1
|
Al Khafaji AT, Barakat AM, Shayyal AJ, Taan AA, Aboqader Al-Aouadi RF. Managing Doxorubicin Cardiotoxicity: Insights Into Molecular Mechanisms and Protective Strategies. J Biochem Mol Toxicol 2025; 39:e70155. [PMID: 39887483 DOI: 10.1002/jbt.70155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/30/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
Cancer ranks as the second leading cause of death in the United States and poses a significant health challenge globally. Numerous therapeutic options exist for treating cancer, with chemotherapy being one of the most prominent. Chemotherapy involves the use of antineoplastic drugs, either alone or in combination with other medications, to target and kill cancer cells. However, these drugs can also adversely affect healthy cells, leading to various side effects. Among the most commonly used chemotherapy agents are anthracyclines, which include doxorubicin, daunorubicin, and epirubicin. Doxorubicin is particularly notable for its effectiveness but is also associated with significant cardiotoxicity, a common concern for patients undergoing chemotherapy. Unfortunately, there is currently no definitive treatment to prevent or reverse this cardiotoxicity. The cardiac effects of doxorubicin can manifest in several ways, including changes in electrocardiograms, arrhythmias, myocarditis, pericarditis, myocardial infarction, cardiomyopathy, heart failure, and congestive heart failure. These complications may arise during treatment, shortly after it concludes, or even weeks later. Various mechanisms have been proposed to explain doxorubicin-induced cardiotoxicity. Key factors include the inhibition of topoisomerase IIβ, mitochondrial damage, reactive oxygen species (ROS) production due to iron metabolism, increased oxidative stress, heightened inflammatory responses, and elevated rates of apoptosis and necrosis within cardiac tissue. This review article will provide a comprehensive overview of the current state of knowledge regarding doxorubicin-induced cardiomyopathy. We will explore the underlying molecular mechanisms contributing to this condition and discuss emerging therapeutic strategies aimed at mitigating its impact on cancer survivors.
Collapse
Affiliation(s)
| | | | | | - Ali Adnan Taan
- Nasr City Hospital for Health Insurance, Ministry of Health, Cairo, Egypt
| | | |
Collapse
|
2
|
Vue Z, Prasad P, Le H, Neikirk K, Harris C, Garza-Lopez E, Wang E, Murphy A, Jenkins B, Vang L, Scudese E, Shao B, Kadam A, Shao J, Marshall AG, Crabtree A, Kirk B, Koh A, Wilson G, Oliver A, Rodman T, Kabugi K, Koh HJ, Smith Q, Zaganjor E, Wanjalla CN, Dash C, Evans C, Phillips MA, Hubert D, Ajijola O, Whiteside A, Do Koo Y, Kinder A, Demirci M, Albritton CF, Wandira N, Jamison S, Ahmed T, Saleem M, Tomar D, Williams CR, Sweetwyne MT, Murray SA, Cooper A, Kirabo A, Jadiya P, Quintana A, Katti P, Fu Dai D, McReynolds MR, Hinton A. The MICOS Complex Regulates Mitochondrial Structure and Oxidative Stress During Age-Dependent Structural Deficits in the Kidney. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598108. [PMID: 38915644 PMCID: PMC11195114 DOI: 10.1101/2024.06.09.598108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The kidney filters nutrient waste and bodily fluids from the bloodstream, in addition to secondary functions of metabolism and hormone secretion, requiring an astonishing amount of energy to maintain its functions. In kidney cells, mitochondria produce adenosine triphosphate (ATP) and help maintain kidney function. Due to aging, the efficiency of kidney functions begins to decrease. Dysfunction in mitochondria and cristae, the inner folds of mitochondria, is a hallmark of aging. Therefore, age-related kidney function decline could be due to changes in mitochondrial ultrastructure, increased reactive oxygen species (ROS), and subsequent alterations in metabolism and lipid composition. We sought to understand if there is altered mitochondrial ultrastructure, as marked by 3D morphological changes, across time in tubular kidney cells. Serial block facing-scanning electron microscope (SBF-SEM) and manual segmentation using the Amira software were used to visualize murine kidney samples during the aging process at 3 months (young) and 2 years (old). We found that 2-year mitochondria are more fragmented, compared to the 3-month, with many uniquely shaped mitochondria observed across aging, concomitant with shifts in ROS, metabolomics, and lipid homeostasis. Furthermore, we show that the mitochondrial contact site and cristae organizing system (MICOS) complex is impaired in the kidney due to aging. Disruption of the MICOS complex shows altered mitochondrial calcium uptake and calcium retention capacity, as well as generation of oxidative stress. We found significant, detrimental structural changes to aged kidney tubule mitochondria suggesting a potential mechanism underlying why kidney diseases occur more readily with age. We hypothesize that disruption in the MICOS complex further exacerbates mitochondrial dysfunction, creating a vicious cycle of mitochondrial degradation and oxidative stress, thus impacting kidney health.
Collapse
Affiliation(s)
- Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Praveena Prasad
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Han Le
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Chanel Harris
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Edgar Garza-Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Eric Wang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA
| | - Alexandria Murphy
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Brenita Jenkins
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Estevão Scudese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ashlesha Kadam
- Department of Internal Medicine, Section of Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Jianqiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrea G. Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Benjamin Kirk
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Alice Koh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Genesis Wilson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ashton Oliver
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Taylor Rodman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kinuthia Kabugi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ho-Jin Koh
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Quinton Smith
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | | | - Chandravanu Dash
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, TN, United States
| | - Chantell Evans
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27708, USA
| | - Mark A. Phillips
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - David Hubert
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Olujimi Ajijola
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, CA, USA
| | - Aaron Whiteside
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435 USA
| | - Young Do Koo
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, Iowa, USA
| | - André Kinder
- Artur Sá Earp Neto University Center - UNIFASE-FMP, Petrópolis Medical School, Brazil
| | - Mert Demirci
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Claude F. Albritton
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208-3501, USA
| | - Nelson Wandira
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Sydney Jamison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Taseer Ahmed
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Mohammad Saleem
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Dhanendra Tomar
- Department of Internal Medicine, Section of Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Clintoria R. Williams
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435 USA
| | - Mariya T. Sweetwyne
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Sandra A. Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Anthonya Cooper
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Center for Immunobiology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Institute for Global Health, Vanderbilt University, Nashville, TN, 37232, USA
| | - Pooja Jadiya
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Anita Quintana
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, USA
| | - Prasanna Katti
- National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, AP, 517619, India
| | - Dao Fu Dai
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Melanie R. McReynolds
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
3
|
Hinton AO, N'jai AU, Vue Z, Wanjalla C. Connection Between HIV and Mitochondria in Cardiovascular Disease and Implications for Treatments. Circ Res 2024; 134:1581-1606. [PMID: 38781302 PMCID: PMC11122810 DOI: 10.1161/circresaha.124.324296] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
HIV infection and antiretroviral therapy alter mitochondrial function, which can progressively lead to mitochondrial damage and accelerated aging. The interaction between persistent HIV reservoirs and mitochondria may provide insight into the relatively high rates of cardiovascular disease and mortality in persons living with HIV. In this review, we explore the intricate relationship between HIV and mitochondrial function, highlighting the potential for novel therapeutic strategies in the context of cardiovascular diseases. We reflect on mitochondrial dynamics, mitochondrial DNA, and mitochondrial antiviral signaling protein in the context of HIV. Furthermore, we summarize how toxicities related to early antiretroviral therapy and current highly active antiretroviral therapy can contribute to mitochondrial dysregulation, chronic inflammation, and poor clinical outcomes. There is a need to understand the mechanisms and develop new targeted therapies. We further consider current and potential future therapies for HIV and their interplay with mitochondria. We reflect on the next-generation antiretroviral therapies and HIV cure due to the direct and indirect effects of HIV persistence, associated comorbidities, coinfections, and the advancement of interdisciplinary research fields. This includes exploring novel and creative approaches to target mitochondria for therapeutic intervention.
Collapse
Affiliation(s)
- Antentor O Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN (A.O.H., Z.V.)
| | - Alhaji U N'jai
- Biological Sciences, Fourah Bay College and College of Medicine and Allied Health Sciences (COMAHS), University of Sierra Leone, Freetown, Sierra Leone and Koinadugu College, Kabala (A.U.N.)
