1
|
Lee CL, Lin YC, Kuo TH. The impact of social partners: investigating mixed-strain housing effects on aging in female mice. Biogerontology 2024; 25:1263-1274. [PMID: 39261412 DOI: 10.1007/s10522-024-10139-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Aging is a multifaceted process characterized by the gradual decline of physiological functions and can be modulated by various internal and external factors. While social interactions have been shown to affect behaviors and physiology in different species, the impact of social partners on aging-related phenotypes and lifespan in mice remains understudied. To address this question, we investigated various aging-related traits and lifespan in two mouse strains, C57BL/6J and BALB/c, under two different housing conditions: mixed-strain and same-strain housing. Analyses using a Generalized Linear Model revealed significant differences between the two strains in several phenotypes, including metabolic, anxiety-like, and electrocardiographic traits. However, surprisingly, housing conditions did not significantly affect most of the examined parameters, including overall lifespan. Only 3 out of 25 traits-body weight change in a metabolic cage, running wheel activity, and survival days of a quartiles of mice with middle lifespans-were influenced by housing conditions in a strain-dependent manner. Together, our study suggested a minimal influence of co-housing with social partners from different genetic backgrounds on aging-related phenotypes. This result demonstrates the feasibility of mixed housing for mouse husbandry and, more importantly, provides valuable insights for future research on the social influences on the aging process in mice.
Collapse
Affiliation(s)
- Chih-Lin Lee
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Yu-Chiao Lin
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Tsung-Han Kuo
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.
| |
Collapse
|
2
|
Baghdadi M, Nespital T, Monzó C, Deelen J, Grönke S, Partridge L. Intermittent rapamycin feeding recapitulates some effects of continuous treatment while maintaining lifespan extension. Mol Metab 2024; 81:101902. [PMID: 38360109 PMCID: PMC10900781 DOI: 10.1016/j.molmet.2024.101902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/26/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVE Rapamycin, a powerful geroprotective drug, can have detrimental effects when administered chronically. We determined whether intermittent treatment of mice can reduce negative effects while maintaining benefits of chronic treatment. METHODS From 6 months of age, male and female C3B6F1 hybrid mice were either continuously fed with 42 mg/kg rapamycin, or intermittently fed by alternating weekly feeding of 42 mg/kg rapamycin food with weekly control feeding. Survival of these mice compared to control animals was measured. Furthermore, longitudinal phenotyping including metabolic (body composition, GTT, ITT, indirect calorimetry) and fitness phenotypes (treadmil, rotarod, electrocardiography and open field) was performed. Organ specific pathology was assessed at 24 months of age. RESULTS Chronic rapamycin treatment induced glucose intolerance, which was partially ameliorated by intermittent treatment. Chronic and intermittent rapamycin treatments increased lifespan equally in males, while in females chronic treatment resulted in slightly higher survival. The two treatments had equivalent effects on testicular degeneration, heart fibrosis and liver lipidosis. In males, the two treatment regimes led to a similar increase in motor coordination, heart rate and Q-T interval, and reduction in spleen weight, while in females, they equally reduced BAT inflammation and spleen weight and maintained heart rate and Q-T interval. However, other health parameters, including age related pathologies, were better prevented by continuous treatment. CONCLUSIONS Intermittent rapamycin treatment is effective in prolonging lifespan and reduces some side-effects of chronic treatment, but chronic treatment is more beneficial to healthspan.
Collapse
Affiliation(s)
- Maarouf Baghdadi
- Max-Planck Institute for Biology of Ageing, Cologne, Germany; Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Tobias Nespital
- Max-Planck Institute for Biology of Ageing, Cologne, Germany
| | - Carolina Monzó
- Max-Planck Institute for Biology of Ageing, Cologne, Germany; Institute for Integrative Systems Biology, Spanish National Research Council, Catedràtic Agustín Escardino Benlloch, Paterna, Spain
| | - Joris Deelen
- Max-Planck Institute for Biology of Ageing, Cologne, Germany; Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | | | - Linda Partridge
- Max-Planck Institute for Biology of Ageing, Cologne, Germany; Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, UK.
| |
Collapse
|
3
|
Francisco AF, Sousa GR, Vaughan M, Langston H, Khan A, Jayawardhana S, Taylor MC, Lewis MD, Kelly JM. Cardiac Abnormalities in a Predictive Mouse Model of Chagas Disease. Pathogens 2023; 12:1364. [PMID: 38003828 PMCID: PMC10674564 DOI: 10.3390/pathogens12111364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Chronic Chagas cardiomyopathy (CCC) results from infection with the protozoan parasite Trypanosoma cruzi and is a prevalent cause of heart disease in endemic countries. We previously found that cardiac fibrosis can vary widely in C3H/HeN mice chronically infected with T. cruzi JR strain, mirroring the spectrum of heart disease in humans. In this study, we examined functional cardiac abnormalities in this host:parasite combination to determine its potential as an experimental model for CCC. We utilised electrocardiography (ECG) to monitor T. cruzi-infected mice and determine whether ECG markers could be correlated with cardiac function abnormalities. We found that the C3H/HeN:JR combination frequently displayed early onset CCC indicators, such as sinus bradycardia and right bundle branch block, as well as prolonged PQ, PR, RR, ST, and QT intervals in the acute stage. Our model exhibited high levels of cardiac inflammation and enhanced iNOS expression in the acute stage, but denervation did not appear to have a role in pathology. These results demonstrate the potential of the C3H/HeN:JR host:parasite combination as a model for CCC that could be used for screening new compounds targeted at cardiac remodelling and for examining the potential of antiparasitic drugs to prevent or alleviate CCC development and progression.
Collapse
Affiliation(s)
- Amanda Fortes Francisco
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Giovane R. Sousa
- Harvard Medical School, Section on Immunobiology, Joslin Diabetes Center, 1 Joslin Place, Boston, MA 02215, USA
| | - Mhairi Vaughan
- Research Department of Haematology, Cancer Institute, Faculty of Medical Sciences, University College London, London WC1E 6DD, UK
| | - Harry Langston
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Archie Khan
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Shiromani Jayawardhana
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Martin C. Taylor
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Michael D. Lewis
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - John M. Kelly
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
4
|
Faber JE, Zhang H, Xenakis JG, Bell TA, Hock P, Pardo-Manuel de Villena F, Ferris MT, Rzechorzek W. Large differences in collateral blood vessel abundance among individuals arise from multiple genetic variants. J Cereb Blood Flow Metab 2023; 43:1983-2004. [PMID: 37572089 PMCID: PMC10676139 DOI: 10.1177/0271678x231194956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/14/2023]
Abstract
Collateral blood flow varies greatly among humans for reasons that remain unclear, resulting in significant differences in ischemic tissue damage. A similarly large variation has also been found in mice that is caused by genetic background-dependent differences in the extent of collateral formation, termed collaterogenesis-a unique angiogenic process that occurs during development and determines collateral number and diameter in the adult. Previous studies have identified several quantitative trait loci (QTL) linked to this variation. However, understanding has been hampered by the use of closely related inbred strains that do not model the wide genetic variation present in the "outbred" human population. The Collaborative Cross (CC) multiparent mouse genetic reference panel was developed to address this limitation. Herein we measured the number and average diameter of cerebral collaterals in 60 CC strains, their 8 founder strains, 8 F1 crosses of CC strains selected for abundant versus sparse collaterals, and 2 intercross populations created from the latter. Collateral number evidenced 47-fold variation among the 60 CC strains, with 14% having poor, 25% poor-to-intermediate, 47% intermediate-to-good, and 13% good collateral abundance, that was associated with large differences in post-stroke infarct volume. Collateral number in skeletal muscle and intestine of selected high- and low-collateral strains evidenced the same relative abundance as in brain. Genome-wide mapping demonstrated that collateral abundance is a highly polymorphic trait. Subsequent analysis identified: 6 novel QTL circumscribing 28 high-priority candidate genes harboring putative loss-of-function polymorphisms (SNPs) associated with low collateral number; 335 predicted-deleterious SNPs present in their human orthologs; and 32 genes associated with vascular development but lacking protein coding variants. Six additional suggestive QTL (LOD > 4.5) were also identified in CC-wide QTL mapping. This study provides a comprehensive set of candidate genes for future investigations aimed at identifying signaling proteins within the collaterogenesis pathway whose variants potentially underlie genetic-dependent collateral insufficiency in brain and other tissues.
Collapse
Affiliation(s)
- James E Faber
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Neuroscience, University of North Carolina, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Hua Zhang
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - James G Xenakis
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Timothy A Bell
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Pablo Hock
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Martin T Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Wojciech Rzechorzek
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Oestereicher MA, Wotton JM, Ayabe S, Bou About G, Cheng TK, Choi JH, Clary D, Dew EM, Elfertak L, Guimond A, Haseli Mashhadi H, Heaney JD, Kelsey L, Keskivali-Bond P, Lopez Gomez F, Marschall S, McFarland M, Meziane H, Munoz Fuentes V, Nam KH, Nichtová Z, Pimm D, Bower L, Prochazka J, Rozman J, Santos L, Stewart M, Tanaka N, Ward CS, Willett AME, Wilson R, Braun RE, Dickinson ME, Flenniken AM, Herault Y, Lloyd KCK, Mallon AM, McKerlie C, Murray SA, Nutter LMJ, Sedlacek R, Seong JK, Sorg T, Tamura M, Wells S, Schneltzer E, Fuchs H, Gailus-Durner V, Hrabe de Angelis M, White JK, Spielmann N. Comprehensive ECG reference intervals in C57BL/6N substrains provide a generalizable guide for cardiac electrophysiology studies in mice. Mamm Genome 2023; 34:180-199. [PMID: 37294348 PMCID: PMC10290602 DOI: 10.1007/s00335-023-09995-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/27/2023] [Indexed: 06/10/2023]
Abstract
Reference ranges provide a powerful tool for diagnostic decision-making in clinical medicine and are enormously valuable for understanding normality in pre-clinical scientific research that uses in vivo models. As yet, there are no published reference ranges for electrocardiography (ECG) in the laboratory mouse. The first mouse-specific reference ranges for the assessment of electrical conduction are reported herein generated from an ECG dataset of unprecedented scale. International Mouse Phenotyping Consortium data from over 26,000 conscious or anesthetized C57BL/6N wildtype control mice were stratified by sex and age to develop robust ECG reference ranges. Interesting findings include that heart rate and key elements from the ECG waveform (RR-, PR-, ST-, QT-interval, QT corrected, and QRS complex) demonstrate minimal sexual dimorphism. As expected, anesthesia induces a decrease in heart rate and was shown for both inhalation (isoflurane) and injectable (tribromoethanol) anesthesia. In the absence of pharmacological, environmental, or genetic challenges, we did not observe major age-related ECG changes in C57BL/6N-inbred mice as the differences in the reference ranges of 12-week-old compared to 62-week-old mice were negligible. The generalizability of the C57BL/6N substrain reference ranges was demonstrated by comparison with ECG data from a wide range of non-IMPC studies. The close overlap in data from a wide range of mouse strains suggests that the C57BL/6N-based reference ranges can be used as a robust and comprehensive indicator of normality. We report a unique ECG reference resource of fundamental importance for any experimental study of cardiac function in mice.
