1
|
Tanabe H, Uehara T, Ota H. Cell lineage-specific immunohistochemical markers in biliary intraepithelial neoplasia: Implications for subclassification and grading. Pathol Res Pract 2025; 269:155896. [PMID: 40056752 DOI: 10.1016/j.prp.2025.155896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Biliary intraepithelial neoplasia (BilIN), a precursor to cholangiocarcinoma, is categorized into low- and high-grade based on histological characteristics. Although gastric, intestinal, and biliary phenotypes of BilIN have been identified, detailed analyses of their immunophenotypic profiles using cell lineage-specific markers remain limited. This study aimed to define the immunohistochemical profiles of BilIN lesions, subclassify them based on their immunophenotypes, and correlate these profiles with histological grades. We examined 77 BilIN lesions from extrahepatic bile ducts, including 30 low- and 47 high-grade lesions, using immunohistochemical staining for gastric (claudin-18, MUC5AC), intestinal (cadherin-17, glycoprotein A33), and biliary (carbohydrate sulfotransferase 4) markers, along with progression markers (S100P, IMP3). Expression levels were semiquantitatively scored and correlated with histopathological features. BilIN lesions were classified into four immunophenotypes: gastric (G-type), intestinal (I-type), gastrointestinal (GI-type), and biliary (B-type). Low-grade lesions comprised G- (33.3 %), GI- (40 %), I- (13.3 %), and B-types (13.3 %), while high-grade lesions included G- (40.4 %), GI- (29.8 %), I- (21.3 %), and B-types (8.5 %). In low-grade BilIN, G-type lesions corresponded to gastric mucous cells, I-type to intestinal epithelial cells, and B-type to bile duct epithelial cells, while most GI-type lesions exhibited mixed G- and I-type components. High-grade BilIN differentiation based solely on histological characteristics was challenging to delineate due to overlapping features among I-, GI-, and B-type cells. S100P and IMP3 expression levels were significantly elevated in high-grade lesions, particularly within the I+B-type BilIN group, with no notable differences in G- or GI-type BilIN. Immunophenotypic profiling with lineage-specific markers effectively subclassified BilIN, enhancing the understanding of its histogenesis and progression.
Collapse
Affiliation(s)
- Heiwa Tanabe
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, Matsumoto, Japan.
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan.
| | - Hiroyoshi Ota
- Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto, Japan.
| |
Collapse
|
2
|
Shin TS, Park JY, Kim YK, Kim JG. Extracellular vesicles derived from small intestinal lamina propria reduce antigen-specific immune response. Korean J Intern Med 2022; 37:85-95. [PMID: 34425655 PMCID: PMC8747917 DOI: 10.3904/kjim.2020.510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/18/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/AIMS Extracellular vesicles (EVs) are secreted from various types of cells and have specific functions related to their origin. EVs are observed in the small intestinal lamina propria (lpEVs), but their function remains unclear. This study aimed to investigate the role of lpEVs. METHODS LpEVs were isolated from antigen (ovalbumin [OVA])-fed mice (lpEVs/OVA), and administrated to the naïve mice for 5 days before induction of lung inflammation. Afterwards, the mice were sensitized and challenged with OVA to evaluate the role of lpEVs/OVA in the regulation of immune tolerance. RESULTS The isolated lpEVs/OVA were sphere-shaped, bi-layered vesicles of approximately 50 to 100 nm in size. The vesicles expressed CD81, A33 antigen, and major histocompatibility complex (MHC) class II on the surface. When administrated to naïve mice, the lpEVs/OVA migrated to the spleen. Intraperitoneal lpEVs/OVA administration to naïve mice decreased the immune response against sensitized antigen in a CD4+FoxP3+T cell-dependent manner. CONCLUSION EVs are actively secreted from small intestinal epithelial cells to deliver information about orally administered antigens to immune cells, which will facilitate the modulation of the immune response by acting as an intercellular communicasome.
Collapse
Affiliation(s)
| | - Jae Yong Park
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul,
Korea
| | | | - Jae Gyu Kim
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul,
Korea
| |
Collapse
|
3
|
Sanz L, Ibáñez-Pérez R, Guerrero-Ochoa P, Lacadena J, Anel A. Antibody-Based Immunotoxins for Colorectal Cancer Therapy. Biomedicines 2021; 9:1729. [PMID: 34829955 PMCID: PMC8615520 DOI: 10.3390/biomedicines9111729] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 01/21/2023] Open
Abstract
Monoclonal antibodies (mAbs) are included among the treatment options for advanced colorectal cancer (CRC). However, while these mAbs effectively target cancer cells, they may have limited clinical activity. A strategy to improve their therapeutic potential is arming them with a toxic payload. Immunotoxins (ITX) combining the cell-killing ability of a toxin with the specificity of a mAb constitute a promising strategy for CRC therapy. However, several important challenges in optimizing ITX remain, including suboptimal pharmacokinetics and especially the immunogenicity of the toxin moiety. Nonetheless, ongoing research is working to solve these limitations and expand CRC patients' therapeutic armory. In this review, we provide a comprehensive overview of targets and toxins employed in the design of ITX for CRC and highlight a wide selection of ITX tested in CRC patients as well as preclinical candidates.
Collapse
Affiliation(s)
- Laura Sanz
- Molecular Immunology Unit, Biomedical Research Institute, Hospital Universitario Puerta de Hierro, 28222 Madrid, Spain
| | - Raquel Ibáñez-Pérez
- Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (R.I.-P.); (P.G.-O.)
| | - Patricia Guerrero-Ochoa
- Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (R.I.-P.); (P.G.-O.)
| | - Javier Lacadena
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University, 28040 Madrid, Spain
| | - Alberto Anel
- Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (R.I.-P.); (P.G.-O.)
| |
Collapse
|
4
|
Champagne-Jorgensen K, Mian MF, McVey Neufeld KA, Stanisz AM, Bienenstock J. Membrane vesicles of Lacticaseibacillus rhamnosus JB-1 contain immunomodulatory lipoteichoic acid and are endocytosed by intestinal epithelial cells. Sci Rep 2021; 11:13756. [PMID: 34215822 PMCID: PMC8253831 DOI: 10.1038/s41598-021-93311-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Intestinal bacteria have diverse and complex influence on their host. Evidence is accumulating that this may be mediated in part by bacterial extracellular membrane vesicles (MV), nanometer-sized particles important for intercellular communication. Little is known about the composition of MV from gram-positive beneficial bacteria nor how they interact with intestinal epithelial cells (IEC). Here we demonstrate that MV from Lacticaseibacillus rhamnosus JB-1 are endocytosed in a likely clathrin-dependent manner by both mouse and human IEC in vitro and by mouse IEC in vivo. We further show that JB-1 MV contain lipoteichoic acid (LTA) that activates Toll-like receptor 2 (TLR2) and induces immunoregulatory interleukin-10 expression by dendritic cells in an internalization-dependent manner. By contrast, neither LTA nor TLR2 appear to be required for JB-1 MV endocytosis by IEC. These results demonstrate a novel mechanism by which bacterial MV can influence host physiology and suggest one potential route for beneficial influence of certain bacteria and probiotics.
Collapse
Affiliation(s)
- Kevin Champagne-Jorgensen
- Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada. .,Brain-Body Institute, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada. .,McMaster Brain-Body Institute, St. Joseph's Healthcare Hamilton, Juravinski Tower Room T3330, 50 Charlton Ave East, Hamilton, ON, L8N 4A6, Canada.
| | - M Firoz Mian
- Brain-Body Institute, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Karen-Anne McVey Neufeld
- Brain-Body Institute, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Andrew M Stanisz
- Brain-Body Institute, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - John Bienenstock
- Brain-Body Institute, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
5
|
Exosomes, DAMPs and miRNA: Features of Stress Physiology and Immune Homeostasis. Trends Immunol 2017; 38:768-776. [PMID: 28838855 DOI: 10.1016/j.it.2017.08.002] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 02/06/2023]
Abstract
Psychological/physical stressors and local tissue damage increase inflammatory proteins in tissues and blood in humans and animals, in the absence of pathogenic disease. Stress-evoked cytokine/chemokine responses, or sterile inflammation, can facilitate host survival and/or negatively affect health, depending on context. Recent evidence supports the hypothesis that systemic stress-evoked sterile inflammation is initiated by the sympathetic nervous system, resulting in the elevation of exosome-associated immunostimulatory endogenous danger/damage associated molecular patterns (DAMPs) and a reduction in immunoinhibitory miRNA, which are carried in the circulation to tissues throughout the body. We propose that sterile inflammation should be considered an elemental feature of the stress response and that circulating exosomes transporting immunomodulatory signals, may play a role fundamental role in immune homeostasis.
Collapse
|
6
|
Wong NACS, Adamczyk LA, Evans S, Cullen J, Oniscu A, Oien KA. A33 shows similar sensitivity to but is more specific than CDX2 as an immunomarker of colorectal carcinoma. Histopathology 2017; 71:34-41. [DOI: 10.1111/his.13194] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/19/2017] [Indexed: 12/16/2022]
Affiliation(s)
| | | | - Shanna Evans
- Department of Cellular Pathology; Southmead Hospital; Bristol UK
| | - Jayne Cullen
- Department of Cellular Pathology; Southmead Hospital; Bristol UK
| | - Anca Oniscu
- Department of Pathology; Royal Infirmary of Edinburgh; Edinburgh UK
| | - Karin A Oien
- Institute of Cancer Sciences; University of Glasgow; Glasgow UK
| |
Collapse
|
7
|
Thiem S, Eissmann MF, Elzer J, Jonas A, Putoczki TL, Poh A, Nguyen P, Preaudet A, Flanagan D, Vincan E, Waring P, Buchert M, Jarnicki A, Ernst M. Stomach-Specific Activation of Oncogenic KRAS and STAT3-Dependent Inflammation Cooperatively Promote Gastric Tumorigenesis in a Preclinical Model. Cancer Res 2016; 76:2277-87. [DOI: 10.1158/0008-5472.can-15-3089] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/11/2016] [Indexed: 11/16/2022]
|
8
|
The expression of genes involved in jejunal lipogenesis and lipoprotein synthesis is altered in morbidly obese subjects with insulin resistance. J Transl Med 2015; 95:1409-17. [PMID: 26367490 DOI: 10.1038/labinvest.2015.115] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 07/03/2015] [Accepted: 07/28/2015] [Indexed: 12/28/2022] Open
Abstract
The dyslipidemia associated with type 2 diabetes mellitus (T2DM) is an important risk factor for atherosclerotic cardiovascular disease. However, until now little attention has been paid to the role that the intestine might have. The aim of this research was to determine the relation between insulin resistance and intestinal de novo lipogenesis/lipoprotein synthesis in morbidly obese subjects and to study the effect of insulin on these processes. Jejunal mRNA expression of the different genes involved in the intestinal de novo lipogenesis/lipoprotein synthesis was analyzed in three groups of morbidly obese subjects: Group 1 with low insulin resistance (MO-low-IR), group 2 with high insulin resistance (MO-high-IR), and group 3 with T2DM and treatment with metformin (MO-metf-T2DM). In addition, intestinal epithelial cells (IECs) from MO-low-IR were incubated with different doses of insulin/glucose. In Group 2 (MO-high-IR), the jejunal mRNA expression levels of apo A-IV, ATP-citrate lyase (ACLY), pyruvate dehydrogenase (lipoamide) beta (PDHB), and sterol regulatory element-binding protein-1c (SREBP-1c) were significantly higher and acetyl-CoA carboxylase alpha (ACC1) and fatty-acid synthase lower than in Group 1 (MO-low-IR). In Group 3 (MO-metf-T2DM), only the ACLY and PDHB mRNA expressions were significantly higher than in Group 1 (MO-low-IR). The mRNA expression of most of the genes studied was significantly linked to insulin and glucose levels. The incubation of IEC with different doses of insulin and glucose produced a higher expression of diacylglycerol acyltransferase 2, microsomal triglyceride transfer protein, apo A-IV, SREBP-1c, and ACC1 when both, glucose and insulin, were at a high concentration. However, with only high insulin levels, there were higher apo A-IV, PDHB and SREBP-1c expressions, and a lower ACLY expression. In conclusion, the jejunum of MO-high-IR has a decreased mRNA expression of genes involved in de novo fatty-acid synthesis and an increase of genes involved in acetyl-CoA and lipoprotein synthesis. This effect is attenuated by metformin. In addition, the expression of most of the genes studied was found to be regulated by insulin.