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN (A.O.H., Z.V.)
| | - Celestine Wanjalla
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (C.W.)
| |
Collapse
|
4
|
Sun S, Qin J, Liao W, Gao X, Shang Z, Luo D, Xiong S. Mitochondrial Dysfunction in Cardiotoxicity Induced by BCR-ABL1 Tyrosine Kinase Inhibitors -Underlying Mechanisms, Detection, Potential Therapies. Cardiovasc Toxicol 2023; 23:233-254. [PMID: 37479951 DOI: 10.1007/s12012-023-09800-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/08/2023] [Indexed: 07/23/2023]
Abstract
The advent of BCR-ABL tyrosine kinase inhibitors (TKIs) targeted therapy revolutionized the treatment of chronic myeloid leukemia (CML) patients. Mitochondria are the key organelles for the maintenance of myocardial tissue homeostasis. However, cardiotoxicity associated with BCR-ABL1 TKIs can directly or indirectly cause mitochondrial damage and dysfunction, playing a pivotal role in cardiomyocytes homeostatic system and putting the cancer survivors at higher risk. In this review, we summarize the cardiotoxicity caused by BCR-ABL1 TKIs and the underlying mechanisms, which contribute dominantly to the damage of mitochondrial structure and dysfunction: endoplasmic reticulum (ER) stress, mitochondrial stress, damage of myocardial cell mitochondrial respiratory chain, increased production of mitochondrial reactive oxygen species (ROS), and other kinases and other potential mechanisms of cardiotoxicity induced by BCR-ABL1 TKIs. Furthermore, detection and management of BCR-ABL1 TKIs will promote our rational use, and cardioprotection strategies based on mitochondria will improve our understanding of the cardiotoxicity from a mitochondrial perspective. Ultimately, we hope shed light on clinical decision-making. By integrate and learn from both research and practice, we will endeavor to minimize the mitochondria-mediated cardiotoxicity and reduce the adverse sequelae associated with BCR-ABL1 TKIs.
Collapse
Affiliation(s)
- Sheng Sun
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Medical Oncology, Hospital of Chengdu University of Traditioanal Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Jiqiu Qin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhoubiao Shang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dehua Luo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaoquan Xiong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Medical Oncology, Hospital of Chengdu University of Traditioanal Chinese Medicine, Chengdu, 610075, Sichuan Province, China.
| |
Collapse
|
5
|
Liu J, Chen ZZ, Patel J, Asnani A. Understanding Myocardial Metabolism in the Context of Cardio-Oncology. Heart Fail Clin 2022; 18:415-424. [PMID: 35718416 PMCID: PMC11997845 DOI: 10.1016/j.hfc.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cardiovascular events, ranging from arrhythmias to decompensated heart failure, are common during and after cancer therapy. Cardiovascular complications can be life-threatening, and from the oncologist's perspective, could limit the use of first-line cancer therapeutics. Moreover, an aging population increases the risk for comorbidities and medical complexity among patients who undergo cancer therapy. Many have established cardiovascular diagnoses or risk factors before starting these therapies. Therefore, it is essential to understand the molecular mechanisms that drive cardiovascular events in patients with cancer and to identify new therapeutic targets that may prevent and treat these 2 diseases. This review will discuss the metabolic interaction between cancer and the heart and will highlight current strategies of targeting metabolic pathways for cancer treatment. Finally, this review highlights opportunities and challenges in advancing our understanding of myocardial metabolism in the context of cancer and cancer treatment.
Collapse
Affiliation(s)
- Jing Liu
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA
| | - Zsu-Zsu Chen
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA
| | - Jagvi Patel
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA
| | - Aarti Asnani
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA.
| |
Collapse
|
6
|
Hong H, He H, Lin X, Hayuehashi T, Xu J, Zhang J, Xu Y, Tong T, Lu Y, Zhou Z. Cadmium exposure suppresses insulin secretion through mtROS-mediated mitochondrial dysfunction and inflammatory response in pancreatic beta cells. J Trace Elem Med Biol 2022; 71:126952. [PMID: 35183883 DOI: 10.1016/j.jtemb.2022.126952] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cadmium (Cd) exposure is a worldwide environmental threat to the public health and participates in the pathogenesis of multiple diseases. Epidemiologic research have established a direct relation between Cd exposure and diabetes development in humans. Although pancreatic β-cell dysfunction has been considered as the major culprit in the pathogenesis of diabetes, there is a paucity of studies to elucidate the molecular mechanism of Cd toxicity on β-cells. METHODS To unveil the toxic effect and its underlying mechanism of Cd exposure on β-cells, we used an in vitro MIN6 cell model of environment-relevant Cd exposure to elucidate the crucial role of mtROS-mediated mitochondrial dysfunction and inflammatory response in suppression of pancreatic β-cell insulin secretion. RESULTS We uncovered that Cd treatment suppresses cell viability and induces insulin secretion dysfunction in a dose-dependent manner. Moreover, Cd exposure elicits the inflammatory response, as indicated by increased IL-1β, IL-6 and TNF-α expressions. Significant elevations of intracellular ROS and mitochondrial ROS levels were detected as early as 3 h after Cd treatment. In mitochondrial function analysis, we demonstrated that Cd treatment induced mitochondrial dysfunction and disorder of mitochondrial fission indicated by the significant decline in ATP production, the marked depolarization of mitochondrial membrane potential, the decrease in mtDNA copy numbers, the suppressions of mitochondrial transcription factor A (Tfam) and mitochondrial fission-related gene Drp1 expressions. Pretreatment with TEMPO, a specific mitochondrial ROS (mtROS) scavenger, efficiently antagonizes Cd cytotoxicity, which is indicated by attenuating Cd-induced mitochondrial dysfunction, suppressing IL-1β, IL-6 and TNF-α expressions, ameliorating insulin production dysfunction and preserving cell viability in MIN6 cells. CONCLUSION Our study demonstrates that Cd exposure induces an inflammatory response through mtROS-mediated mitochondrial dysfunction. Antagonism of mtROS production might be an effective strategy to prevent pancreatic toxicity from environment-relevant Cd exposure.
Collapse
Affiliation(s)
- Huihui Hong
- Department of Environmental Medicine and Department of Emergency Medicine of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haotian He
- Department of Environmental Medicine and Department of Emergency Medicine of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiqin Lin
- Department of Environmental Medicine and Department of Emergency Medicine of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tali Hayuehashi
- Department of Environmental Medicine and Department of Emergency Medicine of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Xu
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, China
| | - Jingjing Zhang
- Department of Environmental Medicine and Department of Emergency Medicine of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yudong Xu
- Department of Environmental Medicine and Department of Emergency Medicine of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tong Tong
- Department of Environmental Medicine and Department of Emergency Medicine of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanqiang Lu
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, China.
| | - Zhou Zhou
- Department of Environmental Medicine and Department of Emergency Medicine of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
7
|
Scheffer DDL, Garcia AA, Lee L, Mochly-Rosen D, Ferreira JCB. Mitochondrial Fusion, Fission, and Mitophagy in Cardiac Diseases: Challenges and Therapeutic Opportunities. Antioxid Redox Signal 2022; 36:844-863. [PMID: 35044229 PMCID: PMC9125524 DOI: 10.1089/ars.2021.0145] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/13/2021] [Accepted: 12/31/2021] [Indexed: 12/18/2022]
Abstract
Significance: Mitochondria play a critical role in the physiology of the heart by controlling cardiac metabolism, function, and remodeling. Accumulation of fragmented and damaged mitochondria is a hallmark of cardiac diseases. Recent Advances: Disruption of quality control systems that maintain mitochondrial number, size, and shape through fission/fusion balance and mitophagy results in dysfunctional mitochondria, defective mitochondrial segregation, impaired cardiac bioenergetics, and excessive oxidative stress. Critical Issues: Pharmacological tools that improve the cardiac pool of healthy mitochondria through inhibition of excessive mitochondrial fission, boosting mitochondrial fusion, or increasing the clearance of damaged mitochondria have emerged as promising approaches to improve the prognosis of heart diseases. Future Directions: There is a reasonable amount of preclinical evidence supporting the effectiveness of molecules targeting mitochondrial fission and fusion to treat cardiac diseases. The current and future challenges are turning these lead molecules into treatments. Clinical studies focusing on acute (i.e., myocardial infarction) and chronic (i.e., heart failure) cardiac diseases are needed to validate the effectiveness of such strategies in improving mitochondrial morphology, metabolism, and cardiac function. Antioxid. Redox Signal. 36, 844-863.