Collapse
Affiliation(s)
- Manuela A Oestereicher
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Janine M Wotton
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Shinya Ayabe
- Experimental Animal Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Ghina Bou About
- Université de Strasbourg, CNRS, INSERM, Institut de La Clinique de La Souris, PHENOMIN, 1 Rue Laurent Fries, 67404, Illkirch, France
| | - Tsz Kwan Cheng
- The Mary Lyon Centre, MRC Harwell, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Jae-Hoon Choi
- Department of Life Science, College of Natural Sciences, Hanyang Institute of Bioscience and Biotechnology, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Dave Clary
- Mouse Biology Program, University of California, 2795 Second Street Suite 400, Davis, CA, 95618, USA
| | - Emily M Dew
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Lahcen Elfertak
- Université de Strasbourg, CNRS, INSERM, Institut de La Clinique de La Souris, PHENOMIN, 1 Rue Laurent Fries, 67404, Illkirch, France
| | - Alain Guimond
- Université de Strasbourg, CNRS, INSERM, Institut de La Clinique de La Souris, PHENOMIN, 1 Rue Laurent Fries, 67404, Illkirch, France
| | - Hamed Haseli Mashhadi
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Jason D Heaney
- Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Lois Kelsey
- The Centre for Phenogenomics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5T 3H7, Canada
| | - Piia Keskivali-Bond
- The Mary Lyon Centre, MRC Harwell, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Federico Lopez Gomez
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Susan Marschall
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | | | - Hamid Meziane
- Université de Strasbourg, CNRS, INSERM, Institut de La Clinique de La Souris, PHENOMIN, 1 Rue Laurent Fries, 67404, Illkirch, France
| | - Violeta Munoz Fuentes
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Ki-Hoan Nam
- Korea Mouse Phenotyping Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Zuzana Nichtová
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dale Pimm
- The Mary Lyon Centre, MRC Harwell, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Lynette Bower
- Mouse Biology Program, University of California, 2795 Second Street Suite 400, Davis, CA, 95618, USA
| | - Jan Prochazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Rozman
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Luis Santos
- The Mary Lyon Centre, MRC Harwell, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Michelle Stewart
- The Mary Lyon Centre, MRC Harwell, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Nobuhiko Tanaka
- Integrated Bioresource Information Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Christopher S Ward
- Integrative Physiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | | | - Robert Wilson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Robert E Braun
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Mary E Dickinson
- Integrative Physiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Ann M Flenniken
- The Centre for Phenogenomics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5T 3H7, Canada
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de La Clinique de La Souris, PHENOMIN, 1 Rue Laurent Fries, 67404, Illkirch, France
| | - K C Kent Lloyd
- Mouse Biology Program, University of California, 2795 Second Street Suite 400, Davis, CA, 95618, USA
| | - Ann-Marie Mallon
- The Mary Lyon Centre, MRC Harwell, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Colin McKerlie
- The Centre for Phenogenomics, The Hospital for Sick Children, Toronto, ON, M5T 3H7, Canada
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Stephen A Murray
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Lauryl M J Nutter
- The Centre for Phenogenomics, The Hospital for Sick Children, Toronto, ON, M5T 3H7, Canada
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, and Interdisciplinary Program for Bioinformatics, Korea Mouse Phenotyping CenterBK21 Plus Program for Advanced Veterinary Science, Research Institute for Veterinary ScienceSeoul National University, 599 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Tania Sorg
- Université de Strasbourg, CNRS, INSERM, Institut de La Clinique de La Souris, PHENOMIN, 1 Rue Laurent Fries, 67404, Illkirch, France
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Sara Wells
- The Mary Lyon Centre, MRC Harwell, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Elida Schneltzer
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
- Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische 83 Universität München, Alte Akademie 8, 85354, Freising, Germany.
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
| | | | - Nadine Spielmann
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| |
Collapse
|
6
|
Faber JE, Zhang H, Xenakis JG, Bell TA, Hock P, de Villena FPM, Ferris MT, Rzechorzek W. Large differences in collateral blood vessel abundance among individuals arise from multiple genetic variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.28.542633. [PMID: 37398475 PMCID: PMC10312463 DOI: 10.1101/2023.05.28.542633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Collateral blood flow varies greatly among humans for reasons that remain unclear, resulting in significant differences in ischemic tissue damage. A similarly large variation has also been found in mice that is caused by genetic background-dependent differences in the extent of collateral formation, termed collaterogenesis-a unique angiogenic process that occurs during development and determines collateral number and diameter in the adult. Previous studies have identified several quantitative trait loci (QTL) linked to this variation. However, understanding has been hampered by the use of closely related inbred strains that do not model the wide genetic variation present in the "outbred" human population. The Collaborative Cross (CC) multiparent mouse genetic reference panel was developed to address this limitation. Herein we measured the number and average diameter of cerebral collaterals in 60 CC strains, their 8 founder strains, 8 F1 crosses of CC strains selected for abundant versus sparse collaterals, and 2 intercross populations created from the latter. Collateral number evidenced 47-fold variation among the 60 CC strains, with 14% having poor, 25% poor-to-intermediate, 47% intermediate-to-good, and 13% good collateral abundance, that was associated with large differences in post-stroke infarct volume. Genome-wide mapping demonstrated that collateral abundance is a highly polymorphic trait. Subsequent analysis identified: 6 novel QTL circumscribing 28 high-priority candidate genes harboring putative loss-of-function polymorphisms (SNPs) associated with low collateral number; 335 predicted-deleterious SNPs present in their human orthologs; and 32 genes associated with vascular development but lacking protein coding variants. This study provides a comprehensive set of candidate genes for future investigations aimed at identifying signaling proteins within the collaterogenesis pathway whose variants potentially underlie genetic-dependent collateral insufficiency in brain and other tissues.
Collapse
|
7
|
Cuenca-Bermejo L, Fernández-Del Palacio MJ, de Cassia Gonçalves V, Bautista-Hernández V, Sánchez-Rodrigo C, Fernández-Villalba E, Kublickiene K, Raparelli V, Kautzky-Willer A, Norris CM, Pilote L, Herrero MT. Age and Sex Determine Electrocardiogram Parameters in the Octodon degus. BIOLOGY 2023; 12:747. [PMID: 37237559 PMCID: PMC10215068 DOI: 10.3390/biology12050747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
Cardiovascular diseases represent the leading cause of mortality and morbidity worldwide, and age is an important risk factor. Preclinical models provide supportive evidence toward age-related cardiac changes, as well as allow for the study of pathological aspects of the disease. In the present work, we evaluated the electrocardiogram (ECG) recording in the O. degus during the aging process in both females and males. Taking into account the age and sex, our study provides the normal ranges for the heart rate, duration and voltage of the ECG waves and intervals, as well as electrical axis deviation. We found that the QRS complex duration and QTc significantly increased with age, whereas the heart rate significantly decreased. On the other hand, the P wave, PR and QTc segments durations, S wave voltage and electrical axis were found to be significantly different between males and females. The heart rhythm was also altered in aged animals, resulting in an increased incidence of arrhythmias, especially in males. Based on these results, we suggest that this rodent model could be useful for cardiovascular research, including impacts of aging and biological sex.
Collapse
Affiliation(s)
- Lorena Cuenca-Bermejo
- Clinical & Experimental Neuroscience (NiCE), Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University of Murcia, 30120 Murcia, Spain; (L.C.-B.); (V.d.C.G.); (C.S.-R.); (E.F.-V.)
- Institute for Aging Research (IUIE), Campus Mare Nostrum, European University for Wellbeing (EUniWell), 30100 Murcia, Spain
| | | | - Valeria de Cassia Gonçalves
- Clinical & Experimental Neuroscience (NiCE), Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University of Murcia, 30120 Murcia, Spain; (L.C.-B.); (V.d.C.G.); (C.S.-R.); (E.F.-V.)
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | | | - Consuelo Sánchez-Rodrigo
- Clinical & Experimental Neuroscience (NiCE), Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University of Murcia, 30120 Murcia, Spain; (L.C.-B.); (V.d.C.G.); (C.S.-R.); (E.F.-V.)
- Institute for Aging Research (IUIE), Campus Mare Nostrum, European University for Wellbeing (EUniWell), 30100 Murcia, Spain
| | - Emiliano Fernández-Villalba
- Clinical & Experimental Neuroscience (NiCE), Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University of Murcia, 30120 Murcia, Spain; (L.C.-B.); (V.d.C.G.); (C.S.-R.); (E.F.-V.)
- Institute for Aging Research (IUIE), Campus Mare Nostrum, European University for Wellbeing (EUniWell), 30100 Murcia, Spain
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Valeria Raparelli
- Department of Translational Medicine, University of Ferrara, 44124 Ferrara, Italy;
- University Center for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Alexandra Kautzky-Willer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, 1090 Vienna, Austria;
| | - Colleen M. Norris
- Faculty of Nursing, University of Alberta, Edmonton, AB T6G 2R3, Canada;
- Cardiovascular and Stroke Strategic Clinical Network, Alberta Health Services, Edmonton, AB T5J 3E4, Canada
| | - Louise Pilote
- Division of Clinical Epidemiology, Research Institute of McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada;
| | - María Trinidad Herrero
- Clinical & Experimental Neuroscience (NiCE), Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), University of Murcia, 30120 Murcia, Spain; (L.C.-B.); (V.d.C.G.); (C.S.-R.); (E.F.-V.)
- Institute for Aging Research (IUIE), Campus Mare Nostrum, European University for Wellbeing (EUniWell), 30100 Murcia, Spain
| |
Collapse
|
8
|
Pauly V, Vlcek J, Zhang Z, Hesse N, Xia R, Bauer J, Loy S, Schneider S, Renner S, Wolf E, Kääb S, Schüttler D, Tomsits P, Clauss S. Effects of Sex on the Susceptibility for Atrial Fibrillation in Pigs with Ischemic Heart Failure. Cells 2023; 12:973. [PMID: 37048048 PMCID: PMC10093477 DOI: 10.3390/cells12070973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Atrial fibrillation (AF) is the most prevalent arrhythmia, often caused by myocardial ischemia/infarction (MI). Men have a 1.5× higher prevalence of AF, whereas women show a higher risk for new onset AF after MI. However, the underlying mechanisms of how sex affects AF pathophysiology are largely unknown. In 72 pigs with/without ischemic heart failure (IHF) we investigated the impact of sex on ischemia-induced proarrhythmic atrial remodeling and the susceptibility for AF. Electrocardiogram (ECG) and electrophysiological studies were conducted to assess electrical remodeling; histological analyses were performed to assess atrial fibrosis in male and female pigs. IHF pigs of both sexes showed a significantly increased vulnerability for AF, but in male pigs more and longer episodes were observed. Unchanged conduction properties but enhanced left atrial fibrosis indicated structural rather than electrical remodeling underlying AF susceptibility. Sex differences were only observed in controls with female pigs showing an increased intrinsic heart rate, a prolonged QRS interval and a prolonged sinus node recovery time. In sum, susceptibility for AF is significantly increased both in male and female pigs with ischemic heart failure. Differences between males and females are moderate, including more and longer AF episodes in male pigs and sinus node dysfunction in female pigs.