Collapse
|
9
|
Buchert M, Rohde F, Eissmann M, Tebbutt N, Williams B, Tan CW, Owen A, Hirokawa Y, Gnann A, Orend G, Orner G, Dashwood RH, Heath JK, Ernst M, Janssen KP. A hypermorphic epithelial β-catenin mutation facilitates intestinal tumorigenesis in mice in response to compounding WNT-pathway mutations. Dis Model Mech 2015; 8:1361-73. [PMID: 26398937 PMCID: PMC4631784 DOI: 10.1242/dmm.019844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 07/31/2015] [Indexed: 12/18/2022] Open
Abstract
Activation of the Wnt/β-catenin pathway occurs in the vast majority of colorectal cancers. However, the outcome of the disease varies markedly from individual to individual, even within the same tumor stage. This heterogeneity is governed to a great extent by the genetic make-up of individual tumors and the combination of oncogenic mutations. In order to express throughout the intestinal epithelium a degradation-resistant β-catenin (Ctnnb1), which lacks the first 131 amino acids, we inserted an epitope-tagged ΔN(1-131)-β-catenin-encoding cDNA as a knock-in transgene into the endogenous gpA33 gene locus in mice. The resulting gpA33(ΔN-Bcat) mice showed an increase in the constitutive Wnt/β-catenin pathway activation that shifts the cell fate towards the Paneth cell lineage in pre-malignant intestinal epithelium. Furthermore, 19% of all heterozygous and 37% of all homozygous gpA33(ΔN-Bcat) mice spontaneously developed aberrant crypt foci and adenomatous polyps, at frequencies and latencies akin to those observed in sporadic colon cancer in humans. Consistent with this, the Wnt target genes, MMP7 and Tenascin-C, which are most highly expressed in benign human adenomas and early tumor stages, were upregulated in pre-malignant tissue of gpA33(ΔN-Bcat) mice, but those Wnt target genes associated with excessive proliferation (i.e. Cdnn1, myc) were not. We also detected diminished expression of membrane-associated α-catenin and increased intestinal permeability in gpA33(ΔN-Bcat) mice in challenge conditions, providing a potential explanation for the observed mild chronic intestinal inflammation and increased susceptibility to azoxymethane and mutant Apc-dependent tumorigenesis. Collectively, our data indicate that epithelial expression of ΔN(1-131)-β-catenin in the intestine creates an inflammatory microenvironment and co-operates with other mutations in the Wnt/β-catenin pathway to facilitate and promote tumorigenesis.
Collapse
Affiliation(s)
- Michael Buchert
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - Franziska Rohde
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Moritz Eissmann
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - Niall Tebbutt
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - Ben Williams
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Chin Wee Tan
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Alexander Owen
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - Yumiko Hirokawa
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Alexandra Gnann
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Gertraud Orend
- Inserm U1109, MN3T team, 3 Av. Molière, Strasbourg 67200, France LabEx Medalis, Université de Strasbourg, Strasbourg 67200, France Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg 67200, France
| | - Gayle Orner
- University of Wisconsin, Madison, WI 53706, USA
| | - Rod H Dashwood
- Texas A&M Health Science Center, Center for Epigenetics and Disease Prevention, Houston, TX 77030-3303, USA
| | - Joan K Heath
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Matthias Ernst
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| |
Collapse
|
10
|
Williams BB, Tebbutt NC, Buchert M, Putoczki TL, Doggett K, Bao S, Johnstone CN, Masson F, Hollande F, Burgess AW, Scott AM, Ernst M, Heath JK. Glycoprotein A33 deficiency: a new mouse model of impaired intestinal epithelial barrier function and inflammatory disease. Dis Model Mech 2015; 8:805-15. [PMID: 26035389 PMCID: PMC4527289 DOI: 10.1242/dmm.019935] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/05/2015] [Indexed: 12/20/2022] Open
Abstract
The cells of the intestinal epithelium provide a selectively permeable barrier between the external environment and internal tissues. The integrity of this barrier is maintained by tight junctions, specialised cell-cell contacts that permit the absorption of water and nutrients while excluding microbes, toxins and dietary antigens. Impairment of intestinal barrier function contributes to multiple gastrointestinal disorders, including food hypersensitivity, inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). Glycoprotein A33 (GPA33) is an intestinal epithelium-specific cell surface marker and member of the CTX group of transmembrane proteins. Roles in cell-cell adhesion have been demonstrated for multiple CTX family members, suggesting a similar function for GPA33 within the gastrointestinal tract. To test a potential requirement for GPA33 in intestinal barrier function, we generated Gpa33−/− mice and subjected them to experimental regimens designed to produce food hypersensitivity, colitis and CAC. Gpa33−/− mice exhibited impaired intestinal barrier function. This was shown by elevated steady-state immunosurveillance in the colonic mucosa and leakiness to oral TRITC-labelled dextran after short-term exposure to dextran sodium sulphate (DSS) to injure the intestinal epithelium. Gpa33−/− mice also exhibited rapid onset and reduced resolution of DSS-induced colitis, and a striking increase in the number of colitis-associated tumours produced by treatment with the colon-specific mutagen azoxymethane (AOM) followed by two cycles of DSS. In contrast, Gpa33−/− mice treated with AOM alone showed no increase in sporadic tumour formation, indicating that their increased tumour susceptibility is dependent on inflammatory stimuli. Finally, Gpa33−/− mice displayed hypersensitivity to food allergens, a common co-morbidity in humans with IBD. We propose that Gpa33−/− mice provide a valuable model to study the mechanisms linking intestinal permeability and multiple inflammatory pathologies. Moreover, this model could facilitate preclinical studies aimed at identifying drugs that restore barrier function. Highlighted Article: We show that GPA33, an intestine-specific cell surface protein, plays a role in the maintenance of intestinal barrier function and the prevention of intestinal pathologies such as food hypersensitivity, inflammatory bowel disease and colitis-associated cancer.
Collapse
Affiliation(s)
- Benjamin B Williams
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, Parkville, Victoria 3050, Australia
| | - Niall C Tebbutt
- Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, Parkville, Victoria 3050, Australia Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Heidelberg, Victoria 3084, Australia
| | - Michael Buchert
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, Parkville, Victoria 3050, Australia
| | - Tracy L Putoczki
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, Parkville, Victoria 3050, Australia
| | - Karen Doggett
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Shisan Bao
- Discipline of Pathology, School of Medical Science and Bosch Institute, University of Sydney, Camperdown, NSW 2006, Australia
| | - Cameron N Johnstone
- Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, Parkville, Victoria 3050, Australia Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Frederick Masson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Frederic Hollande
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Antony W Burgess
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, Parkville, Victoria 3050, Australia
| | - Andrew M Scott
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Heidelberg, Victoria 3084, Australia
| | - Matthias Ernst
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, Parkville, Victoria 3050, Australia
| | - Joan K Heath
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, Parkville, Victoria 3050, Australia
| |
Collapse
|
11
|
Greening DW, Kapp EA, Ji H, Speed TP, Simpson RJ. Colon tumour secretopeptidome: insights into endogenous proteolytic cleavage events in the colon tumour microenvironment. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2396-407. [PMID: 23684732 DOI: 10.1016/j.bbapap.2013.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/26/2013] [Accepted: 05/08/2013] [Indexed: 12/20/2022]
Abstract
The secretopeptidome comprises endogenous peptides derived from proteins secreted into the tumour microenvironment through classical and non-classical secretion. This study characterised the low-Mr (<3kDa) component of the human colon tumour (LIM1215, LIM1863) secretopeptidome, as a first step towards gaining insights into extracellular proteolytic cleavage events in the tumour microenvironment. Based on two biological replicates, this secretopeptidome isolation strategy utilised differential centrifugal ultrafiltration in combination with analytical RP-HPLC and nanoLC-MS/MS. Secreted peptides were identified using a combination of Mascot and post-processing analyses including MSPro re-scoring, extended feature sets and Percolator, resulting in 474 protein identifications from 1228 peptides (≤1% q-value, ≤5% PEP) - a 36% increase in peptide identifications when compared with conventional Mascot (homology ionscore thresholding). In both colon tumour models, 122 identified peptides were derived from 41 cell surface protein ectodomains, 23 peptides (12 proteins) from regulated intramembrane proteolysis (RIP), and 12 peptides (9 proteins) generated from intracellular domain proteolysis. Further analyses using the protease/substrate database MEROPS, (http://merops.sanger.ac.uk/), revealed 335 (71%) proteins classified as originating from classical/non-classical secretion, or the cell membrane. Of these, peptides were identified from 42 substrates in MEROPS with defined protease cleavage sites, while peptides generated from a further 205 substrates were fragmented by hitherto unknown proteases. A salient finding was the identification of peptides from 88 classical/non-classical secreted substrates in MEROPS, implicated in tumour progression and angiogenesis (FGFBP1, PLXDC2), cell-cell recognition and signalling (DDR1, GPA33), and tumour invasiveness and metastasis (MACC1, SMAGP); the nature of the proteases responsible for these proteolytic events is unknown. To confirm reproducibility of peptide fragment abundance in this study, we report the identification of a specific cleaved peptide fragment in the secretopeptidome from the colon-specific GPA33 antigen in 4/14 human CRC models. This improved secretopeptidome isolation and characterisation strategy has extended our understanding of endogenous peptides generated through proteolysis of classical/non-classical secreted proteins, extracellular proteolytic processing of cell surface membrane proteins, and peptides generated through RIP. The novel peptide cleavage site information in this study provides a useful first step in detailing proteolytic cleavage associated with tumourigenesis and the extracellular environment. This article is part of a Special Issue entitled: An Updated Secretome.