Collapse
Affiliation(s)
- Débora da Luz Scheffer
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Adriana Ann Garcia
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| | - Lucia Lee
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| | - Julio Cesar Batista Ferreira
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
8
|
Hafez AA, Jamali Z, Samiei S, Khezri S, Salimi A. Reduction of doxorubicin-induced cytotoxicity and mitochondrial damage by betanin in rat isolated cardiomyocytes and mitochondria. Hum Exp Toxicol 2021; 40:2123-2134. [PMID: 34105389 DOI: 10.1177/09603271211022800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Doxorubicin (DOX) is an anticancer drug which is used for treatment of several types of cancers. But the clinical use of doxorubicin is limited because of its cardiotoxicity and cardiomyopathy. Mitochondrial-dependent oxidative stress and cardiac inflammation appear to be involved in doxorubicin-induced cardiotoxicity. Betanin as a bioactive compound in Beetroot (Beta vulgaris L.) displays anti-radical, antioxidant gene regulatory and cardioprotective activities. In this current study, we investigated the protective effect of betanin on doxorubicin-induced cytotoxicity and mitochondrial-dependent oxidative stress in isolated cardiomyocytes and mitochondria. Isolated cardiomyocytes and mitochondria were treated with three concentrations of betanin (1, 5 and 10 µM) and doxorubicin (3.5 µM) for 6 h. The parameters of cellular and mitochondrial toxicity were analyzed using biochemical and flow cytometric methods. Our results showed a significant toxicity in isolated cardiomyocytes and mitochondria in presence of doxorubicin which was related to reactive oxygen species (ROS) formation, increase in malondialdehyde (MDA), increase in oxidation of GSH to GSSG, lysosomal/mitochondrial damages and mitochondrial swelling. While betanin pretreatment reverted doxorubicin-induced cytotoxicity and oxidative stress in isolated cardiomyocytes and mitochondria. These results suggest that betanin elicited a typical protective effect on doxorubicin-induced cytotoxicity and oxidative stress. It is possible that betanin could be used as a useful adjuvant in combination with doxorubicin chemotherapy for reduction of cardiotoxicity and cardiomyopathy.
Collapse
Affiliation(s)
- A A Hafez
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Z Jamali
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Addiction Studies, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - S Samiei
- School of Medicine, Kordestan University of Medical Sciences, Sanandaj, Iran
| | - S Khezri
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - A Salimi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
9
|
Lauritzen KH, Olsen MB, Ahmed MS, Yang K, Rinholm JE, Bergersen LH, Esbensen QY, Sverkeli LJ, Ziegler M, Attramadal H, Halvorsen B, Aukrust P, Yndestad A. Instability in NAD + metabolism leads to impaired cardiac mitochondrial function and communication. eLife 2021; 10:59828. [PMID: 34343089 PMCID: PMC8331182 DOI: 10.7554/elife.59828] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/06/2021] [Indexed: 12/18/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) enzymes initiate (mt)DNA repair mechanisms and use nicotinamide adenine dinucleotide (NAD+) as energy source. Prolonged PARP activity can drain cellular NAD+ reserves, leading to de-regulation of important molecular processes. Here, we provide evidence of a pathophysiological mechanism that connects mtDNA damage to cardiac dysfunction via reduced NAD+ levels and loss of mitochondrial function and communication. Using a transgenic model, we demonstrate that high levels of mice cardiomyocyte mtDNA damage cause a reduction in NAD+ levels due to extreme DNA repair activity, causing impaired activation of NAD+-dependent SIRT3. In addition, we show that myocardial mtDNA damage in combination with high dosages of nicotinamideriboside (NR) causes an inhibition of sirtuin activity due to accumulation of nicotinamide (NAM), in addition to irregular cardiac mitochondrial morphology. Consequently, high doses of NR should be used with caution, especially when cardiomyopathic symptoms are caused by mitochondrial dysfunction and instability of mtDNA.
Collapse
Affiliation(s)
- Knut H Lauritzen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
| | - Maria Belland Olsen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
| | - Mohammed Shakil Ahmed
- Institute for Surgical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Kuan Yang
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
| | | | - Linda H Bergersen
- Department of Oral Biology, University of Oslo, Oslo, Norway.,Department of Neuroscience and Pharmacology, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Qin Ying Esbensen
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Nordbyhagen, Norway
| | | | - Mathias Ziegler
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Håvard Attramadal
- Institute for Surgical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Faculty of Medicine, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Faculty of Medicine, Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Arne Yndestad
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Faculty of Medicine, Oslo, Norway
| |
Collapse
|
10
|
Bagchi AK, Malik A, Akolkar G, Zimmer A, Belló-Klein A, De Angelis K, Jassal DS, Fini MA, Stenmark KR, Singal PK. Study of ER stress and apoptotic proteins in the heart and tumor exposed to doxorubicin. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119039. [PMID: 33857568 DOI: 10.1016/j.bbamcr.2021.119039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 11/29/2022]
Abstract
Although a high cumulative dose of Doxorubicin (Dox) is known to cause cardiotoxicity, there is still a lack of understanding of the subcellular basis of this drug-induced cardiomyopathy. Differential effects of Dox on mitochondria and endoplasmic reticulum (ER) were examined in cardiomyocytes, tumor cells, implanted tumors and hearts of normal as well as tumor-bearing animals. Dox increased mitochondrial (Mito) Bax activation at 3 h in the cardiomyocyte without change in the DNA damage inducible transcriptor-3 (DDIT3) expression in the ER. Increased DDIT3 in these Dox-treated cardiomyocytes at 24 h suggested that increased MitoBax may have promoted ER stress related changes in DDIT3. Dissociation of immunoglobulin-binding protein (Bip) from activating transcription factor 6 (ATF6)-Bip complex in the ER was observed as an adaptive response to Dox. In contrast, breast cancer MCF7 cells showed an ER stress response to Dox with increased DDIT3 as early as 3 h which may have triggered a positive feedback activation of ATF6 at 12 and 24 h and promoted Calnexin. At these later time points, increased Bax activation in cancer cells suggested that MitoBax may be controlled by DDIT3 or by Calnexin. DDIT3 response in tumors was evoked by Dox, however this response was inversely correlated with increased Bip and Bax expression in hearts from tumor bearing animals. It is suggested that in Dox-induced cardiotoxicity both mitochondrial and ER stresses play an integral role through a mutual interaction where an inhibition of DDIT3 or Calnexin may also be crucial to achieve Dox resistance in cardiomyocytes.
Collapse
Affiliation(s)
- Ashim K Bagchi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Akshi Malik
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Gauri Akolkar
- Cardiac Function Laboratory, University of Ottawa Heart Institute, Ottawa, Canada
| | - Alexsandra Zimmer
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriane Belló-Klein
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Katia De Angelis
- Departamento de Fisiologia, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Davinder S Jassal
- Section of Cardiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Mehdi A Fini
- Division of Pulmonary and Critical Care, Department of Medicine, Cardiovascular Pulmonary Research Laboratories, University of Colorado, Denver, USA
| | - Kurt R Stenmark
- Division of Pulmonary and Critical Care, Department of Medicine, Cardiovascular Pulmonary Research Laboratories, University of Colorado, Denver, USA
| | - Pawan K Singal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
11
|
Diagnosis, Prevention, Treatment and Surveillance of Anthracycline-Induced Cardiovascular Toxicity in Pediatric Cancer Survivors. HEARTS 2021. [DOI: 10.3390/hearts2010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Advances in pediatric cancer therapies have dramatically improved the likelihood of survival. As survivors are aging, however, we are now understanding that treatment carries a significant risk of cardiovascular toxicity, which can develop immediately, or even many years after completing therapy. Anthracycline derivates are some of the most commonly used agents in pediatric oncology treatment protocols, which have a dose-dependent correlation with the development of cardiac toxicity. As we learn more about the mechanisms of toxicity, we are developing prevention strategies, including improvements in surveillance, to improve early diagnosis of heart disease. Current survivorship surveillance protocols often include screening echocardiograms to evaluate systolic function by measuring the ejection fraction or fractional shortening. However, these measurements alone are not enough to capture early myocardial changes. The use of additional imaging biomarkers, serum biomarkers, electrocardiograms, as well as cholesterol and blood pressure screening, are key to the early detection of cardiomyopathy and cardiovascular disease. Medical treatment strategies are the same as those used for heart failure from other causes, but earlier recognition and implementation can lead to improved long term outcomes.