Collapse
Affiliation(s)
- Valerie Pauly
- Grosshadern Campus, Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University (LMU), Marchioninistrasse 15, D-81377 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, D-81377 Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, LMU Munich, Marchioninistrasse 68, D-81377 Munich, Germany
| | - Julia Vlcek
- Grosshadern Campus, Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University (LMU), Marchioninistrasse 15, D-81377 Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, LMU Munich, Marchioninistrasse 68, D-81377 Munich, Germany
| | - Zhihao Zhang
- Grosshadern Campus, Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University (LMU), Marchioninistrasse 15, D-81377 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, D-81377 Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, LMU Munich, Marchioninistrasse 68, D-81377 Munich, Germany
| | - Nora Hesse
- Grosshadern Campus, Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University (LMU), Marchioninistrasse 15, D-81377 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, D-81377 Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, LMU Munich, Marchioninistrasse 68, D-81377 Munich, Germany
| | - Ruibing Xia
- Grosshadern Campus, Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University (LMU), Marchioninistrasse 15, D-81377 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, D-81377 Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, LMU Munich, Marchioninistrasse 68, D-81377 Munich, Germany
| | - Julia Bauer
- Grosshadern Campus, Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University (LMU), Marchioninistrasse 15, D-81377 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, D-81377 Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, LMU Munich, Marchioninistrasse 68, D-81377 Munich, Germany
| | - Simone Loy
- Grosshadern Campus, Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University (LMU), Marchioninistrasse 15, D-81377 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, D-81377 Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, LMU Munich, Marchioninistrasse 68, D-81377 Munich, Germany
| | - Sarah Schneider
- Grosshadern Campus, Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University (LMU), Marchioninistrasse 15, D-81377 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, D-81377 Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, LMU Munich, Marchioninistrasse 68, D-81377 Munich, Germany
| | - Simone Renner
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Feodor-Lynen-Strasse 19, D-81377 Munich, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, Hackerstrasse 27, D-85764 Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Eckhard Wolf
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Feodor-Lynen-Strasse 19, D-81377 Munich, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, Hackerstrasse 27, D-85764 Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Grosshadern Campus, LMU Munich, Feodor-Lynen-Stasse 25, D-81377 Munich, Germany
| | - Stefan Kääb
- Grosshadern Campus, Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University (LMU), Marchioninistrasse 15, D-81377 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, D-81377 Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Feodor-Lynen-Strasse 19, D-81377 Munich, Germany
| | - Dominik Schüttler
- Grosshadern Campus, Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University (LMU), Marchioninistrasse 15, D-81377 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, D-81377 Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, LMU Munich, Marchioninistrasse 68, D-81377 Munich, Germany
| | - Philipp Tomsits
- Grosshadern Campus, Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University (LMU), Marchioninistrasse 15, D-81377 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, D-81377 Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, LMU Munich, Marchioninistrasse 68, D-81377 Munich, Germany
| | - Sebastian Clauss
- Grosshadern Campus, Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University (LMU), Marchioninistrasse 15, D-81377 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, D-81377 Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital Munich, LMU Munich, Marchioninistrasse 68, D-81377 Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Feodor-Lynen-Strasse 19, D-81377 Munich, Germany
| |
Collapse
|
9
|
Vichare R, Saleem F, Mansour H, Bojkovic K, Cheng F, Biswal M, Panguluri SK. Impact of age and sex on hyperoxia-induced cardiovascular pathophysiology. Mech Ageing Dev 2022; 208:111727. [PMID: 36075315 DOI: 10.1016/j.mad.2022.111727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 12/30/2022]
Abstract
Hyperoxia is characterized by pronounced inflammatory responses, pulmonary cell apoptosis, and adverse cardiac remodeling due to an excess supply of oxygen. Hyperoxic episodes are frequent in mechanically ventilated patients and are associated with in-hospital mortality. This study extends the analysis of prior published research by our group as it investigates the influence of age in male and female rodents exposed to hyperoxic conditions. Age is an independent cardiovascular risk factor, often compounded by variables like obesity, diabetes, and a decline in sex hormones and their receptors. This study simulates clinical hyperoxia by subjecting rodents to > 90 % of oxygen for 72 h and compares the changes in cardiac structural and functional parameters with those exposed to normal air. While in both sexes conduction abnormalities with ageing were discernible, aged females owing to their inherent higher baseline QTc, were at a higher risk of developing arrhythmias as compared to age-matched males. Quantitative real-time RT-PCR and western blot analysis reflected altered expression of cardiac potassium channels, resulting in conduction abnormalities in aged female rodents. Unaffected by age and sex, hyperoxia-treated mice had altered body composition, as evidenced by a considerable reduction in body weight. Interestingly, compensatory hypertrophy observed as a protective mechanism in young males was absent in aged males, whereas protection of hearts from hyperoxia-induced cardiac hypertrophy was absent in aged female mice, both of which may be at least in part due to a reduction in sex steroid receptors and the systemic steroid levels. Finally, statistical analysis revealed that hyperoxia had the greatest impact on most of the cardiac parameters, followed by age and then sex. This data established an imperative finding that can change the provision of care for aged individuals admitted to ICU by elucidating the impact of intrinsic aging on hyperoxia-induced cardiac remodeling.
Collapse
Affiliation(s)
- Riddhi Vichare
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Faizan Saleem
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Hussein Mansour
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Katarina Bojkovic
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Feng Cheng
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Manas Biswal
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA; College of Medicine Internal Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Siva Kumar Panguluri
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA; Cell Biology, Microbiology and Molecular Biology, College of Arts and Sciences, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
10
|
Gerdes Gyuricza I, Chick JM, Keele GR, Deighan AG, Munger SC, Korstanje R, Gygi SP, Churchill GA. Genome-wide transcript and protein analysis highlights the role of protein homeostasis in the aging mouse heart. Genome Res 2022; 32:838-852. [PMID: 35277432 PMCID: PMC9104701 DOI: 10.1101/gr.275672.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 03/09/2022] [Indexed: 11/25/2022]
Abstract
Investigation of the molecular mechanisms of aging in the human heart is challenging because of confounding factors, such as diet and medications, as well as limited access to tissues from healthy aging individuals. The laboratory mouse provides an ideal model to study aging in healthy individuals in a controlled environment. However, previous mouse studies have examined only a narrow range of the genetic variation that shapes individual differences during aging. Here, we analyze transcriptome and proteome data from 185 genetically diverse male and female mice at ages 6, 12, and 18 mo to characterize molecular changes that occur in the aging heart. Transcripts and proteins reveal activation of pathways related to exocytosis and cellular transport with age, whereas processes involved in protein folding decrease with age. Additional changes are apparent only in the protein data including reduced fatty acid oxidation and increased autophagy. For proteins that form complexes, we see a decline in correlation between their component subunits with age, suggesting age-related loss of stoichiometry. The most affected complexes are themselves involved in protein homeostasis, which potentially contributes to a cycle of progressive breakdown in protein quality control with age. Our findings highlight the important role of post-transcriptional regulation in aging. In addition, we identify genetic loci that modulate age-related changes in protein homeostasis, suggesting that genetic variation can alter the molecular aging process.
Collapse
Affiliation(s)
| | - Joel M Chick
- Vividion Therapeutics, San Diego, California 92121, USA
| | | | | | | | - Ron Korstanje
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | - Steven P Gygi
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
11
|
Can E, Smith M, Boukens BJ, Coronel R, Buffenstein R, Riegler J. Naked mole-rats maintain cardiac function and body composition well into their fourth decade of life. GeroScience 2022; 44:731-746. [PMID: 35107705 PMCID: PMC9135933 DOI: 10.1007/s11357-022-00522-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/21/2022] [Indexed: 11/04/2022] Open
Abstract
The prevalence of cardiovascular disease increases exponentially with age, highlighting the contribution of aging mechanisms to cardiac diseases. Although model organisms which share human disease pathologies can elucidate mechanisms driving disease, they do not provide us with innate examples how cardiac aging might be slowed or attenuated. The identification of animal models that preserve cardiac function throughout most of life offers an alternative approach to study mechanisms which might slow cardiac aging. One such species may be the naked mole-rat (NMR), a mouse-sized (40 g) rodent with extraordinary longevity (> 37 years), and constant mortality hazard over its four decades of life. We used a cross-sectional study design to measure a range of physiological parameters in NMRs between 2 and 34 years of age and compared these findings with those of mice aged between 3 months and 2.5 years. We observed a rapid decline in body fat content and bone mineral density in old mice, but no changes in NMRs. Similarly, rhythm disorders (premature atrial and ventricular complexes) occurred in aged mice but not in NMRs. Magnetic resonance and ultrasound imaging showed age-dependent increases in cardiac hypertrophy and diastolic dysfunction in mice which were absent in NMRs. Finally, cardiac stress tests showed an age-dependent decline in normalized cardiac output in mice, which was absent in NMRs. Unlike mice, that manifest several aspects of human cardiac aging, NMRs maintain cardiac function and reserve capacity throughout their long lives and may offer insights on how to delay or prevent cardiac aging.
Collapse
Affiliation(s)
- Emine Can
- Calico Life Sciences LLC, 1170 Veterans Blvd, South San Francisco, CA, 94080, USA
| | - Megan Smith
- Calico Life Sciences LLC, 1170 Veterans Blvd, South San Francisco, CA, 94080, USA
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105, AZ, Amsterdam, The Netherlands
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, 6200, MD, Maastricht, The Netherlands
| | - Ruben Coronel
- Department of Experimental Cardiology, Heart Center, Academic University Medical Centers, University of Amsterdam, 1105, AZ, Amsterdam, The Netherlands
| | - Rochelle Buffenstein
- Calico Life Sciences LLC, 1170 Veterans Blvd, South San Francisco, CA, 94080, USA.
- Department of Biology, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| | - Johannes Riegler
- Calico Life Sciences LLC, 1170 Veterans Blvd, South San Francisco, CA, 94080, USA.
| |
Collapse
|
12
|
Machine Learning-Based Feature Selection and Classification for the Experimental Diagnosis of Trypanosoma cruzi. ELECTRONICS 2022. [DOI: 10.3390/electronics11050785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chagas disease, caused by the Trypanosoma cruzi (T. cruzi) parasite, is the third most common parasitosis worldwide. Most of the infected subjects can remain asymptomatic without an opportune and early detection or an objective diagnostic is not conducted. Frequently, the disease manifests itself after a long time, accompanied by severe heart disease or by sudden death. Thus, the diagnosis is a complex and challenging process where several factors must be considered. In this paper, a novel pipeline is presented integrating temporal data from four modalities (electrocardiography signals, echocardiography images, Doppler spectrum, and ELISA antibody titers), multiple features selection analyses by a univariate analysis and a machine learning-based selection. The method includes an automatic dichotomous classification of animal status (control vs. infected) based on Random Forest, Extremely Randomized Trees, Decision Trees, and Support Vector Machine. The most relevant multimodal attributes found were ELISA (IgGT, IgG1, IgG2a), electrocardiography (SR mean, QT and ST intervals), ascending aorta Doppler signals, and echocardiography (left ventricle diameter during diastole). Concerning automatic classification from selected features, the best accuracy of control vs. acute infection groups was 93.3 ± 13.3% for cross-validation and 100% in the final test; for control vs. chronic infection groups, it was 100% and 100%, respectively. We conclude that the proposed machine learning-based approach can be of help to obtain a robust and objective diagnosis in early T. cruzi infection stages.
