1
|
Tanaka DM, de Paula Dias Zara B, Sapalo AT, Vargas AL, Marin-Neto JA, de Barros-Filho ACL, Zinni CMP, Fonseca KCB, de Oliveira MT, Silva JS, Ramires FJA, de Lourdes Higuchi M, Simões MV, Romano MMD. Effect of neurohormonal therapeutic in left ventricle global and regional function in Chagas cardiomyopathy in a translational animal experimental model. Sci Rep 2025; 15:12595. [PMID: 40221465 PMCID: PMC11993644 DOI: 10.1038/s41598-025-96676-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
Neurohormonal benefits of Chronic Chagas' Cardiomyopathy (CCC) remain controversial. This study aimed to assess therapeutic interventions on CCC evolution in T. cruzi-infected hamsters at pre and post-treatment (2 months with beta-blocker (CH + BB) or ACE inhibitor (CH + ACEI)). Echocardiography was performed through evolution and compared to histopathological myocardial analysis. At post-treatment, a significant reduction of LV global systolic function and segmental function was observed between the control group and all Chagas' groups. Compared to the Control, a reduction in LV regional strain was observed in three LV segments, regardless of treatment. No differences were observed in apoptosis, myocardial fibrosis, and the number of inflammatory cells among the groups. In an experimental model of CCC, LV global and regional function is compromised, and the treatment with ACEi and BB did not change LV remodeling. Regional LV function was slightly better in animals treated with BB, and this difference was not observed in the CH + ACEi group.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - João Santana Silva
- Medical School of Ribeirao Preto, University of São Paulo, Sao Paulo, Brazil
| | | | | | | | - Minna Moreira Dias Romano
- Medical School of Ribeirao Preto, University of São Paulo, Sao Paulo, Brazil.
- Cardiology Division - Internal Medicine Department Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, ZIP Code, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14048900, Brazil.
| |
Collapse
|
2
|
Zulfaj E, Nejat A, Haamid A, Espinosa A, Elmahdy A, Pylova T, Jha S, Redfors B, Omerovic E. Temperature and repeated catecholamine surges modulate regional wall motion abnormalities in a rodent takotsubo syndrome model. Sci Rep 2025; 15:3876. [PMID: 39890974 PMCID: PMC11785725 DOI: 10.1038/s41598-025-88410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/28/2025] [Indexed: 02/03/2025] Open
Abstract
Transient regional wall motion abnormalities (RWMA) after stress are a hallmark of experimental and clinical Takotsubo Syndrome (TS). The mechanisms driving RWMA remain incompletely understood. This study investigates these mechanisms in a small-animal model of TS, validating the model's complication profile, recovery dynamics, and recurrence, while assessing the predictive value of echocardiography. Male, 7-9-week-old rats underwent TS induction via isoprenaline infusion. The effects of body temperature and repeated catecholaminergic surges on RWMA were assessed using high-resolution speckle-tracking echocardiography. Complications were evaluated through ECG, autopsy, and blood gas analysis. The TS phenotype showed reduced longitudinal strain with RWMA characterized by apical end-systolic akinesia/dyskinesia, a contracting base, and a narrow transition zone, resulting in apical ballooning. RWMA originated from the apex and recovered in the opposite direction. Hyperthermia increased RWMA incidence, while hypothermia attenuated RWMA (p = 0.008). A repeated catecholamine surge exacerbated RWMA in the acute phase (p = 0.042) but not during recovery (p = 0.308), with reduced RWMA susceptibility after recovery (RR 0.45, 95%CI; 0.27-0.76). Systolic function at initial echocardiography predicted worse outcomes (odds ratio 0.73; 95%CI 0.57-0.85), and RWMA extent correlated with recovery time (Rho = 0.772). TS rats developed complications similar to patients, including heart failure, arrhythmias, and thrombus formation. This study validates the small-animal TS model by replicating patient findings, and emphasizing the importance of controlling body temperature and limiting adrenergic drug use in managing TS. RWMA analysis offers promise as a diagnostic and prognostic tool in TS, and the delayed adaptive response presents a potential pathway for therapeutic intervention.
Collapse
Affiliation(s)
- Ermir Zulfaj
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at Gothenburg University, Bruna Stråket 16, Gothenburg, 413 45, Sweden.
| | - AmirAli Nejat
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at Gothenburg University, Bruna Stråket 16, Gothenburg, 413 45, Sweden
| | - Abdulhussain Haamid
- Core Facilities - Experimental Biomedicine, Sahlgrenska Academy, Göteborg, Sweden
| | - Aaron Espinosa
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at Gothenburg University, Bruna Stråket 16, Gothenburg, 413 45, Sweden
| | - Ahmed Elmahdy
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at Gothenburg University, Bruna Stråket 16, Gothenburg, 413 45, Sweden
| | - Tetiana Pylova
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at Gothenburg University, Bruna Stråket 16, Gothenburg, 413 45, Sweden
| | - Sandeep Jha
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at Gothenburg University, Bruna Stråket 16, Gothenburg, 413 45, Sweden
- Department of Cardiology, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Björn Redfors
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at Gothenburg University, Bruna Stråket 16, Gothenburg, 413 45, Sweden
- Department of Cardiology, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Elmir Omerovic
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at Gothenburg University, Bruna Stråket 16, Gothenburg, 413 45, Sweden
- Department of Cardiology, Sahlgrenska University Hospital, Göteborg, Sweden
| |
Collapse
|
3
|
Dube P, Khalaf FK, DeRiso A, Mohammed CJ, Connolly JA, Battepati D, Lad A, Breidenbach JD, Kleinhenz AL, Khatib-Shahidi B, Patel M, Tassavvor I, Gohara AF, Malhotra D, Morgan EE, Haller ST, Kennedy DJ. Cardioprotective Role for Paraoxonase-1 in Chronic Kidney Disease. Biomedicines 2022; 10:2301. [PMID: 36140402 PMCID: PMC9496500 DOI: 10.3390/biomedicines10092301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Paraoxonase-1 (PON-1) is a hydrolytic enzyme associated with HDL, contributing to its anti-inflammatory, antioxidant, and anti-atherogenic properties. Deficiencies in PON-1 activity result in oxidative stress and detrimental clinical outcomes in the context of chronic kidney disease (CKD). However, it is unclear if a decrease in PON-1 activity is mechanistically linked to adverse cardiovascular events in CKD. We investigated the hypothesis that PON-1 is cardioprotective in a Dahl salt-sensitive model of hypertensive renal disease. Experiments were performed on control Dahl salt-sensitive rats (SSMcwi, hereafter designated SS-WT rats) and mutant PON-1 rats (SS-Pon1em1Mcwi, hereafter designated SS-PON-1 KO rats) generated using CRISPR gene editing technology. Age-matched 10-week-old SS and SS-PON-1 KO male rats were maintained on high-salt diets (8% NaCl) for five weeks to induce hypertensive renal disease. Echocardiography showed that SS-PON-1 KO rats but not SS-WT rats developed compensated left ventricular hypertrophy after only 4 weeks on the high-salt diet. RT-PCR analysis demonstrated a significant increase in the expression of genes linked to cardiac hypertrophy, inflammation, and fibrosis, as well as a significant decrease in genes essential to left ventricular function in SS-PON-1 KO rats compared to SS-WT rats. A histological examination also revealed a significant increase in cardiac fibrosis and immune cell infiltration in SS-PON-1 KO rats, consistent with their cardiac hypertrophy phenotype. Our data suggest that a loss of PON-1 in the salt-sensitive hypertensive model of CKD leads to increased cardiac inflammation and fibrosis as well as a molecular and functional cardiac phenotype consistent with compensated left ventricular hypertrophy.
Collapse
Affiliation(s)
- Prabhatchandra Dube
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Fatimah K. Khalaf
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA
- Department of Clinical Pharmacy, University of Alkafeel, Najaf 54001, Iraq
| | - Armelle DeRiso
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Chrysan J. Mohammed
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Jacob A. Connolly
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Dhanushya Battepati
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Apurva Lad
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Joshua D. Breidenbach
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Andrew L. Kleinhenz
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Bella Khatib-Shahidi
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Mitra Patel
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Iman Tassavvor
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Amira F. Gohara
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Deepak Malhotra
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Eric E. Morgan
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA
| | - Steven T. Haller
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA
| | - David J. Kennedy
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
4
|
Pittenger MF, Eghtesad S, Sanchez PG, Liu X, Wu Z, Chen L, Griffith BP. MSC Pretreatment for Improved Transplantation Viability Results in Improved Ventricular Function in Infarcted Hearts. Int J Mol Sci 2022; 23:694. [PMID: 35054878 PMCID: PMC8775864 DOI: 10.3390/ijms23020694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/22/2022] Open
Abstract
Many clinical studies utilizing MSCs (mesenchymal stem cells, mesenchymal stromal cells, or multipotential stromal cells) are underway in multiple clinical settings; however, the ideal approach to prepare these cells in vitro and to deliver them to injury sites in vivo with maximal effectiveness remains a challenge. Here, pretreating MSCs with agents that block the apoptotic pathways were compared with untreated MSCs. The treatment effects were evaluated in the myocardial infarct setting following direct injection, and physiological parameters were examined at 4 weeks post-infarct in a rat permanent ligation model. The prosurvival treated MSCs were detected in the hearts in greater abundance at 1 week and 4 weeks than the untreated MSCs. The untreated MSCs improved ejection fraction in infarcted hearts from 61% to 77% and the prosurvival treated MSCs further improved ejection fraction to 83% of normal. The untreated MSCs improved fractional shortening in the infarcted heart from 52% to 68%, and the prosurvival treated MSCs further improved fractional shortening to 77% of normal. Further improvements in survival of the MSC dose seems possible. Thus, pretreating MSCs for improved in vivo survival has implications for MSC-based cardiac therapies and in other indications where improved cell survival may improve effectiveness.
Collapse
Affiliation(s)
- Mark F. Pittenger
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (S.E.); (P.G.S.); (X.L.); (Z.W.)
| | - Saman Eghtesad
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (S.E.); (P.G.S.); (X.L.); (Z.W.)
- Department of Biochemistry, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Pablo G. Sanchez
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (S.E.); (P.G.S.); (X.L.); (Z.W.)
- Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15260, USA
| | - Xiaoyan Liu
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (S.E.); (P.G.S.); (X.L.); (Z.W.)
| | - Zhongjun Wu
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (S.E.); (P.G.S.); (X.L.); (Z.W.)
| | - Ling Chen
- Departments of Physiology and Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
| | - Bartley P. Griffith
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (S.E.); (P.G.S.); (X.L.); (Z.W.)
| |
Collapse
|
5
|
Morgan EE, Morran MP, Horen NG, Weaver DA, Nestor-Kalinoski AL. RNO3 QTL Regulates Vascular Structure and Arterial Stiffness in the Spontaneously Hypertensive Rat. Physiol Genomics 2021; 53:534-545. [PMID: 34755572 PMCID: PMC9275012 DOI: 10.1152/physiolgenomics.00038.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increased arterial stiffness is an independent risk factor for hypertension, stroke, and cardiovascular morbidity. Thus, understanding the factors contributing to vascular stiffness is of critical importance. Here, we used a rat model containing a known quantitative trait locus (QTL) on chromosome 3 (RNO3) for vasoreactivity to assess potential genetic elements contributing to blood pressure, arterial stiffness, and their downstream effects on cardiac structure and function. Although no differences were found in blood pressure at any time point between parental spontaneously hypertensive rats (SHRs) and congenic SHR.BN3 rats, the SHRs showed a significant increase in arterial stiffness measured by pulse wave velocity. The degree of arterial stiffness increased with age in the SHRs and was associated with compensatory cardiac changes at 16 wk of age, and decompensatory changes at 32 wk, with no change in cardiac structure or function in the SHR.BN3 hearts at these time points. To evaluate the arterial wall structure, we used multiphoton microscopy to quantify cells and collagen content within the adventitia and media of SHR and SHR.BN3 arteries. No difference in cell numbers or proliferation rates was found, although phenotypic diversity was characterized in vascular smooth muscle cells. Herein, significant anatomical and physiological differences related to arterial structure and cardiovascular tone including collagen, pulse wave velocity (PWV), left ventricular (LV) geometry and function, and vascular smooth muscle cell (VSMC) contractile apparatus proteins were associated with the RNO3 QTL, thus providing a novel platform for studying arterial stiffness. Future studies delimiting the RNO3 QTL could aid in identifying genetic elements responsible for arterial structure and function.
Collapse
Affiliation(s)
- Eric E Morgan
- Department of Surgery, University of Toledo, Toledo, Ohio, United States.,Advanced Microscopy and Imaging Center, University of Toledo, Toledo, OH, United States.,Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Michael P Morran
- Department of Surgery, University of Toledo, Toledo, Ohio, United States.,Advanced Microscopy and Imaging Center, University of Toledo, Toledo, OH, United States
| | - Nicholas G Horen
- Department of Medicine, University of Toledo, Toledo, Ohio, United States
| | - David A Weaver
- Department of Surgery, University of Toledo, Toledo, Ohio, United States.,Advanced Microscopy and Imaging Center, University of Toledo, Toledo, OH, United States
| | - Andrea L Nestor-Kalinoski
- Department of Surgery, University of Toledo, Toledo, Ohio, United States.,Advanced Microscopy and Imaging Center, University of Toledo, Toledo, OH, United States
| |
Collapse
|
6
|
Prospective analysis of myocardial strain through the evolution of Chagas disease in the hamster animal model. Int J Cardiovasc Imaging 2021; 38:117-129. [PMID: 34535853 PMCID: PMC8818632 DOI: 10.1007/s10554-021-02379-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022]
Abstract
Speckle tracking echocardiography (STE) enables early diagnosis of myocardial damage by evaluating myocardial strain. We aimed to study sequential changes in structural and ventricular functional parameters during Chagas disease (CD) natural history in an animal model. 37 Syrian hamsters were inoculated intraperitoneally with Trypanosoma cruzi (Chagas) and 20 with saline (Control). Echocardiography was performed before the infection (baseline), at 1 month (acute phase), 4, 6, and 8 months (chronic phase) using Vevo 2100 (Fujifilm Inc.) ultrasound system. Left ventricular end-diastolic diameter, Left ventricular end-systolic diameter (LVESD), Left ventricular ejection fraction (LVEF), Global longitudinal (GLS), circumferential (GCS) and radial (GRS) strain were evaluated. Tricuspid annular plane systolic excursion (TAPSE) was used to assess right ventricular function. At 8 months, animals were euthanized and LV myocardial samples were analyzed for quantitation of inflammation and fibrosis. LVEF decreased over time in Chagas group and a difference from Control was detected at 6 months (p-value of groups#time interaction = 0.005). There was a pronounced decrease in GLS, GCS and TAPSE in Chagas group (p-value of groups#time interaction = 0.003 for GLS, < 0.001 for GCS and < 0.009 for TAPSE vs Control) since the first month. LVESD, LVEF and GLS were significantly correlated to the number of inflammatory cells (r = 0.41, p = 0.046; r = − 0.42, p = 0.042; r = 0.41, p = 0.047) but not to fibrosis. In the Syrian hamster model of CD STE parameters (GLS and GCS) showed an early decrease. Changes in LVEF, LVESD, and GLS were correlated to myocardial inflammation but not to fibrosis.