Collapse
|
12
|
Ge C, Hu L, Lou D, Li Q, Feng J, Wu Y, Tan J, Xu M. Nrf2 deficiency aggravates PM 2.5-induced cardiomyopathy by enhancing oxidative stress, fibrosis and inflammation via RIPK3-regulated mitochondrial disorder. Aging (Albany NY) 2020; 12:4836-4865. [PMID: 32182211 PMCID: PMC7138545 DOI: 10.18632/aging.102906] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/05/2020] [Indexed: 01/04/2023]
Abstract
PM2.5 is a well-known air pollutant threatening public health, and long-term exposure to PM2.5 increases the risk of cardiovascular diseases. Nrf2 plays a pivotal role in the amelioration of PM2.5-induced lung injury. However, if Nrf2 is involved in PM2.5-induced heart injury, and the underlying molecular mechanisms have not been explored. In this study, wild type (Nrf2+/+) and Nrf2 knockout (Nrf2-/-) mice were exposed to PM2.5 for 6 months. After PM2.5 exposure, Nrf2-/- mice developed severe physiological changes, lung injury and cardiac dysfunction. In the PM2.5-exposed hearts, Nrf2 deficiency caused significant collagen accumulation through promoting the expression of fibrosis-associated signals. Additionally, Nrf2-/- mice exhibited greater oxidative stress in cardiac tissues after PM2.5 exposure. Furthermore, PM2.5-induced inflammation in heart samples were accelerated in Nrf2-/- mice through promoting inhibitor of α/nuclear factor κB (IκBα/NF-κB) signaling pathways. We also found that Nrf2-/- aggravated autophagy initiation and glucose metabolism disorder in hearts of mice with PM2.5 challenge. Cardiac receptor-interacting protein kinase 3 (RIPK3) expression triggered by PM2.5 was further enhanced in mice with the loss of Nrf2. Collectively, these results suggested that strategies for enhancing Nrf2 could be used to treat PM2.5-induced cardiovascular diseases.
Collapse
Affiliation(s)
- Chenxu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Linfeng Hu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Deshuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Qiang Li
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Jing Feng
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Yekuan Wu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.,Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| |
Collapse
|
13
|
Ding C, Han F, Xiang H, Wang Y, Dou M, Xia X, Li Y, Zheng J, Ding X, Xue W, Tian P. Role of prostaglandin E2 receptor 4 in the modulation of apoptosis and mitophagy during ischemia/reperfusion injury in the kidney. Mol Med Rep 2019; 20:3337-3346. [PMID: 31432142 DOI: 10.3892/mmr.2019.10576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/04/2019] [Indexed: 11/09/2022] Open
Abstract
The mechanisms by which prostaglandin E2 receptor 4 (EP4) protects against renal ischemia‑reperfusion (I/R) injury (IRI) remain to be fully elucidated. In the present study, the protective effects of EP4 signaling on renal mitochondria and against renal IRI, as well as the underlying mechanisms, were investigated. A rat model of renal IRI was established. The right kidney was separated without damaging the artery clip, and the renal blood perfusion was then restored after 60 min. One group of animals was treated with EP4 agonists prior to I/R. The mitochondrial mass, the copy number of mitochondrial (mt)DNA, adenosine triphosphate (ATP) production and mitochondrial autophagy were analyzed. It was identified that renal IRI reduced the mitochondrial mass, decreased the mtDNA copy number and inhibited ATP production. The loss of renal mitochondria was attributed to the excessive mitochondrial autophagy induced by renal IRI. Pre‑treatment with EP4 agonist inhibited excessive mitochondrial autophagy, the loss of mitochondria and maintained and the energy imbalance within the cells. It was indicated that renal IRI causes excessive mitochondrial autophagy, which is one of the important causes of renal dysfunction.
Collapse
Affiliation(s)
- Chenguang Ding
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Feng Han
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Heli Xiang
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yuxiang Wang
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Meng Dou
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xinxin Xia
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yang Li
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jin Zheng
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaoming Ding
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wujun Xue
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Puxun Tian
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
14
|
Abstract
Doxorubicin-induced cardiotoxicity in childhood cancer survivors is a growing problem. The population of patients at risk for cardiovascular disease is steadily increasing, as five-year survival rates for all types of childhood cancers continue to improve. Doxorubicin affects the developing heart differently from the adult heart and in a subset of exposed patients, childhood exposure leads to late, irreversible cardiomyopathy. Notably, the prevalence of late-onset toxicity is increasing in parallel with improved survival. By the year 2020, it is estimated that there will be 500,000 childhood cancer survivors and over 50,000 of them will suffer from doxorubicin-induced cardiotoxicity. The majority of the research to-date, concentrated on childhood cancer survivors, has focused mostly on clinical outcomes through well-designed epidemiological and retrospective cohort studies. Preclinical studies have elucidated many of the cellular mechanisms that elicit acute toxicity in cardiomyocytes. However, more research is needed in the areas of early- and late-onset cardiotoxicity and more importantly improving the scientific understanding of how other cells present in the cardiac milieu are impacted by doxorubicin exposure. The overall goal of this review is to succinctly summarize the major clinical and preclinical studies focused on doxorubicin-induced cardiotoxicity. As the prevalence of patients affected by doxorubicin exposure continues to increase, it is imperative that the major gaps in existing research are identified and subsequently utilized to develop appropriate research priorities for the coming years. Well-designed preclinical research models will enhance our understanding of the pathophysiology of doxorubicin-induced cardiotoxicity and directly lead to better diagnosis, treatment, and prevention. © 2019 American Physiological Society. Compr Physiol 9:905-931, 2019.
Collapse
Affiliation(s)
- Trevi R. Mancilla
- University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Brian Iskra
- University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | - Gregory J. Aune
- University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| |
Collapse
|
15
|
Liu BL, Cheng M, Hu S, Wang S, Wang L, Hu ZQ, Huang CX, Jiang H, Wu G. Effect of the Shensong Yangxin Capsule on Energy Metabolism in Angiotensin II-Induced Cardiac Hypertrophy. Chin Med J (Engl) 2018; 131:2287-2296. [PMID: 30246714 PMCID: PMC6166447 DOI: 10.4103/0366-6999.241819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Shensong Yangxin Capsule (SSYX), traditional Chinese medicine, has been used to treat arrhythmias, angina, cardiac remodeling, cardiac fibrosis, and so on, but its effect on cardiac energy metabolism is still not clear. The objective of this study was to investigate the effects of SSYX on myocardium energy metabolism in angiotensin (Ang) II-induced cardiac hypertrophy. Methods We used 2 μl (10-6 mol/L) AngII to treat neonatal rat cardiomyocytes (NRCMs) for 48 h. Myocardial α-actinin staining showed that the myocardial cell volume increased. Expression of the cardiac hypertrophic marker-brain natriuretic peptide (BNP) messenger RNA (mRNA) also increased by real-time polymerase chain reaction (PCR). Therefore, it can be assumed that the model of hypertrophic cardiomyocytes was successfully constructed. Then, NRCMs were treated with 1 μl of different concentrations of SSYX (0.25, 0.5, and 1.0 μg/ml) for another 24 h. To explore the time-depend effect of SSYX on energy metabolism, 0.5 μg/ml SSYX was added into cells for 0, 6, 12, 24, and 48 h. Mitochondria was assessed by MitoTracker staining and confocal microscopy. mRNA and protein expression of mitochondrial biogenesis-related genes - Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), energy balance key factor - adenosine monophosphate-activated protein kinase (AMPK), fatty acids oxidation factor - carnitine palmitoyltransferase-1 (CPT-1), and glucose oxidation factor - glucose transporter- 4 (GLUT-4) were measured by PCR and Western blotting analysis. Results With the increase in the concentration of SSYX (from 0.25 to 1.0 μg/ml), an increased mitochondrial density in AngII-induced cardiomyocytes was found compared to that of those treated with AngII only (0.25 μg/ml, 18.3300 ± 0.8895 vs. 24.4900 ± 0.9041, t = 10.240, P < 0.0001; 0.5 μg/ml, 18.3300 ± 0.8895 vs. 25.9800 ± 0.8187, t = 12.710, P < 0.0001; and 1.0 μg/ml, 18.3300 ± 0.8895 vs. 24.2900 ± 1.3120, t = 9.902, P < 0.0001; n = 5 per dosage group). SSYX also increased the mRNA and protein expression of PGC-1α (0.25 μg/ml, 0.8892 ± 0.0848 vs. 1.0970 ± 0.0994, t = 4.319, P = 0.0013; 0.5 μg/ml, 0.8892 ± 0.0848 vs. 1.2330 ± 0.0564, t = 7.150, P < 0.0001; and 1.0 μg/ml, 0.8892 ± 0.0848 vs. 1.1640 ± 0.0755, t = 5.720, P < 0.0001; n = 5 per dosage group), AMPK (0.25 μg/ml, 0.8872 ± 0.0779 vs. 1.1500 ± 0.0507, t = 7.239, P < 0.0001; 0.5 μg/ml, 0.8872 ± 0.0779 vs. 1.2280 ± 0.0623, t = 9.379, P < 0.0001; and 1.0 μg/ml, 0.8872 ± 0.0779 vs. 1.3020 ± 0.0450, t = 11.400, P < 0.0001; n = 5 per dosage group), CPT-1 (1.0 μg/ml, 0.7348 ± 0.0594 vs. 0.9880 ± 0.0851, t = 4.994, P = 0.0007, n = 5), and GLUT-4 (0.5 μg/ml, 1.5640 ± 0.0599 vs. 1.7720 ± 0.0660, t = 3.783, P = 0.0117; 1.0 μg/ml, 1.5640 ± 0.0599 vs. 2.0490 ± 0.1280, t = 8.808, P < 0.0001; n = 5 per dosage group). The effect became more obvious with the increasing concentration of SSYX. When 0.5 μg/ml SSYX was added into cells for 0, 6, 12, 24, and 48 h, the expression of AMPK (6 h, 14.6100 ± 0.6205 vs. 16.5200 ± 0.7450, t = 3.456, P = 0.0250; 12 h, 14.6100 ± 0.6205 vs. 18.3200 ± 0.9965, t = 6.720, P < 0.0001; 24 h, 14.6100 ± 0.6205 vs. 21.8800 ± 0.8208, t = 13.160, P < 0.0001; and 48 h, 14.6100 ± 0.6205 vs. 23.7400 ± 1.0970, t = 16.530, P < 0.0001; n = 5 per dosage group), PGC-1α (12 h, 11.4700 ± 0.7252 vs. 16.9000 ± 1.0150, t = 7.910, P < 0.0001; 24 h, 11.4700 ± 0.7252 vs. 20.8800 ± 1.2340, t = 13.710, P < 0.0001; and 48 h, 11.4700 ± 0.7252 vs. 22.0300 ± 1.4180, t = 15.390; n = 5 per dosage group), CPT-1 (24 h, 15.1600 ± 1.0960 vs. 18.5800 ± 0.9049, t = 6.048, P < 0.0001, n = 5), and GLUT-4 (6 h, 10.2100 ± 0.9485 vs. 12.9700 ± 0.8221, t = 4.763, P = 0.0012; 12 h, 10.2100 ± 0.9485 vs. 16.9100 ± 0.8481, t = 11.590, P < 0.0001; 24 h, 10.2100 ± 0.9485 vs. 19.0900 ± 0.9797, t = 15.360, P < 0.0001; and 48 h, 10.2100 ± 0.9485 vs. 14.1900 ± 0.9611, t = 6.877, P < 0.0001; n = 5 per dosage group) mRNA and protein increased gradually with the prolongation of drug action time. Conclusions SSYX could increase myocardial energy metabolism in AngII-induced cardiac hypertrophy. Therefore, SSYX might be considered to be an alternative therapeutic remedy for myocardial hypertrophy.
