood pressure homeostasis and their potential therapeutic implications in the development of angiotensin II (Ang II)-dependent hypertension.
Collapse
Affiliation(s)
- Sarah M. Nwia
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States,Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Xiao Chun Li
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States,Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Ana Paula de Oliveira Leite
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States,Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Rumana Hassan
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States,Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jia Long Zhuo
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States,Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States,*Correspondence: Jia Long Zhuo,
| |
Collapse
|
4
|
Li XC, Zheng X, Chen X, Zhao C, Zhu D, Zhang J, Zhuo JL. Genetic and genomic evidence for an important role of the Na +/H + exchanger 3 in blood pressure regulation and angiotensin II-induced hypertension. Physiol Genomics 2019; 51:97-108. [PMID: 30849009 PMCID: PMC6485378 DOI: 10.1152/physiolgenomics.00122.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The sodium (Na+)/hydrogen (H+) exchanger 3 (NHE3) and sodium-potassium adenosine triphosphatase (Na+/K+-ATPase) are two of the most important Na+ transporters in the proximal tubules of the kidney. On the apical membrane side, NHE3 primarily mediates the entry of Na+ into and the exit of H+ from the proximal tubules, directly and indirectly being responsible for reabsorbing ~50% of filtered Na+ in the proximal tubules of the kidney. On the basolateral membrane side, Na+/K+-ATPase serves as a powerful engine driving Na+ out of, while pumping K+ into the proximal tubules against their concentration gradients. While the roles of NHE3 and Na+/K+-ATPase in proximal tubular Na+ transport under in vitro conditions are well recognized, their respective contributions to the basal blood pressure regulation and angiotensin II (ANG II)-induced hypertension remain poorly understood. Recently, we have been fortunate to be able to use genetically modified mouse models with global, kidney- or proximal tubule-specific deletion of NHE3 to directly determine the cause and effect relationship between NHE3, basal blood pressure homeostasis, and ANG II-induced hypertension at the whole body, kidney and/or proximal tubule levels. The purpose of this article is to review the genetic and genomic evidence for an important role of NHE3 with a focus in the regulation of basal blood pressure and ANG II-induced hypertension, as we learned from studies using global, kidney- or proximal tubule-specific NHE3 knockout mice. We hypothesize that NHE3 in the proximal tubules is necessary for maintaining basal blood pressure homeostasis and the development of ANG II-induced hypertension.
Collapse
Affiliation(s)
- Xiao C Li
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology; Division of Nephrology, Internal Medicine; Cardiovascular and Renal Research Center; The University of Mississippi Medical Center , Jackson, Mississippi
| | - Xiaowen Zheng
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology; Division of Nephrology, Internal Medicine; Cardiovascular and Renal Research Center; The University of Mississippi Medical Center , Jackson, Mississippi
| | - Xu Chen
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology; Division of Nephrology, Internal Medicine; Cardiovascular and Renal Research Center; The University of Mississippi Medical Center , Jackson, Mississippi
| | - Chunling Zhao
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology; Division of Nephrology, Internal Medicine; Cardiovascular and Renal Research Center; The University of Mississippi Medical Center , Jackson, Mississippi
| | - Dongmin Zhu
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology; Division of Nephrology, Internal Medicine; Cardiovascular and Renal Research Center; The University of Mississippi Medical Center , Jackson, Mississippi
| | - Jianfeng Zhang
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology; Division of Nephrology, Internal Medicine; Cardiovascular and Renal Research Center; The University of Mississippi Medical Center , Jackson, Mississippi
| | - Jia L Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology; Division of Nephrology, Internal Medicine; Cardiovascular and Renal Research Center; The University of Mississippi Medical Center , Jackson, Mississippi
| |
Collapse
|
5
|
Li XC, Zhuo JL. Recent Updates on the Proximal Tubule Renin-Angiotensin System in Angiotensin II-Dependent Hypertension. Curr Hypertens Rep 2017; 18:63. [PMID: 27372447 DOI: 10.1007/s11906-016-0668-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is well recognized that the renin-angiotensin system (RAS) exists not only as circulating, paracrine (cell to cell), but also intracrine (intracellular) system. In the kidney, however, it is difficult to dissect the respective contributions of circulating RAS versus intrarenal RAS to the physiological regulation of proximal tubular Na(+) reabsorption and hypertension. Here, we review recent studies to provide an update in this research field with a focus on the proximal tubular RAS in angiotensin II (ANG II)-induced hypertension. Careful analysis of available evidence supports the hypothesis that both local synthesis or formation and AT1 (AT1a) receptor- and/or megalin-mediated uptake of angiotensinogen (AGT), ANG I and ANG II contribute to high levels of ANG II in the proximal tubules of the kidney. Under physiological conditions, nearly all major components of the RAS including AGT, prorenin, renin, ANG I, and ANG II would be filtered by the glomerulus and taken up by the proximal tubules. In ANG II-dependent hypertension, the expression of AGT, prorenin, and (pro)renin receptors, and angiotensin-converting enzyme (ACE) is upregulated rather than downregulated in the kidney. Furthermore, hypertension damages the glomerular filtration barrier, which augments the filtration of circulating AGT, prorenin, renin, ANG I, and ANG II and their uptake in the proximal tubules. Together, increased local ANG II formation and augmented uptake of circulating ANG II in the proximal tubules, via activation of AT1 (AT1a) receptors and Na(+)/H(+) exchanger 3, may provide a powerful feedforward mechanism for promoting Na(+) retention and the development of ANG II-induced hypertension.
Collapse
Affiliation(s)
- Xiao C Li
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, 2500 North State Street, Jackson, MS, 39216-4505, USA
| | - Jia L Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, 2500 North State Street, Jackson, MS, 39216-4505, USA.
| |
Collapse
|
6
|
Holmes RS, Spradling-Reeves KD, Cox LA. Evolution of Vertebrate Solute Carrier Family 9B Genes and Proteins ( SLC9B): Evidence for a Marsupial Origin for Testis Specific SLC9B1 from an Ancestral Vertebrate SLC9B2 Gene. ACTA ACUST UNITED AC 2016; 4. [PMID: 28868326 DOI: 10.4172/2329-9002.1000167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
SLC9B genes and proteins are members of the sodium/lithium hydrogen antiporter family which function as solute exchangers within cellular membranes of mammalian tissues. SLC9B2 and SLC9B1 amino acid sequences and structures and SLC9B-like gene locations were examined using bioinformatic data from several vertebrate genome projects. Vertebrate SLC9B2 sequences shared 56-98% identity as compared with ∼50% identities with mammalian SLC9B1 sequences. Sequence alignments, key amino acid residues and conserved predicted transmembrane structures were also studied. Mammalian SLC9B2 and SLC9B1 genes usually contained 11 or 12 coding exons with differential tissue expression patterns: SLC9B2, broad tissue distribution; and SLC9B1, being testis specific. Transcription factor binding sites and CpG islands within the human SLC9B2 and SLC9B1 gene promoters were identified. Phylogenetic analyses suggested that SLC9B1 originated in an ancestral marsupial genome from a SLC9B2 gene duplication event.
Collapse
Affiliation(s)
- Roger S Holmes
- Eskitis Institute for Drug Discovery and School of Natural Sciences, Griffith University, Nathan, QLD, Australia.,Department of Genetics and Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Kimberly D Spradling-Reeves
- Department of Genetics and Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Laura A Cox
- Department of Genetics and Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
7
|
Xu H, Chen H, Li J, Zhao Y, Ghishan FK. Disruption of NHE8 expression impairs Leydig cell function in the testes. Am J Physiol Cell Physiol 2014; 308:C330-8. [PMID: 25472965 DOI: 10.1152/ajpcell.00289.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple sodium/hydrogen exchanger (NHE) isoforms are expressed in the testes, and they play various roles in cell volume regulation, intracellular pH regulation, and fluid absorption. NHE8, the most recently characterized NHE family member, is detected in the Leydig cells in humans and mice in great abundance by immunohistochemistry in the current study. Male mice lacking NHE8 expression were infertile. Despite having intact male reproductive organs, male NHE8-/- mice have smaller testes and lacked spermatozoon in the seminiferous tubules and the epididymis. At the age of 39 wk, few spermogonia were seen in the testis in NHE8-/- mice. Although male NHE8-/- mice have normal serum levels of luteinizing hormone and follicle-stimulating hormone, serum testosterone level was significantly reduced. These mice have decreased expression of luteinizing hormone receptor in the testes. In NHE8 small-interfering RNA-transfected mouse Leydig cells (MLTC-1), silencing of NHE8 decreased the expression of luteinizing hormone receptor by ∼70%. Moreover, loss of NHE8 function in Leydig cells resulted in disorganized luteinizing hormone receptor membrane distribution. Therefore, male infertility in NHE8-/- mice is at least partially due to the disruption of luteinizing hormone receptor distribution and consequent low testosterone production, which leads to Sertoli cell dysfunction. Our work identified a novel role of NHE8 in male fertility through its effect on modifying luteinizing hormone receptor function.
Collapse
Affiliation(s)
- Hua Xu
- Department of Pediatrics, Steel Children's Research Center, The University of Arizona, Tucson, Arizona
| | - Huacong Chen
- Department of Pediatrics, Steel Children's Research Center, The University of Arizona, Tucson, Arizona
| | - Jing Li
- Department of Pediatrics, Steel Children's Research Center, The University of Arizona, Tucson, Arizona
| | - Yang Zhao
- Department of Pediatrics, Steel Children's Research Center, The University of Arizona, Tucson, Arizona
| | - Fayez K Ghishan
- Department of Pediatrics, Steel Children's Research Center, The University of Arizona, Tucson, Arizona
| |
Collapse
|
8
|
Martins AD, Bernardino RL, Neuhaus-Oliveira A, Sousa M, Sá R, Alves MG, Oliveira PF. Physiology of na+/h+ exchangers in the male reproductive tract: relevance for male fertility. Biol Reprod 2014; 91:11. [PMID: 24876406 DOI: 10.1095/biolreprod.114.118331] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The maintenance of pH homeostasis in the male reproductive tract is kept through the involvement of several mechanisms, among which is included the transmembranous movement of H(+) ions. Na(+)-H(+) exchangers (SLC9, solute carrier 9 family members) are among the membrane transporters known to participate in intracellular and extracellular pH regulation but also have important roles in salt and water absorption across epithelia and in the regulation of cell volume. The presence of several Na(+)-H(+) exchangers has been reported in the male reproductive tract. Their involvement in the processes that ensure the correct pursuance of the spermatogenetic event and spermatozoa maturation has been suggested. Indeed, the formation of mature spermatozoa is highly dependent on the maintenance of adequate ductal luminal milieu pH and ionic balance. Perturbations in these processes result in reduced male reproductive potential and consequently male subfertility and/or infertility. Thus, it is imperative to understand H(+) transport dynamics in order to identify and counteract possible alterations associated with reduced male fertility caused by pathological conditions. Herein, we will discuss the expression pattern and physiological roles of SLC9 family members in the cells of the male reproductive tract as well as the molecular basis of H(+) transport and its involvement in male reproductive potential.
