1
|
Wang C, Wang M. Healthier lifestyles can modify the air pollutants effect on cardiovascular disease among the middle-aged and elderly. Sci Rep 2025; 15:14293. [PMID: 40274910 DOI: 10.1038/s41598-025-97093-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/02/2025] [Indexed: 04/26/2025] Open
Abstract
There is increasing evidence that air pollutants significantly increase the risk of cardiovascular disease (CVD). Nevertheless, less research has been conducted to date to reveal protective factors. Therefore, this study aims to indicate whether a healthy lifestyle can modify the effects of environmental pollution on CVD. This study screened 3010 participants from the China Health and Retirement Longitudinal Study (CHARLS) Wave 3 (2015). The study aimed to systematically demonstrate the impact of environmental pollution on CVD and elucidate the role of a healthy lifestyle. Air pollutant data were obtained from the China High Air Pollutant (CHAP) datasets. We analyzed the relationship between these pollutants and cardiovascular disease risk using generalized linear mixed models. In addition, healthy lifestyles were categorized as low, medium, and high; stratified analyses were conducted to estimate the effect of healthy lifestyles on the risk of CVD due to air pollutants. 607 had CVD among 3010 participants, and the three-year mean concentrations of the pollutants chloride ion (Cl-), nitrate ion (NO3-), particulate matter with a diameter of 10 micrometers or less (PM10), particulate matter with a diameter of 10 micrometers or less (PM1), particulate matter with a diameter of 10 micrometers or less (PM2.5) were each linked 1.37 (95%CI:1.22,1.54), 1.03 (95%CI:1.00,1.06), 1.02 (95%CI:1.01,1.03), 1.01 (95%CI:1.00,1.01), and 1.01 (95%CI:1.00,1.01) fold risk of CVD, respectively. For the subgroups of low, medium, and high according to the healthy lifestyle score in model 2, the average concentration of Cl- pollutant was each associated with 1.34 (1.12,1.62), 1.34 (1.12,1.61), and 1.32 (1.03,1.71) times risk with CVD, respectively. The NO3 - was each associated with 1.06 (1.02,1.11), 1.01 (0.97,1.05), and 0.98 (0.93,1.04) times risk with CVD, respectively. The PM1 was each associated with 1.03 (1.01,1.05), 1.01 (0.99,1.02), and 1.00 (0.97,1.02) times risk with CVD, respectively. The PM10 was each associated with 1.01 (1.00,1.01), 1.01 (0.99,1.01), and 1.00 (0.99,1.01) times risk with CVD, respectively. PM2.5 was each associated with 1.02 (1.01,1.03), 1.00 (0.99,1.01), and 1.00 (0.99,1.01) times risk with CVD, respectively. Exposure to these pollutants(Cl-, NO3-, PM10, PM1, PM2.5)is associated with higher risk of CVD, and healthier lifestyles can reduce the risk of CVD due to overall air pollutants.
Collapse
Affiliation(s)
- Congzhi Wang
- Department of Internal Medicine Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, 241000, An Hui Province, P.R. China
| | - Min Wang
- Department of Pharmacy, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou City, 570311, Hainan Province, P.R. China.
| |
Collapse
|
2
|
Li W, Yang Y, Guo S, Yi J, Li C, Shen G, Wang L, Chen X, Zhi Z, Gao H. Combined effects of social health and long-term exposure to fine particulate matter on cardiovascular disease in Chinese middle-aged and older adults. Soc Psychiatry Psychiatr Epidemiol 2025:10.1007/s00127-025-02901-8. [PMID: 40259033 DOI: 10.1007/s00127-025-02901-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 04/06/2025] [Indexed: 04/23/2025]
Abstract
PURPOSE Social isolation, loneliness, and fine particulate matter (PM2.5) exposure are significant social and environmental factors that frequently cooccur in vulnerable populations. The joint effects of these factors on the risk of cardiovascular disease (CVD), however, are not well supported by data. This study aimed to evaluate the independent and combined effects of social isolation, loneliness, and long-term PM2.5 exposure on CVD risk and to assess the interactions between social isolation or loneliness and PM2.5 exposure on CVD risk. METHODS We used Cox proportional hazards models to estimate the independent and combined effects of loneliness, social isolation, and long-term PM2.5 exposure on CVD incidence. We also conducted interaction analyses to investigate whether the effects of social factors on CVD are modified by the level of PM2.5 exposure. RESULTS This study included 12,544 participants, with mean age of 58.7 ± 9.4 years. The median follow-up was 7 years, with 1761 CVD events occurred. Individuals with loneliness presented a 29% increased risk of CVD (hazard ratio [HR] = 1.290, 95% confidence intervals [CI]: 1.165-1.428). A 10 µg/m3 increase in PM2.5 exposure was associated with a 6% increase in CVD risk (HR = 1.060, 95% CI: 1.028-1.092). A significant additive interaction effect was observed between loneliness and PM2.5 on CVD (P for additive interaction = 0.042). CONCLUSION Among Chinese middle and older adults, loneliness and long-term PM2.5 exposure had combined effects on CVD risk. The public health consequences of high PM2.5 exposure are more pronounced among individuals who experience feelings of loneliness.
Collapse
Affiliation(s)
- Wei Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Yunxiao Yang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Shuai Guo
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Jiayi Yi
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Chen Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Geng Shen
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Lin Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Xiuhuan Chen
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Zhaogong Zhi
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Hai Gao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
3
|
Chen CC, Tsai SS, Yang CY. Association between long-term ambient fine particulate matter exposure and risk of postneonatal infant mortality in Taiwan. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025:1-10. [PMID: 40199730 DOI: 10.1080/15287394.2025.2489425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Infants and children may be potentially susceptible to harm from ambient fine particulate matter (PM2.5) pollution because of the following characteristics (1) immature immune systems (2) not yet fully developed respiratory systems (3) possess a higher absorption rate of pollutants, and (4) and daily activities may expose infants to varying levels. However, few studies have examined the possible correlation between exposure to PM2.5 and mortality in infants. Therefore, the aim of this study was to investigate the association between long-term exposure to ambient PM2.5 and post-neonatal mortality in 65 municipal areas across Taiwan. The mean annual PM2.5 levels of each municipality were categorized from 2013 to 2022 and divided into tertiles. The natural logarithm of the annual post-neonatal mortality rates per 1000 live births was assessed with respect to PM2.5 level, urbanization level, physician density, and mean annual average household income. Weighted-multiple linear regression was utilized to compute the adjusted RRs and their 95% confidence intervals (CIs). When data were not stratified by PM2.5 levels, a significant positive association was observed between long-term lifetime exposure to ambient PM2.5 and post-neonatal mortality rates after adjustment for physician density, urbanization level, and average household income. When PM2.5 levels (in tertiles) were stratified, a positive but nonsignificant trend was found in post-neonatal mortality frequency from the lowest to the highest PM2.5 category. These findings suggest that long-term exposure to PM2.5 increases the risk of post-neonatal mortality rates in Taiwan.
Collapse
Affiliation(s)
- Chih-Cheng Chen
- Department of pediatrics, College of Medicine, Kaohsiung Chang-Gung Memorial Hospital and Chang-Gung University, Kaohsiung, Taiwan
| | - Shang-Shyue Tsai
- Department of Healthcare Administration, I-Shou University, Kaohsiung, Taiwan
| | - Chun-Yuh Yang
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institute, Miaoli, Taiwan
| |
Collapse
|
4
|
Li X, Zhang L, Zhang Z, Li X, Qian J, Zhou J, Che H, Han Y, Qi X, Yang F, Huang Y, Peng C, Chen Y, Xing Y, Zhang S. Risks of respiratory and circulatory system diseases induced by exposure to PM 2.5 in high humidity and low solar radiation environments: disease types, genes, and functions. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:155. [PMID: 40188413 DOI: 10.1007/s10653-025-02465-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 03/18/2025] [Indexed: 04/08/2025]
Abstract
Epidemiological investigation has found that PM2.5 from high humidity and low solar radiation environments (HHLR-PM2.5) induces the highest premature mortality rates from respiratory and circulatory diseases in China. However, the disease types and pathogenic mechanisms of the respiratory and circulatory diseases induced by HHLR-PM2.5 have not been completely revealed. In this study, we explore the risks of commonly existing diseases induced by HHLR-PM2.5 in the respiratory and circulatory systems. For neoplasms, HHLR-PM2.5 significantly induces malignant mesothelioma and arteriovenous hemangioma, the former through the CDKN1A and KIT genes, and the latter through IL6, blood vessel morphogenesis, and transforming growth factor beta binding. Patent ductus arteriosus-persisting type and chronic thromboembolic pulmonary hypertension are the most prominent cardiopulmonary diseases caused by HHLR-PM2.5, with the key molecular target being ACTA2 for the former and CDH5 for the latter. For congenital, hereditary, and neonatal diseases and abnormalities, HHLR-PM2.5 obviously contributes to bronchopulmonary dysplasia and congenital arteriovenous malformation, the former by targeting HMOX1, response to glucocorticoid, and heparin binding, and the latter by targeting IL6, blood vessel morphogenesis, and transforming growth factor beta binding. This study helps to clarify the risks of HHLR-PM2.5 to the respiratory and circulatory systems, supporting and supplementing epidemiology data.
Collapse
Affiliation(s)
- Xiaomeng Li
- School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, Sichuan, China
- Institute of Basic Medicine, North Sichuan Medical College, Nanchongn, 637000, Sichua, China
| | - Liru Zhang
- Institute of Basic Medicine, North Sichuan Medical College, Nanchongn, 637000, Sichua, China
| | - Zhengliang Zhang
- School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, Sichuan, China
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- School of Public Health, North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Xuan Li
- School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, Sichuan, China
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- School of Public Health, North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Jingli Qian
- Department of Traditional Chinese Medicine and Rehabilitation, First People's Hospital of Chongqing Liang Jiang New Area, Chongqing, 401121, China
| | - Jiawei Zhou
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Hanxiong Che
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yan Han
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Xin Qi
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Fumo Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Yu Huang
- Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Chao Peng
- Chongqing Key Laboratory of Urban Atmospheric Environment Observation and Pollution Prevention, Chongqing Research Academy of Ecological Environmental Sciences, Chongqing, 401121, China
| | - Yang Chen
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yan Xing
- School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
| | - Shumin Zhang
- School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
- Institute of Basic Medicine, North Sichuan Medical College, Nanchongn, 637000, Sichua, China.
| |
Collapse
|
5
|
Khan A, Alzahrani HA, Felemban SG, Algarni AS, Alenezi ABS, Kamal M, Rehman ZU, Asdaq SMB, Ahmed N, Alharbi BM, Alanazi BS, Imran M. Exploring TGF-β signaling in benign prostatic hyperplasia: from cellular senescence to fibrosis and therapeutic implications. Biogerontology 2025; 26:79. [PMID: 40159577 DOI: 10.1007/s10522-025-10226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
As men get older, they often develop benign prostatic hyperplasia (BPH), an enlarged prostate that is not cancerous or dangerous. Although the etiology of BPH is unknown, increasing evidence indicates that the TGF-β signaling pathway might be a key player in its pathogenesis. TGF-β is a pleiotropic cytokine involved in proliferation, differentiation, and extracellular matrix re-modeling, which are all dysregulated in BPH. Cellular senescence is primarily initiated by TGF-β--induced, irreversible growth arrest and usually limits the prostate gland's hyperplastic growth. Moreover, senescent cells generate a Senescence-Associated Secretory Phenotype (SASP), which consists of numerous proinflammatory and profibrotic factors that can worsen disease ontogeny. In addition, TGF-β is among the most fibrogenic factors. At the same time, fibrosis involves a massive accumulation of extracellular matrix proteins, which can increase tissue stiffness and a loss of normal organ functions. TGF-β-mediated fibrosis in BPH changes the mechanical properties of the prostate and surrounding tissues to contribute to lower urinary tract symptoms. This review discusses the complicated molecular signaling of TGF-β underlying changes in cellular senescence and fibrosis during BPH concerning its therapeutic potential.
Collapse
Affiliation(s)
- Abida Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia
- Center for Health Research, Northern Border University, Arar, 73213, Saudi Arabia
| | - Hayat Ali Alzahrani
- Medical Laboratory Technology Department, College of Medical Applied Science, Northern Border University, Arar, Saudi Arabia
| | - Shatha Ghazi Felemban
- Medical Laboratory Sciences Department, Fakeeh College for Medical Sciences, 21461, Jeddah, Saudi Arabia
| | - Alanood Saeed Algarni
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Zia Ur Rehman
- Health Research Centre, Jazan University, P.O. Box 114, 45142, Jazan, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jazan University, P.O. Box 114, Jazan, 45142, Kingdom of Saudi Arabia
| | | | - Naveed Ahmed
- Department of Assistance Medical Sciences, Applied College, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Bashayer Mohammed Alharbi
- Department of Pharmacy, Johns Hopkins Aramco Healthcare, P.O. Box 10352, 31311, Dhahran, Eastern Province, Saudi Arabia
| | - Bander Sharqi Alanazi
- Department of Nursing Administration, Northern Area Armed Forces Hospital, 31991, Hafer AlBaten, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia.
- Center for Health Research, Northern Border University, Arar, 73213, Saudi Arabia.
| |
Collapse
|
6
|
Sanchez SS, Sillé FCM. Sex-Specific Effects of Environmental Pollutants on Pulmonary Immune Responses. CURRENT OPINION IN PHYSIOLOGY 2025; 43:100813. [PMID: 40124675 PMCID: PMC11928163 DOI: 10.1016/j.cophys.2025.100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Environmental pollutants can adversely impact various physiological processes, affecting systems such as the respiratory and immune systems. Immune responses are influenced by various factors including age, hormonal status, genetic background, and notably, sex, with effects extending to both innate and adaptive immunity. External factors, like environmental pollutants, can also disrupt innate and/or adaptive immunity and compromise pathogen recognition and memory against future infections. Furthermore, environmental pollutants can play a pivotal role in the development and exacerbation of many chronic respiratory diseases. It is becoming increasingly evident that environmental pollutants elicit sex-specific effects across different species. This review highlights recent findings on the intricate interplay between sex differences and immune-related effects induced by environmental pollutants, with a particular focus on the dysregulation of pulmonary immune responses.