Collapse
Affiliation(s)
- Bei-Lei Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China
| | - Mian Cheng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China
| | - Shun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China
| | - Le Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China
| | - Zheng-Qing Hu
- Department of Cardiology, Ezhou Hospital, Renmin Hospital of Wuhan University, Ezhou, Hubei 436000, China
| | - Cong-Xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China
| | - Gang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060; Department of Cardiology, Ezhou Hospital, Renmin Hospital of Wuhan University, Ezhou, Hubei 436000, China
| |
Collapse
|
16
|
TFAM overexpression reduces pathological cardiac remodeling. Mol Cell Biochem 2018; 454:139-152. [PMID: 30353496 DOI: 10.1007/s11010-018-3459-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 10/16/2018] [Indexed: 10/28/2022]
Abstract
Heart failure (HF) is a functional lack of myocardial performance due to a loss of molecular control over increases in calcium and ROS, resulting in proteolytic degradative advances and cardiac remodeling. Mitochondria are the molecular powerhouse of cells, shifting the sphere of cardiomyocyte stability and performance. Functional mitochondria rely on the molecular abilities of safety factors such as TFAM to maintain physiological parameters. Mitochondrial transcription factor A (TFAM) creates a mitochondrial nucleoid structure around mtDNA, protecting it from mutation, inhibiting NFAT (ROS activator/hypertrophic stimulator), and transcriptionally activates Serca2a to decrease calcium mishandling. Calpain1 and MMP9 are proteolytic degratory factors that play a major role in cardiomyocyte decline in HF. Current literature depicts major decreases in TFAM as HF progresses. We aim to assess TFAM function against Calpain1 and MMP9 proteolytic activity and its role in cardiac remodeling. To this date, no publication has surfaced describing the effects of aortic banding (AB) as a surgical HF model in TFAM-TG mice. HF models were created via AB in TFAM transgenic (TFAM-TG) and C57BLJ-6 (WT) mice. Eight weeks post AB, functional analysis revealed a successful banding procedure, resulting in cardiac hypertrophy as observed via echocardiography. Pulse wave and color doppler show increased aortic flow rates as well as turbulent flow at the banding site. Preliminary results of cardiac tissue immuno-histochemistry of HF-control mice show decreased TFAM and compensatory increases in Serca2a fluorescent expression, along with increased Calpain1 and MMP9 expression. Protein, RNA, and IHC analysis will further assess TFAM-TG results post-banding. Echocardiography shows more cardiac stability and functionality in HF-induced TFAM-TG mice than the control counterpart. These findings complement our published in vitro results. Overall, this suggests that TFAM has molecular therapeutic potential to reduce protease expression.
Collapse
|
17
|
Hang W, He B, Chen J, Xia L, Wen B, Liang T, Wang X, Zhang Q, Wu Y, Chen Q, Chen J. Berberine Ameliorates High Glucose-Induced Cardiomyocyte Injury via AMPK Signaling Activation to Stimulate Mitochondrial Biogenesis and Restore Autophagic Flux. Front Pharmacol 2018; 9:1121. [PMID: 30337876 PMCID: PMC6178920 DOI: 10.3389/fphar.2018.01121] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/13/2018] [Indexed: 12/29/2022] Open
Abstract
Background: Type II diabetes (T2D)-induced cardiomyocyte hypertrophy is closely linked to the impairment of mitochondrial function. Berberine has been shown to be a promising effect for hypoglycemia in T2D models. High glucose-induced cardiomyocyte hypertrophy in vitro has been reported. The present study investigated the protective effect and the underlying mechanism of berberine on high glucose-induced H9C2 cell line. Methods: High glucose-induced H9C2 cell line was used to mimic the hyperglycemia resulting in cardiomyocyte hypertrophy. Berberine was used to rescue in this model and explore the mechanism in it. Confocal microscopy, immunofluorescence, RT-PCR, and western blot analysis were performed to evaluate the protective effects of berberine in high glucose-induced H9C2 cell line. Results: Berberine dramatically alleviated hypertrophy of H9C2 cell line and significantly ameliorated mitochondrial function by rectifying the imbalance of fusion and fission in mitochondrial dynamics. Furthermore, berberine further promoted mitogenesis and cleared the damaged mitochondria via mitophagy. In addition, berberine also restored autophagic flux in high glucose-induced cardiomyocyte injury via AMPK signaling pathway activation. Conclusion: Berberine ameliorates high glucose-induced cardiomyocyte injury via AMPK signaling pathway activation to stimulate mitochondrial biogenesis and restore autophagicflux in H9C2 cell line.
Collapse
Affiliation(s)
- Weijian Hang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Benhong He
- Department of Cardiovascular Medicine, Lichuan People's Hospital, Lichuan, China
| | - Jiehui Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangtao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Wen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianying Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingjie Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,New Products of TCM Senile Diseases Co-Innovation Center of Hubei, School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Chimienti G, Picca A, Sirago G, Fracasso F, Calvani R, Bernabei R, Russo F, Carter CS, Leeuwenburgh C, Pesce V, Marzetti E, Lezza AMS. Increased TFAM binding to mtDNA damage hot spots is associated with mtDNA loss in aged rat heart. Free Radic Biol Med 2018; 124:447-453. [PMID: 29969715 PMCID: PMC6319621 DOI: 10.1016/j.freeradbiomed.2018.06.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/29/2018] [Indexed: 02/07/2023]
Abstract
The well-known age-related mitochondrial dysfunction deeply affects heart because of the tissue's large dependence on mitochondrial ATP provision. Our study revealed in aged rat heart a significant 25% decrease in mtDNA relative content, a significant 29% increase in the 4.8 Kb mtDNA deletion relative content, and a significant inverse correlation between such contents as well as a significant 38% decrease in TFAM protein amount. The TFAM-binding activity to specific mtDNA regions increased at those encompassing the mtDNA replication origins, D-loop and Ori-L. The same mtDNA regions were screened for different kinds of oxidative damage, namely Single Strand Breaks (SSBs), Double Strand Breaks (DSBs), abasic sites (AP sites) and oxidized bases as 7,8-dihydro-8-oxoguanine (8oxoG). A marked increase in the relative content of mtDNA strand damage (SSBs, DSBs and AP sites) was found in the D-loop and Ori-L regions in the aged animals, unveiling for the first time in vivo an age-related, non-stochastic accumulation of oxidative lesions in these two regions that appear as hot spots of mtDNA damage. The use of Formamidopyrimidine glycosylase (Fpg) demonstrated also a significant age-related accumulation of oxidized purines particularly in the D-loop and Ori-L regions. The detected increased binding of TFAM to the mtDNA damage hot spots in aged heart suggests a link between TFAM binding to mtDNA and loss of mitochondrial genome likely through hindrance of repair processes.
