1
|
Nair SK, Hersh EV, Margulies KB, Daniell H. Clinical studies in Myxomatous Mitral Valve Disease dogs: most prescribed ACEI inhibits ACE2 enzyme activity and ARB increases AngII pool in plasma. Hypertens Res 2025; 48:1477-1490. [PMID: 39837966 PMCID: PMC11972962 DOI: 10.1038/s41440-025-02109-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/15/2024] [Accepted: 01/02/2025] [Indexed: 01/23/2025]
Abstract
The hypertension patient population has doubled since 1990, affecting 1.3 billion globally and >75% live in low-and middle-income countries. Angiotensin Converting Enzyme Inhibitors (ACEI) and Angiotensin Receptor Blockers (ARB) are the most prescribed drugs (>160 million times in the US), but mortality increased >30% since 1990s globally. Clinical relevance of Myxomatous Mitral Valve Disease (MMVD) is directly linked to WHO group 2 pulmonary hypertension, with no disease specific therapies. Therefore, MMVD pet dogs with elevated systolic blood pressure treated with ACEI/ARB, were supplemented with oral ACE2 enzyme and Angiotensin1-7 (Ang1-7) bioencapsulated in plant cells. The oral ACE2/Ang1-7 was well tolerated by healthy and MMVD dogs with no adverse events and increased sACE2 activity by 670-755% with ARB (Telmisartan) than with ACEI (Enalapril) background therapy. In vitro rhACE2 activity was inhibited >90% by ACEIs enalapril/benazeprilat at higher doses but lisinopril inhibited at much lower doses. Membrane ACE2 activity evaluated in exosomes was 43-fold higher than the sACE2 and this was also inhibited 211% by ACEI, when compared to ARB. Background ACEI treatment reduced the Ang-II pool by 11-20-fold and proportionately decreased the abundance of Ang1-7 + Ang1-5 peptides. In contrast, ARB treatment increased Ang-II pool 11-20-fold and Ang1-7 + Ang1-5 by 160-260%. Systolic blood pressure was regulated by ARB better than ACEI, despite very high Ang-II levels. This first report on evaluation of metabolic pools in the RAS pathway identifies surprising interactions between ACEI/ARB/ACE2 and significant changes in key molecular dynamics. Affordable biologics developed in plant cells may offer potential new treatment options for hypertension.
Collapse
Affiliation(s)
- Smruti K Nair
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elliot V Hersh
- Department of Oral Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth B Margulies
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Qiu S, Liu J, Guo J, Zhang Z, Guo Y, Hu Y. COVID-19 infection and longevity: an observational and mendelian randomization study. J Transl Med 2025; 23:283. [PMID: 40050903 PMCID: PMC11887240 DOI: 10.1186/s12967-024-05932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 11/30/2024] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Studies have indicated that COVID-19 infection may accelerate the aging process in organisms. However, it remains unknown whether contracting COVID-19 affects life expectancy. Furthermore, the underlying biological mechanisms behind these findings are still unclear. METHODS We conducted a prospective cohort study on 56,504 participants of European ancestry from the UK Biobank who reported the time and number of COVID-19 infection between January 2020 and September 2023. The parental average longevity was used as a proxy for their own longevity. Linear regression was used to assess the relationship between COVID-19 infection and longevity. Furthermore, we investigated the shared genetic basis between COVID-19 and longevity using large-scale genome-wide association studies (GWAS) for COVID-19 (122,616 cases and 2,475,240 controls) and longevity (3,484 cases and 25,483 controls). Mendelian randomization (MR) and mediation analysis were utilized to assess causal relationships and potential mediators between COVID-19 susceptibility and longevity. Shared genetic loci between the two phenotypes were identified using conjunctional false discovery rate (conjFDR) statistical frameworks. RESULTS After controlling for relevant covariates, COVID-19 infection might not be significantly correlated with longevity. In all MR methods, generalized summary-data-based Mendelian randomization (GSMR) analysis revealed a significant decrease in longevity due to severe COVID-19 infection (OR = 0.91, 95%CI: 0.84-0.98, P = 0.015). Mediation analysis identified stroke and myocardial infarction as potential mediators between COVID-19 susceptibility and reduced longevity. At conjFDR < 0.05, we identified rs62062323 (KANSL1) and rs9530111 (PIBF1) as shared loci between COVID-19 and longevity. CONCLUSION Together, our findings provided preliminary evidence for the shared genetic basics between COVID-19 and aging. This discovery may have implications for personalized medicine and preventive strategies, helping identify individuals who may be more vulnerable to severe outcomes from COVID-19 due to their genetic makeup.
Collapse
Affiliation(s)
- Shizheng Qiu
- School of Computer Science and Technology, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150001, China
| | - Jianhua Liu
- Beidahuang Industry Group General Hospital, Harbin, 150088, China
| | - Jiahe Guo
- School of Computer Science and Technology, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150001, China
| | - Zhishuai Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150001, China
| | - Yu Guo
- School of Computer Science and Technology, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150001, China
| | - Yang Hu
- School of Computer Science and Technology, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150001, China.
| |
Collapse
|
3
|
Adilović M. COVID-19 related complications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 213:259-314. [PMID: 40246346 DOI: 10.1016/bs.pmbts.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
The COVID-19 pandemic has significantly impacted global healthcare systems, revealed vulnerabilities and prompted a re-evaluation of medical practices. Acute complications from the virus, including cardiovascular and neurological issues, have underscored the necessity for timely medical interventions. Advances in diagnostic methods and personalized therapies have been pivotal in mitigating severe outcomes. Additionally, Long COVID has emerged as a complex challenge, affecting various body systems and leading to respiratory, cardiovascular, neurological, psychological, and musculoskeletal problems. This broad spectrum of complications highlights the importance of multidisciplinary management approaches that prioritize therapy, rehabilitation, and patient-centered care. Vulnerable populations such as paediatric patients, pregnant women, and immunocompromised individuals face unique risks and complications, necessitating continuous monitoring and tailored management strategies to reduce morbidity and mortality associated with COVID-19.
Collapse
Affiliation(s)
- Muhamed Adilović
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnička cesta, Sarajevo, Bosnia and Herzegovina.
| |
Collapse
|
4
|
Berkebile G, Barbé F, Malaplate C, Le Collen L, Guéant JL, Klein M, Oussalah A. Population-level impact of COVID-19 on thyroid function tests: Results from a repeated cross-sectional study. J Infect Public Health 2025; 18:102681. [PMID: 39874641 DOI: 10.1016/j.jiph.2025.102681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/11/2025] [Accepted: 01/20/2025] [Indexed: 01/30/2025] Open
Abstract
PURPOSE Reports have highlighted thyroid abnormalities, including subacute thyroiditis and thyrotoxicosis, in COVID-19 patients, with a potential link between thyroid dysfunction and disease severity. However, population-level studies on COVID-19's impact on thyroid hormone levels are limited. We aimed to assess the impact of the COVID-19 pandemic on thyroid function tests at the population level. METHODS We conducted a repeated cross-sectional study on consecutive patients who underwent thyroid function tests between March 1 and April 15, 2020, during the first wave of COVID-19 in northeastern France, and compared the results with those from the same period in 2018 and 2019. RESULTS The study analyzed 3968 tests, including 1534 in 2018, 1547 in 2019, and 887 in 2020. Patients tested in the first wave of COVID-19 had significantly lower TSH and FT3 levels and higher FT4 levels than those in reference periods. On ROC analysis, the optimal thresholds for FT3 and FT4 were ≤ 4.5 pmol/L and > 12 pmol/L, respectively. On multivariable analysis, FT3 ≤ 4.5 pmol/L and FT4 > 12 pmol/L were independently associated with the first wave of COVID-19. The proportion of subjects with concurrent changes in FT3 and FT4 levels was significantly higher in 2020 than in the reference periods, with an odds ratio of 3.62 (95 % CI, 2.77-4.73). A phenome-wide association study of 128 clinical and biological predictors identified an independent association between a low FT3/FT4 ratio and COVID-19, hypertension, or amiodarone therapy, suggesting the contribution of euthyroid sick syndrome to this presentation. This association remained significant after adjustment for potential confounders such as thyroid disease, steroids, and iodinated contrast injection. CONCLUSION These findings suggest that COVID-19 is associated with significant population-level variation in thyroid function tests, which may have implications for managing COVID-19 patients.
Collapse
Affiliation(s)
- Gabriel Berkebile
- Department of Endocrinology, Diabetology, and Nutrition (EDN), University Hospital of Nancy, Nancy F-54000, France
| | - Françoise Barbé
- Department of Genomic Medicine, Division of Biochemistry, Molecular Biology, and Nutrition, University Hospital of Nancy, Nancy F-54000, France; Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, Nancy F-54000, France
| | - Catherine Malaplate
- Department of Genomic Medicine, Division of Biochemistry, Molecular Biology, and Nutrition, University Hospital of Nancy, Nancy F-54000, France; Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, Nancy F-54000, France; Faculty of Medicine of Nancy, University of Lorraine, Nancy F-54000, France
| | - Lauriane Le Collen
- Department of Genomic Medicine, Division of Biochemistry, Molecular Biology, and Nutrition, University Hospital of Nancy, Nancy F-54000, France; Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, Nancy F-54000, France; Faculty of Medicine of Nancy, University of Lorraine, Nancy F-54000, France
| | - Jean-Louis Guéant
- Department of Genomic Medicine, Division of Biochemistry, Molecular Biology, and Nutrition, University Hospital of Nancy, Nancy F-54000, France; Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, Nancy F-54000, France; Faculty of Medicine of Nancy, University of Lorraine, Nancy F-54000, France; INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Nancy F-54000, France
| | - Marc Klein
- Department of Endocrinology, Diabetology, and Nutrition (EDN), University Hospital of Nancy, Nancy F-54000, France; Faculty of Medicine of Nancy, University of Lorraine, Nancy F-54000, France.
| | - Abderrahim Oussalah
- Department of Genomic Medicine, Division of Biochemistry, Molecular Biology, and Nutrition, University Hospital of Nancy, Nancy F-54000, France; Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, Nancy F-54000, France; Faculty of Medicine of Nancy, University of Lorraine, Nancy F-54000, France; INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Nancy F-54000, France.
| |
Collapse
|
5
|
Sabit H, Arneth B, Altrawy A, Ghazy A, Abdelazeem RM, Adel A, Abdel-Ghany S, Alqosaibi AI, Deloukas P, Taghiyev ZT. Genetic and Epigenetic Intersections in COVID-19-Associated Cardiovascular Disease: Emerging Insights and Future Directions. Biomedicines 2025; 13:485. [PMID: 40002898 PMCID: PMC11852909 DOI: 10.3390/biomedicines13020485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/23/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
The intersection of COVID-19 and cardiovascular disease (CVD) has emerged as a significant area of research, particularly in understanding the impact of antiplatelet therapies like ticagrelor and clopidogrel. COVID-19 has been associated with acute cardiovascular complications, including myocardial infarction, thrombosis, and heart failure, exacerbated by the virus's ability to trigger widespread inflammation and endothelial dysfunction. MicroRNAs (miRNAs) play a critical role in regulating these processes by modulating the gene expressions involved in platelet function, inflammation, and vascular homeostasis. This study explores the potential of miRNAs such as miR-223 and miR-126 as biomarkers for predicting resistance or responsiveness to antiplatelet therapies in COVID-19 patients with cardiovascular disease. Identifying miRNA signatures linked to drug efficacy could optimize treatment strategies for patients at high risk of thrombotic events during COVID-19 infection. Moreover, understanding miRNA-mediated pathways offers new insights into how SARS-CoV-2 exacerbates CVD, particularly through mechanisms like cytokine storms and endothelial damage. The findings of this research could lead to personalized therapeutic approaches, improving patient outcomes and reducing mortality in COVID-19-associated cardiovascular events. With global implications, this study addresses the urgent need for effective management of CVD in the context of COVID-19, focusing on the integration of molecular biomarkers to enhance the precision of antiplatelet therapy.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Afaf Altrawy
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Aysha Ghazy
- Department of Agri-Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Rawan M. Abdelazeem
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Amro Adel
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Amany I. Alqosaibi
- Department of Biology, College of Science, Imam Abdulrahman bin Faisal University, Dammam 31441, Saudi Arabia
| | - Panos Deloukas
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK;
| | - Zulfugar T. Taghiyev
- Department of Cardiovascular Surgery, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
6
|
Pathak A, Agrawal DK. Role of Gut Microbiota in Long COVID: Impact on Immune Function and Organ System Health. ARCHIVES OF MICROBIOLOGY & IMMUNOLOGY 2025; 9:38-53. [PMID: 40051430 PMCID: PMC11883900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
SARS-CoV-2 infection has led to a range of long-lasting symptoms, collectively referred to as long COVID. Current research highlights the critical role of angiotensin-converting enzyme 2 (ACE2) in regulating gut microbiota diversity, vascular function, and homeostasis within the renin-angiotensin system (RAS). ACE2 is utilized by the SARS-CoV-2 virus to enter host cells, but its downregulation following infection contributes to gut microbiota dysbiosis and RAS disruption. These imbalances have been linked to a range of long COVID symptoms, including joint pain, chest pain, chronic cough, fatigue, brain fog, anxiety, depression, myalgia, peripheral neuropathy, memory difficulties, and impaired attention. This review investigates the dysregulation caused by SARS-CoV-2 infection and the long-term effects it has on various organ systems, including the musculoskeletal, neurological, renal, respiratory, and cardiovascular systems. We explored the bidirectional interactions between the gut microbiota, immune function, and these organ systems, focusing on how microbiota dysregulation contributes to the chronic inflammation and dysfunction observed in long COVID symptoms. Understanding these interactions is key for identifying effective therapeutic strategies and interventional targets aimed at mitigating the impact of long COVID on organ health and improving patient outcomes.
Collapse
Affiliation(s)
- Angelie Pathak
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766 USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766 USA
| |
Collapse
|
7
|
Gasmi A, Kassym L, Menzel A, Anzar W, Dadar M, Semenova Y, Arshad M, Bihunyak T, Meguid NA, Peana M, Bekbergenova Z, Bjørklund G. Genetic and Epigenetic Determinants of COVID-19 Susceptibility: A Systematic Review. Curr Med Chem 2025; 32:753-770. [PMID: 38251695 DOI: 10.2174/0109298673267890231221100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/04/2023] [Accepted: 11/14/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND The molecular mechanisms regulating coronavirus pathogenesis are complex, including virus-host interactions associated with replication and innate immune control. However, some genetic and epigenetic conditions associated with comorbidities increase the risk of hospitalization and can prove fatal in infected patients. This systematic review will provide insight into host genetic and epigenetic factors that interfere with COVID-19 expression in light of available evidence. METHODS This study conducted a systematic review to examine the genetic and epigenetic susceptibility to COVID-19 using a comprehensive approach. Through systematic searches and applying relevant keywords across prominent online databases, including Scopus, PubMed, Web of Science, and Science Direct, we compiled all pertinent papers and reports published in English between December 2019 and June 2023. RESULTS The findings reveal that the host's HLA genotype plays a substantial role in determining how viral protein antigens are showcased and the subsequent immune system reaction to these antigens. Within females, genes responsible for immune system regulation are found on the X chromosome, resulting in reduced viral load and inflammation levels when contrasted with males. Possessing blood group A may contribute to an increased susceptibility to contracting COVID-19 as well as a heightened risk of mortality associated with the disease. The capacity of SARS-CoV-2 involves inhibiting the antiviral interferon (IFN) reactions, resulting in uncontrolled viral multiplication. CONCLUSION There is a notable absence of research into the gender-related predisposition to infection, necessitating a thorough examination. According to the available literature, a significant portion of individuals affected by the ailment or displaying severe ramifications already had suppressed immune systems, categorizing them as a group with elevated risk.