Collapse
Affiliation(s)
- Ana D Martins
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Investigation in Biomedicine (UMIB), University of Porto, Porto, Portugal
| | - Raquel L Bernardino
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Investigation in Biomedicine (UMIB), University of Porto, Porto, Portugal
| | - Aline Neuhaus-Oliveira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Mário Sousa
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Investigation in Biomedicine (UMIB), University of Porto, Porto, Portugal
| | - Rosália Sá
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Unit for Multidisciplinary Investigation in Biomedicine (UMIB), University of Porto, Porto, Portugal
| | - Marco G Alves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Pedro F Oliveira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
9
|
Altintas MM, Moriwaki K, Wei C, Möller CC, Flesche J, Li J, Yaddanapudi S, Faridi MH, Gödel M, Huber TB, Preston RA, Jiang JX, Kerjaschki D, Sever S, Reiser J. Reduction of proteinuria through podocyte alkalinization. J Biol Chem 2014; 289:17454-67. [PMID: 24817115 DOI: 10.1074/jbc.m114.568998] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Podocytes are highly differentiated cells and critical elements for the filtration barrier of the kidney. Loss of their foot process (FP) architecture (FP effacement) results in urinary protein loss. Here we show a novel role for the neutral amino acid glutamine in structural and functional regulation of the kidney filtration barrier. Metabolic flux analysis of cultured podocytes using genetic, toxic, and immunologic injury models identified increased glutamine utilization pathways. We show that glutamine uptake is increased in diseased podocytes to couple nutrient support to increased demand during the disease state of FP effacement. This feature can be utilized to transport increased amounts of glutamine into damaged podocytes. The availability of glutamine determines the regulation of podocyte intracellular pH (pHi). Podocyte alkalinization reduces cytosolic cathepsin L protease activity and protects the podocyte cytoskeleton. Podocyte glutamine supplementation reduces proteinuria in LPS-treated mice, whereas acidification increases glomerular injury. In summary, our data provide a metabolic opportunity to combat urinary protein loss through modulation of podocyte amino acid utilization and pHi.
Collapse
Affiliation(s)
- Mehmet M Altintas
- From the Department of Medicine, Rush University Medical Center, Chicago, Illinois 60035
| | - Kumiko Moriwaki
- the Department of Medicine, Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Changli Wei
- From the Department of Medicine, Rush University Medical Center, Chicago, Illinois 60035
| | - Clemens C Möller
- the Division of Nephrology and Program in Glomerular Disease, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02129
| | - Jan Flesche
- the Division of Nephrology and Program in Glomerular Disease, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02129
| | - Jing Li
- From the Department of Medicine, Rush University Medical Center, Chicago, Illinois 60035
| | - Suma Yaddanapudi
- the Division of Nephrology and Program in Glomerular Disease, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02129
| | - Mohd Hafeez Faridi
- From the Department of Medicine, Rush University Medical Center, Chicago, Illinois 60035
| | - Markus Gödel
- the Renal Division, University Hospital Freiburg, 79106 Freiburg, Germany
| | - Tobias B Huber
- the Renal Division, University Hospital Freiburg, 79106 Freiburg, Germany, the BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs University, 79106 Freiburg, Germany
| | - Richard A Preston
- the Department of Medicine, Division of Clinical Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Jean X Jiang
- the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229, and
| | - Dontscho Kerjaschki
- the Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Sanja Sever
- the Division of Nephrology and Program in Glomerular Disease, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02129
| | - Jochen Reiser
- From the Department of Medicine, Rush University Medical Center, Chicago, Illinois 60035,
| |
Collapse
|
10
|
Matherly LH, Wilson MR, Hou Z. The major facilitative folate transporters solute carrier 19A1 and solute carrier 46A1: biology and role in antifolate chemotherapy of cancer. Drug Metab Dispos 2014; 42:632-49. [PMID: 24396145 PMCID: PMC3965896 DOI: 10.1124/dmd.113.055723] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/06/2014] [Indexed: 01/19/2023] Open
Abstract
This review summarizes the biology of the major facilitative membrane transporters, the reduced folate carrier (RFC) (Solute Carrier 19A1) and the proton-coupled folate transporter (PCFT) (Solute Carrier 46A1). Folates are essential vitamins, and folate deficiency contributes to a variety of health disorders. RFC is ubiquitously expressed and is the major folate transporter in mammalian cells and tissues. PCFT mediates the intestinal absorption of dietary folates and appears to be important for transport of folates into the central nervous system. Clinically relevant antifolates for cancer, such as methotrexate and pralatrexate, are transported by RFC, and loss of RFC transport is an important mechanism of methotrexate resistance in cancer cell lines and in patients. PCFT is expressed in human tumors, and is active at pH conditions associated with the tumor microenvironment. Pemetrexed is an excellent substrate for both RFC and PCFT. Novel tumor-targeted antifolates related to pemetrexed with selective membrane transport by PCFT over RFC are being developed. In recent years, there have been major advances in understanding the structural and functional properties and the regulation of RFC and PCFT. The molecular bases for methotrexate resistance associated with loss of RFC transport and for hereditary folate malabsorption, attributable to mutant PCFT, were determined. Future studies should continue to translate molecular insights from basic studies of RFC and PCFT biology into new therapeutic strategies for cancer and other diseases.
Collapse
Affiliation(s)
- Larry H Matherly
- Department of Oncology (L.H.M., M.R.W., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (L.H.M., Z.H.)
| | | | | |
Collapse
|
11
|
Pelaseyed T, Gustafsson JK, Gustafsson IJ, Ermund A, Hansson GC. Carbachol-induced MUC17 endocytosis is concomitant with NHE3 internalization and CFTR membrane recruitment in enterocytes. Am J Physiol Cell Physiol 2013; 305:C457-67. [PMID: 23784542 DOI: 10.1152/ajpcell.00141.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have reported that transmembrane mucin MUC17 binds PDZ protein PDZK1, which retains MUC17 apically in enterocytes. MUC17 and transmembrane mucins MUC3 and MUC12 are suggested to build the enterocyte apical glycocalyx. Carbachol (CCh) stimulation of the small intestine results in gel-forming mucin secretion from goblet cells, something that requires adjacent enterocytes to secrete chloride and bicarbonate for proper mucin formation. Surface labeling and confocal imaging demonstrated that apically expressed MUC17 in Caco-2 cells and Muc3(17) in murine enterocytes were endocytosed upon stimulation with CCh. Relocation of MUC17 in response to CCh was specific as MUC3 and MUC12 did not relocate following CCh stimulation. MUC17 colocalized with PDZK1 under basal conditions, while MUC17 relocated to the terminal web and into early endosomes after CCh stimulation. CCh stimulation concomitantly internalized the Na(+/)H(+) exchanger 3 (NHE3) and recruited cystic fibrosis transmembrane conductance regulator (CFTR) to the apical membranes, a process that was important for CFTR-mediated bicarbonate secretion necessary for proper gel-forming mucin unfolding. The reason for the specific internalization of MUC17 is not understood, but it could limit the diffusion barrier for ion secretion caused by the apical enterocyte glycocalyx or alternatively act to sample luminal bacteria. Our results reveal well-orchestrated mucus secretion and trafficking of ion channels and the MUC17 mucin.
Collapse
Affiliation(s)
- Thaher Pelaseyed
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
12
|
Barmeyer C, Ye JH, Soroka C, Geibel P, Hingsammer LM, Weitgasser L, Atway D, Geibel JP, Binder HJ, Rajendran VM. Identification of functionally distinct Na-HCO3 co-transporters in colon. PLoS One 2013; 8:e62864. [PMID: 23690961 PMCID: PMC3653958 DOI: 10.1371/journal.pone.0062864] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 03/26/2013] [Indexed: 01/23/2023] Open
Abstract
Na-HCO3 cotransport (NBC) regulates intracellular pH (pHi) and HCO3 secretion in rat colon. NBC has been characterized as a 5,5′-diisothiocyanato-2-2′-stilbene (DIDS)-sensitive transporter in several tissues, while the colonic NBC is sensitive to both amiloride and DIDS. In addition, the colonic NBC has been identified as critical for pHi regulation as it is activated by intravesicular acid pH. Molecular studies have identified several characteristically distinct NBC isoforms [i.e. electrogenic (NBCe) and electroneutral (NBCn)] that exhibit tissue specific expression. This study was initiated to establish the molecular identity and specific function of NBC isoforms in rat colon. Northern blot and reverse transcriptase PCR (RT-PCR) analyses revealed that electrogenic NBCe1B or NBCe1C (NBCe1B/C) isoform is predominantly expressed in proximal colon, while electroneutral NBCn1C or NBCn1D (NBCn1C/D) is expressed in both proximal and distal colon. Functional analyses revealed that amiloride-insensitive, electrogenic, pH gradient-dependent NBC activity is present only in basolateral membranes of proximal colon. In contrast, amiloride-sensitive, electroneutral, [H+]-dependent NBC activity is present in both proximal and distal colon. Both electrogenic and electroneutral NBC activities are saturable processes with an apparent Km for Na of 7.3 and 4.3 mM, respectively; and are DIDS-sensitive with apparent Ki of 8.9 and 263.8 µM, respectively. In addition to Na-H exchanger isoform-1 (NHE1), pHi acidification is regulated by a HCO3-dependent mechanism that is HOE694-insensitive in colonic crypt glands. We conclude from these data that electroneutral, amiloride-sensitive NBC is encoded by NBCn1C/D and is present in both proximal and distal colon, while NBCe1B/C encodes electrogenic, amiloride-insensitive Na-HCO3 cotransport in proximal colon. We also conclude that NBCn1C/D regulates HCO3-dependent HOE694-insensitive Na-HCO3 cotransport and plays a critical role in pHi regulation in colonic epithelial cells.
Collapse
Affiliation(s)
- Christian Barmeyer
- Department of Internal Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Jeff Huaqing Ye
- Department of Internal Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Carol Soroka
- Department of Internal Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Peter Geibel
- Department of Surgery, Yale University, New Haven, Connecticut, United States of America
| | - Lukas M. Hingsammer
- Department of Surgery, Yale University, New Haven, Connecticut, United States of America
| | - Laurence Weitgasser
- Department of Surgery, Yale University, New Haven, Connecticut, United States of America
| | - Danny Atway
- Department of Surgery, Yale University, New Haven, Connecticut, United States of America
| | - John P. Geibel
- Department of Surgery, Yale University, New Haven, Connecticut, United States of America
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States of America
| | - Henry J. Binder
- Department of Internal Medicine, Yale University, New Haven, Connecticut, United States of America
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States of America
| | - Vazhaikkurichi M. Rajendran
- Department of Internal Medicine, Yale University, New Haven, Connecticut, United States of America
- Department of Biochemistry and Microbiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
13
|
Liu C, Xu H, Zhang B, Johansson MEV, Li J, Hansson GC, Ghishan FK. NHE8 plays an important role in mucosal protection via its effect on bacterial adhesion. Am J Physiol Cell Physiol 2013; 305:C121-8. [PMID: 23657568 DOI: 10.1152/ajpcell.00101.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Na⁺/H⁺ exchanger NHE8 is expressed on the apical membrane of intestinal epithelial cells and is particularly abundant in the colon. Our previous study showed that Muc2 expression was significantly reduced in NHE8-knockout (NHE8-/-) mice, suggesting that NHE8 plays a role in mucosal protection in the colon. The current study confirms and extends our studies on the role of NHE8 in mucosal protection. The number of bacteria attached on the distal colon was significantly increased in NHE8-/- mice compared with their wild-type littermates. As expected, IL-4 expression was markedly increased in NHE8-/- mice compared with wild-type mice. Immunohistochemistry showed disorganization in the mucin layer of NHE8-/- mice, suggesting a possible direct bacteria-epithelia interaction. Furthermore, NHE8-/- mice were susceptible to dextran sodium sulfate-induced mucosal injury. In wild-type mice, dextran sodium sulfate treatment inhibited colonic NHE8 expression. In Caco-2 cells, the absence of NHE8 expression resulted in higher adhesion rates of Salmonella typhimurium but not Lactobacillus plantarum. Similarly, in vivo, S. typhimurium adhesion rate was increased in NHE8-/- mice compared with wild-type mice. Our study suggests that NHE8 plays important roles in protecting intestinal epithelia from infectious bacterial adherence.