Collapse
|
7
|
Vargas AL, Dias BDP, Moreira HT, Oliveira Filho ECD, Tanaka DM, Simões MV, Maciel BC, Schmidt A, Marin Neto JA, Romano MMD. Prospective study of ventricular function and myocardial deformation related to survival in acute Chagas disease: an experimental animal model. Rev Inst Med Trop Sao Paulo 2021; 63:e61. [PMID: 34378764 PMCID: PMC8357302 DOI: 10.1590/s1678-9946202163061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/23/2021] [Indexed: 11/22/2022] Open
Abstract
Chagas disease (CD) has been changing from an endemic Latino-American disease to a condition found outside endemic regions, due to migratory movements. Although often subclinical, its acute phase can be lethal. This study aimed to assess survival during the acute phase of CD and its relationship with ventricular function in an experimental model. To this end, 30 Syrian hamsters were inoculated with Trypanosoma cruzi (IG) and other 15 animals received saline solution (CG). Groups were monitored daily and submitted to echocardiography in two moments: before the challenge and 15 days post-infection. Left ventricular ejection fraction (LVEF) and global longitudinal myocardial strain (GLS) of the LV were measured. The IG was divided into groups of animals with and without clinical signs of disease. ANOVA for mixed models was used to compare ventricular function parameters. Survival analysis was studied using Kaplan-Meier curves and the log-rank test. The follow-up lasted 60 days. LVEF in IG was reduced through time (53.80 to 43.55%) compared to CG (57.86 to 59.73%) (p=0.002). There was also a reduction of GLS (-18.97% to -12.44%) in the IG compared to CG (p=0.012). Twelve animals from IG died compared to one animal from CG. Eleven out of the 12 animals from the IG group died before presenting with clinical signs of infection. Survival was reduced in the IG compared to CG over time (p=0.02). The reduced survival during the acute phase of this experimental model of Chagas disease was related to the significant reduction of LV function. The mortality rate in the IG was higher in the group presenting with clinical signs of infection.
Collapse
Affiliation(s)
- Arthur Lauand Vargas
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Centro de Cardiologia, Ribeirão Preto, São Paulo, Brazil
| | - Beatriz de Paula Dias
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Centro de Cardiologia, Ribeirão Preto, São Paulo, Brazil
| | - Henrique Turin Moreira
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Centro de Cardiologia, Ribeirão Preto, São Paulo, Brazil
| | - Edgard Camilo de Oliveira Filho
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Centro de Cardiologia, Ribeirão Preto, São Paulo, Brazil
| | - Denise Mayumi Tanaka
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Centro de Cardiologia, Ribeirão Preto, São Paulo, Brazil
| | - Marcus Vinicius Simões
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Centro de Cardiologia, Ribeirão Preto, São Paulo, Brazil
| | - Benedito Carlos Maciel
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Centro de Cardiologia, Ribeirão Preto, São Paulo, Brazil
| | - André Schmidt
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Centro de Cardiologia, Ribeirão Preto, São Paulo, Brazil
| | - José Antônio Marin Neto
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Centro de Cardiologia, Ribeirão Preto, São Paulo, Brazil
| | - Minna Moreira Dias Romano
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Centro de Cardiologia, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
8
|
Barros Filho ACL, Moreira HT, Dias BP, Ribeiro FFF, Tanaka DM, Schmidt A, Maciel BC, Simões MV, Marin-Neto JA, Romano MMD. Feasibility and reference intervals assessed by conventional and speckle-tracking echocardiography in normal hamsters. Physiol Rep 2021; 9:e14776. [PMID: 33650789 PMCID: PMC7923569 DOI: 10.14814/phy2.14776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/05/2021] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES This study aimed to determine feasibility, reference intervals, and reproducibility of left ventricular ejection fraction (LVEF) and speckle-tracking echocardiography (STE) in adult Syrian hamsters. BACKGROUND Syrian hamster is an experimental model for several heart diseases. Echocardiography allows the evaluation of structure and function with bidimensional conventional techniques and STE. However, there is no data regarding reference values for bidimensional LVEF and myocardial strain in hamsters. METHODS A total of 135 female Syrian hamsters were anesthetized and studied with a small animal dedicated echocardiography system. Echocardiography measurements were obtained from M-mode and B-mode images. Feasibility and 95% reference intervals were obtained for LVEF using three different approaches: LVEF_Teichholz (from M-mode linear measurements), LVEF_BMode (from area-length method), and LVEF_ STE (from strain), and for global longitudinal (GLS), circumferential (GCS), and radial (GRS) endocardial strain. Reproducibility was assessed as intra-class correlation coefficients. RESULTS Feasibility of LVEF and endocardial strain was high (95% in FEVE_Teichholz, 93% in the LVEF_BMode, 84% in the LVEF_STE, 84% from PSLAX, and 80% from PSSAX). Values of LVEF_Teichholz were significantly higher than values of LVEF_BMode, and LVEF_STE-derived methods (59.0 ± 5.8, 53.8 ± 4.7, 46.3 ± 5.7, p < 0.0001). The 95% reference intervals for GLS, GCS, and GRS were respectively -13.6(-7.5;-20.4)%, -20.5 ± 3.1%, and + 34,7 ± 7.0%. Intra-class correlation coefficients were 0.49 - 0.91 for LVEF measurements, 0.73 - 0.92 for STE, with better results for LVEF_Teichholz and GLS. CONCLUSIONS Evaluation of LVEF by several methods and STE parameters is feasible in hamsters. Reference intervals for LVEF and STE obtained for this experimental animal model can be applied at future research.
Collapse
Affiliation(s)
- Antonio C L Barros Filho
- Cardiology Center of the Medical School of Ribeirao Preto, University of Sao Paulo, São Paulo, Brazil
| | - Henrique T Moreira
- Cardiology Center of the Medical School of Ribeirao Preto, University of Sao Paulo, São Paulo, Brazil
| | - Beatriz P Dias
- Cardiology Center of the Medical School of Ribeirao Preto, University of Sao Paulo, São Paulo, Brazil
| | - Fernando F F Ribeiro
- Cardiology Center of the Medical School of Ribeirao Preto, University of Sao Paulo, São Paulo, Brazil
| | - Denise M Tanaka
- Cardiology Center of the Medical School of Ribeirao Preto, University of Sao Paulo, São Paulo, Brazil
| | - André Schmidt
- Cardiology Center of the Medical School of Ribeirao Preto, University of Sao Paulo, São Paulo, Brazil
| | - Benedito C Maciel
- Cardiology Center of the Medical School of Ribeirao Preto, University of Sao Paulo, São Paulo, Brazil
| | - Marcus V Simões
- Cardiology Center of the Medical School of Ribeirao Preto, University of Sao Paulo, São Paulo, Brazil
| | - José A Marin-Neto
- Cardiology Center of the Medical School of Ribeirao Preto, University of Sao Paulo, São Paulo, Brazil
| | - Minna M D Romano
- Cardiology Center of the Medical School of Ribeirao Preto, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Sztechman D, Żera T, Czarzasta K, Wojciechowska M, Szczepańska-Sadowska E, Cudnoch-Jędrzejewska A. Transthoracic echocardiography: from guidelines for humans to cardiac ultrasound of the heart in rats. Physiol Meas 2020; 41:10TR02. [PMID: 33164918 DOI: 10.1088/1361-6579/abb3a3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ultrasound examination of the heart is a cornerstone of clinical evaluation of patients with established or suspected cardiovascular conditions. Advancements in ultrasound imaging technology have brought transthoracic echocardiography to preclinical murine models of cardiovascular diseases. The translational potential of cardiac ultrasound is critically important in rat models of myocardial infarction and ischemia-reperfusion injury, congestive heart failure, arterial hypertension, cardiac hypertrophy, pulmonary hypertension, right heart failure, Takotsubo cardiomyopathy, hypertrophic and dilated cardiomyopathies, developmental disorders, and metabolic syndrome. Modern echocardiographic machines capable of high-frame-rate image acquisition and fitted with high-frequency transducers allow for cardiac ultrasound in rats that yields most of the echocardiographic measurements and indices recommended by international guidelines for cardiac ultrasound in human patients. Among them are dimensions of cardiac chambers and walls, indices of systolic and diastolic cardiac function, and valvular function. In addition, measurements of cardiac dimensions and ejection fraction can be significantly improved by intravenous administration of ultrasound enhancing agents (UEAs). In this article we discuss echocardiography in rats, describe a technique for minimally invasive intravenous administration of UEAs via the saphenous vein and present a step-by-step approach to cardiac ultrasound in rats.
Collapse
Affiliation(s)
- Dorota Sztechman
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
10
|
Roy S, Edwards JM, Tomcho JC, Schreckenberger Z, Bearss NR, Zhang Y, Morgan EE, Cheng X, Spegele AC, Vijay-Kumar M, McCarthy CG, Koch LG, Joe B, Wenceslau CF. Intrinsic Exercise Capacity and Mitochondrial DNA Lead to Opposing Vascular-Associated Risks. FUNCTION (OXFORD, ENGLAND) 2020; 2:zqaa029. [PMID: 33363281 PMCID: PMC7749784 DOI: 10.1093/function/zqaa029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 01/06/2023]
Abstract
Exercise capacity is a strong predictor of all-cause morbidity and mortality in humans. However, the associated hemodynamic traits that link this valuable indicator to its subsequent disease risks are numerable. Additionally, exercise capacity has a substantial heritable component and genome-wide screening indicates a vast amount of nuclear and mitochondrial DNA (mtDNA) markers are significantly associated with traits of physical performance. A long-term selection experiment in rats confirms a divide for cardiovascular risks between low- and high-capacity runners (LCR and HCR, respectively), equipping us with a preclinical animal model to uncover new mechanisms. Here, we evaluated the LCR and HCR rat model system for differences in vascular function at the arterial resistance level. Consistent with the known divide between health and disease, we observed that LCR rats present with resistance artery and perivascular adipose tissue dysfunction compared to HCR rats that mimic qualities important for health, including improved vascular relaxation. Uniquely, we show by generating conplastic strains, which LCR males with mtDNA of female HCR (LCR-mtHCR/Tol) present with improved vascular function. Conversely, HCR-mtLCR/Tol rats displayed indices for cardiac dysfunction. The outcome of this study suggests that the interplay between the nuclear genome and the maternally inherited mitochondrial genome with high intrinsic exercise capacity is a significant factor for improved vascular physiology, and animal models developed on an interaction between nuclear and mtDNA are valuable new tools for probing vascular risk factors in the offspring.
Collapse
Affiliation(s)
- Shaunak Roy
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Jonnelle M Edwards
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Jeremy C Tomcho
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Zachary Schreckenberger
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Nicole R Bearss
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Youjie Zhang
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Eric E Morgan
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences,Department of Radiology Nationwide Children's Hospital, OH, USA
| | - Xi Cheng
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Adam C Spegele
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Matam Vijay-Kumar
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Cameron G McCarthy
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Lauren G Koch
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Bina Joe
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences
| | - Camilla Ferreira Wenceslau
- Department of Pharmacology and Physiology, University of Toledo College of Medicine and Life Sciences,Address correspondence to C.F.W. (e-mail: )
| |
Collapse
|
11
|
Rutledge C, Cater G, McMahon B, Guo L, Nouraie SM, Wu Y, Villanueva F, Kaufman BA. Commercial 4-dimensional echocardiography for murine heart volumetric evaluation after myocardial infarction. Cardiovasc Ultrasound 2020; 18:9. [PMID: 32164714 PMCID: PMC7068892 DOI: 10.1186/s12947-020-00191-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/26/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Traditional preclinical echocardiography (ECHO) modalities, including 1-dimensional motion-mode (M-Mode) and 2-dimensional long axis (2D-US), rely on geometric and temporal assumptions about the heart for volumetric measurements. Surgical animal models, such as the mouse coronary artery ligation (CAL) model of myocardial infarction, result in morphologic changes that do not fit these geometric assumptions. New ECHO technology, including 4-dimensional ultrasound (4D-US), improves on these traditional models. This paper aims to compare commercially available 4D-US to M-mode and 2D-US in a mouse model of CAL. METHODS 37 mice underwent CAL surgery, of which 32 survived to a 4 week post-operative time point. ECHO was completed at baseline, 1 week, and 4 weeks after CAL. M-mode, 2D-US, and 4D-US were taken at each time point and evaluated by two separate echocardiographers. At 4 weeks, a subset (n = 12) of mice underwent cardiac magnetic resonance (CMR) imaging to serve as a reference standard. End systolic volume (ESV), end diastolic volume (EDV), and ejection fraction (EF) were compared among imaging modalities. Hearts were also collected for histologic evaluation of scar size (n = 16) and compared to ECHO-derived wall motion severity index (WMSI) and global longitudinal strain as well as gadolinium-enhanced CMR to compare scar assessment modalities. RESULTS 4D-US provides close agreement of ESV (Bias: -2.55%, LOA: - 61.55 to 66.66) and EF (US Bias: 11.23%, LOA - 43.10 to 102.8) 4 weeks after CAL when compared to CMR, outperforming 2D-US and M-mode estimations. 4D-US has lower inter-user variability as measured by intraclass correlation (ICC) in the evaluation of EDV (0.91) and ESV (0.93) when compared to other modalities. 4D-US also allows for rapid assessment of WMSI, which correlates strongly with infarct size by histology (r = 0.77). CONCLUSION 4D-US outperforms M-Mode and 2D-US for volumetric analysis 4 weeks after CAL and has higher inter-user reliability. 4D-US allows for rapid calculation of WMSI, which correlates well with histologic scar size.