Collapse
Affiliation(s)
- Amin Gasmi
- Department of Research, Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Laura Kassym
- Department of Research, Astana Medical University, Astana, Kazakhstan
| | - Alain Menzel
- Department of Research, Laboratoires Réunis, Junglinster, Luxembourg
| | - Wajiha Anzar
- Department of Research, Dow University of Health Sciences, Karachi, Pakistan
| | - Maryam Dadar
- Department of Research, CONEM Iran Microbiology Research Group, Tehran, Iran
| | - Yuliya Semenova
- Department of Research, Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - Mehreen Arshad
- Department of Research, National University of Sciences and Technology, Islamabad, Pakistan
| | - Tetyana Bihunyak
- Department of Research, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Nagwa Abdel Meguid
- Research on Children with Special Needs Department, National Research Centre, Giza, Egypt
- CONEM Egypt Child Brain Research Group, National Research Center, Giza, Egypt
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | | | - Geir Bjørklund
- Department of Research, Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
8
|
Shen NN, Wang JL, Liu XW, Fu YP, Chen XF. A pooled analysis of the incidence and mortality risk of atrial fibrillation in patients with COVID-19. PeerJ 2024; 12:e18330. [PMID: 39430559 PMCID: PMC11490229 DOI: 10.7717/peerj.18330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/25/2024] [Indexed: 10/22/2024] Open
Abstract
Background There exist serious cardiovascular complications subsequent to SARS-Cov2 infection (COVID-19); however, the association between COVID-19 and atrial fibrillation (AF) remains to be elucidated. We aimed to assess the prevalence of AF among COVID-19 patients and its associated risk of death. Methods The present systematic review was performed in accordance with the PRISMA guidelines. The protocol was registered with CRD42022306523. A comprehensive literature search was performed across PubMed, Embase, and Cochrane databases to identify studies reporting on the prevalence of pre-existing or new-onset fibrillation (AF), and/or the associated clinical outcomes in patients with COVID-19 from January 2020 to December 2023. The random-effect model was used to estimate the prevalence of AF and its related mortality. Results A total of 80 studies, including 39,062,868 COVID-19 patients, were identified in the present investigation. The prevalence rates of pre-existing AF or new-onset AF were 10.5% (95% CI [9.3-11.7%]) or 10.3% (95% CI [6.2-14.5%]), respectively. Subgroup analysis revealed a two fold higher incidence of AF in older patients (≥65 years) compared to younger patients (<65 years) (14.4% vs. 6.4%). The highest rate of AF was observed in Europeans (10.7%, 95% CI [10.2-11.2%]), followed by Northern Americans (10.0%, 95% CI [8.2-11.7%]), while Asians demonstrated a lower prevalence (2.7%, 95% CI [2.2-3.3%]). Notably, severe COVID-19 patients displayed a significantly elevated prevalence of AF at 14.l% (95% CI [13.3-14.9%]), which was approximately 2.5-fold higher than that in non-severe patients (5.2%, 95% CI [4.8-5.5%]). Both pre-existing (HR: 1.83, 95% CI [1.49-2.17]) and new-onset AF (HR: 3.47, 95% CI [2.26-5.33]) were associated with an increased mortality risk among COVID-19 patients. Furthermore, the effect on mortality risk was more significant in Asians (HR: 5.33, 95% CI [1.62-9.04]), compared to Europeans (HR: 1.68, 95% CI [1.24-2.13]) and North Americans (HR: 2.01, 95% CI [1.18-2.83]). Conclusion This study comprehensively investigated the association between AF and COVID-19 in a real-world setting. Notably, a high prevalence of AF was observed among older individuals, severe COVID-19 patients, and in Europe and Northern America. Moreover, co-existing AF was found to be associated with an increased risk for mortality. Further investigations are warranted to improve the management and outcomes of COVID-19 patients with AF.
Collapse
Affiliation(s)
- Nan-Nan Shen
- Department of Pharmacy, Affiliated Hospital of Shaoxing University, Shao Xing, Zhejiang, China
| | - Jia-Liang Wang
- Department of Pharmacy, Affiliated Hospital of Shaoxing University, Shao Xing, Zhejiang, China
| | - Xin-Wen Liu
- Department of Pharmacy, Affiliated Hospital of Shaoxing University, Shao Xing, Zhejiang, China
| | - Yong-Ping Fu
- Department of Cardiology, Affiliated Hospital of Shaoxing University, Shao Xing, Zhejiang, China
| | - Xue-Fang Chen
- Department of Medical Laboratory Science, Affiliated Hospital of Shaoxing University, Shao Xing, Zhejiang Province, Shaoxing, China
| |
Collapse
|
9
|
Amtaghri S, Slaoui M, Eddouks M. Phytomedical compounds as promising therapeutic agents for COVID-19 targeting angiotensin-converting enzyme 2: a review. J Pharm Pharmacol 2024; 76:1239-1268. [PMID: 39018169 DOI: 10.1093/jpp/rgae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/07/2024] [Indexed: 07/19/2024]
Abstract
AIMS The aim of the present review was to highlight natural product investigations in silico and in vitro to find plants and chemicals that inhibit or stimulate angiotensin-converting enzyme 2 (ACE-2). BACKGROUND The global reduction of incidents and fatalities attributable to infections with SARS-CoV-2 is one of the most public health problems. In the absence of specific therapy for coronavirus disease 2019 (COVID-19), phytocompounds generated from plant extracts may be a promising strategy worth further investigation, motivating researchers to evaluate the safety and anti-SARS-CoV-2 effectiveness of these ingredients. OBJECTIVE To review phytochemicals in silico for anti-SARS-CoV-2 activity and to assess their safety and effectiveness in vitro and in vivo. METHODS The present review was conducted using various scientific databases and studies on anti-SARS-CoV-2 phytochemicals were analyzed and summarized. The results obtained from the in silico screening were subjected to extraction, isolation, and purification. The in vitro studies on anti-SarcoV-2 were also included in this review. In addition, the results of this research were interpreted, analyzed, and documented on the basis of the bibliographic information obtained. RESULTS This review discusses recent research on using natural remedies to cure or prevent COVID-19 infection. The literature analysis shows that the various herbal preparations (extracts) and purified compounds can block the replication or entrance of the virus directly to carry out their anti-SARS-CoV-2 effects. It is interesting to note that certain items can prevent SARS-CoV-2 from infecting human cells by blocking the ACE-2 receptor or the serine protease TMPRRS2. Moreover, natural substances have been demonstrated to block proteins involved in the SARS-CoV-2 life cycle, such as papain- or chymotrypsin-like proteases. CONCLUSION The natural products may have the potential for use singly or in combination as alternative drugs to treat/prevent COVID-19 infection, including blocking or stimulating ACE-2. In addition, their structures may provide indications for the development of anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
- Smail Amtaghri
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia 52000, Morocco
- Energy, Materials and Sustainable Development (EMDD) Team-Higher School of Technology-SALE, Center for Water, Natural Resources Environment and Sustainable Development (CERNE2D), Mohammed V University in Rabat, Rabat, Morocco
| | - Miloudia Slaoui
- Energy, Materials and Sustainable Development (EMDD) Team-Higher School of Technology-SALE, Center for Water, Natural Resources Environment and Sustainable Development (CERNE2D), Mohammed V University in Rabat, Rabat, Morocco
| | - Mohamed Eddouks
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia 52000, Morocco
| |
Collapse
|
10
|
Parums DV. Long COVID or Post-Acute Sequelae of SARS-CoV-2 Infection (PASC) and the Urgent Need to Identify Diagnostic Biomarkers and Risk Factors. Med Sci Monit 2024; 30:e946512. [PMID: 39289865 PMCID: PMC11418572 DOI: 10.12659/msm.946512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
Long COVID, or post-acute sequelae of SARS-CoV-2 infection (PASC), also known as post-COVID-19 condition or post-COVID syndrome, can affect anyone infected with SARS-CoV-2, regardless of age or the severity of the initial symptoms of COVID-19. Long COVID/PASC is the continuation or development of new symptoms after three months from the initial SARS-CoV-2 infection, which lasts for at least two months and has no other identifiable cause. Long COVID/PASC occurs in 10-20% of patients infected with SARS-CoV-2. The most common symptoms include fatigue, cognitive impairment (brain fog), and shortness of breath. However, more than 200 symptoms have been reported. No phenotypic or diagnostic biomarkers have been identified for developing long COVID/PASC, which is a multisystem disorder that can present with isolated or combined respiratory, hematological, immunological, cardiovascular, and neuropsychiatric symptoms. There is no cure. Therefore, individualized patient management requires a multidisciplinary clinical approach. Because millions of people have had and continue to have COVID-19, even in the era of vaccination and antiviral therapies, long COVID/PASC is now and will increasingly become a health and economic burden that the world must prepare for. Almost five years from the beginning of the COVID-19 pandemic, this article aims to review what is currently known about long COVID/PASC, the anticipated increasing global health burden, and why there is still an urgent need to identify diagnostic biomarkers and risk factors to improve prevention and treatment.
Collapse
|
11
|
Nor Rashid N, Amrani L, Alwan A, Mohamed Z, Yusof R, Rothan H. Angiotensin-Converting Enzyme-2 (ACE2) Downregulation During Coronavirus Infection. Mol Biotechnol 2024:10.1007/s12033-024-01277-5. [PMID: 39266903 DOI: 10.1007/s12033-024-01277-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 08/29/2024] [Indexed: 09/14/2024]
Abstract
Angiotensin-converting enzyme-2 (ACE2) downregulation represents a detrimental factor in people with a baseline ACE2 deficiency associated with older age, hypertension, diabetes, and cardiovascular diseases. Human coronaviruses, including HCoV-NL63, SARS-CoV-1, and SARS CoV-2 infect target cells via binding of viral spike (S) glycoprotein to the ACE2, resulting in ACE2 downregulation through yet unidentified mechanisms. This downregulation disrupts the enzymatic activity of ACE2, essential in protecting against organ injury by cleaving and disposing of Angiotensin-II (Ang II), leading to the formation of Ang 1-7, thereby exacerbating the accumulation of Ang II. This accumulation activates the Angiotensin II type 1 receptor (AT1R) receptor, leading to leukocyte recruitment and increased proinflammatory cytokines, contributing to organ injury. The biological impacts and underlying mechanisms of ACE2 downregulation during SARS-CoV-2 infection have not been well defined. Therefore, there is an urgent need to establish a solid theoretical and experimental understanding of the mechanisms of ACE2 downregulation during SARS-CoV-2 entry and replication in the host cells. This review aims to discuss the physiological impact of ACE2 downregulation during coronavirus infection, the relationship between ACE2 decline and virus pathogenicity, and the possible mechanisms of ACE2 degradation, along with the therapeutic approaches.
Collapse
Affiliation(s)
- Nurshamimi Nor Rashid
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lina Amrani
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - Zulqarnain Mohamed
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rohana Yusof
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia.
| | - Hussin Rothan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Pfizer, Pearl River, NY, USA.
| |
Collapse
|
12
|
Chen D, Zeng S, Liu Q. Changes in nonfunctional adrenal incidentaloma after COVID-19 infection and a model for predicting benign and malignant adrenal incidentaloma. Front Endocrinol (Lausanne) 2024; 15:1374282. [PMID: 39286271 PMCID: PMC11402735 DOI: 10.3389/fendo.2024.1374282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/24/2024] [Indexed: 09/19/2024] Open
Abstract
Aims To compare nonfunctional adrenal incidentalomas (NFAI) in individuals with and without a history of COVID-19 infection, while also establishing predictive models for distinguishing between benign and malignant adrenal incidentalomas (AI). Methods A retrospective collection of data from patients with AI who underwent surgery and were verified in our hospital between April 2022 and June 2023 was conducted. A total of 121 patients were included in the study. Demographic information, tumor characteristics, functional indicators, and complications were compared among the patients. Statistical analyses utilized the t-test for continuous variables and Pearson chi-square test or Fisher's exact test for categorical variables. Results Patients with COVID-19 exhibited a higher prevalence of obesity (84.2% vs. 63.3%, P=0.048) and elevated direct bilirubin (DBIL) levels (44.1% vs. 19.2%, P=0.043) compared to those without COVID-19. Moreover, patients with Malignant AI, in contrast to Benign AI, showed higher normal total protein (TP) levels (28.8% vs. 57.1%, P=0.016) and larger tumor sizes (20 vs. 32.5mm, P=0.009). Univariate analysis identified low TP (OR=0.303, 95% CI=0.111-0.825, P=0.020) and tumor size (OR=1.045, 95% CI=1.011-1.080, P=0.009) as potential risk factors for multivariate analysis. A predictive model comprising clinical risk factors (tumor size and low TP) demonstrated an AUC of 0.754 (95% CI, 0.603-0.904) with a sensitivity of 0.75 and specificity of 0.775. The calibration curve revealed a bias-corrected AUC of 0.77. Conclusion No discernible differences in the clinical manifestations of adrenal incidentalomas were observed between cases with and without a history of COVID-19 infection. However, AI with larger tumor diameters and lower than normal levels of total protein exhibited a more pronounced malignant potential.
Collapse
Affiliation(s)
- Danlei Chen
- Department of Urology, Tianjin First Central Hospital, Tianjin, China
- Department of Urology, First People's Hospital of Yunnan Province, Kunming, China
| | - Sheng Zeng
- Department of Urology, Tianjin First Central Hospital, Tianjin, China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
13
|
Zacarias LC, Torres DM, Magalhães SC, Sobreira-Neto MA, Leite CF. Is Obstructive Sleep Apnea Associated with Higher Covid-19 Severity? Sleep Sci 2024; 17:e304-e309. [PMID: 39268342 PMCID: PMC11390168 DOI: 10.1055/s-0044-1782166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/05/2023] [Indexed: 09/15/2024] Open
Abstract
Objective To investigate the associations between obstructive sleep apnea (OSA) and coronavirus disease 2019 (COVID-19) severity. Methods Twelve individuals hospitalized in a Brazilian tertiary hospital diagnosed with COVID-19 by reverse transcriptase-polymerase chain reaction (RT-PCR) underwent respiratory polygraphy. Results Polygraphic records identified seven participants without obstructive sleep apnea (OSA) (OSA-) and five with OSA (OSA + ). The OSA+ group presented worse peripheral oxygen saturation (77.6% ± 7.89%) than the OSA- group (84.4% ± 2.57%) ( p = 0.041). Additionally, the OSA+ group showed greater COVID-19 severity (100%) than the OSA- group (28.57%) ( p = 0.013) and required longer oxygen therapy ( p = 0.038), but without difference in the length of hospitalization. The OSA+ group also presented higher rates of platelets ( p = 0.008) and D-dimer (1,443 ± 897) than the OSA- group (648 ± 263 ng/mL) ( p = 0.019). Conclusion Obstructive sleep apnea in individuals hospitalized due to COVID-19 was associated with higher COVID-19 severity, worse peripheral oxygen saturation, longer oxygen therapy time, and higher platelet and D-dimer rates.
Collapse
Affiliation(s)
- Laíla Cândida Zacarias
- Graduate Program in Cardiovascular Sciences, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | | | - Samir Câmara Magalhães
- Department of Neurology, Hospital Geral de Fortaleza, Fortaleza, CE, Brazil
- Faculty of Medicine, Universidade de Fortaleza, Fortaleza, CE, Brazil
| | | | - Camila Ferreira Leite
- Graduate Program in Cardiovascular Sciences, Universidade Federal do Ceará, Fortaleza, CE, Brazil
- Masters Program in Physiotherapy and Functioning, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
14
|
Oliveira EH, Monteleone-Cassiano AC, Tavares L, Santos JC, Lima TM, Gomes GF, Tanaka PP, Monteiro CJ, Munuera M, Batah SS, Fabro AT, Faça VM, Masson AP, Donadi EA, Dametto M, Bonacin R, Martins RB, Neto EA, daSilva LLP, Cunha TM, Passos GA. A mimetic peptide of ACE2 protects against SARS-CoV-2 infection and decreases pulmonary inflammation related to COVID-19. Antiviral Res 2024; 229:105968. [PMID: 39004311 DOI: 10.1016/j.antiviral.2024.105968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Since human angiotensin-converting enzyme 2 (ACE2) serves as a primary receptor for SARS-CoV-2, characterizing ACE2 regions that allow SARS-CoV-2 to enter human cells is essential for designing peptide-based antiviral blockers and elucidating the pathogenesis of the virus. We identified and synthesized a 25-mer mimetic peptide (encompassing positions 22-46 of the ACE2 alpha-helix α1) implicated in the S1 receptor-binding domain (RBD)-ACE2 interface. The mimetic (wild-type, WT) ACE2 peptide significantly inhibited SARS-CoV-2 infection of human pulmonary Calu-3 cells in vitro. In silico protein modeling predicted that residues F28, K31, F32, F40, and Y41 of the ACE2 alpha-helix α1 are critical for the original, Delta, and Omicron strains of SARS-CoV-2 to establish the Spike RBD-ACE2 interface. Substituting these residues with alanine (A) or aspartic acid (D) abrogated the antiviral protective effect of the peptides, indicating that these positions are critical for viral entry into pulmonary cells. WT ACE2 peptide, but not the A or D mutated peptides, exhibited significant interaction with the SARS-CoV-2 S1 RBD, as shown through molecular dynamics simulations. Through identifying the critical amino acid residues of the ACE2 alpha-helix α1, which is necessary for the Spike RBD-ACE2 interface and mobilized during the in vitro viral infection of cells, we demonstrated that the WT ACE2 peptide protects susceptible K18-hACE2 mice against in vivo SARS-CoV-2 infection and is effective for the treatment of COVID-19.