Collapse
Affiliation(s)
- David W Greening
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia.
| | | | | | | | | |
Collapse
|
12
|
Deng ZB, Zhuang X, Ju S, Xiang X, Mu J, Liu Y, Jiang H, Zhang L, Mobley J, McClain C, Feng W, Grizzle W, Yan J, Miller D, Kronenberg M, Zhang HG. Exosome-like nanoparticles from intestinal mucosal cells carry prostaglandin E2 and suppress activation of liver NKT cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:3579-89. [PMID: 23467936 DOI: 10.4049/jimmunol.1203170] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Regulation and induction of anergy in NKT cells of the liver can inhibit autoimmune and antitumor responses by mechanisms that are poorly understood. We investigated the effects of PGE2, delivered by intestinal, mucus-derived, exosome-like nanoparticles (IDENs), on NKT cells in mice. In this study, we demonstrate that IDENs migrate to the liver where they induce NKT cell anergy. These effects were mediated by an IDENs' PGE2. Blocking PGE2 synthesis attenuated IDENs inhibition of induction of IFN-γ and IL-4 by α-galactosylceramide (α-GalCer)-stimulated liver NKT cells in a PGE2 E-type prostanoid 2/E-type prostanoid 4 receptor-mediated manner. Proinflammatory conditions enhanced the migration of IDENs to the liver where α-GalCer and PGE2 induced NKT anergy in response to subsequent α-GalCer stimulation. These findings demonstrate that IDENs carrying PGE2 can be transferred from the intestine to the liver, where they act as immune modulators, inducing an anergic-like state of NKT cells. These reagents might be developed as therapeutics for autoimmune liver diseases.
Collapse
Affiliation(s)
- Zhong-Bin Deng
- Department of Microbiology and Immunology, Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Clemons NJ, Wang DH, Croagh D, Tikoo A, Fennell CM, Murone C, Scott AM, Watkins DN, Phillips WA. Sox9 drives columnar differentiation of esophageal squamous epithelium: a possible role in the pathogenesis of Barrett's esophagus. Am J Physiol Gastrointest Liver Physiol 2012; 303:G1335-46. [PMID: 23064761 DOI: 10.1152/ajpgi.00291.2012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The molecular mechanism underlying the development of Barrett's esophagus (BE), the precursor to esophageal adenocarcinoma, remains unknown. Our previous work implicated sonic hedgehog (Shh) signaling as a possible driver of BE and suggested that bone morphogenetic protein 4 (Bmp4) and Sox9 were downstream mediators. We have utilized a novel in vivo tissue reconstitution model to investigate the relative roles of Bmp4 and Sox9 in driving metaplasia. Epithelia reconstituted from squamous epithelial cells or empty vector-transduced cells had a stratified squamous phenotype, reminiscent of normal esophagus. Expression of Bmp4 in the stromal compartment activated signaling in the epithelium but did not alter the squamous phenotype. In contrast, expression of Sox9 in squamous epithelial cells induced formation of columnar-like epithelium with expression of the columnar differentiation marker cytokeratin 8 and the intestinal-specific glycoprotein A33. In patient tissue, A33 protein was expressed specifically in BE, but not in normal esophagus. Expression of Cdx2, another putative driver of BE, alone had no effect on reconstitution of a squamous epithelium. Furthermore, epithelium coexpressing Cdx2 and Sox9 had a phenotype similar to epithelium expressing Sox9 alone. Our results demonstrate that Sox9 is sufficient to drive columnar differentiation of squamous epithelium and expression of an intestinal differentiation marker, reminiscent of BE. These data suggest that Shh-mediated expression of Sox9 may be an important early event in the development of BE and that the potential for inhibitors of the hedgehog pathway to be used in the treatment of BE and/or esophageal adenocarcinoma could be tested in the near future.
Collapse
Affiliation(s)
- Nicholas J Clemons
- Surgical Oncology Research Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Johnston APR, Kamphuis MMJ, Such GK, Scott AM, Nice EC, Heath JK, Caruso F. Targeting cancer cells: controlling the binding and internalization of antibody-functionalized capsules. ACS NANO 2012; 6:6667-74. [PMID: 22872125 DOI: 10.1021/nn3010476] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The development of nanoengineered particles, such as polymersomes, liposomes, and polymer capsules, has the potential to offer significant advances in vaccine and cancer therapy. However, the effectiveness of these carriers has the potential to be greatly improved if they can be specifically delivered to target cells. We describe a general method for functionalizing nanoengineered polymer capsules with antibodies using click chemistry and investigate their interaction with cancer cells in vitro. The binding efficiency to cells was found to be dependent on both the capsule-to-cell ratio and the density of antibody on the capsule surface. In mixed cell populations, more than 90% of target cells bound capsules when the capsule-to-target cell ratio was 1:1. Strikingly, greater than 50% of target cells exhibited capsules on the cell surface even when the target cells were present as less than 0.1% of the total cell population. Imaging flow cytometry was used to quantify the internalization of the capsules, and the target cells were found to internalize capsules efficiently. However, the role of the antibody in this process was determined to enhance accumulation of capsules on the cell surface rather than promote endocytosis. This represents a significant finding, as this is the first study into the role antibodies play in internalization of such capsules. It also opens up the possibility of targeting these capsules to cancer cells using targeting molecules that do not trigger an endocytic pathway. We envisage that this approach will be generally applicable to the specific targeting of a variety of nanoengineered materials to cells.
Collapse
Affiliation(s)
- Angus P R Johnston
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010, Australia.
| | | | | | | | | | | | | |
Collapse
|
16
|
O'Donoghue JA, Smith-Jones PM, Humm JL, Ruan S, Pryma DA, Jungbluth AA, Divgi CR, Carrasquillo JA, Pandit-Taskar N, Fong Y, Strong VE, Kemeny NE, Old LJ, Larson SM. 124I-huA33 antibody uptake is driven by A33 antigen concentration in tissues from colorectal cancer patients imaged by immuno-PET. J Nucl Med 2011; 52:1878-85. [PMID: 22068895 DOI: 10.2967/jnumed.111.095596] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED The primary aim of this analysis was to examine the quantitative features of antibody-antigen interactions in tumors and normal tissue after parenteral administration of antitumor antibodies to human patients. METHODS Humanized anti-A33 antibody (10 mg) labeled with the positron-emitting radionuclide (124)I ((124)I-huA33) was injected intravenously in 15 patients with colorectal cancer. Clinical PET/CT was performed approximately 1 wk later, followed by a detailed assay of surgically removed tissue specimens including radioactivity counting, autoradiography, immunohistochemistry, and antigen density determination. RESULTS PET/CT showed high levels of antibody targeting in tumors and normal bowel. In tissue specimens, the spatial distribution of (124)I-huA33 conformed to that of A33 antigen, and there was a linear relationship between the amount of bound antibody and antigen concentration. Antibody uptake was high in 1- to 2-mm regions of antigen-positive tumor cells (mean, ~0.05 percentage injected dose per gram) and in antigen-positive normal colonic mucosa (mean, ~0.03 percentage injected dose per gram). The estimated binding site occupancy for tumor and normal colon was 20%-50%. CONCLUSION The in vivo biodistribution of (124)I-huA33 in human patients 1 wk after antibody administration was determined by A33 antigen expression. Our data imply that the optimal strategy for A33-based radioimmunotherapy of colon cancer will consist of a multistep treatment using a radionuclide with short-range (α- or β-particle) emissions.
Collapse
Affiliation(s)
- Joseph A O'Donoghue
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Adhesion protein VSIG1 is required for the proper differentiation of glandular gastric epithelia. PLoS One 2011; 6:e25908. [PMID: 21991385 PMCID: PMC3186807 DOI: 10.1371/journal.pone.0025908] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 09/13/2011] [Indexed: 11/19/2022] Open
Abstract
VSIG1, a cell adhesion protein of the immunoglobulin superfamily, is preferentially expressed in stomach, testis, and certain gastric, esophageal and ovarian cancers. Here, we describe the expression patterns of three alternatively spliced isoforms of mouse Vsig1 during pre- and postnatal development of stomach and potential function of Vsig1 in differentiation of gastric epithelia. We show that isoforms Vsig1A and Vsig1B, which differ in the 3′untranslated region, are expressed in the early stages of stomach development. Immunohistochemical analysis revealed that VSIG1 is restricted to the adherens junction of the glandular epithelium. The shorter transcript Vsig1C is restricted to the testis, encodes an N-terminal truncated protein and is presumably regulated by an internal promoter, which is located upstream of exon 1b. To determine whether the 5′ flanking region of exon 1a specifically targets the expression of Vsig1 to stomach epithelia, we generated and analyzed transgenic mice. The 4.8-kb fragment located upstream of exon 1a was sufficient to direct the expression of the reporter gene to the glandular epithelia of transgenic stomach. To determine the role of VSIG1 during the development of stomach epithelia, an X-linked Vsig1 was inactivated in embryonic stem cells (ESCs). Although Vsig1−/Y ESCs were only able to generate low coat color chimeric mice, no male chimeras transmitted the targeted allele to their progeny suggesting that the high contribution of Vsig1−/Y cells leads to the lethality of chimeric embryos. Analysis of chimeric stomachs revealed the differentiation of VSIG1-null cells into squamous epithelia inside the glandular region. These results suggest that VSIG1 is required for the establishment of glandular versus squamous epithelia in the stomach.
Collapse
|
18
|
Arampatzidou M, Mayer K, Iolyeva ME, Asrat SG, Ravichandran M, Günther T, Schüle R, Reinheckel T, Brix K. Studies of intestinal morphology and cathepsin B expression in a transgenic mouse aiming at intestine-specific expression of Cath B-EGFP. Biol Chem 2011; 392:983-93. [PMID: 21871011 DOI: 10.1515/bc.2011.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cathepsin B has been shown to not only reside within endo-lysosomes of intestinal epithelial cells, but it was also secreted into the extracellular space of intestinal mucosa in physiological and pathological conditions. In an effort to further investigate the function of this protease in the intestine, we generated a transgenic mouse model that would enable us to visualize the localization of cathepsin B in vivo. Previously we showed that the A33-antigen promoter could be successfully used in vitro in order to express cathepsin B-green fluorescent protein chimeras in cells that co-expressed the intestine-specific transcription factor Cdx1. In this study an analog approach was used to express chimeric cathepsin B specifically in the intestine of transgenic animals. No overt phenotype was observed for the transgenic mice that reproduced normally. Biochemical and morphological studies confirmed that the overall intestinal phenotype including the structure and polarity of this tissue as well as cell numbers and differentiation states were not altered in the A33-CathB-EGFP mice when compared to wild type animals. However, transgenic expression of chimeric cathepsin B could not be visualized because it was not translated in situ although the transgene was maintained over several generations.