Collapse
Affiliation(s)
- Cody Rutledge
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - George Cater
- Division of Cardiology, Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brenda McMahon
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lanping Guo
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Seyed Mehdi Nouraie
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yijen Wu
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Flordeliza Villanueva
- Division of Cardiology, Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Brett A Kaufman
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Connelly KA, Zhang Y, Desjardins JF, Nghiem L, Visram A, Batchu SN, Yerra VG, Kabir G, Thai K, Advani A, Gilbert RE. Load-independent effects of empagliflozin contribute to improved cardiac function in experimental heart failure with reduced ejection fraction. Cardiovasc Diabetol 2020; 19:13. [PMID: 32035482 PMCID: PMC7007658 DOI: 10.1186/s12933-020-0994-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/26/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND AIMS Sodium-glucose linked cotransporter-2 (SGLT2) inhibitors reduce the likelihood of hospitalization for heart failure and cardiovascular death in both diabetic and non-diabetic individuals with reduced ejection fraction heart failure. Because SGLT2 inhibitors lead to volume contraction with reductions in both preload and afterload, these load-dependent factors are thought to be major contributors to the cardioprotective effects of the drug class. Beyond these effects, we hypothesized that SGLT2 inhibitors may also improve intrinsic cardiac function, independent of loading conditions. METHODS Pressure-volume (P-V) relationship analysis was used to elucidate changes in intrinsic cardiac function, independent of alterations in loading conditions in animals with experimental myocardial infarction, a well-established model of HFrEF. Ten-week old, non-diabetic Fischer F344 rats underwent ligation of the left anterior descending (LAD) coronary artery to induce myocardial infarction (MI) of the left ventricle (LV). Following confirmation of infarct size with echocardiography 1-week post MI, animals were randomized to receive vehicle, or the SGLT2 inhibitor, empagliflozin. Cardiac function was assessed by conductance catheterization just prior to termination 6 weeks later. RESULTS The circumferential extent of MI in animals that were subsequently randomized to vehicle or empagliflozin groups was similar. Empagliflozin did not affect fractional shortening (FS) as assessed by echocardiography. In contrast, load-insensitive measures of cardiac function were substantially improved with empagliflozin. Load-independent measures of cardiac contractility, preload recruitable stroke work (PRSW) and end-systolic pressure volume relationship (ESPVR) were higher in rats that had received empagliflozin. Consistent with enhanced cardiac performance in the heart failure setting, systolic blood pressure (SBP) was higher in rats that had received empagliflozin despite its diuretic effects. A trend to improved diastolic function, as evidenced by reduction in left ventricular end-diastolic pressure (LVEDP) was also seen with empagliflozin. MI animals treated with vehicle demonstrated myocyte hypertrophy, interstitial fibrosis and evidence for changes in key calcium handling proteins (all p < 0.05) that were not affected by empagliflozin therapy. CONCLUSION Empagliflozin therapy improves cardiac function independent of loading conditions. These findings suggest that its salutary effects are, at least in part, due to actions beyond a direct effect of reduced preload and afterload.
Collapse
Affiliation(s)
- Kim A Connelly
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, M5C 2T2, ON, Canada.
| | - Yanling Zhang
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, M5C 2T2, ON, Canada
| | - Jean-François Desjardins
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, M5C 2T2, ON, Canada
| | - Linda Nghiem
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, M5C 2T2, ON, Canada
| | - Aylin Visram
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, M5C 2T2, ON, Canada
| | - Sri N Batchu
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, M5C 2T2, ON, Canada
| | - Verra G Yerra
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, M5C 2T2, ON, Canada
| | - Golam Kabir
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, M5C 2T2, ON, Canada
| | - Kerri Thai
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, M5C 2T2, ON, Canada
| | - Andrew Advani
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, M5C 2T2, ON, Canada
| | - Richard E Gilbert
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, M5C 2T2, ON, Canada.
| |
Collapse
|
13
|
A novel index equivalent to the myocardial performance index for right ventricular functional assessment in children and adolescent patients. Sci Rep 2019; 9:19975. [PMID: 31882794 PMCID: PMC6934714 DOI: 10.1038/s41598-019-56564-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/13/2019] [Indexed: 11/19/2022] Open
Abstract
The aims of the present study were to develop and check the utility and feasibility of a novel right ventricular (RV) functional index (RV angular velocity; RVω, s−1) derived from the angular velocity in harmonic oscillator kinematics obtained from the RV pressure waveform. We hypothesized that RVω reflects the myocardial performance index (MPI), which represents global RV function. A total of 132 consecutive patients, ranging in age from 3 months to 34 years with various cardiac diseases were included in this prospective study. RVω was defined as the difference between the peak derivative of pressure (dP/dt_max − dP/dt_min) divided by the difference between the maximum and minimum pressure (Pmax – Pmin). RVω showed significant negative correlations with the pulsed-wave Doppler-derived myocardial performance index (PWD-MPI) and the tissue Doppler imaging-derived MPI (TDI-MPI) (r = −0.52 and −0.51, respectively; both p < 0.0001). RVω also showed significant positive correlations with RV fractional area change (RVFAC) and RV ejection fraction (RVEF) (r = 0.41 and 0.39, respectively; both p < 0.0001), as well as a significant negative correlation with tricuspid E/e′ (r = −0.19, p = 0.0283). The clinical feasibility and utility of RVω for assessing global RV performance, incorporating both systolic and diastolic function, were demonstrated.
Collapse
|
14
|
Zhang Y, Kumarasamy S, Mell B, Cheng X, Morgan EE, Britton SL, Vijay-Kumar M, Koch LG, Joe B. Vertical selection for nuclear and mitochondrial genomes shapes gut microbiota and modifies risks for complex diseases. Physiol Genomics 2019; 52:1-14. [PMID: 31762410 DOI: 10.1152/physiolgenomics.00089.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Here we postulate that the heritability of complex disease traits previously ascribed solely to the inheritance of the nuclear and mitochondrial genomes is broadened to encompass a third component of the holobiome, the microbiome. To test this, we expanded on the selectively bred low capacity runner/high capacity runner (LCR/HCR) rat exercise model system into four distinct rat holobiont model frameworks including matched and mismatched host nuclear and mitochondrial genomes. Vertical selection of varying nuclear and mitochondrial genomes resulted in differential acquisition of the microbiome within each of these holobiont models. Polygenic disease risk of these novel models were assessed and subsequently correlated with patterns of acquisition and contributions of their microbiomes in controlled laboratory settings. Nuclear-mitochondrial-microbiotal interactions were not for exercise as a reporter of health, but significantly noted for increased adiposity, increased blood pressure, compromised cardiac function, and loss of long-term memory as reporters of disease susceptibility. These findings provide evidence for coselection of the microbiome with nuclear and mitochondrial genomes as an important feature impacting the heritability of complex diseases.
Collapse
Affiliation(s)
- Youjie Zhang
- Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Sivarajan Kumarasamy
- Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Blair Mell
- Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Xi Cheng
- Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Eric E Morgan
- Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio.,Department of Radiology, University of Toledo Medical Center, Toledo, Ohio
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan.,Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Matam Vijay-Kumar
- Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Lauren Gerard Koch
- Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Bina Joe
- Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|
15
|
Katz MG, Fargnoli AS, Gubara SM, Chepurko E, Bridges CR, Hajjar RJ. Surgical and physiological challenges in the development of left and right heart failure in rat models. Heart Fail Rev 2019; 24:759-777. [PMID: 30903356 PMCID: PMC6698228 DOI: 10.1007/s10741-019-09783-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rodent surgical animal models of heart failure (HF) are critically important for understanding the proof of principle of the cellular alterations underlying the development of the disease as well as evaluating therapeutics. Robust, reproducible rodent models are a prerequisite to the development of pharmacological and molecular strategies for the treatment of HF in patients. Due to the absence of standardized guidelines regarding surgical technique and clear criteria for HF progression in rats, objectivity is compromised. Scientific publications in rats rarely fully disclose the actual surgical details, and technical and physiological challenges. This lack of reporting is one of the main reasons that the outcomes specified in similar studies are highly variable and associated with unnecessary loss of animals, compromising scientific assessment. This review details rat circulatory and coronary arteries anatomy, the surgical details of rat models that recreate the HF phenotype of myocardial infarction, ischemia/reperfusion, left and right ventricular pressure, and volume overload states, and summarizes the technical and physiological challenges of creating HF. The purpose of this article is to help investigators understand the underlying issues of current HF models in order to reduce variable results and ensure successful, reproducible models of HF.
Collapse
Affiliation(s)
- Michael G Katz
- Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., Box 1030, New York, NY, 10029-6574, USA.
| | - Anthony S Fargnoli
- Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., Box 1030, New York, NY, 10029-6574, USA
| | - Sarah M Gubara
- Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., Box 1030, New York, NY, 10029-6574, USA
| | - Elena Chepurko
- Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., Box 1030, New York, NY, 10029-6574, USA
| | - Charles R Bridges
- Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., Box 1030, New York, NY, 10029-6574, USA
| | - Roger J Hajjar
- Cardiovascular Research Center, Department of Cardiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., Box 1030, New York, NY, 10029-6574, USA
| |
Collapse
|
16
|
The Effect of Electronic-Cigarette Vaping on Cardiac Function and Angiogenesis in Mice. Sci Rep 2019; 9:4085. [PMID: 30858470 PMCID: PMC6411855 DOI: 10.1038/s41598-019-40847-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 02/13/2019] [Indexed: 01/19/2023] Open
Abstract
The rapid increase in use of electronic-cigarettes (e-cigarettes), especially among youth, raises the urgency for regulating bodies to make informed decisions, guidance, and policy on these products. This study evaluated cardiac function in an experimental model following exposure to e-cigarettes. We subjected C57BL/6 mice to e-cigarette vaping for 2-weeks, and cardiac function was assessed using echocardiography. Cardiac tissues were collected at the end of e-cigarette exposure for pathological analysis. The experimental data showed that e-cigarette vaping (3 h/day for 14 days) had no significant effect on cardiac contractility as measured by ejection fraction. However, it significantly increased angiogenesis in mouse heart tissue. We found that e-cigarette exposure increased the endothelial cell marker CD31 and CD34 to approximately 2 fold (p < 0.05) in heart tissue from female mice and about 150% (p < 0.05) in male mice. E-cigarette vaping also caused slower weight gain compared to mice exposed to room air. In addition, short-term e-cigarette exposure slightly increased collagen content in heart tissue but did not result in significant tissue fibrosis. These results suggest that short-term exposure to e-cigarettes has no acute effect on cardiac contractile function or tissue fibrosis, but it increases cardiac angiogenesis.
Collapse
|
17
|
Connelly KA, Zhang Y, Desjardins JF, Thai K, Gilbert RE. Dual inhibition of sodium-glucose linked cotransporters 1 and 2 exacerbates cardiac dysfunction following experimental myocardial infarction. Cardiovasc Diabetol 2018; 17:99. [PMID: 29981571 PMCID: PMC6035399 DOI: 10.1186/s12933-018-0741-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/02/2018] [Indexed: 12/17/2022] Open
Abstract
Background Inhibiting both type 1 and 2 sodium–glucose linked cotransporter (SGLT1/2) offers the potential to not only increase glucosuria beyond that seen with selective SGLT2 inhibition alone but to reduce glucose absorption from the gut and to thereby also stimulate glucagon-like peptide 1 secretion. However, beyond the kidney and gut, SGLT1 is expressed in a range of other organs particularly the heart where it potentially assists GLUT-mediated glucose transport. Since cardiac myocytes become more reliant on glucose as a fuel source in the setting of stress, the present study sought to compare the effects of dual SGLT1/2 inhibition with selective SGLT2 inhibition in the normal and diseased heart. Methods Fischer F344 rats underwent ligation of the left anterior descending coronary artery or sham ligation before being randomized to receive the dual SGLT1/2 inhibitor, T-1095, the selective SGLT2 inhibitor, dapagliflozin or vehicle. In addition to measuring laboratory parameters, animals also underwent echocardiography and cardiac catheterization to assess systolic and diastolic function in detail. Results When compared with rats that had received either vehicle or dapagliflozin, T-1095 exacerbated cardiac dysfunction in the post myocardial infarction setting. In addition to higher lung weights, T-1095 treated rats had evidence of worsened systolic function with lower ejection fractions and reduction in the rate of left ventricle pressure rise in early systole (dP/dtmax). Diastolic function was also worse in animals that had received T-1095 with prolongation of the time constant for isovolumic-pressure decline (Tau) and an increase in the end-diastolic pressure volume relationship, indices of the active, energy-dependent and passive phases of cardiac relaxation. Conclusions The exacerbation of post myocardial infarction cardiac dysfunction with T-1095 in the experimental setting suggests the need for caution with the use of dual SGLT1/2 inhibitors in humans.
Collapse
Affiliation(s)
- Kim A Connelly
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
| | - Yanling Zhang
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
| | - Jean-François Desjardins
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
| | - Kerri Thai
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada
| | - Richard E Gilbert
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 61 Queen Street East, Toronto, ON, M5C 2T2, Canada.
| |
Collapse
|
18
|
Estrogen and DPP4 inhibitor, but not metformin, exert cardioprotection via attenuating cardiac mitochondrial dysfunction in obese insulin-resistant and estrogen-deprived female rats. Menopause 2018; 23:894-902. [PMID: 27326818 DOI: 10.1097/gme.0000000000000640] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Cardiac function was markedly compromised in obese insulin-resistant and estrogen-deprived rats. Metformin and dipeptidyl peptidase-4 inhibitor (vildagliptin) were reported to improve cardiac function in insulin-resistant rats. Their effects on the heart under estrogen-deprived conditions are, however, unknown. Therefore, the effects of metformin, vildagliptin, and estrogen on the cardiac function in estrogen-deprived insulin-resistant female rats were investigated. METHODS Bilateral ovariectomized female rats (n = 48) were divided to be fed with either a normal diet (ND) or a high-fat diet (HFD) for 12 weeks. Then, both ND- and HFD-fed groups were subdivided to receive a vehicle, estrogen (50 μg/kg), metformin (30 mg/kg), or vildagliptin (3 mg/kg) for 4 weeks (n = 6/group). Heart rate variability, echocardiography, metabolic and biochemical parameters, cardiac function, and mitochondrial function were determined. Sham-operated female rats (n = 6) were used as a control. RESULTS Both ND- and HFD-fed ovariectomized rats developed insulin resistance, depressed heart rate variability, and decreased cardiac contractility. Although treatment with metformin, vildagliptin, and estrogen improved metabolic status and cardiac function, only estrogen and vildagliptin improved diastolic blood pressure and left ventricular ±dP/dt, and also reduced mitochondrial impairment, apoptosis, and oxidative stress in HD-fed ovariectomized rats. CONCLUSIONS Treatment with estrogen and vildagliptin provided more beneficial effects in the inhibition of oxidative stress, apoptosis, and cardiac mitochondrial dysfunction, and preserved cardiac contractile performance in estrogen-deprived insulin-resistant female rats.