Collapse
Affiliation(s)
- Sylvia S Sanchez
- Department of Environmental Health and Engineering, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States of America
| | - Fenna C M Sillé
- Department of Environmental Health and Engineering, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States of America
| |
Collapse
|
7
|
Zou Z, Xu R, Lv Z, Zhang Z, Liu N, Fang D, Chen J, Li M, Zou D, Liu J, Liu Y, Huang S. Heat wave, fine particulate matter, and cardiovascular disease mortality: A time-stratified case-crossover study in Shenzhen, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117944. [PMID: 40037077 DOI: 10.1016/j.ecoenv.2025.117944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND In the context of global warming, the frequency of heat wave and the concentration of fine particulate matter (PM2.5) have increased, and more people are co-exposed to air pollution and extreme heat. However, the interaction between heat wave and PM2.5 on cardiovascular disease (CVD) mortality remained largely unknown. METHODS We conducted a time-stratified case-crossover study of 40,169 CVD deaths in Shenzhen, China between 2013 and 2022. Meteorological data and air pollutants information were obtained based on the residential addresses from the validated grid datasets. A total of 21 heat wave definitions were constructed using various relative temperature thresholds and durations. Conditional logistic regression was used to evaluate the independent and interactive effects of exposure to heat wave and PM2.5 on CVD mortality. RESULTS The odds ratios (ORs) and 95 % confidence intervals (CIs) for CVD mortality associated with heat waves ranged from 1.17 (95 % CI: 1.001,1.36) to 1.91 (95 % CI: 1.42, 2.56). For every increase of 10 µg/m³ in PM2.5 exposure, the ORs (95 % CI) for CVD mortality ranged from 1.0283 (95 % CI: 1.0162, 1.0406) to 1.029 (95 % CI: 1.0169, 1.0413). There was a synergistic effect between heat wave and PM2.5 exposures on CVD mortality. It was estimated that up to 2.03 % of CVD deaths were attributable to heat wave and PM2.5 levels exceeding the interim target 4 in the World Health Organization air quality guidelines (≥ 25 μg/m3), resulting in 816 premature deaths. Females and individuals over 75 years old were vulnerable populations. CONCLUSIONS Heat wave and PM2.5 exposures individually and synergistically contributed to increased risks of CVD mortality. Our findings indicate that reducing exposure to both heat wave and PM2.5 may yield significant health benefits and prevent a significant portion of premature deaths from CVDs.
Collapse
Affiliation(s)
- Ziyang Zou
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China; School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Ruijun Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ziquan Lv
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Zhen Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Ning Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Daokui Fang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Jiaxin Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Meilin Li
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Dongju Zou
- School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Jinling Liu
- School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Suli Huang
- School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China.
| |
Collapse
|
8
|
Herrera Lopez AB, Torres-Duque CA, Casas Herrera A, Arbeláez MP, Riojas-Rodríguez H, Texcalac-Sangrador JL, Rojas NY, Rodriguez-Villamizar LA. Frequency of Exacerbations of Chronic Obstructive Pulmonary Disease Associated with the Long-Term Exposure to Air Pollution in the AIREPOC Cohort. Int J Chron Obstruct Pulmon Dis 2025; 20:425-435. [PMID: 40012686 PMCID: PMC11863786 DOI: 10.2147/copd.s498437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/01/2025] [Indexed: 02/28/2025] Open
Abstract
Background Exacerbations of chronic obstructive pulmonary disease (COPD-E) have been associated with levels of air pollution. The occurrence of COPD-E is associated with increased mortality in this population. Purpose To determine the association between long-term exposure to PM2.5 and NO2, and the frequency of COPD-E in patients belonging to AIREPOC, an institutional integrated care program for COPD in Bogota, Colombia. Patients and Methods Retrospective cohort study included patients with COPD living in Bogotá, between 2018 and 2021, who received health care in the AIREPOC program. Each patient´s home address was geolocated. Information from local air quality network stations was used to estimate daily and annual mean PM2.5 and NO2 exposure level for each patient using the inverse distance squared weighted regression (IDWR) method. The effect of PM2.5 and NO2 concentrations categorized at 15 µg/m3 and 25 µg/m3 respectively on the frequency of COPD-E was estimated using a zero-truncated negative binomial model adjusted for potential confounders. Goodness-of-fit was assessed by residuals. Results During the observation period, 580 COPD-E occurred in 722 patients. Significant associations were found between COPD-E and NO2 concentrations ≥25 µg/m3 (incidence density ratio, RDI: 1.29, 95% CI: 1.02-1.67) after adjustment for sun exposure, COPD severity, depression, and ambient humidity. No association was found between the frequency of COPD-E and PM2.5 concentrations ≥15µg/m3. Conclusion Prolonged exposure to high levels of NO2 increases the frequency of COPD exacerbations in patients residing in Bogotá. These results highlight the importance of strengthening air quality control measures and educating people with COPD to know and interpret the local air quality indices and to follow the recommendations derived from its alterations.
Collapse
Affiliation(s)
- Astrid Berena Herrera Lopez
- Facultad de Medicina, Universidad de los Andes, Bogotá D.C, Colombia, Universidad de Antioquia, Medellín, Antioquia, Colombia
| | | | | | | | - Horacio Riojas-Rodríguez
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | | | - Néstor Y Rojas
- Departamento de Ingeniería Química y Ambiental, Universidad Nacional de Colombia, Bogotá, Colombia
| | | |
Collapse
|
9
|
Qin M, Liu X, Wang L, Huang T, Zuo X, Zou Y. Level of elderly-supportive infrastructure, fine particulate matter and cardiovascular disease hospitalisations: a time-stratified case-crossover study in Wuhan. Glob Health Action 2024; 17:2447651. [PMID: 39819469 PMCID: PMC11748890 DOI: 10.1080/16549716.2024.2447651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Amid rapid urbanisation, the health effects of the built-environment have been widely studied, while research on elderly-supportive infrastructure and its interaction with PM2.5 (PM, Particulate Matter) exposure remains limited. OBJECTIVES To examine the effect of PM2.5 on cardiovascular hospitalisation risk among the elderly and the moderating role of elderly-supportive infrastructure in Wuhan, a city undergoing rapid urbanisation. METHODS A time-stratified case-crossover design was adopted in which the K-means cluster analysis was applied to categorize elderly-supportive infrastructure. The correlation of PM2.5 with cardiovascular hospitalisations and the moderating role of elderly-supportive infrastructure were elucidated through the conditional logistic regression and z-test. Nonlinear relationships among variables were determined using restricted cubic splines. RESULTS 173,486 case days and 589,188 control days were included. The cumulative lag effect of PM2.5 increased over time, peaking at 5 days. For every 10 µg/m3 increase in PM2.5, the risk of hospitalisation rose by 1.5% (OR = 1.0150, 95% CI: 1.0113-1.0190). The aforementioned effect of PM2.5 exposure on health did not differ among varying levels of elderly-supportive infrastructure within a 300 m buffer zone. When the buffer zone was extended to 500 and 1000 m, a higher level of elderly-supportive infrastructure mitigated the adverse effects of short-term PM2.5 exposure on cardiovascular hospitalisations (p = 0.013), particularly for stroke (p = 0.017) and ischaemic heart disease (p = 0.026). CONCLUSIONS Our findings suggest that high-level elderly-supportive infrastructure may protect against the adverse effects of PM2.5 on cardiovascular hospitalisation, highlighting the need to optimize elderly-supportive infrastructure for its health benefits in the elderly.
Collapse
Affiliation(s)
- Mengxue Qin
- Center of Health Management, School of Public Health, Wuhan University, Wuhan, China
| | - Xingyuan Liu
- Statistics Department, Wuhan Health Information Center, Wuhan, China
| | - Luyao Wang
- Center of Health Management, School of Public Health, Wuhan University, Wuhan, China
| | - Tengchong Huang
- Center of Health Management, School of Public Health, Wuhan University, Wuhan, China
| | - Xiuran Zuo
- Wuhan Health Information Center, Wuhan, China
| | - Yuliang Zou
- Center of Health Management, School of Public Health, Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Dowlatabadi Y, Khajeh ZE, Mohammadi M, Sarkhosh M, Mohammad S, Moezzi M. Assessment of meteorological factors and air pollution impact on cardiovascular mortality using random forest analysis 2017 to 2020. Sci Rep 2024; 14:31468. [PMID: 39733181 PMCID: PMC11682359 DOI: 10.1038/s41598-024-83185-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/12/2024] [Indexed: 12/30/2024] Open
Abstract
Air pollution, a global health hazard, significantly impacts mortality, cardiovascular health, mental well-being, and overall human health. This study aimed to investigate the impact of air pollution and meteorological factors on cardiovascular mortality rates in Mashhad City, northeastern Iran in 2017-2020. We utilized a Random Forest (RF) model in this study. We gathered daily meteorological data (pressure, humidity, temperature, solar radiation) from 2017 to 2020, pollutant levels (PM2.5, PM10, SO2, NO2, CO), and cardiovascular mortality data from the Health System Registration (Sina). The RF model was then applied in Excel and Python to analyze the interplay between these variables. we found that time, air pressure, and temperature significantly impacted cardiovascular mortality. Among pollutants, NO2 and SO2 were the most influential. Overall, meteorological factors had a greater impact than pollutants.Furthermore, we discovered that cardiovascular mortality increased with time, higher air pressure, colder seasons, and higher temperatures. Among pollutants, CO, NO2, SO2, PM10, and PM2.5 significantly impacted mortality rates. These findings highlight the importance of understanding the relationship between diseases, climatic factors, and pollution. Environmental factors like climate change and air pollution play a significant role in cardiovascular mortality. Therefore, it is vital for individuals, especially those with heart conditions, to pay attention to weather alerts.
Collapse
Affiliation(s)
- Yousef Dowlatabadi
- School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zohre Edalati Khajeh
- Department of Environmental Science, Kheradgarayan Motahar Institute of Higher Education, Mashhad, Iran
| | - Mitra Mohammadi
- Department of Environmental Science, Kheradgarayan Motahar Institute of Higher Education, Mashhad, Iran.
| | - Maryam Sarkhosh
- Department of Environmental Health Engineering, School of health, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad
- Department of Environmental Science, Kheradgarayan Motahar Institute of Higher Education, Mashhad, Iran
- Department of Environmental Health Engineering, School of health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Moezzi
- Department of Civil Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
11
|
Allaouat S, Yli-Tuomi T, Tiittanen P, Kukkonen J, Kangas L, Mikkonen S, Ngandu T, Jousilahti P, Siponen T, Zeller T, Lanki T. Long-term exposures to low concentrations of source-specific air pollution, road-traffic noise, and systemic inflammation and cardiovascular disease biomarkers. ENVIRONMENTAL RESEARCH 2024; 262:119846. [PMID: 39187149 DOI: 10.1016/j.envres.2024.119846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 08/28/2024]
Abstract
OBJECTIVES Air pollution and traffic noise are detrimental to cardiovascular health. However, the effects of different sources of these exposures on cardiovascular biomarkers remain unclear. We explored the associations of long-term exposure to source-specific air pollution (vehicular exhausts and residential woodsmoke) at low concentrations and road-traffic noise with systemic inflammation and cardiovascular disease biomarkers. MATERIAL AND METHODS Modeled outdoor exposure to fine particulate matter (aerodynamic diameter ≤2.5 μm; PM2.5) from vehicular exhausts and residential woodsmoke, nitrogen dioxide (NO2) from road traffic, and road-traffic noise were linked to the home addresses of the participants (Finnish residents aged 25-74) in the FINRISK study 1997-2012. The participants were located in the cities of Helsinki, Vantaa, and the region of Turku, Finland. The outcomes were high-sensitivity C-reactive protein (CRP), a biomarker for systemic inflammation, and cardiovascular disease biomarkers N-terminal pro-B-type natriuretic peptide (NT-proBNP) and troponin I. We performed cross-sectional analyses with linear and additive models and adjusted for potential confounders. RESULTS We found no association between PM2.5 from vehicular exhausts (% CRP difference for 1 μg/m3 increase in PM2.5: -0.9, 95% confidence interval, CI: -7.2, 5.8), or from residential woodsmoke (% difference: -8.1, 95% CI: -21.7, 7.9) and CRP (N = 4147). Road-traffic noise >70 dB tended to be positively associated with CRP (% CRP difference versus noise reference category of ≤45 dB: 18.3, 95% CI: -0.5, 40.6), but the association lacked significance and robustness (N = 7142). Otherwise, we found no association between road-traffic noise and CRP, nor between NO2 from road traffic and NT-proBNP (N = 1907) or troponin I (N = 1951). CONCLUSION Long-term exposures to source-specific, fairly low-level air pollution from vehicular exhausts and residential woodsmoke, or road-traffic noise were not associated with systemic inflammation and cardiovascular disease biomarkers in this urban area.