Collapse
Affiliation(s)
- Chang Liu
- Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Xu H, Li J, Chen H, Wang C, Ghishan FK. NHE8 plays important roles in gastric mucosal protection. Am J Physiol Gastrointest Liver Physiol 2013; 304:G257-61. [PMID: 23220221 PMCID: PMC3566513 DOI: 10.1152/ajpgi.00433.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sodium/hydrogen exchanger (NHE) 8 is an apically expressed membrane protein in the intestinal epithelial cells. It plays important roles in sodium absorption and bicarbonate secretion in the intestine. Although NHE8 mRNA has been detected in the stomach, the precise location and physiological role of NHE8 in the gastric glands remain unclear. In the current study, we successfully detected the expression of NHE8 in the glandular region of the stomach by Western blotting and located NHE8 protein at the apical membrane in the surface mucous cells by a confocal microscopic method. We also identified the expression of downregulated-in-adenoma (DRA) in the surface mucous cells in the stomach. Using NHE8(-/-) mice, we found that NHE8 plays little or no role in basal gastric acid production, yet NHE8(-/-) mice have reduced gastric mucosal surface pH and higher incidence of developing gastric ulcer. DRA expression was reduced significantly in the stomach in NHE8(-/-) mice. The propensity for gastric ulcer, reduced mucosal surface pH, and low DRA expression suggest that NHE8 is indirectly involved in gastric bicarbonate secretion and gastric mucosal protection.
Collapse
Affiliation(s)
- Hua Xu
- University of Arizona, Tucson, Arizona
| | - Jing Li
- University of Arizona, Tucson, Arizona
| | | | | | | |
Collapse
|
15
|
Xu H, Zhang B, Li J, Wang C, Chen H, Ghishan FK. Impaired mucin synthesis and bicarbonate secretion in the colon of NHE8 knockout mice. Am J Physiol Gastrointest Liver Physiol 2012; 303:G335-43. [PMID: 22575219 PMCID: PMC3774248 DOI: 10.1152/ajpgi.00146.2012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sodium/hydrogen exchanger 8 (NHE8), the newest member of the SLC9 family, is expressed at the apical membrane of the epithelial cells in the intestine and the kidney. Although NHE8 has been shown to be an important player for intestinal sodium absorption early in development, its physiological role in the intestine remains unclear. Here, we successfully created a NHE8 knockout (NHE8(-/-)) mouse model to study the function of this transporter in the intestinal tract. Embryonic stem cells containing interrupted NHE8 gene were injected into mouse blastocyst to produce NHE8(+/-) chimeras. NHE8(-/-) mice showed no lethality during embryonic and fetal development. These mice had normal serum sodium levels and no signs of diarrhea. Apically expressed NHE2 and NHE3 were increased in the small intestine of the NHE8(-/-) mice in compensation. The number of goblet cells and mucin (MUC)-positive cells in the colon was reduced in NHE8(-/-) mice along with mucosal pH, MUC2 expression as well as downregulated in adenoma (DRA) expression. Therefore, the role of NHE8 in the intestine involves both sodium absorption and bicarbonate secretion.
Collapse
Affiliation(s)
- Hua Xu
- University of Arizona, Tucson, Arizona
| | - Bo Zhang
- University of Arizona, Tucson, Arizona
| | - Jing Li
- University of Arizona, Tucson, Arizona
| | | | | | | |
Collapse
|
16
|
Craigie E, Evans LC, Mullins JJ, Bailey MA. Failure to downregulate the epithelial sodium channel causes salt sensitivity in Hsd11b2 heterozygote mice. Hypertension 2012; 60:684-90. [PMID: 22777941 DOI: 10.1161/hypertensionaha.112.196410] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In vivo, the enzyme 11β-hydroxysteroid dehydrogenase type 2 influences ligand access to the mineralocorticoid receptor. Ablation of the encoding gene, HSD11B2, causes the hypertensive syndrome of apparent mineralocorticoid excess. Studies in humans and experimental animals have linked reduced 11β-hydroxysteroid dehydrogenase type 2 activity and salt sensitivity of blood pressure. In the present study, renal mechanisms underpinning salt sensitivity were investigated in Hsd11b2(+/-) mice fed low-, standard-, and high-sodium diets. In wild-type mice, there was a strong correlation between dietary sodium content and fractional sodium excretion but not blood pressure. High sodium feeding abolished amiloride-sensitive sodium reabsorption, consistent with downregulation of the epithelial sodium channel. In Hsd11b2(+/-) mice, the natriuretic response to increased dietary sodium content was blunted, and epithelial sodium channel activity persisted. High-sodium diet also reduced renal blood flow and increased blood pressure in Hsd11b2(+/-) mice. Aldosterone was modulated by dietary sodium in both genotypes, and salt sensitivity in Hsd11b2(+/-) mice was associated with increased plasma corticosterone levels. Chronic administration of an epithelial sodium channel blocker or a glucocorticoid receptor antagonist prevented salt sensitivity in Hsd11b2(+/-) mice, whereas mineralocorticoid receptor blockade with spironolactone did not. This study shows that reduced 11β-hydroxysteroid dehydrogenase type 2 causes salt sensitivity of blood pressure because of impaired renal natriuretic capacity. This reflects deregulation of epithelial sodium channels and increased renal vascular resistance. The phenotype is not caused by illicit activation of mineralocorticoid receptors by glucocorticoids but by direct activation of glucocorticoid receptors.
Collapse
Affiliation(s)
- Eilidh Craigie
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | |
Collapse
|
17
|
Muthusamy S, Shukla S, Amin MR, Cheng M, Orenuga T, Dudeja PK, Malakooti J. PKCδ-dependent activation of ERK1/2 leads to upregulation of the human NHE2 transcriptional activity in intestinal epithelial cell line C2BBe1. Am J Physiol Gastrointest Liver Physiol 2012; 302:G317-25. [PMID: 22052014 PMCID: PMC3287399 DOI: 10.1152/ajpgi.00363.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The apical Na+/H+ exchanger (NHE) isoform NHE2 is involved in transepithelial Na+ absorption in the intestine. Our earlier studies have shown that mitogenic agent phorbol 12-myristate 13-acetate (PMA) induces the expression of NHE2 through activation of transcription factor early growth response-1 (Egr-1) and its interactions with the NHE2 promoter. However, the signaling pathways involved in transcriptional stimulation of NHE2 in response to PMA in the intestinal epithelial cells are not known. Chemical inhibitors and genetic approaches were used to investigate the signaling pathways responsible for the stimulation of NHE2 expression by PMA via Egr-1 induction. We show that, in response to PMA, PKCδ, a member of novel PKC isozymes, and MEK-ERK1/2 pathway of mitogen-activated protein kinases stimulate the NHE2 expression in C2BBe1 intestinal epithelial cells. PMA rapidly and transiently induced activation of PKCδ. Small inhibitory RNA-mediated knockdown of PKCδ blocked the stimulatory effect of PMA on the NHE2 promoter activity. In addition, blockade of PKCδ by rottlerin, a PKCδ-specific inhibitor, and ERK1/2 by U0126, a MEK-ERK inhibitor, abrogated PMA-induced Egr-1 expression. Immunofluorescence studies revealed that inhibition of ERK1/2 activation prevents translocation of PMA-induced Egr-1 into the nucleus. Consistent with these data, PMA-induced Egr-1 interaction with the NHE2 promoter region was prevented in nuclear extracts from U0126-pretreated cells. In conclusion, our data provide the first evidence that the stimulatory effect of PMA on NHE2 expression is mediated through the initial activation of PKCδ, subsequent PKCδ-dependent activation of MEK-ERK1/2 signaling pathway, and stimulation of Egr-1 expression. Furthermore, we show that transcription factor Egr-1 acts as an intermediate effector molecule that links the upstream signaling cues to the long-term stimulation of NHE2 expression by PMA in C2BBe1 cells.
Collapse
Affiliation(s)
- Saminathan Muthusamy
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Sagar Shukla
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Md. Ruhul Amin
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Ming Cheng
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Temitope Orenuga
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Pradeep K. Dudeja
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Jaleh Malakooti
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
18
|
Arena EA, Longo WE, Roberts KE, Geibel P, Nateqi J, Brandstetter M, Geibel JP. Functional role of NHE4 as a pH regulator in rat and human colonic crypts. Am J Physiol Cell Physiol 2011; 302:C412-8. [PMID: 22049213 DOI: 10.1152/ajpcell.00163.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To regulate ionic and fluid homeostasis, the colon relies upon a series of Na(+)-dependent transport proteins. Recent studies have identified a sodium/hydrogen exchanger (NHE) 4 (NHE4) protein in the gastrointestinal tract but to date there has been little description of its function. Additionally, we have previously shown that aldosterone can rapidly modulate Na(+)-dependent proton excretion via NHE proteins. In this study we examined the role of NHE4 in rat and human colonic crypts, determined the effect of aldosterone on NHE4 specifically, and explored the intracellular pathways leading to activation. Colonic samples were dissected from Sprague-Dawley rats. Human specimens were obtained from patients undergoing elective colon resections. Crypts were isolated using ethylenediaminetetraacetic acid and intracellular pH (pH(i)) changes were monitored using 2'-7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF). Crypts were exposed to 7 μM ethylisopropylamiloride or 400 μM amiloride, doses previously shown to inhibit NHE1 and NHE3 but allow NHE4 to remain active. Functional NHE4 activity was demonstrated in both rat and human colonic crypts. NHE4 activity was increased in the presence of 1 μM aldosterone. In the rat model, crypts were exposed to 100 μM 3-isobutyl-1-methylxanthine/1 μM forskolin and demonstrated a decrease in NHE4 activity with increased cAMP levels. No significant change in NHE4 activity was seen by increasing osmolarity. These results demonstrate functional NHE4 activity in the rat and human colon and an increase in activity by aldosterone. This novel exchanger is capable of modulating intracellular pH over a wide pH spectrum and may play an important role in maintaining cellular pH homeostasis.
Collapse
Affiliation(s)
- Elizabeth A Arena
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Xu H, Li J, Chen R, Zhang B, Wang C, King N, Chen H, Ghishan FK. NHE2X3 DKO mice exhibit gender-specific NHE8 compensation. Am J Physiol Gastrointest Liver Physiol 2011; 300:G647-53. [PMID: 21252044 PMCID: PMC3074987 DOI: 10.1152/ajpgi.00546.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
NHE8, the newest member of the sodium/hydrogen exchanger family, is expressed in the epithelial cells of the intestine and the kidney. Intestinal expression of NHE8 is significantly higher than that of NHE2 and NHE3 at a young age, suggesting that NHE8 is an important player for intestinal sodium absorption during early development. The current study was designed to explore if NHE8 plays a compensatory role for the loss of NHE2 and NHE3 function in NHE2X3 double-knockout (NHE2X3 DKO) mice. We further explored the regulatory mechanism(s) responsible for the change in NHE8 expression in NHE2X3 DKO mice. We found that >95% of NHE2X3 DKO mice survived through weanling. However, only 60% of male NHE2X3 DKO mice and 88% of female NHE2X3 DKO mice survived to 6 wk of life. We also found that the expression of NHE8 in wild-type female mice was higher compared with wild-type male mice after puberty. In NHE2X3 KDO mice, NHE8 expression was increased in females but not in males. Using Caco-2 cells as a model of the small intestine, we showed that testosterone inhibited endogenous NHE8 expression by reducing NHE8 mRNA synthesis, whereas estrogen had no effect on NHE8 expression. Thus our data show for the first time that intestinal NHE8 has a compensatory role in NHE2X3 DKO mice and this regulation is gender-dependent.