Collapse
Affiliation(s)
- Maria Arampatzidou
- School of Engineering and Science, Research Center MOLIFE - Molecular Life Science, Jacobs University Bremen, Campus Ring 6, D-28759 Bremen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bas A, Swamy M, Abeler-Dörner L, Williams G, Pang DJ, Barbee SD, Hayday AC. Butyrophilin-like 1 encodes an enterocyte protein that selectively regulates functional interactions with T lymphocytes. Proc Natl Acad Sci U S A 2011; 108:4376-81. [PMID: 21368163 PMCID: PMC3060244 DOI: 10.1073/pnas.1010647108] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although local regulation of T-cell responses by epithelial cells is increasingly viewed as important, few molecules mediating such regulation have been identified. Skint1, a recently identified member of the Ig-supergene family expressed by thymic epithelial cells and keratinocytes, specifies the murine epidermal intraepithelial lymphocyte (IEL) repertoire. Investigating whether Skint1-related molecules might regulate IEL in other compartments, this study focuses on buytrophilin-like 1 (Btnl1), which is conspicuously similar to Skint1 and primarily restricted to small intestinal epithelium. Btnl1 protein is mostly cytoplasmic, but surface expression can be induced, and in vivo Btnl1 can be detected adjacent to the IEL. In a newly developed culture system, enforced epithelial cell expression of Btnl1 attenuated the cells' response to activated IEL, as evidenced by suppression of IL-6 and other inflammatory mediators. These findings offer a unique perspective on emerging genetic data that Btnl genes may comprise novel and important local regulators of gut inflammation.
Collapse
Affiliation(s)
- Anna Bas
- Peter Gorer Department of Immunobiology, King's College School of Medicine, Borough Wing, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Mahima Swamy
- Peter Gorer Department of Immunobiology, King's College School of Medicine, Borough Wing, Guy's Hospital, London SE1 9RT, United Kingdom
- London Research Institute, Cancer Research United Kingdom, London WC2A 3PX, United Kingdom
| | - Lucie Abeler-Dörner
- Peter Gorer Department of Immunobiology, King's College School of Medicine, Borough Wing, Guy's Hospital, London SE1 9RT, United Kingdom
- London Research Institute, Cancer Research United Kingdom, London WC2A 3PX, United Kingdom
- Biomedical Research Centre of Guy's and St Thomas’ Hospitals at King's College, London SE1 9RT, United Kingdom; and
| | - Gareth Williams
- The Wolfson Centre for Age-Related Diseases, King's College, London SE1 1UL, United Kingdom
| | - Dick J. Pang
- Peter Gorer Department of Immunobiology, King's College School of Medicine, Borough Wing, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Susannah D. Barbee
- Peter Gorer Department of Immunobiology, King's College School of Medicine, Borough Wing, Guy's Hospital, London SE1 9RT, United Kingdom
- London Research Institute, Cancer Research United Kingdom, London WC2A 3PX, United Kingdom
| | - Adrian C. Hayday
- Peter Gorer Department of Immunobiology, King's College School of Medicine, Borough Wing, Guy's Hospital, London SE1 9RT, United Kingdom
- London Research Institute, Cancer Research United Kingdom, London WC2A 3PX, United Kingdom
- Biomedical Research Centre of Guy's and St Thomas’ Hospitals at King's College, London SE1 9RT, United Kingdom; and
| |
Collapse
|
20
|
Garay E, Patiño-López G, Islas S, Alarcón L, Canche-Pool E, Valle-Rios R, Medina-Contreras O, Granados G, Chávez-Munguía B, Juaristi E, Ortiz-Navarrete V, González-Mariscal L. CRTAM: A molecule involved in epithelial cell adhesion. J Cell Biochem 2011; 111:111-22. [PMID: 20556794 DOI: 10.1002/jcb.22673] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Class I-restricted T cell associated molecule (CRTAM) is a member of the immunoglobulin superfamily that complies with the structural characteristics of the JAM family of proteins and is phylogenetically more closely related to nectin-like proteins. Here we demonstrate for the first time, that CRTAM is expressed in epithelial cells along the lateral membrane and is important for early cell-cell contacts and cell-substrate interactions. CRTAM is sensitive to intermediate filament disruption and treatment of monolayers with soluble CRTAM enhances cell-cell dissociation and lowers transepithelial electrical resistance. Incubation of newly plated cells with anti-CRTAM antibody decreases the formation of cell aggregates and promotes cell detachment. Co-cultures of epithelial cells and fibroblasts that lack CRTAM expression and in vitro binding assays, demonstrate the participation of CRTAM in homotypic and heterotypic trans-interactions. Hence we conclude that CRTAM is a molecule involved in epithelial cell adhesion.
Collapse
Affiliation(s)
- Erika Garay
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies Cinvestav, Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wilson CH, McIntyre RE, Arends MJ, Adams DJ. The activating mutation R201C in GNAS promotes intestinal tumourigenesis in Apc(Min/+) mice through activation of Wnt and ERK1/2 MAPK pathways. Oncogene 2010; 29:4567-75. [PMID: 20531296 PMCID: PMC2923080 DOI: 10.1038/onc.2010.202] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 03/17/2010] [Accepted: 04/25/2010] [Indexed: 01/28/2023]
Abstract
Somatically acquired, activating mutations of GNAS, the gene encoding the stimulatory G-protein Gsalpha subunit, have been identified in kidney, thyroid, pituitary, leydig cell, adrenocortical and, more recently, in colorectal tumours, suggesting that mutations such as R201C may be oncogenic in these tissues. To study the role of GNAS in intestinal tumourigenesis, we placed GNAS R201C under the control of the A33-antigen promoter (Gpa33), which is almost exclusively expressed in the intestines. The GNAS R201C mutation has been shown to result in the constitutive activation of Gsalpha and adenylate cyclase and to lead to the autonomous synthesis of cyclic adenosine monophosphate (cAMP). Gpa33(tm1(GnasR201C)Wtsi/+) mice showed significantly elevated cAMP levels and a compensatory upregulation of cAMP-specific phosphodiesterases in the intestinal epithelium. GNAS R201C alone was not sufficient to induce tumourigenesis by 12 months, but there was a significant increase in adenoma formation when Gpa33(tm1(GnasR201C)Wtsi/+) mice were bred onto an Apc(Min/+) background. GNAS R201C expression was associated with elevated expression of Wnt and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase (ERK1/2 MAPK) pathway target genes, increased phosphorylation of ERK1/2 MAPK and increased immunostaining for the proliferation marker Ki67. Furthermore, the effects of GNAS R201C on the Wnt pathway were additive to the inactivation of Apc. Our data strongly suggest that activating mutations of GNAS cooperate with inactivation of APC and are likely to contribute to colorectal tumourigenesis.
Collapse
Affiliation(s)
- C H Wilson
- Experimental Cancer Genetics, Wellcome Trust, Sanger Institute, Hinxton, UK
| | | | | | | |
Collapse
|
22
|
Cohen JN, Guidi CJ, Tewalt EF, Qiao H, Rouhani SJ, Ruddell A, Farr AG, Tung KS, Engelhard VH. Lymph node-resident lymphatic endothelial cells mediate peripheral tolerance via Aire-independent direct antigen presentation. J Exp Med 2010; 207:681-8. [PMID: 20308365 PMCID: PMC2856027 DOI: 10.1084/jem.20092465] [Citation(s) in RCA: 280] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 02/22/2010] [Indexed: 12/15/2022] Open
Abstract
Peripheral immune tolerance is generally thought to result from cross-presentation of tissue-derived proteins by quiescent tissue-resident dendritic cells to self-reactive T cells that have escaped thymic negative selection, leading to anergy or deletion. Recently, we and others have implicated the lymph node (LN) stroma in mediating CD8 T cell peripheral tolerance. We demonstrate that LN-resident lymphatic endothelial cells express multiple peripheral tissue antigens (PTAs) independent of the autoimmune regulator (Aire). They directly present an epitope derived from one of these, the melanocyte-specific protein tyrosinase, to tyrosinase-specific CD8 T cells, leading to their deletion. We also show that other LN stromal subpopulations express distinct PTAs by mechanisms that vary in their Aire dependence. These results establish lymphatic endothelial cells, and potentially other LN-resident cells, as systemic mediators of peripheral immune tolerance.
Collapse
MESH Headings
- Animals
- Antigen Presentation/immunology
- Antigens, Neoplasm/genetics
- Autoantigens/genetics
- Autoantigens/immunology
- Autoantigens/metabolism
- Cell Proliferation
- Endothelial Cells/cytology
- Endothelial Cells/immunology
- Endothelial Cells/metabolism
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Gene Expression/genetics
- Gene Expression/immunology
- Glutamate Decarboxylase/genetics
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Immune Tolerance/immunology
- Immunophenotyping
- Lymph Nodes/cytology
- Lymph Nodes/immunology
- Lymphocyte Activation/immunology
- MART-1 Antigen
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Mice, Transgenic
- Monophenol Monooxygenase/genetics
- Monophenol Monooxygenase/immunology
- Monophenol Monooxygenase/metabolism
- Neoplasm Proteins/genetics
- Platelet Endothelial Cell Adhesion Molecule-1/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Stromal Cells/cytology
- Stromal Cells/immunology
- Stromal Cells/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- Transcription Factors/genetics
- AIRE Protein
Collapse
Affiliation(s)
- Jarish N Cohen
- Department of Microbiology and Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Rageul J, Mottier S, Jarry A, Shah Y, Théoleyre S, Masson D, Gonzalez FJ, Laboisse CL, Denis MG. KLF4-dependent, PPARgamma-induced expression of GPA33 in colon cancer cell lines. Int J Cancer 2009; 125:2802-9. [PMID: 19551868 PMCID: PMC2791338 DOI: 10.1002/ijc.24683] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The glycoprotein A33 (GPA33) is a colon cancer antigen. Phase I trials with 131I and 125I monoclonal antibody A33 in colon carcinoma patients showed excellent localization to colorectal cancer and some evidence of tumor response. Using DNA microarrays, we have identified the GPA33 gene as a target of PPARgamma in HT29-Cl.16E colon cancer cells. Treatment of HT29-Cl.16E, Caco2, SW1116 and LS174T colon cancer cells with the PPARgamma agonist GW7845 induced a 2- to 6-fold increase in GPA33 mRNA as determined by real-time PCR. This induction was also found in HT29-Cl.16E cells treated with rosiglitazone and ciglitazone and was prevented by cotreatment with the PPARgamma antagonist GW9662, indicating that this regulation was PPARgamma dependent. No canonical PPAR responsive element was found in the GPA33 promoter. We therefore analyzed the expression of transcription factors involved in GPA33 expression. CDXl, CDX2 and KLF5 expression was not modified by PPARgamma activation. By contrast, a significant increase in KLF4 was seen, both at mRNA and protein levels. Furthermore, chromatin immunoprecipitation studies demonstrated that an increased amount of KLF4 protein was bound to the GPA33 promoter in cells treated with rosiglitazone. Finally, downregulation of KLF4 expression by siRNA reduced rosiglitazone-induced GPA33 expression. This indicates that PPARgamma activation induces KLF4 expression, which in turn increases GPA33 expression. We also demonstrate that PPARgamma activation leads to increased (p21WAF1/Cip1 and keratin 19) or decreased (cyclin D1) expression of known KLF4 targets, suggesting that KLF4 is a nodal player in a network of PPARgamma-regulated genes.