Collapse
Affiliation(s)
- Sara Allaouat
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Lifestyles and Living Environments Unit, Department of Public Health, Finnish Institute for Health and Welfare, Kuopio, Finland.
| | - Tarja Yli-Tuomi
- Lifestyles and Living Environments Unit, Department of Public Health, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Pekka Tiittanen
- Lifestyles and Living Environments Unit, Department of Public Health, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Jaakko Kukkonen
- Finnish Meteorological Institute, Helsinki, Finland; Centre for Climate Change Research (C3R), University of Hertfordshire, Hatfield, UK
| | - Leena Kangas
- Finnish Meteorological Institute, Helsinki, Finland
| | - Santtu Mikkonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tiia Ngandu
- Lifestyles and Living Environments Unit, Department of Public Health, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Pekka Jousilahti
- Lifestyles and Living Environments Unit, Department of Public Health, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Taina Siponen
- Lifestyles and Living Environments Unit, Department of Public Health, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Tanja Zeller
- University Center of Cardiovascular Science, University Heart and Vascular Center Hamburg, Germany; Department of Cardiology, University Heart and Vascular Center Hamburg, Medical University Hamburg-Eppendorf, Hamburg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Hamburg, Germany
| | - Timo Lanki
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Lifestyles and Living Environments Unit, Department of Public Health, Finnish Institute for Health and Welfare, Kuopio, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
12
|
Ginos BNR, Voortman T, Ikram MA. Vertical Living and Longevity: Examining Mortality by Floor of Residence in an Elderly Population. J Urban Health 2024; 101:1200-1206. [PMID: 39601955 DOI: 10.1007/s11524-024-00937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 11/29/2024]
Abstract
Studies investigating the potential health effects of floor of residence have reported conflicting results. In the Rotterdam Study, we examined associations between floor and mortality among elderly residents of a neighborhood of Rotterdam, the Netherlands. Participants who were high-rise residents at baseline (n = 2330) were followed for 10 years, until loss to follow-up or death (N = 602). Cox proportional hazard models revealed nonlinear association of floor of residence with mortality, albeit not statistically significant across all floor categories. Compared to floors 13 and above, adjusted hazard ratios [95% confidence interval] were: 1.31 [0.89-1.95] (floors 1-2), 1.52 [1.04-2.22] (floors 3-4), 1.07 [0.73-1.57] (floors 5-6), 1.12 [0.76-1.66] (floors 7-8), 1.45 [0.96-2.18] (floors 9-10), and 1.04 [0.69-1.58] (floors 11-12). In this prospective population-based cohort of elderly adults in Rotterdam, the Netherlands, a nonlinear association was observed between floor level of residence and mortality, with stronger associations observed at lower floors compared to the highest floors.
Collapse
Affiliation(s)
- Bigina N R Ginos
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
13
|
Katznelson E, Malkani K, Zhang R, Patel S. Impact of Climate Change on Cardiovascular Health. Curr Atheroscler Rep 2024; 27:13. [PMID: 39612041 DOI: 10.1007/s11883-024-01261-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
PURPOSE OF REVIEW Climate change is profoundly impacting cardiovascular disease through rising temperatures, more extreme weather events, and worsening air pollution. This review analyzes how these factors affect cardiovascular health. RECENT FINDINGS Extreme heat and cold cause physiological changes, including increasing the risk of blood clots, faster heart rates, and inflammation. Air pollution and wildfire smoke lead to oxidative stress and systemic inflammation, leading to heightened cardiovascular risk. Extreme weather disrupts healthcare access, complicating chronic condition management and negatively impacts people from lower socioeconomic communities. Climate-related stressors also affect mental health, which in turn impacts cardiovascular health. Long-term changes, such as food insecurity and migration, further strain heart health due to poor diets and psychological stress. Cardiologists must understand these risks to better support and treat patients in our changing climate.
Collapse
Affiliation(s)
- Ethan Katznelson
- Department of Medicine, Division of Cardiology, New York-Presbyterian Weill Cornell Medicine, New York, NY, USA
| | - Kabir Malkani
- Department of Medicine, New York-Presbyterian Weill Cornell Medicine, New York, NY, USA
| | - Ruina Zhang
- NYU Langone Health Leon H. Charney Division of Cardiology, New York, NY, USA
| | - Sonika Patel
- Department of Medicine, Division of Cardiology, New York-Presbyterian Weill Cornell Medicine, New York, NY, USA.
- Department of Cardiology, Kaiser Permanente, 3100 Dublin Blvd, Dublin, CA, USA.
| |
Collapse
|
14
|
Roostaei V, Gharibzadeh F, Shamsipour M, Faridi S, Hassanvand MS. Vertical distribution of ambient air pollutants (PM 2.5, PM 10, NO X, and NO 2); A systematic review. Heliyon 2024; 10:e39726. [PMID: 39553653 PMCID: PMC11564963 DOI: 10.1016/j.heliyon.2024.e39726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024] Open
Abstract
Background Numerous investigations have explored variations in vertical air pollutant concentrations, yielding diverse findings. So, we have conducted this systematic review to gain a more comprehensive understanding of the vertical distribution of air pollutant concentrations (PM2.5, PM10, NOX, and NO2) and the influencing factors. Methods Relevant studies were identified by searching the three central electronic databases, PubMed, Web of Science, and Scopus, from the beginning of 2000 to the end of 2023. This study included original articles published in English that examine the pollutant concentration variations below 500 m. Finding Of 3614 articles, 57 studies met our criteria. Our findings showed a decline in PM2.5 and NOX concentrations as altitude increased, while NO2 concentrations exhibited an increase. Conversely, no statistically significant relationship was identified between altitude and PM10 concentrations. The regression analysis yielded coefficients for the relationship between concentration and altitude (0-500 m) as follows: PM2.5 (-0.11), PM2.5/PM10 (0.0008), NOX (-0.11), and NO2 (0.13). Conducting additional research on this topic and investigating the impact of meteorological parameters on pollutant concentrations at different altitudes enhances our understanding of the vertical distribution of pollutant concentrations.
Collapse
Affiliation(s)
- Vahid Roostaei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Gharibzadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansour Shamsipour
- Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Sasan Faridi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadegh Hassanvand
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Shi H, Zheng G, Wang C, Qian SE, Zhang J, Wang X, Vaughn MG, McMillin SE, Lin H. Air pollution associated with cardiopulmonary disease and mortality among participants with preserved ratio impaired spirometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175395. [PMID: 39122030 DOI: 10.1016/j.scitotenv.2024.175395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Epidemiological evidence regarding the association between air pollutants and cardiopulmonary disease, mortality in individuals with preserved ratio impaired spirometry (PRISm), and their combined effects remains unclear. METHODS We followed 36,149 participants with PRISm in the UK Biobank study. Annual concentrations of PM2.5, PM10, NO2, NOx, and SO2 at residential addresses were determined using a bilinear interpolation method, accounting for address changes. A multistate model assessed the dynamic associations between air pollutants and cardiopulmonary diseases and mortality in PRISm. Quantile g-computation was used to investigate the joint effects of air pollutants. RESULTS Long-term exposure to PM2.5, PM10, NO2, NOx, and SO2 was significantly associated with the risk of cardiopulmonary disease in PRISm. The corresponding hazard ratios (HRs) [95 % confidence intervals (95 % CIs)] per interquartile range (IQR) were 1.49 (1.43, 1.54), 1.52 (1.46, 1.57), 1.34 (1.30, 1.39), 1.30 (1.26, 1.34), and 1.44 (1.41, 1.48), respectively. For mortality, the corresponding HRs (95 % CIs) per IQR were 1.36 (1.25, 1.47), 1.35 (1.24, 1.46), 1.27 (1.18, 1.36), 1.23 (1.15, 1.31), and 1.29 (1.20, 1.39), respectively. In PRISm, quantile g-computation analysis demonstrated that a quartile increase in exposure to a mixture of all air pollutants was positively associated with the risk of cardiopulmonary disease and mortality, with HRs (95 % CIs) of 1.84 (1.76, 3.84) and 1.45 (1.32, 1.57), respectively. CONCLUSION Long-term individual and joint exposure to air pollutants (PM2.5, PM10, NO2, NOx, and SO2) might be an important risk factor for cardiopulmonary disease and mortality in high-risk populations with PRISm.
Collapse
Affiliation(s)
- Hui Shi
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guzhengyue Zheng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Samantha E Qian
- College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO 63104, USA
| | - Jingyi Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaojie Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Michael G Vaughn
- School of Social Work, College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO 63103, USA
| | - Stephen Edward McMillin
- School of Social Work, College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO 63103, USA
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
16
|
Tsai SS, Yang CY. The impacts of reduction in ambient fine particulate air pollution on natural-cause mortality in Taiwan. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:855-862. [PMID: 39074111 DOI: 10.1080/15287394.2024.2384396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Many epidemiologic studies have reported an association between high concentrations of fine particulate matter (PM2.5) and increased mortality rates. Concurrently an association between decreased concentration of these airborne PM2.5 pollutants and a decline in mortality frequency was noted in certain investigations globally; however, only a very few of these studies were conducted in Asia. Taiwan was found to exhibit a 30% decline in ambient PM2.5 levels over the last 20 years. The aim of this ecological investigation was to examine the contribution of annual reductions in ambient PM2.5 to changes in age-standardized natural-cause mortality rates (ASRs) in 65 townships in Taiwan from 2006 to 2020 controlling for lung cancer mortality rate, physician density, and annual household income. Data demonstrated a 0.9/105 fall in adjusted ASR for every 10 ug/m3 reduction in mean annual PM2.5 level in Taiwan during this 14-year period, suggesting a significant association between reductions in ambient PM2.5 levels and decreases in natural-cause mortality rates.
Collapse
Affiliation(s)
- Shang-Shyue Tsai
- Department of Healthcare Administration, I-Shou University, Kaohsiung, Taiwan
| | - Chun-Yuh Yang
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institute, Miaoli, Taiwan
| |
Collapse
|
17
|
Cui F, Zheng L, Zhang J, Tang L, Ma Y, Li D, Wang J, Xing M, Xie J, Yang J, Tian Y. Long-term exposure to fine particulate matter constituents, genetic susceptibility, and incident heart failure among 411 807 adults. Eur J Heart Fail 2024. [PMID: 39439267 DOI: 10.1002/ejhf.3486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/29/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
AIMS Long-term fine particulate matter (PM2.5) exposure has been linked to incident heart failure (HF), but the impacts of its constituents remain unknown. We aimed to investigate the associations of PM2.5 constituents with incident HF, and further evaluate the modification effects of genetic susceptibility. METHODS AND RESULTS PM2.5 and its constituents, including elemental carbon (EC), organic matter (OM), ammonium (NH4 +), nitrate (NO3 -), and sulfate (SO4 2-), were estimated using the European Monitoring and Evaluation Programme model applied to the UK (EMEP4UK) driven by Weather and Research Forecast model meteorology. A polygenic risk score (PRS) was calculated to represent genetic susceptibility to HF. We employed Cox models to evaluate the associations of PM2.5 constituents with incident HF. Quantile-based g-computation model was used to identify the main contributor of PM2.5 constituents. Among 411 807 individuals in the UK Biobank, 7554 participants developed HF during a median follow-up of 12.05 years. The adjusted hazard ratios of HF for each interquartile range increase in PM2.5, EC, OM, NH4 +, NO3 -, and SO4 2- were 1.50 (1.46-1.54), 1.31 (1.27-1.34), 1.12 (1.09-1.15), 1.42 (1.41-1.44), 1.26 (1.23-1.29), and 1.25 (1.24-1.26), respectively. EC (43%) played the most important role, followed by NH4 + and SO4 2-. Moreover, synergistic additive interactions accounted for 9-16% of the HF events in individuals exposed to both PM2.5, NH4 +, NO3 -, and SO4 2- and PRS. CONCLUSION Long-term exposure to PM2.5 constituents may elevate HF risk, and EC was the major contributor. Additive effects of PM2.5 constituents and PRS on HF risk were revealed.
Collapse
Affiliation(s)
- Feipeng Cui
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Zheng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- Hubei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Linxi Tang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yudiyang Ma
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dankang Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianing Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meiqi Xing
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junqing Xie
- Center for Statistics in Medicine, NDORMS, University of Oxford, The Botnar Research Centre, Oxford, UK
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
- Hubei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China
| | - Yaohua Tian
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
18
|
Wang Y, Wang R, Peng Z, Li Z, Qi Z, Wu Q, Ding B. A novel concern from two sample Mendelian randomization study: The effects of air pollution exposure on the cardiovascular, respiratory, and nervous system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116871. [PMID: 39151368 DOI: 10.1016/j.ecoenv.2024.116871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Cardiovascular, respiratory, and nervous system diseases have high morbidity and mortality rates, but the causal relationship between air pollution and these diseases remains controversial. METHODS We conducted a large-scale genome-wide association (GWAS) study using Mendelian randomization (MR) to investigate the association between air pollution like Nitrogen dioxide (NO2), Nitrogen oxides (NOX), Particulate matter with diameter<2.5μm (PM2.5), Particulate matter with diameter<10μm (PM10) and cardiovascular, respiratory, and nervous system diseases, including acute myocardial infarction, heart failure, asthma, chronic obstructive pulmonary disease (COPD), pneumonia, stroke and Parkinson's disease. This study included 337,199 patients with acute myocardial infarction, 178,726 patients with heart failure, 463,010 patients with asthma, 462,933 patients with COPD, 486,484 patients with pneumonia, 484,598 patients with stroke, and 482,730 patients with Parkinson's disease. All genetic tools were identified from GWAS. The association effects of environmental pollution and these diseases were investigated using MR analysis, sensitivity analysis with heterogeneity, pleiotropy test, and leave-one-out test. RESULTS Our MR analysis showed the association between NOX and the development of COPD and stroke (Odds ratio (OR)=1.010, 95 % Confidence interval (CI): 1.000~1.020, P=0.046; OR=1.017, 95 %CI:1.003-1.031, P=0.019), the association between PM2.5 and the development of asthma, COPD and stroke (OR=1.013, 95 %CI:1.003-1.024, P=0.011; OR=1.010, 95 %CI:1.000-1.019, P=0.035; OR=1.019, 95 %CI:1.004-1.033, P=0.012). No significant associations were found between the rest of the air pollution exposures and diseases. Leave-one-out sensitivity analysis showed stable results. CONCLUSIONS The study clarifies the relationship between air pollution and cardiovascular, respiratory, and nervous system diseases, providing valuable evidence for environmental pollution prevention and population health monitoring, and provides a clear direction and evidence for the subsequent investigation of the association between air pollution and diseases.