Collapse
Affiliation(s)
- Hua Xu
- 1Department of Pediatrics, University of Arizona Health Sciences Center, Tucson, Arizona; and
| | - Jing Li
- 1Department of Pediatrics, University of Arizona Health Sciences Center, Tucson, Arizona; and
| | - Rongji Chen
- 1Department of Pediatrics, University of Arizona Health Sciences Center, Tucson, Arizona; and
| | - Bo Zhang
- 1Department of Pediatrics, University of Arizona Health Sciences Center, Tucson, Arizona; and
| | - Chunhui Wang
- 1Department of Pediatrics, University of Arizona Health Sciences Center, Tucson, Arizona; and ,2Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Nolan King
- 1Department of Pediatrics, University of Arizona Health Sciences Center, Tucson, Arizona; and
| | - Huacong Chen
- 1Department of Pediatrics, University of Arizona Health Sciences Center, Tucson, Arizona; and
| | - Fayez K. Ghishan
- 1Department of Pediatrics, University of Arizona Health Sciences Center, Tucson, Arizona; and
| |
Collapse
|
20
|
Coon S, Kekuda R, Saha P, Sundaram U. Reciprocal regulation of the primary sodium absorptive pathways in rat intestinal epithelial cells. Am J Physiol Cell Physiol 2010; 300:C496-505. [PMID: 21148403 DOI: 10.1152/ajpcell.00292.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sodium absorption in the mammalian small intestine occurs predominantly by two primary pathways that include Na/H exchange (NHE3) and Na-glucose cotransport (SGLT1) on the brush border membrane (BBM) of villus cells. However, whether NHE3 and SGLT1 function together to regulate intestinal sodium absorption is unknown. Nontransformed small intestinal epithelial cells (IEC-18) were transfected with either NHE3 or SGLT1 small interfering RNAs (siRNAs) and were grown in confluent monolayers on transwell plates to measure the effects on Na absorption. Uptake studies were performed as well as molecular studies to determine the effects on NHE3 and SGLT1 activity. When IEC-18 monolayers were transfected with silencing NHE3 RNA, the cells demonstrated decreased NHE3 activity as well as decreased NHE3 mRNA and protein. However, in NHE3 siRNA-transected cells, SGLT1 activity, mRNA, and protein in the BBM were significantly increased. Thus, inhibition of NHE3 expression regulates the expression and function of SGLT1 in the BBM of intestinal epithelial cells. In addition, IEC-18 cells transected with silencing SGLT1 RNA demonstrated an inhibition of Na-dependent glucose uptake and a decrease in SGLT1 activity, mRNA, and protein levels. However, in these cells, Na/H exchange activity was significantly increased. Furthermore, NHE3 mRNA and protein levels were also increased. Therefore, the inhibition of SGLT1 expression stimulates the transcription and function of NHE3 and vice versa in the BBM of intestinal epithelial cells. Thus this study demonstrates that the major sodium absorptive pathways together function to regulate sodium absorption in epithelial cells.
Collapse
Affiliation(s)
- Steven Coon
- West Virginia Univ. School of Medicine, Morgantown, WV 26506, USA
| | | | | | | |
Collapse
|
21
|
Holthouser KA, Mandal A, Merchant ML, Schelling JR, Delamere NA, Valdes RR, Tyagi SC, Lederer ED, Khundmiri SJ. Ouabain stimulates Na-K-ATPase through a sodium/hydrogen exchanger-1 (NHE-1)-dependent mechanism in human kidney proximal tubule cells. Am J Physiol Renal Physiol 2010; 299:F77-90. [PMID: 20427472 PMCID: PMC2904182 DOI: 10.1152/ajprenal.00581.2009] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 04/21/2010] [Indexed: 11/22/2022] Open
Abstract
Recent investigations demonstrate increased Na/H exchanger-1 (NHE-1) activity and plasma levels of ouabain-like factor in spontaneously hypertensive rats. At nanomolar concentrations, ouabain increases Na-K-ATPase activity, induces cell proliferation, and activates complex signaling cascades. We hypothesize that the activity of NHE-1 and Na-K-ATPase are interdependent. To test whether treatment with picomolar ouabain regulates Na-K-ATPase through an NHE-1-dependent mechanism, we examined the role of NHE-1 in ouabain-mediated stimulation of Na-K-ATPase in kidney proximal tubule cell lines [opossum kidney (OK), HK-2, HKC-5, and HKC-11] and rat kidney basolateral membranes. Ouabain stimulated Na-K-ATPase activity and tyrosine phosphorylation in cells that express NHE-1 (OK, HKC-5, and HKC-11) but not in HK-2 cells that express very low levels of NHE-1. Inhibition of NHE-1 with 5 microM EIPA, a NHE-1-specific inhibitor, prevented ouabain-mediated stimulation of (86)Rb uptake and Na-K-ATPase phosphorylation in OK, HKC-5, and HKC-11 cells. Expression of wild-type NHE-1 in HK2 cells restored regulation of Na-K-ATPase by picomolar ouabain. Treatment with picomolar ouabain increased membrane expression of Na-K-ATPase and enhanced NHE-1-Na-K-ATPase alpha1-subunit association. Treatment with ouabain (1 microg x kg body wt(-1) x day(-1)) increased Na-K-ATPase activity, expression, phosphorylation, and association with NHE-1 increased in rat kidney cortical basolateral membranes. Eight days' treatment with ouabain (1 microg x kg body wt(-1) x day(-1)) resulted in increased blood pressure in these rats. These results suggest that the association of NHE-1 with Na-K-ATPase is critical for ouabain-mediated regulation of Na-K-ATPase and that these effects may play a role in cardioglycoside-stimulated hypertension.
Collapse
Affiliation(s)
- Kristine A Holthouser
- Department of Medicine/Kidney Disease Program, University of Louisville, Louisville, Kentucky, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Short-chain fatty acids (SCFA) are the major anion in stool and are synthesized from nonabsorbed carbohydrate by the colonic microbiota. Nonabsorbed carbohydrate are not absorbed in the colon and induce an osmotically mediated diarrhea; in contrast, SCFA are absorbed by colonic epithelial cells and stimulate Na-dependent fluid absorption via a cyclic AMP-independent process involving apical membrane Na-H, SCFA-HCO(3), and Cl-SCFA exchanges. SCFA production represents an adaptive process to conserve calories, fluid, and electrolytes. Inhibition of SCFA synthesis by antibiotics and administration of PEG, a substance that is not metabolized by colonic microbiota, both result in diarrhea. In contrast, increased production of SCFA as a result of providing starch that is relatively resistant to amylase digestion [so-called resistant starch (RS)] to oral rehydration solution (RS-ORS) improves the efficacy of ORS and represents an important approach to improve the effectiveness of ORS in the treatment of acute diarrhea in children under five years of age.
Collapse
Affiliation(s)
- Henry J Binder
- Departments of Internal Medicine and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
23
|
Musch MW, Arvans DL, Wang Y, Nakagawa Y, Solomaha E, Chang EB. Cyclic AMP-mediated endocytosis of intestinal epithelial NHE3 requires binding to synaptotagmin 1. Am J Physiol Gastrointest Liver Physiol 2010; 298:G203-11. [PMID: 19926819 PMCID: PMC2822502 DOI: 10.1152/ajpgi.00379.2009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The apical membrane Na(+)-H(+) exchanger (NHE)3 is regulated by cAMP-dependent phosphorylation, which inhibits its activity through membrane endocytosis. The clathrin complex adaptor protein synaptotagmin 1 (Syt 1) appears to be essential to this process, but little is known about its expression in intestinal epithelial cells or interaction with NHE3. The intestinal epithelial expression and apical location of Syt 1 were determined by Syt 1 mRNA profiling and immunolocalization. Tandem mass spectrometry was used for protein identification. Bis(sulfosuccinimidyl) suberate (BS(3)) cross linking suggested that NHE3 and Syt 1 were in a membrane complex following cAMP stimulation of Caco2BBE (Brush Border Expressions) cells. To investigate the regulation of NHE3 appearance in a Syt 1-containing membrane compartment, doxycycline-inducible hemaglutinin (HA)-tagged NHE3 was expressed in Caco2BBE cells. HA-NHE3 correctly targeted to the apical membrane, where, upon cAMP stimulation, it was internalized with a Syt 1-containing compartment. Site-directed mutagenesis of NHE3 showed that serine 605 (S605) was pivotal to NHE3 and Syt 1 association and internalization. Direct Syt 1 interaction with NHE3 was suggested by fluorescence resonance energy transfer (FRET) analysis. The physiological role of S552 was less clear. By FRET, this serine residue appeared to be involved in cAMP-induced Syt 1 binding of NHE3. However, when HA-tagged NHE3 S552A was expressed in Caco2 cells, the mutated construct was not inserted into the apical membrane. We conclude that intestinal epithelial Syt 1 plays an important role in cAMP-stimulated endocytosis of apical NHE3 through cAMP-dependent phosphorylation of S605 that is required for NHE3 and Syt 1 association.
Collapse
Affiliation(s)
| | | | - Yunwei Wang
- 1Martin Boyer Laboratories, Department of Medicine;
| | | | - Elena Solomaha
- 2Biophysical Research Core Facility, Divisions of Biological and Physical Sciences, University of Chicago, Chicago, Illinois
| | | |
Collapse
|
24
|
Shahidullah M, Mandal A, Delamere NA. Responses of sodium-hydrogen exchange to nitric oxide in porcine cultured nonpigmented ciliary epithelium. Invest Ophthalmol Vis Sci 2009; 50:5851-8. [PMID: 19608532 PMCID: PMC2919568 DOI: 10.1167/iovs.09-3453] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To better understand how nitric oxide (NO) alters the function of the nonpigmented ciliary epithelium (NPE), studies were performed to determine the influence of NO on sodium-hydrogen exchanger (NHE) activity. METHODS Cytoplasmic pH (pH(i)) was measured in cultured porcine NPE loaded with BCECF (2',7'-bis(2-carboxyl)-5(6)-carboxyfluorescein-acetoxyethyl ester). Na-H exchanger (NHE) was examined by immunolocalization. RESULTS In cells acidified by 5 minutes of exposure to 20 mM ammonium chloride, pH(i) recovery was partially inhibited by sodium nitroprusside (SNP), an NO donor, and l-arginine, the endogenous substrate for NO synthase. SNP and dimethyl amiloride (DMA), an NHE inhibitor, inhibited pH(i) recovery to a similar degree. In bicarbonate-free buffer SNP+DMA elicited no additional change in pH(i) recovery beyond that elicited by DMA alone. This suggests that SNP causes NHE inhibition. the SNP's effect on pH(i) recovery was mimicked by 8-pCPT-cGMP but suppressed by ODQ and H-8. Ouabain alone reduced pH(i) recovery, but SNP+ouabain caused significant further reduction. Immunolocalization studies revealed NHE1 and -4 in native and cultured NPE. CONCLUSIONS NHE1 and -4 are expressed at the NPE basolateral margin. The findings suggest the NHE is inhibited by NO which acts via a cGMP and protein kinase G signaling pathway. The NHE response does not appear to be the consequence of NO-induced Na,K-ATPase inhibition. Because NO synthases are expressed in porcine NPE, NO could act as an autocrine regulator of NHE activity. Although NHE inhibitors are known to lower intraocular pressure (IOP), further studies are needed to understand whether changes in NHE activity contribute to the IOP-lowering effect of NO donors.
Collapse
|
25
|
Steffan JJ, Snider JL, Skalli O, Welbourne T, Cardelli JA. Na+/H+ exchangers and RhoA regulate acidic extracellular pH-induced lysosome trafficking in prostate cancer cells. Traffic 2009; 10:737-53. [PMID: 19302267 DOI: 10.1111/j.1600-0854.2009.00904.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Acidic extracellular pH (pHe) is a common feature of the tumor microenvironment and has been implicated in tumor invasion through the induction of protease secretion.Since lysosomes constitute the major storehouse of cellular proteases, the trafficking of lysosomes to the cell periphery may be required in order to secrete proteases. We demonstrate that a pHe of 6.4-6.8 induced the trafficking of lysosomes to membrane protrusions in the cell periphery. This trafficking event depended upon the PI3K pathway, the GTPase RhoA and sodium-proton exchange activity, resulting in lysosomal exocytosis. Acidic pHe induced a cytoplasmic acidification (although cytoplasmic acidification was not sufficient for acidic pHe-induced lysosome trafficking and exocytosis) and inhibition of NHE activity with the amiloride derivative, EIPA or the anti-diabetic agent troglitazone prevented lysosome trafficking to the cell periphery. Interestingly, using the more specific NHE1 and NHE3 inhibitors, cariporide and s3226 respectively, we show that multiple NHE isoforms are involved in acidic pHe-induced lysosome trafficking and exocytosis. Moreover, in cells expressing NHE1 shRNA, although basal NHE activity was decreased, lysosomes still underwent acidic pHe-induced trafficking,suggesting compensation by other NHE family members.Together these data implicate proton exchangers, especially NHE1 and NHE3, in acidic pHe-induced lysosome trafficking and exocytosis.