Collapse
Affiliation(s)
- Ernna H Oliveira
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Ana C Monteleone-Cassiano
- Program in Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Lucas Tavares
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Jadson C Santos
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Thais M Lima
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Giovanni F Gomes
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Pedro P Tanaka
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Cintia J Monteiro
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Matheus Munuera
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Sabrina S Batah
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Alexandre T Fabro
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Vitor M Faça
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Ana P Masson
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Eduardo A Donadi
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Mariangela Dametto
- Renato Archer Technology Information Center, Ministry of Science, Technology and Innovation, Campinas, SP, Brazil
| | - Rodrigo Bonacin
- Renato Archer Technology Information Center, Ministry of Science, Technology and Innovation, Campinas, SP, Brazil
| | - Ronaldo B Martins
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Eurico Arruda Neto
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Luis Lamberti P daSilva
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Thiago M Cunha
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Geraldo A Passos
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil; Laboratory of Genetics and Molecular Biology, Department of Basic and Oral Biology, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
15
|
Sehgal A, Nold MF, Roberts CT, Menahem S. Vascular responsiveness to low-dose dexamethasone in extremely premature infants: negative influence of fetal growth restriction. Am J Physiol Heart Circ Physiol 2024; 327:H666-H671. [PMID: 39028285 DOI: 10.1152/ajpheart.00375.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/20/2024]
Abstract
Dexamethasone is frequently prescribed for preterm infants to wean from respiratory support and/or to facilitate extubation. This pre-/postintervention prospective study ascertained the impact on clinical (respiratory support) and echocardiographic parameters after dexamethasone therapy in preterm fetal growth restriction (FGR) infants compared with appropriate for gestational age (AGA) infants. Echocardiography was performed within 24 h before the start and after completion of 10-day therapy. Parameters assessed included those reflecting pulmonary vascular resistance and right ventricular output. Seventeen FGR infants (birth gestation and birth weight, 25.2 ± 1.1 wk and 497 ± 92 g, respectively) were compared with 22 AGA infants (gestation and birth weight, 24.5 ± 0.8 and 663 ± 100 g, respectively). Baseline respiratory severity score (mean airway pressure × fractional inspired oxygen) was comparable between the groups, (median [interquartile range] FGR, 10 [6, 13] vs. AGA, 8 ± 2.8, P = 0.08). Pre-dexamethasone parameters of pulmonary vascular resistance (FGR, 0.19 ± 0.03 vs. AGA, 0.2 ± 0.03, P = 0.16) and right ventricular output (FGR, 171 ± 20 vs. 174 ± 17 mL/kg/min, P = 0.6) were statistically comparable. At post-dexamethasone assessments, the decrease in the respiratory severity score was significantly greater in AGA infants (median [interquartile range] FGR, 10 [6, 13] to 9 [2.6, 13.5], P = 0.009 vs. AGA, 8 ± 2.8 to 3 ± 1, P < 0.0001). Improvement in measures of pulmonary vascular resistance (ratio of time to peak velocity to right ventricular ejection time) was greater in AGA infants (FGR, 0.19 ± 0.03 to 0.2 ± 0.03, P = 0.13 vs. AGA 0.2 ± 0.03 to 0.25 ± 0.03, P < 0.0001). The improvement in right ventricular output was significantly greater in AGA infants (171 ± 20 to 190 ± 21, P = 0.014 vs. 174 ± 17 to 203 ± 22, P < 0.0001). This highlights differential cardiorespiratory responsiveness to dexamethasone in extremely preterm FGR infants, which may reflect the in utero maladaptive state.NEW & NOTEWORTHY Dexamethasone (DEX) is frequently used in preterm infants dependent on ventilator support. Differences in vascular structure and function that may have developed prenatally arising from the chronic intrauterine hypoxemia in FGR infants may adversely affect responsiveness. The clinical efficacy of DEX was significantly less in FGR (birth weight < 10th centile) infants, compared with appropriate for gestational age (AGA) infants. Echocardiography showed significantly less improvement in pulmonary vascular resistance in FGR, compared with AGA infants.
Collapse
Affiliation(s)
- Arvind Sehgal
- Monash Newborn, Monash Children's Hospital, Melbourne, Victoria, Australia
- Department of Pediatrics, Monash University, Melbourne, Victoria, Australia
| | - Marcel F Nold
- Monash Newborn, Monash Children's Hospital, Melbourne, Victoria, Australia
- Department of Pediatrics, Monash University, Melbourne, Victoria, Australia
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - Calum T Roberts
- Monash Newborn, Monash Children's Hospital, Melbourne, Victoria, Australia
- Department of Pediatrics, Monash University, Melbourne, Victoria, Australia
| | - Samuel Menahem
- Department of Pediatrics, Monash University, Melbourne, Victoria, Australia
- Paediatric and Fetal Cardiac Units, Monash Medical Centre, Monash Health, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Sehgal A, South AM, Menahem S. Systemic hemodynamics and pediatric lung disease: mechanistic links and therapeutic relevance. Am J Physiol Heart Circ Physiol 2024; 327:H454-H459. [PMID: 38968163 PMCID: PMC11901395 DOI: 10.1152/ajpheart.00271.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024]
Abstract
Chronic lung disease, also known as bronchopulmonary dysplasia, affects thousands of infants worldwide each year. The impact on resources is second only to bronchial asthma, with lung function affected well into adolescence. Diagnostic and therapeutic constructs have almost exclusively focused on pulmonary architecture (alveoli/airways) and pulmonary hypertension. Information on systemic hemodynamics indicates major artery thickness/stiffness, elevated systemic afterload, and/or primary left ventricular dysfunction may play a part in a subset of infants with severe neonatal-pediatric lung disease. Understanding the underlying principles with attendant effectors would aid in identifying the pathophysiological course where systemic afterload reduction with angiotensin-converting enzyme inhibitors could become the preferred treatment strategy over conventional pulmonary artery vasodilatation.NEW & NOTEWORTHY Extremely preterm infants are at a higher risk of developing severe bronchopulmonary dysplasia. In a subset of infants, diuretic and pulmonary vasodilator therapy is ineffective. Recent information points toward systemic hemodynamic disease (systemic arterial stiffness and left ventricular dysfunction) as a contributor via back-pressure changes. Mechanistic links include heightened renin angiotensin aldosterone system activity, inflammation, and oxygen toxicity. Angiotensin-converting enzyme inhibition may be operationally more suited compared with induced pulmonary artery vasodilatation.
Collapse
Affiliation(s)
- Arvind Sehgal
- Monash Newborn, Monash Children's Hospital, Melbourne, Australia
- Department of Pediatrics, Monash University, Melbourne, Australia
| | - Andrew M South
- Section of Nephrology, Department of Pediatrics, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
- Department of Surgery-Hypertension and Vascular Research, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
- Division of Public Health Sciences, Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Samuel Menahem
- Paediatric and Fetal Cardiac Units, Monash Medical Centre, Monash Health, Melbourne, Australia
| |
Collapse
|
17
|
Yan A, Zhang R, Feng C, Feng J. Coronavirus disease 2019-related myocarditis genes contribute to ECMO prognosis. BMC Cardiovasc Disord 2024; 24:375. [PMID: 39026189 PMCID: PMC11264513 DOI: 10.1186/s12872-024-04032-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Acute myocardial injury, cytokine storms, hypoxemia and pathogen-mediated damage were the major causes responsible for mortality induced by coronavirus disease 2019 (COVID-19)-related myocarditis. These need ECMO treatment. We investigated differentially expressed genes (DEGs) in patients with COVID-19-related myocarditis and ECMO prognosis. METHODS GSE150392 and GSE93101 were analyzed to identify DEGs. A Venn diagram was used to obtain the same transcripts between myocarditis-related and ECMO-related DEGs. Enrichment pathway analysis was performed and hub genes were identified. Pivotal miRNAs, transcription factors, and chemicals with the screened gene interactions were identified. The GSE167028 dataset and single-cell sequencing data were used to validate the screened genes. RESULTS Using a Venn diagram, 229 overlapping DEGs were identified between myocarditis-related and ECMO-related DEGs, which were mainly involved in T cell activation, contractile actin filament bundle, actomyosin, cyclic nucleotide phosphodiesterase activity, and cytokine-cytokine receptor interaction. 15 hub genes and 15 neighboring DEGs were screened, which were mainly involved in the positive regulation of T cell activation, integrin complex, integrin binding, the PI3K-Akt signaling pathway, and the TNF signaling pathway. Data in GSE167028 and single-cell sequencing data were used to validate the screened genes, and this demonstrated that the screened genes CCL2, APOE, ITGB8, LAMC2, COL6A3 and TNC were mainly expressed in fibroblast cells; IL6, ITGA1, PTK2, ITGB5, IL15, LAMA4, CAV1, SNCA, BDNF, ACTA2, CD70, MYL9, DPP4, ENO2 and VEGFC were expressed in cardiomyocytes; IL6, PTK2, ITGB5, IL15, APOE, JUN, SNCA, CD83, DPP4 and ENO2 were expressed in macrophages; and IL6, ITGA1, PTK2, ITGB5, IL15, VCAM1, LAMA4, CAV1, ACTA2, MYL9, CD83, DPP4, ENO2, VEGFC and IL32 were expressed in vascular endothelial cells. CONCLUSION The screened hub genes, IL6, ITGA1, PTK2, ITGB3, ITGB5, CCL2, IL15, VCAM1, GZMB, APOE, ITGB8, LAMA4, LAMC2, COL6A3 and TNFRSF9, were validated using GEO dataset and single-cell sequencing data, which may be therapeutic targets patients with myocarditis to prevent MI progression and adverse cardiovascular events.
Collapse
Affiliation(s)
- An Yan
- Tianjin Chest Hospital, Taierzhuang North Road 261, Jinnan District, Tianjin, China
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Taierzhuang North Road 261, Jinnan District, Tianjin, China
| | - Ruiying Zhang
- Tianjin Chest Hospital, Taierzhuang North Road 261, Jinnan District, Tianjin, China
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Taierzhuang North Road 261, Jinnan District, Tianjin, China
| | - Chao Feng
- Tianjin Chest Hospital, Taierzhuang North Road 261, Jinnan District, Tianjin, China
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Taierzhuang North Road 261, Jinnan District, Tianjin, China
| | - Jinping Feng
- Tianjin Chest Hospital, Taierzhuang North Road 261, Jinnan District, Tianjin, China.
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Taierzhuang North Road 261, Jinnan District, Tianjin, China.
| |
Collapse
|
18
|
Tiwary BK. A positive selection at binding site 501 in the B.1 lineage might have triggered the highly infectious sub-lineages of SARS-CoV-2. Gene 2024; 915:148427. [PMID: 38575097 DOI: 10.1016/j.gene.2024.148427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
The descendants of the B lineage are the most predominant variants among the SARS-CoV-2 virus due to the incorporation of new mutations augmenting the infectivity of the virus. There is a substantial increase in the transition transversion bias, nucleotide diversity and purifying selection on the spike protein in the descendants of the B lineage of the SARS-CoV-2 virus on a temporal scale. A strong bias for C-to-U substitutions is found in the genes encoding spike protein in this lineage. The positive selection has operated on the spike gene of B lineages and its sub-lineages. The B.1 lineage has undergone positive selection on site 501 of the receptor binding domain ultimately reflected in a key substitution N501Y in its three descendant lineages namely B.1.1.7, B.1.351 and P.1. The intensity of purifying selection on the multiple sites of the spike gene has increased substantially in the sub-lineages of B.1 in a timescale. The binding site 501 on the spike protein in B lineage is found to coevolve with other amino acid sites. This study sheds light on the evolutionary trajectory of the B lineage into highly infectious descendants in the recent past under the influence of positive and purifying selection exerted by natural immunity and vaccination of the host.
Collapse
Affiliation(s)
- Basant K Tiwary
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry 605 014, India.
| |
Collapse
|
19
|
Müller L, Di Benedetto S. Inflammaging, immunosenescence, and cardiovascular aging: insights into long COVID implications. Front Cardiovasc Med 2024; 11:1384996. [PMID: 38988667 PMCID: PMC11233824 DOI: 10.3389/fcvm.2024.1384996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024] Open
Abstract
Aging leads to physiological changes, including inflammaging-a chronic low-grade inflammatory state with significant implications for various physiological systems, particularly for cardiovascular health. Concurrently, immunosenescence-the age-related decline in immune function, exacerbates vulnerabilities to cardiovascular pathologies in older individuals. Examining the dynamic connections between immunosenescence, inflammation, and cardiovascular aging, this mini-review aims to disentangle some of these interactions for a better understanding of their complex interplay. In the context of cardiovascular aging, the chronic inflammatory state associated with inflammaging compromises vascular integrity and function, contributing to atherosclerosis, endothelial dysfunction, arterial stiffening, and hypertension. The aging immune system's decline amplifies oxidative stress, fostering an environment conducive to atherosclerotic plaque formation. Noteworthy inflammatory markers, such as the high-sensitivity C-reactive protein, interleukin-6, interleukin-1β, interleukin-18, and tumor necrosis factor-alpha emerge as key players in cardiovascular aging, triggering inflammatory signaling pathways and intensifying inflammaging and immunosenescence. In this review we aim to explore the molecular and cellular mechanisms underlying inflammaging and immunosenescence, shedding light on their nuanced contributions to cardiovascular diseases. Furthermore, we explore the reciprocal relationship between immunosenescence and inflammaging, revealing a self-reinforcing cycle that intensifies cardiovascular risks. This understanding opens avenues for potential therapeutic targets to break this cycle and mitigate cardiovascular dysfunction in aging individuals. Furthermore, we address the implications of Long COVID, introducing an additional layer of complexity to the relationship between aging, immunosenescence, inflammaging, and cardiovascular health. Our review aims to stimulate continued exploration and advance our understanding within the realm of aging and cardiovascular health.
Collapse
Affiliation(s)
- Ludmila Müller
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | | |
Collapse
|
20
|
Sun X, Tang J, Lu J, Zhang H, Li C. Development and validation of a prediction model for mortality in critically ill COVID-19 patients. Front Cell Infect Microbiol 2024; 14:1309529. [PMID: 38979512 PMCID: PMC11228157 DOI: 10.3389/fcimb.2024.1309529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Background Early prediction of prognosis may help early treatment measures to reduce mortality in critically ill coronavirus disease (COVID-19) patients. The study aimed to develop a mortality prediction model for critically ill COVID-19 patients. Methods This retrospective study analyzed the clinical data of critically ill COVID-19 patients in an intensive care unit between April and June 2022. Propensity matching scores were used to reduce the effect of confounding factors. A predictive model was built using logistic regression analysis and visualized using a nomogram. Calibration and receiver operating characteristic (ROC) curves were used to estimate the accuracy and predictive value of the model. Decision curve analysis (DCA) was used to examine the value of the model for clinical interventions. Results In total, 137 critically ill COVID-19 patients were enrolled; 84 survived, and 53 died. Univariate and multivariate logistic regression analyses revealed that aspartate aminotransferase (AST), creatinine, and myoglobin levels were independent prognostic factors. We constructed logistic regression prediction models using the seven least absolute shrinkage and selection operator regression-selected variables (hematocrit, red blood cell distribution width-standard deviation, procalcitonin, AST, creatinine, potassium, and myoglobin; Model 1) and three independent factor variables (Model 2). The calibration curves suggested that the actual predictions of the two models were similar to the ideal predictions. The ROC curve indicated that both models had good predictive power, and Model 1 had better predictive power than Model 2. The DCA results suggested that the model intervention was beneficial to patients and patients benefited more from Model 1 than from Model 2. Conclusion The predictive model constructed using characteristic variables screened using LASSO regression can accurately predict the prognosis of critically ill COVID-19 patients. This model can assist clinicians in implementing early interventions. External validation by prospective large-sample studies is required.