Collapse
|
13
|
Geng D, Wang Y, Gao Z, Wang J, Liu X, Pang G. Effects of Alzheimer's disease of varying severity on cardiac and autonomic function. Braz J Med Biol Res 2022; 55:e11504. [PMID: 35019033 PMCID: PMC8851908 DOI: 10.1590/1414-431x2021e11504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases in the elderly. The aim of this study was to explore the effects of AD on cardiac function and autonomic nervous function, and the feasibility of electrocardiogram (ECG) in monitoring the development of AD. APP/PS1 double transgenic mice were used in the Morris water maze (MWM) experiment to evaluate the changes of cognitive ability of AD mice, then the non-invasive ECG acquisition system was used and the changes of ECG intervals and heart rate variability (HRV) were analyzed. AD mice already had cognitive dysfunction at the age of 5 months, reaching the level of mild dementia, and the degree of dementia increased with the course of disease. There were no significant changes in ECG intervals in the AD group at each month. The mean square of successive RR interval differences, percentage of intervals >6 ms different from preceding interval, and normalized high frequency power component in the AD group were decreased and low-to-high frequency power ratio and normalized low frequency power component were increased. Combined with the results of the MWM, it was shown that the regulation mechanism of sympathetic and parasympathetic nerves in mice was already imbalanced in early stage AD, which was manifested as the increase of excessive activity of sympathetic nerves and the inhibition of parasympathetic activities. Therefore, ECG-based analysis of HRV may become a means of daily monitoring of AD and provide an auxiliary basis for clinical diagnosis.
Collapse
Affiliation(s)
- Duyan Geng
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin, China.,Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin, China
| | - Yan Wang
- Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin, China
| | - Zeyu Gao
- Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin, China
| | - Jiaxing Wang
- Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin, China
| | - Xuanyu Liu
- Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin, China
| | - Geng Pang
- Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|
14
|
Tagirova Sirenko S, Tsutsui K, Tarasov KV, Yang D, Wirth AN, Maltsev VA, Ziman BD, Yaniv Y, Lakatta EG. Self-Similar Synchronization of Calcium and Membrane Potential Transitions During Action Potential Cycles Predict Heart Rate Across Species. JACC Clin Electrophysiol 2021; 7:1331-1344. [PMID: 33933406 PMCID: PMC10089231 DOI: 10.1016/j.jacep.2021.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 01/23/2023]
Abstract
OBJECTIVES The purpose of this study was to discover regulatory universal mechanisms of normal automaticity in sinoatrial nodal (SAN) pacemaker cells that are self-similar across species. BACKGROUND Translation of knowledge of SAN automaticity gleaned from animal studies to human dysrhythmias (e.g., "sick sinus" syndrome [SSS]) requiring electronic pacemaker insertion has been suboptimal, largely because heart rate varies widely across species. METHODS Subcellular Ca2+ releases, whole cell action potential (AP)-induced Ca2+ transients, and APs were recorded in isolated mouse, guinea pig, rabbit, and human SAN cells. Ca2+-Vm kinetic parameters during phases of AP cycles from their ignition to recovery were quantified. RESULTS Although both action potential cycle lengths (APCLs) and Ca2+-Vm kinetic parameters during AP cycles differed across species by 10-fold, trans-species scaling of these during AP cycles and scaling of these to APCL in cells in vitro, electrocardiogram RR intervals in vivo, and body mass (BM) were self-similar (obeyed power laws) across species. Thus, APCL in vitro, heart rate in vivo, and BM of any species can be predicted by Ca2+-Vm kinetics during AP cycles in SAN cells measured in any single species in vitro. CONCLUSIONS In designing optimal heart rate to match widely different BM and energy requirements from mice to humans, nature did not "reinvent pacemaker cell wheels," but differentially scaled kinetics of gears that regulate the rates at which the "wheels spin." This discovery will facilitate the development of novel pharmacological and biological pacemakers featuring a normal, wide-range rate regulation in animal models and the translation of these to humans to target recalcitrant human SSS.
Collapse
Affiliation(s)
- Syevda Tagirova Sirenko
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institute of Health, Baltimore, Maryland, USA.
| | - Kenta Tsutsui
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institute of Health, Baltimore, Maryland, USA; Saitama International Medical Center, Saitama, Japan
| | - Kirill V Tarasov
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institute of Health, Baltimore, Maryland, USA
| | - Dongmei Yang
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institute of Health, Baltimore, Maryland, USA
| | - Ashley N Wirth
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institute of Health, Baltimore, Maryland, USA
| | - Victor A Maltsev
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institute of Health, Baltimore, Maryland, USA
| | - Bruce D Ziman
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institute of Health, Baltimore, Maryland, USA
| | - Yael Yaniv
- Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institute of Health, Baltimore, Maryland, USA.
| |
Collapse
|
15
|
Grilo GA, Shaver PR, Stoffel HJ, Morrow CA, Johnson OT, Iyer RP, de Castro Brás LE. Age- and sex-dependent differences in extracellular matrix metabolism associate with cardiac functional and structural changes. J Mol Cell Cardiol 2020; 139:62-74. [PMID: 31978395 PMCID: PMC11017332 DOI: 10.1016/j.yjmcc.2020.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/19/2019] [Accepted: 01/10/2020] [Indexed: 01/08/2023]
Abstract
Age-related remodeling of the heart causes structural and functional changes in the left ventricle (LV) that are associated with a high index of morbidities and mortality worldwide. Some cardiac pathologies in the elderly population vary between genders revealing that cardiac remodeling during aging may be sex-dependent. Herein, we analyzed the effects of cardiac aging in male and female C57Bl/6 mice in four age groups, 3, 6, 12, and 18 month old (n = 6-12 animals/sex/age), to elucidate which age-related characteristics of LV remodeling are sex-specific. We focused particularly in parameters associated with age-dependent remodeling of the LV extracellular matrix (ECM) that are involved in collagen metabolism. LV function and anatomical structure were assessed both by conventional echocardiography and speckle tracking echocardiography (STE). We then measured ECM proteins that directly affect LV contractility and remodeling. All data were analyzed across ages and between sexes and were directly linked to LV functional changes. Echocardiography confirmed an age-dependent decrease in chamber volumes and LV internal diameters, indicative of concentric remodeling. As in humans, animals displayed preserved ejection fraction with age. Notably, changes to chamber dimensions and volumes were temporally distinct between sexes. Complementary to the traditional echocardiography, STE revealed that circumferential strain rate declined in 18 month old females, compared to younger animals, but not in males, suggesting STE as an earlier indicator for changes in cardiac function between sexes. Age-dependent collagen deposition and expression in the endocardium did not differ between sexes; however, other factors involved in collagen metabolism were sex-specific. Specifically, while decorin, osteopontin, Cthrc1, and Ddr1 expression were age-dependent but sex-independent, periostin, lysyl oxidase, and Mrc2 displayed age-dependent and sex-specific differences. Moreover, our data also suggest that with age males and females have distinct TGFβ signaling pathways. Overall, our results give evidence of sex-specific molecular changes during physiological cardiac remodeling that associate with age-dependent structural and functional dysfunction. These data highlight the importance of including sex-differences analysis when studying cardiac aging.
Collapse
Affiliation(s)
- Gabriel A Grilo
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States of America
| | - Patti R Shaver
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States of America
| | - Hamilton J Stoffel
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States of America
| | - Caleb Anthony Morrow
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States of America
| | - Octavious T Johnson
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States of America
| | - Rugmani P Iyer
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States of America
| | - Lisandra E de Castro Brás
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States of America; Department of Cardiovascular Sciences, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States of America.
| |
Collapse
|
16
|
Oakley RH, Cruz-Topete D, He B, Foley JF, Myers PH, Xu X, Gomez-Sanchez CE, Chambon P, Willis MS, Cidlowski JA. Cardiomyocyte glucocorticoid and mineralocorticoid receptors directly and antagonistically regulate heart disease in mice. Sci Signal 2019; 12:12/577/eaau9685. [PMID: 30992401 DOI: 10.1126/scisignal.aau9685] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Stress is increasingly associated with heart dysfunction and is linked to higher mortality rates in patients with cardiometabolic disease. Glucocorticoids are primary stress hormones that regulate homeostasis through two nuclear receptors, the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR), both of which are present in cardiomyocytes. To examine the specific and coordinated roles that these receptors play in mediating the direct effects of stress on the heart, we generated mice with cardiomyocyte-specific deletion of GR (cardioGRKO), MR (cardioMRKO), or both GR and MR (cardioGRMRdKO). The cardioGRKO mice spontaneously developed cardiac hypertrophy and left ventricular systolic dysfunction and died prematurely from heart failure. In contrast, the cardioMRKO mice exhibited normal heart morphology and function. Despite the presence of myocardial stress, the cardioGRMRdKO mice were resistant to the cardiac remodeling, left ventricular dysfunction, and early death observed in the cardioGRKO mice. Gene expression analysis revealed the loss of gene changes associated with impaired Ca2+ handling, increased oxidative stress, and enhanced cell death and the presence of gene changes that limited the hypertrophic response and promoted cardiomyocyte survival in the double knockout hearts. Reexpression of MR in cardioGRMRdKO hearts reversed many of the cardioprotective gene changes and resulted in cardiac failure. These findings reveal a critical role for balanced cardiomyocyte GR and MR stress signaling in cardiovascular health. Therapies that shift stress signaling in the heart to favor more GR and less MR activity may provide an improved approach for treating heart disease.
Collapse
Affiliation(s)
- Robert H Oakley
- Signal Transduction Laboratory, NIEHS, NIH, DHHS, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Diana Cruz-Topete
- Signal Transduction Laboratory, NIEHS, NIH, DHHS, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Bo He
- Signal Transduction Laboratory, NIEHS, NIH, DHHS, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Julie F Foley
- Cellular and Molecular Pathology Branch, NIEHS, NIH, DHHS, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Page H Myers
- Comparative Medicine Branch, NIEHS, NIH, DHHS, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Xiaojiang Xu
- Laboratory of Integrative Bioinformatics, NIEHS, NIH, DHHS, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Celso E Gomez-Sanchez
- Endocrinology Division, G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS 39216, USA.,Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Pierre Chambon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, Inserm U964, Université de Strasbourg, Collège de France, Illkirch 67404, France
| | - Monte S Willis
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, UNC, Chapel Hill, NC 27599, USA
| | - John A Cidlowski
- Signal Transduction Laboratory, NIEHS, NIH, DHHS, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
17
|
Bauer C, Schillinger U, Brandl J, Meyer-Lindenberg A, Ott A, Baumgartner C. Comparison of pre-emptive butorphanol or metamizole with ketamine +medetomidine and s-ketamine + medetomidine anaesthesia in improving intraoperative analgesia in mice. Lab Anim 2018; 53:459-469. [PMID: 30526293 DOI: 10.1177/0023677218815208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In accordance with the 'refinement' component of the 3Rs, the primary aim of this study was to investigate and compare ketamine + medetomidine (KM) and s-ketamine + medetomidine (SKM) anaesthetic protocols in C57BL/6J mice (both sexes). We sought to determine whether s-ketamine could provide adequate surgical tolerance at a 50% dose relative to that of ketamine racemate and whether antagonism of medetomidine could be initiated 15 min earlier. The second aim was to investigate the potential improvement in analgesia for both anaesthetic protocols by adding butorphanol or metamizole. Analgesia was tested via the pedal withdrawal reaction (PWR) to a painful stimulus. During anaesthesia, respiratory frequency, pulse oximetry, body temperature and PWR were monitored. Among the 16 mice in each group, the PWR was lost in all the KM + metamizole (35:56 ± 6:07 min), KM + butorphanol (43:45 ± 2:14 min) and SKM + butorphanol (24:03 ± 5:50 min) mice, 15 of the non-premedicated KM (37:00 ± 8:11 min) mice, and 9 of the pure SKM (20:00 ± 4:19 min) mice; the latter group increased to 11 mice (17:16 ± 5:10 min) with premedication of metamizole. In contrast to the racemic combination, s-ketamine at the dose used here did not lead to sufficient loss of the PWR. However, earlier partial antagonism of SKM resulted in a slightly shorter and qualitatively better recovery than later partial antagonism of SKM. The addition of metamizole or butorphanol to KM or SKM anaesthesia positively influences the analgesic quality. However, when butorphanol is added, controlled ventilation may be necessary, especially for male mice.