Collapse
Affiliation(s)
- Julie Rageul
- Faculté de Médecine, CNRS UMR 6061, Université Rennes 1, IFR140, Rennes, France
| | - Stéphanie Mottier
- Faculté de Médecine, CNRS UMR 6061, Université Rennes 1, IFR140, Rennes, France
| | - Anne Jarry
- Faculté de Médecine, EA Biometadys, Université de Nantes, Nantes, France
| | - Yatrik Shah
- Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Sandrine Théoleyre
- Faculté de Médecine, CNRS UMR 6061, Université Rennes 1, IFR140, Rennes, France
| | - Damien Masson
- Faculté de Médecine, INSERM U913, Université de Nantes, Nantes, France
| | | | | | - Marc G. Denis
- Faculté de Médecine, CNRS UMR 6061, Université Rennes 1, IFR140, Rennes, France
| |
Collapse
|
24
|
Samuel MS, Suzuki H, Buchert M, Putoczki TL, Tebbutt NC, Lundgren-May T, Christou A, Inglese M, Toyota M, Heath JK, Ward RL, Waring PM, Ernst M. Elevated Dnmt3a activity promotes polyposis in Apc(Min) mice by relaxing extracellular restraints on Wnt signaling. Gastroenterology 2009; 137:902-13, 913.e1-11. [PMID: 19454286 DOI: 10.1053/j.gastro.2009.05.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Revised: 04/23/2009] [Accepted: 05/14/2009] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Aberrant DNA methylation is a common early event in neoplasia, but it is unclear how this relates to dysregulation of DNA (cytosine-5) methyltransferases (Dnmts). Here we use knock-in transgenic mice to investigate the consequences of intestinal epithelium-specific overexpression of de novo Dnmt3a. METHODS A novel gene targeting strategy, based on the intestinal epithelium-specific, uniform expression of the A33 glycoprotein, is employed to restrict Dnmt3a overexpression in homozygous A33(Dnmt3a) mutant mice. RESULTS A33(Dnmt3a) mice infrequently develop spontaneous intestinal polyps. However, when genetically challenged, tumor multiplicity in A33(Dnmt3a);Apc(Min) compound mice is 3-fold higher than in Apc(Min) mice. Although we observe a requirement for spontaneous loss of heterozygosity of the adenomatous polyposis coli (Apc) gene to trigger tumorigenesis in Apc(Min) mice, lesions in A33(Dnmt3a);Apc(Min) mice frequently retain the wild-type Apc allele. However, epithelia from normal mucosa and polyps of A33(Dnmt3a);Apc(Min) mice show hypermethylation-mediated transcriptional silencing of the Wnt antagonists Sfrp5, and to a lesser extent, Sfrp1 and increased nuclear beta-catenin alongside activation of the Wnt-target gene Axin2/Conductin. Conversely, enforced Sfrp5 expression suppresses canonical Wnt-signaling more effectively in wild-type than in Apc(Min) cells. CONCLUSIONS Aberrant activation of the canonical Wnt pathway, either by mono-allelic Apc loss or transcriptional silencing of Sfrp5 is largely insufficient to promote polyposis, but epistatic interactions between these genetic and epigenetic events enables initiation and promotion of disease. This mechanism is likely to play a role in human colorectal cancer, because we also show that elevated DNMT3A expression coincides with repressed SFRP5 and enhanced AXIN2/CONDUCTIN expression in paired patient biopsies.
Collapse
Affiliation(s)
- Michael S Samuel
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Büning J, von Smolinski D, Tafazzoli K, Zimmer KP, Strobel S, Apostolaki M, Kollias G, Heath JK, Ludwig D, Gebert A. Multivesicular bodies in intestinal epithelial cells: responsible for MHC class II-restricted antigen processing and origin of exosomes. Immunology 2009; 125:510-21. [PMID: 18710406 DOI: 10.1111/j.1365-2567.2008.02864.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In normal conditions intestinal epithelial cells (IECs) constitutively stimulate regulatory CD4(+) T cells. However, in Crohn's disease (CD), this major histocompatibility complex (MHC) class II-restricted antigen presentation results in stimulation of proinflammatory CD4(+) T cells. We hypothesized that these alternative functions might be mediated by differential sorting and processing of antigens into distinct MHC II-enriched compartments (MIICs). Accordingly, we analysed the endocytic pathways of lumenally applied ovalbumin (OVA) in IECs of the jejunum and ileum of wild-type (WT) and TNFDeltaARE/WT mice that develop a CD-resembling ileitis. Using quantitative reverse transcription polymerase chain reaction, we found that messenger RNA levels of interferon-gamma, tumour necrosis factor-alpha, interleukin-17 and interleukin-10 were significantly up-regulated in the inflamed ileum of TNFDeltaARE/WT mice, confirming CD-like inflammation. Fluorescence and immunoelectron microscopy revealed the presence of MHC II and invariant chain throughout the late endocytic compartments, with most molecules concentrated in the multivesicular bodies (MVB). OVA was targeted into MVB and, in contrast to other MIICs, accumulated in these structures within 120 min of exposure. The IEC-specific A33 antigen localized to internal vesicles of MVB and A33/class II-bearing exosomes were identified in intercellular spaces. Remarkably, the expression pattern of MHC II/invariant chain molecules and the trafficking of OVA were independent of mucosal inflammation and the specific region in the small intestine. MVB seem to be principally responsible for class II-associated antigen processing in IECs and to constitute the origin of MHC II-loaded exosomes. The distinctive functions of IECs in antigen presentation to CD4(+) T cells might arise as a result of differential processing within the MVB identified here.
Collapse
Affiliation(s)
- Jürgen Büning
- Department of Internal Medicine I, University Hospital of Schleswig-Holstein, Lübeck, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mayer K, Iolyeva ME, Meyer-Grahle U, Brix K. Intestine-specific expression of green fluorescent protein-tagged cathepsin B: proof-of-principle experiments. Biol Chem 2008; 389:1085-96. [PMID: 18979632 DOI: 10.1515/bc.2008.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We hypothesized that tissue-specific expression of cathepsin B-enhanced green fluorescent protein (CB-EGFP) can be driven by the A33-antigen promoter that contains positive cis-regulatory elements, including caudal-related homeobox (CDX) binding sites. The intestine-specific transcription factor Cdx1 is crucial for A33-antigen promoter activation and could thereby induce expression of CB-EGFP. This concept was tested by construction of the vector pA33-CathB-EGFP encoding CB-EGFP downstream of the A33-antigen promoter. Its Cdx1 dependence, as an indication of its intestine-specific expression, was tested in Cdx1-negative CHO-K1 cells. Cdx1 expression was achieved upon transfection with pCdx1-DsRed-Express and was indicated by red fluorescence of the simultaneously translated reporter protein. Immunolabeling with Cdx1-specific antibodies showed correct targeting of the transcription factor to its point of action in nuclei of transfected cells. Co-transfection experiments with plasmids pA33-CathB-EGFP and pCdx1-DsRed-Express confirmed the hypothesis that Cdx1 indeed activates CB-EGFP expression in a manner dependent on the A33-antigen promoter. Co-localization with compartment-specific markers and subcellular fractionation confirmed CB-EGFP trafficking along the expected route to endolysosomal compartments. Hence, the A33-antigen promoter represents a potent tool for induction of Cdx1-dependent CB-EGFP expression in vitro. Our proof-of-principle studies confirm the suitability of this approach in visualizing protease transport in Cdx1-positive tissues of the gastrointestinal tract.
Collapse
Affiliation(s)
- Kristina Mayer
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 6, D-28759 Bremen, Germany
| | | | | | | |
Collapse
|
27
|
Mayer K, Iolyeva ME, Meyer-Grahle U, Brix K. Intestine-specific expression of green fluorescent protein-tagged cathepsin B: proof-of-principle experiments. Biol Chem 2008. [DOI: 10.1515/bc.2008.112_bchm.just-accepted] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Ackerman ME, Chalouni C, Schmidt MM, Raman VV, Ritter G, Old LJ, Mellman I, Wittrup KD. A33 antigen displays persistent surface expression. Cancer Immunol Immunother 2008; 57:1017-27. [PMID: 18236042 PMCID: PMC2836164 DOI: 10.1007/s00262-007-0433-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 11/26/2007] [Indexed: 11/30/2022]
Abstract
The A33 antigen is a cell surface glycoprotein of the small intestine and colonic epithelium with homology to tight junction-associated proteins of the immunoglobulin superfamily, including CAR and JAM. Its restricted tissue localization and high level of expression have led to its use as a target in colon cancer immunotherapy. Although the antigen is also present in normal intestine, radiolabeled antibodies against A33 are selectively retained by tumors in the gut as well as in metastatic lesions for as long as 6 weeks. Accordingly, we have studied the trafficking and kinetic properties of the antigen to determine its promise in two-step, pretargeted therapies. The localization, mobility, and persistence of the antigen were investigated, and this work has demonstrated that the antigen is both highly immobile and extremely persistent-retaining its surface localization for a turnover halflife of greater than 2 days. In order to explain these unusual properties, we explored the possibility that A33 is a component of the tight junction. The simple property of surface persistence, described here, may contribute to the prolonged retention of the clinically administered antibodies, and their uncommon ability to penetrate solid tumors.
Collapse
Affiliation(s)
| | - Cecile Chalouni
- Department of Cell Biology, Ludwig Institute for Cancer Research, Yale University School of Medicine, New Haven, USA
| | - Michael M. Schmidt
- Department of Biological Engineering, Massachusetts Institute of Technology, Bldg E19-551, 50 Ames Street, Cambridge, MA 02139 USA
| | - Vivek V. Raman
- Department of Biological Engineering, Massachusetts Institute of Technology, Bldg E19-551, 50 Ames Street, Cambridge, MA 02139 USA
| | - Gerd Ritter
- Ludwig Institute for Cancer Research, New York Branch, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Lloyd J. Old
- Ludwig Institute for Cancer Research, New York Branch, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Ira Mellman
- Department of Cell Biology, Ludwig Institute for Cancer Research, Yale University School of Medicine, New Haven, USA
| | - K. Dane Wittrup
- Department of Biological Engineering, Massachusetts Institute of Technology, Bldg E19-551, 50 Ames Street, Cambridge, MA 02139 USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Bldg E19-551, 50 Ames Street, Cambridge, MA 02139 USA
| |
Collapse
|
29
|
Frey D, Coelho V, Petrausch U, Schaefer M, Keilholz U, Thiel E, Deckert PM. Surface expression of gpA33 is dependent on culture density and cell-cycle phase and is regulated by intracellular traffic rather than gene transcription. Cancer Biother Radiopharm 2008; 23:65-73. [PMID: 18298330 DOI: 10.1089/cbr.2007.0407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The cell-surface marker, gpA33, a new member of the immunoglobulin superfamily, is expressed by gastrointestinal cells and by 95% of colon cancers. It has become a promising target of immunologic therapy strategies, but its biologic function and potential role in tumorigenesis are unknown. In this study, we have investigated the expression of gpA33 on the mRNA and cell-surface protein levels by quantitative reverse transcriptase polymerase chain reaction and flow cytometry, respectively, in response to cell density in the culture and to cell-cycle arrest in the G1, S, or G2/M phases. As internalization of the surface protein had previously been reported, we also investigated the binding and intracellular migration of an anti-gpA33 fluobody with green fluorescent protein (A33scFv::GFP) by laser confocal microscopy. Contrary to intuition, we found that gpA33 surface expression and mRNA levels do only partly correlate under the conditions tested. Dependent on cell density in culture, gpA33 surface expression peaked at the point of confluence. Dependent on cell-cycle phase, it peaked in the G2/M phase but was lowest in the S phase, whereas mRNA levels were highest in S, but almost absent in G1. Laser confocal microscopy clearly demonstrated the intracellular uptake of A33scFv::GFP and showed the migration of microvesicles over time. These findings are, in part, concordant with the putative role of gpA33 as an adhesion molecule. However, intracellular traffic and recycling to the cell surface appear to play a major role in its function and to have an influence on its surface density superseding translational regulation.