Collapse
Affiliation(s)
- Xiaoxiao Sun
- Department of Critical Care Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jinxuan Tang
- Department of Anesthesiology and Perioprative Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jun Lu
- Department of Anesthesiology and Perioprative Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui Zhang
- Department of Anesthesiology and Perioprative Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Cheng Li
- Department of Anesthesiology and Perioprative Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
21
|
Mehboob R, Oehme P, Anwar T, von Kries JP. Substance P - a regulatory peptide with defense and repair functions. Results and perspectives for the fight against COVID-19. Front Neurol 2024; 15:1370454. [PMID: 38872816 PMCID: PMC11169637 DOI: 10.3389/fneur.2024.1370454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024] Open
Abstract
Severe acute respiratory syndrome corona virus 2 (SARS CoV-2) is the cause of Corona virus disease 2019 (COVID-19), which turned into a pandemic in late 2019 and early 2020. SARS CoV-2 causes endothelial cell destruction and swelling, microthrombosis, constriction of capillaries, and malfunction of pericytes, all of which are detrimental to capillary integrity, angiogenesis, and healing processes. Cytokine storming has been connected to COVID-19 disease. Hypoxemia and tissue hypoxia may arise from impaired oxygen diffusion exchange in the lungs due to capillary damage and congestion. This personal view will look at how inflammation and capillary damage affect blood and tissue oxygenation, cognitive function, and the duration and intensity of COVID-19 disease. The general effects of microvascular injury, hypoxia, and capillary damage caused by COVID-19 in key organs are also covered in this point of view. Once initiated, this vicious cycle leads to diminished capillary function, which exacerbates inflammation and tissue damage, and increased inflammation due to hypoxia. Brain damage may result from low oxygen levels and high cytokines in brain tissue. In this paper we give a summary in this direction with focus on the role of the neuropeptide Substance P. On the basis of this, we discuss selected approaches to the question: "How Substance P is involved in the etiology of the COVID-19 and how results of our research could improve the prevention or therapy of corona? Thereby pointing out the role of Substance P in the post-corona syndrome and providing novel concepts for therapy and prevention.
Collapse
Affiliation(s)
- Riffat Mehboob
- Lahore Medical Research Center, Lahore, Pakistan
- National Heart Lung and Blood Institute, National Institute of Health, Bethesda, MD, United States
| | | | | | | |
Collapse
|
22
|
Wu HF, Saito-Diaz K, Huang CW, McAlpine JL, Seo DE, Magruder DS, Ishan M, Bergeron HC, Delaney WH, Santori FR, Krishnaswamy S, Hart GW, Chen YW, Hogan RJ, Liu HX, Ivanova NB, Zeltner N. Parasympathetic neurons derived from human pluripotent stem cells model human diseases and development. Cell Stem Cell 2024; 31:734-753.e8. [PMID: 38608707 PMCID: PMC11069445 DOI: 10.1016/j.stem.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/16/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024]
Abstract
Autonomic parasympathetic neurons (parasymNs) control unconscious body responses, including "rest-and-digest." ParasymN innervation is important for organ development, and parasymN dysfunction is a hallmark of autonomic neuropathy. However, parasymN function and dysfunction in humans are vastly understudied due to the lack of a model system. Human pluripotent stem cell (hPSC)-derived neurons can fill this void as a versatile platform. Here, we developed a differentiation paradigm detailing the derivation of functional human parasymNs from Schwann cell progenitors. We employ these neurons (1) to assess human autonomic nervous system (ANS) development, (2) to model neuropathy in the genetic disorder familial dysautonomia (FD), (3) to show parasymN dysfunction during SARS-CoV-2 infection, (4) to model the autoimmune disease Sjögren's syndrome (SS), and (5) to show that parasymNs innervate white adipocytes (WATs) during development and promote WAT maturation. Our model system could become instrumental for future disease modeling and drug discovery studies, as well as for human developmental studies.
Collapse
Affiliation(s)
- Hsueh-Fu Wu
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Kenyi Saito-Diaz
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Chia-Wei Huang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Jessica L McAlpine
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Dong Eun Seo
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - D Sumner Magruder
- Department of Genetics, Department of Computer Science, Wu Tsai Institute, Program for Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Mohamed Ishan
- Regenerative Bioscience Center, Department of Animal and Dairy Science College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Harrison C Bergeron
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - William H Delaney
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Fabio R Santori
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Smita Krishnaswamy
- Department of Genetics, Department of Computer Science, Wu Tsai Institute, Program for Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Gerald W Hart
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Ya-Wen Chen
- Department of Otolaryngology, Department of Cell, Developmental, and Regenerative Biology, Institute for Airway Sciences, Institute for Regenerative Medicine, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert J Hogan
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Hong-Xiang Liu
- Regenerative Bioscience Center, Department of Animal and Dairy Science College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Natalia B Ivanova
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Nadja Zeltner
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
23
|
Liu S, Chen H, Chen X, Luo N, Peraramelli S, Gong X, Zhang MJ, Ou L. Utilizing noncatalytic ACE2 protein mutant as a competitive inhibitor to treat SARS-CoV-2 infection. Front Immunol 2024; 15:1365803. [PMID: 38646520 PMCID: PMC11032047 DOI: 10.3389/fimmu.2024.1365803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Introduction Angiotensin converting-enzyme 2 (ACE2) is an enzyme catalyzing the conversion of angiotensin 2 into angiotensin 1-7. ACE2 also serves as the receptor of several coronaviruses, including SARS-CoV-1 and SARS-CoV-2. Therefore, ACE2 could be utilized as a therapeutic target for treating these coronaviruses, ideally lacking enzymatic function. Methods Based on structural analysis, specific mutations were introduced to generate mutants of ACE2 and ACE2-Fc (fusion protein of ACE2 and Fc region of IgG1). The enzyme activity, binding affinity, and neutralization abilities were measured. Results and discussion As predicted, five mutants (AMI081, AMI082, AMI083, AMI084, AMI090) have completely depleted ACE2 enzymatic activities. More importantly, enzyme-linked receptor-ligand assay (ELRLA) and surface plasmon resonance (SPR) results showed that 2 mutants (AMI082, AMI090) maintained binding activity to the viral spike proteins of SARS-CoV-1 and SARS-CoV-2. In An in vitro neutralization experiment using a pseudovirus, SARS-CoV-2 S1 spike protein-packed lentivirus particles, was also performed, showing that AMI082 and AMI090 significantly reduced GFP transgene expression. Further, in vitro virulent neutralization assays using SARS-CoV-2 (strain name: USA-WA1/2020) showed that AMI082 and AMI090 had remarkable inhibitory effects, indicated by comparable IC50 to wildtype ACE2 (5.33 µg/mL). In addition to the direct administration of mutant proteins, an alternative strategy for treating COVID-19 is through AAV delivery to achieve long-lasting effects. Therefore, AAV5 encoding AMI082 and AMI090 were packaged and transgene expression was assessed. In summary, these ACE2 mutants represent a novel approach to prevent or treat COVID-19 and other viruses with the same spike protein.
Collapse
|
24
|
Naidu AS, Wang CK, Rao P, Mancini F, Clemens RA, Wirakartakusumah A, Chiu HF, Yen CH, Porretta S, Mathai I, Naidu SAG. Precision nutrition to reset virus-induced human metabolic reprogramming and dysregulation (HMRD) in long-COVID. NPJ Sci Food 2024; 8:19. [PMID: 38555403 PMCID: PMC10981760 DOI: 10.1038/s41538-024-00261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
SARS-CoV-2, the etiological agent of COVID-19, is devoid of any metabolic capacity; therefore, it is critical for the viral pathogen to hijack host cellular metabolic machinery for its replication and propagation. This single-stranded RNA virus with a 29.9 kb genome encodes 14 open reading frames (ORFs) and initiates a plethora of virus-host protein-protein interactions in the human body. These extensive viral protein interactions with host-specific cellular targets could trigger severe human metabolic reprogramming/dysregulation (HMRD), a rewiring of sugar-, amino acid-, lipid-, and nucleotide-metabolism(s), as well as altered or impaired bioenergetics, immune dysfunction, and redox imbalance in the body. In the infectious process, the viral pathogen hijacks two major human receptors, angiotensin-converting enzyme (ACE)-2 and/or neuropilin (NRP)-1, for initial adhesion to cell surface; then utilizes two major host proteases, TMPRSS2 and/or furin, to gain cellular entry; and finally employs an endosomal enzyme, cathepsin L (CTSL) for fusogenic release of its viral genome. The virus-induced HMRD results in 5 possible infectious outcomes: asymptomatic, mild, moderate, severe to fatal episodes; while the symptomatic acute COVID-19 condition could manifest into 3 clinical phases: (i) hypoxia and hypoxemia (Warburg effect), (ii) hyperferritinemia ('cytokine storm'), and (iii) thrombocytosis (coagulopathy). The mean incubation period for COVID-19 onset was estimated to be 5.1 days, and most cases develop symptoms after 14 days. The mean viral clearance times were 24, 30, and 39 days for acute, severe, and ICU-admitted COVID-19 patients, respectively. However, about 25-70% of virus-free COVID-19 survivors continue to sustain virus-induced HMRD and exhibit a wide range of symptoms that are persistent, exacerbated, or new 'onset' clinical incidents, collectively termed as post-acute sequelae of COVID-19 (PASC) or long COVID. PASC patients experience several debilitating clinical condition(s) with >200 different and overlapping symptoms that may last for weeks to months. Chronic PASC is a cumulative outcome of at least 10 different HMRD-related pathophysiological mechanisms involving both virus-derived virulence factors and a multitude of innate host responses. Based on HMRD and virus-free clinical impairments of different human organs/systems, PASC patients can be categorized into 4 different clusters or sub-phenotypes: sub-phenotype-1 (33.8%) with cardiac and renal manifestations; sub-phenotype-2 (32.8%) with respiratory, sleep and anxiety disorders; sub-phenotype-3 (23.4%) with skeleto-muscular and nervous disorders; and sub-phenotype-4 (10.1%) with digestive and pulmonary dysfunctions. This narrative review elucidates the effects of viral hijack on host cellular machinery during SARS-CoV-2 infection, ensuing detrimental effect(s) of virus-induced HMRD on human metabolism, consequential symptomatic clinical implications, and damage to multiple organ systems; as well as chronic pathophysiological sequelae in virus-free PASC patients. We have also provided a few evidence-based, human randomized controlled trial (RCT)-tested, precision nutrients to reset HMRD for health recovery of PASC patients.
Collapse
Affiliation(s)
- A Satyanarayan Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA.
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA.
| | - Chin-Kun Wang
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- School of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung, 40201, Taiwan
| | - Pingfan Rao
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- College of Food and Bioengineering, Fujian Polytechnic Normal University, No.1, Campus New Village, Longjiang Street, Fuqing City, Fujian, China
| | - Fabrizio Mancini
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President-Emeritus, Parker University, 2540 Walnut Hill Lane, Dallas, TX, 75229, USA
| | - Roger A Clemens
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- University of Southern California, Alfred E. Mann School of Pharmacy/D. K. Kim International Center for Regulatory & Quality Sciences, 1540 Alcazar St., CHP 140, Los Angeles, CA, 90089, USA
| | - Aman Wirakartakusumah
- International Union of Food Science and Technology (IUFoST), Guelph, ON, Canada
- IPMI International Business School Jakarta; South East Asian Food and Agriculture Science and Technology, IPB University, Bogor, Indonesia
| | - Hui-Fang Chiu
- Department of Chinese Medicine, Taichung Hospital, Ministry of Health & Well-being, Taichung, Taiwan
| | - Chi-Hua Yen
- Department of Family and Community Medicine, Chung Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Sebastiano Porretta
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President, Italian Association of Food Technology (AITA), Milan, Italy
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121, Parma, Italy
| | - Issac Mathai
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- Soukya International Holistic Health Center, Whitefield, Bengaluru, India
| | - Sreus A G Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA
| |
Collapse
|
25
|
Su S, Hu W, Chen X, Ren Y, Lu Y, Shi J, Zhang T, Zhang H, Wang M, Wang Y, Zhao F, Jin R, Liu Y, Zhang H, Liu G. Cardiac injury progression in children with multisystem inflammatory syndrome associated with SARS-CoV-2 infection: a review. Front Pediatr 2024; 12:1348016. [PMID: 38510081 PMCID: PMC10950994 DOI: 10.3389/fped.2024.1348016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/22/2024] [Indexed: 03/22/2024] Open
Abstract
The symptoms and signs of infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are milder in children than in adults. However, in April 2020, British pediatricians first reported that coronavirus disease 2019 (COVID-19) may present as multisystem inflammatory syndrome in children and adolescents (MIS-C), similar to that observed in Kawasaki disease. MIS-C can be associated with multiple systemic injuries and even death in children. In addition to digestive system involvement, cardiac injury is prominent. This article reviews the pathogenesis, clinical manifestations, and treatment of cardiac injury caused by MIS-C, which may help clinicians in early diagnosis and timely commencement of treatment.
Collapse
Affiliation(s)
- Song Su
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Wandong Hu
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Xiao Chen
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Ying Ren
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Yi Lu
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Jianguo Shi
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Tong Zhang
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Huan Zhang
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Meng Wang
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Yaping Wang
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Fen Zhao
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Ruifeng Jin
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Yong Liu
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Hongwei Zhang
- Epilepsy Center, Children’s Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Epilepsy Center, Jinan Children's Hospital, Jinan, Shandong, China
| | - Guohua Liu
- Department of Ophthalmology, Children's Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Department of Ophthalmology, Jinan Children's Hospital, Jinan, Shandong, China
| |
Collapse
|
26
|
Li JX, Xiao X, Teng F, Li HH. Myeloid ACE2 protects against septic hypotension and vascular dysfunction through Ang-(1-7)-Mas-mediated macrophage polarization. Redox Biol 2024; 69:103004. [PMID: 38141575 PMCID: PMC10788636 DOI: 10.1016/j.redox.2023.103004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023] Open
Abstract
Angiotensin converting enzyme 2 (ACE2) is a new identified member of the renin-angiotensin-aldosterone system (RAAS) that cleaves angiotensin II (Ang II) to Ang (1-7), which exerts anti-inflammatory and antioxidative activities via binding with Mas receptor (MasR). However, the functional role of ACE2 in sepsis-related hypotension remains unknown. Our results indicated that sepsis significantly reduced blood pressure and led to disruption between ACE-Ang II and ACE2-Ang (1-7) balance. ACE2 knock-in mice exhibited improved sepsis-induced mortality, hypotension and vascular dysfunction, while ACE2 knockout mice exhibited the opposite effects. Bone marrow transplantation and in vitro experiments confirmed that myeloid ACE2 exerted a protective role by suppressing oxidative stress, NO production and macrophage polarization via the Ang (1-7)-MasR-NF-κB and STAT1 pathways. Thus, ACE2 on myeloid cells could protect against sepsis-mediated hypotension and vascular dysfunction, and upregulating ACE2 may represent a promising therapeutic option for septic patients with hypotension.
Collapse
Affiliation(s)
- Jia-Xin Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Road, Beijing, 100020, China
| | - Xue Xiao
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Road, Beijing, 100020, China
| | - Fei Teng
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Road, Beijing, 100020, China
| | - Hui-Hua Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Road, Beijing, 100020, China.
| |
Collapse
|
27
|
Gutowski M, Klimkiewicz J, Rustecki B, Michałowski A, Paryż K, Lubas A. Effect of Respiratory Failure on Peripheral and Organ Perfusion Markers in Severe COVID-19: A Prospective Cohort Study. J Clin Med 2024; 13:469. [PMID: 38256603 PMCID: PMC10816331 DOI: 10.3390/jcm13020469] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Microvascular dysfunction and inflammation caused by COVID-19 disrupt organ function. The study aimed to investigate the association between the severity of SARS-CoV-2 pneumonia and peripheral and organ perfusion as a consequence of altered microcirculation. A total of 116 patients hospitalized due to severe COVID-19 were enrolled in the study. On admission, the patients underwent a Capillary Refill Time (CRT) examination, finger oxygen saturation measurement, thermal imaging of the hand (FIT), and a kidney Doppler ultrasound. Medical data were collected from the medical history. From the evaluated perfusion parameters, only renal cortex perfusion (RCP) was substantially correlated with the CT score (p < 0.010). The peripheral perfusion parameters of Sat., FIT, CRT, and RCP correlated with the ARDS stages (p = 0.0021; p = 0.038; p < 0.0006; p < 0.0002, respectively). The Oxygenation Ratio value (p < 0.001) was significantly associated with all the perfusion parameters (saturation, CRT, FIT, and RCP) in the multivariable regression analysis model. According to the stepwise retrograde regression analysis, RCP was an independent parameter linked with the Oxygenation Ratio (p < 0.001). Severe COVID-19 can result in microvascular dysfunction influencing peripheral and organ perfusion, which can be measured with various methods. The staging of COVID-19 assessed by CT and the Oxygenation Ratio correlates with RCP, CRT, FIT, and oxygen saturation.