Collapse
Affiliation(s)
- C Bauer
- Centre of Preclinical Research, Technical University of Munich, Germany
| | - U Schillinger
- Centre of Preclinical Research, Technical University of Munich, Germany
| | - J Brandl
- Centre of Preclinical Research, Technical University of Munich, Germany
| | - A Meyer-Lindenberg
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-University Munich, Germany
| | - A Ott
- Institute for Medical Statistics and Epidemiology, Technical University of Munich, Germany
| | - C Baumgartner
- Centre of Preclinical Research, Technical University of Munich, Germany
| |
Collapse
|
18
|
Kay JC, Claghorn GC, Thompson Z, Hampton TG, Garland T. Electrocardiograms of mice selectively bred for high levels of voluntary exercise: Effects of short-term exercise training and the mini-muscle phenotype. Physiol Behav 2018; 199:322-332. [PMID: 30508549 DOI: 10.1016/j.physbeh.2018.11.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/30/2018] [Accepted: 11/29/2018] [Indexed: 12/18/2022]
Abstract
Changes in cardiac function that occur with exercise training have been studied in detail, but those accompanying evolved increases in the duration or intensity of physical activity are poorly understood. To address this gap, we studied electrocardiograms (ECGs) of mice from an artificial selection experiment in which four replicate lines are bred for high voluntary wheel running (HR) while four non-selected lines are maintained as controls (C). ECGs were recorded using an ECGenie (Mouse Specifics, Inc.) both before and after six days of wheel access (as used in the standard protocol to select breeders). We hypothesized that HR mice would show innate differences in ECG characteristics and that the response to training would be greater in HR mice relative to C mice because the former run more. After wheel access, in statistical analyses controlling for variation in body mass, all mice had lower heart rates, and mice from HR lines had longer PR intervals than C lines. Also after wheel access, male mice had increased heart rate variability, whereas females had decreased heart rate variability. With body mass as a covariate, six days of wheel access significantly increased ventricle mass in both HR and C males. Within the HR lines, a subset of mice known as mini-muscle individuals have a 50% reduction in hindlimb muscle mass and generally larger internal organs, including the heart ventricles. As compared with normal-muscled individuals, mini-muscle individuals had a longer QRS complex, both before and after wheel access. Some studies in other species of mammals have shown correlations between athletic performance and QRS duration. Correlations between wheel running and either heart rate or QRS duration (before wheel running) among the eight individual lines of the HR selection experiment or among 17 inbred mouse strains taken from the literature were not statistically significant. However, total revolutions and average speed were negatively correlated with PR duration among lines of the HR selection experiment for males, and duration of running was negatively correlated with PR duration among 17 inbred strains for females. We conclude that HR mice have enhanced trainability of cardiac function as compared with C mice (as indicated by their longer PR duration after wheel access), and that the mini-muscle phenotype causes cardiac changes that have been associated with increased athletic performance in previous studies of mammals.
Collapse
Affiliation(s)
- Jarren C Kay
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA; Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35406, USA
| | - Gerald C Claghorn
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Zoe Thompson
- Interdepartmental Neuroscience Program, University of California, Riverside, CA 92521, USA; Department of Molecular & Integrative Physiology, Medical School, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
19
|
Oh J, Magnuson A, Benoist C, Pittet MJ, Weissleder R. Age-related tumor growth in mice is related to integrin α 4 in CD8+ T cells. JCI Insight 2018; 3:122961. [PMID: 30385729 DOI: 10.1172/jci.insight.122961] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/27/2018] [Indexed: 11/17/2022] Open
Abstract
Cancer incidence increases with age, but paradoxically, cancers have been found to grow more quickly in young mice compared with aged ones. The cause of differential tumor growth has been debated and, over time, attributed to faster tumor cell proliferation, decreased tumor cell apoptosis, and/or increased angiogenesis in young animals. Despite major advances in our understanding of tumor immunity over the past 2 decades, little attention has been paid to comparing immune cell populations in young and aged mice. Using mouse colon adenocarcinoma model MC38 implanted in young and mature mice, we show that age substantially influences the number of tumor-infiltrating cytotoxic CD8+ T cells, which control cancer progression. The different tumor growth pace in young and mature mice was abrogated in RAG1null mice, which lack mature T and B lymphocytes, and upon selective depletion of endogenous CD8+ cells. Transcriptome analysis further indicated that young mice have decreased levels of the Itga4 gene (CD49d, VLA-4) in tumor-infiltrating lymphocytes when compared with mature mice. Hypothesizing that VLA-4 can have a tumor-protective effect, we depleted the protein, which resulted in accelerated tumor growth in mature mice. These observations may explain the paradoxical growth rates observed in murine cancers, point to the central role of VLA-4 in controlling tumor growth, and open new venues to therapeutic manipulation.
Collapse
Affiliation(s)
- Juhyun Oh
- Center for Systems Biology, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA
| | - Angela Magnuson
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Christophe Benoist
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Mikael J Pittet
- Center for Systems Biology, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital (MGH), Boston, Massachusetts, USA.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
20
|
|
21
|
Kane AE, Huizer-Pajkos A, Mach J, Mitchell SJ, de Cabo R, Le Couteur DG, Howlett SE, Hilmer SN. A Comparison of Two Mouse Frailty Assessment Tools. J Gerontol A Biol Sci Med Sci 2017; 72:904-909. [PMID: 28549083 DOI: 10.1093/gerona/glx009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Indexed: 01/08/2023] Open
Abstract
The mouse clinical frailty index and the mouse frailty phenotype assessment are two recently developed tools used to assess frailty in mice. The objectives of this study were to investigate whether the same mice are identified as frail with both tools and to examine the association of each of the assessment tools with age and frailty-related outcomes. Frailty was measured using both tools in old (~24 months; n = 36) C57BL/6 male mice. After 2 weeks, blood pressure and heart rate were measured and serum samples were collected for analysis of alanine aminotransferase, creatinine, and albumin levels. The mouse frailty phenotype assessment identified no mice as frail but modification of the assessment tool identified six mice as frail. The mouse clinical frailty index identified 16 mice as frail and the agreement between the two scales was 50.0%. Increasing clinical frailty index scores were correlated with low serum alanine aminotransferase, as well as decreased heart rate, and reduced heart rate variance. We conclude that, consistent with equivalent frailty assessment scales in humans, both tools have value but do not necessarily identify the same mice as frail.
Collapse
Affiliation(s)
- Alice E Kane
- Laboratory of Ageing and Pharmacology, Kolling Institute of Medical Research and Sydney Medical School, University of Sydney, New South Wales, Australia.,Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Aniko Huizer-Pajkos
- Laboratory of Ageing and Pharmacology, Kolling Institute of Medical Research and Sydney Medical School, University of Sydney, New South Wales, Australia.,Departments of Clinical Pharmacology and Aged Care, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - John Mach
- Laboratory of Ageing and Pharmacology, Kolling Institute of Medical Research and Sydney Medical School, University of Sydney, New South Wales, Australia.,Departments of Clinical Pharmacology and Aged Care, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Sarah J Mitchell
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - David G Le Couteur
- Biogerontology Laboratory, Centre for Education and Research on Aging and ANZAC Research Institute, Sydney, New South Wales, Australia
| | - Susan E Howlett
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sarah N Hilmer
- Laboratory of Ageing and Pharmacology, Kolling Institute of Medical Research and Sydney Medical School, University of Sydney, New South Wales, Australia.,Departments of Clinical Pharmacology and Aged Care, Royal North Shore Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
22
|
Kõks S, Dogan S, Tuna BG, González-Navarro H, Potter P, Vandenbroucke RE. Mouse models of ageing and their relevance to disease. Mech Ageing Dev 2016; 160:41-53. [PMID: 27717883 DOI: 10.1016/j.mad.2016.10.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 09/26/2016] [Accepted: 10/03/2016] [Indexed: 12/28/2022]
Abstract
Ageing is a process that gradually increases the organism's vulnerability to death. It affects different biological pathways, and the underlying cellular mechanisms are complex. In view of the growing disease burden of ageing populations, increasing efforts are being invested in understanding the pathways and mechanisms of ageing. We review some mouse models commonly used in studies on ageing, highlight the advantages and disadvantages of the different strategies, and discuss their relevance to disease susceptibility. In addition to addressing the genetics and phenotypic analysis of mice, we discuss examples of models of delayed or accelerated ageing and their modulation by caloric restriction.
Collapse
Affiliation(s)
- Sulev Kõks
- University of Tartu, Tartu, Estonia and Estonian University of Life Sciences, Tartu, Estonia.
| | - Soner Dogan
- Yeditepe University, School of Medicine, Department of Medical Biology, Istanbul, Turkey.
| | - Bilge Guvenc Tuna
- Yeditepe University, School of Medicine, Department of Biophysics, Istanbul, Turkey.
| | - Herminia González-Navarro
- Institute of Health Research-INCLIVA, 46010 Valencia, Spain and CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), 28029 Madrid, Spain.
| | - Paul Potter
- Mammalian Genetics Unit, MRC Harwell, Oxfordshire, UK.
| | - Roosmarijn E Vandenbroucke
- Inflammation Research Center, VIB, Ghent, Belgium, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
23
|
Merentie M, Lipponen JA, Hedman M, Hedman A, Hartikainen J, Huusko J, Lottonen-Raikaslehto L, Parviainen V, Laidinen S, Karjalainen PA, Ylä-Herttuala S. Mouse ECG findings in aging, with conduction system affecting drugs and in cardiac pathologies: Development and validation of ECG analysis algorithm in mice. Physiol Rep 2015; 3:3/12/e12639. [PMID: 26660552 PMCID: PMC4760442 DOI: 10.14814/phy2.12639] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mouse models are extremely important in studying cardiac pathologies and related electrophysiology, but very few mouse ECG analysis programs are readily available. Therefore, a mouse ECG analysis algorithm was developed and validated. Surface ECG (lead II) was acquired during transthoracic echocardiography from C57Bl/6J mice under isoflurane anesthesia. The effect of aging was studied in young (2–3 months), middle‐aged (14 months) and old (20–24 months) mice. The ECG changes associated with pharmacological interventions and common cardiac pathologies, that is, acute myocardial infarction (AMI) and progressive left ventricular hypertrophy (LVH), were studied. The ECG raw data were analyzed with an in‐house ECG analysis program, modified specially for mouse ECG. Aging led to increases in P‐wave duration, atrioventricular conduction time (PQ interval), and intraventricular conduction time (QRS complex width), while the R‐wave amplitude decreased. In addition, the prevalence of arrhythmias increased during aging. Anticholinergic atropine shortened PQ time, and beta blocker metoprolol and calcium‐channel blocker verapamil increased PQ interval and decreased heart rate. The ECG changes after AMI included early JT elevation, development of Q waves, decreased R‐wave amplitude, and later changes in JT/T segment. In progressive LVH model, QRS complex width was increased at 2 and especially 4 weeks timepoint, and also repolarization abnormalities were seen. Aging, drugs, AMI, and LVH led to similar ECG changes in mice as seen in humans, which could be reliably detected with this new algorithm. The developed method will be very useful for studies on cardiovascular diseases in mice.