Collapse
Affiliation(s)
- Guglielmina Chimienti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Anna Picca
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart School of Medicine, Teaching Hospital "Agostino Gemelli", Rome, Italy
| | - Giuseppe Sirago
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Flavio Fracasso
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Riccardo Calvani
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart School of Medicine, Teaching Hospital "Agostino Gemelli", Rome, Italy
| | - Roberto Bernabei
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart School of Medicine, Teaching Hospital "Agostino Gemelli", Rome, Italy
| | - Francesco Russo
- Laboratory of Nutritional Pathophysiology, National Institute of Digestive Diseases - I.R.C.C.S. "Saverio de Bellis", Castellana Grotte, Italy
| | - Christy S Carter
- Department of Aging and Geriatric Research, Institute on Aging, Division of Biology of Aging, University of Florida, 2004 Mowry Rd, Gainesville, FL 32611, USA
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, Institute on Aging, Division of Biology of Aging, University of Florida, 2004 Mowry Rd, Gainesville, FL 32611, USA
| | - Vito Pesce
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Emanuele Marzetti
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart School of Medicine, Teaching Hospital "Agostino Gemelli", Rome, Italy
| | - Angela Maria Serena Lezza
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
19
|
Abstract
Several interventions, such as ischemic preconditioning, remote pre/perconditioning, or postconditioning, are known to decrease lethal myocardial ischemia-reperfusion injury. While several signal transduction pathways become activated by such maneuvers, they all have a common end point, namely, the mitochondria. These organelles represent an essential target of the cardioprotective strategies, and the preservation of mitochondrial function is central for the reduction of ischemia-reperfusion injury. In the present review, we address the role of mitochondria in the different conditioning strategies; in particular, we focus on alterations of mitochondrial function in terms of energy production, formation of reactive oxygen species, opening of the mitochondrial permeability transition pore, and mitochondrial dynamics induced by ischemia-reperfusion.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institute of Physiology, Justus-Liebig Universität , Giessen , Germany
| | - Günter Lochnit
- Institute of Biochemistry, Justus-Liebig Universität , Giessen , Germany
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig Universität , Giessen , Germany
| |
Collapse
|
20
|
Chemotherapeutic Drugs and Mitochondrial Dysfunction: Focus on Doxorubicin, Trastuzumab, and Sunitinib. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7582730. [PMID: 29743983 PMCID: PMC5878876 DOI: 10.1155/2018/7582730] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/23/2018] [Accepted: 02/06/2018] [Indexed: 02/07/2023]
Abstract
Many cancer therapies produce toxic side effects whose molecular mechanisms await full elucidation. The most feared and studied side effect of chemotherapeutic drugs is cardiotoxicity. Also, skeletal muscle physiology impairment has been recorded after many chemotherapeutical treatments. However, only doxorubicin has been extensively studied for its side effects on skeletal muscle. Chemotherapeutic-induced adverse side effects are, in many cases, mediated by mitochondrial damage. In particular, trastuzumab and sunitinib toxicity is mainly associated with mitochondria impairment and is mostly reversible. Vice versa, doxorubicin-induced toxicity not only includes mitochondria damage but can also lead to a more robust and extensive cell injury which is often irreversible and lethal. Drugs interfering with mitochondrial functionality determine the depletion of ATP reservoirs and lead to subsequent reversible contractile dysfunction. Mitochondrial damage includes the impairment of the respiratory chain and the loss of mitochondrial membrane potential with subsequent disruption of cellular energetic. In a context of increased stress, AMPK has a key role in maintaining energy homeostasis, and inhibition of the AMPK pathway is one of the proposed mechanisms possibly mediating mitochondrial toxicity due to chemotherapeutics. Therapies targeting and protecting cell metabolism and energy management might be useful tools in protecting muscular tissues against the toxicity induced by chemotherapeutic drugs.
Collapse
|
21
|
Abstract
Mitochondrial dysfunction underlines a multitude of pathologies; however, studies are scarce that rescue the mitochondria for cellular resuscitation. Exploration into the protective role of mitochondrial transcription factor A (TFAM) and its mitochondrial functions respective to cardiomyocyte death are in need of further investigation. TFAM is a gene regulator that acts to mitigate calcium mishandling and ROS production by wrapping around mitochondrial DNA (mtDNA) complexes. TFAM's regulatory functions over serca2a, NFAT, and Lon protease contribute to cardiomyocyte stability. Calcium- and ROS-dependent proteases, calpains, and matrix metalloproteinases (MMPs) are abundantly found upregulated in the failing heart. TFAM's regulatory role over ROS production and calcium mishandling leads to further investigation into the cardioprotective role of exogenous TFAM. In an effort to restabilize physiological and contractile activity of cardiomyocytes in HF models, we propose that TFAM-packed exosomes (TFAM-PE) will act therapeutically by mitigating mitochondrial dysfunction. Notably, this is the first mention of exosomal delivery of transcription factors in the literature. Here we elucidate the role of TFAM in mitochondrial rescue and focus on its therapeutic potential.
Collapse
Affiliation(s)
- George H Kunkel
- Department of Physiology and Biophysics, Health Sciences Centre, 1216, School of Medicine, University of Louisville, 500, South Preston Street, Louisville, KY, 40202, USA
| | - Pankaj Chaturvedi
- Department of Physiology and Biophysics, Health Sciences Centre, 1216, School of Medicine, University of Louisville, 500, South Preston Street, Louisville, KY, 40202, USA.
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, Health Sciences Centre, 1216, School of Medicine, University of Louisville, 500, South Preston Street, Louisville, KY, 40202, USA
| |
Collapse
|
22
|
Chen Q, Salloum FN. "Mighty-chondrial" DNA repair for mitigation of cardiac injury: focus on "A novel mtDNA repair fusion protein attenuates maladaptive remodeling and preserves cardiac function in heart failure". Am J Physiol Heart Circ Physiol 2018; 314:H268-H269. [PMID: 29146615 DOI: 10.1152/ajpheart.00661.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Qun Chen
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University , Richmond, Virginia
| | - Fadi N Salloum
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University , Richmond, Virginia
| |
Collapse
|
23
|
Mulvey L, Sands WA, Salin K, Carr AE, Selman C. Disentangling the effect of dietary restriction on mitochondrial function using recombinant inbred mice. Mol Cell Endocrinol 2017; 455:41-53. [PMID: 27597651 DOI: 10.1016/j.mce.2016.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/22/2016] [Accepted: 09/01/2016] [Indexed: 12/12/2022]
Abstract
Dietary restriction (DR) extends lifespan and healthspan in many species, but precisely how it elicits its beneficial effects is unclear. We investigated the impact of DR on mitochondrial function within liver and skeletal muscle of female ILSXISS mice that exhibit strain-specific variation in lifespan under 40% DR. Strains TejJ89 (lifespan increased under DR), TejJ48 (lifespan unaffected by DR) and TejJ114 (lifespan decreased under DR) were studied following 10 months of 40% DR (13 months of age). Oxygen consumption rates (OCR) within isolated liver mitochondria were unaffected by DR in TejJ89 and TejJ48, but decreased by DR in TejJ114. DR had no effect on hepatic protein levels of PGC-1a, TFAM, and OXPHOS complexes IV. Mitonuclear protein imbalance (nDNA:mtDNA ratio) was unaffected by DR, but HSP90 protein levels were reduced in TejJ114 under DR. Surprisingly hepatic mitochondrial hydrogen peroxide (H2O2) production was elevated by DR in TejJ89, with total superoxide dismutase activity and protein carbonyls increased by DR in both TejJ89 and TejJ114. In skeletal muscle, DR had no effect on mitochondrial OCR, OXPHOS complexes or mitonuclear protein imbalance, but H2O2 production was decreased in TejJ114 and nuclear PGC-1a increased in TejJ89 under DR. Our findings indicate that hepatic mitochondrial dysfunction associated with reduced lifespan of TejJ114 mice under 40% DR, but similar dysfunction was not apparent in skeletal muscle mitochondria. We highlight tissue-specific differences in the mitochondrial response in ILSXISS mice to DR, and underline the importance and challenges of exploiting genetic heterogeneity to help understand mechanisms of ageing.