Collapse
Affiliation(s)
- Joshua J Steffan
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | | | | | | | |
Collapse
|
26
|
Joly F, Mayeur C, Messing B, Lavergne-Slove A, Cazals-Hatem D, Noordine ML, Cherbuy C, Duée PH, Thomas M. Morphological adaptation with preserved proliferation/transporter content in the colon of patients with short bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2009; 297:G116-23. [PMID: 19389806 DOI: 10.1152/ajpgi.90657.2008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In short bowel syndrome (SBS), although a remaining colon improves patient outcome, there is no direct evidence of a mucosal colonic adaptation in humans. This prospective study evaluates morphology, proliferation status, and transporter expression level in the epithelium of the remaining colon of adult patients compared with controls. The targeted transporters were Na+/H+ exchangers (NHE2 and 3) and oligopeptide transporter (PepT1). Twelve adult patients with a jejuno-colonic anastomosis were studied at least 2 yr after the last surgery and compared with 11 healthy controls. The depth of crypts and number of epithelial cells per crypt were quantified. The proliferating and apoptotic cell contents were evaluated by revealing Ki67, PCNA, and caspase-3. NHE2, NHE3, PepT1 mRNAs, and PepT1 protein were quantified by quantitative RT-PCR and Western blot, respectively. In patients with SBS compared with controls, 1) hyperphagia and severe malabsorption were documented, 2) crypt depth and number of cells per crypt were 35% and 22% higher, respectively (P < 0.005), whereas the proliferation and apoptotic levels per crypt were unchanged, and 3) NHE2 mRNA was unmodified; NHE3 mRNA was downregulated near the anastomosis and unmodified distally, and PepT1 mRNA and protein were unmodified. We concluded that, in hyperphagic patients with SBS with severe malabsorption, adaptive colonic changes include an increased absorptive surface with an unchanged proliferative/apoptotic ratio and well-preserved absorptive NHE2, NHE3, and PepT1 transporters. This is the first study showing a controlled nonpharmacological hyperplasia in the colon of patients with SBS.
Collapse
Affiliation(s)
- Francisca Joly
- Service de Gastroentérologie et Assistance Nutritive, Pôle des Maladies de l'Appareil Digestif, Hôpital Beaujon, Clichy, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Musch MW, Li YC, Chang EB. Angiotensin II directly regulates intestinal epithelial NHE3 in Caco2BBE cells. BMC PHYSIOLOGY 2009; 9:5. [PMID: 19338654 PMCID: PMC2669048 DOI: 10.1186/1472-6793-9-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 04/01/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND Angiotensin II (AII) effects on intestinal Na+ transport may be multifactorial. To determine if AII might have a direct effect on intestinal epithelial Na+ transport, we investigated its actions on Na+ transport in human intestinal epithelial Caco2BBE cells. RESULTS AII increased apical (brush border) sodium-hydrogen exchanger (NHE)-3, but not NHE2, activity within one hour. Similarly, only apical membrane NHE3 abundance increased at 1-2 hours without any change in total NHE3 protein abundance. From 4-48 hours, AII stimulated progressively larger increases in apical NHE3 activity and surface abundance, which was associated with increases in NHE3 protein expression. At 4-24 hours, NHE3 mRNA increases over baseline expression, suggesting increased gene transcription. This was supported by AII induced increases in rat NHE3 gene promoter-reporter activity. AII induction of NHE3 was blocked by the AII type I receptor antagonist losartan. Acute changes in AII-induced increases in NHE3 exocytosis were blocked by a phospholipase C inhibitor, an arachidonic acid cytochrome P450 epoxygenase inhibitor, as well as phosphatidylinositol 3 kinase (PI3K) inhibitors and Akt inhibitor, partially blocked by a metalloproteinase inhibitor and an EGF (epidermal growth factor) receptor kinase inhibitor, but not affected by an inhibitor of MEK-1 (MAPKK-1, mitogen activated protein kinase kinase-1). CONCLUSION We conclude that angiotensin II has a direct role in regulating intestinal fluid and electrolyte absorption which may contribute to its overall effects in regulation systemic volume and blood pressure. AII activates several key signaling pathways that induce acute and chronic changes in NHE3 membrane trafficking and gene transcription.
Collapse
Affiliation(s)
- Mark W Musch
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
28
|
Xu H, Chen H, Dong J, Li J, Chen R, Uno JK, Ghishan FK. Tumor necrosis factor-{alpha} downregulates intestinal NHE8 expression by reducing basal promoter activity. Am J Physiol Cell Physiol 2009; 296:C489-97. [PMID: 19109523 PMCID: PMC2660270 DOI: 10.1152/ajpcell.00482.2008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 12/17/2008] [Indexed: 11/22/2022]
Abstract
NHE8 transporter is a member of the sodium/hydrogen exchanger (NHE) family. This transporter protein is expressed at the apical membrane of epithelial cells of kidney and intestine and contributes to vectorial Na(+) transport in both tissues. Although NaCl absorption has been shown to be reduced in diarrhea associated with colitis and enteritis, little is known about the role of Na(+)/H(+) exchange and the involvement of NHE isoforms in the pathogenesis of inflammatory disorders and the mechanism of inflammation-associated diarrhea. This study investigated the role of NHE8 in the setting of inflammatory states. Jejunal mucosa was harvested from trinitrobenzene sulfonic acid (TNBS) colitis rats or lipopolysaccharide (LPS) rats for RNA extraction and brush-border membrane protein purification. The human NHE8 gene promoter was cloned from human genomic DNA and characterized in Caco-2 cells. The promoter was further used to study the mechanisms of TNF-alpha-mediated NHE8 expression downregulation in Caco-2 cells. Results from Western blot and real-time PCR indicated that NHE8 protein and mRNA were significantly reduced in TNBS rats and LPS rats. In Caco-2 cells, TNF-alpha produces similar reduction levels in the endogenous NHE8 mRNA expression observed in our in vivo studies. The downregulation of NHE8 expression mediated by TNF-alpha could be blocked by transcription inhibitor actinomycin D, suggesting the involvement of transcriptional regulation. Further studies indicated that the human NHE8 gene transcription could be activated by Sp3 transcriptional factor, and TNF-alpha inhibits human NHE8 expression by reducing Sp3 interaction at the minimal promoter region of the human NHE8 gene. In conclusion, our studies suggest that TNF-alpha decreases NHE8 expression in inflammation induced by TNBS and LPS, which may contribute to the diarrhea associated with inflammation.
Collapse
Affiliation(s)
- Hua Xu
- University of Arizona Health Sciences Center, Tucson, AZ 85724, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Hoffmann EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Physiol Rev 2009; 89:193-277. [PMID: 19126758 DOI: 10.1152/physrev.00037.2007] [Citation(s) in RCA: 1061] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The ability to control cell volume is pivotal for cell function. Cell volume perturbation elicits a wide array of signaling events, leading to protective (e.g., cytoskeletal rearrangement) and adaptive (e.g., altered expression of osmolyte transporters and heat shock proteins) measures and, in most cases, activation of volume regulatory osmolyte transport. After acute swelling, cell volume is regulated by the process of regulatory volume decrease (RVD), which involves the activation of KCl cotransport and of channels mediating K(+), Cl(-), and taurine efflux. Conversely, after acute shrinkage, cell volume is regulated by the process of regulatory volume increase (RVI), which is mediated primarily by Na(+)/H(+) exchange, Na(+)-K(+)-2Cl(-) cotransport, and Na(+) channels. Here, we review in detail the current knowledge regarding the molecular identity of these transport pathways and their regulation by, e.g., membrane deformation, ionic strength, Ca(2+), protein kinases and phosphatases, cytoskeletal elements, GTP binding proteins, lipid mediators, and reactive oxygen species, upon changes in cell volume. We also discuss the nature of the upstream elements in volume sensing in vertebrate organisms. Importantly, cell volume impacts on a wide array of physiological processes, including transepithelial transport; cell migration, proliferation, and death; and changes in cell volume function as specific signals regulating these processes. A discussion of this issue concludes the review.
Collapse
Affiliation(s)
- Else K Hoffmann
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
30
|
Claiborne JB, Choe KP, Morrison-Shetlar AI, Weakley JC, Havird J, Freiji A, Evans DH, Edwards SL. Molecular detection and immunological localization of gill Na+/H+ exchanger in the dogfish (Squalus acanthias). Am J Physiol Regul Integr Comp Physiol 2007; 294:R1092-102. [PMID: 18094061 DOI: 10.1152/ajpregu.00718.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The dogfish (Squalus acanthias) can make rapid adjustments to gill acid-base transfers to compensate for internal acidosis/alkalosis. Branchial Na+/H+ exchange (NHE) has been postulated as one mechanism driving the excretion of H+ following acidosis. We have cloned gill cDNA that includes an open reading frame coding for a 770-residue protein most homologous (approximately 71%) to mammalian NHE2. RT-PCR revealed NHE2 transcripts predominantly in gill, stomach, rectal gland, intestine, and kidney. In situ hybridization with an antisense probe against NHE2 in gill sections revealed a strong mRNA signal from a subset of interlamellar and lamellae cells. We developed dogfish-specific polyclonal antibodies against NHE2 that detected a approximately 70-kDa protein in Western blots and immunologically recognized branchial cells having two patterns of protein expression. Cytoplasmic and apical NHE2 immunoreactivity were observed in cells coexpressing basolateral Na+-K+-ATPase. Other large ovoid cells more generally staining for NHE2 also were strongly positive for basolateral H+-ATPase. Gill mRNA levels for NHE2 and H+-ATPase did not change following systemic acidosis (as measured by quantitative PCR 2 h after a 1- or 2-meq/kg acid infusion). These data indicate that posttranslational adjustments of NHE2 and other transport systems (e.g., NHE3) following acidosis may be of importance in the short-term pH adjustment and net branchial H+ efflux observed in vivo. NHE2 may play multiple roles in the gills, involved with H+ efflux from acid-secreting cells, basolateral H+ reabsorption for pHi regulation, and in parallel with H+-ATPase for the generation of HCO3(-) in base-secreting cells.
Collapse
Affiliation(s)
- James B Claiborne
- Department of Biology, Georgia Southern University, Statesboro, GA 30460, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Bailey MA, Paterson JM, Hadoke PWF, Wrobel N, Bellamy COC, Brownstein DG, Seckl JR, Mullins JJ. A switch in the mechanism of hypertension in the syndrome of apparent mineralocorticoid excess. J Am Soc Nephrol 2007; 19:47-58. [PMID: 18032795 DOI: 10.1681/asn.2007040401] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The syndrome of apparent mineralocorticoid excess arises from nonfunctional mutations in 11beta-hydroxysteroid dehydrogenase type 2 (11betaHSD2), an enzyme that inactivates cortisol and confers aldosterone specificity on the mineralocorticoid receptor. Loss of 11betaHSD2 permits glucocorticoids to activate the mineralocorticoid receptor, and the hypertension in the syndrome is presumed to arise from volume expansion secondary to renal sodium retention. An 11betaHSD2 null mouse was generated on an inbred C57BL/6J genetic background, allowing survival to adulthood. 11betaHSD2(-/-) mice had BP approximately 20 mmHg higher on average compared with wild-type mice but were volume contracted, not volume expanded as expected. Initially, impaired sodium excretion associated with increased activity of the epithelial sodium channel was observed. By 80 days of age, however, channel activity was abolished and 11betaHSD2(-/-) mice lost salt. Despite the natriuresis, hypertension remained but was not attributable to intrinsic vascular dysfunction. Instead, urinary catecholamine levels in 11betaHSD2(-/-) mice were double those in wild-type mice, and alpha1-adrenergic receptor blockade rescued the hypertensive phenotype, suggesting that vasoconstriction contributes to the sustained hypertension in this model. In summary, it is proposed that renal sodium retention remains a key event in apparent mineralocorticoid excess but that the accompanying hypertension changes from a renal to a vascular etiology over time.