Collapse
|
19
|
Cheng X, Waghulde H, Mell B, Morgan EE, Pruett-Miller SM, Joe B. Positional cloning of quantitative trait nucleotides for blood pressure and cardiac QT-interval by targeted CRISPR/Cas9 editing of a novel long non-coding RNA. PLoS Genet 2017; 13:e1006961. [PMID: 28827789 PMCID: PMC5578691 DOI: 10.1371/journal.pgen.1006961] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/31/2017] [Accepted: 08/07/2017] [Indexed: 01/11/2023] Open
Abstract
Multiple GWAS studies have reported strong association of cardiac QT-interval to a region on HSA17. Interestingly, a rat locus homologous to this region is also linked to QT-intervals. The high resolution positional mapping study located the rat QT-interval locus to a <42.5kb region on RNO10. This region contained no variants in protein-coding sequences, but a prominent contiguous 19bp indel polymorphism was noted within a novel predicted long non-coding RNA (lncRNA), which we named as Rffl-lnc1. To assess the candidacy of this novel lncRNA on QT-interval, targeted CRISPR/Cas9 based genome-engineering approaches were applied on the rat strains used to map this locus. Targeted disruption of the rat Rffl-lnc1 locus caused aberrant, short QT-intervals and elevated blood pressure. Further, to specifically examine the significance of the 19bp polymorphism within the Rffl-lnc1 locus, a CRISPR/Cas9 based targeted knock-in rescue model was constructed by inserting the 19bp into the strain which contained the deletion polymorphism. The knock-in alleles successfully rescued the aberrant QT-interval and blood pressure phenotypes. Further studies revealed that the 19bp polymorphism was necessary and sufficient to recapitulate the phenotypic effect of the previously mapped <42.5kb rat locus. To our knowledge, this study is the first demonstration of a combination of both CRISPR/Cas9 based targeted disruption as well as CRISPR/Cas9 based targeted knock-in rescue approaches applied for a mammalian positional cloning study, which defines the quantitative trait nucleotides (QTNs) within a rat long non-coding RNA as being important for the pleiotropic regulation of both cardiac QT-intervals and blood pressure. Diseases of the cardiovascular system such as essential hypertension do not have a clear cause, but are known to run in families. The inheritance patterns of essential hypertension and other cardiac diseases suggest that they are not due to a single defective gene but instead are caused by multiple genetic defects that are inherited together in a patient. This complex inheritance makes it difficult to pinpoint the underlying defects. Here, we describe a panel of genetically-engineered rats, using which we have discovered a novel gene, which does not code for any protein, as a gene required for maintenance of normal blood pressure. Structural defects within this non-coding RNA cause hypertension and cardiac short-QT interval. Further, by performing genome surgery to correct the gene defect, we demonstrate the precise error in nucleotides that was inherited and caused hypertension and cardiac short-QT interval syndrome.
Collapse
Affiliation(s)
- Xi Cheng
- Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Harshal Waghulde
- Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Blair Mell
- Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Eric E. Morgan
- Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
- Department of Radiology, University of Toledo Medical Center, Toledo, OH, United States of America
| | - Shondra M. Pruett-Miller
- Department of Cell & Molecular Biology, Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, United States of America
| | - Bina Joe
- Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
- * E-mail:
| |
Collapse
|
20
|
Oliveira LFLD, O'Connell JL, Carvalho EEVD, Pulici ÉCC, Romano MMD, Maciel BC, Simões MV. Comparison between Radionuclide Ventriculography and Echocardiography for Quantification of Left Ventricular Systolic Function in Rats Exposed to Doxorubicin. Arq Bras Cardiol 2017; 108:12-20. [PMID: 28146205 PMCID: PMC5245843 DOI: 10.5935/abc.20160194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 06/28/2016] [Indexed: 12/11/2022] Open
Abstract
Background Radionuclide ventriculography (RV) is a validated method to evaluate the left
ventricular systolic function (LVSF) in small rodents. However, no prior
study has compared the results of RV with those obtained by other imaging
methods in this context. Objectives To compare the results of LVSF obtained by RV and echocardiography (ECHO) in
an experimental model of cardiotoxicity due to doxorubicin (DXR) in rats.
Methods Adult male Wistar rats serving as controls (n = 7) or receiving DXR (n = 22)
in accumulated doses of 8, 12, and 16 mg/kg were evaluated with ECHO
performed with a Sonos 5500 Philips equipment (12-MHz transducer) and RV
obtained with an Orbiter-Siemens gamma camera using a pinhole collimator
with a 4-mm aperture. Histopathological quantification of myocardial
fibrosis was performed after euthanasia. Results The control animals showed comparable results in the LVSF analysis obtained
with ECHO and RV (83.5 ± 5% and 82.8 ± 2.8%, respectively, p
> 0.05). The animals that received DXR presented lower LVSF values when
compared with controls (p < 0.05); however, the LVSF values obtained by
RV (60.6 ± 12.5%) were lower than those obtained by ECHO (71.8
± 10.1%, p = 0.0004) in this group. An analysis of the correlation
between the LVSF and myocardial fibrosis showed a moderate correlation when
the LVSF was assessed by ECHO (r = -0.69, p = 0.0002) and a stronger
correlation when it was assessed by RV (r = -0.79, p < 0.0001). On
multiple regression analysis, only RV correlated independently with
myocardial fibrosis. Conclusion RV is an alternative method to assess the left ventricular function in small
rodents in vivo. When compared with ECHO, RV showed a better correlation
with the degree of myocardial injury in a model of DXR-induced
cardiotoxicity.
Collapse
Affiliation(s)
| | | | | | | | | | - Benedito Carlos Maciel
- Centro de Cardiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - Marcus Vinicius Simões
- Centro de Cardiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brazil
| |
Collapse
|
21
|
Varela A, Mavroidis M, Katsimpoulas M, Sfiroera I, Kappa N, Mesa A, Kostomitsopoulos NG, Cokkinos DV. The neuroprotective agent Rasagiline mesylate attenuates cardiac remodeling after experimental myocardial infarction. ESC Heart Fail 2017; 4:331-340. [PMID: 28772050 PMCID: PMC5542732 DOI: 10.1002/ehf2.12140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 12/21/2016] [Accepted: 01/10/2017] [Indexed: 12/22/2022] Open
Abstract
AIM Rasagiline mesylate (N-propargyl-1 (R)-aminoindan) (RG) is a selective, potent irreversible inhibitor of monoamine oxidase-B with cardioprotective and anti-apoptotic properties. We investigated whether it could be cardioprotective in a rat model undergoing experimental myocardial infarction (MI) by permanent ligation of the left anterior descending coronary artery. METHODS AND RESULTS RG was administered, intraperitoneally, for 28 days (2 mg/kg) starting 24 h after MI induction. Echocardiography analysis revealed a significant reduction in left ventricular end-systolic and diastolic dimensions and preserved fractional shortening in RG-treated compared with normal saline group at 28 days post-MI (31.6 ± 2.3 vs. 19.6 ± 1.8, P < 0.0001), respectively. Treatment with RG prevented tissue fibrosis as indicated by interstitial collagen estimation by immunofluorescence staining and hydroxyproline content and attenuated the number of apoptotic myocytes in the border zone (65%) as indicated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Caspase 3 relative protein levels were significantly decreased in the non-infarcted myocardium. Markedly decreased malondialdehyde levels in the border zone indicate a reduction in tissue oxidative stress. CONCLUSIONS Our study demonstrates a positive effect of RG in the post-MI period with a significant attenuation in cardiac remodelling.
Collapse
Affiliation(s)
- Aimilia Varela
- Clinical, Experimental Surgery and Translational Research Center, Athens, Greece
| | - Manolis Mavroidis
- Basic Research Center, Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
| | | | - Irini Sfiroera
- Basic Research Center, Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
| | - Niki Kappa
- Basic Research Center, Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
| | - Angelica Mesa
- Clinical, Experimental Surgery and Translational Research Center, Athens, Greece
| | | | - Dennis V Cokkinos
- Clinical, Experimental Surgery and Translational Research Center, Athens, Greece
| |
Collapse
|
22
|
Methylene blue decreases mitochondrial lysine acetylation in the diabetic heart. Mol Cell Biochem 2017; 432:7-24. [PMID: 28303408 PMCID: PMC5532421 DOI: 10.1007/s11010-017-2993-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/24/2017] [Indexed: 12/31/2022]
Abstract
Diabetic cardiomyopathy is preceded by mitochondrial alterations, and progresses to heart failure. We studied whether treatment with methylene blue (MB), a compound that was reported to serve as an alternate electron carrier within the mitochondrial electron transport chain (ETC), improves mitochondrial metabolism and cardiac function in type 1 diabetes. MB was administered at 10 mg/kg/day to control and diabetic rats. Both echocardiography and hemodynamic studies were performed to assess cardiac function. Mitochondrial studies comprised the measurement of oxidative phosphorylation and specific activities of fatty acid oxidation enzymes. Proteomic studies were employed to compare the level of lysine acetylation on cardiac mitochondrial proteins between the experimental groups. We found that MB facilitates NADH oxidation, increases NAD+, and the activity of deacetylase Sirtuin 3, and reduces protein lysine acetylation in diabetic cardiac mitochondria. We identified that lysine acetylation on 83 sites in 34 proteins is lower in the MB-treated diabetic group compared to the same sites in the untreated diabetic group. These changes occur across critical mitochondrial metabolic pathways including fatty acid transport and oxidation, amino acid metabolism, tricarboxylic acid cycle, ETC, transport, and regulatory proteins. While the MB treatment has no effect on the activities of acyl-CoA dehydrogenases, it decreases 3-hydroxyacyl-CoA dehydrogenase activity and long-chain fatty acid oxidation, and improves cardiac function. Providing an alternative route for mitochondrial electron transport is a novel therapeutic approach to decrease lysine acetylation, alleviate cardiac metabolic inflexibility, and improve cardiac function in diabetes.
Collapse
|
23
|
Sarig U, Sarig H, de-Berardinis E, Chaw SY, Nguyen EB, Ramanujam VS, Thang VD, Al-Haddawi M, Liao S, Seliktar D, Kofidis T, Boey FY, Venkatraman SS, Machluf M. Natural myocardial ECM patch drives cardiac progenitor based restoration even after scarring. Acta Biomater 2016; 44:209-220. [PMID: 27545814 DOI: 10.1016/j.actbio.2016.08.031] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To evaluate the regenerative capacity of non-supplemented and bioactive patches made of decellularized porcine cardiac extracellular matrix (pcECM) and characterize the biological key factors involved in possible cardiac function (CF) restoration following acute and 8weeks chronic MI. BACKGROUND pcECM is a key natural biomaterial that can affect cardiac regeneration following myocardial infarction (MI), through mechanisms, which are still not clearly understood. METHODS Wistar rats underwent MI and received pcECM patch (pcECM-P) treatment in either acute or chronic inflammatory phases. Treated, sham operated (no MI), and control (MI without treatment) animals, were compared through echocardiography, hemodynamics, pathological evaluation and analyses of various mRNA and protein level markers. RESULTS Our results show that in both acute and long-term chronic MI models, pcECM promotes significant cardiac function improvement, which is correlated to progenitor (GATA4(+), c-kit(+)) and myocyte (MYLC(+), TRPI(+)) recruitment. Interestingly, recruited progenitors, isolated using laser capture microdissection (LCM), expressed both early and late cardiomyocyte (CM) differentiation markers, suggesting differentiation towards the CM lineage. Recruited CM-like cells organized in a partially striated and immature muscle fiber arrangement that presented connexin43 -a crucial mediator of cardiac electrical conductivity. Concomitantly, pcECM was rapidly vascularized, and induced a constructive remodeling process as indicated by increased M2/M1 macrophage phenotypic ratio and pathological evaluation. CONCLUSIONS Acellular pcECM patch implants alone, i.e., without added biologics, are bioactive, and exert potent efficacy, stimulating biological regenerative processes that cooperatively lead to a cardiac progenitor-based restoration of function, even after scar tissue had already formed. STATEMENT OF SIGNIFICANCE MI ('heart attack') remains the leading cause of heart failure and death in developed-countries. Restoration of cardiac function requires active turnover of damaged heart contracting cells (CM), however, CM endogenous regeneration is not efficient and is a matter of controversy. We show that a bioactive biomaterial alone-decellularized heart tissue (pcECM)-without added cells or growth factors, can elicit a complex regenerative response even after irreversible scarring. The pcECM patch induces macrophage polarization towards constructive remodeling and cardiomyocyte progenitor cell (GATA4(+), c-kit(+)) recruitment (evidenced at both mRNA and protein levels) resulting in de novo immature striated-like muscle patterns (MLC(+), TrpI(+), connexin43(+)). We, therefore, suggest this bioactive pcECM can model cardiac regeneration, and serve as a candidate for fast-track clinical application.
Collapse
|
24
|
Fujita M, Otani H, Iwasaki M, Yoshioka K, Shimazu T, Shiojima I, Tabata Y. Antagomir-92a impregnated gelatin hydrogel microsphere sheet enhances cardiac regeneration after myocardial infarction in rats. Regen Ther 2016; 5:9-16. [PMID: 31245495 PMCID: PMC6581790 DOI: 10.1016/j.reth.2016.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/04/2016] [Accepted: 04/23/2016] [Indexed: 01/07/2023] Open
Abstract
Introduction We investigated whether attachment of gelatin hydrogel microsphere (GHM) sheet impregnated with antagomir-92a on the infarcted heart promotes angiogenesis and cardiomyogenesis, and improves cardiac function after myocardial infarction (MI) in rats. Methods GHM sheet impregnated with antagomir-92a, its scramble sequence antagomir-control sheet or the sheet alone was attached on the area at risk of MI after the left anterior descending coronary artery ligation. Bromodeoxyuridine (BrdU) was included in the sheet to trace proliferating cells. Results The antagomir-92a sheet significantly increased capillary density in the infarct border zone 14 days after MI compared to the antagomir-control sheet or the sheet alone, associated with an increase in endothelial cells incorporated with BrdU. The antagomir-92a sheet significantly increased cardiac stem cells incorporated with BrdU 3 days after MI in the infarct border zone. This was associated with an increase in cardiomyocytes incorporated with BrdU 14 days after MI. Scar area was significantly reduced by the antagomir-92a sheet compared to the antagomir-control sheet or the sheet alone (12.8 ± 1.3 vs 25.2 ± 2.2, 24.0 ± 1.7% LV area, respectively) 14 days after MI. LV dilatation was inhibited, and LV wall motion was improved 14 days after MI in rats with the antagomir-92a sheet compared to the antagomir-control sheet or the sheet alone. Conclusions These results suggest that attachment of the GHM sheet impregnated with antagomir-92a on the area at risk of MI enhances angiogenesis, promotes cardiomyogenesis, and ameliorates LV function.
Collapse
Key Words
- Angiogenesis
- BrdU, bromodeoxyuridine
- DAPI, 4′,6-diamidino-2-phenylindole
- DDA, double-distilled water
- FGF, fibroblast growth factor
- FS, fractional shortening
- GA, glutaraldehyde
- GHM, gelatin hydrogel microsphere
- Gelatin hydrogel microsphere
- Heart regeneration
- LAD, left anterior descending
- LV, left ventricular
- LVDd, left ventricular end-diastolic diameter
- LVDs, left ventricular end-systolic diameter
- MI, myocardial infarction
- MSCs, mesenchymal stem cells
- MicroRNA-92a
- VEGF, vascular endothelial growth factor
- miRs, microRNAs
Collapse
Affiliation(s)
- Masanori Fujita
- Department of Medicine II, Kansai Medical University, Moriguchi City, Japan
| | - Hajime Otani
- Department of Medicine II, Kansai Medical University, Moriguchi City, Japan
| | - Masayoshi Iwasaki
- Department of Medicine II, Kansai Medical University, Moriguchi City, Japan
| | - Kei Yoshioka
- Department of Medicine II, Kansai Medical University, Moriguchi City, Japan
| | - Takayuki Shimazu
- Department of Medicine II, Kansai Medical University, Moriguchi City, Japan
| | - Ichiro Shiojima
- Department of Medicine II, Kansai Medical University, Moriguchi City, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto City, Japan
| |
Collapse
|
25
|
Polegato BF, Minicucci MF, Azevedo PS, Gonçalves AF, Lima AF, Martinez PF, Okoshi MP, Okoshi K, Paiva SAR, Zornoff LAM. Association between Functional Variables and Heart Failure after Myocardial Infarction in Rats. Arq Bras Cardiol 2016; 106:105-12. [PMID: 26815462 PMCID: PMC4765008 DOI: 10.5935/abc.20160015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/06/2015] [Indexed: 11/20/2022] Open
Abstract
Background Heart failure prediction after acute myocardial infarction may have important
clinical implications. Objective To analyze the functional echocardiographic variables associated with heart
failure in an infarction model in rats. Methods The animals were divided into two groups: control and infarction.