Collapse
Affiliation(s)
- Yueyao Wang
- Guangzhou Traditional Chinese Medicine University, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, China.
| | - Ruiwen Wang
- College of Environment and Climate, Jinan University, Guangzhou, China; International Laboratory for Air Quality and Health, School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, Australia
| | - Zhe Peng
- Guangzhou Traditional Chinese Medicine University, Guangzhou, China
| | - Zunjiang Li
- Guangzhou Traditional Chinese Medicine University, Guangzhou, China
| | - Zhongwen Qi
- Institute of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiqi Wu
- Guangzhou Traditional Chinese Medicine University, Guangzhou, China
| | - Banghan Ding
- Guangzhou Traditional Chinese Medicine University, Guangzhou, China; Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
19
|
Scimeca M, Palumbo V, Giacobbi E, Servadei F, Casciardi S, Cornella E, Cerbara F, Rotondaro G, Seghetti C, Scioli MP, Montanaro M, Barillà F, Sisto R, Melino G, Mauriello A, Bonfiglio R. Impact of the environmental pollution on cardiovascular diseases: From epidemiological to molecular evidence. Heliyon 2024; 10:e38047. [PMID: 39328571 PMCID: PMC11425171 DOI: 10.1016/j.heliyon.2024.e38047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Environmental pollution poses a significant threat to human health, particularly concerning its impact on cardiovascular diseases (CVDs). This review synthesizes epidemiological and molecular evidence to elucidate the intricate relationship between environmental pollutants and CVDs. Epidemiological studies highlight the association between exposure to air, water, and soil pollutants and increased CVD risk, including hypertension, coronary artery disease, and stroke. Furthermore, molecular investigations unravel the underlying mechanisms linking pollutant exposure to CVD pathogenesis, such as oxidative stress, inflammation, endothelial dysfunction, and autonomic imbalance. Understanding these molecular pathways is crucial for developing targeted interventions and policy strategies to mitigate the adverse effects of environmental pollution on cardiovascular health. By integrating epidemiological and molecular evidence, this review provides insights into the complex interplay between environmental factors and CVDs, emphasizing the urgent need for comprehensive preventive measures and environmental policies to safeguard public health.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Valeria Palumbo
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Erica Giacobbi
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Francesca Servadei
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, Rome, 00078, Italy
| | - Elena Cornella
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Federica Cerbara
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Gabriele Rotondaro
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Christian Seghetti
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Maria Paola Scioli
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Manuela Montanaro
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133, Rome, Italy
| | - Francesco Barillà
- Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, Rome, 00078, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Rita Bonfiglio
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133, Rome, Italy
| |
Collapse
|
20
|
Ma Y, Shao M, Li S, Lei Y, Cao W, Sun X. The association between airborne particulate matter (PM 2.5) exposure level and primary open-angle glaucoma. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116752. [PMID: 39053180 DOI: 10.1016/j.ecoenv.2024.116752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/10/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
The eye is vulnerable to the adverse effects of air pollution. Previous experimental study found that fine particulate matter (PM2.5) had a direct toxic effect on intraocular tissues. However, clinical evidence for the impact of air pollutants exposure on functional and structural changes in glaucoma remains scarce. A total of 120 patients with primary open-angle glaucoma (POAG) who met the inclusion criteria were included in this retrospective study. The standardized ophthalmic examination, such as intraocular pressure (IOP), visual field, optical coherence tomography, and comprehensive physical examination, were performed. The air pollution data, including PM2.5 concentration and air quality index (AQI), were collected. PM2.5 and AQI for the day of the medical examination, as well as one month, and three months before the medical examination date, were investigated. In our results, higher average exposure levels for one-month and three-month, were associated with increased IOP (r=0.229, P=0.013; r=0.204, P=0.028, respectively) and decreased visual field mean sensitivity (MS) (r=-0.212, P=0.037; r=-0.305, P=0.002, respectively). PM2.5 concentrations for the day of the medical examination was not significantly associated with ocular parameters. In multiple linear regression analysis adjusted for demographic and clinical factors, higher PM2.5 exposure for one month was associated with elevated IOP (P=0.040, β=0.173, 95 %CI=0.008-0.337). We also found an association between PM2.5 and MS (one-month exposure: β=-0.160, P=0.029; three-month exposure: β=-0.238, P=0.002). The logistic regression analysis found that three-month average PM2.5 exposure level was significantly associated with the disease severity (β=0.043, P=0.025, 95 %CI=1.005-1.084). In conclusion, this study is the first to investigate the relationship between air pollution and detailed ocular parameters of POAG patients in Shanghai over a three-year period, and to explore the effects of different exposure times of PM2.5 on glaucoma. This study found that PM2.5 exposure was correlated with elevated IOP and decreased MS. The one-month PM2.5 exposure level had the most significant effects on IOP. The three-month PM2.5 exposure level was an independent risk factor for POAG severity. Current evidence suggests there may be an association between PM2.5 exposure and POAG.
Collapse
Affiliation(s)
- Yi Ma
- Department of Clinical Laboratory, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Mingxi Shao
- Department of Clinical Laboratory, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Shengjie Li
- Department of Clinical Laboratory, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Yuan Lei
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 20031, China
| | - Wenjun Cao
- Department of Clinical Laboratory, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; NHC Key laboratory of Myopia and Related Eye Diseases, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 20031, China
| |
Collapse
|
21
|
Niechoda A, Roslan M, Milewska K, Szoka P, Maciorowska K, Holownia A. Signalling Pathways of Inflammation and Cancer in Human Mononuclear Cells: Effect of Nanoparticle Air Pollutants. Cells 2024; 13:1367. [PMID: 39195257 PMCID: PMC11352816 DOI: 10.3390/cells13161367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Fine inhalable particulate matter (PM) triggers an inflammatory response in the airways and activates mononuclear cells, mediators of tissue homeostasis, and tumour-promoting inflammation. We have assessed ex vivo responses of human monocytes and monocyte-derived macrophages to standardised air pollutants: carbon black, urban dust, and nanoparticulate carbon black, focusing on their pro-inflammatory and DNA-damaging properties. None of the PM (100 μg/mL/24 h) was significantly toxic to the cells, aside from inducing oxidative stress, fractional DNA damage, and inhibiting phagocytosis. TNFα was only slightly increased. PM nanoparticles increase the expression and activate DNA-damage-related histone H2A.X as well as pro-inflammatory NF-κB. We have shown that the urban dust stimulates the pathway of DNA damage/repair via the selective post-translational phosphorylation of H2A.X while nanoparticulate carbon black increases inflammation via activation of NF-κB. Moreover, the inflammatory response to lipopolysaccharide was significantly stronger in macrophages pre-exposed to urban dust or nanoparticulate carbon black. Our data show that airborne nanoparticles induce PM-specific, epigenetic alterations in the subsets of cultured mononuclear cells, which may be quantified using binary fluorescence scatterplots. Such changes intercede with inflammatory signalling and highlight important molecular and cell-specific epigenetic mechanisms of tumour-promoting inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | - Adam Holownia
- Department of Pharmacology, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland; (A.N.); (M.R.); (K.M.); (P.S.); (K.M.)
| |
Collapse
|
22
|
Guan X, Hu Y, Hao J, Lu M, Zhang Z, Hu W, Li D, Li C. Stress, Vascular Smooth Muscle Cell Phenotype and Atherosclerosis: Novel Insight into Smooth Muscle Cell Phenotypic Transition in Atherosclerosis. Curr Atheroscler Rep 2024; 26:411-425. [PMID: 38814419 DOI: 10.1007/s11883-024-01220-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE OF REVIEW Our work is to establish more distinct association between specific stress and vascular smooth muscle cells (VSMCs) phenotypes to alleviate atherosclerotic plaque burden and delay atherosclerosis (AS) progression. RECENT FINDING In recent years, VSMCs phenotypic transition has received significant interests. Different stresses were found to be associated with VSMCs phenotypic transition. However, the explicit correlation between VSMCs phenotype and specific stress has not been elucidated clearly yet. We discover that VSMCs phenotypic transition, which is widely involved in the progression of AS, is associated with specific stress. We discuss approaches targeting stresses to intervene VSMCs phenotypic transition, which may contribute to develop innovative therapies for AS.
Collapse
Affiliation(s)
- Xiuya Guan
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuanlong Hu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jiaqi Hao
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Mengkai Lu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhiyuan Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wenxian Hu
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, 266000, China.
| | - Dongxiao Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, 266000, China.
| |
Collapse
|
23
|
Yu P, Xu R, Wu Y, Huang W, Coelho MSZS, Saldiva PHN, Ye T, Wen B, Liu Y, Yang Z, Li S, Abramson MJ, Guo Y. Cancer mortality risk from short-term PM 2.5 exposure and temporal variations in Brazil. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134606. [PMID: 38788590 DOI: 10.1016/j.jhazmat.2024.134606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Although some studies have found that short-term PM2.5 exposure is associated with lung cancer deaths, its impact on other cancer sites is unclear. To answer this research question, this time-stratified case-crossover study used individual cancer death data between January 1, 2000, and December 31, 2019, extracted from the Brazilian mortality information system to quantify the associations between short-term PM2.5 exposure and cancer mortality from 25 common cancer sites. Daily PM2.5 concentration was aggregated at the municipality level as the key exposure. The study included a total of 34,516,120 individual death records, with the national daily mean PM2.5 exposure 15.3 (SD 4.3) μg/m3. For every 10-μg/m3 increase in three-day average PM2.5 exposure, the odds ratio (OR) for all-cancer mortality was 1.04 (95% CI 1.03-1.04). Apart from all-cancer deaths, PM2.5 exposure may impact cancers of oesophagus (1.04, 1.00-1.08), stomach (1.05, 1.02-1.08), colon-rectum (1.04, 1.01-1.06), lung (1.04, 1.02-1.06), breast (1.03, 1.00-1.06), prostate (1.07, 1.04-1.10), and leukaemia (1.05, 1.01-1.09). During the study period, acute PM2.5 exposure contributed to an estimated 1,917,994 cancer deaths, ranging from 0 to 6,054 cases in each municipality. Though there has been a consistent downward trend in PM2.5-related all-cancer mortality risks from 2000 to 2019, the impact remains significant, indicating the continued importance of cancer patients avoiding PM2.5 exposure. This nationwide study revealed a notable association between acute PM2.5 exposure and heightened overall and site-specific cancer mortality for the first time to our best knowledge. The findings suggest the importance of considering strategies to minimize such exposure in cancer care guidelines. ENVIRONMENTAL IMPLICATION: The 20-year analysis of nationwide death records in Brazil revealed that heightened short-term exposure to PM2.5 is associated with increased cancer mortality at various sites, although this association has gradually decreased over time. Despite the declining impact, the research highlights the persistent adverse effects of PM2.5 on cancer mortality, emphasizing the importance of continued research and preventive measures to address the ongoing public health challenges posed by air pollution.
Collapse
Affiliation(s)
- Pei Yu
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Rongbin Xu
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yao Wu
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Wenzhong Huang
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Micheline S Z S Coelho
- Laboratory of Urban Health Insper/Faculty of Medicine of the University of São Paulo, Brazil
| | - Paulo H N Saldiva
- Laboratory of Urban Health Insper/Faculty of Medicine of the University of São Paulo, Brazil
| | - Tingting Ye
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Bo Wen
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yanming Liu
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Zhengyu Yang
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Shanshan Li
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Michael J Abramson
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yuming Guo
- Climate Air quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
24
|
Bridge LA, Hernández Vargas JA, Trujillo-Cáceres SJ, Beigrezaei S, Chatelan A, Salehi-Abargouei A, Muka T, Uriza-Pinzón JP, Raeisi-Dehkordi H, Franco OH, Grompone G, Artola Arita V. Two cosmoses, one universe: a narrative review exploring the gut microbiome's role in the effect of urban risk factors on vascular ageing. Maturitas 2024; 184:107951. [PMID: 38471294 DOI: 10.1016/j.maturitas.2024.107951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
In the face of rising global urbanisation, understanding how the associated environment and lifestyle impact public health is a cornerstone for prevention, research, and clinical practice. Cardiovascular disease is the leading cause of morbidity and mortality worldwide, with urban risk factors contributing greatly to its burden. The current narrative review adopts an exposome approach to explore the effect of urban-associated physical-chemical factors (such as air pollution) and lifestyle on cardiovascular health and ageing. In addition, we provide new insights into how these urban-related factors alter the gut microbiome, which has been associated with an increased risk of cardiovascular disease. We focus on vascular ageing, before disease onset, to promote preventative research and practice. We also discuss how urban ecosystems and social factors may interact with these pathways and provide suggestions for future research, precision prevention and management of vascular ageing. Most importantly, future research and decision-making would benefit from adopting an exposome approach and acknowledging the diverse and boundless universe of the microbiome.
Collapse
Affiliation(s)
- Lara Anne Bridge
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Juliana Alexandra Hernández Vargas
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Silvia Juliana Trujillo-Cáceres
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sara Beigrezaei
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Angeline Chatelan
- Geneva School of Health Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
| | - Amin Salehi-Abargouei
- Research Center for Food Hygiene and Safety, Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Julieth Pilar Uriza-Pinzón
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Hamidreza Raeisi-Dehkordi
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Oscar H Franco
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | | | - Vicente Artola Arita
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
25
|
Rodriguez-Iturbe B. Environmental stress and hypertension: the disregarded role of HSP70. J Hum Hypertens 2024; 38:538-541. [PMID: 38773240 DOI: 10.1038/s41371-024-00917-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Affiliation(s)
- Bernardo Rodriguez-Iturbe
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, Mexico.
| |
Collapse
|
26
|
Donzelli G, Sera F, Morales MA, Vozzi F, Roos T, Schaffert A, Paparella M, Murugadoss S, Mertens B, Gehring R, Linzalone N. A systematic review and meta-analysis of human population studies on the association between exposure to toxic environmental chemicals and left ventricular dysfunction (LVD). ENVIRONMENTAL RESEARCH 2024; 249:118429. [PMID: 38354889 DOI: 10.1016/j.envres.2024.118429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/08/2023] [Accepted: 02/04/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Exposure to environmental chemicals has been associated with an elevated risk of heart failure (HF). However, the impact on early markers of HF, such as left ventricular dysfunction (LVD), remains limited. OBJECTIVE To establish a foundation of evidence regarding early HF markers and their association with environmental pollutants, a systematic review and meta-analysis was conducted. METHODS The search, conducted on October 13th, 2023, encompassed PubMed, Embase, and Web of Science without filters, focusing on observational studies reporting myocardial geometrical, structural, or functional alterations in individuals without a history of heart disease. This included the general adult population, workers, young people, and the elderly. The risk of bias was assessed using the ROBINS-I tool at both study and item levels. RESULTS The systematic review included 17 studies involving 43.358 individuals exposed to air pollution and 2038 exposed to heavy metals. Approximately 41% of the effect measures of associations reported significant abnormalities in myocardial structure or function. The metanalyses by pollutants categories indicated positive associations between LV systolic and diastolic abnormalities and exposure to PM2.5 [-0.069 (-0.104, -0.033); -0.044 (-0.062, -0.025)] and PM10 [-0.055 (-0.087, -0.022); -0.030 (-0.050, -0.010)] and NO2 [-0.042 (-0.071, -0.013); -0.021 (-0.037, -0.004)], as well as positive associations between lead exposure and LV systolic abnormalities [-0.033 (-0.051, -0.016)]. CONCLUSIONS Existing evidence shows that specific early markers of HF may be associated with exposure to chemical pollutants. It is recommended to include such endpoints in new longitudinal and case-control studies to confirm further risk associations. These studies should consider co-exposures, account for vulnerable groups, and identify cardiotoxic compounds that may require regulation. When examining the link between myocardial abnormalities and environmental exposure, it is also advisable to explore the supportive use of Adverse Outcome Pathway (AOP) approaches to confirm a causal relationship.