Collapse
Affiliation(s)
- Matthew A Bailey
- Centre for Cardiovascular Science, The University of Edinburgh, QMRI, 47, Little France Crescent, Edinburgh, EH16 4TJ, UK
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Subramanya SB, Rajendran VM, Srinivasan P, Nanda Kumar NS, Ramakrishna BS, Binder HJ. Differential regulation of cholera toxin-inhibited Na-H exchange isoforms by butyrate in rat ileum. Am J Physiol Gastrointest Liver Physiol 2007; 293:G857-63. [PMID: 17690171 DOI: 10.1152/ajpgi.00462.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Electroneutral Na absorption occurs in the intestine via sodium-hydrogen exchanger (NHE) isoforms NHE2 and NHE3. Bicarbonate and butyrate both stimulate electroneutral Na absorption through NHE. Bicarbonate- but not butyrate-dependent Na absorption is inhibited by cholera toxin (CT). Long-term exposure to butyrate also influences expression of apical membrane proteins in epithelial cells. These studies investigated the effects of short- and long-term in vivo exposure to butyrate on apical membrane NHE and mRNA, protein expression, and activity in rat ileal epithelium that had been exposed to CT. Ileal loops were exposed to CT in vivo for 5 h and apical membrane vesicles were isolated. 22Na uptake was measured by using the inhibitor HOE694 to identify NHE2 and NHE3 activity, and Western blot analyses were performed. CT reduced total NHE activity by 70% in apical membrane vesicles with inhibition of both NHE2 and NHE3. Reduced NHE3 activity and protein expression remained low following removal of CT but increased to control values following incubation of the ileal loop with butyrate for 2 h. In parallel there was a 40% decrease in CT-induced increase in cAMP content. In contrast, NHE2 activity partially increased following removal of CT and was further increased to control levels by butyrate. NHE2 protein expression did not parallel its activity. Neither NHE2 nor NHE3 mRNA content were affected by CT or butyrate. These results indicate that CT has varying effects on the two apical NHE isoforms, inhibiting NHE2 activity without altering its protein expression and reducing both NHE3 activity and protein expression. Butyrate restores both CT-inhibited NHE2 and NHE3 activities to normal levels but via different mechanisms.
Collapse
Affiliation(s)
- Sandeep B Subramanya
- Dept. of Internal Medicine, Yale Univ. School of Medicine, New Haven, CT 06520-8010, USA
| | | | | | | | | | | |
Collapse
|
33
|
Hua P, Xu H, Uno JK, Lipko MA, Dong J, Kiela PR, Ghishan FK. Sp1 and Sp3 mediate NHE2 gene transcription in the intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2007; 293:G146-53. [PMID: 17379926 DOI: 10.1152/ajpgi.00443.2006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Our previous studies have identified a minimal Sp1-driven promoter region (nt -36/+116) directing NHE2 expression in mouse renal epithelial cells. However, this minimal promoter region was not sufficient to support active transcription of NHE2 gene in the intestinal epithelial cells, suggesting the need for additional upstream regulatory elements. In the present study, we used nontransformed rat intestinal epithelial (RIE) cells as a model to identify the minimal promoter region and transcription factors necessary for the basal transcription of rat NHE2 gene in the intestinal epithelial cells. We identified a region within the rat NHE2 gene promoter located within nt -67/-43 upstream of transcription initiation site as indispensable for the promoter function in intestinal epithelial cells. Mutations at nt -56/-51 not only abolished the DNA-protein interaction in this region, but also completely abolished NHE2 gene promoter activity in RIE cells. Supershift assays revealed that Sp1 and Sp3 interact with this promoter region, but, contrary to the minimal promoter indispensable for renal expression of NHE2, both transcription factors expressed individually in Drosophila SL2 cells activated rat NHE2 gene promoter. Moreover, Sp1 was a weaker transactivator and when coexpressed in SL2 cells it reduced Sp3-mediated NHE2 basal promoter activity. Furthermore, DNase I footprinting confirmed that nt -58/-51 is protected by nuclear protein from RIE cells. We conclude that the mechanism of basal control of rat NHE2 gene promoter activity is different in the renal and intestinal epithelium, with Sp3 being the major transcriptional activator of NHE2 gene transcription in the intestinal epithelial cells.
Collapse
Affiliation(s)
- Ping Hua
- Department of Pediatrics, Steele Memorial Children's Research Center, 1501 N. Campbell Ave., Tucson, AZ 85724, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Nadella SR, Grosell M, Wood CM. Mechanisms of dietary Cu uptake in freshwater rainbow trout: evidence for Na-assisted Cu transport and a specific metal carrier in the intestine. J Comp Physiol B 2007; 177:433-46. [PMID: 17279389 DOI: 10.1007/s00360-006-0142-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 12/18/2006] [Accepted: 12/20/2006] [Indexed: 11/26/2022]
Abstract
Copper (Cu) is both a vital nutrient and a potent toxicant. The objective of this study was to analyze the mechanistic nature of intestinal Cu transport in rainbow trout using radiolabeled Cu (64Cu) and an in vitro gut sac technique. Reduction of mucosal NaCl levels inhibited Cu transport while increase caused stimulation; Na(2)SO(4) had an identical effect, implicating Na(+) rather than the anion. These responses were unrelated to solvent drag, osmotic pressure or changes in transepithelial potential. The presence of elevated luminal Ag stimulated Cu and Na(+) uptake. Phenamil caused a partial inhibition of both Cu and Na(+) uptake while hypercapnia stimulated Na(+) and Cu transport. Cu uptake was sensitive to luminal pH and inhibited by a tenfold excess of Fe and Zn. These factors had no effect on Na(+ )uptake. On the basis of these results we propose a novel Na(+)-assisted mechanism of Cu uptake wherein the Na(+) gradient stimulates an increase in the H(+) concentration of the brushborder creating a suitable microenvironment for the effective transport of Cu via either DMT1 or Ctr1.
Collapse
Affiliation(s)
- Sunita Rao Nadella
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S4K1.
| | | | | |
Collapse
|
35
|
Gens JS, Dou H, Tackett L, Kong SS, Chu S, Montrose MH. Different ionic conditions prompt NHE2 and NHE3 translocation to the plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1023-35. [PMID: 17303069 PMCID: PMC1974857 DOI: 10.1016/j.bbamem.2007.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 12/31/2006] [Accepted: 01/04/2007] [Indexed: 11/29/2022]
Abstract
We tested whether NHE3 and NHE2 Na(+)/H(+) exchanger isoforms were recruited to the plasma membrane (PM) in response to changes in ion homeostasis. NHE2-CFP or NHE3-CFP fusion proteins were functional Na(+)/H(+) exchangers when transiently expressed in NHE-deficient PS120 fibroblasts. Confocal morphometry of cells whose PM was labeled with FM4-64 measured the fractional amount of fusion protein at the cell surface. In resting cells, 10-20% of CFP fluorescence was at PM and stable over time. A protocol commonly used to activate the Na(+)/H(+) exchange function (NH(4)-prepulse acid load sustained in Na(+)-free medium), increased PM percentages of PM NHE3-CFP and NHE2-CFP. Separation of cellular acidification from Na(+) removal revealed that only NHE3-CFP translocated when medium Na(+) was removed, and only NHE2-CFP translocated when the cell was acidified. NHE2/NHE3 chimeric proteins demonstrate that the Na(+)-removal response element resides predominantly in the NHE3 cytoplasmic tail and is distinct from the acidification response sequence of NHE2.
Collapse
Affiliation(s)
- J. Scott Gens
- Biocomplexity Institute, Indiana University, Bloomington, Indiana, 47405
| | - Hongwei Dou
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267
| | - Lixuan Tackett
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120
| | - Shen-Shen Kong
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120
| | - Shaoyou Chu
- Eli Lilly and Company, Indianapolis, Indiana, 46225
| | - Marshall H. Montrose
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120
- Corresponding Author: Marshall H. Montrose, Mail address: Department of Molecular and Cellular Physiology, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, Telephone number: (513)-558-5636, FAX number: (513)-558-5738, E-mail:
| |
Collapse
|
36
|
Wang D, Zhang H, Lang F, Yun CC. Acute activation of NHE3 by dexamethasone correlates with activation of SGK1 and requires a functional glucocorticoid receptor. Am J Physiol Cell Physiol 2007; 292:C396-404. [PMID: 16971495 PMCID: PMC2695591 DOI: 10.1152/ajpcell.00345.2006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucocorticoids stimulate the intestinal absorption of Na(+) and water partly by regulation of the Na(+)/H(+) exchanger 3 (NHE3). Previous studies have shown both genomic and nongenomic regulation of NHE3 by glucocorticoids. Serum and glucocorticoid-inducible kinase 1 (SGK1) has been shown to be part of this cascade, where phosphorylation of NHE3 by SGK1 initiates the translocation of NHE3 to the cell surface. In the present work, we examined a series of changes in SGK1 and NHE3 induced by glucocorticoids using human colonic Caco-2 and opossum kidney cells. We found that dexamethasone rapidly stimulated SGK1 mRNAs, but a significant change in protein abundance was not detected. Instead, there was an increase in SGK1 kinase activity as early as at 2 h. An increase in NHE3 protein abundance was not detected until 12 h of dexamethasone exposure, although the transport activity was significantly stimulated at 4 h. These data demonstrate that the changes of SGK1 precede those of NHE3. Chronic regulation (24 h) of NHE3 was blocked completely by prevention of protein synthesis with cycloheximide or actinomycin D and by the glucocorticoid receptor blocker RU486. The acute effect of dexamethasone was similarly abrogated by RU486, but was insensitive to cycloheximide and actinomycin D. Similarly, the stimulation of SGK1 activity by dexamethasone was blocked by RU486 but not by actinomycin D. Together, these data show that the acute effect of glucocorticoids on NHE3 is mediated by a glucocorticoid receptor dependent mechanism that activates SGK1 in a nongenomic manner.
Collapse
Affiliation(s)
- Dongsheng Wang
- Department of Physiology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
37
|
Sandu C, Artunc F, Palmada M, Rexhepaj R, Grahammer F, Hussain A, Yun C, Alessi DR, Lang F. Impaired intestinal NHE3 activity in the PDK1 hypomorphic mouse. Am J Physiol Gastrointest Liver Physiol 2006; 291:G868-76. [PMID: 16825708 DOI: 10.1152/ajpgi.00023.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In vitro experiments have demonstrated the stimulating effect of serum- and glucocorticoid-inducible kinase (SGK)1 on the activity of the Na+/H+ exchanger (NHE3). SGK1 requires activation by phosphoinositide-dependent kinase (PDK)1, which may thus similarly play a role in the regulation of NHE3-dependent epithelial electrolyte transport. The present study was performed to explore the role of PDK1 in the regulation of NHE3 activity. Because mice completely lacking functional PDK1 are not viable, hypomorphic mice expressing approximately 20% of PDK1 (pdk1(hm)) were compared with their wild-type littermates (pdk1(wt)). NHE3 activity in the intestine and PDK1-overexpressing HEK-293 cells was estimated by utilizing 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein fluorescence for the determination of intracellular pH. NHE activity was reflected by the Na+-dependent pH recovery from an ammonium prepulse (DeltapH(NHE)). The pH changes after an ammonium pulse allowed the calculation of cellular buffer capacity, which was not significantly different between pdk1(hm) and pdk1(wt) mice. DeltapH(NHE) was in pdk1(hm) mice, only 30 +/- 6% of the value obtained in pdk1(wt) mice. Conversely, DeltapH(NHE) was 32 +/- 7% larger in PDK1-overexpressing HEK-293 cells than in HEK-293 cells expressing the empty vector. The difference between pdk1(hm) and pdk1(wt) mice and between PDK1-overexpressing and empty vector-transfected HEK cells, respectively, was completely abolished in the presence of the NHE3 inhibitor S3226 (10 microM). In conclusion, defective PDK1 expression leads to significant impairment of NHE3 activity in the intestine, pointing to a role of PDK1-dependent signaling in the regulation of NHE-mediated electrolyte transport.