Collapse
Affiliation(s)
- Mateusz Gutowski
- Department of Anesthesiology and Intensive Care, Military Institute of Medicine-National Research Institute, 04-141 Warsaw, Poland; (J.K.); (B.R.); (A.M.); (K.P.)
| | - Jakub Klimkiewicz
- Department of Anesthesiology and Intensive Care, Military Institute of Medicine-National Research Institute, 04-141 Warsaw, Poland; (J.K.); (B.R.); (A.M.); (K.P.)
| | - Bartosz Rustecki
- Department of Anesthesiology and Intensive Care, Military Institute of Medicine-National Research Institute, 04-141 Warsaw, Poland; (J.K.); (B.R.); (A.M.); (K.P.)
| | - Andrzej Michałowski
- Department of Anesthesiology and Intensive Care, Military Institute of Medicine-National Research Institute, 04-141 Warsaw, Poland; (J.K.); (B.R.); (A.M.); (K.P.)
| | - Kamil Paryż
- Department of Anesthesiology and Intensive Care, Military Institute of Medicine-National Research Institute, 04-141 Warsaw, Poland; (J.K.); (B.R.); (A.M.); (K.P.)
| | - Arkadiusz Lubas
- Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine-National Research Institute, 04-141 Warsaw, Poland;
| |
Collapse
|
28
|
Bai Y, He F, Yu Y, Li J. Application of prone position ventilation in ventilation strategies for patients with COVID-19. Technol Health Care 2024; 32:1835-1846. [PMID: 38007683 DOI: 10.3233/thc-230874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
BACKGROUND Patients with coronavirus disease 2019 (COVID-19) have been shown to die mainly due to disease-induced acute respiratory distress syndrome (ARDS). Prone position ventilation (PPV) is an important ventilation strategy in the management of patients with ARDS. OBJECTIVE To investigate the application of PPV in ventilation strategies for patients with COVID-19. METHODS Three hundred patients with COVID-19 admitted to the Intensive Care Unit (ICU) of Shanxi Bethune Hospital from January 2020 to June 2021 were retrospectively collected. Based on body position and conscious state, all patients were divided into three groups: intubation prone position group (n= 110), awake prone position group (n= 90) and supine position group (n= 100); The acute physiology and chronic health evaluation II (APACHE-II) scores, blood gas indicators, complications and other relevant clinical indicators were compared among the three groups. One-way ANOVA was used to compare means between multiple groups for quantitative information that conformed to a normal distribution. Repeated measures ANOVA was used for repeated measures data. Component comparisons were made using the Kruskal-Wallis H rank sum test for non-normally distributed quantitative data. RESULTS One-way repeated-measures ANOVA main effect analysis showed different effects of different treatments on PaO2 in patients with COVID-19 (F treatment = 256.231, P< 0.05), with the order of awake prone position group > intubation prone position group > supine position group. The effects of the three different treatments on P/F in patients with COVID-19 (F treatment = 311.661, P< 0.05), with the order of awake prone position group > supine position group > intubation prone position group; Moreover, the three treatments had different effects on APACHE II scores in patients with COVID-19 (F treatment = 201.342, P< 0.05), with the order of intubation prone position group > supine position group > awake prone position group. CONCLUSION Intubation prone position and awake prone position can improve lung function to some extent in patients with COVID-19, and should be applied as early as possible in patients with COVID-19-induced ARDS.
Collapse
Affiliation(s)
- Yuan Bai
- General Surgery Department, Shanxi Bethune Hospital, Taiyuan, Shanxi, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Vascular Surgery Department, Shanxi Bethune Hospital, Taiyuan, Shanxi, China
| | - Fang He
- General Surgery Department, Shanxi Bethune Hospital, Taiyuan, Shanxi, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Biliary and Pancreatic Surgery, Shanxi Bethune Hospital, Taiyuan, Shanxi, China
| | - Ying Yu
- General Surgery Department, Shanxi Bethune Hospital, Taiyuan, Shanxi, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Vascular Surgery Department, Shanxi Bethune Hospital, Taiyuan, Shanxi, China
| | - Jia Li
- General Surgery Department, Shanxi Bethune Hospital, Taiyuan, Shanxi, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Vascular Surgery Department, Shanxi Bethune Hospital, Taiyuan, Shanxi, China
| |
Collapse
|
29
|
Talaei F, Banga A, Pursell A, Gage A, Pallipamu N, Seri AR, Adhikari R, Kashyap R, Surani S. New-onset atrial fibrillation among COVID-19 patients: A narrative review. World J Crit Care Med 2023; 12:236-247. [PMID: 38188450 PMCID: PMC10768419 DOI: 10.5492/wjccm.v12.i5.236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/20/2023] [Accepted: 09/11/2023] [Indexed: 12/07/2023] Open
Abstract
Over the last three years, research has focused on examining cardiac issues arising from coronavirus disease 2019 (COVID-19) infection, including the emergence of new-onset atrial fibrillation (NOAF). Still, no clinical study was conducted on the persistence of this arrhythmia after COVID-19 recovery. Our objective was to compose a narrative review that investigates COVID-19-associated NOAF, emphasizing the evolving pathophysiological mechanisms akin to those suggested for sustaining AF. Given the distinct strategies involved in the persistence of atrial AF and the crucial burden of persistent AF, we aim to underscore the importance of extended follow-up for COVID-19-associated NOAF. A comprehensive search was conducted for articles published between December 2019 and February 11, 2023, focusing on similarities in the pathophysiology of NOAF after COVID-19 and those persisting AF. Also, the latest data on incidence, morbidity-mortality, and management of NOAF in COVID-19 were investigated. Considerable overlaps between the mechanisms of emerging NOAF after COVID-19 infection and persistent AF were observed, mostly involving reactive oxygen pathways. With potential atrial remodeling associated with NOAF in COVID-19 patients, this group of patients might benefit from long-term follow-up and different management. Future cohort studies could help determine long-term outcomes of NOAF after COVID-19.
Collapse
Affiliation(s)
- Fahimeh Talaei
- Department of Critical Care Medicine, Mayo Clinic, Phoenix, AZ 85054, United States
| | - Akshat Banga
- Department of Internal Medicine, Sawai Man Singh Medical College, Jaipur 302004, India
| | - Amanda Pursell
- Internal Medicine, Tristar Centennial Medical Center, TriStar Division, HCA Healthcare, Nashville, TN 37203, United States
| | - Ann Gage
- Cardiology, TriStar Centennial Medical Center, TriStar Division, HCA Healthcare, Nashville, TN 37203, United States
| | - Namratha Pallipamu
- Department of Medicine, Siddharta Medical College, Vijayawada 520008, Andhra Pradesh, India
| | - Amith Reddy Seri
- Department of Internal Medicine, Mclaren Regional Medical Center, Flint, MI 48532, United States
| | - Ramesh Adhikari
- Department of Internal Medicine, Franciscan Health, Lafayette, IN 46237, United States
| | - Rahul Kashyap
- Department of Anaesthesiology & Critical Care Medicine, Mayo Clinic, Rochester, MN 55902, United States
- Department of Research, WellSpan Health, York, PA 17401, United States
| | - Salim Surani
- Department of Anaesthesiology & Critical Care Medicine, Mayo Clinic, Rochester, MN 55902, United States
- Department of Medicine & Pharmacology, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
30
|
Xia T, Fu X, Fulham M, Wang Y, Feng D, Kim J. CT-based Radiogenomics Framework for COVID-19 Using ACE2 Imaging Representations. J Digit Imaging 2023; 36:2356-2366. [PMID: 37553526 PMCID: PMC10584804 DOI: 10.1007/s10278-023-00895-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 which enters the body via the angiotensin-converting enzyme 2 (ACE2) and altering its gene expression. Altered ACE2 plays a crucial role in the pathogenesis of COVID-19. Gene expression profiling, however, is invasive and costly, and is not routinely performed. In contrast, medical imaging such as computed tomography (CT) captures imaging features that depict abnormalities, and it is widely available. Computerized quantification of image features has enabled 'radiogenomics', a research discipline that identifies image features that are associated with molecular characteristics. Radiogenomics between ACE2 and COVID-19 has yet to be done primarily due to the lack of ACE2 expression data among COVID-19 patients. Similar to COVID-19, patients with lung adenocarcinoma (LUAD) exhibit altered ACE2 expression and, LUAD data are abundant. We present a radiogenomics framework to derive image features (ACE2-RGF) associated with ACE2 expression data from LUAD. The ACE2-RGF was then used as a surrogate biomarker for ACE2 expression. We adopted conventional feature selection techniques including ElasticNet and LASSO. Our results show that: i) the ACE2-RGF encoded a distinct collection of image features when compared to conventional techniques, ii) the ACE2-RGF can classify COVID-19 from normal subjects with a comparable performance to conventional feature selection techniques with an AUC of 0.92, iii) ACE2-RGF can effectively identify patients with critical illness with an AUC of 0.85. These findings provide unique insights for automated COVID-19 analysis and future research.
Collapse
Affiliation(s)
- Tian Xia
- School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Xiaohang Fu
- School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Michael Fulham
- School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- Department of Molecular Imaging, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Yue Wang
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA, 22203, USA
| | - Dagan Feng
- School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jinman Kim
- School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
31
|
Cunha ACMC, Katz L, Amorim AFC, Coutinho IC, Souza AS, Katz S, Souza G, Souza G, Farias L, Lemos R, Mello MZ, Neves L, Albuquerque M, Feitosa FE, Paiva J, Lima C, Lima M, Amorim MM. Clinical, epidemiological and laboratory characteristics of cases of Covid-19-related maternal near miss and death at referral units in northeastern Brazil: a cohort study. J Matern Fetal Neonatal Med 2023; 36:2260056. [PMID: 37748920 DOI: 10.1080/14767058.2023.2260056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 09/09/2023] [Indexed: 09/27/2023]
Abstract
Objective: Covid-19 poses a major risk during pregnancy and postpartum, resulting in an increase in maternal mortality worldwide, including in Brazil; however, little research has been conducted into cases of a near miss. This study aimed to describe the frequency of COVID-19-related near miss and deaths during pregnancy or in the postpartum in referral centers in northeastern Brazil, as well as the clinical, epidemiological, and laboratory characteristics of the women who experienced a severe maternal outcome.Methods: A retrospective and prospective cohort study was performed between April 2020 and June 2021 with hospitalized pregnant and postpartum women with a diagnosis of COVID-19 confirmed by real-time polymerase chain reaction (RT-PCR). Data from five tertiary hospitals in northeastern Brazil were evaluated. Descriptive statistical analysis was performed using Epi Info, version 7.2.5.0.Results: A total of 463 patients were included. Of these, 64 (14% of the sample) had a severe maternal outcome, with 42 cases of near miss (9%) and 22 maternal deaths (5%). Patients who had a severe maternal outcome were predominantly young (median age 30 years) and 65.6% were black or brown-skinned. The women had between 6 and 16 years of schooling; 45.3% had a stable partner; 81.3% were pregnant at the time of admission to the study; and 76.6% required a Cesarean section. The great majority (82.8%) had severe acute respiratory syndrome (SARS). Other complications included hypertensive syndromes (40.6%), pneumonia (37.5%), urinary tract infections (29.7%), acute renal failure (25.0%) and postpartum hemorrhage (21.9%). Sepsis developed in 18.8% of cases, neurological dysfunction in 15.6%, and hepatic dysfunction and septic shock in 14.1% of cases each. The relative frequency of admission to an intensive care unit was 87.5%, while 67.2% of the patients required assisted mechanical ventilation, and 54.7% required noninvasive ventilation. Antibiotics were prescribed in 93.8% of cases and corticosteroids in 71.9%, while blood transfusion was required in 25.0% of cases and renal replacement therapy in 15.6%. Therapeutic anticoagulants were administered to 12.5% of the patients. Of the patients who had a severe maternal outcome, the frequency of respiratory dysfunction was 93.8%, with 50.0% developing neurological dysfunction and 37.5% cardiovascular dysfunction. Hematological dysfunction was found in 29.7%, renal dysfunction in 18.8%, and uterine dysfunction in 14.1%. Hepatic dysfunction occurred in 7.8% of the sample. The near-miss ratio for Covid-19 was 1.6/1000 live births and the maternal mortality ratio for Covid-19 was 84.8/100,000 live births, with a mortality index of 34.4% in the sample.Conclusion: This study revealed a low Covid-19-related maternal near miss (MNM) ratio of 1.6/1000 live births and a high Covid-19-related maternal mortality ratio (MMR) of 84.81/100,000 live births. The mortality index was also high. Most of the patients were admitted while pregnant, were young, married and black or brown-skinned, and none had completed university education. The majority had SARS and required admission to an intensive care unit and mechanical ventilation. Most were submitted to a Cesarean section.
Collapse
Affiliation(s)
- Anna Catharina M C Cunha
- Instituto de Medicina Integral Professor Fernando Figueira (IMIP), Recife, Brazil
- Stricto Sensu Postgraduate Program, IMIP, Recife, Brazl
| | - Leila Katz
- Instituto de Medicina Integral Professor Fernando Figueira (IMIP), Recife, Brazil
- Stricto Sensu Postgraduate Program, IMIP, Recife, Brazl
| | | | - Isabela Cristina Coutinho
- Instituto de Medicina Integral Professor Fernando Figueira (IMIP), Recife, Brazil
- Stricto Sensu Postgraduate Program, IMIP, Recife, Brazl
| | - Alex Sandro Souza
- Instituto de Medicina Integral Professor Fernando Figueira (IMIP), Recife, Brazil
| | - Sara Katz
- Universidade de Pernambuco, Recife, Brazil
| | | | | | | | - Raissa Lemos
- Universidade Catolica de Pernambuco, Recife, Brazil
| | | | - Lucas Neves
- Universidade Federal de Campina Grande, Campina Grande, Brazil
| | | | | | - Jordana Paiva
- Maternidade Escola Assis Chateaubriand, Fortaleza, Brazil
| | - Carolina Lima
- Maternidade Escola Assis Chateaubriand, Fortaleza, Brazil
| | - Marcelo Lima
- Instituto de Medicina Integral Professor Fernando Figueira (IMIP), Petrolina Brazil
| | - Melania Maria Amorim
- Instituto de Medicina Integral Professor Fernando Figueira (IMIP), Recife, Brazil
- Stricto Sensu Postgraduate Program, IMIP, Recife, Brazl
- Federal University of Campina Grande (UFCG), Campina Grande, Brazil
| |
Collapse
|
32
|
Morillas-Blasco P, Guedes-Ramallo P, Vicente-Ibarra N, Martínez-Moreno M, Romero-Valero A, García-Honrubia A, Castilla-Cabanes E, Viedma-Contreras JA, Masiá-Canuto M, Castillo-Castillo J, Santos-Martínez S. Subclinical Left Ventricular Systolic Dysfunction in Hospitalized Patients with COVID-19 by Strain: A 30-Day Echocardiographic Follow-Up. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2065. [PMID: 38138168 PMCID: PMC10744515 DOI: 10.3390/medicina59122065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
Background and Objectives: Available studies confirm myocardial injury and its association with mortality in patients with COVID-19, but few data have been reported from echocardiographic studies. The aim of this study was to identify subclinical left ventricular dysfunction by global longitudinal strain (GLS) and its evolution in the short term in hospitalized patients with COVID-19. Materials and Methods: Thirty-one consecutive noncritical patients admitted for COVID-19 were included. Information on demographics, laboratory results, comorbidities, and medications was collected. Transthoracic echocardiograms were performed using a Philips Affinity 50, at the acute stage and at a 30-day follow-up. Automated left ventricular GLS was measured using a Philips Qlab 13.0. A GLS of <-15.9% was defined as abnormal. Results: The mean age was 65 ± 15.2 years, and 61.3% of patients were male. Nine patients (29%) had elevated levels of high-sensitivity troponin I. Left ventricular ejection fraction was preserved in all; however, 11 of them (35.5%) showed reduced GLS. These patients had higher troponin levels (median, 23.7 vs. 3.2 ng/L; p < 0.05) and NT-proBNP (median, 753 vs. 81 pg/mL; p < 0.05). The multivariate analysis revealed that myocardial injury, defined as increased troponin, was significantly associated with GLS values (coefficient B; p < 0.05). Follow-up at 30 days showed an improvement in GLS values in patients with subclinical left ventricular dysfunction (-16.4 ± 2.07% vs. -13.2 ± 2.40%; p < 0.01), without changes in the normal GLS group. Conclusions: Subclinical left ventricular dysfunction is common in noncritical hospitalized patients with COVID-19 (one in every three patients), even with preserved left ventricular ejection fraction. This impairment tends to be reversible on clinical recovery.