Collapse
Affiliation(s)
- Mari Merentie
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jukka A Lipponen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Marja Hedman
- Heart Center, Kuopio University Hospital, Kuopio, Finland Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Antti Hedman
- Heart Center, Kuopio University Hospital, Kuopio, Finland
| | | | - Jenni Huusko
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Line Lottonen-Raikaslehto
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Viktor Parviainen
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Svetlana Laidinen
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pasi A Karjalainen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland Science Service Center, Kuopio University Hospital, Kuopio, Finland Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
24
|
Ackert-Bicknell CL, Anderson LC, Sheehan S, Hill WG, Chang B, Churchill GA, Chesler EJ, Korstanje R, Peters LL. Aging Research Using Mouse Models. ACTA ACUST UNITED AC 2015; 5:95-133. [PMID: 26069080 DOI: 10.1002/9780470942390.mo140195] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Despite the dramatic increase in human lifespan over the past century, there remains pronounced variability in "health-span," or the period of time in which one is generally healthy and free of disease. Much of the variability in health-span and lifespan is thought to be genetic in origin. Understanding the genetic mechanisms of aging and identifying ways to boost longevity is a primary goal in aging research. Here, we describe a pipeline of phenotypic assays for assessing mouse models of aging. This pipeline includes behavior/cognition testing, body composition analysis, and tests of kidney function, hematopoiesis, and immune function, as well as physical parameters. We also describe study design methods for assessing lifespan and health-span, and other important considerations when conducting aging research in the laboratory mouse. The tools and assays provided can assist researchers with understanding the correlative relationships between age-associated phenotypes and, ultimately, the role of specific genes in the aging process.
Collapse
Affiliation(s)
- Cheryl L Ackert-Bicknell
- The Jackson Laboratory, Bar Harbor, Maine.,Present address: University of Rochester, Department of Orthopaedics and Rehabilitation, Rochester, New York
| | | | | | - Warren G Hill
- Laboratory of Voiding Dysfunction, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, Maine
| | | | | | | | | |
Collapse
|
25
|
Jackson HM, Onos KD, Pepper KW, Graham LC, Akeson EC, Byers C, Reinholdt LG, Frankel WN, Howell GR. DBA/2J genetic background exacerbates spontaneous lethal seizures but lessens amyloid deposition in a mouse model of Alzheimer's disease. PLoS One 2015; 10:e0125897. [PMID: 25933409 PMCID: PMC4416920 DOI: 10.1371/journal.pone.0125897] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/24/2015] [Indexed: 11/23/2022] Open
Abstract
Alzheimer’s disease (AD) is a leading cause of dementia in the elderly and is characterized by amyloid plaques, neurofibrillary tangles (NFTs) and neuronal dysfunction. Early onset AD (EOAD) is commonly caused by mutations in amyloid precursor protein (APP) or genes involved in the processing of APP including the presenilins (e.g. PSEN1 or PSEN2). In general, mouse models relevant to EOAD recapitulate amyloidosis, show only limited amounts of NFTs and neuronal cell dysfunction and low but significant levels of seizure susceptibility. To investigate the effect of genetic background on these phenotypes, we generated APPswe and PSEN1de9 transgenic mice on the seizure prone inbred strain background, DBA/2J. Previous studies show that the DBA/2J genetic background modifies plaque deposition in the presence of mutant APP but the impact of PSEN1de9 has not been tested. Our study shows that DBA/2J.APPswePSEN1de9 mice are significantly more prone to premature lethality, likely to due to lethal seizures, compared to B6.APPswePSEN1de9 mice—70% of DBA/2J.APPswePSEN1de9 mice die between 2-3 months of age. Of the DBA/2J.APPswePSEN1de9 mice that survived to 6 months of age, plaque deposition was greatly reduced compared to age-matched B6.APPswePSEN1de9 mice. The reduction in plaque deposition appears to be independent of microglia numbers, reactive astrocytosis and complement C5 activity.
Collapse
Affiliation(s)
| | - Kristen D. Onos
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Leah C. Graham
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Sackler School of Medicine, Tufts University, Boston, United States of America
| | - Ellen C. Akeson
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Candice Byers
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Wayne N. Frankel
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Gareth R. Howell
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Sackler School of Medicine, Tufts University, Boston, United States of America
- * E-mail:
| |
Collapse
|
26
|
Ables GP, Ouattara A, Hampton TG, Cooke D, Perodin F, Augie I, Orentreich DS. Dietary methionine restriction in mice elicits an adaptive cardiovascular response to hyperhomocysteinemia. Sci Rep 2015; 5:8886. [PMID: 25744495 PMCID: PMC4351514 DOI: 10.1038/srep08886] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/10/2015] [Indexed: 01/01/2023] Open
Abstract
Dietary methionine restriction (MR) in rodents increased lifespan despite higher heart-to-body weight ratio (w/w) and hyperhomocysteinemia, which are symptoms associated with increased risk for cardiovascular disease. We investigated this paradoxical effect of MR on cardiac function using young, old, and apolipoprotein E-deficient (ApoE-KO) mice. Indeed, MR animals exhibited higher heart-to-body weight ratio (w/w) and hyperhomocysteinemia with a molecular pattern consistent with cardiac stress while maintaining the integrity of cardiac structure. Baseline cardiac function, which was measured by non-invasive electrocardiography (ECG), showed that young MR mice had prolonged QRS intervals compared with control-fed (CF) mice, whereas old and ApoE-KO mice showed similar results for both groups. Following β-adrenergic challenge, responses of MR mice were either similar or attenuated compared with CF mice. Cardiac contractility, which was measured by isolated heart retrograde perfusion, was similar in both groups of old mice. Finally, the MR diet induced secretion of cardioprotective hormones, adiponectin and fibroblast growth factor 21 (FGF21), in MR mice with concomitant alterations in cardiac metabolic molecular signatures. Our findings demonstrate that MR diet does not alter cardiac function in mice despite the presence of hyperhomocysteinemia because of the adaptive responses of increased adiponectin and FGF21 levels.
Collapse
Affiliation(s)
- Gene P Ables
- The Orentreich Foundation for the Advancement of Science, Inc., Cold Spring-on-Hudson, NY
| | - Amadou Ouattara
- The Orentreich Foundation for the Advancement of Science, Inc., Cold Spring-on-Hudson, NY
| | | | - Diana Cooke
- The Orentreich Foundation for the Advancement of Science, Inc., Cold Spring-on-Hudson, NY
| | - Frantz Perodin
- The Orentreich Foundation for the Advancement of Science, Inc., Cold Spring-on-Hudson, NY
| | - Ines Augie
- The Orentreich Foundation for the Advancement of Science, Inc., Cold Spring-on-Hudson, NY
| | - David S Orentreich
- The Orentreich Foundation for the Advancement of Science, Inc., Cold Spring-on-Hudson, NY
| |
Collapse
|
27
|
Efficacy of female rat models in translational cardiovascular aging research. J Aging Res 2014; 2014:153127. [PMID: 25610649 PMCID: PMC4294461 DOI: 10.1155/2014/153127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/05/2014] [Accepted: 12/05/2014] [Indexed: 01/11/2023] Open
Abstract
Cardiovascular disease is the leading cause of death in women in the United States. Aging is a primary risk factor for the development of cardiovascular disease as well as cardiovascular-related morbidity and mortality. Aging is a universal process that all humans undergo; however, research in aging is limited by cost and time constraints. Therefore, most research in aging has been done in primates and rodents; however it is unknown how well the effects of aging in rat models translate into humans. To compound the complication of aging gender has also been indicated as a risk factor for various cardiovascular diseases. This review addresses the systemic pathophysiology of the cardiovascular system associated with aging and gender for aging research with regard to the applicability of rat derived data for translational application to human aging.
Collapse
|
28
|
Bogue MA, Peters LL, Paigen B, Korstanje R, Yuan R, Ackert-Bicknell C, Grubb SC, Churchill GA, Chesler EJ. Accessing Data Resources in the Mouse Phenome Database for Genetic Analysis of Murine Life Span and Health Span. J Gerontol A Biol Sci Med Sci 2014; 71:170-7. [PMID: 25533306 PMCID: PMC4707687 DOI: 10.1093/gerona/glu223] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/28/2014] [Indexed: 01/18/2023] Open
Abstract
Understanding the source of genetic variation in aging and using this variation to define the molecular mechanisms of healthy aging require deep and broad quantification of a host of physiological, morphological, and behavioral endpoints. The murine model is a powerful system in which to understand the relations across age-related phenotypes and to identify research models with variation in life span and health span. The Jackson Laboratory Nathan Shock Center of Excellence in the Basic Biology of Aging has performed broad characterization of aging in genetically diverse laboratory mice and has placed these data, along with data from several other major aging initiatives, into the interactive Mouse Phenome Database. The data may be accessed and analyzed by researchers interested in finding mouse models for specific aging processes, age-related health and disease states, and for genetic analysis of aging variation and trait covariation. We expect that by placing these data in the hands of the aging community that there will be (a) accelerated genetic analyses of aging processes, (b) discovery of genetic loci regulating life span, (c) identification of compelling correlations between life span and susceptibility for age-related disorders, and (d) discovery of concordant genomic loci influencing life span and aging phenotypes between mouse and humans.
Collapse
Affiliation(s)
- Molly A Bogue
- The Jackson Laboratory Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory, Bar Harbor, Maine.
| | - Luanne L Peters
- The Jackson Laboratory Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory, Bar Harbor, Maine
| | - Beverly Paigen
- The Jackson Laboratory Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory, Bar Harbor, Maine
| | - Ron Korstanje
- The Jackson Laboratory Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory, Bar Harbor, Maine
| | - Rong Yuan
- Southern Illinois University School of Medicine, Springfield
| | - Cheryl Ackert-Bicknell
- The Jackson Laboratory Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory, Bar Harbor, Maine
| | - Stephen C Grubb
- The Jackson Laboratory Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory, Bar Harbor, Maine
| | - Gary A Churchill
- The Jackson Laboratory Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory, Bar Harbor, Maine
| | - Elissa J Chesler
- The Jackson Laboratory Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory, Bar Harbor, Maine
| |
Collapse
|
29
|
Dev NB, Mir SA, Gayen JR, Siddiqui JA, Mustapic M, Vaingankar SM. Cardiac electrical activity in a genomically "humanized" chromogranin a monogenic mouse model with hyperadrenergic hypertension. J Cardiovasc Transl Res 2014; 7:483-493. [PMID: 24821335 DOI: 10.1007/s12265-014-9563-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 04/06/2014] [Indexed: 12/16/2022]
Abstract
The prohormone chromogranin A (CHGA) is ubiquitously found in vesicles of adrenal chromaffin cells and adrenergic neurons, and it is processed to the hypotensive hormone peptide catestatin (CST). Both CHGA and CST regulate blood pressure and cardiac function. This study addresses their role in cardiac electrical activity. We have generated two genomically "humanized" transgenic mouse strains (Tg31CHGA+/+; Chga-/- (HumCHGA31) and Tg19CHGA+/+; Chga-/- (HumCHGA19)) with varied CHGA expression and the ability to rescue the Chga-/- phenotype (hypertensive, hyperadrenergic with dilated cardiomyopathy). The normotensive HumCHGA31 mice express CHGA at levels comparable to wild-type. In contrast, the hypertensive HumCHGA19 mice have low levels of CHGA. EKG recordings revealed that the QT interval, R-amplitude, and QRS time-voltage integral are markedly longer in HumCHGA19 compared to wild-type and HumCHGA31 mice. These differences are accompanied by increased heart rate and QT variability, indicating that ventricular assault happens in a status of low levels of circulating CST.