Collapse
Affiliation(s)
- Ciprian Sandu
- Department of Physiology I, University of Tübingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Shimoda LA, Fallon M, Pisarcik S, Wang J, Semenza GL. HIF-1 regulates hypoxic induction of NHE1 expression and alkalinization of intracellular pH in pulmonary arterial myocytes. Am J Physiol Lung Cell Mol Physiol 2006; 291:L941-9. [PMID: 16766575 DOI: 10.1152/ajplung.00528.2005] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Vascular remodeling resulting from altered pulmonary arterial smooth muscle cell (PASMC) growth is a contributing factor to the pathogenesis of hypoxic pulmonary hypertension. PASMC growth requires an alkaline shift in intracellular pH (pH(i)) and we previously showed that PASMCs isolated from mice exposed to chronic hypoxia exhibited increased Na(+)/H(+) exchanger (NHE) expression and activity, which resulted in increased pH(i). However, the mechanism by which hypoxia caused these changes was unknown. In this study we tested the hypothesis that hypoxia-induced changes in PASMC pH homeostasis are mediated by the transcriptional regulator hypoxia-inducible factor 1 (HIF-1). Consistent with previous results, increased NHE isoform 1 (NHE1) mRNA and protein, enhanced NHE activity, and an alkaline shift in pH(i) were observed in PASMCs isolated from wild-type mice exposed to chronic hypoxia (3 wk at 10% O(2)). In contrast, these changes were absent in PASMCs isolated from chronically hypoxic mice with partial deficiency for HIF-1. Exposure of PASMCs to hypoxia ex vivo (48 h at 4% O(2)) or overexpression of HIF-1 in the absence of hypoxia also increased NHE1 mRNA and protein expression. Our results indicate that full expression of HIF-1 is essential for hypoxic induction of NHE1 expression and changes in PASMC pH homeostasis and suggest a novel mechanism by which HIF-1 mediates pulmonary vascular remodeling during the pathogenesis of hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- Larissa A Shimoda
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, 5501 Hopkins Bayview Circle, JHAAC 4A.52, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
39
|
Choi JY, Kim SY, Son EJ, Kim JL, Shin JH, Song MH, Moon UY, Yoon JH. Dexamethasone increases fluid absorption via Na+/H+ exchanger (NHE) 3 activation in normal human middle ear epithelial cells. Eur J Pharmacol 2006; 536:12-8. [PMID: 16564041 DOI: 10.1016/j.ejphar.2006.02.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 02/13/2006] [Accepted: 02/15/2006] [Indexed: 10/25/2022]
Abstract
The proper homeostasis of the liquid lining the surface of the middle ear cavity is vitally important for maintaining a fluid-free middle ear cavity. Disruption of this homeostasis leads to fluid collection in the middle ear cavity and results in otitis media with effusion. We demonstrated the molecular and functional expression of the Na+/H+ exchanger (NHE)s in normal human middle ear epithelial (NHMEE) cells. We also evaluated the role of NHEs in fluid absorption and the effect of dexamethasone on NHE function and NHE-dependent fluid absorption in NHMEE cells. Western blot analysis was performed for NHE1, -2, and -3 in NHMEE cells. The fluid absorption rate was measured after liquid application on the luminal surface of the cells. Intracellular pH (pHi) was measured using the pH-sensitive fluorescent probe bis-(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF)-AM. NHE activity was determined as Na+-induced pHi recovery from an acid load achieved by luminal exposure to 40 mmol/l NH4Cl. NHE1, -2 and -3 were all expressed in the NHMEE cells. The pHi recovery rate was suppressed by inhibition of NHE2 and -3 with HOE694 at concentrations greater than 50 microM. Inhibition of NHE3 with 650 microM of HOE694 or S3226 significantly decreased the fluid absorption rate. Dexamethasone increased the Na+-induced pHi recovery rate which was reversed by the inhibition of NHE3 with 650 microM of HOE694. Dexamethasone treatment up-regulated NHE3 expression in a dose-dependent manner. The fluid absorption rate was increased by treatment with dexamethasone (10(-7) M) and reversed by the inhibition of NHE3. In summary, we have shown that NHE3 are involved in the regulation of both pHi and fluid absorption on the luminal surface of NHMEE cells. Dexamethasone stimulates NHE3 expression and NHE3-dependent fluid absorption in NHMEE cells. These findings provide a new insight into mechanisms that regulate periciliary fluid and the therapeutic mechanisms behind steroid treatment of otitis media with effusion.
Collapse
Affiliation(s)
- Jae Young Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Magro F, Fraga S, Soares-da-Silva P. Interferon-γ-induced STAT1-mediated membrane retention of NHE1 and associated proteins ezrin, radixin and moesin in HT-29 cells. Biochem Pharmacol 2005; 70:1312-9. [PMID: 16174516 DOI: 10.1016/j.bcp.2005.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 07/16/2005] [Accepted: 07/18/2005] [Indexed: 11/25/2022]
Abstract
This study evaluated the effect of interferon-gamma (IFN-gamma) upon the function and expression of type 1 Na(+)/H+ exchanger (NHE1) in human intestinal epithelial HT-29 cells, namely that concerning the abundance of surface NHE1 and NHE1 binding to the ezrin, radixin and moesin (ERM) family of proteins. HT-29 cells express endogenous NHE1 and the ERM family of proteins that retain the localization of NHE1 in the membrane. Long-term exposure (24 h) of HT-29 cells to IFN-gamma resulted in a concentration-dependent decrease in NHE1 activity. Inhibition of NHE1 activity by IFN-gamma was absent after pretreatment with cariporide. The long-term exposure to IFN-gamma was accompanied by increase in surface NHE1 and ERM abundance and no changes in total NHE1 and ERM abundance. Inhibition of signal transducer and activator transcription factor 1 (STAT1) with epigallocatechin-3-gallate (EGCG) prevented the inhibitory effect of IFN-gamma. Treatment with IFN-gamma activated phospho-STAT1 was markedly attenuated by EGCG. The IFN-gamma-induced increase in surface NHE1 and ERM abundance was prevented by EGCG. In conclusion, long-term inhibition of NHE1 activity by IFN-gamma involves STAT1 phosphorylation and is accompanied by increased abundance of surface NHE1 and the NHE1 membrane anchoring ERM proteins.
Collapse
Affiliation(s)
- Fernando Magro
- Institute of Pharmacology and Therapeutics, Faculty of Medicine, 4200 Porto, Portugal
| | | | | |
Collapse
|
41
|
Pelis RM, Edwards SL, Kunigelis SC, Claiborne JB, Renfro JL. Stimulation of renal sulfate secretion by metabolic acidosis requires Na+/H+exchange induction and carbonic anhydrase. Am J Physiol Renal Physiol 2005; 289:F208-16. [PMID: 15741604 DOI: 10.1152/ajprenal.00468.2004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The acute effect of metabolic acidosis on SO42−secretion by the marine teleost renal proximal tubule was examined. Metabolic acidosis was mimicked in primary cultures of winter flounder renal proximal tubule epithelium (fPTCs) mounted in Ussing chambers by reducing interstitial pH to 7.1 (normally 7.7). fPTCs with metabolic acidosis secreted SO42−at a net rate that was 40% higher than in paired isohydric controls (pH 7.7 on interstitium). The stimulation was completely blocked by the carbonic anhydrase inhibitor methazolamide (100 μM). Although Na+/H+exchange (NHE) isoforms 1, 2, and 3 were identified in fPTCs by immunoblotting, administering EIPA (20 μM) to the interstitial and luminal bath solutions had no effect on net SO42−secretion by fPTCs with a normal interstitial pH of 7.7. However, EIPA (20 μM) blocked most of the stimulation caused by acidosis when applied to the lumen but not interstitium, demonstrating that induction of brush-border NHE activity is important. In the intact flounder, serum pH dropped 0.4 pH units (pH 7.7 to 7.3, at 2–3 h) when environmental pH was lowered from 7.8 to ∼4.3. Whereas serum [SO42−] was not altered by acidosis, renal tubular SO42−secretion rate was elevated 200%. Thus metabolic acidosis strongly stimulates renal sulfate excretion most likely by a direct effect on active renal proximal tubule SO42−secretion. This stimulation appears to be dependent on inducible brush-border NHE activity.
Collapse
Affiliation(s)
- Ryan M Pelis
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | | | | | | | | |
Collapse
|
42
|
Choe KP, Kato A, Hirose S, Plata C, Sindic A, Romero MF, Claiborne JB, Evans DH. NHE3 in an ancestral vertebrate: primary sequence, distribution, localization, and function in gills. Am J Physiol Regul Integr Comp Physiol 2005; 289:R1520-34. [PMID: 15994375 DOI: 10.1152/ajpregu.00048.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In mammals, the Na+/H+ exchanger 3 (NHE3) is expressed with Na+/K+-ATPase in renal proximal tubules, where it secretes H+ and absorbs Na+ to maintain blood pH and volume. In elasmobranchs (sharks, skates, and stingrays), the gills are the dominant site of pH and osmoregulation. This study was conducted to determine whether epithelial NHE homologs exist in elasmobranchs and, if so, to localize their expression in gills and determine whether their expression is altered by environmental salinity or hypercapnia. Degenerate primers and RT-PCR were used to deduce partial sequences of mammalian NHE2 and NHE3 homologs from the gills of the euryhaline Atlantic stingray (Dasyatis sabina). Real-time PCR was then used to demonstrate that mRNA expression of the NHE3 homolog increased when stingrays were transferred to low salinities but not during hypercapnia. Expression of the NHE2 homolog did not change with either treatment. Rapid amplification of cDNA was then used to deduce the complete sequence of a putative NHE3. The 2,744-base pair cDNA includes a coding region for a 2,511-amino acid protein that is 70% identical to human NHE3 (SLC9A3). Antisera generated against the carboxyl tail of the putative stingray NHE3 labeled the apical membranes of Na+/K+-ATPase-rich epithelial cells, and acclimation to freshwater caused a redistribution of labeling in the gills. This study provides the first NHE3 cloned from an elasmobranch and is the first to demonstrate an increase in gill NHE3 expression during acclimation to low salinities, suggesting that NHE3 can absorb Na+ from ion-poor environments.
Collapse
Affiliation(s)
- Keith P Choe
- Department of Zoology, University of Florida, Gainesville, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Magro F, Fraga S, Soares-da-Silva P. Signaling of short- and long-term regulation of intestinal epithelial type 1 Na+/H+ exchanger by interferon-gamma. Br J Pharmacol 2005; 145:93-103. [PMID: 15723092 PMCID: PMC1576121 DOI: 10.1038/sj.bjp.0706167] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 12/28/2004] [Accepted: 01/05/2005] [Indexed: 02/08/2023] Open
Abstract
The present study evaluated the effect of interferon-gamma (IFN-gamma) on intestinal Na+/H+ exchange (NHE) activity and the intracellular signaling pathways set into motion after IFN-gamma receptor activation. Caco-2 cells express endogenous NHE1, NHE2 and NHE3 proteins, as detected by immunoblotting. Short- (0.5 h) and long- (24 h) term exposure of Caco-2 cells to IFN-gamma resulted in a concentration-dependent decrease in NHE activity. Inhibition of NHE activity by IFN-gamma was absent in cariporide-treated cells, but not in cells treated with S-3226. The long-term exposure to IFN-gamma was accompanied by a 20% increase in surface NHE1 abundance and no changes in total NHE1 abundance. Inhibition of Raf1, mitogen-activated protein kinase kinase (MAPKK/MEK) and p38 MAPK with, respectively, GW 5074, PD 98059 and SB 203580 and downregulation of protein kinase C (PKC) with phorbol-12,13-dibutyrate (100 nM for 24 h) prevented inhibition of NHE activity by IFN-gamma (0.5 and 24 h exposure). The signal transducer and activator transcription factor 1 (STAT1) inhibitor epigallocatechin-3-gallate (EGCG) prevented inhibition of NHE activity by long- but not the short-term treatment with IFN-gamma. Treatment with IFN-gamma activated phospho-p38 MAPK, this effect being detected as early as 1 h, persisting over 3 h and decreasing after 24 h. IFN-gamma produced a sustained action of phospho-STAT1 that was prevented by EGCG and partially attenuated by SB 203580 and insensitive to downregulation of PKC. In conclusion, short- and long-term inhibition of NHE1 activity by IFN-gamma involves a complex signaling pathway that includes PKC activation and STAT1 phosphorylation, respectively, but is not accompanied by downregulation of NHE1.