Subsequently, the infarcted animals were divided into groups: with and
without heart failure. The predictive values were assessed by logistic
regression. The cutoff values predictive of heart failure were determined
using ROC curves. Results Six months after surgery, 88 infarcted animals and 43 control animals were
included in the study. Myocardial infarction increased left cavity diameters
and the mass and wall thickness of the left ventricle. Additionally,
myocardial infarction resulted in systolic and diastolic dysfunction,
characterized by lower area variation fraction values, posterior wall
shortening velocity, E-wave deceleration time, associated with higher values
of E / A ratio and isovolumic relaxation time adjusted by heart rate. Among
the infarcted animals, 54 (61%) developed heart failure. Rats with heart
failure have higher left cavity mass index and diameter, associated with
worsening of functional variables. The area variation fraction, the E/A
ratio, E-wave deceleration time and isovolumic relaxation time adjusted by
heart rate were functional variables predictors of heart failure. The cutoff
values of functional variables associated with heart failure were: area
variation fraction < 31.18%; E / A > 3.077; E-wave deceleration time
< 42.11 and isovolumic relaxation time adjusted by heart rate <
69.08. Conclusion In rats followed for 6 months after myocardial infarction, the area variation
fraction, E/A ratio, E-wave deceleration time and isovolumic relaxation time
adjusted by heart rate are predictors of heart failure onset.
Collapse
Affiliation(s)
- Bertha F Polegato
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| | - Marcos F Minicucci
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| | - Paula S Azevedo
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| | - Andréa F Gonçalves
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| | - Aline F Lima
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| | - Paula F Martinez
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| | - Marina P Okoshi
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| | - Katashi Okoshi
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| | - Sergio A R Paiva
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| | - Leonardo A M Zornoff
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista "Júlio de mesquita Filho", Botucatu, SP, Brazil
| |
Collapse
|
26
|
de Oliveira LFL, Romano MMD, de Carvalho EEV, Cabeza JM, Salgado HC, Fazan Júnior R, Costa RS, da Silva JS, Higuchi MDL, Maciel BC, Cunha-Neto E, Marin-Neto JA, Simões MV. Histopathological Correlates of Global and Segmental Left Ventricular Systolic Dysfunction in Experimental Chronic Chagas Cardiomyopathy. J Am Heart Assoc 2016; 5:JAHA.115.002786. [PMID: 26796255 PMCID: PMC4859397 DOI: 10.1161/jaha.115.002786] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Background Chronic Chagas cardiomyopathy in humans is characterized by segmental left ventricular wall motion abnormalities (WMA), mainly in the early stages of disease. This study aimed at investigating the detection of WMA and its correlation with the underlying histopathological changes in a chronic Chagas cardiomyopathy model in hamsters. Methods and Results Female Syrian hamsters (n=34) infected with 3.5×104 or 105 blood trypomastigote Trypanosoma cruzi (Y strain) forms and an uninfected control group (n=7) were investigated. After 6 or 10 months after the infection, the animals were submitted to in vivo evaluation of global and segmental left ventricular systolic function by echocardiography, followed by euthanasia and histological analysis for quantitative assessment of fibrosis and inflammation with tissue sampling in locations coinciding with the left ventricular wall segmentation employed at the in vivo echocardiographic evaluation. Ten of the 34 infected animals (29%) showed reduced left ventricular ejection fraction (<73%). Left ventricular ejection fraction was more negatively correlated with the intensity of inflammation (r=−0.63; P<0.0001) than with the extent of fibrosis (r=−0.36; P=0.036). Among the 24 animals with preserved left ventricular ejection fraction (82.9±5.5%), 8 (33%) showed segmental WMA predominating in the apical, inferior, and posterolateral segments. The segments exhibiting WMA, in comparison to those with normal wall motion, showed a greater extent of fibrosis (9.3±5.7% and 7±6.3%, P<0.0001) and an even greater intensity of inflammation (218.0±111.6 and 124.5±84.8 nuclei/mm², P<0.0001). Conclusions Isolated WMA with preserved global systolic left ventricular function is frequently found in Syrian hamsters with experimental chronic Chagas cardiomyopathy whose underlying histopathological features are mainly inflammatory.
Collapse
Affiliation(s)
- Luciano Fonseca Lemos de Oliveira
- Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil (L.F.L.O., M.M.D.R., E.E.V.C., C.S., R.F.J., R.S.C., J.S.S., B.C.M., J.A.M.N., M.V.S.)
| | - Minna Moreira Dias Romano
- Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil (L.F.L.O., M.M.D.R., E.E.V.C., C.S., R.F.J., R.S.C., J.S.S., B.C.M., J.A.M.N., M.V.S.)
| | - Eduardo Elias Vieira de Carvalho
- Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil (L.F.L.O., M.M.D.R., E.E.V.C., C.S., R.F.J., R.S.C., J.S.S., B.C.M., J.A.M.N., M.V.S.)
| | | | - Hélio Cesar Salgado
- Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil (L.F.L.O., M.M.D.R., E.E.V.C., C.S., R.F.J., R.S.C., J.S.S., B.C.M., J.A.M.N., M.V.S.)
| | - Rubens Fazan Júnior
- Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil (L.F.L.O., M.M.D.R., E.E.V.C., C.S., R.F.J., R.S.C., J.S.S., B.C.M., J.A.M.N., M.V.S.)
| | - Renata Sesti Costa
- Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil (L.F.L.O., M.M.D.R., E.E.V.C., C.S., R.F.J., R.S.C., J.S.S., B.C.M., J.A.M.N., M.V.S.)
| | - João Santana da Silva
- Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil (L.F.L.O., M.M.D.R., E.E.V.C., C.S., R.F.J., R.S.C., J.S.S., B.C.M., J.A.M.N., M.V.S.)
| | | | - Benedito Carlos Maciel
- Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil (L.F.L.O., M.M.D.R., E.E.V.C., C.S., R.F.J., R.S.C., J.S.S., B.C.M., J.A.M.N., M.V.S.)
| | - Edécio Cunha-Neto
- Heart Institute (InCor), Faculty of Medicine, University of Sao Paulo, Brazil (M.L.H., E.C.N.)
| | - José Antônio Marin-Neto
- Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil (L.F.L.O., M.M.D.R., E.E.V.C., C.S., R.F.J., R.S.C., J.S.S., B.C.M., J.A.M.N., M.V.S.)
| | - Marcus Vinícius Simões
- Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil (L.F.L.O., M.M.D.R., E.E.V.C., C.S., R.F.J., R.S.C., J.S.S., B.C.M., J.A.M.N., M.V.S.)
| |
Collapse
|
27
|
Connelly KA, Advani A, Zhang Y, Advani SL, Kabir G, Abadeh A, Desjardins JF, Mitchell M, Thai K, Gilbert RE. Dipeptidyl peptidase-4 inhibition improves cardiac function in experimental myocardial infarction: Role of stromal cell-derived factor-1α. J Diabetes 2016; 8:63-75. [PMID: 25565455 DOI: 10.1111/1753-0407.12258] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 11/21/2014] [Accepted: 12/11/2014] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND In addition to degrading glucagon-like peptide-1 (GLP-1), dipeptidyl peptidase-4 (DPP-4) inactivates several chemokines, including stromal cell-derived factor-1α (SDF-1α), a pro-angiogenic and cardiomyocyte protective protein. We hypothesized that DPP-4 inhibition may confer benefit following myocardial infarction (MI) in the diabetic setting as a consequence of enhanced SDF-1α availability rather than potentiating GLP-1. To test this we compared the effects of saxagliptin with those of liraglutide and used the SDF-1α receptor (CXCR4) antagonist plerixafor. METHODS Studies were conducted in streptozotocin-diabetic rats. Rats were randomized to receive saxagliptin (10 mg/kg per day), liraglutide (0.2 mg/kg, s.c., b.i.d.), plerixafor (1 mg/kg per day, s.c.), saxagliptin plus plerixafor or vehicle (1% phosphate-buffered saline). Two weeks later, rats underwent experimental MI, with cardiac function examined 4 weeks after MI. RESULTS Glycemic control and MI size were similar in all groups. Four weeks after MI, mortality was reduced in saxagliptin-treated rats compared with vehicle treatment (P < 0.05). Furthermore, rats receiving saxagliptin had improved cardiac function compared with vehicle-treated rats (P < 0.05). Antagonism of CXCR4 prevented the improvement in cardiac function in saxagliptin-treated rats and was associated with increased mortality (P < 0.05). CONCLUSION Saxagliptin-mediated DPP-4 inhibition, but not liraglutide-mediated GLP-1R agonism, improved cardiac function after MI independent of glucose lowering. These findings suggest that non-GLP-1 actions of DPP-4 inhibition, such as SDF-1α potentiation, mediate biological effects.
Collapse
Affiliation(s)
- Kim A Connelly
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Yanling Zhang
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Suzanne L Advani
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Golam Kabir
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Armin Abadeh
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Jean-Francois Desjardins
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Melissa Mitchell
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Kerri Thai
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Richard E Gilbert
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Effects of environmental stress following myocardial infarction on behavioral measures and heart failure progression: The influence of isolated and group housing conditions. Physiol Behav 2015; 152:168-74. [DOI: 10.1016/j.physbeh.2015.09.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 09/07/2015] [Accepted: 09/25/2015] [Indexed: 01/07/2023]
|
29
|
Pesce P, Cecchetto L, Brocco S, Bolognesi M, Sodhi K, Abraham NG, Sacerdoti D. Characterization of a murine model of cardiorenal syndrome type 1 by high-resolution Doppler sonography. J Ultrasound 2015; 18:229-35. [PMID: 26261465 PMCID: PMC4529411 DOI: 10.1007/s40477-014-0129-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 08/14/2014] [Indexed: 12/25/2022] Open
Abstract
ABSTRACT Cardiorenal syndrome type 1 (CRS-1) is the acute kidney disfunction caused by an acute worsening of cardiac function. CRS-1 is the consequence of renal vasoconstriction secondary to renin-angiotensin system (RAS) activation. No animal models of CRS-1 are described in literature. PURPOSE To characterize a murine model of CRS-1 by using a high-resolution ultrasound echo-color Doppler system (VEVO2100). MATERIALS Post-ischemic heart failure was induced by coronary artery ligation (LAD) in seven CD1 mice. Fifteen and thirty days after surgery, mice underwent cardiac and renal echo-color Doppler. Serum creatinine and plasma renin activity were measured after killing. Animals were compared to seven CD1 control mice. RESULTS Heart failure with left ventricle dilatation (end diastolic area, p < 0.05 vs. controls) and significantly reduced ejection fraction (EF; p < 0.01 vs. controls) was evident 15 days after LAD. We measured a significant renal vasoconstriction in infarcted mice characterized by increased renal pulsatility index (PI; p < 0.05 vs. controls) associated to increased creatinine and renin levels (p < 0.05 vs. controls). CONCLUSIONS The mice model of LAD is a good model of CRS-1 evaluable by Doppler sonography and characterized by renal vasoconstriction due to the activation of the renin-angiotensin system secondary to heart failure.
Collapse
Affiliation(s)
- P. Pesce
- />Department of Medicine (DIMED), University of Padova, Padua, Italy
| | - L. Cecchetto
- />Department of Medicine (DIMED), University of Padova, Padua, Italy
| | - S. Brocco
- />Department of Medicine (DIMED), University of Padova, Padua, Italy
| | - M. Bolognesi
- />Department of Medicine (DIMED), University of Padova, Padua, Italy
| | - K. Sodhi
- />Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755 USA
| | - N. G. Abraham
- />Department of Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755 USA
| | - D. Sacerdoti
- />Department of Medicine (DIMED), University of Padova, Padua, Italy
| |
Collapse
|
30
|
Vazquez EJ, Berthiaume JM, Kamath V, Achike O, Buchanan E, Montano MM, Chandler MP, Miyagi M, Rosca MG. Mitochondrial complex I defect and increased fatty acid oxidation enhance protein lysine acetylation in the diabetic heart. Cardiovasc Res 2015; 107:453-65. [PMID: 26101264 DOI: 10.1093/cvr/cvv183] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 06/17/2015] [Indexed: 01/07/2023] Open
Abstract
AIMS Cardiomyopathy is a major complication of diabetes. Our study was aimed to identify the sites of mitochondrial dysfunction and delineate its consequences on mitochondrial metabolism in a model of type 1 diabetes. METHODS AND RESULTS Diabetes was induced by streptozotocin injection to male Lewis rats. We found a decrease in mitochondrial biogenesis pathway and electron transport chain complex assembly that targets Complex I. Oxidation of Complex II and long-chain fatty acid substrates support the electron leak and superoxide production. Mitochondrial defects do not limit fatty acid oxidation as the heart's preferred energy source indicating that the diabetic heart has a significant reserve in Complex I- and II-supported ATP production. Both mitochondrial fatty acid oxidation and Complex I defect are responsible for increased protein lysine acetylation despite an unchanged amount of the NAD(+)-dependent mitochondrial deacetylase sirt3. We quantitatively analysed mitochondrial lysine acetylation post-translational modifications and identified that the extent of lysine acetylation on 54 sites in 22 mitochondrial proteins is higher in diabetes compared with the same sites in the control. The increased lysine acetylation of the mitochondrial trifunctional protein subunit α may be responsible for the increased fatty acid oxidation in the diabetic heart. CONCLUSION We identified the specific defective sites in the electron transport chain responsible for the decreased mitochondrial oxidative phosphorylation in the diabetic heart. Mitochondrial protein lysine acetylation is the common consequence of both increased fatty acid oxidation and mitochondrial Complex I defect, and may be responsible for the metabolic inflexibility of the diabetic heart.