Collapse
Affiliation(s)
- Pedro Morillas-Blasco
- Department of Cardiology, Hospital General Universitario Elche, 03203 Elche, Spain; (P.M.-B.); (A.G.-H.); (E.C.-C.)
| | - Paula Guedes-Ramallo
- Department of Cardiology, Hospital General Universitario Elche, 03203 Elche, Spain; (P.M.-B.); (A.G.-H.); (E.C.-C.)
| | - Nuria Vicente-Ibarra
- Department of Cardiology, Hospital General Universitario Elche, 03203 Elche, Spain; (P.M.-B.); (A.G.-H.); (E.C.-C.)
| | - Marina Martínez-Moreno
- Department of Cardiology, Hospital General Universitario Elche, 03203 Elche, Spain; (P.M.-B.); (A.G.-H.); (E.C.-C.)
| | - Andrea Romero-Valero
- Department of Cardiology, Hospital General Universitario Elche, 03203 Elche, Spain; (P.M.-B.); (A.G.-H.); (E.C.-C.)
| | - Antonio García-Honrubia
- Department of Cardiology, Hospital General Universitario Elche, 03203 Elche, Spain; (P.M.-B.); (A.G.-H.); (E.C.-C.)
| | - Elena Castilla-Cabanes
- Department of Cardiology, Hospital General Universitario Elche, 03203 Elche, Spain; (P.M.-B.); (A.G.-H.); (E.C.-C.)
| | | | - Mar Masiá-Canuto
- Infectious Disease Unit, Hospital General Universitario Elche, 03203 Elche, Spain
| | - Jesús Castillo-Castillo
- Department of Cardiology, Hospital General Universitario Elche, 03203 Elche, Spain; (P.M.-B.); (A.G.-H.); (E.C.-C.)
| | - Sandra Santos-Martínez
- Department of Cardiology, Hospital General Universitario Elche, 03203 Elche, Spain; (P.M.-B.); (A.G.-H.); (E.C.-C.)
| |
Collapse
|
33
|
Rong Y, Goswami S, Eriakha O, Ramachandran S, Bentley J, Banahan BF, Kirby T, Smith D, Pittman E, Bhattacharya K. Association of antecedent statin use on 30-day, 60-day and 90-day mortality among Mississippi Medicaid beneficiaries diagnosed with COVID-19. BMJ Open 2023; 13:e076195. [PMID: 37984946 PMCID: PMC10660820 DOI: 10.1136/bmjopen-2023-076195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023] Open
Abstract
OBJECTIVE To assess if the antecedent statin use was associated with all-cause death among COVID-19 patients enrolled in Medicaid. DESIGN Cohort study. SETTING Mississippi Medicaid population. PARTICIPANTS This study included 10 792 Mississippi Medicaid-enrolled patients between 18 and 64 years of age with a confirmed COVID-19 diagnosis from March 2020 to June 2021. INTERVENTION Antecedent statin use, which was determined by a record of statin prescription in the 90-day period prior to the COVID diagnosis. MAIN OUTCOME MEASURES The outcomes of interest included mortality from all cause within 30 days, 60 days and 90 days after index. RESULTS A total of 10 792 patients with COVID-19 met the inclusion and exclusion criteria, with 13.1% of them being antecedent statin users. Statin users were matched 1:1 with non-users based on age, sex, race, comorbidities and medication use by propensity score matching. In total, the matched cohort consisted of 1107 beneficiaries in each group. Multivariable logistic regression showed that statin users were less likely to die within 30 days (adjusted OR: 0.51, 95% CI: 0.32 to 0.83), 60 days (OR: 0.56, 95% CI: 0.37 to 0.85) and 90 days (OR: 0.55, 95% CI: 0.37 to 0.82) after diagnosis of COVID-19. Those with low-intensity/moderate-intensity statin use had significantly lower mortality risk in the 60-day and the 90-day follow-up period, while the high intensity of statin use was only found to be significantly associated with a lower odd of mortality within 30 days post index. CONCLUSION After COVID infection, Medicaid beneficiaries who had taken statins antecedently could be at lower risk for death. For patients with chronic conditions, continuity of care is crucial when interruptions occur in their medical care. Further research is required to further investigate the potential mechanisms and optimal use of statins in COVID-19 treatment.
Collapse
Affiliation(s)
- Yiran Rong
- Department of Pharmacy Administration, University of Mississippi School of Pharmacy, University, Mississippi, USA
- MedTech Epidemiology and Real-World Data Sciences, Johnson and Johnson, New Brunswick, New Jersey, USA
| | - Swarnali Goswami
- Department of Pharmacy Administration, University of Mississippi School of Pharmacy, University, Mississippi, USA
- Real-World Evidence, Complete Health Economics and Outcomes Solutions, LLC, Chalfont, Pennsylvania, USA
| | - Omokhodion Eriakha
- Department of Pharmacy Administration, University of Mississippi School of Pharmacy, University, Mississippi, USA
| | - Sujith Ramachandran
- Department of Pharmacy Administration, University of Mississippi School of Pharmacy, University, Mississippi, USA
- Center for Pharmaceutical Marketing and Management, University of Mississippi School of Pharmacy, University, Mississippi, USA
| | - John Bentley
- Department of Pharmacy Administration, University of Mississippi School of Pharmacy, University, Mississippi, USA
- Center for Pharmaceutical Marketing and Management, University of Mississippi School of Pharmacy, University, Mississippi, USA
| | - Benjamin F Banahan
- Department of Pharmacy Administration, University of Mississippi School of Pharmacy, University, Mississippi, USA
- Center for Pharmaceutical Marketing and Management, University of Mississippi School of Pharmacy, University, Mississippi, USA
| | - Terri Kirby
- Mississippi Division of Medicaid, Office of the Governor, Jackson, Mississippi, USA
| | - Dennis Smith
- Mississippi Division of Medicaid, Office of the Governor, Jackson, Mississippi, USA
| | - Eric Pittman
- Department of Pharmacy Administration, University of Mississippi School of Pharmacy, University, Mississippi, USA
- Center for Pharmaceutical Marketing and Management, University of Mississippi School of Pharmacy, University, Mississippi, USA
| | - Kaustuv Bhattacharya
- Department of Pharmacy Administration, University of Mississippi School of Pharmacy, University, Mississippi, USA
- Center for Pharmaceutical Marketing and Management, University of Mississippi School of Pharmacy, University, Mississippi, USA
| |
Collapse
|
34
|
Wang Z, Zhao C, Li C, Liu S, Ding J, He C, Liu J, Dong B, Yang Z, Liu Q, Zhu H, Liu Y. Molecular PET/CT mapping of rhACE2 distribution and quantification in organs to aid in SARS-CoV-2 targeted therapy. J Med Virol 2023; 95:e29221. [PMID: 38009705 DOI: 10.1002/jmv.29221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, poses a significant threat to public health. Angiotensin-converting enzyme 2 (ACE2) is a key receptor for SARS-CoV-2 infection. Recombinant human ACE2 (RhACE2), as a soluble supplement for human ACE2, can competitively block SARS-CoV-2 infection. In this study, a mouse organ in situ rhACE2 high aggregation model was constructed for the first time, and in vivo real-time positron emission tomography (PET) imaging of rhACE2 in the mouse model was performed using an ACE2-specific agent 68 Ga-HZ20. This radiotracer exhibits reliable radiochemical properties in vitro and maintains a high affinity for rhACE2 in vivo. In terms of probe uptake, 68 Ga-HZ20 showed a good target-to-nontarget ratio and was rapidly cleared from the circulatory system and excreted by the kidneys and urinary system. PET imaging with this radiotracer can noninvasively and accurately monitor the content and distribution of rhACE2 in the body, which clarifies that rhACE2 can aggregate in multiple organs, suggesting the preventive and therapeutic potential of rhACE2 for SARS-CoV-2 and COVID-19.
Collapse
Affiliation(s)
- Zilei Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chuanke Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chuangui Li
- Department of Nuclear Medicine, First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Song Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jin Ding
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chengxue He
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jiayue Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Bin Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhi Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
- Department of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - Qi Liu
- Department of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
- International Cancer Center, Department of medicine, Shenzhen University, Shenzhen, Guangdong, China
| | - Hua Zhu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
- Department of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - Youping Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
35
|
Singh M, Pushpakumar S, Zheng Y, Smolenkova I, Akinterinwa OE, Luulay B, Tyagi SC. Novel mechanism of the COVID-19 associated coagulopathy (CAC) and vascular thromboembolism. NPJ VIRUSES 2023; 1:3. [PMID: 38077924 PMCID: PMC10710223 DOI: 10.1038/s44298-023-00003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/20/2023] [Indexed: 01/31/2024]
Abstract
Previous studies from our laboratory revealed that SARS-CoV-2 spike protein (SP) administration to a genetically engineered model expressing the human angiotensin-converting enzyme 2; ACE2 receptor (i.e., hACE2 humanized mouse) mimicked the coronavirus disease-19 (COVID-19) pathology. In humans the cause of high morbidity, and mortality is due to 'cytokine-storm' led thromboembolism; however, the exact mechanisms of COVID-19 associated coagulopathy (CAC) have yet to be discovered. Current knowledge suggests that CAC is distinct from the standard coagulopathy, in that the intrinsic and extrinsic thrombin-dependent coagulation factors, and the pathway(s) that are common to coagulopathy, are not recruited by SARS-CoV-2. Findings from patients revealed that there is little change in their partial thromboplastin, or the prothrombin time coupled with a significant decline in platelets. Further, there appears to be an endothelial dysfunction during COVID-19 suggesting an interaction of the endothelia with immune cells including neutrophils. There are also reports that inflammatory NGAL is elevated during COVID-19. Furthermore, the levels of NPT are also increased indicating an increase in inflammatory M1 macrophage iNOS which sequesters BH4; an essential enzyme co-factor that acts as a potent antioxidant thus causing damage to endothelia. SARS-CoV-2 entry into the host cells is facilitated by a co-operative action between TMPRSS2 and the main ACE2 receptor. Interestingly, after infection ADAMTS13; a von Willebrand factor; VWF cleaving enzyme is found to be decreased. Based on these facts, we hypothesize that vascular thromboembolism is associated with serine and metalloproteinase, and in that context, we opine that inhibition of iNOS might help mitigate COVID-19 harmful effects. To test this hypothesis, we administered SP to the hACE2 mice that were subsequently treated with amino guanidine (AG; a potent inhibitor of glycoxidation, lipoxidation and oxidative vicious cycles). Our results revealed increase in TMPRSS2, and NGAL by SP but treatment with AG mitigated their levels. Similarly, levels of MMP-2, and -9 were increased; however, AG treatment normalized these levels. Our findings suggest that occurrence of CAC is influenced by TMPRSS2, ADAMTS13, NGAL and MMP- 2, and -9 factors, and an intervention with iNOS blocker helped mitigate the CAC condition in experimental settings.
Collapse
Affiliation(s)
- Mahavir Singh
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- These authors contributed equally: Mahavir Singh, Sathnur Pushpakumar
| | - Sathnur Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- These authors contributed equally: Mahavir Singh, Sathnur Pushpakumar
| | - Yuting Zheng
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Irina Smolenkova
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Oluwaseun E. Akinterinwa
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Bana Luulay
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Suresh C. Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
36
|
Goswami S, Chowdhury JP. Antiviral attributes of bee venom as a possible therapeutic approach against SARS-CoV-2 infection. Future Virol 2023:10.2217/fvl-2023-0127. [PMID: 37970095 PMCID: PMC10630947 DOI: 10.2217/fvl-2023-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/05/2023] [Indexed: 11/17/2023]
Abstract
The unprecedented scale of the SARS-CoV-2 pandemic has driven considerable investigation into novel antiviral treatments since effective vaccination strategies cannot completely eradicate the virus. Apitherapy describes the medicinal use of bee venom, which may be an effective treatment against SARS-CoV-2 infection. Bee venom contains chemicals that are antimicrobial and stimulate the immune system to counteract viral load. The present review focuses on the use of bee venom as a possible treatment for COVID-19 and reviews studies on the pharmacodynamics of bee venom.
Collapse
Affiliation(s)
- Soumik Goswami
- Department of Zoology, Sunbeam Women's College, Varuna, Varanasi, 221002, India
| | | |
Collapse
|
37
|
Queiroz KA, Vale EP, Martín-Pastor M, Sólon LGS, Sousa FFO. Metabolomic Profile, Plasmatic Levels of Losartan and EXP3174, Blood Pressure Control in Hypertensive Patients and Their Correlation with COVID-19. Pharmaceuticals (Basel) 2023; 16:1290. [PMID: 37765098 PMCID: PMC10535928 DOI: 10.3390/ph16091290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 09/29/2023] Open
Abstract
Systemic arterial hypertension (SAH) is one of the most prevalent chronic diseases worldwide and is related to serious health complications. It has been pointed out as a major risk factor for COVID-19. This study aimed to determine the impact of COVID-19 on the metabolomic profile, the correlation with the plasmatic levels of losartan and its active metabolite (EXP3174), biochemical markers, and blood pressure (BP) control in hypertensive patients. 1H NMR metabolomic profiles of hypertensive and normotensive patients with and without previous COVID-19 diagnosis were identified. Plasmatic levels of LOS and EXP3174 were correlated with BP, biochemical markers, and the metabolomic fingerprint of the groups. Biomarkers linked to important aspects of SAH and COVID-19 were identified, such as glucose, glutamine, arginine, creatinine, alanine, choline, erythritol, homogentisate, 0-tyrosine, and 2-hydroxybutyrate. Those metabolites are indicative of metabolic alterations, kidney damage, pulmonary dysfunction, and persistent inflammation, which can be found in both diseases. Some hypertensive patients did not reach the therapeutic levels of LOS and EXP3174, while the BP control was also limited among the normotensive patients with previous COVID-19 diagnoses. Metabolomics proved to be an important tool for assessing the effectiveness of losartan pharmacotherapy and the damage caused by SAH and COVID-19 in hypertensive patients.
Collapse
Affiliation(s)
- Kamila A. Queiroz
- Graduate Program on Pharmaceutical Sciences, Department of Biological & Health Sciences, Federal University of Amapa, Macapa 68903-419, Brazil; (K.A.Q.); (L.G.S.S.)
- Laboratory of Quality Control, Bromatology and Microbiology, Department of Biological & Health Sciences, Federal University of Amapa, Macapa 68903-419, Brazil;
| | - Everton P. Vale
- Laboratory of Quality Control, Bromatology and Microbiology, Department of Biological & Health Sciences, Federal University of Amapa, Macapa 68903-419, Brazil;
- Graduate Program on Pharmaceutical Innovation, Department of Biological & Health Sciences, Federal University of Amapa, Macapa 68903-419, Brazil
| | - Manuel Martín-Pastor
- Unidade de Resonancia Magnetica, Área de Infraestruturas de Investigación, Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Lílian G. S. Sólon
- Graduate Program on Pharmaceutical Sciences, Department of Biological & Health Sciences, Federal University of Amapa, Macapa 68903-419, Brazil; (K.A.Q.); (L.G.S.S.)