Collapse
Affiliation(s)
- Nagendu B Dev
- Department of Medicine, University of California at San Diego, USA
| | - Saiful A Mir
- Department of Medicine, University of California at San Diego, USA
| | | | - Jawed A Siddiqui
- Department of Medicine, University of California at San Diego, USA
| | - Maja Mustapic
- Department of Medicine, University of California at San Diego, USA
| | | |
Collapse
|
30
|
High-throughput phenotypic assessment of cardiac physiology in four commonly used inbred mouse strains. J Comp Physiol B 2014; 184:763-75. [PMID: 24788387 DOI: 10.1007/s00360-014-0830-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 03/25/2014] [Accepted: 04/01/2014] [Indexed: 01/19/2023]
Abstract
Mice with genetic alterations are used in heart research as model systems of human diseases. In the last decade there was a marked increase in the recognition of genetic diversity within inbred mouse strains. Increasing numbers of inbred mouse strains and substrains and analytical variation of cardiac phenotyping methods require reproducible, high-throughput methods to standardize murine cardiovascular physiology. We describe methods for non-invasive, reliable, easy and fast to perform echocardiography and electrocardiography on awake mice. This method can be used for primary screening of the murine cardiovascular system in large-scale analysis. We provide insights into the physiological divergence of C57BL/6N, C57BL/6J, C3HeB/FeJ and 129P2/OlaHsd mouse hearts and define the expected normal values. Our report highlights that compared to the other three strains tested C57BL/6N hearts reveal features of heart failure such as hypertrophy and reduced contractile function. We found several features of the mouse ECG to be under genetic control and obtained several strain-specific differences in cardiac structure and function.
Collapse
|
31
|
Morgan JL, Svenson KL, Lake JP, Zhang W, Stearns TM, Marion MA, Peters LL, Paigen B, Donahue LR. Effects of housing density in five inbred strains of mice. PLoS One 2014; 9:e90012. [PMID: 24658028 PMCID: PMC3962340 DOI: 10.1371/journal.pone.0090012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/31/2014] [Indexed: 11/18/2022] Open
Abstract
To evaluate the effect of increased mouse density in a cage, mice were housed at the density recommended by the 1996 Guide for the Care and Use of Laboratory Animals and at densities that were approximately 2, 2.6, and 3 times greater. Five strains of mice (129S1/SvImJ, A/J, BALB/cByJ, C57BL/6J, and DBA/2J) were evaluated throughout 3- and 8-month timeframes for health and well-being, including mortality, cardiac measures, plasma cholesterol, body weight, bone mineral density, organ weights, hematology, behavioral observations, and open field and light-dark tests. For 22 of the 27 traits measured, increased housing density had no significant effect. Kidney weight, adrenal weight, and heart rate decreased as mice were housed more densely, and some of the decreases were statistically significant. Reduced kidney weight, adrenal weight, and heart rate are not considered to be negative outcomes and may even indicate reduced stress. However, all measurements of these three traits were within normal physiological ranges. Percent fat increased slightly in strains 129S1/SvImJ, A/J, and DBA/2J, but did not increase in strains BALB/cByJ, and C57BL/6J. These results indicate that mice can be housed at higher densities than those currently recommended.
Collapse
Affiliation(s)
- Judith L. Morgan
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Karen L. Svenson
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Jeffrey P. Lake
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Weidong Zhang
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | | | - Luanne L. Peters
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Beverly Paigen
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Leah Rae Donahue
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail:
| |
Collapse
|
32
|
Mahida S, Mills RW, Tucker NR, Simonson B, Macri V, Lemoine MD, Das S, Milan DJ, Ellinor PT. Overexpression of KCNN3 results in sudden cardiac death. Cardiovasc Res 2013; 101:326-34. [PMID: 24296650 DOI: 10.1093/cvr/cvt269] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND A recent genome-wide association study identified a susceptibility locus for atrial fibrillation at the KCNN3 gene. Since the KCNN3 gene encodes for a small conductance calcium-activated potassium channel, we hypothesized that overexpression of the SK3 channel increases susceptibility to cardiac arrhythmias. METHODS AND RESULTS We characterized the cardiac electrophysiological phenotype of a mouse line with overexpression of the SK3 channel. We generated homozygote (SK3(T/T)) and heterozygote (SK3(+/T)) mice with overexpression of the channel and compared them with wild-type (WT) controls. We observed a high incidence of sudden death among SK3(T/T) mice (7 of 19 SK3(T/T) mice). Ambulatory monitoring demonstrated that sudden death was due to heart block and bradyarrhythmias. SK3(T/T) mice displayed normal body weight, temperature, and cardiac function on echocardiography; however, histological analysis demonstrated that these mice have abnormal atrioventricular node morphology. Optical mapping demonstrated that SK3(T/T) mice have slower ventricular conduction compared with WT controls (SK3(T/T) vs. WT; 0.45 ± 0.04 vs. 0.60 ± 0.09 mm/ms, P = 0.001). Programmed stimulation in 1-month-old SK3(T/T) mice demonstrated inducible atrial arrhythmias (50% of SK3(T/T) vs. 0% of WT mice) and also a shorter atrioventricular nodal refractory period (SK3(T/T) vs. WT; 43 ± 6 vs. 52 ± 9 ms, P = 0.02). Three-month-old SK3(T/T) mice on the other hand displayed a trend towards a more prolonged atrioventricular nodal refractory period (SK3(T/T) vs. WT; 61 ± 1 vs. 52 ± 6 ms, P = 0.06). CONCLUSION Overexpression of the SK3 channel causes an increased risk of sudden death associated with bradyarrhythmias and heart block, possibly due to atrioventricular nodal dysfunction.
Collapse
Affiliation(s)
- Saagar Mahida
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Vaillant F, Lauzier B, Poirier I, Gélinas R, Rivard ME, Robillard Frayne I, Thorin E, Des Rosiers C. Mouse strain differences in metabolic fluxes and function of ex vivo working hearts. Am J Physiol Heart Circ Physiol 2013; 306:H78-87. [PMID: 24186097 DOI: 10.1152/ajpheart.00465.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In mice, genetic background is known to influence various parameters, including cardiac function. Its impact on cardiac energy substrate metabolism-a factor known to be closely related to function and contributes to disease development-is, however, unclear. This was examined in this study. In commonly used control mouse substrains SJL/JCrNTac, 129S6/SvEvTac, C57Bl/6J, and C57Bl/6NCrl, we assessed the functional and metabolic phenotypes of 3-mo-old working mouse hearts perfused ex vivo with physiological concentrations of (13)C-labeled carbohydrates (CHO) and a fatty acid (FA). Marked variations in various functional and metabolic flux parameters were observed among all mouse substrains, although the pattern observed differed for these parameters. For example, among all strains, C57Bl/6NCrl hearts had a greater cardiac output (+1.7-fold vs. SJL/JCrNTac and C57Bl/6J; P < 0.05), whereas at the metabolic level, 129S6/SvEvTac hearts stood out by displaying (vs. all 3 strains) a striking shift from exogenous FA (~-3.5-fold) to CHO oxidation as well as increased glycolysis (+1.7-fold) and FA incorporation into triglycerides (+2-fold). Correlation analyses revealed, however, specific linkages between 1) glycolysis, FA oxidation, and pyruvate metabolism and 2) cardiac work, oxygen consumption with heart rate, respectively. This implies that any genetically determined factors affecting a given metabolic flux parameter may impact on the associated functional parameters. Our results emphasize the importance of selecting the appropriate control strain for cardiac metabolic studies using transgenic mice, a factor that has often been neglected. Understanding the molecular mechanisms underlying the diversity of strain-specific cardiac metabolic and functional profiles, particularly the 129S6/SvEvTac, may ultimately disclose new specific metabolic targets for interventions in heart disease.
Collapse
Affiliation(s)
- Fanny Vaillant
- Departments of Nutrition, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada; and
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Depressed pacemaker activity of sinoatrial node myocytes contributes to the age-dependent decline in maximum heart rate. Proc Natl Acad Sci U S A 2013; 110:18011-6. [PMID: 24128759 DOI: 10.1073/pnas.1308477110] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
An inexorable decline in maximum heart rate (mHR) progressively limits human aerobic capacity with advancing age. This decrease in mHR results from an age-dependent reduction in "intrinsic heart rate" (iHR), which is measured during autonomic blockade. The reduced iHR indicates, by definition, that pacemaker function of the sinoatrial node is compromised during aging. However, little is known about the properties of pacemaker myocytes in the aged sinoatrial node. Here, we show that depressed excitability of individual sinoatrial node myocytes (SAMs) contributes to reductions in heart rate with advancing age. We found that age-dependent declines in mHR and iHR in ECG recordings from mice were paralleled by declines in spontaneous action potential (AP) firing rates (FRs) in patch-clamp recordings from acutely isolated SAMs. The slower FR of aged SAMs resulted from changes in the AP waveform that were limited to hyperpolarization of the maximum diastolic potential and slowing of the early part of the diastolic depolarization. These AP waveform changes were associated with cellular hypertrophy, reduced current densities for L- and T-type Ca(2+) currents and the "funny current" (If), and a hyperpolarizing shift in the voltage dependence of If. The age-dependent reduction in sinoatrial node function was not associated with changes in β-adrenergic responsiveness, which was preserved during aging for heart rate, SAM FR, L- and T-type Ca(2+) currents, and If. Our results indicate that depressed excitability of individual SAMs due to altered ion channel activity contributes to the decline in mHR, and thus aerobic capacity, during normal aging.