Collapse
Affiliation(s)
- G Donzelli
- Institute of Clinical Physiology of the National Research Council (CNR-IFC), Pisa, Italy.
| | - F Sera
- Department of Statistics, Computer Science and Applications "G. Parenti", University of Florence, Florence, Italy.
| | - M A Morales
- Institute of Clinical Physiology of the National Research Council (CNR-IFC), Pisa, Italy.
| | - F Vozzi
- Institute of Clinical Physiology of the National Research Council (CNR-IFC), Pisa, Italy.
| | - T Roos
- Department of Population Health Sciences, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - A Schaffert
- Institute of Medical Biochemistry, Medical University Innsbruck, Innsbruck, Austria.
| | - M Paparella
- Institute of Medical Biochemistry, Medical University Innsbruck, Innsbruck, Austria.
| | - S Murugadoss
- Scientific Direction of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium.
| | - B Mertens
- Scientific Direction of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium.
| | - R Gehring
- Department of Population Health Sciences, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - N Linzalone
- Institute of Clinical Physiology of the National Research Council (CNR-IFC), Pisa, Italy.
| |
Collapse
|
27
|
Lee HJ, Kim DK. Retinoic Acid Treatment Mitigates PM2.5-Induced Type 2 Inflammation: Insights into Modulation of Innate Immune Responses. Int J Mol Sci 2024; 25:3856. [PMID: 38612663 PMCID: PMC11011870 DOI: 10.3390/ijms25073856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Some studies have demonstrated the effects of particulate matter (PM) on chronic rhinosinusitis with nasal polyps (CRSwNP) development, as well as the therapeutic role of retinoic acid (RA) in nasal polypogenesis. However, the immunologic effect of PM in innate lymphoid cells (ILCs) and the exact mechanism of the therapeutic effect of RA remain unclear. Therefore, the present study investigated the effects of fine-dust-induced inflammation in CRSwNP and the mechanisms of the therapeutic effect of RA. PM2.5 exposure exacerbated pathological damage in the nasal mucosa of mice with nasal polyps (NP) via upregulation of type 2 inflammation. Additionally, PM2.5 exposure increased the expression of type 2 cytokines and epithelial-cell-derived cytokines (IL-33 and IL-25) significantly, as well as the ILC populations in human-NP-derived epithelial cells (HNECs). Moreover, RA supplementation significantly increased the expression of ILCreg in Lin-CD45+CD127+ cells, which in turn increased the levels of the anti-inflammatory cytokine IL-10. The findings suggest that PM2.5 exposures could aggravate the CRSwNP type 2 inflammation, and RA treatment may ameliorate fine-dust-induced inflammation by modulating the innate immune response.
Collapse
Affiliation(s)
- Hyun-Joo Lee
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea;
| | - Dong-Kyu Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea;
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea
| |
Collapse
|
28
|
Balmes JR. Invited Perspective: Longitudinal Follow-up of a Household Air Pollution Trial in a Birth Cohort Yields an Impactful Finding. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:31306. [PMID: 38506829 PMCID: PMC10953815 DOI: 10.1289/ehp14480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/06/2024] [Accepted: 02/08/2024] [Indexed: 03/21/2024]
Affiliation(s)
- John R. Balmes
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
29
|
Li J, Liu L, Gu J, Cao M, Lei J, Li H, He J, He J. The impact of air pollutants on spontaneous abortion: a case-control study in Tongchuan City. Public Health 2024; 227:267-273. [PMID: 38320452 DOI: 10.1016/j.puhe.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 02/08/2024]
Abstract
OBJECTIVES Studies related to air pollutants and spontaneous abortion in urban northwestern China are scarce, and the main exposure windows of pollutants acting on pregnant women are unclear. STUDY DESIGN Case-control study. METHODS Data were collected from pregnant women in Tongchuan City from 2018 to 2019. A total of 289 cases of spontaneous abortion and 1156 cases of full-term labor were included and analyzed using a case-control study. Logistic regression models were developed to explore the relationship between air pollutants and spontaneous abortion after Chi square analysis and Air pollutant description. RESULTS O3 (odds ratio [OR] = 1.028) is a risk factor for spontaneous abortion throughout pregnancy. PM2.5 (OR = 1.015), PM10 (OR = 1.010), SO2 (OR = 1.026), and NO2 (OR = 1.028) are risk factors for spontaneous abortion in the 30 days before the last menstrual period. PM2.5 (OR = 1.015), PM10 (OR = 1.013), SO2 (OR = 1.036), and NO2 (OR = 1.033) are risk factors for spontaneous abortion in the 30-60 days before the last menstrual period. PM2.5 (OR = 1.028), PM10 (OR = 1.013), SO2 (OR = 1.035), and NO2 (OR = 1.059) are risk factors for spontaneous abortion in the 60-90 days before the last menstrual period. CONCLUSION Exposure to high levels of air pollutants may be a cause of increased risk of spontaneous abortion, especially in the first trimester of the last menstrual period.
Collapse
Affiliation(s)
- J Li
- Medical School of Yan'an University, Shaanxi, China
| | - L Liu
- Medical School of Yan'an University, Shaanxi, China
| | - J Gu
- Medical School of Yan'an University, Shaanxi, China
| | - M Cao
- Medical School of Yan'an University, Shaanxi, China
| | - J Lei
- Yan'an University School Hospital, Shaanxi, China
| | - H Li
- Department of Laboratory, Yan'an University Affiliated Hospital, Shaanxi, China
| | - J He
- College of Mathematics and Computer Science of Yan'an University, Shaanxi, China
| | - J He
- Medical School of Yan'an University, Shaanxi, China.
| |
Collapse
|
30
|
Zhu F, Yu H, Fan X, Ding Z, Wang Q, Zhou J. Particulate air pollution and cardiovascular disease mortality in Jiangsu Province, China: a time-series analysis between 2015 and 2021. Front Public Health 2023; 11:1218479. [PMID: 38174084 PMCID: PMC10761421 DOI: 10.3389/fpubh.2023.1218479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction Previous time-series studies have revealed a positive association between particulate matter (PM) and acute cardiovascular effects. However, the evidence mostly comes from developed countries and regions, while the majority of air-pollution-related deaths occur in developing countries. To assess the effect of short-term exposure to PM on daily cause-specific cardiovascular disease (CVD) mortality in Jiangsu Province, China, we investigated 1,417,773 CVD deaths from 2015 to 2021 in Jiangsu. Methods The city-specific association was estimated using generalized additive models with quasi-Poisson regression, and then, random effects meta-analysis was performed to estimate the pooled provincial-average associations between acute exposure to PM2.5 and PM10 and cardiovascular disease mortality. To test the independence of PM from gaseous pollutants, we fitted two-pollutant models. Mortality data were also stratified by sex, age, and region to investigate the modification of associations. The exposure-response (E-R) curve from each city was combined using meta-analysis to drive the provincial-level E-R curve. Results The results showed that each 10-μg/m3 increase in the PM2.5 concentration was associated with a 0.723% [95% confidence interval (CI): 0.512, 0.935] increase in daily total CVD mortality, a 0.669% (95% CI: 0.461, 0.878) increase in CHD mortality, a 0.758% (95% CI: 0.584, 0.931) increase in stroke mortality, a 0.512% (95% CI: 0.245, 0.780) increase in ICH mortality, and a 0.876% (95% CI: 0.637, 1.116) increase in CI mortality. The corresponding increases in daily mortality rates for the same increase in the PM10 concentration were 0.424% (95% CI: 0.293, 0.556), 0.415% (95% CI: 0.228, 0.602), 0.444% (95% CI: 0.330, 0.559), 0.276% (95% CI: 0.026, 0.526), and 0.510% (95% CI: 0.353, 0.667), respectively. The association between PM and total CVD mortality remained significant after adjusting for gaseous pollutants. Females, older adults and districts with lower average PM levels are more sensitive, especially for PM10. The E-R curve for PM on CVD mortality is steeper at lower concentrations and flattens out at higher concentrations. The estimates remained generally consistent in sensitivity analyses when excluding the data during the COVID-19 pandemic period. Discussion Our time-series study provides evidence of positive associations between acute exposure to PM2.5 and PM10 and total and cause-specific cardiovascular disease mortality in developing countries.
Collapse
Affiliation(s)
- Fangyu Zhu
- Department of Non-communicable Chronic Disease and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Hao Yu
- Department of Non-communicable Chronic Disease and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Xikang Fan
- Department of Non-communicable Chronic Disease and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Zhen Ding
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Qingqing Wang
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jinyi Zhou
- Department of Non-communicable Chronic Disease and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
31
|
Klaver ZM, Crane RC, Ziemba RA, Bard RL, Adar SD, Brook RD, Morishita M. Reduction of Outdoor and Indoor PM 2.5 Source Contributions via Portable Air Filtration Systems in a Senior Residential Facility in Detroit, Michigan. TOXICS 2023; 11:1019. [PMID: 38133420 PMCID: PMC10748160 DOI: 10.3390/toxics11121019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Background: The Reducing Air Pollution in Detroit Intervention Study (RAPIDS) was designed to evaluate cardiovascular health benefits and personal fine particulate matter (particulate matter < 2.5 μm in diameter, PM2.5) exposure reductions via portable air filtration units (PAFs) among older adults in Detroit, Michigan. This double-blind randomized crossover intervention study has shown that, compared to sham, air filtration for 3 days decreased 3-day average brachial systolic blood pressure by 3.2 mmHg. The results also showed that commercially available HEPA-type and true HEPA PAFs mitigated median indoor PM2.5 concentrations by 58% and 65%, respectively. However, to our knowledge, no health intervention study in which a significant positive health effect was observed has also evaluated how outdoor and indoor PM2.5 sources impacted the subjects. With that in mind, detailed characterization of outdoor and indoor PM2.5 samples collected during this study and a source apportionment analysis of those samples using a positive matrix factorization model were completed. The aims of this most recent work were to characterize the indoor and outdoor sources of the PM2.5 this community was exposed to and to assess how effectively commercially available HEPA-type and true HEPA PAFs were able to reduce indoor and outdoor PM2.5 source contributions. Methods: Approximately 24 h daily indoor and outdoor PM2.5 samples were collected on Teflon and Quartz filters from the apartments of 40 study subjects during each 3-day intervention period. These filters were analyzed for mass, carbon, and trace elements. Environmental Protection Agency Positive Matrix Factorization (PMF) 5.0 was utilized to determine major emission sources that contributed to the outdoor and indoor PM2.5 levels during this study. Results: The major sources of outdoor PM2.5 were secondary aerosols (28%), traffic/urban dust (24%), iron/steel industries (15%), sewage/municipal incineration (10%), and oil combustion/refinery (6%). The major sources of indoor PM2.5 were organic compounds (45%), traffic + sewage/municipal incineration (14%), secondary aerosols (13%), smoking (7%), and urban dust (2%). Infiltration of outdoor PM2.5 for sham, HEPA-type, and true HEPA air filtration was 79 ± 24%, 61 ± 32%, and 51 ± 34%, respectively. Conclusions: The results from our study showed that intervention with PAFs was able to significantly decrease indoor PM2.5 derived from outdoor and indoor PM2.5 sources. The PAFs were also able to significantly reduce the infiltration of outdoor PM2.5. The results of this study provide insights into what types of major PM2.5 sources this community is exposed to and what degree of air quality and systolic blood pressure improvements are possible through the use of commercially available PAFs in a real-world setting.
Collapse
Affiliation(s)
- Zachary M. Klaver
- Exposure Science Lab, Family Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Ryan C. Crane
- Exposure Science Lab, Family Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | | | - Robert L. Bard
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sara D. Adar
- School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert D. Brook
- Department of Internal Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Masako Morishita
- Exposure Science Lab, Family Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
32
|
Zhang W, Ling J, Zhang R, Ruan Y. Short-term effects of air pollution on hospitalization of children with acute upper respiratory infections: A time series analysis in Lanzhou, China. Pediatr Pulmonol 2023; 58:3588-3595. [PMID: 37792321 DOI: 10.1002/ppul.26699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023]
Abstract
OBJECTIVE Short-term air pollution exposure is correlated with childhood acute upper respiratory infections (AURI) hospitalizations. We surveyed the relationship between AURI hospitalizations and air pollutant concentrations in children aged 0-14 years from 1 January 2014 to 31 December 2019 in Lanzhou City. METHODS We collected both data on air pollutant concentrations and children's AURI hospitalizations during the study period. Distributional lagged nonlinear models were adopted to assess the short-term effects of air pollutants on children's AURI hospitalizations. We also performed subgroup analysis and sensitivity analysis. RESULTS A total of 15,881 children were hospitalized for AURI during the study period. The results showed that for each 10 µg/m3 increase in PM2.5 , SO2 , and NO2 concentrations at lag0-6, the relative risk (RR) values for children hospitalized for AURI were RR = 1.0247 (95% CI: 1.0092,1.0405), RR = 1.0928 (95% CI: 1.0562, 1.1308), and RR = 1.0715 (95% CI: 1.0495, 1.0940), respectively. PM10 was significantly associated with AURI hospitalization in children only at lag0, RR = 1.0028 (95% CI: 1.0000, 1.0056). CONCLUSION Short-term exposures to PM2.5 , PM10 , SO2 , and NO2 all increase the risk of AURI hospitalization in children variously.