- Laboratory of Quality Control, Bromatology and Microbiology, Department of Biological & Health Sciences, Federal University of Amapa, Macapa 68903-419, Brazil;
| | - Francisco F. O. Sousa
- Graduate Program on Pharmaceutical Sciences, Department of Biological & Health Sciences, Federal University of Amapa, Macapa 68903-419, Brazil; (K.A.Q.); (L.G.S.S.)
- Laboratory of Quality Control, Bromatology and Microbiology, Department of Biological & Health Sciences, Federal University of Amapa, Macapa 68903-419, Brazil;
- Graduate Program on Pharmaceutical Innovation, Department of Biological & Health Sciences, Federal University of Amapa, Macapa 68903-419, Brazil
| |
Collapse
|
38
|
Shovlin CL, Vizcaychipi MP. Vascular inflammation and endothelial injury in SARS-CoV-2 infection: the overlooked regulatory cascades implicated by the ACE2 gene cluster. QJM 2023; 116:629-634. [PMID: 32777054 PMCID: PMC7454888 DOI: 10.1093/qjmed/hcaa241] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has presented physicians with an unprecedented number of challenges and mortality. The basic question is why, in contrast to other 'respiratory' viruses, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can result in such multi-systemic, life-threatening complications and a severe pulmonary vasculopathy. It is widely known that SARS-CoV-2 uses membrane-bound angiotensin-converting enzyme 2 (ACE2) as a receptor, resulting in internalization of the complex by the host cell. We discuss the evidence that failure to suppress coronaviral replication within 5 days results in sustained downregulation of ACE2 protein expression and that ACE2 is under negative-feedback regulation. We then expose openly available experimental repository data that demonstrate the gene for ACE2 lies in a novel cluster of inter-regulated genes on the X chromosome including PIR encoding pirin (quercetin 2,3-dioxygenase), and VEGFD encoding the predominantly lung-expressed vascular endothelial growth factor D. The five double-elite enhancer/promoters pairs that are known to be operational, and shared read-through lncRNA transcripts, imply that ongoing SARS-CoV-2 infection will reduce host defences to reactive oxygen species, directly generate superoxide O2·- and H2O2 (a ' ROS storm'), and impair pulmonary endothelial homeostasis. Published cellular responses to oxidative stress complete the loop to pathophysiology observed in severe COVID-19. Thus, for patients who fail to rapidly suppress viral replication, the newly appreciated ACE2 co-regulated gene cluster predicts delayed responses that would account for catastrophic deteriorations. We conclude that ACE2 homeostatic drives provide a unified understanding that should help optimize therapeutic approaches during the wait until safe, effective vaccines and antiviral therapies for SARS-CoV-2 are delivered.
Collapse
Affiliation(s)
- Claire L Shovlin
- NHLI Vascular Science, Imperial College London, UK
- Respiratory Medicine, Imperial College Healthcare NHS Trust, London UK
| | | |
Collapse
|
39
|
Al-Qudimat AR, Ameen A, Sabir DM, Alkharraz H, Elaarag M, Althani A, Singh K, Alhimoney WM, Al-Zoubi RM, Aboumarzouk OM. The Association of Hypertension with Increased Mortality Rate During the COVID-19 Pandemic: An Update with Meta-analysis. J Epidemiol Glob Health 2023; 13:495-503. [PMID: 37318701 PMCID: PMC10469154 DOI: 10.1007/s44197-023-00130-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND AND AIM The impact of multiple risk factors on COVID-19 mortality has been previously reported in multiple systematic reviews and meta-analyses. The aim of this review is to provide a comprehensive update on the association between hypertension (HTN) and mortality in patients with COVID-19. METHODS A systematic review and meta-analysis were performed and followed the Preferred Reporting Items for Systematic Reviews (PRISMA) guidelines. A search was achieved using PubMed, Scopus, and Cochrane Databases for research publications on hypertension, COVID-19, and mortality published between December 2019 and August 2022. RESULTS A total of 23 observational studies involving 611,522 patients from 5 countries (China, Korea, the UK, Australia, and the USA) were included in our study. The confirmed number of COVID-19 with HTN cases in each study ranged from 5 to 9964. The mortality ranged from 0.17% to 31% in different studies. Pooled results show that the mortality rate of COVID-19 among the included studies ranges from a minimum of 0.39 (95% CI 0.13-1.12) to a maximum of 5.74 (95% CI 3.77-8.74). Out of the 611,522 patients, 3119 died which resulted in an overall mortality prevalence of 0.5%. Subgroup analyses indicated that patients with COVID-19 who have hypertension and male patients had slightly less risk of mortality than female patients [the percentage of men > 50%; OR 1.33: 95% CI (1.01, 1.76); the percentage of men ≤ 50%: OR 2.26; and 95% CI (1.15, 4.48)]. Meta-regression analysis results also showed a statistically significant association between hypertension and COVID-19 mortality. CONCLUSION This systematic review and meta-analysis suggest that hypertension may not be the only risk factor associated with the increased mortality rate during the COVID-19 pandemic. In addition, a combination of other comorbidities and old age appears to increase the risk of mortality from COVID-19. The impact of hypertension on mortality rate among COVID-19 patients.
Collapse
Affiliation(s)
- Ahmad R. Al-Qudimat
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
- Department of Public Health, QU-Health, College of Health Sciences, Qatar University, Doha, Qatar
| | - Ayisha Ameen
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Doaa M. Sabir
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Heba Alkharraz
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Mai Elaarag
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Aisha Althani
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Kalpana Singh
- Nursing Research Department, Nursing Corporate, Hamad Medical Corporation, Doha, Qatar
| | - Wassim M. Alhimoney
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Raed M. Al-Zoubi
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
- Department of Biomedical Sciences, QU-Health, College of Health Sciences, Qatar University, 2713 Doha, Qatar
- Department of Chemistry, Jordan University of Science and Technology, P.O.Box 3030, Irbid, 22110 Jordan
| | - Omar M. Aboumarzouk
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
- College of Medicine, Qatar University, Doha, Qatar
- School of Medicine, Dentistry and Nursing, The University of Glasgow, Glasgow, UK
| |
Collapse
|
40
|
Lin CH, Chen YJ, Lin MW, Chang HJ, Yang XR, Lin CS. ACE2 and a Traditional Chinese Medicine Formula NRICM101 Could Alleviate the Inflammation and Pathogenic Process of Acute Lung Injury. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1554. [PMID: 37763673 PMCID: PMC10533189 DOI: 10.3390/medicina59091554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023]
Abstract
COVID-19 is a highly transmittable respiratory illness caused by SARS-CoV-2, and acute lung injury (ALI) is the major complication of COVID-19. The challenge in studying SARS-CoV-2 pathogenicity is the limited availability of animal models. Therefore, it is necessary to establish animal models that can reproduce multiple characteristics of ALI to study therapeutic applications. The present study established a mouse model that has features of ALI that are similar to COVID-19 syndrome to investigate the role of ACE2 and the administration of the Chinese herbal prescription NRICM101 in ALI. Mice with genetic modifications, including overexpression of human ACE2 (K18-hACE2 TG) and absence of ACE2 (mACE2 KO), were intratracheally instillated with hydrochloric acid. The acid intratracheal instillation induced severe immune cell infiltration, cytokine storms, and pulmonary disease in mice. Compared with K18-hACE2 TG mice, mACE2 KO mice exhibited dramatically increased levels of multiple inflammatory cytokines (IL-6 and TNF-α) in bronchoalveolar lavage fluid, histological evidence of lung injury, and dysregulation of MAPK and MMP activation. In mACE2 KO mice, NRICM101 could ameliorate the disease progression of acid-induced ALI. In conclusion, the established mouse model provided an effective platform for researchers to investigate pathological mechanisms and develop therapeutic strategies for ALI, including COVID-19-related ALI.
Collapse
Affiliation(s)
- Cheng-Han Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (C.-H.L.); (Y.-J.C.); (H.-J.C.); (X.-R.Y.)
| | - Yi-Ju Chen
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (C.-H.L.); (Y.-J.C.); (H.-J.C.); (X.-R.Y.)
| | - Meng-Wei Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (C.-H.L.); (Y.-J.C.); (H.-J.C.); (X.-R.Y.)
| | - Ho-Ju Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (C.-H.L.); (Y.-J.C.); (H.-J.C.); (X.-R.Y.)
| | - Xin-Rui Yang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (C.-H.L.); (Y.-J.C.); (H.-J.C.); (X.-R.Y.)
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (C.-H.L.); (Y.-J.C.); (H.-J.C.); (X.-R.Y.)
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan
| |
Collapse
|
41
|
Song W, Fang Z, Ma F, Li J, Huang Z, Zhang Y, Li J, Chen K. The role of SARS-CoV-2 N protein in diagnosis and vaccination in the context of emerging variants: present status and prospects. Front Microbiol 2023; 14:1217567. [PMID: 37675423 PMCID: PMC10478715 DOI: 10.3389/fmicb.2023.1217567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/31/2023] [Indexed: 09/08/2023] Open
Abstract
Despite many countries rapidly revising their strategies to prevent contagions, the number of people infected with Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to surge. The emergent variants that can evade the immune response significantly affect the effectiveness of mainstream vaccines and diagnostic products based on the original spike protein. Therefore, it is essential to focus on the highly conserved nature of the nucleocapsid protein as a potential target in the field of vaccines and diagnostics. In this regard, our review initially discusses the structure, function, and mechanism of action of N protein. Based on this discussion, we summarize the relevant research on the in-depth development and application of diagnostic methods and vaccines based on N protein, such as serology and nucleic acid detection. Such valuable information can aid in designing more efficient diagnostic and vaccine tools that could help end the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Wanchen Song
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhongbiao Fang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Feike Ma
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiaxuan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Zhiwei Huang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yanjun Zhang
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jianhua Li
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
42
|
Ahmadi S, Khaledi S. Brain Renin-Angiotensin System: From Physiology to Pathology in Neuronal Complications Induced by SARS-CoV-2. Anal Cell Pathol (Amst) 2023; 2023:8883492. [PMID: 37575318 PMCID: PMC10421715 DOI: 10.1155/2023/8883492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/26/2023] [Accepted: 07/15/2023] [Indexed: 08/15/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2), a key enzyme in the renin-angiotensin system (RAS), is expressed in various tissues and organs, including the central nervous system (CNS). The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease-2019 (COVID-19), binds to ACE2, which raises concerns about the potential for viral infection in the CNS. There are numerous reports suggesting a link between SARS-CoV-2 infection and neurological manifestations. This study aimed to present an updated review of the role of brain RAS components, especially ACE2, in neurological complications induced by SARS-CoV-2 infection. Several routes of SARS-CoV-2 entry into the brain have been proposed. Because an anosmia condition appeared broadly in COVID-19 patients, the olfactory nerve route was suggested as an early pathway for SARS-CoV-2 entry into the brain. In addition, a hematogenous route via disintegrations in the blood-brain barrier following an increase in systemic cytokine and chemokine levels and retrograde axonal transport, especially via the vagus nerve innervating lungs, have been described. Common nonspecific neurological symptoms in COVID-19 patients are myalgia, headache, anosmia, and dysgeusia. However, more severe outcomes include cerebrovascular diseases, cognitive impairment, anxiety, encephalopathy, and stroke. Alterations in brain RAS components such as angiotensin II (Ang II) and ACE2 mediate neurological manifestations of SARS-CoV-2 infection, at least in part. Downregulation of ACE2 due to SARS-CoV-2 infection, followed by an increase in Ang II levels, leads to hyperinflammation and oxidative stress, which in turn accelerates neurodegeneration in the brain. Furthermore, ACE2 downregulation in the hypothalamus induces stress and anxiety responses by increasing corticotropin-releasing hormone. SARS-CoV-2 infection may also dysregulate the CNS neurotransmission, leading to neurological complications observed in severe cases of COVID-19. It can be concluded that the neurological manifestations of COVID-19 may be partially associated with changes in brain RAS components.
Collapse
Affiliation(s)
- Shamseddin Ahmadi
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Shiler Khaledi
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
43
|
Neves RL, Branquinho J, Arata JG, Bittencourt CA, Gomes CP, Riguetti M, da Mata GF, Fernandes DE, Icimoto MY, Kirsztajn GM, Pesquero JB. ACE2, ACE, DPPIV, PREP and CAT L enzymatic activities in COVID-19: imbalance of ACE2/ACE ratio and potential RAAS dysregulation in severe cases. Inflamm Res 2023; 72:1719-1731. [PMID: 37537367 DOI: 10.1007/s00011-023-01775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/07/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023] Open
Abstract
OBJECTIVE AND DESIGN Circulating enzymatic activity and RAAS regulation in severe cases of COVID-19 remains unclear, therefore we measured the serum activity of several proteases as potential targets to control the SARS-CoV-2 infection. MATERIAL OR SUBJECTS 152 patients with COVID-19-like symptoms were grouped according to the severity of symptoms (COVID-19 negative, mild, moderate and severe). METHODS Serum samples of COVID-19 patients and controls were subjected to biochemical analysis and enzymatic assays of ACE2, ACE, DPPIV, PREP and CAT L. One-way ANOVA and multivariate logistic regression analysis were used. Statistical significance was accepted at p < 0.05. RESULTS We detected a positive correlation among comorbidities, higher C-reactive protein (CRP) and D-dimer levels with disease severity. Enzymatic assays revealed an increase in serum ACE2 and CAT L activities in severe COVID-19 patients, while ACE, DPPIV and PREP activities were significantly reduced. Notably, analysis of ACE2/ACE activity ratio suggests a possible imbalance of ANG II/ANG(1-7) ratio, in a positive association with the disease severity. CONCLUSION Our findings reveal a correlation between proteases activity and the severity of COVID-19. These enzymes together contribute to the activation of pro-inflammatory pathways, trigger a systemic activation of inflammatory mediators, leading to a RAAS dysregulation and generating a significant damage in several organs, contributing to poor outcomes of severe cases.
Collapse
Affiliation(s)
- Raquel Leão Neves
- Department of Biophysics, Center for Research and Molecular Diagnostic of Genetic Diseases, Federal University of São Paulo, São Paulo, Brazil
| | - Jéssica Branquinho
- Department of Biophysics, Center for Research and Molecular Diagnostic of Genetic Diseases, Federal University of São Paulo, São Paulo, Brazil
| | - Júlia Galanakis Arata
- Department of Biophysics, Center for Research and Molecular Diagnostic of Genetic Diseases, Federal University of São Paulo, São Paulo, Brazil
| | - Clarissa Azevedo Bittencourt
- Department of Biophysics, Center for Research and Molecular Diagnostic of Genetic Diseases, Federal University of São Paulo, São Paulo, Brazil
| | - Caio Perez Gomes
- Department of Biophysics, Center for Research and Molecular Diagnostic of Genetic Diseases, Federal University of São Paulo, São Paulo, Brazil
| | - Michelle Riguetti
- Division of Nephrology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Gustavo Ferreira da Mata
- Division of Nephrology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | - João Bosco Pesquero
- Department of Biophysics, Center for Research and Molecular Diagnostic of Genetic Diseases, Federal University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
44
|
Gunchenko M, Abboud M, Risler ZW, Gibbons RC. Acute Epiglottitis Secondary to the Severe Acute Respiratory Syndrome Coronavirus 2: A Case Report. Clin Pract Cases Emerg Med 2023; 7:158-160. [PMID: 37595306 PMCID: PMC10438938 DOI: 10.5811/cpcem.1581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 08/20/2023] Open
Abstract
INTRODUCTION Acute epiglottis is a rapidly progressive, potentially life-threatening infection causing inflammation of the epiglottis and adjacent supraglottic structures.- Since the introduction of the Haemophilus influenzae vaccine, the incidence of pediatric cases has decreased dramatically while adult instances have increased. Likewise, the etiology has changed considerably with the increasing prevalence of other causative bacterial and viral pathogens. CASE REPORT We present a novel case of acute epiglottis secondary to infection with the severe acute respiratory syndrome coronavirus 2. This case report highlights the changing landscape of epiglottitis and the importance of airway assessment. CONCLUSION Present-day epiglottitis differs greatly from our traditional understanding. Numerous etiologies beyond Haemophilus influenzae now afflict adults predominately. As a clinically significant, novel complication of coronavirus disease 2019, acute epiglottitis is a life-threatening airway emergency. Emergency physicians must maintain a high index of suspicion, especially given the evolving clinical landscape. Early airway assessment with nasopharyngolaryngoscopic is critical.