Collapse
Affiliation(s)
- Dietmar Frey
- Centrum für Tumormedizin, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Parvin-beta inhibits breast cancer tumorigenicity and promotes CDK9-mediated peroxisome proliferator-activated receptor gamma 1 phosphorylation. Mol Cell Biol 2007; 28:687-704. [PMID: 17998334 DOI: 10.1128/mcb.01617-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Parvin-beta is a focal adhesion protein downregulated in human breast cancer cells. Loss of Parvin-beta contributes to increased integrin-linked kinase activity, cell-matrix adhesion, and invasion through the extracellular matrix in vitro. The effect of ectopic Parvin-beta expression on the transcriptional profile of MDA-MB-231 breast cancer cells, which normally do not express Parvin-beta, was evaluated. Particular emphasis was placed upon propagating MDA-MB-231 breast cancer cells in three-dimensional culture matrices. Interestingly, Parvin-beta reexpression in MDA-MB-231 cells increased the mRNA expression, serine 82 phosphorylation (mediated by CDK9), and activity of the nuclear hormone receptor peroxisome proliferator-activated receptor gamma (PPARgamma), and there was a concomitant increase in lipogenic gene expression as a downstream effector of PPARgamma. Importantly, Parvin-beta suppressed breast cancer growth in vivo, with associated decreased proliferation. These data suggest that Parvin-beta might influence breast cancer progression.
Collapse
|
31
|
Mallegol J, Van Niel G, Lebreton C, Lepelletier Y, Candalh C, Dugave C, Heath JK, Raposo G, Cerf-Bensussan N, Heyman M. T84-intestinal epithelial exosomes bear MHC class II/peptide complexes potentiating antigen presentation by dendritic cells. Gastroenterology 2007; 132:1866-76. [PMID: 17484880 DOI: 10.1053/j.gastro.2007.02.043] [Citation(s) in RCA: 204] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 01/28/2007] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Intestinal epithelial cells release antigen-presenting vesicles (exosomes) bearing major histocompatibility complex class II/peptide complexes stimulating specific immune responses in vivo. To characterize further the role of human epithelial exosomes in antigen presentation, their capacity to load antigenic peptides, bind immune target cells, and induce T-cell activation was analyzed in vitro. METHODS The capacity of exosomes derived from the HLA-DR4-expressing, intestinal epithelial cell line T84 to load the HLA-DR4-specific peptide (3)H-HSA 64-76 and to activate a HLA-DR4-restricted T-cell hybridoma was tested in the presence or absence of human monocyte-derived dendritic cells (DCs). Interaction of fluorescein isothiocyanate-labeled exosomes with T cells and DCs was analyzed by flow cytometry and confocal microscopy. RESULTS T84-derived exosomes, enriched in CD9, CD81, CD82, and A33 antigen, were capable of binding specifically human serum albumin (HSA) 64-76 peptide on HLA-DR4 molecules and of interacting preferentially with DCs. HSA-loaded exosomes were unable to activate the T-cell hybridoma directly but induced a productive T-cell activation through DCs. When HSA peptide was bound to exosomal HLA-DR4 molecules instead of in a soluble form, the threshold of peptide presentation by DCs was markedly decreased (x10(-3)). CONCLUSIONS Exosomes released by intestinal epithelial cells bear exogenous peptides complexed to major histocompatibility complex class II molecules and interact preferentially with DCs, strongly potentiating peptide presentation to T cells. Epithelial exosomes constitute a powerful link between luminal antigens and local immune cells by mediating the transfer of tiny amounts of luminal antigenic information and facilitating immune surveillance at mucosal surfaces.
Collapse
|
32
|
Flentjar N, Chu PY, Ng AYN, Johnstone CN, Heath JK, Ernst M, Hertzog PJ, Pritchard MA. TGF-betaRII rescues development of small intestinal epithelial cells in Elf3-deficient mice. Gastroenterology 2007; 132:1410-9. [PMID: 17408644 DOI: 10.1053/j.gastro.2007.02.054] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 01/11/2007] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS ELF3, a member of the ETS transcription factor family, has been shown to transactivate the transforming growth factor beta type II receptor (TGF-betaRII) promoter. Previously we showed that Elf3-null mice have a defect in the small intestine caused by a failure of small intestinal epithelial cells to differentiate and that these cells produced significantly lower levels of Tgf-betaRII. To prove that the defect observed in Elf3-null mice resulted from the lack of Elf3-dependent activation of Tgf-betaRII expression, we performed a genetic rescue. METHODS We generated transgenic mice that express human TGF-betaRII specifically in the intestinal epithelium under the control of the mouse A33 antigen promoter. Mice expressing the A33-TGF-betaRII transgene were mated with Elf3(+/-) mice, and double heterozygous offspring harboring both the transgene and one mutant Elf3 allele were intercrossed. RESULTS The resultant A33-TGF-betaRII transgenic Elf3(-/-) pups displayed normal small intestinal morphology, while the characteristic abnormality was retained in all Elf3(-/-) mice that did not express the transgene. This phenotypic rescue shows for the first time in vivo that a single gene, Elf3, is the critical upstream regulator of Tgf-betaRII in mouse small intestinal epithelium. CONCLUSIONS This has important implications for our understanding of tissue-specific gene regulation and further strengthens the potential clinical connection between ELF3 and colorectal cancer involving transforming growth factor beta insensitivity.
Collapse
MESH Headings
- Animals
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- Female
- Gene Expression Regulation, Developmental
- Goblet Cells/cytology
- Goblet Cells/physiology
- Immunohistochemistry
- Intestine, Small/cytology
- Intestine, Small/metabolism
- Male
- Membrane Glycoproteins/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Transgenic
- Phenotype
- Promoter Regions, Genetic
- Protein Serine-Threonine Kinases
- RNA/genetics
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/biosynthesis
- Receptors, Transforming Growth Factor beta/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Factors/deficiency
- Transcription Factors/genetics
- Transcriptional Activation
Collapse
Affiliation(s)
- Nicole Flentjar
- Centre for Functional Genomics and Human Disease, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
33
|
In vitro and in vivo characterization of 177Lu-huA33: a radioimmunoconjugate against colorectal cancer. Nucl Med Biol 2007; 33:991-8. [PMID: 17127172 DOI: 10.1016/j.nucmedbio.2006.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 08/30/2006] [Accepted: 09/18/2006] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The humanized monoclonal antibody A33 (huA33) is a potential targeting agent against colorectal carcinoma since the A33 antigen is highly and homogenously expressed in >95% of all colorectal cancers, both primary tumors and metastases. The aim of this study was to determine the biodistribution and tumor-targeting ability of (177)Lu-labeled huA33. METHODS huA33 was labeled with the beta-emitting therapeutic nuclide (177)Lu using the chelator CHX-A"-DTPA, and the properties of the (177)Lu-CHX-A"-huA33 ((177)Lu-huA33) conjugate was determined both in vitro and in vivo in a biodistribution study in nude mice xenografted with colorectal SW1222 tumor cells. RESULTS The (177)Lu-huA33 conjugate bound specifically to colorectal cancer cells in vitro (with a K(D) value of 2.3+/-0.3 nM, determined by a saturation assay) and in vivo. The tumor uptake of (177)Lu-huA33 was very high, peaking at 134+/-21%ID/g 72 h postinjection (pi). Normal tissue uptake was low; radioactivity concentration in blood (which had the second highest radioactivity concentration) was lower than in tumor at all time points studied (8 h to 10 days). The tumor-to-blood ratio increased with time, reaching 70+/-30, 10 days pi. Throughout the study, the uptake of (177)Lu in bone (known to accumulate free (177)Lu) was low, and the fraction of protein-bound (177)Lu in plasma samples was high (95% to 99%). This indicates high stability of the (177)Lu-huA33 conjugate in vivo. CONCLUSION The (177)Lu-huA33 conjugate shows a very favorable biodistribution, with an impressively high tumor uptake and high tumor-to-organ ratios, indicating that the conjugate may be suitable for radioimmunotherapy of colorectal cancer.
Collapse
|
34
|
Lee JW, Epardaud M, Sun J, Becker JE, Cheng AC, Yonekura AR, Heath JK, Turley SJ. Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nat Immunol 2006; 8:181-90. [PMID: 17195844 DOI: 10.1038/ni1427] [Citation(s) in RCA: 282] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Accepted: 11/21/2006] [Indexed: 01/21/2023]
Abstract
The intestinal epithelium functions to absorb nutrients and to protect the organism against microbes. To prevent autoimmune attack on this vital tissue, T cell tolerance to intestinal self-antigens must be established. Central tolerance mechanisms involve medullary thymic epithelial cells (mTECs), which use endogenously expressed peripheral-tissue antigens (PTAs) to delete self-reactive thymocytes. The prevailing model for the induction of peripheral tolerance involves cross-presentation of tissue antigens by quiescent dendritic cells. Here we show that lymph node stromal cells present endogenously expressed PTAs to T cells. Moreover, antigen presentation by lymph node stroma is sufficient to induce primary activation and subsequent tolerance among CD8(+) T cells. Thus, lymph node stromal cells are functionally akin to mTECs and provide a direct strategy for purging the peripheral repertoire of self-reactive T cells.