Collapse
Affiliation(s)
- Lorna Mulvey
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - William A Sands
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Karine Salin
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Amanda E Carr
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Colin Selman
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
24
|
Diminished stress resistance and defective adaptive homeostasis in age-related diseases. Clin Sci (Lond) 2017; 131:2573-2599. [PMID: 29070521 DOI: 10.1042/cs20160982] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/31/2017] [Accepted: 09/15/2017] [Indexed: 02/06/2023]
Abstract
Adaptive homeostasis is defined as the transient expansion or contraction of the homeostatic range following exposure to subtoxic, non-damaging, signaling molecules or events, or the removal or cessation of such molecules or events (Mol. Aspects Med. (2016) 49, 1-7). Adaptive homeostasis allows us to transiently adapt (and then de-adapt) to fluctuating levels of internal and external stressors. The ability to cope with transient changes in internal and external environmental stress, however, diminishes with age. Declining adaptive homeostasis may make older people more susceptible to many diseases. Chronic oxidative stress and defective protein homeostasis (proteostasis) are two major factors associated with the etiology of age-related disorders. In the present paper, we review the contribution of impaired responses to oxidative stress and defective adaptive homeostasis in the development of age-associated diseases.
Collapse
|
25
|
Metabolic stress-induced cardiomyopathy is caused by mitochondrial dysfunction due to attenuated Erk5 signaling. Nat Commun 2017; 8:494. [PMID: 28887535 PMCID: PMC5591279 DOI: 10.1038/s41467-017-00664-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 07/18/2017] [Indexed: 12/01/2022] Open
Abstract
The prevalence of cardiomyopathy from metabolic stress has increased dramatically; however, its molecular mechanisms remain elusive. Here, we show that extracellular signal-regulated protein kinase 5 (Erk5) is lost in the hearts of obese/diabetic animal models and that cardiac-specific deletion of Erk5 in mice (Erk5-CKO) leads to dampened cardiac contractility and mitochondrial abnormalities with repressed fuel oxidation and oxidative damage upon high fat diet (HFD). Erk5 regulation of peroxisome proliferator-activated receptor γ co-activator-1α (Pgc-1α) is critical for cardiac mitochondrial functions. More specifically, we show that Gp91phox activation of calpain-1 degrades Erk5 in free fatty acid (FFA)-stressed cardiomyocytes, whereas the prevention of Erk5 loss by blocking Gp91phox or calpain-1 rescues mitochondrial functions. Similarly, adeno-associated virus 9 (AAV9)-mediated restoration of Erk5 expression in Erk5-CKO hearts prevents cardiomyopathy. These findings suggest that maintaining Erk5 integrity has therapeutic potential for treating metabolic stress-induced cardiomyopathy. The mechanistic link between metabolic stress and associated cardiomyopathy is unknown. Here the authors show that high fat diet causes calpain-1-dependent degradation of ERK5 leading to mitochondrial dysfunction, suggesting the maintenance of cardiac ERK5 as a therapeutic approach for cardiomyopathy prevention and/or treatment.
Collapse
|
26
|
Boengler K, Kosiol M, Mayr M, Schulz R, Rohrbach S. Mitochondria and ageing: role in heart, skeletal muscle and adipose tissue. J Cachexia Sarcopenia Muscle 2017; 8:349-369. [PMID: 28432755 PMCID: PMC5476857 DOI: 10.1002/jcsm.12178] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/23/2016] [Accepted: 11/24/2016] [Indexed: 12/11/2022] Open
Abstract
Age is the most important risk factor for most diseases. Mitochondria play a central role in bioenergetics and metabolism. In addition, several lines of evidence indicate the impact of mitochondria in lifespan determination and ageing. The best-known hypothesis to explain ageing is the free radical theory, which proposes that cells, organs, and organisms age because they accumulate reactive oxygen species (ROS) damage over time. Mitochondria play a central role as the principle source of intracellular ROS, which are mainly formed at the level of complex I and III of the respiratory chain. Dysfunctional mitochondria generating less ATP have been observed in various aged organs. Mitochondrial dysfunction comprises different features including reduced mitochondrial content, altered mitochondrial morphology, reduced activity of the complexes of the electron transport chain, opening of the mitochondrial permeability transition pore, and increased ROS formation. Furthermore, abnormalities in mitochondrial quality control or defects in mitochondrial dynamics have also been linked to senescence. Among the tissues affected by mitochondrial dysfunction are those with a high-energy demand and thus high mitochondrial content. Therefore, the present review focuses on the impact of mitochondria in the ageing process of heart and skeletal muscle. In this article, we review different aspects of mitochondrial dysfunction and discuss potential therapeutic strategies to improve mitochondrial function. Finally, novel aspects of adipose tissue biology and their involvement in the ageing process are discussed.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Maik Kosiol
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Susanne Rohrbach
- Institute of Physiology, Justus Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| |
Collapse
|
27
|
Fontes-Oliveira CC, Steinz M, Schneiderat P, Mulder H, Durbeej M. Bioenergetic Impairment in Congenital Muscular Dystrophy Type 1A and Leigh Syndrome Muscle Cells. Sci Rep 2017; 7:45272. [PMID: 28367954 PMCID: PMC5377256 DOI: 10.1038/srep45272] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/23/2017] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle has high energy requirement and alterations in metabolism are associated with pathological conditions causing muscle wasting and impaired regeneration. Congenital muscular dystrophy type 1A (MDC1A) is a severe muscle disorder caused by mutations in the LAMA2 gene. Leigh syndrome (LS) is a neurometabolic disease caused by mutations in genes related to mitochondrial function. Skeletal muscle is severely affected in both diseases and a common feature is muscle weakness that leads to hypotonia and respiratory problems. Here, we have investigated the bioenergetic profile in myogenic cells from MDC1A and LS patients. We found dysregulated expression of genes related to energy production, apoptosis and proteasome in myoblasts and myotubes. Moreover, impaired mitochondrial function and a compensatory upregulation of glycolysis were observed when monitored in real-time. Also, alterations in cell cycle populations in myoblasts and enhanced caspase-3 activity in myotubes were observed. Thus, we have for the first time demonstrated an impairment of the bioenergetic status in human MDC1A and LS muscle cells, which could contribute to cell cycle disturbance and increased apoptosis. Our findings suggest that skeletal muscle metabolism might be a promising pharmacological target in order to improve muscle function, energy efficiency and tissue maintenance of MDC1A and LS patients.
Collapse
Affiliation(s)
- Cibely C Fontes-Oliveira
- Unit of Muscle Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Maarten Steinz
- Unit of Muscle Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Peter Schneiderat
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Hindrik Mulder
- Unit of Molecular Metabolism, Department of Clinical Sciences, Lund University Diabetes Centre, Malmö University Hospital, Malmö, Sweden
| | - Madeleine Durbeej
- Unit of Muscle Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
28
|
Abstract
OBJECTIVE HIV-associated neurocognitive disorder (HAND) is a common neurological disorder among HIV-infected patients despite the availability of combination antiretroviral therapy. Host-encoded microRNAs (miRNA) regulate both host and viral gene expression contributing to HAND pathogenesis and can also serve as disease biomarkers. Herein, plasma miRNA profiles were investigated in HIV/AIDS patients with HAND. METHODS Discovery and Validation Cohorts comprising HIV/AIDS patients were studied that included patients with and without HAND (non-HAND). Plasma miRNA levels were measured by array hybridization and verified by quantitative real-time reverse transcriptase PCR (qRT-PCR). Multiple bioinformatic and biostatistical analyses were applied to the data from each cohort. RESULTS Expression analyses identified nine miRNAs in the Discovery Cohort (HAND, n = 22; non-HAND, n = 25) with increased levels (≥two-fold) in the HAND group compared with the non-HAND group (P < 0.05). In the Validation Cohort (HAND, n = 12; non-HAND, n = 12) upregulation (≥two-fold) of three miRNAs (miR-3665, miR-4516 and miR-4707-5p) was observed in the HAND group that were also increased in the Discovery Cohort's HAND patients, which were verified subsequently by qRT-PCR. Receiver-operating characteristic curve analyses for the three miRNAs also pointed to the diagnosis of HAND (area under curve, 0.87, P < 0.005). Bioinformatics tools predicted that all three miRNAs targeted sequences of genes implicated in neural development, cell death, inflammation, cell signalling and cytokine functions. CONCLUSION Differentially expressed plasma-derived miRNAs were detected in HIV/AIDS patients with HAND that were conserved across different patient cohorts and laboratory methods. Plasma-derived miRNAs might represent biomarkers for HAND and also provide insights into disease mechanisms.