Collapse
|
35
|
Howden R, Cooley I, Van Dodewaard C, Arthur S, Cividanes S, Leamy L, McCann Hartzell K, Gladwell W, Martin J, Scott G, Ray M, Mishina Y. Cardiac responses to 24 hrs hyperoxia in Bmp2 and Bmp4 heterozygous mice. Inhal Toxicol 2013; 25:509-16. [PMID: 23876042 PMCID: PMC6149216 DOI: 10.3109/08958378.2013.808287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Hyperoxia or clinical oxygen (O2) therapy is known to result in increased oxidative burden. Therefore, understanding susceptibility to hyperoxia exposure is clinically important. Bone morphogenetic proteins (BMPs) 2 and 4 are involved in cardiac development and may influence responses to hyperoxia. METHODS Bmp2(+/)(-). Bmp4(+/)(-) and wild-type mice were exposed to hyperoxia (100% O2) for 24 hrs. Electrocardiograms (ECG) were recorded before and during exposure by radio-telemetry. RESULTS At baseline, a significantly higher low frequency (LF) and total power (TP) heart rate variability (HRV) were found in Bmp2(+/)(-) mice only (p < 0.05). Twenty-four hours hyperoxia-induced strain-independent reductions in heart rate, QTcB and ST-interval and increases in QRS, LF HRV and standard deviation of RR-intervals were observed. In Bmp4(+/)(-) mice only, increased PR-interval (PR-I) (24 hrs), P-wave duration (P-d; 18 and 21-24 hrs), PR-I minus P-d (PR - Pd; 24 hrs) and root of the mean squared differences of successive RR-intervals (24 hrs) were found during hyperoxia (p < 0.05). DISCUSSION Elevated baseline LF and TP HRV in Bmp2(+/)(-) mice suggests an altered autonomic nervous system regulation of cardiac function in these mice. However, this was not related to strain specific differences in responses to 24 hrs hyperoxia. During hyperoxia, Bmp4(+/-) mice were the most susceptible in terms of atrioventricular conduction changes and risk of atrial fibrillation, which may have important implications for patients treated with O2 who also harbor Bmp4 mutations. This study demonstrates significant ECG and HRV responses to 24 hrs hyperoxia in mice, which highlights the need to further work on the genetic mechanisms associated with cardiac susceptibility to hyperoxia.
Collapse
Affiliation(s)
- R Howden
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina at Charlotte, Charlotte NC 28223, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kobayashi T, Ito T, Yamada S, Kuniyoshi N, Shiomi M. Electrocardiograms corresponding to the development of myocardial infarction in anesthetized WHHLMI rabbits (Oryctolagus cuniculus), an animal model for familial hypercholesterolemia. Comp Med 2012; 62:409-418. [PMID: 23114045 PMCID: PMC3472606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 12/29/2011] [Accepted: 03/08/2012] [Indexed: 06/01/2023]
Abstract
The aim of this study was to determine whether features indicative of myocardial ischemia occur in the electrocardiograms (ECG) in myocardial infarction-prone Watanabe heritable hyperlipidemic (WHHLMI) rabbits, an animal model for human familial hypercholesterolemia. ECG were recorded in 110 anesthetized WHHLMI rabbits (age, 10 to 39 mo) by using unipolar and bipolar limb leads with or without chest leads. We noted the following electrocardiographic changes: T wave inversion (37.4%), ST segment depression (31.8%), deep Q wave (16.3%), reduced R wave amplitude (7.3%), ST segment elevation (2.7%), and high T wave (1.8%). These ECG changes resembled those in human patients with coronary heart disease. Histopathologic examination revealed that the left ventricular wall showed acute myocardial lesions, including loss of cross-striations, vacuolar degeneration, coagulation necrosis of cardiac myocytes, and edema between myofibrils, in addition to chronic myocardial lesions such as myocardial fibrosis. The coronary arteries that caused these ECG changes were severely stenosed due to atherosclerotic lesions. Ischemic ECG changes corresponded to the locations of the myocardial lesions. Normal ECG waveforms were similar between WHHLMI rabbits and humans, in contrast to the large differences between rabbits and mice or rats. In conclusion, ischemic ECG changes in WHHLMI rabbits reflect the location of myocardial lesions, making this model useful for studying coronary heart disease.
Collapse
Affiliation(s)
- Tsutomu Kobayashi
- Institute for Experimental Animals, Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
| | | | | | | | | |
Collapse
|
37
|
Ramírez-Solis R, Ryder E, Houghton R, White JK, Bottomley J. Large-scale mouse knockouts and phenotypes. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2012; 4:547-63. [PMID: 22899600 DOI: 10.1002/wsbm.1183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Standardized phenotypic analysis of mutant forms of every gene in the mouse genome will provide fundamental insights into mammalian gene function and advance human and animal health. The availability of the human and mouse genome sequences, the development of embryonic stem cell mutagenesis technology, the standardization of phenotypic analysis pipelines, and the paradigm-shifting industrialization of these processes have made this a realistic and achievable goal. The size of this enterprise will require global coordination to ensure economies of scale in both the generation and primary phenotypic analysis of the mutant strains, and to minimize unnecessary duplication of effort. To provide more depth to the functional annotation of the genome, effective mechanisms will also need to be developed to disseminate the information and resources produced to the wider community. Better models of disease, potential new drug targets with novel mechanisms of action, and completely unsuspected genotype-phenotype relationships covering broad aspects of biology will become apparent. To reach these goals, solutions to challenges in mouse production and distribution, as well as development of novel, ever more powerful phenotypic analysis modalities will be necessary. It is a challenging and exciting time to work in mouse genetics.
Collapse
|
38
|
Yuan R, Peters LL, Paigen B. Mice as a mammalian model for research on the genetics of aging. ILAR J 2011; 52:4-15. [PMID: 21411853 DOI: 10.1093/ilar.52.1.4] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mice are an ideal mammalian model for studying the genetics of aging: considerable resources are available, the generation time is short, and the environment can be easily controlled, an important consideration when performing mapping studies to identify genes that influence lifespan and age-related diseases. In this review we highlight some salient contributions of the mouse in aging research: lifespan intervention studies in the Interventions Testing Program of the National Institute on Aging; identification of the genetic underpinnings of the effects of calorie restriction on lifespan; the Aging Phenome Project at the Jackson Laboratory, which has submitted multiple large, freely available phenotyping datasets to the Mouse Phenome Database; insights from spontaneous and engineered mouse mutants; and complex traits analyses identifying quantitative trait loci that affect lifespan. We also show that genomewide association peaks for lifespan in humans and lifespan quantitative loci for mice map to homologous locations in the genome. Thus, the vast bioinformatic and genetic resources of the mouse can be used to screen candidate genes identified in both mouse and human mapping studies, followed by functional testing, often not possible in humans, to determine their influence on aging.
Collapse
Affiliation(s)
- Rong Yuan
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | | |
Collapse
|
39
|
Berndt A, Cario CL, Silva KA, Kennedy VE, Harrison DE, Paigen B, Sundberg JP. Identification of fat4 and tsc22d1 as novel candidate genes for spontaneous pulmonary adenomas. Cancer Res 2011; 71:5779-91. [PMID: 21764761 DOI: 10.1158/0008-5472.can-11-1418] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Genetic influences that underlie spontaneous lung oncogenesis are poorly understood. The objective of this study was to determine the genetic influences on spontaneous pulmonary adenoma frequency and severity in 28 strains of mice as part of a large-scale aging study conducted at the Jackson Aging Center (http://agingmice.jax.org/). Genome-wide association studies were conducted in these strains with both low-density (132,000) and high-density (4,000,000) panel of single-nucleotide polymorphisms (SNP). Our analysis revealed that adenomas were relatively less frequent and less severe in females than males, and that loci implicated in frequency and severity were often different between male and female mice. While some of the significant loci identified mapped to genomic locations known to be responsible for carcinogen-induced cancers (e.g., Pas1), others were unique to our study. In particular, Fat4 was influential in males and Tsc22d1 was influential in females. SNPs implicated were predicted to alter amino acid sequence and change protein function. In summary, our results suggested that genetic influences that underlie pulmonary adenoma frequency are dependent on gender, and that Fat4 and Tsc22d1 are likely candidate genes to influence formation of spontaneous pulmonary adenoma in aging male and female mice, respectively.
Collapse
Affiliation(s)
- Annerose Berndt
- Berndt Laboratory, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Farraj AK, Hazari MS, Cascio WE. The Utility of the Small Rodent Electrocardiogram in Toxicology. Toxicol Sci 2011; 121:11-30. [DOI: 10.1093/toxsci/kfr021] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
41
|
Knox SS, Guo X, Zhang Y, Weidner G, Williams S, Ellison RC. AGT M235T genotype/anxiety interaction and gender in the HyperGEN study. PLoS One 2010; 5:e13353. [PMID: 20967221 PMCID: PMC2954179 DOI: 10.1371/journal.pone.0013353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 09/14/2010] [Indexed: 01/07/2023] Open
Abstract
Background Both anxiety and elevated heart rate (HR) have been implicated in the development of hypertension. The HyperGen cohort, consisting of siblings with severe and mild hypertension, an age-matched random sample of persons from the same base populations, and unmedicated adult offspring of the hypertensive siblings (N = 1,002 men and 987 women), was analyzed for an association of the angiotenisinogen AGTM235T genotype (TT, MT, MM) with an endophenotype, heart rate (HR) in high and low anxious groups. Methodology The interaction of AGTM genotype with anxiety, which has been independently associated with hypertension, was investigated adjusting for age, hypertension status, smoking, alcohol consumption, beta blocker medication, body mass index, physical activity and hours of television viewing (sedentary life style). Principal Findings Although there was no main effect of genotype on HR in men or women, high anxious men with the TT genotype had high HR, whereas high anxious men with the MM genotype had low HR. In women, HR was inversely associated with anxiety but there was no interaction with genotype. Conclusion/Significance The results suggest that high anxiety in men with the TT genotype may increase risk for hypertension whereas the MM genotype may be protective in high anxious men. This type of gene x environment interaction may be one reason why genome wide association studies sometimes fail to replicate. The locus may be important only in combination with certain environmental factors.
Collapse
Affiliation(s)
- Sarah S Knox
- Department of Community Medicine, Mary Babb Randolf Cancer Center, West Virginia University School of Medicine, Morgontown, West Virginia, United States of America.
| | | | | | | | | | | |
Collapse
|
42
|
Development of electrocardiogram intervals during growth of FVB/N neonate mice. BMC PHYSIOLOGY 2010; 10:16. [PMID: 20735846 PMCID: PMC2936334 DOI: 10.1186/1472-6793-10-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 08/24/2010] [Indexed: 12/13/2022]
Abstract
Background Electrocardiography remains the best diagnostic tool and therapeutic biomarker for a spectrum of pediatric diseases involving cardiac or autonomic nervous system defects. As genetic links to these disorders are established and transgenic mouse models produced in efforts to understand and treat them, there is a surprising lack of information on electrocardiograms (ECGs) and ECG abnormalities in neonate mice. This is likely due to the trauma and anaesthesia required of many legacy approaches to ECG recording in mice, exacerbated by the fragility of many mutant neonates. Here, we use a non-invasive system to characterize development of the heart rate and electrocardiogram throughout the growth of conscious neonate FVB/N mice. Results We examine ECG waveforms as early as two days after birth. At this point males and females demonstrate comparable heart rates that are 50% lower than adult mice. Neonatal mice exhibit very low heart rate variability. Within 12 days of birth PR, QRS and QTc interval durations are near adult values while heart rate continues to increase until weaning. Upon weaning FVB/N females quickly develop slower heart rates than males, though PR intervals are comparable between sexes until a later age. This suggests separate developmental events may contribute to these gender differences in electrocardiography. Conclusions We provide insight with a new level of detail to the natural course of heart rate establishment in neonate mice. ECG can now be conveniently and repeatedly used in neonatal mice. This should serve to be of broad utility, facilitating further investigations into development of a diverse group of diseases and therapeutics in preclinical mouse studies.
Collapse
|