Collapse
Affiliation(s)
- Wancheng Zhang
- School of Public Health, Lanzhou University, Lanzhou, PR China
| | - Jianglong Ling
- School of Public Health, Lanzhou University, Lanzhou, PR China
| | - Runping Zhang
- School of Public Health, Lanzhou University, Lanzhou, PR China
| | - Ye Ruan
- School of Public Health, Lanzhou University, Lanzhou, PR China
| |
Collapse
|
33
|
Zhang J, Tong H, Jiang L, Zhang Y, Hu J. Trends and disparities in China's cardiovascular disease burden from 1990 to 2019. Nutr Metab Cardiovasc Dis 2023; 33:2344-2354. [PMID: 37596135 DOI: 10.1016/j.numecd.2023.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/30/2023] [Accepted: 07/21/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND AND AIMS In order to find the exact strategies in the prevention of cardiovascular diseases (CVD), it is necessary to assess their risk factors systematically. Here, we used the Global Burden of Disease (GBD) to review the long-term trends and epidemiological characteristics among Chinese. METHODS AND RESULTS We comprehensively analyzed the burden of CVD for the Chinese population using GBD 2019, including prevalence, incidence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life years (DALYs). Then, we analyzed trends over time, and predicted mortality and morbidity, using joinpoint regression, age-period-cohort (APC) model, and Bayesian APC approach. Finally, we analyzed the attributable burden of CVD. In 2019, the prevalence of CVD in China was 120 million, representing a 140.02% increase since 1990. The number of DALYs attributed to CVD increased by 52.56% compared to 1990. Joinpoint showed a fluctuating incidence downward, while mortality significantly declined. The APC fitting results indicated that recent generations have a higher prevalence than the past, and the prevalence has increased among individuals of the same age group. The BAPC predicted that CVD's prevalence and mortality in the Chinese would stabilize and decline between 2020 and 2030, with a significant decline among males. The main CVD-attributable burdens in 2019 were metabolic risks, especially high blood pressure. CONCLUSION Given China's large and rapidly aging population, the burden of CVD is a major concern. Practical strategies to prevent and manage CVD are urgently needed to address this public health challenge.
Collapse
Affiliation(s)
- Jiale Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Hongxuan Tong
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Lijie Jiang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yiwen Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Jingqing Hu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
34
|
Zhou M, Xin J, Chen J, Sun C, Huo B, Zhang W, Liu X. Scientific Landscape of Oxidative Stress in Stroke: From a Bibliometric Analysis to an in-Depth Review. Neurochem Res 2023; 48:3327-3348. [PMID: 37505366 DOI: 10.1007/s11064-023-03999-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Stroke is an acute cerebrovascular disease resulting from either obstruction or rupture of a blood vessel in the brain. Oxidative stress (OS), referred to a status where cellular oxidative capacities overwhelm antioxidative defenses, is involved in the pathophysiology of stroke. The bibliometric analysis and in-depth review aim to depict the research trend of OS in stroke. Relevant scientific publications were acquired from the Web of Science Core Collection database. Scientific landscape of OS in stroke was illustrated by general quantitative trend, impactful journals, and co-authorship of various academic units (i.e., countries/regions, organizations, and authors). Furthermore, theme analysis predicting the hot research issues and frontiers was performed. 15,826 documents regarding OS in stroke were obtained over a time span of more than 20 years from 1992 to 2021. The overall tendency of publication counts was continuously on the rise. Bibliometric analysis indicated China and the United States were predominant in this study field, as reflected by their high publication counts and intensive collaboration with other countries. Current key research areas of OS in stroke may lie in the investigation of neuroinflammation, and interaction among multiple cell death mechanisms including apoptosis, autophagy, and ferroptosis to search for effective treatments. Moreover, another hot topic could be the association between air pollution and stroke, and its underlying mechanisms. As the exploration of OS in stroke is speculated to be a continuous hot spot in the future, this article may be helpful for researchers to conduct future studies with the understanding of influential academic forces and research highlights.
Collapse
Affiliation(s)
- Minqi Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hang Kong Road, Wuhan, 430030, China
| | - Jiayu Xin
- Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hang Kong Road, Wuhan, 430030, China
| | - Jinyu Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Caiyun Sun
- Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Bingyue Huo
- Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hang Kong Road, Wuhan, 430030, China
| | - Wenting Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hang Kong Road, Wuhan, 430030, China
| | - Xiangqian Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hang Kong Road, Wuhan, 430030, China.
| |
Collapse
|
35
|
Tsai TY, Lo LW, Lin WL, Chou YH, Cheng WH, Liu SH, Yang CCH, Kuo TBJ, Chen SA. Neural mechanism facilitating PM2.5-related cardiac arrhythmias through cardiovascular autonomic and calcium dysregulation in a rat model. Sci Rep 2023; 13:16016. [PMID: 37749136 PMCID: PMC10520066 DOI: 10.1038/s41598-023-41148-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/22/2023] [Indexed: 09/27/2023] Open
Abstract
Particulate matter < 2.5 μm (PM2.5) exposure is associated with increased arrhythmia events and cardiovascular mortality, but the detailed mechanism remained elusive. In the current study, we aimed to investigate the autonomic alterations in a rodent model after acute exposure to PM2.5. Twelve male WKY rats were randomized to control and PM2.5 groups. All were treated with 2 exposures of oropharyngeal aerosol inhalations (1 μg PM2.5 per gram of body weight in 100 μL normal saline for the PM2.5 group) separately by 7 days. Polysomnography and electrocardiography were surgically installed 7 days before oropharyngeal inhalation and monitored for 7 days after each inhalation. Physiologic monitors were used to define active waking (AW), quiet sleep (QS), and paradoxical sleep (PS). Autonomic regulations were measured by heart rate variability (HRV). The protein expression of ventricular tissue of the 2 groups was compared at the end of the experiment. In sleep pattern analysis, QS interruption of the PM2.5 group was significantly higher than the control group (0.52 ± 0.13 events/min, 0.35 ± 0.10 events/min, p = 0.002). In HRV analysis, the LF/HF was significantly higher for the PM2.5 group than the control group (1.15 ± 0.16, 0.64± 0.30, p = 0.003), largely driven by LF/HF increase during the QS phase. Ionic channel protein expression from Western blots showed that the PM2.5 group had significantly lower L-type calcium channel and higher SERCA2 and rectifier potassium channel expressions than the control group, respectively. Our results showed that acute PM2.5 exposure leads to interruption of QS, sympathetic activation, and recruitment of compensatory calcium handling proteins. The autonomic and calcium dysregulations developed after PM 2.5 exposure may explain the risk of sleep disturbance and sleep-related arrhythmia.
Collapse
Affiliation(s)
- Tsung-Ying Tsai
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 201, Sec. 2, Shih-Pai Road, Taipei, Taiwan
- National Yang Ming Chiao Tung University, Taipei, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Li-Wei Lo
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 201, Sec. 2, Shih-Pai Road, Taipei, Taiwan.
- Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Wei-Lun Lin
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 201, Sec. 2, Shih-Pai Road, Taipei, Taiwan
- Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biomedical Science, Mackay Medical College, New Taipei city, Taiwan
| | - Yu-Hui Chou
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 201, Sec. 2, Shih-Pai Road, Taipei, Taiwan
- Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Han Cheng
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 201, Sec. 2, Shih-Pai Road, Taipei, Taiwan
| | - Shin-Hui Liu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 201, Sec. 2, Shih-Pai Road, Taipei, Taiwan
| | - Cheryl C H Yang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Terry B J Kuo
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
- Tsoutun Psychiatric Center, Ministry of Health and Welfare, Nantou, Taiwan
| | - Shih-Ann Chen
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang Ming Chiao Tung University, Taipei, Taiwan
- National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
36
|
Kong L, Mao Z, He S, Li K, Zhou L, Zhang X, Huang P. PM 2.5 induces alterations in gene expression profile of platelet-derived extracellular vesicles and mediates cardiovascular injury in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115341. [PMID: 37573648 DOI: 10.1016/j.ecoenv.2023.115341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023]
Abstract
Platelet-derived extracellular vesicles (P-EVs), as the most abundant vesicles in blood, have been proven to play cardinal roles in cardiovascular injury. RNAs (especially miRNAs) carried by P-EVs can be transferred to the receptor, which plays a critical role in regulating vascular endothelial function. PM2.5 is one of the most well-known risk factors that cause cardiovascular disease. Therefore, the objective of the current study was to explore whether exposure to PM2.5 would alter the gene expression profile of P-EVs, and to further elucidate the role of RNAs (especially miRNAs) carried by P-EVs in cardiovascular injury induced by PM2.5 exposure. P-EVs were isolated from the platelet-rich plasma which was exposed and unexposed to PM2.5, and the differentially expressed target genes were evaluated using whole-transcriptome gene sequencing. Rats were treated with P-EVs under different exposure conditions (a protein concentration of 50 µg/mL) and an equal volume of normal saline. The pathological damage of the thoracic aorta and cardiac tissue was evaluated and the coagulation function of the rats was detected. The differentially expressed genes were shown to be mainly concentrated in inflammation, angiogenesis, and apoptosis-related pathways. Moreover, P-EVs extracted from PM2.5-exposed plasma had the potential to trigger an inflammatory response, impair vascular endothelial function, disrupt the normal coagulation process, and promote a prothrombotic state. Our study indicated that PM2.5 induces cardiovascular injury in rats by interfering with the gene expression of P-EVs. It will provide new targets for studying the mechanism involved in PM2.5-induced cardiovascular injury.
Collapse
Affiliation(s)
- Ling Kong
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Central Laboratory, Xuanwu Hospital Capital Medical University, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing Institute for Brain Disorders, National Clinical Research Center for Geriatric Disorders, Beijing 100053, China
| | - Zhen Mao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Shiyu He
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Kexin Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lihong Zhou
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xiaodan Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Peili Huang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
37
|
Kim HJ, Son HY, Park P, Yun JM, Kwon H, Cho B, Kim JI, Park JH. A genome-wide by PM 10 exposure interaction study for blood pressure in Korean adults. Sci Rep 2023; 13:13060. [PMID: 37567956 PMCID: PMC10421905 DOI: 10.1038/s41598-023-40155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023] Open
Abstract
Blood pressure (BP) is a typical complex trait, and the genetic susceptibility of individuals to changes in BP induced by air pollution exposure is different. Although interactions of exposure to air pollutants with several candidate genes have been identified, genome-wide interaction studies (GWISs) are needed to understand the association between them with BP. Therefore, we aimed to discover the unique genetic loci for BP that interact with exposure to air pollutants in Korean adults. We ultimately included 1868 participants in the discovery step and classified them into groups of those with low-to-moderate exposure and high exposure to average annual concentration of particulate matter with an aerodynamic diameter ≤ 10 μm (PM10). Because none of the single nucleotide polymorphisms (SNPs) achieved a genome-wide level of significance of pint < 5 × 10-8 for either systolic BP (SBP) or diastolic BP (DBP), we considered the top 10 ranking SNPs for each BP trait. To validate these suggestive SNPs, we finally selected six genetic variants for SBP and five variants for DBP, respectively. In a replication result for SBP, only one SNP (rs12914147) located in an intergenic region of the NR2F2 showed a significant interaction. We also identified several genetic susceptibility loci (e.g., CHST11, TEK, and ITGA1) implicated in candidate mechanisms such as inflammation and oxidative stress in the discovery step, although their interaction effects were not replicated. Our study reports the first GWIS finding to our knowledge, and the association between exposure to PM10 and BP levels may be determined in part by several newly discovered genetic suggestive loci, including NR2F2.
Collapse
Affiliation(s)
- Hyun-Jin Kim
- National Cancer Control Institute, National Cancer Center, Goyang, South Korea
| | - Ho-Young Son
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, South Korea
| | - Philiip Park
- National Cancer Control Institute, National Cancer Center, Goyang, South Korea
| | - Jae Moon Yun
- Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Hyuktae Kwon
- Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Belong Cho
- Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea
- Department of Family Medicine, Seoul National University College of Medicine, 103 Daehakro, Yeongun-Dong, Jongno-Gu, Seoul, 03080, South Korea
| | - Jong-Il Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, South Korea.
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea.
- Department of Biochemistry & Molecular Biology, Seoul National University College of Medicine, 103 Daehakro, Yeongun-Dong, Jongno-Gu, Seoul, 03080, South Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
| | - Jin-Ho Park
- Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea.
- Department of Family Medicine, Seoul National University College of Medicine, 103 Daehakro, Yeongun-Dong, Jongno-Gu, Seoul, 03080, South Korea.
| |
Collapse
|
38
|
Luo M, Xie X, Wu J, Zhang L, Zheng X, Xie M, Lin N, Xiao H, Zeng J, Lan G, Lu X, Ye X, Huang Z, Xu T, Wang T, Lin K, Guo Y, Xie X. Association of ambient PM 10 and PM 2.5 with coronary stenosis measured using selective coronary angiography. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115338. [PMID: 37556955 DOI: 10.1016/j.ecoenv.2023.115338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/14/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Long-term ambient particulate matter (PM) exposure exerts detrimental effects on cardiovascular health. Evidence on the relation of chronically exposed ambient PM10 and PM2.5 with coronary stenosis remains lacking. Our aim was to investigate the association of PM10 and PM2.5 with coronary stenosis in patients undergoing coronary angiography. METHODS We performed a retrospective cohort study consisting of 7513 individuals who underwent coronary angiography in Fujian Province, China, from January 2019 to December 2021. We calculated a modified Gensini score (GS) to represent the degree of stenosis in coronary arteries by selective coronary angiography. We fitted linear regressions and logistic models to assess the association of PM10 and PM2.5 with coronary stenosis. We employed restricted cubic splines to describe the exposure-response curves. We performed mediation analyses to assess the potential mediators. RESULTS Long-term ambient PM10 and PM2.5 (prior three years average) exposure was significantly associated with the GS, with a breakpoint concentration of 47.5 μg/m3 and 25.8 μg/m3 for PM10 and PM2.5, respectively, above which we found a linear positive exposure-response relationship of ambient PM with GS. Each 10 µg /m3 increase in PM10 exposure (β: 4.81, 95 % CI: 0.44-9.19) and PM2.5 exposure [β: 10.50, 95 % CI: 3.14-17.86] were positively related to the GS. The adjusted odds ratio (OR) for each 10 µg/m3 increment in PM10 exposure on severe coronary stenosis was 1.33 (95 % CI: 1.04-1.76). Correspondingly, the adjusted OR for PM2.5 was 1.87 (95 % CI: 1.24-2.99). The mediation analysis indicated that the effect of PM10 on coronary stenosis may be partially mediated through total cholesterol, low-density lipoprotein cholesterol, apolipoprotein B, serum creatinine and blood urea nitrogen, and the effect of PM2.5 may be mediated in part by hemoglobin A1c. CONCLUSION Our study provides the first evidence that chronic ambient PM10 and PM2.5 exposure was associated with coronary stenosis assessed by GS in patients with suspected coronary artery disease and reveals its potential mediators.