Collapse
Affiliation(s)
- Melissa Gunchenko
- Lewis Katz School of Medicine at Temple University, Department of Emergency Medicine, Philadelphia, Pennsylvania
| | - Mohammad Abboud
- Lewis Katz School of Medicine at Temple University, Department of Emergency Medicine, Philadelphia, Pennsylvania
| | - Zachary W. Risler
- Nazareth Hospital, Department of Emergency Medicine, Philadelphia, Pennsylvania
| | - Ryan C. Gibbons
- Lewis Katz School of Medicine at Temple University, Department of Emergency Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
45
|
Arish N, Izbicki G, Rokach A, Jarjou'i A, Kalak G, Goldberg S. Association of the risk of obstructive sleep apnoea with the severity of COVID-19. PLoS One 2023; 18:e0284063. [PMID: 37463178 DOI: 10.1371/journal.pone.0284063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/23/2023] [Indexed: 07/20/2023] Open
Abstract
Patients with coronavirus 2019 (COVID-19) and obstructive sleep apnoea (OSA) have a worse prognosis than COVID-19 patients without OSA. This study aimed to examine the relationship between OSA risk and the severity of COVID-19 in patients undiagnosed with OSA. Patients diagnosed with COVID-19 and hospitalized or admitted to a community hotel were recruited for the study after recovery during a clinic check-up visit 6-8 weeks after discharge. At this visit, they answered the Epworth Sleeping Scale (ESS) and Berlin questionnaire. Demographic and clinical details were collected from electronic medical records. OSA risk was observed in 37 of 119 included patients (31.1%). Patients with high OSA risk were male, significantly older, had a higher body mass index (BMI), and had higher rates of hypertension and snoring than patients with low OSA risk. Moreover, OSA risk was associated with COVID-19 severity; 48.6% of patients with high risk for OSA suffered from severe COVID-19 compared to 22% of patients with low risk for OSA (p = 0.007). The duration of hospitalization for patients with a high OSA risk was 10.97±9.43 days, while that for those with a low OSA risk was 4.71±6.86 days (p = 0.001). After adjusting for BMI, age, hypertension, and chronic disease, the odds ratio was 4.3 (95%CI, 1.2-16, p = 0.029). A high OSA risk was associated with severe COVID-19 and longer hospitalization. Thus, we recommend that the Berlin and ESS questionnaires be completed for every COVID-19-infected patient at hospitalization, especially in the presence of comorbidities.
Collapse
Affiliation(s)
- Nissim Arish
- Respiratory Research Unit, Pulmonary Institute, Shaare Zedek Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gabriel Izbicki
- Respiratory Research Unit, Pulmonary Institute, Shaare Zedek Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ariel Rokach
- Respiratory Research Unit, Pulmonary Institute, Shaare Zedek Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amir Jarjou'i
- Respiratory Research Unit, Pulmonary Institute, Shaare Zedek Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - George Kalak
- Respiratory Research Unit, Pulmonary Institute, Shaare Zedek Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shmuel Goldberg
- Pediatric Unit, Pulmonary Institute, Shaare Zedek Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
46
|
Ziaie N, Tabatabaie SMR, Ezoji K, Bijani A, Mouodi S. Correlation of plasma N-terminal pro-brain natriuretic peptide (NT-proBNP) with radiographic features of congestion in chest CT scan of patients with COVID-19. Egypt Heart J 2023; 75:59. [PMID: 37439968 DOI: 10.1186/s43044-023-00390-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 07/09/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Given the importance of chest computed tomography (CT) to differentiate congestion from COVID-19 pneumonia, and considering the association of chest CT findings with cardiac biomarkers in patients with concomitant COVID-19 and heart failure, this study was conducted to identify the correlation between plasma NT-proBNP level and radiographic features of congestion in patients with COVID-19. This retrospective cohort research was carried out on adult hospitalized patients with COVID-19 and the plasma concentration of NT-proBNP was measured. The most important findings in chest CT have been considered to differentiate COVID-19 pneumonia from congestion. The study population was divided into two groups based on the presence of these imaging characteristics. RESULTS Totally, 180 patients with a mean age of 59.6 ± 14.6 years were included in the research. The radiographic findings related to congestion have been found in chest CT of 107 (59.4%) patients. Mean plasma concentration of NT-proBNP in patients with and without radiographic features of congestion was 9886.5 ± 12,676 and 2079.9 ± 4209.3 pg/mL, respectively (p < 0.001). The area under the curve of plasma levels of NT-proBNP for identification of patients with COVID-19 who had pulmonary vein enlargement in chest CT was 0.765 (95% CI 0.688-0.842) and 0.731 (95% CI 0.648-0.813) for the individuals who had interlobar fissure thickening (p < 0.001). CONCLUSIONS The diagnostic accuracy of plasma NT-proBNP and its positive correlation with radiographic features of congestion in chest CT scan of patients with COVID-19 can be helpful for administering appropriate medications to prevent blood volume overload.
Collapse
Affiliation(s)
- Naghmeh Ziaie
- Department of Cardiology, Babol University of Medical Sciences, Babol, Iran
| | | | - Khadijeh Ezoji
- Social Determinants of Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Bijani
- Social Determinants of Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Simin Mouodi
- Social Determinants of Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
47
|
Schnekenberg L, Sedghi A, Schoene D, Pallesen LP, Barlinn J, Woitek F, Linke A, Puetz V, Barlinn K, Mangner N, Siepmann T. Assessment and Therapeutic Modulation of Heart Rate Variability: Potential Implications in Patients with COVID-19. J Cardiovasc Dev Dis 2023; 10:297. [PMID: 37504553 PMCID: PMC10380874 DOI: 10.3390/jcdd10070297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023] Open
Abstract
Cardiac damage has been attributed to SARS-CoV-2-related pathology contributing to increased risk of vascular events. Heart rate variability (HRV) is a parameter of functional neurocardiac integrity with low HRV constituting an independent predictor of cardiovascular mortality. Whether structural cardiac damage translates into neurocardiac dysfunction in patients infected with SARS-CoV-2 remains poorly understood. Hypothesized mechanisms of possible neurocardiac dysfunction in COVID-19 comprise direct systemic neuroinvasion of autonomic control centers, ascending virus propagation along cranial nerves and cardiac autonomic neuropathy. While the relationship between the autonomic nervous system and the cytokine cascade in general has been studied extensively, the interplay between the inflammatory response caused by SARS-CoV-2 and autonomic cardiovascular regulation remains largely unclear. We reviewed the current literature on the potential diagnostic and prognostic value of autonomic neurocardiac function assessment via analysis of HRV including time domain and spectral analysis techniques in patients with COVID-19. Furthermore, we discuss potential therapeutic targets of modulating neurocardiac function in this high-risk population including HRV biofeedback and the impact of long COVID on HRV as well as the approaches of clinical management. These topics might be of particular interest with respect to multimodal pandemic preparedness concepts.
Collapse
Affiliation(s)
- Luiz Schnekenberg
- Department of Neurology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Annahita Sedghi
- Department of Neurology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Daniela Schoene
- Department of Neurology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Lars-Peder Pallesen
- Department of Neurology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jessica Barlinn
- Department of Neurology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Felix Woitek
- Dresden Heart Center, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Axel Linke
- Dresden Heart Center, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Volker Puetz
- Department of Neurology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Kristian Barlinn
- Department of Neurology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Norman Mangner
- Dresden Heart Center, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Timo Siepmann
- Department of Neurology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
48
|
Sansoè G, Aragno M. New Viral Diseases and New Possible Remedies by Means of the Pharmacology of the Renin-Angiotensin System. J Renin Angiotensin Aldosterone Syst 2023; 2023:3362391. [PMID: 37476705 PMCID: PMC10356449 DOI: 10.1155/2023/3362391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/01/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023] Open
Abstract
All strains of SARS-CoV-2, as well as previously described SARS-CoV and MERS-CoV, bind to ACE2, the cell membrane receptor of β-coronaviruses. Monocarboxypeptidase ACE2 activity stops upon viral entry into cells, leading to inadequate tissue production of angiotensin 1-7 (Ang1-7). Acute lung injury due to the human respiratory syncytial virus (hRSV) or avian influenza A H7N9 and H5N1 viruses is also characterized by significant downregulation of lung ACE2 and increased systemic levels of angiotensin II (Ang II). Restoration of Ang1-7 anti-inflammatory, antifibrotic, vasodilating, and natriuretic properties was attempted at least in some COVID-19 patients through i.v. infusion of recombinant human ACE2 or intranasal administration of the modified ACE2 protein, with inconsistent clinical results. Conversely, use of ACE inhibitors (ACEis), which increase ACE2 cell expression, seemed to improve the prognosis of hypertensive patients with COVID-19. To restore Ang1-7 tissue levels in all these viral diseases and avoid the untoward effects frequently seen with ACE2 systemic administration, a different strategy may be hypothesized. Experimentally, when metallopeptidase inhibitors block ACE2, neprilysin (NEP), highly expressed in higher and lower airways, starts cleaving angiotensin I (Ang I) into Ang1-7. We suggest a discerning use of ACEis in normohypertensive patients with β-coronavirus disease as well as in atypical pneumonia caused by avian influenza viruses or hRSV to block the main ACE-dependent effects: Ang II synthesis and Ang1-7 degradation into angiotensin 1-5. At the same time, i.v.-infused Ang I, which is not hypertensive provided ACE is inhibited, may become the primary substrate for local Ang1-7 synthesis via ubiquitous NEP; i.e., NEP could replace inadequate ACE2 function if Ang I was freely available. Moreover, inhibitors of chymase, a serine endopeptidase responsible for 80% of Ang II-forming activity in tissues and vessel walls, could protect patients with atypical pneumonia from Ang II-mediated microvascular damage without reducing arterial blood pressure.
Collapse
Affiliation(s)
- Giovanni Sansoè
- Gastroenterology Unit, Humanitas Institute, Gradenigo Hospital, Corso Regina Margherita 10, 10153 Torino, Italy
| | - Manuela Aragno
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|
49
|
Ceasovschih A, Sorodoc V, Shor A, Haliga RE, Roth L, Lionte C, Onofrei Aursulesei V, Sirbu O, Culis N, Shapieva A, Tahir Khokhar MAR, Statescu C, Sascau RA, Coman AE, Stoica A, Grigorescu ED, Banach M, Thomopoulos C, Sorodoc L. Distinct Features of Vascular Diseases in COVID-19. J Inflamm Res 2023; 16:2783-2800. [PMID: 37435114 PMCID: PMC10332421 DOI: 10.2147/jir.s417691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic was declared in early 2020 after several unexplained pneumonia cases were first reported in Wuhan, China, and subsequently in other parts of the world. Commonly, the disease comprises several clinical features, including high temperature, dry cough, shortness of breath, and hypoxia, associated with findings of interstitial pneumonia on chest X-ray and computer tomography. Nevertheless, severe forms of acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) are not limited to the respiratory tract but also may be extended to other systems, including the cardiovascular system. The bi-directional relationship between atherosclerosis and COVID-19 is accompanied by poor prognosis. The immune response hyperactivation due to SARS-CoV-2 infection causes an increased secretion of cytokines, endothelial dysfunction, and arterial stiffness, which promotes the development of atherosclerosis. Also, due to the COVID-19 pandemic, access to healthcare amenities was reduced, resulting in increased morbidity and mortality in patients at risk. Furthermore, as lockdown measures were largely adopted worldwide, the sedentary lifestyle and the increased consumption of processed nutrients or unhealthy food increased, and in the consequence, we might observe even 70% of overweight and obese population. Altogether, with the relatively low ratio of vaccinated people in many countries, and important health debt appeared, which is now and will be for next decade a large healthcare challenge. However, the experience gained in the COVID-19 pandemic and the new methods of patients' approaching have helped the medical system to overcome this crisis and will hopefully help in the case of new possible epidemics.
Collapse
Affiliation(s)
- Alexandr Ceasovschih
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, 700115, Romania
- 2nd Internal Medicine Department, Sf. Spiridon Clinical Emergency Hospital, Iasi, 700111, Romania
| | - Victorita Sorodoc
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, 700115, Romania
- 2nd Internal Medicine Department, Sf. Spiridon Clinical Emergency Hospital, Iasi, 700111, Romania
| | - Annabelle Shor
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, 700115, Romania
| | - Raluca Ecaterina Haliga
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, 700115, Romania
- 2nd Internal Medicine Department, Sf. Spiridon Clinical Emergency Hospital, Iasi, 700111, Romania
| | - Lynn Roth
- Laboratory of Physiopharmacology, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, 2610, Belgium
| | - Catalina Lionte
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, 700115, Romania
- 2nd Internal Medicine Department, Sf. Spiridon Clinical Emergency Hospital, Iasi, 700111, Romania
| | | | - Oana Sirbu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, 700115, Romania
- 2nd Internal Medicine Department, Sf. Spiridon Clinical Emergency Hospital, Iasi, 700111, Romania
| | - Nicolae Culis
- Nottingham University Hospitals NHS Trust, Queen’s Medical Center, Nottingham, NG72UH, UK
| | - Albina Shapieva
- Cardiac Electrophysiology Department, Petrovsky National Research Center of Surgery, Moscow, 119991, Russia
| | | | - Cristian Statescu
- Department of Cardiology, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Iasi, 700503, Romania
| | - Radu A Sascau
- Department of Cardiology, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Iasi, 700503, Romania
| | - Adorata Elena Coman
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, 700115, Romania
| | - Alexandra Stoica
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, 700115, Romania
- 2nd Internal Medicine Department, Sf. Spiridon Clinical Emergency Hospital, Iasi, 700111, Romania
| | - Elena-Daniela Grigorescu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, 700115, Romania
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, 93338, Poland
| | - Costas Thomopoulos
- Department of Cardiology, Elena Venizelou General Hospital, Athens, GR-11522, Greece
| | - Laurentiu Sorodoc
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, 700115, Romania
- 2nd Internal Medicine Department, Sf. Spiridon Clinical Emergency Hospital, Iasi, 700111, Romania
| |
Collapse
|
50
|
Tijmes FS, Marschner C, Thavendiranathan P, Hanneman K. Magnetic Resonance Imaging of Cardiovascular Manifestations Following COVID-19. J Magn Reson Imaging 2023; 58:26-43. [PMID: 36951477 DOI: 10.1002/jmri.28677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/27/2023] [Accepted: 03/05/2023] [Indexed: 03/24/2023] Open
Abstract
Globally, over 650 million people have had COVID-19 due to infection with the SARS-Cov-2 virus. Cardiac complications in the acute infectious and early recovery phase were recognized early in the pandemic, including myocardial injury and inflammation. With a decrease in the number of acute COVID-19 related deaths, there has been increased interest in postacute sequela of COVID-19 (PASC) and other longer-term cardiovascular complications. A proportion of patients recovered from COVID-19 have persistent cardiac symptoms and are at risk of cardiovascular disease. Cardiovascular imaging, including MRI, plays an important role in the detection of cardiovascular manifestations of COVID-19 in both the acute and longer-term phases after COVID-19. The purpose of this review is to highlight the role of cardiovascular imaging in the diagnosis and risk stratification of patients with acute and chronic cardiovascular manifestations of COVID-19 with a focus on cardiac MRI. EVIDENCE LEVEL: 4. TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Felipe Sanchez Tijmes
- University Medical Imaging Toronto, Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Imaging, Toronto General Hospital, Peter Munk Cardiac Center, University Health Network (UHN), University of Toronto, Toronto, Ontario, Canada
- Department of Medical Imaging, Clinica Santa Maria, Universidad de los Andes, Santiago, Chile
| | - Constantin Marschner
- University Medical Imaging Toronto, Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Imaging, Clinica Santa Maria, Universidad de los Andes, Santiago, Chile
| | - Paaladinesh Thavendiranathan
- Department of Medical Imaging, Toronto General Hospital, Peter Munk Cardiac Center, University Health Network (UHN), University of Toronto, Toronto, Ontario, Canada
- Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network (UHN), University of Toronto, Toronto, Ontario, Canada
| | - Kate Hanneman
- University Medical Imaging Toronto, Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Imaging, Toronto General Hospital, Peter Munk Cardiac Center, University Health Network (UHN), University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|