Collapse
|
29
|
Abstract
Cardiomyopathy is an inherited or acquired disease of the myocardium, which can result in severe ventricular dysfunction. Mitochondrial dysfunction is involved in the pathological process of cardiomyopathy. Many dysfunctions in cardiac mitochondria are consequences of mutations in nuclear or mitochondrial DNA followed by alterations in transcriptional regulation, mitochondrial protein function, and mitochondrial dynamics and energetics, presenting with associated multisystem mitochondrial disorders. To ensure correct diagnosis and optimal management of mitochondrial dysfunction in cardiomyopathy caused by multiple pathogenesis, multidisciplinary approaches are required, and to integrate between clinical and basic sciences, ideal translational models are needed. In this review, we will focus on experimental models to provide insights into basic mitochondrial physiology and detailed underlying mechanisms of cardiomyopathy and current mitochondria-targeted therapies for cardiomyopathy. [BMB Reports 2015; 48(10): 541-548]
Collapse
Affiliation(s)
- Youn Wook Chung
- Yonsei Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Seok-Min Kang
- Yonsei Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul 03722; Cardiology Division, Severance Cardiovascular Hospital, Seoul 03722; Severance Integrative Research Institute for Cerebral and Cardiovascular Diseases (SIRIC), Yonsei University Health System, Seoul 03722, Korea
| |
Collapse
|
30
|
Aunan JR, Watson MM, Hagland HR, Søreide K. Molecular and biological hallmarks of ageing. Br J Surg 2016; 103:e29-46. [PMID: 26771470 DOI: 10.1002/bjs.10053] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 10/16/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Ageing is the inevitable time-dependent decline in physiological organ function that eventually leads to death. Age is a major risk factor for many of the most common medical conditions, such as cardiovascular disease, cancer, diabetes and Alzheimer's disease. This study reviews currently known hallmarks of ageing and their clinical implications. METHODS A literature search of PubMed/MEDLINE was conducted covering the last decade. RESULTS Average life expectancy has increased dramatically over the past century and is estimated to increase even further. Maximum longevity, however, appears unchanged, suggesting a universal limitation to the human organism. Understanding the underlying molecular processes of ageing and health decline may suggest interventions that, if used at an early age, can prevent, delay, alleviate or even reverse age-related diseases. Hallmarks of ageing can be grouped into three main categories. The primary hallmarks cause damage to cellular functions: genomic instability, telomere attrition, epigenetic alterations and loss of proteostasis. These are followed by antagonistic responses to such damage: deregulated nutrient sensing, altered mitochondrial function and cellular senescence. Finally, integrative hallmarks are possible culprits of the clinical phenotype (stem cell exhaustion and altered intercellular communication), which ultimately contribute to the clinical effects of ageing as seen in physiological loss of reserve, organ decline and reduced function. CONCLUSION The sum of these molecular hallmarks produces the clinical picture of the elderly surgical patient: frailty, sarcopenia, anaemia, poor nutrition and a blunted immune response system. Improved understanding of the ageing processes may give rise to new biomarkers of risk or prognosis, novel treatment targets and translational approaches across disciplines that may improve outcomes.
Collapse
Affiliation(s)
- J R Aunan
- Gastrointestinal Translational Research Unit, Molecular Laboratory, Stavanger University Hospital, Stavanger, Norway.,Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway
| | - M M Watson
- Gastrointestinal Translational Research Unit, Molecular Laboratory, Stavanger University Hospital, Stavanger, Norway.,Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway
| | - H R Hagland
- Gastrointestinal Translational Research Unit, Molecular Laboratory, Stavanger University Hospital, Stavanger, Norway.,Centre for Organelle Research (CORE), Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - K Søreide
- Gastrointestinal Translational Research Unit, Molecular Laboratory, Stavanger University Hospital, Stavanger, Norway.,Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
31
|
Kent ST, Burkholder GA, Tajeu GS, Overton ET, Muntner P. Mechanisms Influencing Circadian Blood Pressure Patterns Among Individuals with HIV. Curr Hypertens Rep 2016; 17:88. [PMID: 26429228 DOI: 10.1007/s11906-015-0598-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
HIV+ individuals have an increased risk for cardiovascular disease (CVD), but the mechanisms behind this association are poorly understood. While hypertension is a well-established CVD risk factor, clinic-based blood pressure (BP) assessment by itself cannot identify several important BP patterns, including white coat hypertension, masked hypertension, nighttime hypertension, and nighttime BP dipping. These BP patterns can be identified over a 24-h period by ambulatory BP monitoring (ABPM). In this review, we provide an overview of the potential value of conducting ABPM in HIV+ individuals. ABPM phenotypes associated with increased CVD risk include masked hypertension (i.e., elevated out-of-clinic BP despite non-elevated clinic BP), nighttime hypertension, and a non-dipping BP pattern (i.e., a drop in BP of <10 % from daytime to nighttime). These adverse ABPM phenotypes may be highly relevant in the setting of HIV infection, given that increased levels of inflammatory biomarkers, high psychosocial burden, high prevalence of sleep disturbance, and autonomic dysfunction have been commonly reported in HIV+ persons. Additionally, although antiretroviral therapy (ART) is associated with lower AIDS-related morbidity and CVD risk, the mitochondrial toxicity, oxidative stress, lipodystrophy, and insulin resistance associated with long-term ART use potentially lead to adverse ABPM phenotypes. Existing data on ABPM phenotypes in the setting of HIV are limited, but suggest an increased prevalence of a non-dipping BP pattern. In conclusion, identifying ABPM phenotypes may provide crucial information regarding the mechanisms underlying the excess CVD risk in HIV+ individuals.
Collapse
Affiliation(s)
- Shia T Kent
- Department of Epidemiology, University of Alabama at Birmingham, 1665 University Blvd RPBH 220, Birmingham, AL, 35294, USA.
| | - Greer A Burkholder
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gabriel S Tajeu
- Department of Epidemiology, University of Alabama at Birmingham, 1665 University Blvd RPBH 220, Birmingham, AL, 35294, USA
| | - E Turner Overton
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Paul Muntner
- Department of Epidemiology, University of Alabama at Birmingham, 1665 University Blvd RPBH 220, Birmingham, AL, 35294, USA
| |
Collapse
|
32
|
Varga ZV, Ferdinandy P, Liaudet L, Pacher P. Drug-induced mitochondrial dysfunction and cardiotoxicity. Am J Physiol Heart Circ Physiol 2015; 309:H1453-H1467. [PMID: 26386112 PMCID: PMC4666974 DOI: 10.1152/ajpheart.00554.2015] [Citation(s) in RCA: 352] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/15/2015] [Indexed: 12/14/2022]
Abstract
Mitochondria has an essential role in myocardial tissue homeostasis; thus deterioration in mitochondrial function eventually leads to cardiomyocyte and endothelial cell death and consequent cardiovascular dysfunction. Several chemical compounds and drugs have been known to directly or indirectly modulate cardiac mitochondrial function, which can account both for the toxicological and pharmacological properties of these substances. In many cases, toxicity problems appear only in the presence of additional cardiovascular disease conditions or develop months/years following the exposure, making the diagnosis difficult. Cardiotoxic agents affecting mitochondria include several widely used anticancer drugs [anthracyclines (Doxorubicin/Adriamycin), cisplatin, trastuzumab (Herceptin), arsenic trioxide (Trisenox), mitoxantrone (Novantrone), imatinib (Gleevec), bevacizumab (Avastin), sunitinib (Sutent), and sorafenib (Nevaxar)], antiviral compound azidothymidine (AZT, Zidovudine) and several oral antidiabetics [e.g., rosiglitazone (Avandia)]. Illicit drugs such as alcohol, cocaine, methamphetamine, ecstasy, and synthetic cannabinoids (spice, K2) may also induce mitochondria-related cardiotoxicity. Mitochondrial toxicity develops due to various mechanisms involving interference with the mitochondrial respiratory chain (e.g., uncoupling) or inhibition of the important mitochondrial enzymes (oxidative phosphorylation, Szent-Györgyi-Krebs cycle, mitochondrial DNA replication, ADP/ATP translocator). The final phase of mitochondrial dysfunction induces loss of mitochondrial membrane potential and an increase in mitochondrial oxidative/nitrative stress, eventually culminating into cell death. This review aims to discuss the mechanisms of mitochondrion-mediated cardiotoxicity of commonly used drugs and some potential cardioprotective strategies to prevent these toxicities.
Collapse
Affiliation(s)
- Zoltán V Varga
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland; Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Peter Ferdinandy
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary; and
| | - Lucas Liaudet
- Department of Intensive Care Medicine BH 08-621-University Hospital Medical Center, Lausanne, Switzerland
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland;
| |
Collapse
|
33
|
Affiliation(s)
- Alyssa A Lombardi
- Center for Translational Medicine and Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - John W Elrod
- Center for Translational Medicine and Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|