Collapse
Affiliation(s)
- Je-Wook Lee
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Boireau S, Buchert M, Samuel MS, Pannequin J, Ryan JL, Choquet A, Chapuis H, Rebillard X, Avancès C, Ernst M, Joubert D, Mottet N, Hollande F. DNA-methylation-dependent alterations of claudin-4 expression in human bladder carcinoma. Carcinogenesis 2006; 28:246-58. [PMID: 16829686 DOI: 10.1093/carcin/bgl120] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The expression pattern of tight junction (TJ) proteins is frequently disrupted in epithelial tumors. In particular, isoform- and organ-specific alterations of claudins have been detected in human cancers, highlighting them as interesting tools for the prognosis or treatment of various carcinomas. However, the molecular mechanisms responsible for these alterations are seldom identified. Here, we analyzed the expression and localization of claudins 1, 4, and 7 in human bladder carcinoma. Claudin-4 expression was significantly altered in 26/39 tumors, contrasting with the rare modifications detected in the expression of claudins 1 and 7. Overexpression of claudin-4 in differentiated carcinomas was followed by a strong downregulation in invasive/high-grade tumors, and this expression pattern was associated to the 1-year survival of bladder tumor patients. A CpG island was identified within the coding sequence of the CLDN4 gene, and treatment with a methyl-transferase inhibitor restored expression of the protein in primary cultures prepared from high-grade human bladder tumors. In addition, claudin-4 expression correlated with its gene methylation profile in healthy and tumoral bladders from 20 patients, and downregulation of claudin-4 expression was detected in the urothelium of mice overexpressing DNA methyl transferase 3a (Dnmt3a). Delocalization of claudins 1 and 4 from TJs was observed in most human bladder tumors and in the bladder tumor cell line HT-1376. Although the CLDN4 gene was unmethylated in these cells, pharmacological inhibition of methyl transferases re-addressed the two proteins to TJs, resulting in an increase of cell polarization and transepithelial resistance. These biological effects were prevented by expression of claudin-4-specific siRNAs, demonstrating the important role played by claudin-4 in maintaining a functional regulation of homeostasis in urothelial cells. Results of this study indicate that the TJ barrier is disrupted from early stages of urothelial tumorigenesis. In addition, we identified hypermethylation as the mechanism leading to the alteration of claudin-4 expression, and maybe also localization, in bladder carcinoma.
Collapse
Affiliation(s)
- Stéphanie Boireau
- CNRS UMR5203, INSERM U661, Université Montpellier I, and Service d'Anatomo-pathologie, CHU Groupe Hospitalisation Carémeau, Nîmes, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Oral administration of a protein antigen generates a serum factor that induces tolerance when transferred into naïve recipients. This serum factor has been described in rats as consisting of exosome-like structures or tolerosomes, which express major histocompatibility complex class II molecules (MHCII) and mediate antigen-specific tolerance. In this study, we investigated the functions of serum-derived tolerosomes both in vivo and in vitro. Tolerosomes were purified from the 100,000 g pellet fraction of serum from ovalbumin (OVA)-fed mice. When transferred into naïve recipient mice, the tolerosomes mediated OVA-specific tolerance. We also found that tolerosomes from OVA-fed mice induced the activation of OVA-specific T cells both in vivo and in vitro. The inoculation of severe combined immunodeficiency (SCID) mice with an interferon-gamma-producing cell line normalized the expression of MHCII in the intestinal epithelial cells and restored their ability to generate tolerosomes. Syngeneic but not allogeneic transfer of tolerosomes from OVA-fed donors induced tolerance in the recipients. Our results show that tolerosomes can be isolated from mouse serum, that tolerosome-induced oral tolerance requires MHCII expression in intestinal epithelial cells, and that tolerosomes are functional only in syngeneic recipients.
Collapse
Affiliation(s)
- Sofia Ostman
- Department of Rheumatology and Inflammation Research, Göteborg University, Sweden
| | | | | |
Collapse
|
37
|
Eguchi J, Wada J, Hida K, Zhang H, Matsuoka T, Baba M, Hashimoto I, Shikata K, Ogawa N, Makino H. Identification of adipocyte adhesion molecule (ACAM), a novel CTX gene family, implicated in adipocyte maturation and development of obesity. Biochem J 2005; 387:343-53. [PMID: 15563274 PMCID: PMC1134962 DOI: 10.1042/bj20041709] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Few cell adhesion molecules have been reported to be expressed in mature adipocytes, and the significance of cell adhesion process in adipocyte biology is also unknown. In the present study, we identified ACAM (adipocyte adhesion molecule), a novel homologue of the CTX (cortical thymocyte marker in Xenopus) gene family. ACAM cDNA was isolated during PCR-based cDNA subtraction, and its mRNA was shown to be up-regulated in WATs (white adipose tissues) of OLETF (Otsuka Long-Evans Tokushima fatty) rats, an animal model for Type II diabetes and obesity. ACAM, 372 amino acids in total, has a signal peptide, V-type (variable) and C2-type (constant) Ig domains, a single transmembrane segment and a cytoplasmic tail. The amino acid sequence in rat is highly homologous to mouse (94%) and human (87%). ACAM mRNA was predominantly expressed in WATs in OLETF rats, and increased with the development of obesity until 30 weeks of age, which is when the peak of body mass is reached. Western blot analysis revealed that ACAM protein, approx. 45 kDa, was associated with plasma membrane fractions of mature adipocytes isolated from mesenteric and subdermal adipose deposits of OLETF rats. Up-regulation of ACAM mRNAs in obesity was also shown in WATs of genetically obese db/db mice, diet-induced obese ICR mice and human obese subjects. In primary cultured mouse and human adipocytes, ACAM mRNA expression was progressively up-regulated during differentiation. Several stably transfected Chinese-hamster ovary K1 cell lines were established, and the quantification of ACAM mRNA and cell aggregation assay revealed that the degree of homophilic aggregation correlated well with ACAM mRNA expression. In summary, ACAM may be the critical adhesion molecule in adipocyte differentiation and development of obesity.
Collapse
Affiliation(s)
- Jun Eguchi
- *Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Jun Wada
- *Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
- To whom correspondence should be addressed (email )
| | - Kazuyuki Hida
- *Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Hong Zhang
- *Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
- †Institute of Nephrology, the First Teaching Hospital, Beijing Medical University, 8 Xi Shi Ku Street, Beijing 100034, People's Republic of China
| | - Takashi Matsuoka
- *Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Masako Baba
- *Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Izumi Hashimoto
- *Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Kenichi Shikata
- *Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Norio Ogawa
- ‡Department of Brain Science, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Hirofumi Makino
- *Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| |
Collapse
|
38
|
Hauwel M, Furon E, Gasque P. Molecular and cellular insights into the coxsackie-adenovirus receptor: role in cellular interactions in the stem cell niche. ACTA ACUST UNITED AC 2005; 48:265-72. [PMID: 15850666 DOI: 10.1016/j.brainresrev.2004.12.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2004] [Accepted: 12/09/2004] [Indexed: 11/21/2022]
Abstract
In recent years, progress has been made in characterizing the molecular and cellular elements that are responsible for the regeneration in the damaged brain and highlighting the key role of the stromal-vascular 'environment' to orchestrate secondary neurogenesis and repair. Indeed, the ability of the stem cells to self-renew and differentiate is tightly regulated by stromal ependymal cells and endothelial cells expressing molecular cues that constitute the extracellular stem cell 'niche'. Several soluble growth factors such as EGF, TGFbeta, FGF2, SDF-1alpha and Noggin are important signals for the stem cell niche but little is known about the role of membrane-bound molecules in intercellular communications between the niche and the stem cells. In this mini-review, we highlight the emerging role of a family of adhesion molecules in the control of secondary neurogenesis. The coxsackie-adenovirus receptor (CAR) is a 46 kDa transmembrane protein and a member of the immunoglobulin super family. It is close structurally and evolutionary to other adhesion molecules involved in cell-cell interactions during embryogenesis, broadly expressed in the developing central nervous system but restricted to ependymal cells in the adult brain. This unique location and its newly established signalling properties further support the role of CAR in intercellular communications. Elucidating the other signalling molecules and manipulating the stromal-vascular niche for example by adenovirus gene therapy remain important goals for future clinical applications.
Collapse
Affiliation(s)
- Mathieu Hauwel
- Department of Medical biochemistry and Immunology, Brain Inflammation and Immunity Group (BIIG), Cardiff University, Heath Park, UK.
| | | | | |
Collapse
|
39
|
Chong G, Lee FT, Hopkins W, Tebbutt N, Cebon JS, Mountain AJ, Chappell B, Papenfuss A, Schleyer P, U P, Murphy R, Wirth V, Smyth FE, Potasz N, Poon A, Davis ID, Saunder T, O'keefe GJ, Burgess AW, Hoffman EW, Old LJ, Scott AM. Phase I Trial of 131I-huA33 in Patients with Advanced Colorectal Carcinoma. Clin Cancer Res 2005; 11:4818-26. [PMID: 16000579 DOI: 10.1158/1078-0432.ccr-04-2330] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Humanized monoclonal antibody A33 (huA33) targets the A33 antigen which is expressed on 95% of colorectal cancers. A previous study has shown excellent tumor-targeting of iodine-131 labeled huA33 (131I-huA33). Therefore, we did a phase I dose escalation trial of 131I-huA33 radioimmunotherapy. EXPERIMENTAL DESIGNS Fifteen patients with pretreated metastatic colorectal carcinoma each received two i.v. doses of 131I-huA33. The first was an outpatient trace-labeled "scout" dose for biodistribution assessment, followed by a second "therapy" dose. Three patients were treated at 20, 30, and 40 mCi/m2 dose levels, and six patients at 50 mCi/m2 to define the maximum tolerated dose. RESULTS Hematologic toxicity was 131I dose-dependent, with one episode of grade 4 neutropenia and two episodes of grade 3 thrombocytopenia observed at 50 mCi/m2. The maximum tolerated dose was determined to be 40 mCi/m2. There were no acute infusion-related adverse events, and gastrointestinal toxicity was not observed despite uptake of 131I-huA33 in bowel. Seven patients developed pruritus or rash, which was not related to 131I dose. There was excellent tumor-targeting of 131I-huA33 shown in all patients. The serum T1/2beta of 131I-huA33 was (mean +/- SD) 135.2 +/- 46.9 hours. The mean absorbed tumor dose was 6.49 +/- 2.47 Gy/GBq. Four patients developed human anti-human antibodies. At restaging, 4 patients had stable disease, whereas 11 patients had progressive disease. CONCLUSION Radioimmunotherapy using 131I-huA33 shows promise in targeting colorectal tumors, and is deliverable at a maximum tolerated dose of 40 mCi/m2. Further studies of 131I-huA33 in combination with chemotherapy are planned.
Collapse
Affiliation(s)
- Geoffrey Chong
- Ludwig Institute for Cancer Research, Melbourne, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zen K, Liu Y, McCall IC, Wu T, Lee W, Babbin BA, Nusrat A, Parkos CA. Neutrophil migration across tight junctions is mediated by adhesive interactions between epithelial coxsackie and adenovirus receptor and a junctional adhesion molecule-like protein on neutrophils. Mol Biol Cell 2005; 16:2694-703. [PMID: 15800062 PMCID: PMC1142417 DOI: 10.1091/mbc.e05-01-0036] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Neutrophil (polymorphonuclear leukocytes [PMN]) transepithelial migration during inflammatory episodes involves a complex series of adhesive interactions and signaling events. Previous studies have shown that key adhesive interactions between leukocyte CD11b/CD18 and basally expressed fucosylated glycoproteins followed by binding to desmosomal-associated JAM-C are key elements of the transmigration response. Here we provide the first evidence that PMN-expressed junctional adhesion molecule-like protein (JAML) regulates transmigration via binding interactions with epithelial coxsackie and adenovirus receptor (CAR). Experiments with a JAML fusion protein revealed specific binding of JAML to epithelial CAR expressed at tight junctions in T84 cell monolayers and normal human colonic mucosa. Furthermore, JAML-CAR binding is mediated via the membrane distal immunoglobulin (Ig) loop of CAR and the membrane proximal Ig loop of JAML. PMN bound to immobilized CAR but not JAML in a divalent cation-independent manner. Lastly, in assays of PMN transepithelial migration, JAML/CAR fusion proteins and their antibodies significantly inhibited transmigration in a specific manner. Taken together, these results indicate that JAML and CAR are a novel pair of adhesion molecules that play an important role in modulating PMN migration cross epithelial tight junctions. These findings add a new element to a multistep model of PMN transepithelial migration and may provide new targets for anti-inflammatory therapies.