Collapse
Affiliation(s)
- Edwin J Vazquez
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | | | - Vasudeva Kamath
- Department of Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| | - Olisaemeka Achike
- Department of Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| | - Elizabeth Buchanan
- Department of Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| | - Monica M Montano
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Margaret P Chandler
- Department of Physiology, Case Western Reserve University, Cleveland, OH, USA
| | - Masaru Miyagi
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, USA
| | - Mariana G Rosca
- Department of Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| |
Collapse
|
31
|
Katunga LA, Gudimella P, Efird JT, Abernathy S, Mattox TA, Beatty C, Darden TM, Thayne KA, Alwair H, Kypson AP, Virag JA, Anderson EJ. Obesity in a model of gpx4 haploinsufficiency uncovers a causal role for lipid-derived aldehydes in human metabolic disease and cardiomyopathy. Mol Metab 2015; 4:493-506. [PMID: 26042203 PMCID: PMC4443294 DOI: 10.1016/j.molmet.2015.04.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/08/2015] [Accepted: 04/14/2015] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Lipid peroxides and their reactive aldehyde derivatives (LPPs) have been linked to obesity-related pathologies, but whether they have a causal role has remained unclear. Glutathione peroxidase 4 (GPx4) is a selenoenzyme that selectively neutralizes lipid hydroperoxides, and human gpx4 gene variants have been associated with obesity and cardiovascular disease in epidemiological studies. This study tested the hypothesis that LPPs underlie cardio-metabolic derangements in obesity using a high fat, high sucrose (HFHS) diet in gpx4 haploinsufficient mice (GPx4(+/-)) and in samples of human myocardium. METHODS Wild-type (WT) and GPx4(+/-) mice were fed either a standard chow (CNTL) or HFHS diet for 24 weeks, with metabolic and cardiovascular parameters measured throughout. Biochemical and immuno-histological analysis was performed in heart and liver at termination of study, and mitochondrial function was analyzed in heart. Biochemical analysis was also performed on samples of human atrial myocardium from a cohort of 103 patients undergoing elective heart surgery. RESULTS Following HFHS diet, WT mice displayed moderate increases in 4-hydroxynonenal (HNE)-adducts and carbonyl stress, and a 1.5-fold increase in GPx4 enzyme in both liver and heart, while gpx4 haploinsufficient (GPx4(+/-)) mice had marked carbonyl stress in these organs accompanied by exacerbated glucose intolerance, dyslipidemia, and liver steatosis. Although normotensive, cardiac hypertrophy was evident with obesity, and cardiac fibrosis more pronounced in obese GPx4(+/-) mice. Mitochondrial dysfunction manifesting as decreased fat oxidation capacity and increased reactive oxygen species was also present in obese GPx4(+/-) but not WT hearts, along with up-regulation of pro-inflammatory and pro-fibrotic genes. Patients with diabetes and hyperglycemia exhibited significantly less GPx4 enzyme and greater HNE-adducts in their hearts, compared with age-matched non-diabetic patients. CONCLUSION These findings suggest LPPs are key factors underlying cardio-metabolic derangements that occur with obesity and that GPx4 serves a critical role as an adaptive countermeasure.
Collapse
Key Words
- 4-HNE, 4-hydroxynonenal
- BMI, body mass index
- CNTL, control
- Coll1a1, collagen, type I, alpha
- Coll4a1, collagen, type IV, alpha 1
- EF, ejection fraction
- FS, fractional shortening
- GPx4, glutathione peroxidase 4
- Glutathione peroxidase 4
- HDL, high-density lipoprotein
- HFHS, high fat, high sucrose
- Human heart
- IL-1β, interleukin-1 beta
- IL-6, interleukin-6
- Inflammation
- LPPs, lipid peroxidation end products
- Lipid peroxidation
- Mitochondria
- Nrf2, nuclear factor (erythroid-derived 2)-like 2
- Obesity
- PUFA, polyunsaturated fatty acids
- RAGE, receptor for advanced glycation end products
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- TG, triglycerides
- TGF-β1, transforming growth factor beta 1
- TGF-β2, transforming growth factor beta 2
- TNF-α, tumor necrosis factor-α
- WT, wild type
- iNOS, inducible nitric oxide synthase
- β-MHC, β myosin heavy chain
Collapse
Affiliation(s)
- Lalage A. Katunga
- Department of Pharmacology & Toxicology, East Carolina University, Greenville, NC, United States
- Department of Public Health, East Carolina University, Greenville, NC, United States
| | - Preeti Gudimella
- Department of Pharmacology & Toxicology, East Carolina University, Greenville, NC, United States
| | - Jimmy T. Efird
- Department of Public Health, East Carolina University, Greenville, NC, United States
- East Carolina Heart Institute, East Carolina University, Greenville, NC, United States
| | - Scott Abernathy
- Department of Pharmacology & Toxicology, East Carolina University, Greenville, NC, United States
| | - Taylor A. Mattox
- Department of Pharmacology & Toxicology, East Carolina University, Greenville, NC, United States
| | - Cherese Beatty
- Department of Pharmacology & Toxicology, East Carolina University, Greenville, NC, United States
| | - Timothy M. Darden
- Department of Pharmacology & Toxicology, East Carolina University, Greenville, NC, United States
| | - Kathleen A. Thayne
- Department of Pharmacology & Toxicology, East Carolina University, Greenville, NC, United States
| | - Hazaim Alwair
- East Carolina Heart Institute, East Carolina University, Greenville, NC, United States
| | - Alan P. Kypson
- East Carolina Heart Institute, East Carolina University, Greenville, NC, United States
| | - Jitka A. Virag
- Department of Physiology, East Carolina University, Greenville, NC, United States
| | - Ethan J. Anderson
- Department of Pharmacology & Toxicology, East Carolina University, Greenville, NC, United States
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| |
Collapse
|
32
|
Ngo J, Matsuyama M, Kim C, Poventud-Fuentes I, Bates A, Siedlak SL, Lee HG, Doughman YQ, Watanabe M, Liner A, Hoit B, Voelkel N, Gerson S, Hasty P, Matsuyama S. Bax deficiency extends the survival of Ku70 knockout mice that develop lung and heart diseases. Cell Death Dis 2015; 6:e1706. [PMID: 25811803 PMCID: PMC4385910 DOI: 10.1038/cddis.2015.11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/24/2014] [Accepted: 12/29/2014] [Indexed: 01/13/2023]
Abstract
Ku70 (Lupus Ku autoantigen p70) is essential in nonhomologous end joining DNA double-strand break repair, and ku70−/− mice age prematurely because of increased genomic instability and DNA damage responses. Previously, we found that Ku70 also inhibits Bax, a key mediator of apoptosis. We hypothesized that Bax-mediated apoptosis would be enhanced in the absence of Ku70 and contribute to premature death observed in ku70−/− mice. Here, we show that ku70−/−bax+/− and ku70−/−bax−/− mice have better survival, especially in females, than ku70−/− mice, even though Bax deficiency did not decrease the incidence of lymphoma observed in a Ku70-null background. Moreover, we found that ku70−/− mice develop lung diseases, like emphysema and pulmonary arterial (PA) occlusion, by 3 months of age. These lung abnormalities can trigger secondary health problems such as heart failure that may account for the poor survival of ku70−/− mice. Importantly, Bax deficiency appeared to delay the development of emphysema. This study suggests that enhanced Bax activity exacerbates the negative impact of Ku70 deletion. Furthermore, the underlying mechanisms of emphysema and pulmonary hypertension due to PA occlusion are not well understood, and therefore ku70−/− and Bax-deficient ku70−/− mice may be useful models to study these diseases.
Collapse
Affiliation(s)
- J Ngo
- 1] Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA [2] Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - M Matsuyama
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - C Kim
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - I Poventud-Fuentes
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - A Bates
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - S L Siedlak
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - H-G Lee
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Y Q Doughman
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - M Watanabe
- 1] Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA [2] Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - A Liner
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - B Hoit
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - N Voelkel
- Pulmonary and Critical Care Medicine Division and Victoria Johnson Center for Pulmonary Obstructive Research, Virginia Commonwealth University, Richmond, VA, USA
| | - S Gerson
- 1] Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA [2] Department of Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - P Hasty
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center, San Antonio, TX, USA
| | - S Matsuyama
- 1] Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA [2] Department of Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
33
|
Mutation within the hinge region of the transcription factor Nr2f2 attenuates salt-sensitive hypertension. Nat Commun 2015; 6:6252. [PMID: 25687237 PMCID: PMC4486351 DOI: 10.1038/ncomms7252] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/09/2015] [Indexed: 11/08/2022] Open
Abstract
Genome-wide association studies (GWAS) have prioritized a transcription factor, nuclear receptor 2 family 2 (NR2F2), as being associated with essential hypertension in humans. Here we provide evidence that validates this association and indicates that Nr2f2 is a genetic determinant of blood pressure (BP). Using the zinc-finger nuclease technology, the generation of a targeted Nr2f2-edited rat model is reported. The resulting gene-edited rats have a 15 bp deletion in exon 2 leading to a five-amino-acid deletion in the hinge region of the mutant Nr2f2 protein. Both systolic and diastolic blood pressures of the Nr2f2(mutant) rats are significantly lower than controls. Because the hinge region of Nr2f2 is required for interaction with Friend of Gata2 (Fog2), protein-protein interaction is examined. Interaction of Nr2f2(mutant) protein with Fog2 is greater than that with the wild-type Nr2f2, indicating that the extent of interaction between these two transcription factors critically influences BP.
Collapse
|
34
|
Suzuki H, Sumiyoshi A, Matsumoto Y, Duffy BA, Yoshikawa T, Lythgoe MF, Yanai K, Taki Y, Kawashima R, Shimokawa H. Structural abnormality of the hippocampus associated with depressive symptoms in heart failure rats. Neuroimage 2015; 105:84-92. [DOI: 10.1016/j.neuroimage.2014.10.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 08/18/2014] [Accepted: 10/14/2014] [Indexed: 11/30/2022] Open
|
35
|
Li H, Lu ZZ, Chen C, Song Y, Xiao H, Zhang YY. Echocardiographic assessment of β-adrenoceptor stimulation-induced heart failure with reduced heart rate in mice. Clin Exp Pharmacol Physiol 2014; 41:58-66. [PMID: 24107096 DOI: 10.1111/1440-1681.12176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 09/05/2013] [Accepted: 09/11/2013] [Indexed: 12/16/2022]
Abstract
1. Chronic injection with the β-adrenoceptor (β-AR) agonist isoproterenol (ISO) has been commonly used as an animal model of β-AR-induced cardiac remodelling and heart failure. This ISO-treated model usually exhibits significantly decreased conscious heart rate (HR). However, the HR in treatment groups is usually adjusted to the same levels by anaesthesia to assess cardiac geometry and function. In the present study, we report a method of echocardiographic assessment that represents the true cardiac geometry and function under conditions of ISO withdrawal. 2. Briefly, C57BL/6 mice were treated with 5 mg/kg per day ISO for 12 weeks. Cardiac geometry and function were assessed by high-resolution echocardiography in vehicle (saline) - and ISO-treated mice that were either conscious or anaesthetized using different concentrations of isoflurane. 3. The cardiac β-AR response was decreased in ISO-treated mice, as evidenced by markedly decreased conscious HR. Vehicle- and ISO-treated mice did not differ in terms of cardiac geometry or function when HR was adjusted to the same level (400 b.p.m.) in both treatment groups, but cardiac geometry and function did differ when a low (1%) rather than high (1.5% or 2%) isoflurane concentration was used to adjust HR. Furthermore, 3 day ISO withdrawal eliminated the difference in conscious HR between the two groups. In addition, the groups differed in cardiac geometry and function regardless of the isoflurane concentration used. 4. In conclusion, using isoflurane to decrease the HR of treated groups to the same level may mask left ventricular dysfunction in ISO-treated mice. Withdrawal of ISO eliminated the difference in basal HR between the ISO-treated and control groups on echocardiography, allowing a more accurate assessment of cardiac pathological and functional changes.
Collapse
Affiliation(s)
- Hao Li
- Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China; Key Laboratory of Cardiovascular Molecular Biologyand Regulatory Peptide, Ministry of Health, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | | | | | | | | | | |
Collapse
|
36
|
Connelly KA, Zhang Y, Advani A, Advani SL, Thai K, Yuen DA, Gilbert RE. DPP-4 inhibition attenuates cardiac dysfunction and adverse remodeling following myocardial infarction in rats with experimental diabetes. Cardiovasc Ther 2014; 31:259-67. [PMID: 22963483 DOI: 10.1111/1755-5922.12005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AIMS Following myocardial infarction (MI), individuals with diabetes have a two-fold increase in the risk of heart failure, due in part to excessive loss of cardiac microvasculature. Endothelial integrity and restitution are mediated in part by stromal cell-derived factor-1α (SDF-1α), a chemokine that is elaborated by ischemic tissue but rapidly degraded by dipeptidyl peptidase-4 (DPP-4). Accordingly, we hypothesized that inhibiting this enzyme may confer benefit following myocardial infarction in the diabetic setting beyond its effect on glycemia. METHODS AND RESULTS Fischer F344 rats with streptozotocin (STZ)-diabetes were randomized to receive vehicle or the DPP-4 inhibitor, sitagliptin (300 mg/kg/day). Two weeks later, animals underwent experimental MI, induced by ligation of the left anterior descending coronary artery. Cardiac function was assessed by conductance catheterization and echocardiography along with cardiac structure 4 weeks post-MI. Following MI, untreated diabetic rats developed both systolic and diastolic cardiac dysfunction, in association with endothelial cell loss, fibrosis, and myocyte hypertrophy. Without affecting plasma glucose, sitagliptin treatment led to an improvement in passive left ventricular compliance, increased endothelial cell density, reduced myocyte hypertrophy, and a reduction in the abundance of collagen 1 (all P < 0.05). Systolic function was unchanged. CONCLUSIONS This study shows that DPP-4 inhibition attenuates several, but not all, aspects of cardiac dysfunction and adverse remodeling in the post-MI setting.
Collapse
Affiliation(s)
- Kim Alexander Connelly
- Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
37
|
Berthiaume JM, Azam SM, Hoit BD, Chandler MP. Cardioprotective effects of dietary lipids evident in the time-dependent alterations of cardiac function and gene expression following myocardial infarction. Physiol Rep 2014; 2:2/5/e12019. [PMID: 24844640 PMCID: PMC4098746 DOI: 10.14814/phy2.12019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have previously shown that prolonged high–saturated fat feeding (SAT) for 8 weeks after myocardial infarction (MI) improves ventricular function and prevents the metabolic remodeling commonly observed in heart failure. The current study was designed to delineate the interplay between markers of energy metabolism and indices of cardiac remodeling with 2 and 4 weeks of post‐MI SAT in male Wistar rats. By 2 weeks, less remodeling was noted in MI‐SAT evidenced by diminished chamber dilation and greater ejection fraction assessed by echocardiography and hemodynamic measures. In addition, gene expression of energy metabolism targets involved in FA uptake, oxidation, and glucose oxidation regulation was increased in MI‐SAT with respect to MI alone, although no change in PDH phosphorylation was observed. The regulatory kinase, phosphoinositide 3 kinase (Pi3k), was strongly induced by 2 weeks in the MI‐SAT group, although AKT protein content (a primary downstream target of PI3K that affects metabolism) was decreased by both MI and SAT alone, indicating early involvement of cellular signaling pathways in lipid‐mediated cardioprotection. Our results demonstrate that cardioprotection occurs acutely with SAT following MI, with improvement in indices of both cardiac function and fatty acid oxidation, suggesting a mechanistic role for energy metabolism in the beneficial effects of high dietary fat following cardiac injury. e12019 A diet rich in saturated fats is cardioprotective after myocardial infarction. The cardioprotective effect is noted by 2 weeks and includes functional and genomic changes indicative of a relationship with preservation of metabolic flexibility.