Collapse
Affiliation(s)
- Manqing Luo
- Department of Cardiology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China; Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China; Fujian Heart Failure Center Alliance, Fuzhou, China
| | - Xiaowei Xie
- The First Clinical Medical School, Shanxi Medical University, Taiyuan, China
| | - Jieyu Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Liwei Zhang
- Department of Cardiology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China; Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China; Fujian Heart Failure Center Alliance, Fuzhou, China
| | - Xi Zheng
- Department of Cardiology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China; Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China; Fujian Heart Failure Center Alliance, Fuzhou, China
| | - Mengying Xie
- The Second Clinical Medical School, Nanchang University, Nanchang, China
| | - Na Lin
- Department of Cardiology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China; Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China; Fujian Heart Failure Center Alliance, Fuzhou, China
| | - Huazhen Xiao
- Department of Cardiology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China; Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China; Fujian Heart Failure Center Alliance, Fuzhou, China
| | - Jilang Zeng
- Department of Cardiology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China; Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China; Fujian Heart Failure Center Alliance, Fuzhou, China
| | - Guohui Lan
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xiaoli Lu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xiaoying Ye
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Zelin Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Tingting Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Tinggui Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Kaiyang Lin
- Department of Cardiology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China; Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China; Fujian Heart Failure Center Alliance, Fuzhou, China
| | - Yansong Guo
- Department of Cardiology, Fujian Provincial Hospital, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China; Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China; Fujian Heart Failure Center Alliance, Fuzhou, China.
| | - Xiaoxu Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China; Clinical Research Unit, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China.
| |
Collapse
|
39
|
Lv S, Shi Y, Xue Y, Hu Y, Hu M, Li S, Xie W, Li Y, Ouyang Y, Li Z, Liu M, Wei J, Guo X, Liu X. Long-term effects of particulate matter on incident cardiovascular diseases in middle-aged and elder adults: The CHARLS cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115181. [PMID: 37393817 DOI: 10.1016/j.ecoenv.2023.115181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/07/2023] [Accepted: 06/22/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Although there is evidence of long-term effects of particulate matter (PM) on cardiovascular diseases (CVD), researches about long-term effects of PM1 on CVD are limited. We aimed to examine the long-term effects and magnitude of PM, especially PM1, on incident CVD in China. METHODS We included 6016 participants aged ≥ 45 years without CVD at baseline in 2011 from the China Health and Retirement Longitudinal Study. Personal PM (PM1, PM2.5, and PM10) concentrations were estimated using geocoded residential address. Generalized linear mixed models and SHapley Additive exPlanation were utilized to calculate the impacts and contributions of PM on CVD. Sensitivity analyses were used to check the robustness. RESULTS After a follow up of 4-year, 481 (7.99 %) participants developed CVD. Per 10 μg/m3 uptick in 1-year average concentrations of PM1, PM2.5 and PM10 was associated with a 1.20 [95 % confidence interval (CI): 1.05-1.37], 1.13 (95 % CI: 1.11-1.15), and 1.10 (95 % CI: 1.06-1.13) fold risk of incident CVD, respectively. The 2-year average concentrations of PM1, PM2.5 and PM10 were associated with incident CVD, corresponding to a 1.03 (95 % CI: 0.96-1.10), 1.11 (95 % CI: 1.02-1.21), and 1.09 (95 % CI: 1.03-1.15) fold risk, respectively. The SHapley Additive exPlanation values of PM1, PM2.5, and PM10 were 0.170, 0.153, and 0.053, respectively, corresponding to the first, second, and fifth among all air pollutants. Effects of PM1, PM2.5 and PM10 on CVD remained statistically significant in two-pollutant models. The elderly, males, smokers and alcohol drinkers tended to have slightly higher effects, while the differences were not statistically significant (all P-values > 0.05) between subgroups. CONCLUSION Long-term exposure to PM1, PM2.5, and PM10 was associated with an increased incidence of CVD. The smaller the particle size, the more important it was for incident CVD indicating that emphasis should be placed on small size of PM.
Collapse
Affiliation(s)
- Shiyun Lv
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Yadi Shi
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yongxi Xue
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yaoyu Hu
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Meiling Hu
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Shuting Li
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Wenhan Xie
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yuan Li
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yixin Ouyang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Zhiwei Li
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China
| | - Mengmeng Liu
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China; National Institute for Data Science in Health and Medicine, Capital Medical University, Beijing 100069, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20742, USA
| | - Xiuhua Guo
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China; National Institute for Data Science in Health and Medicine, Capital Medical University, Beijing 100069, China.
| | - Xiangtong Liu
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China.
| |
Collapse
|
40
|
D’Amico G, Santonocito R, Vitale AM, Scalia F, Marino Gammazza A, Campanella C, Bucchieri F, Cappello F, Caruso Bavisotto C. Air Pollution: Role of Extracellular Vesicles-Derived Non-Coding RNAs in Environmental Stress Response. Cells 2023; 12:1498. [PMID: 37296619 PMCID: PMC10252408 DOI: 10.3390/cells12111498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Air pollution has increased over the years, causing a negative impact on society due to the many health-related problems it can contribute to. Although the type and extent of air pollutants are known, the molecular mechanisms underlying the induction of negative effects on the human body remain unclear. Emerging evidence suggests the crucial involvement of different molecular mediators in inflammation and oxidative stress in air pollution-induced disorders. Among these, non-coding RNAs (ncRNAs) carried by extracellular vesicles (EVs) may play an essential role in gene regulation of the cell stress response in pollutant-induced multiorgan disorders. This review highlights EV-transported ncRNAs' roles in physiological and pathological conditions, such as the development of cancer and respiratory, neurodegenerative, and cardiovascular diseases following exposure to various environmental stressors.
Collapse
Affiliation(s)
- Giuseppa D’Amico
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Radha Santonocito
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Alessandra Maria Vitale
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Federica Scalia
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Antonella Marino Gammazza
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Claudia Campanella
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Fabio Bucchieri
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Francesco Cappello
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Celeste Caruso Bavisotto
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| |
Collapse
|
41
|
Yang B, Ye Z, Zhu X, Huang R, Song E, Song Y. The redox activity of polychlorinated biphenyl quinone metabolite orchestrates its pro-atherosclerosis effect via CAV1 phosphorylation. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131697. [PMID: 37257380 DOI: 10.1016/j.jhazmat.2023.131697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Further investigations are required to prove that polychlorinated biphenyls (PCBs) exposure is a cardiovascular disease risk factor. Unlike previous studies that attributed the atherogenic effect of PCBs to aryl hydrocarbon receptor activation, we illustrated a new mechanism involved in the redox reactivity of PCBs. We discover the redox reactivity of quinone moiety is the primary factor for PCB29-pQ-induced proinflammatory response, which highly depends on the status of caveolin 1 (CAV1) phosphorylation. PCB29-pQ-mediated CAV1 phosphorylation disrupts endothelial nitric oxide synthase, toll-like receptor 4, and reduces interleukin-1 receptor-associated kinase 1 binding with CAV1. Phosphorylated proteomics analysis indicated that PCB29-pQ treatment significantly enriched phosphorylated peptides in protein binding functions, inflammation, and apoptosis signaling. Meanwhile, apolipoprotein E knockout (ApoE-/-) mice exposed to PCB29-pQ had increased atherosclerotic plaques compared to the vehicle group, while this effect was significantly reduced in ApoE-/-/CAV1-/- double knockout mice. Thus, we hypothesis CAV1 is a platform for proinflammatory cascades induced by PCB29-pQ on atherosclerotic processes. Together, these findings confirm that the redox activity of PCB metabolite plays a role in the etiology of atherosclerosis.
Collapse
Affiliation(s)
- Bingwei Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhishuai Ye
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xiangyu Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Rongchong Huang
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
42
|
Poulsen AH, Sørensen M, Hvidtfeldt UA, Ketzel M, Christensen JH, Brandt J, Frohn LM, Khan J, Jensen SS, Lund T, Raaschou-Nielsen O. Air pollution and stroke; effect modification by sociodemographic and environmental factors. A cohort study from Denmark. Int J Hyg Environ Health 2023; 251:114165. [PMID: 37121155 DOI: 10.1016/j.ijheh.2023.114165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/03/2023] [Accepted: 03/29/2023] [Indexed: 05/02/2023]
Abstract
OBJECTIVES Air pollution increases the risk of stroke, but the literature on identifying susceptible subgroups of populations is scarce and inconsistent. The aim of this study was to investigate if the association between air pollution and risk of stroke differed by sociodemographic factors, financial stress, comorbid conditions, and residential road traffic noise, population density and green space. METHODS We assessed long-term exposure to air pollution with ultrafine particles, PM2.5, elemental carbon and NO2 for a cohort of 1,971,246 Danes aged 50-85 years. During follow-up from 2005 to 2017, we identified 83,211 incident stroke cases. We used Cox proportional hazards model (relative risk) and Aalen additive hazards models (absolute risk) to estimate associations and confidence intervals (CI) between 5-year running means of air pollution at the residence and risk of stroke in population strata. RESULTS All four pollutants were associated with higher risk of stroke. The association between air pollution and stroke was strongest among individuals with comorbidities, with shorter education, lower income and being retired. The results also indicated stronger associations among individuals living in less populated areas, and with low noise levels and more green space around the residence. Estimates of absolute risk seemed better suited to detect such interactions than estimates of relative risk. For example for PM2.5 the hazard ratio for stroke was 1.28 (95%CI: 1.22-1.34) and 1.26 (95%CI: 1.16-1.37) among those with mandatory and medium/long education respectively. The corresponding rate difference estimates per 100,000 person years were 568 (95%CI: 543-594) and 423(95%CI: 390-456) CONCLUSION: The associations between air pollution and risk of stroke was stronger among individuals of lower socioeconomic status or with pre-existing comorbid conditions. Absolute risk estimates were better suited to identify such effect modification.
Collapse
Affiliation(s)
- Aslak Harbo Poulsen
- Work, Environment and Cancer, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark.
| | - Mette Sørensen
- Work, Environment and Cancer, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark; Department of Natural Science and Environment, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark
| | - Ulla Arthur Hvidtfeldt
- Work, Environment and Cancer, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark; Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, University of Surrey, Guildford, UK
| | - Jesper H Christensen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark; iClimate - interdisciplinary Centre for Climate Change, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Lise Marie Frohn
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark; iClimate - interdisciplinary Centre for Climate Change, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Jibran Khan
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark; Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Steen Solvang Jensen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Thomas Lund
- Centre of Social Medicine, University Hospital Bispebjerg-Frederiksberg, Nordre Fasanvej 57, 2000, Frederiksberg, Denmark; Department of Occupational and Social Medicine, Holbaek Hospital & Department of Public Health, University of Copenhagen, Denmark
| | - Ole Raaschou-Nielsen
- Work, Environment and Cancer, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark; Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| |
Collapse
|
43
|
Vesper S, Carter E, Oke O, Rehder T, Eriksen S, Wymer L, Nye M. Higher mold levels found in in the deteriorated housing in the Sun Valley neighborhood of Denver, Colorado compared to other Denver housing and higher rates of health insurance claims for some diseases documented for the Sun Valley residents compared to other Denver residents. Int J Hyg Environ Health 2023; 249:114141. [PMID: 36812733 PMCID: PMC10023461 DOI: 10.1016/j.ijheh.2023.114141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/18/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
The Sun Valley Homes public housing in Denver, Colorado (CO) will be replaced because of its deteriorated condition. Our goal was to document the mold contamination and particulate matter (PM2.5) concentrations in Sun Valley homes and the circulatory and respiratory health of Sun Valley compared to all Denver residents (total 2761 and 1,049,046, respectively) based on insurance claims data for 2015 to 2019. Mold contamination in Sun Valley homes (n = 49) was quantified using the Environmental Relative Moldiness Index (ERMI) scale. Indoor PM2.5 concentrations were measured in Sun Valley homes (n = 11) using time-integrated, filter-based samples and quantified using gravimetric analysis. Outdoor PM2.5 concentrations data were obtained from a near-by United States Environmental Protection Agency monitoring station. In Sun Valley homes, the average ERMI value was 5.25 compared to -1.25 for other Denver homes. The PM2.5 median concentration inside Sun Valley homes was 7.6 μg/m3 (interquartile range - 6.4 μg/m3). The ratio of indoor to outdoor concentrations of PM2.5 was 2.3 (interquartile range - 1.5). In the last five years, ischemic heart disease was significantly more likely for Denver compared to Sun Valley residents. However, acute upper respiratory infections, chronic lower respiratory diseases and asthma were all significantly more likely for Sun Valley than Denver residents. Since the process of replacing and occupying the new housing will take several years, the next phase of the study will not occur until that process is complete.