Collapse
Affiliation(s)
- Fernando Magro
- Faculty of Medicine, Institute of Pharmacology and Therapeutics, 4200-319 Porto, Portugal
| | - Sónia Fraga
- Faculty of Medicine, Institute of Pharmacology and Therapeutics, 4200-319 Porto, Portugal
| | | |
Collapse
|
44
|
Brône B, Eggermont J. PDZ proteins retain and regulate membrane transporters in polarized epithelial cell membranes. Am J Physiol Cell Physiol 2005; 288:C20-9. [PMID: 15591244 DOI: 10.1152/ajpcell.00368.2004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The plasma membrane of epithelial cells is subdivided into two physically separated compartments known as the apical and basolateral membranes. To obtain directional transepithelial solute transport, membrane transporters (i.e., ion channels, cotransporters, exchangers, and ion pumps) need to be targeted selectively to either of these membrane domains. In addition, the transport properties of an epithelial cell will be maintained only if these membrane transporters are retained and properly regulated in their specific membrane compartments. Recent reports have indicated that PDZ domain-containing proteins play a dual role in these processes and, in addition, that different apical and basolateral PDZ proteins perform similar tasks in their respective membrane domains. First, although PDZ-based interactions are dispensable for the biosynthetic targeting to the proper membrane domain, the PDZ network ensures that the membrane proteins are efficiently retained at the cell surface. Second, the close spatial positioning of functionally related proteins (e.g., receptors, kinases, channels) into a signal transduction complex (transducisome) allows fast and efficient control of membrane transport processes.
Collapse
Affiliation(s)
- Bert Brône
- Laboratory of Physiology, Katholieke Universiteit Leuven, Campus Gasthuisberg O & N, Leuven, Belgium
| | | |
Collapse
|
45
|
Evans DH, Piermarini PM, Choe KP. The Multifunctional Fish Gill: Dominant Site of Gas Exchange, Osmoregulation, Acid-Base Regulation, and Excretion of Nitrogenous Waste. Physiol Rev 2005; 85:97-177. [PMID: 15618479 DOI: 10.1152/physrev.00050.2003] [Citation(s) in RCA: 1665] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The fish gill is a multipurpose organ that, in addition to providing for aquatic gas exchange, plays dominant roles in osmotic and ionic regulation, acid-base regulation, and excretion of nitrogenous wastes. Thus, despite the fact that all fish groups have functional kidneys, the gill epithelium is the site of many processes that are mediated by renal epithelia in terrestrial vertebrates. Indeed, many of the pathways that mediate these processes in mammalian renal epithelial are expressed in the gill, and many of the extrinsic and intrinsic modulators of these processes are also found in fish endocrine tissues and the gill itself. The basic patterns of gill physiology were outlined over a half century ago, but modern immunological and molecular techniques are bringing new insights into this complicated system. Nevertheless, substantial questions about the evolution of these mechanisms and control remain.
Collapse
Affiliation(s)
- David H Evans
- Department of Zoology, University of Florida, Gainesville 32611, USA.
| | | | | |
Collapse
|
46
|
Abstract
The D1-like (D1, D5) and D2-like (D2, D3, D4) classes of dopamine receptors each has shared signaling properties that contribute to the definition of the receptor class, although some differences among subtypes within a class have been identified. D1-like receptor signaling is mediated chiefly by the heterotrimeric G proteins Galphas and Galphaolf, which cause sequential activation of adenylate cyclase, cylic AMP-dependent protein kinase, and the protein phosphatase-1 inhibitor DARPP-32. The increased phosphorylation that results from the combined effects of activating cyclic AMP-dependent protein kinase and inhibiting protein phosphatase 1 regulates the activity of many receptors, enzymes, ion channels, and transcription factors. D1 or a novel D1-like receptor also signals via phospholipase C-dependent and cyclic AMP-independent mobilization of intracellular calcium. D2-like receptor signaling is mediated by the heterotrimeric G proteins Galphai and Galphao. These pertussis toxin-sensitive G proteins regulate some effectors, such as adenylate cyclase, via their Galpha subunits, but regulate many more effectors such as ion channels, phospholipases, protein kinases, and receptor tyrosine kinases as a result of the receptor-induced liberation of Gbetagamma subunits. In addition to interactions between dopamine receptors and G proteins, other protein:protein interactions such as receptor oligomerization or receptor interactions with scaffolding and signal-switching proteins are critical for regulation of dopamine receptor signaling.
Collapse
Affiliation(s)
- Kim A Neve
- Veterans Affairs Medical Center and Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon, USA.
| | | | | |
Collapse
|
47
|
Hecht G, Hodges K, Gill RK, Kear F, Tyagi S, Malakooti J, Ramaswamy K, Dudeja PK. Differential regulation of Na+/H+ exchange isoform activities by enteropathogenic E. coli in human intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2004; 287:G370-8. [PMID: 15075254 DOI: 10.1152/ajpgi.00432.2003] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Enteropathogenic Escherichia coli (EPEC) is an important human intestinal foodborne pathogen associated with diarrhea, especially in infants and young children. Although EPEC produces characteristic attaching and effacing lesions and loss of microvilli, the pathophysiology of EPEC-associated diarrhea, particularly during early infection, remains elusive. The present studies were designed to examine the direct effects of EPEC infection on intestinal absorption via Na(+)/H(+) exchanger (NHE) isoforms. Caco-2 cells were infected with EPEC strain E2348/69 or nonpathogenic E. coli HB101 for a period of 60 to 120 min. Total NHE activity was significantly increased at 60 min, reaching approximately threefold increase after 90 min of EPEC infection. Similar findings were seen in HT-29 cells and T84 cells indicating that the response was not cell-line specific. Most surprising was the differential regulation of NHE2 and NHE3 by EPEC. Marked activation of NHE2 (300%) occurred, whereas significant inhibition ( approximately 50%) of NHE3 activity was induced. The activity of basolateral isoform NHE1 was also significantly increased in response to EPEC infection. Mutations that disrupted the type III secretion system (TTSS) ablated the effect of EPEC on the activity of both NHE2 and NHE3. These results suggest that EPEC, through a TTSS-dependent mechanism, exerts differential effects on NHE isoform activity in intestinal epithelial cells. Additionally, NHEs do not appear to play any role in EPEC-mediated inflammation, because the NHE inhibitors amiloride and 5-(N-ethyl-N-isopropyl)amiloride did not prevent EPEC-mediated IkappaBalpha degradation.
Collapse
Affiliation(s)
- Gail Hecht
- Univ. of Illinois at Chicago, Medical Research Service (600/151 Chicago Veterans Affairs Health Care System, 820 S. Damen Ave., Chicago, IL 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Hayashi H, Szászi K, Coady-Osberg N, Furuya W, Bretscher AP, Orlowski J, Grinstein S. Inhibition and redistribution of NHE3, the apical Na+/H+ exchanger, by Clostridium difficile toxin B. ACTA ACUST UNITED AC 2004; 123:491-504. [PMID: 15078917 PMCID: PMC2234495 DOI: 10.1085/jgp.200308979] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
NHE3, the apical isoform of the Na+/H+ exchanger, is central to the absorption of salt and water across the intestinal epithelium. We report that treatment of epithelial cells with toxin B of Clostridium difficile, a diarrheal pathogen, causes a pronounced inhibition of NHE3 activity, with little effect on the basolateral NHE1 isoform. Depression of NHE3 activity is accompanied by the translocation of apical exchangers to a subapical endomembrane compartment. Treatment of cells with toxin B increased the fraction of exchangers that were solubilized by nonionic detergents and induced dephosphorylation and extensive redistribution of ezrin. The Rho-kinase inhibitor, Y-27632, also altered the distribution and activity of NHE3. We suggest that inactivation of Rho-family GTPases by clostridial toxin B alters the interaction between NHE3 and the microvillar cytoskeleton, possibly by impairing the ability of ezrin to bridge the exchangers to filamentous actin. Detachment of NHE3 from the actin skeleton would facilitate its internalization, resulting in net disappearance from the apical surface. The consequent inhibition of transport is likely to contribute to the diarrheal effects of C. difficile.
Collapse
Affiliation(s)
- Hisayoshi Hayashi
- Cell Biology Program, Hospital for Sick Children, Department of Biochemistry, University of Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | |
Collapse
|
49
|
Bacic D, Kaissling B, McLeroy P, Zou L, Baum M, Moe OW. Dopamine acutely decreases apical membrane Na/H exchanger NHE3 protein in mouse renal proximal tubule. Kidney Int 2003; 64:2133-41. [PMID: 14633135 PMCID: PMC4114392 DOI: 10.1046/j.1523-1755.2003.00308.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Dopamine is a principal natriuretic hormone in mammalian Na+ homeostasis. Dopamine acutely alters glomerular filtration rate (GFR) and decreases Na+ absorption in both the proximal and distal nephron. Proximal tubule natriuresis is effected through inhibition of the apical membrane Na/H exchanger NHE3. METHODS We examined whether dopamine directly and acutely decreases apical membrane NHE3 protein using renal tissue in two in vitro systems: renal cortical slices and in vitro perfused single tubules. After incubation with dopamine, NHE3 activity was measured by 22Na flux and NHE3 antigen was measured by immunoblot in apical membrane and total cellular membranes. RESULTS Direct application of dopamine to either cortical slices or microperfused tubules acutely decreases NHE3 activity and antigen at the apical membrane of the proximal tubule. No change in total cellular NHE3 was detected. CONCLUSION One mechanism by which dopamine causes natriuresis is via direct and acute reduction of NHE3 protein at the apical membrane via changes in NHE3 protein trafficking.
Collapse
Affiliation(s)
- Desa Bacic
- Institute of Anatomy, University of Zürich, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
50
|
de Silva MG, Elliott K, Dahl HH, Fitzpatrick E, Wilcox S, Delatycki M, Williamson R, Efron D, Lynch M, Forrest S. Disruption of a novel member of a sodium/hydrogen exchanger family and DOCK3 is associated with an attention deficit hyperactivity disorder-like phenotype. J Med Genet 2003; 40:733-40. [PMID: 14569117 PMCID: PMC1735283 DOI: 10.1136/jmg.40.10.733] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Attention deficit hyperactivity disorder (ADHD) is a complex condition with high heritability. However, both biochemical investigations and association and linkage studies have failed to define fully the underlying genetic factors associated with ADHD. We have identified a family co-segregating an early onset behavioural/developmental condition, with features of ADHD and intellectual disability, with a pericentric inversion of chromosome 3, 46N inv(3)(p14:q21). METHODS We hypothesised that the inversion breakpoints affect a gene or genes that cause the observed phenotype. Large genomic clones (P1 derived/yeast/bacterial artificial chromosomes) were assembled into contigs across the two inversion breakpoints using molecular and bioinformatic technologies. Restriction fragments crossing the junctions were identified by Southern analysis and these fragments were amplified using inverse PCR. RESULTS The amplification products were subsequently sequenced to reveal that the breakpoints lay within an intron of the dedicator of cytokinesis 3 (DOCK3) gene at the p arm breakpoint, and an intron of a novel member of the solute carrier family 9 (sodium/hydrogen exchanger) isoform 9 (SLC9A9) at the q arm. Both genes are expressed in the brain, but neither of the genes has previously been implicated in developmental or behavioural disorders. CONCLUSION These two disrupted genes are candidates for involvement in the pathway leading to the neuropsychological condition in this family.
Collapse
Affiliation(s)
- M G de Silva
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|