Collapse
Affiliation(s)
- Jessica M Berthiaume
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio
| | - Salaman M Azam
- Department of Medicine, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio
| | - Brian D Hoit
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio Department of Medicine, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio
| | - Margaret P Chandler
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
38
|
Stehlin E, Malpas SC, Budgett DM, Barrett CJ, McCormick D, Whalley G, Fu F, Beil M, Rigel DF, Guild SJ. Chronic measurement of left ventricular pressure in freely moving rats. J Appl Physiol (1985) 2013; 115:1672-82. [DOI: 10.1152/japplphysiol.00683.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Measurements of left ventricular pressure (LVP) in conscious freely moving animals are uncommon, yet could offer considerable opportunity for understanding cardiovascular disease progression and treatment. The aim of this study was to develop surgical methods and validate the measurements of a new high-fidelity, solid-state pressure-sensor telemetry device for chronically measuring LVP and dP/d t in rats. The pressure-sensor catheter tip (2-Fr) was inserted into the left ventricular chamber through the apex of the heart, and the telemeter body was implanted in the abdomen. Data were measured up to 85 days after implant. The average daytime dP/d t max was 9,444 ± 363 mmHg/s, ranging from 7,870 to 10,558 mmHg/s ( n = 7). A circadian variation in dP/d t max and heart rate (HR) was observed with an average increase during the night phase in dP/d t max of 918 ± 84 mmHg/s, and in HR of 38 ± 3 bpm. The β-adrenergic-agonist isoproterenol, β1-adrenergic agonist dobutamine, Ca2+ channel blocker verapamil, and the calcium sensitizer levosimendan were administered throughout the implant period, inducing dose-dependent time course changes and absolute changes in dP/d t max of −6,000 to +13,000 mmHg/s. The surgical methods and new technologies demonstrated long-term stability, sensitivity to circadian variation, and the ability to measure large drug-induced changes, validating this new solution for chronic measurement of LVP in conscious rats.
Collapse
Affiliation(s)
- Ellyce Stehlin
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Simon C. Malpas
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Physiology, University of Auckland, Auckland, New Zealand,
- Millar Inc, Auckland, New Zealand
| | - David M. Budgett
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Millar Inc, Auckland, New Zealand
| | - Carolyn J. Barrett
- Department of Physiology, University of Auckland, Auckland, New Zealand,
| | - Daniel McCormick
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Millar Inc, Auckland, New Zealand
| | - Gillian Whalley
- Faculty of Social and Health Sciences, Unitec, Auckland, New Zealand; and
| | - Fumin Fu
- Novartis Institutes for BioMedical Research, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Michael Beil
- Novartis Institutes for BioMedical Research, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Dean F. Rigel
- Novartis Institutes for BioMedical Research, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Sarah-Jane Guild
- Department of Physiology, University of Auckland, Auckland, New Zealand,
- Millar Inc, Auckland, New Zealand
| |
Collapse
|
39
|
Hashizume R, Hong Y, Takanari K, Fujimoto KL, Tobita K, Wagner WR. The effect of polymer degradation time on functional outcomes of temporary elastic patch support in ischemic cardiomyopathy. Biomaterials 2013; 34:7353-63. [PMID: 23827185 PMCID: PMC3804157 DOI: 10.1016/j.biomaterials.2013.06.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/12/2013] [Indexed: 01/12/2023]
Abstract
Biodegradable polyurethane patches have been applied as temporary mechanical supports to positively alter the remodeling and functional loss following myocardial infarction. How long such materials need to remain in place is unclear. Our objective was to compare the efficacy of porous onlay support patches made from one of three types of biodegradable polyurethane with relatively fast (poly(ester urethane)urea; PEUU), moderate (poly(ester carbonate urethane)urea; PECUU), and slow (poly(carbonate urethane)urea; PCUU) degradation rates in a rat model of ischemic cardiomyopathy. Microporous PEUU, PECUU or PCUU (n = 10 each) patches were implanted over left ventricular lesions 2 wk following myocardial infarction in rat hearts. Infarcted rats without patching and age-matched healthy rats (n = 10 each) were controls. Echocardiography was performed every 4 wk up to 16 wk, at which time hemodynamic and histological assessments were performed. The end-diastolic area for the PEUU group at 12 and 16 wk was significantly larger than for the PECUU or PCUU groups. Histological analysis demonstrated greater vascular density in the infarct region for the PECUU or PCUU versus PEUU group at 16 wk. Improved left ventricular contractility and diastolic performance in the PECUU group was observed at 16 wk compared to infarction controls. The results indicate that the degradation rate of an applied elastic patch influences the functional benefits associated patch placement, with a moderately slow degrading PECUU patch providing improved outcomes.
Collapse
Affiliation(s)
- Ryotaro Hashizume
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA 15219, USA
| | - Yi Hong
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA 15219, USA
| | - Keisuke Takanari
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA 15219, USA
| | - Kazuro L. Fujimoto
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA 15219, USA
| | - Kimimasa Tobita
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA 15219, USA
- Univ. of Pittsburgh, Dept. of Developmental Biology, Pittsburgh, PA, USA
| | - William R. Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA 15219, USA
- Univ. of Pittsburgh, Dept. of Surgery, USA
- Univ. of Pittsburgh, Dept. of Bioengineering, USA
- Univ. of Pittsburgh, Dept. of Chemical Engineering, USA
| |
Collapse
|
40
|
Cheng Y, Wan X, McElfresh TA, Chen X, Gresham KS, Rosenbaum DS, Chandler MP, Stelzer JE. Impaired contractile function due to decreased cardiac myosin binding protein C content in the sarcomere. Am J Physiol Heart Circ Physiol 2013; 305:H52-65. [PMID: 23666674 DOI: 10.1152/ajpheart.00929.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations in cardiac myosin binding protein C (MyBP-C) are a common cause of familial hypertrophic cardiomyopathy (FHC). The majority of MyBP-C mutations are expected to reduce MyBP-C expression; however, the consequences of MyBP-C deficiency on the regulation of myofilament function, Ca²⁺ homeostasis, and in vivo cardiac function are unknown. To elucidate the effects of decreased MyBP-C expression on cardiac function, we employed MyBP-C heterozygous null (MyBP-C+/-) mice presenting decreases in MyBP-C expression (32%) similar to those of FHC patients carrying MyBP-C mutations. The levels of MyBP-C phosphorylation were reduced 53% in MyBP-C+/- hearts compared with wild-type hearts. Skinned myocardium isolated from MyBP-C+/- hearts displayed decreased cross-bridge stiffness at half-maximal Ca²⁺ activations, increased steady-state force generation, and accelerated rates of cross-bridge recruitment at low Ca²⁺ activations (<15% and <25% of maximum, respectively). Protein kinase A treatment abolished basal differences in rates of cross-bridge recruitment between MyBP-C+/- and wild-type myocardium. Intact ventricular myocytes from MyBP-C+/- hearts displayed abnormal sarcomere shortening but unchanged Ca²⁺ transient kinetics. Despite a lack of left ventricular hypertrophy, MyBP-C+/- hearts exhibited elevated end-diastolic pressure and decreased peak rate of LV pressure rise, which was normalized following dobutamine infusion. Furthermore, electrocardiogram recordings in conscious MyBP-C+/- mice revealed prolonged QRS and QT intervals, which are known risk factors for cardiac arrhythmia. Collectively, our data show that reduced MyBP-C expression and phosphorylation in the sarcomere result in myofilament dysfunction, contributing to contractile dysfunction that precedes compensatory adaptations in Ca²⁺ handling, and chamber remodeling. Perturbations in mechanical and electrical activity in MyBP-C+/- mice could increase their susceptibility to cardiac dysfunction and arrhythmia.
Collapse
Affiliation(s)
- Y Cheng
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Sarin causes autonomic imbalance and cardiomyopathy: an important issue for military and civilian health. J Cardiovasc Pharmacol 2012; 60:76-87. [PMID: 22549449 DOI: 10.1097/fjc.0b013e3182580b75] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Sarin, a lethal chemical nerve agent, may be a causative factor in multifactorial syndrome implicated in the Gulf War and Tokyo terrorist attacks. Although a high dose results in seizure and death, low-dose exposure may lead to autonomic imbalance and chronic cardiac pathologies. In this study, echocardiography and electrocardiography were used to examine the late-onset effects of a low-dose sarin on cardiac structure and function in mice. Adrenal corticosterone and tyrosine hydroxylase mRNA levels were measured. Stress responsiveness of the hypothalamic-pituitary-adrenal (HPA) axis was also tested. Findings demonstrate changes consistent with a dilated cardiomyopathy, including left ventricular dilatation, reduced contractility, and altered electrophysiological and inotropic responses to β-adrenergic stimulation. Results also indicate reduced adrenal tyrosine hydroxylase mRNA, corticosterone and altered stress responsiveness of HPA indicating autonomic imbalance. The role of low-dose sarin/organophosphate exposure needs to be considered in the military and civilian populations that suffer from autonomic imbalance and/or cardiomyopathies of indeterminate origin.
Collapse
|
42
|
Azevedo PS, Polegato BF, Minicucci MF, Pio SM, Silva IA, Santos PP, Okoshi K, Paiva SAR, Zornoff LAM. Early echocardiographic predictors of increased left ventricular end-diastolic pressure three months after myocardial infarction in rats. Med Sci Monit 2012; 18:BR253-8. [PMID: 22739724 PMCID: PMC3560778 DOI: 10.12659/msm.883202] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background The objective of this study was to determine the early echocardiographic predictors of elevated left ventricular end-diastolic pressure (LVEDP) after a long follow-up period in the infarcted rat model. Material/Methods Five days and three months after surgery, sham and infarcted animals were subjected to transthoracic echocardiography. Regression analysis and receiver-operating characteristic (ROC) curve were performed for predicting increased LVEDP 3 months after MI. Results Among all of the variables, assessed 5 days after myocardial infarction, infarct size (OR: 0.760; CI 95% 0.563–0.900; p=0.005), end-systolic area (ESA) (OR: 0.761; CI 95% 0.564–0.900; p=0.008), fractional area change (FAC) (OR: 0.771; CI 95% 0.574–0.907; p=0.003), and posterior wall-shortening velocity (PWSV) (OR: 0.703; CI 95% 0.502–0.860; p=0.048) were predictors of increased LVEDP. The LVEDP was 3.6±1.8 mmHg in the control group and 9.4±7.8 mmHg among the infarcted animals (p=0.007). Considering the critical value of predictor variables in inducing cardiac dysfunction, the cut-off value was 35% for infarct size, 0.33 cm2 for ESA, 40% for FAC, and 26 mm/s for PWSV. Conclusions Infarct size, FAC, ESA, and PWSV, assessed five days after myocardial infarction, can be used to estimate an increased LVEDP three months following the coronary occlusion.
Collapse
Affiliation(s)
- Paula S Azevedo
- Department of Internal Medicine, Botucatu Medical School, UNESP, Botucatu, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hecker PA, Mapanga RF, Kimar CP, Ribeiro RF, Brown BH, O'Connell KA, Cox JW, Shekar KC, Asemu G, Essop MF, Stanley WC. Effects of glucose-6-phosphate dehydrogenase deficiency on the metabolic and cardiac responses to obesogenic or high-fructose diets. Am J Physiol Endocrinol Metab 2012; 303:E959-72. [PMID: 22829586 PMCID: PMC3469611 DOI: 10.1152/ajpendo.00202.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 07/23/2012] [Indexed: 12/27/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common human enzymopathy that affects cellular redox status and may lower flux into nonoxidative pathways of glucose metabolism. Oxidative stress may worsen systemic glucose tolerance and cardiometabolic syndrome. We hypothesized that G6PD deficiency exacerbates diet-induced systemic metabolic dysfunction by increasing oxidative stress but in myocardium prevents diet-induced oxidative stress and pathology. WT and G6PD-deficient (G6PDX) mice received a standard high-starch diet, a high-fat/high-sucrose diet to induce obesity (DIO), or a high-fructose diet. After 31 wk, DIO increased adipose and body mass compared with the high-starch diet but to a greater extent in G6PDX than WT mice (24 and 20% lower, respectively). Serum free fatty acids were increased by 77% and triglycerides by 90% in G6PDX mice, but not in WT mice, by DIO and high-fructose intake. G6PD deficiency did not affect glucose tolerance or the increased insulin levels seen in WT mice. There was no diet-induced hypertension or cardiac dysfunction in either mouse strain. However, G6PD deficiency increased aconitase activity by 42% and blunted markers of nonoxidative glucose pathway activation in myocardium, including the hexosamine biosynthetic pathway activation and advanced glycation end product formation. These results reveal a complex interplay between diet-induced metabolic effects and G6PD deficiency, where G6PD deficiency decreases weight gain and hyperinsulinemia with DIO, but elevates serum free fatty acids, without affecting glucose tolerance. On the other hand, it modestly suppressed indexes of glucose flux into nonoxidative pathways in myocardium, suggesting potential protective effects.
Collapse
Affiliation(s)
- Peter A Hecker
- Division of Cardiology, Department of Medicine, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Azam S, Desjardins CL, Schluchter M, Liner A, Stelzer JE, Yu X, Hoit BD. Comparison of velocity vector imaging echocardiography with magnetic resonance imaging in mouse models of cardiomyopathy. Circ Cardiovasc Imaging 2012; 5:776-81. [PMID: 22977126 DOI: 10.1161/circimaging.111.972406] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Myocardial strain imaging using echocardiography can be a cost-effective method to quantify ventricular wall motion objectively, but few studies have compared strain measured with echocardiography against magnetic resonance imaging (MRI) in small animals. METHODS AND RESULTS We compared circumferential strain (CS) and radial strain (RS) measured with echocardiography (velocity vector imaging [VVI]) to displacement encoding with stimulated-echo MRI in 2 mouse models of cardiomyopathy. In 3-month-old mice with gene targeted deficiency of cardiac myosin-binding protein-C (cMyBP-C(-/-), n=6) or muscle LIM protein (MLP(-/-), n=6), and wild-type mice (n=8), myocardial strains were measured at 3 cross-sectional levels and averaged to obtain global strains. There was modest correlation between VVI and MRI measured strains, with global CS yielding stronger correlation compared with global RS (CS R(2)=0.4452 versus RS R(2)=0.2794, both P<0.05). Overall, strain measured by VVI was more variable than MRI (P<0.05) and the limits of agreement were slightly, but not significantly (P=0.14), closer for global CS than RS. Both VVI and MRI strain measurements showed significantly lower global CS strain in the knockout groups compared with the wild type. The VVI (but not MRI) CS strain measurements were different between the 2 knockout groups (-14.5±3.8% versus -6.6±4.0%, cMyBP-C(-/-) versus MLP(-/-) respectively, P<0.05). CONCLUSIONS Measurements of left ventricular CS and RS are feasible in small animals using 2-dimensional echocardiography. VVI and MRI strain measurements correlated modestly and the agreement between the modalities tended to be greater for CS than RS. Although VVI and MRI strains were able to differentiate between wild-type and knockout mice, only global CS VVI differentiated between the 2 models of cardiomyopathy.