Collapse
Affiliation(s)
- Ke Zen
- Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Ramsay RG, Micallef SJ, Williams B, Lightowler S, Vincan E, Heath JK, Mantamadiotis T, Bertoncello I. Colony-stimulating factor-1 promotes clonogenic growth of normal murine colonic crypt epithelial cells in vitro. J Interferon Cytokine Res 2005; 24:416-27. [PMID: 15296653 DOI: 10.1089/1079990041535638] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The intestinal epithelium is a continuously renewing tissue. In the colon, stem cells are maintained at the base of highly organized crypts, where they undergo asymmetric division and give rise to daughter cells that proliferate and migrate up the crypt as they differentiate, then become senescent and are finally shed into the intestinal lumen. The growth factor requirements of fetal and prenatal colon cells for colony formation and that influence the establishment of cell lines from Immorto-mouse (Charles River, Wilmington, MA) transgenic embryos were explored. Single cell suspensions were isolated and cultured in a large range of growth factor combinations and conditions to determine their growth properties in soft agar. We report an important advance in the culture of mouse colonocytes by using macrophage colony-stimulating factor (CSF-1) and granulocyte-macrophage colony-stimulating factor (GM-CSF). A substantial proportion of colonies grown under low oxygen tension in the presence of CSF-1 and GM-CSF express intestinal epithelial A33 antigen, have the expected gene expression profile, including c-fms and transcription factor c-myb, and show an appropriate epithelial cell morphology and undetectable CD45. Confocal microscopy on isolated crypts displays basolateral expression of c-Fms and E-cadherin on most epithelial cells. Fetal colon cultures from the Immorto-mouse with CSF-1 produced rapid outgrowth and readily established cell lines, in contrast to cultures without CSF-1. These observations have implications for the understanding of colon epithelial development and recovery following cytotoxic damage as well as providing a basis for the observation that some colon (and other epithelial) tumor cells respond to CSF-1 and GM-CSF.
Collapse
Affiliation(s)
- Robert G Ramsay
- Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Carson SD, Switzer BL, Tracy SM, Chapman NM. Monoclonal Antibody against Mouse CAR following Genetic Immunization. ACTA ACUST UNITED AC 2004; 23:19-22. [PMID: 15000844 DOI: 10.1089/153685904322771980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To broaden our repertoire of monoclonal antibodies against CAR (coxsackievirus and adenovirus receptor), we inoculated mice with an expression vector containing the cDNA encoding human CAR extracellular and transmembrane sequence, and boosted the response by inoculation with soluble human CAR protein produced in E. coli. Of the hybridomas obtained following this immunization protocol, one secreted IgG with exceptional reactivity against mouse CAR. Since CAR has been shown to form dimers, expression of human CAR in cells that express mouse CAR may have stimulated the host immune system to recognize endogenous CAR in heterodimers.
Collapse
Affiliation(s)
- Steven D Carson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6495, USA.
| | | | | | | |
Collapse
|
43
|
Philipson L, Pettersson RF. The Coxsackie-Adenovirus Receptor—A New Receptor in the Immunoglobulin Family Involved in Cell Adhesion. Curr Top Microbiol Immunol 2004; 273:87-111. [PMID: 14674599 DOI: 10.1007/978-3-662-05599-1_3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The physiological and cell biological aspects of the Coxsackie-Adenovirus Receptor (CAR) is discussed in this review. The receptor obviously recognizes the group C adenoviruses in vivo, but also fibers from other groups except group B in vitro. The latter viruses seem to utilize a different receptor. The receptor accumulates at, or close to, the tight junction in polarized epithelial cells and probably functions as a cell-cell adhesion molecule. The cytoplasmic tail of the receptor is not required for virus attachment and uptake. Although there is a correlation between CAR and uptake of adenoviruses in several human tumor cells, evidence of an absolute requirement for integrins has not been forthcoming. The implication of these findings for adenovirus gene therapy is discussed.
Collapse
Affiliation(s)
- L Philipson
- Department of Cell and Molecular Biology, Karolinska Institute, Box 285, 17177 Stockholm, Sweden.
| | | |
Collapse
|
44
|
Raschperger E, Engstrom U, Pettersson RF, Fuxe J. CLMP, a novel member of the CTX family and a new component of epithelial tight junctions. J Biol Chem 2003; 279:796-804. [PMID: 14573622 DOI: 10.1074/jbc.m308249200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CTX family is a growing group of type I transmembrane proteins within the immunoglobulin superfamily (IgSF). They localize to junctional complexes between endothelial and epithelial cells and seem to participate in cell-cell adhesion and transmigration of leukocytes. Here, we report the identification of a new member of the CTX family. This protein, which was designated CLMP (coxsackie- and adenovirus receptor-like membrane protein), is composed of 373 amino acids including an extracellular part containing a V- and a C2-type domain, a transmembrane region and a cytoplasmic tail. CLMP mRNA was detected in a variety of both human and mouse tissues and cell lines. The protein migrated with an Mr of around 48 on SDS-PAGE and was predominantly expressed in epithelial cells within different tissues. In cultured epithelial cells, CLMP was detected in areas of cell-cell contacts. When exogenously expressed in polarized MDCK cells, CLMP was restricted to the subapical area of the lateral cell surface, where it co-localized with the tight junction markers ZO-1 and occludin. Also endogenous CLMP showed association with tight junctions, as analyzed in polarized human CACO-2 cells. This suggested a role for CLMP in cell-cell adhesion and indeed, overexpressed CLMP induced aggregation of non-polarized CHO cells. Furthermore, CLMP-expressing MDCK cells showed significantly increased transepithelial resistance, indicating a role for CLMP in junctional barrier function. Thus, we conclude that CLMP is a novel cell-cell adhesion molecule and a new component of epithelial tight junctions. We also suggest, based on phylogenetic studies, that CLMP, CAR, ESAM, and BT-IgSF form a new group of proteins within the CTX family.
Collapse
|
45
|
Abstract
Junctional adhesion molecules are a family of glycoproteins characterised by two immunoglobulin folds (VH- and C2-type) in the extracellular domain. Junctional adhesion molecule proteins localise to intercellular junctions of polarised endothelial and epithelial cells but can also be expressed on circulating leukocytes and platelets. In addition, they bind several ligands, in both a homophilic and heterophilic manner, and associate with several cytoplasmic partners. All these features represent the likely determinants for the role of junctional adhesion molecule proteins in processes as diverse as junction assembly, leukocyte transmigration and platelet activation.
Collapse
Affiliation(s)
- Gianfranco Bazzoni
- Department of Immunology and Cell Biology, Istituto di Ricerche Farmacologiche Mario Negri, Via Eritrea 62, I-20157, Milano, Italy.
| |
Collapse
|
46
|
Sachs MD, Rauen KA, Ramamurthy M, Dodson JL, De Marzo AM, Putzi MJ, Schoenberg MP, Rodriguez R. Integrin alpha(v) and coxsackie adenovirus receptor expression in clinical bladder cancer. Urology 2002; 60:531-6. [PMID: 12350512 DOI: 10.1016/s0090-4295(02)01748-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To evaluate the expression of the coxsackie and adenovirus receptor (CAR) and alpha(v) integrins in clinical specimens of bladder cancer to determine the susceptibility to adenoviral gene therapy. Efficient adenovirus-based gene therapy requires binding of the virus to CAR and involves the alpha(v) integrins. Studies on bladder cancer cell lines have shown that low adenoviral transduction rates were associated with low-level expression of CAR. Integrin alpha(v) expression increases in various tumors suggest its importance in differentiation, proliferation, and migration. CAR is structurally a member of the Ig-type superfamily of cell-cell adhesion molecules, suggesting that its expression may also be related to the state of tumor differentiation. METHODS We performed immunohistochemistry for CAR and integrin alpha(v) expression in bladder cancer specimens in 50 paraffin-embedded tumor-normal pairs and confirmed the results by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) analysis of 11 separate bladder tumors and 4 separate normal bladder controls. RESULTS Immunochemistry demonstrated a stage and grade-dependent decrease in CAR expression (90.0%, 83.3%, and 31.3% of normal urothelium and superficial and invasive transitional cell carcinoma [TCC] and 83.3% and 39.5% of low and high-grade TCC, respectively). Furthermore, we found a stage and grade-dependent increase in alpha(v) integrin expression (13.3%, 46.0%, and 56.3% of normal urothelium, superficial TCC, and invasive TCC and 25% and 52.6% of low and high-grade TCC, respectively). Quantitative RT-PCR analysis confirmed a downregulation at the CAR gene expression level. CONCLUSIONS This down-regulation may have a major impact on developing adenoviral-based gene therapy modalities. In addition, we propose that loss of CAR expression decreases rigid cell adhesion, possibly increasing the migratory potential. Loss of CAR expression correlates with the invasive phenotype in our analysis of bladder cancer. Simultaneously, the finding of increased alpha(v) expression in invasive cancer suggests a pathogenesis that involves heterophilic adhesion and migration of these cells on various extracellular ligands.
Collapse
Affiliation(s)
- Markus D Sachs
- Brady Urological Institute, Johns Hopkins Hospital, Baltimore, Maryland 21287, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abud HE, Johnstone CN, Tebbutt NC, Heath JK. The murine A33 antigen is expressed at two distinct sites during development, the ICM of the blastocyst and the intestinal epithelium. Mech Dev 2000; 98:111-4. [PMID: 11044613 DOI: 10.1016/s0925-4773(00)00438-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The expression pattern of the murine A33 antigen has been defined during development using wholemount immunohistochemistry. Two temporally and spatially distinct sites of expression were identified: the inner cell mass of the blastocyst and the endoderm cell layer of the intestinal tract where expression is initiated at E14.5 in the hindgut and subsequently extends throughout the length of the intestine. The onset of mA33 antigen expression in the gut occurs at the beginning of an extensive phase of cell movement involved in the conversion of the endoderm cell layer to a single cell layer of polarized epithelium. Expression of mA33 antigen is then maintained into adulthood, where it is a definitive marker of intestinal epithelium.
Collapse
Affiliation(s)
- H E Abud
- Ludwig Institute for Cancer Research, Melbourne Branch, Post Office Royal Melbourne Hospital, Victoria 3050, Parkville, Australia
| | | | | | | |
Collapse
|