Collapse
Affiliation(s)
- Salman Azam
- Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH 44106-5038, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Electrophysiologic remodeling of the left ventricle in pressure overload-induced right ventricular failure. J Am Coll Cardiol 2012; 59:2193-202. [PMID: 22676940 DOI: 10.1016/j.jacc.2012.01.063] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 01/04/2012] [Accepted: 01/10/2012] [Indexed: 11/20/2022]
Abstract
OBJECTIVES The purpose of this study was to analyze the electrophysiologic remodeling of the atrophic left ventricle (LV) in right ventricular (RV) failure (RVF) after RV pressure overload. BACKGROUND The LV in pressure-induced RVF develops dysfunction, reduction in mass, and altered gene expression, due to atrophic remodeling. LV atrophy is associated with electrophysiologic remodeling. METHODS We conducted epicardial mapping in Langendorff-perfused hearts, patch-clamp studies, gene expression studies, and protein level studies of the LV in rats with pressure-induced RVF (monocrotaline [MCT] injection, n = 25; controls with saline injection, n = 18). We also performed epicardial mapping of the LV in patients with RVF after chronic thromboembolic pulmonary hypertension (CTEPH) (RVF, n = 10; no RVF, n = 16). RESULTS The LV of rats with MCT-induced RVF exhibited electrophysiologic remodeling: longer action potentials (APs) at 90% repolarization and effective refractory periods (ERPs) (60 ± 1 ms vs. 44 ± 1 ms; p < 0.001), and slower longitudinal conduction velocity (62 ± 2 cm/s vs. 70 ± 1 cm/s; p = 0.003). AP/ERP prolongation agreed with reduced Kcnip2 expression, which encodes the repolarizing potassium channel subunit KChIP2 (0.07 ± 0.01 vs. 0.11 ± 0.02; p < 0.05). Conduction slowing was not explained by impaired impulse formation, as AP maximum upstroke velocity, whole-cell sodium current magnitude/properties, and mRNA levels of Scn5a were unaltered. Instead, impulse transmission in RVF was hampered by reduction in cell length (111.6 ± 0.7 μm vs. 122.0 ± 0.4 μm; p = 0.02) and width (21.9 ± 0.2 μm vs. 25.3 ± 0.3 μm; p = 0.002), and impaired cell-to-cell impulse transmission (24% reduction in Connexin-43 levels). The LV of patients with CTEPH with RVF also exhibited ERP prolongation (306 ± 8 ms vs. 268 ± 5 ms; p = 0.001) and conduction slowing (53 ± 3 cm/s vs. 64 ± 3 cm/s; p = 0.005). CONCLUSIONS Pressure-induced RVF is associated with electrophysiologic remodeling of the atrophic LV.
Collapse
|
46
|
Beitnes JO, Øie E, Shahdadfar A, Karlsen T, Müller RMB, Aakhus S, Reinholt FP, Brinchmann JE. Intramyocardial Injections of Human Mesenchymal Stem Cells following Acute Myocardial Infarction Modulate Scar Formation and Improve Left Ventricular Function. Cell Transplant 2012; 21:1697-709. [DOI: 10.3727/096368911x627462] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cell therapy is a promising treatment modality to improve heart function in acute myocardial infarction. However, the mechanisms of action and the most suitable cell type have not been finally determined. We performed a study to compare the effects of mesenchymal stem cells (MSCs) harvested from different tissues on LV function and explore their effects on tissue structure by morphometry and histological staining for species and lineage relationship. MSCs from skeletal muscle (SM-MSCs) and adipose tissue (ADSCs) were injected in the myocardium of nude rats 1 week after myocardial infarction. After 4 weeks of observation, LVEF was significantly improved in the SM-MSCs group (39.1%) and in the ADSC group (39.6%), compared to the placebo group (31.0%, p < 0.001 for difference in change between groups). Infarct size was smaller after cell therapy (16.3% for SM-MSCs, 15.8% for ADSCs vs. 26.0% for placebo, p < 0.001), and the amount of highly vascularized granulation tissue in the border zone was significantly increased in both groups receiving MSCs (18.3% for SM-MSCs, 22.6% for ADSCs vs. 13.1% for placebo, p = 0.001). By in situ hybridization, moderate engraftment of transplanted cells was found, but no transdifferentiation to cardiomyocytes, endothelial cells, or smooth muscle cells was observed. We conclude that MSC injections lead to improved LVEF after AMI in rats predominantly by reduction of infarct size. After 4 weeks, we observed modulation of scar formation with significant increase in granulation tissue. Transdifferentiation of MSCs to cardiomyocytes or vascular cells did not contribute significantly in this process. MSCs from skeletal muscle and adipose tissue had similar effects.
Collapse
Affiliation(s)
- Jan Otto Beitnes
- Department of Cardiology, Oslo University Hospital, Oslo, Norway
| | - Erik Øie
- Research Institute for Internal Medicine, Oslo University Hospital, Oslo, Norway
| | | | - Tommy Karlsen
- Institute of Immunology, Oslo University Hospital, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | | | - Svend Aakhus
- Department of Cardiology, Oslo University Hospital, Oslo, Norway
| | - Finn P. Reinholt
- Department of Pathology, Oslo University Hospital, Oslo, Norway
- Institute of Pathology, University of Oslo, Oslo, Norway
| | - Jan E. Brinchmann
- Institute of Immunology, Oslo University Hospital, Oslo, Norway
- Norwegian Center for Stem Cell Research, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
47
|
Berthiaume JM, Young ME, Chen X, McElfresh TA, Yu X, Chandler MP. Normalizing the metabolic phenotype after myocardial infarction: impact of subchronic high fat feeding. J Mol Cell Cardiol 2012; 53:125-33. [PMID: 22542451 PMCID: PMC3372615 DOI: 10.1016/j.yjmcc.2012.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/05/2012] [Accepted: 04/10/2012] [Indexed: 01/28/2023]
Abstract
The normal heart relies primarily on the oxidation of fatty acids (FA) for ATP production, whereas during heart failure (HF) glucose utilization increases, implying pathological changes to cardiac energy metabolism. Despite the noted lipotoxic effects of elevating FA, our work has demonstrated a cardioprotective effect of a high fat diet (SAT) when fed after myocardial infarction (MI), as compared to normal chow (NC) fed cohorts. This data has suggested a mechanistic link to energy metabolism. The goal of this study was to determine the impact of SAT on the metabolic phenotype of the heart after MI. Male Wistar rats underwent coronary ligation surgery (MI) and were evaluated after 8 weeks of SAT. Induction of MI was verified by echocardiography. LV function assessed by in vivo hemodynamic measurements revealed improvements in the MI-SAT group as compared to MI-NC. Perfused working hearts revealed a decrease in cardiac work in MI-NC that was improved in MI-SAT. Glucose oxidation was increased and FA oxidation decreased in MI-NC compared to shams suggesting an alteration in the metabolic profile that was ameliorated by SAT. (31)P NMR analysis of Langendorff perfused hearts revealed no differences in PCr:ATP indicating no overt energy deficit in MI groups. Phospho-PDH and PDK(4) were increased in MI-SAT, consistent with a shift towards fatty acid oxidation (FAO). Overall, these results support the hypothesis that SAT post-infarction promotes a normal metabolic phenotype that may serve a cardioprotective role in the injured heart.
Collapse
Affiliation(s)
- Jessica M. Berthiaume
- Dept. of Physiology & Biophysics, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio, 44106
| | - Martin E. Young
- Dept. of Medicine, University of Alabama, 1825 University Boulevard, Birmingham, Alabama, 35294, USA
| | - Xiaoqin Chen
- Dept. of Physiology & Biophysics, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio, 44106
| | - Tracy A. McElfresh
- Dept. of Physiology & Biophysics, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio, 44106
| | - Xin Yu
- Dept. of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio, 44106
| | - Margaret P. Chandler
- Dept. of Physiology & Biophysics, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio, 44106
| |
Collapse
|
48
|
Kumarasamy S, Gopalakrishnan K, Toland EJ, Yerga-Woolwine S, Farms P, Morgan EE, Joe B. Refined mapping of blood pressure quantitative trait loci using congenic strains developed from two genetically hypertensive rat models. Hypertens Res 2011; 34:1263-70. [PMID: 21814219 DOI: 10.1038/hr.2011.116] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Previously linkage and substitution mapping were conducted between the Dahl Salt-sensitive (S) rat and the Spontaneously Hypertensive Rat (SHR) to address the hypothesis that genetic contributions to blood pressure (BP) in two genetically hypertensive rat strains are different. Among the BP quantitative trait loci (QTLs) detected, two are located on chromosome 9 within large genomic segments. The goal of the current study was to develop new iterations of congenic substrains, to further resolve both of these BP QTLs on chromosome 9 as independent congenic segments. A total of 10 new congenic substrains were developed and characterized. The newly developed congenic substrains S.SHR(9)x8Ax11A and S.SHR(9)x10Ax1, with introgressed segments of 2.05 and 6.14 Mb, represented the shortest genomic segments. Both of these congenic substrains, S.SHR(9)x8Ax11A and S.SHR(9)x10Ax1 lowered BP of the S rat by 56 mm Hg (P<0.001) and 15 mm Hg (P<0.039), respectively. The BP measurements were corroborated by radiotelemetry. Urinary protein excretion was significantly lowered by SHR alleles within S.SHR(9)x10Ax1 but not by S.SHR(9)x8Ax11A. The shorter of the two congenic segments, 2.05 Mb was further characterized and found to contain a single differentially expressed protein-coding gene, Tomoregulin-2 (Tmeff2). The protein expression of Tmeff2 was higher in the S rat compared with S.SHR(9)x8Ax11A, which also had lower cardiac hypertrophy as measured by echocardiography. Tmeff2 is known to be upregulated in patients from multiple cohorts with cardiac hypertrophy. Taken together, Tmeff2 can be prioritized as a candidate gene for hypertension and associated cardiac hypertrophy in both rats and in humans.
Collapse
Affiliation(s)
- Sivarajan Kumarasamy
- Physiological Genomics Laboratory, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Cheng Y, Li W, McElfresh TA, Chen X, Berthiaume JM, Castel L, Yu X, Van Wagoner DR, Chandler MP. Changes in myofilament proteins, but not Ca²⁺ regulation, are associated with a high-fat diet-induced improvement in contractile function in heart failure. Am J Physiol Heart Circ Physiol 2011; 301:H1438-46. [PMID: 21765056 DOI: 10.1152/ajpheart.00440.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pathological conditions such as diabetes, insulin resistance, and obesity are characterized by elevated plasma and myocardial lipid levels and have been reported to exacerbate the progression of heart failure (HF). Alterations in cardiomyocyte Ca(2+) regulatory properties and myofilament proteins have also been implicated in contractile dysfunction in HF. However, our prior studies reported that high saturated fat (SAT) feeding improves in vivo myocardial contractile function, thereby exerting a cardioprotective effect in HF. Therefore, we hypothesized that SAT feeding improves contractile function by altering Ca(2+) regulatory properties and myofilament protein expression in HF. Male Wistar rats underwent coronary artery ligation (HF) or sham surgery (SH) and were fed normal chow (SHNC and HFNC groups) or a SAT diet (SHSAT and HFSAT groups) for 8 wk. Contractile properties were measured in vivo [echocardiography and left ventricular (LV) cannulation] and in isolated LV cardiomyocytes. In vivo measures of contractility (peak LV +dP/dt and -dP/dt) were depressed in the HFNC versus SHNC group but improved in the HFSAT group. Isolated cardiomyocytes from both HF groups were hypertrophied and had decreased percent cell shortening and a prolonged time to half-decay of the Ca(2+) transient versus the SH group; however, SAT feeding reduced in vivo myocyte hypertrophy in the HFSAT group only. The peak velocity of cell shortening was reduced in the HFNC group but not the HFSAT group and was positively correlated with in vivo contractile function (peak LV +dP/dt). The HFNC group demonstrated a myosin heavy chain (MHC) isoform switch from fast MHC-α to slow MHC-β, which was prevented in the HFSAT group. Alterations in Ca(2+) transients, L-type Ca(2+) currents, and protein expression of sarco(endo)plasmic reticulum Ca(2+)-ATPase and phosphorylated phospholamban could not account for the changes in the in vivo contractile properties. In conclusion, the cardioprotective effects associated with SAT feeding in HF may occur at the level of the isolated cardiomyocyte, specifically involving changes in myofilament function but not sarcoplasmic reticulum Ca(2+) regulatory properties.
Collapse
Affiliation(s)
- Y Cheng
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106-4970, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Connelly KA, Advani A, Advani S, Zhang Y, Thai K, Thomas S, Krum H, Kelly DJ, Gilbert RE. Combination angiotensin converting enzyme and direct renin inhibition in heart failure following experimental myocardial infarction. Cardiovasc Ther 2011; 31:84-91. [PMID: 21884026 DOI: 10.1111/j.1755-5922.2011.00292.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
AIMS Diminishing the activity of the renin-angiotensin system (RAS) plays a pivotal role in the treatment of heart failure. In addition to angiotensin converting enzyme (ACE) inhibitors and angiotensin-receptor blockers, direct renin inhibition has emerged as a potential adjunctive treatment to conventional RAS blockade. We sought to determine the effectiveness of this strategy after myocardial infarction (MI) in the setting of preexisting hypertension, a common premorbid condition in patients with ischemic heart disease. METHODS AND RESULTS Ten-week-old female heterozygous hypertensive (mRen-2)27 transgenic rats (Ren-2), were randomized to one of five groups (n = 8 per group); sham, MI, MI + aliskiren, MI + lisinopril and MI + combination lisinopril and aliskiren. Cardiac function was assessed by echocardiography and in vivo cardiac catheterization. Untreated MI animals developed heart failure with hypotension, dilation, reduced ejection fraction (EF), and raised left ventricular end-diastolic pressure (LVEDP). Treatment with single agent treatment had only modest effect on cardiac function though combination therapy was associated with significant improvements in EF and LVEDP when compared to untreated MI animals (P < 0.05). Histologic analysis demonstrated increase extracellular matrix deposition and cardiomyocyte hypertrophy in the noninfarct region of all MI groups when compared with sham operated animals (P < 0.05) that was reduced by ACE inhibitor monotherapy and combination treatment but not by aliskiren alone. CONCLUSION In a hypertensive rat model that underwent experimental MI, EF, and LVEDP, key functional indices of heart failure, were improved by treatment with combination ACE and direct renin inhibition when compared with either agent used alone.
Collapse
Affiliation(s)
- K A Connelly
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital and University of Toronto, Toronto, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|