Collapse
Affiliation(s)
- Stephen Vesper
- United States Environmental Protection Agency, Center for Environmental Measurement and Modeling, Cincinnati, OH, USA.
| | - Ellison Carter
- Colorado State University, Civil and Environmental Engineering, Fort Collins, CO, USA
| | - Oluwatobi Oke
- Colorado State University, Civil and Environmental Engineering, Fort Collins, CO, USA
| | - Tim Rehder
- United States Environmental Protection Agency, Region 8, Denver, CO, USA
| | - Stacey Eriksen
- United States Environmental Protection Agency, Region 8, Denver, CO, USA
| | - Larry Wymer
- United States Environmental Protection Agency, Center for Environmental Measurement and Modeling, Cincinnati, OH, USA
| | - Michael Nye
- United States Environmental Protection Agency, Center for Public Health and Environmental Assessment, Denver, CO, USA
| |
Collapse
|
44
|
Montes JOA, Villarreal AB, Piña BGB, Martínez KC, Lugo MC, Romieu I, Cadena LH. Short-Term Ambient Air Ozone Exposure and Components of Metabolic Syndrome in a Cohort of Mexican Obese Adolescents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4495. [PMID: 36901504 PMCID: PMC10001840 DOI: 10.3390/ijerph20054495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Ambient air pollution is a major global public health concern; little evidence exists about the effects of short-term exposure to ozone on components of metabolic syndrome in young obese adolescents. The inhalation of air pollutants, such as ozone, can participate in the development of oxidative stress, systemic inflammation, insulin resistance, endothelium dysfunction, and epigenetic modification. Metabolic alterations in blood in components of metabolic syndrome (MS) and short-term ambient air ozone exposure were determined and evaluated longitudinally in a cohort of 372 adolescents aged between 9 to 19 years old. We used longitudinal mixed-effects models to evaluate the association between ozone exposure and the risk of components of metabolic syndrome and its parameters separately, adjusted using important variables. We observed statistically significant associations between exposure to ozone in tertiles in different lag days and the parameters associated with MS, especially for triglycerides (20.20 mg/dL, 95% CI: 9.5, 30.9), HDL cholesterol (-2.56 mg/dL (95% CI: -5.06, -0.05), and systolic blood pressure (1.10 mmHg, 95% CI: 0.08, 2.2). This study supports the hypothesis that short-term ambient air exposure to ozone may increase the risk of some components of MS such as triglycerides, cholesterol, and blood pressure in the obese adolescent population.
Collapse
Affiliation(s)
- Jorge Octavio Acosta Montes
- Facultad de Enfermería y Nutriología, Universidad Autónoma de Chihuahua, C. Escorza No. 900 Centro, Chihuahua 31000, Chihuahua, Mexico
| | - Albino Barraza Villarreal
- Instituto Nacional de Salud Pública, Av. Universidad No. 655, Col. Santa Maria Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico
| | - Blanca Gladiana Beltrán Piña
- Facultad de Enfermería y Nutriología, Universidad Autónoma de Chihuahua, C. Escorza No. 900 Centro, Chihuahua 31000, Chihuahua, Mexico
| | - Karla Cervantes Martínez
- Instituto Nacional de Salud Pública, Av. Universidad No. 655, Col. Santa Maria Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico
| | - Marlene Cortez Lugo
- Instituto Nacional de Salud Pública, Av. Universidad No. 655, Col. Santa Maria Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico
| | - Isabelle Romieu
- Instituto Nacional de Salud Pública, Av. Universidad No. 655, Col. Santa Maria Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico
| | - Leticia Hernández Cadena
- Instituto Nacional de Salud Pública, Av. Universidad No. 655, Col. Santa Maria Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico
| |
Collapse
|
45
|
Yitshak Sade M, Shi L, Colicino E, Amini H, Schwartz JD, Di Q, Wright RO. Long-term air pollution exposure and diabetes risk in American older adults: A national secondary data-based cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121056. [PMID: 36634862 PMCID: PMC9905312 DOI: 10.1016/j.envpol.2023.121056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 12/16/2022] [Accepted: 01/08/2023] [Indexed: 05/18/2023]
Abstract
Type 2 diabetes is a major public health concern. Several studies have found an increased diabetes risk associated with long-term air pollution exposure. However, most current studies are limited in their generalizability, exposure assessment, or the ability to differentiate incidence and prevalence cases. We assessed the association between air pollution and first documented diabetes occurrence in a national U.S. cohort of older adults to estimate diabetes risk. We included all Medicare enrollees 65 years and older in the fee-for-service program, part A and part B, in the contiguous United States (2000-2016). Participants were followed annually until the first recorded diabetes diagnosis, end of enrollment, or death (264, 869, 458 person-years). We obtained annual estimates of fine particulate matter (PM2.5), nitrogen dioxide (NO2), and warm-months ozone (O3) exposures from highly spatiotemporally resolved prediction models. We assessed the simultaneous effects of the pollutants on diabetes risk using survival analyses. We repeated the models in cohorts restricted to ZIP codes with air pollution levels not exceeding the national ambient air quality standards (NAAQS) during the study period. We identified 10, 024, 879 diabetes cases of 41, 780, 637 people (3.8% of person-years). The hazard ratio (HR) for first diabetes occurrence was 1.074 (95% CI 1.058; 1.089) for 5 μg/m3 increase in PM2.5, 1.055 (95% CI 1.050; 1.060) for 5 ppb increase in NO2, and 0.999 (95% CI 0.993; 1.004) for 5 ppb increase in O3. Both for NO2 and PM2.5 there was evidence of non-linear exposure-response curves with stronger associations at lower levels (NO2 ≤ 36 ppb, PM2.5 ≤ 8.2 μg/m3). Furthermore, associations remained in the restricted low-level cohorts. The O3-diabetes exposure-response relationship differed greatly between models and require further investigation. In conclusion, exposures to PM2.5 and NO2 are associated with increased diabetes risk, even when restricting the exposure to levels below the NAAQS set by the U.S. EPA.
Collapse
Affiliation(s)
- Maayan Yitshak Sade
- Icahn School of Medicine at Mount Sinai, Department of Environmental Medicine and Public Health, New York, NY, USA.
| | - Liuhua Shi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Elena Colicino
- Icahn School of Medicine at Mount Sinai, Department of Environmental Medicine and Public Health, New York, NY, USA
| | - Heresh Amini
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Joel D Schwartz
- Exposure, Epidemiology, and Risk Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Robert O Wright
- Icahn School of Medicine at Mount Sinai, Department of Environmental Medicine and Public Health, New York, NY, USA
| |
Collapse
|
46
|
Cowell W, Kloog I, Just AC, Coull BA, Carroll K, Wright RJ. Ambient PM 2.5 exposure and salivary cortisol output during pregnancy in a multi-ethnic urban sample. Inhal Toxicol 2023; 35:101-108. [PMID: 35312378 PMCID: PMC10264094 DOI: 10.1080/08958378.2022.2051647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/05/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Evidence from murine research supports that fine particulate matter (PM2.5) may stimulate the hypothalamic-pituitary-adrenal axis, leading to elevated circulating glucocorticoid levels. Epidemiologic research examining parallel associations document similar associations. We examined these associations among a diverse sample of pregnant individuals exposed to lower levels of ambient PM2.5. MATERIALS AND METHODS Participants included pregnant individuals enrolled in the PRogramming of Intergenerational Stress Mechanisms (PRISM) pre-birth cohort. Daily residential PM2.5 exposure was estimated using a satellite-based spatial-temporal hybrid model. Maternal 3rd trimester salivary cortisol levels were used to calculate several features of the diurnal cortisol rhythm. We used multivariable linear regression to examine PM2.5 during the pre-conception period and during each trimester in relation to cortisol awakening rise (CAR), slope, and area under the curve relative to ground (AUCG). RESULTS AND DISCUSSION The average PM2.5 exposure level across pregnancy was 8.13 µg/m3. PM2.5 in each exposure period was positively associated with AUCG, a measure of total cortisol output across the day. We also observed an inverse association between PM2.5 in the 3rd trimester and diurnal slope, indicating a steeper decline in cortisol throughout the day with increasing exposure. We did not detect strong associations between PM2.5 and slope for the other exposure periods or between PM2.5 and CAR for any exposure period. CONCLUSIONS In this sample, PM2.5 exposure across the preconception and pregnancy periods was associated with increased cortisol output, even at levels below the U.S. National Ambient Air Quality Annual Standard for PM2.5 of 12.0 µg/m3.
Collapse
Affiliation(s)
- Whitney Cowell
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Itai Kloog
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Allan C. Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Brent A. Coull
- Department of Biostatistics, Harvard TH Chan School of Public Health, Harvard University, Boston, MA
| | - Kecia Carroll
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Kravis Children’s Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Rosalind J. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Kravis Children’s Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
47
|
Li J, Liu F, Liang F, Yang Y, Lu X, Gu D. Air pollution exposure and vascular endothelial function: a systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28525-28549. [PMID: 36702984 DOI: 10.1007/s11356-023-25156-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
Vascular endothelial dysfunction is an early stage to cardiovascular diseases (CVDs), but whether air pollution exposure has an effect on it remains unknown. We conducted a systematic review and meta-analysis to summarize epidemiological evidence between air pollution and endothelial dysfunction. We searched the database of PubMed, EMBASE, the Cochrane Library, and Web of Science up to November 10, 2022. Fixed and random effect models were used to pool the effect change or percent change (% change) and 95% confidence interval (95% CI) of vascular function associated with particulate matter (PM) and gaseous pollutants. I2 statistics, funnel plot, and Egger's test were used to evaluate heterogeneity and publication bias. There were 34 articles included in systematic review, and 25 studies included in meta-analysis. For each 10 µg/m3 increment in short-term PM2.5 exposure, augmentation index (AIx) and pulse wave velocity (PWV) increased by 2.73% (95% CI: 1.89%, 3.57%) and 0.56% (95% CI: 0.22%, 0.89%), and flow-mediated dilation (FMD) decreased by 0.17% (95% CI: - 0.33%, - 0.00%). For each 10 µg/m3 increment in long-term PM2.5 exposure, FMD decreased by 0.99% (95% CI: - 1.41%, - 0.57%). The associations between remaining pollutants and outcomes were not statistically significant. The effect of short-term PM2.5 exposure on FMD change was stronger in population with younger age, lower female proportion, higher mean body mass index and higher PM2.5 exposure. Cardiac or vasoactive medication might attenuate this effect. Our study provides evidence that PM2.5 exposure had adverse impact on vascular endothelial function, indicating the importance of air quality improvement for early CVD prevention.
Collapse
Affiliation(s)
- Jinyue Li
- Department of Epidemiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China
| | - Fangchao Liu
- Department of Epidemiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China
| | - Fengchao Liang
- Department of Epidemiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuxin Yang
- Department of Epidemiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China
| | - Xiangfeng Lu
- Department of Epidemiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China
| | - Dongfeng Gu
- Department of Epidemiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China.
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, 518055, China.
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
48
|
Yitshak Sade M, Shi L, Colicino E, Amini H, Schwartz JD, Di Q, Wright RO. Long-term air pollution exposure and diabetes risk in American older adults: A national secondary data-based cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121056. [PMID: 36634862 DOI: 10.1101/2021.09.09.21263282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 12/16/2022] [Accepted: 01/08/2023] [Indexed: 05/27/2023]
Abstract
Type 2 diabetes is a major public health concern. Several studies have found an increased diabetes risk associated with long-term air pollution exposure. However, most current studies are limited in their generalizability, exposure assessment, or the ability to differentiate incidence and prevalence cases. We assessed the association between air pollution and first documented diabetes occurrence in a national U.S. cohort of older adults to estimate diabetes risk. We included all Medicare enrollees 65 years and older in the fee-for-service program, part A and part B, in the contiguous United States (2000-2016). Participants were followed annually until the first recorded diabetes diagnosis, end of enrollment, or death (264, 869, 458 person-years). We obtained annual estimates of fine particulate matter (PM2.5), nitrogen dioxide (NO2), and warm-months ozone (O3) exposures from highly spatiotemporally resolved prediction models. We assessed the simultaneous effects of the pollutants on diabetes risk using survival analyses. We repeated the models in cohorts restricted to ZIP codes with air pollution levels not exceeding the national ambient air quality standards (NAAQS) during the study period. We identified 10, 024, 879 diabetes cases of 41, 780, 637 people (3.8% of person-years). The hazard ratio (HR) for first diabetes occurrence was 1.074 (95% CI 1.058; 1.089) for 5 μg/m3 increase in PM2.5, 1.055 (95% CI 1.050; 1.060) for 5 ppb increase in NO2, and 0.999 (95% CI 0.993; 1.004) for 5 ppb increase in O3. Both for NO2 and PM2.5 there was evidence of non-linear exposure-response curves with stronger associations at lower levels (NO2 ≤ 36 ppb, PM2.5 ≤ 8.2 μg/m3). Furthermore, associations remained in the restricted low-level cohorts. The O3-diabetes exposure-response relationship differed greatly between models and require further investigation. In conclusion, exposures to PM2.5 and NO2 are associated with increased diabetes risk, even when restricting the exposure to levels below the NAAQS set by the U.S. EPA.
Collapse
Affiliation(s)
- Maayan Yitshak Sade
- Icahn School of Medicine at Mount Sinai, Department of Environmental Medicine and Public Health, New York, NY, USA.
| | - Liuhua Shi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Elena Colicino
- Icahn School of Medicine at Mount Sinai, Department of Environmental Medicine and Public Health, New York, NY, USA
| | - Heresh Amini
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Joel D Schwartz
- Exposure, Epidemiology, and Risk Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Robert O Wright
- Icahn School of Medicine at Mount Sinai, Department of Environmental Medicine and Public Health, New York, NY, USA
| |
Collapse
|
49
|
Feng S, Huang F, Zhang Y, Feng Y, Zhang Y, Cao Y, Wang X. The pathophysiological and molecular mechanisms of atmospheric PM 2.5 affecting cardiovascular health: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114444. [PMID: 38321663 DOI: 10.1016/j.ecoenv.2022.114444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 02/08/2024]
Abstract
BACKGROUND Exposure to ambient fine particulate matter (PM2.5, with aerodynamic diameter less than 2.5 µm) is a leading environmental risk factor for global cardiovascular health concern. OBJECTIVE To provide a roadmap for those new to this field, we reviewed the new insights into the pathophysiological and cellular/molecular mechanisms of PM2.5 responsible for cardiovascular health. MAIN FINDINGS PM2.5 is able to disrupt multiple physiological barriers integrity and translocate into the systemic circulation and get access to a range of secondary target organs. An ever-growing body of epidemiological and controlled exposure studies has evidenced a causal relationship between PM2.5 exposure and cardiovascular morbidity and mortality. A variety of cellular and molecular biology mechanisms responsible for the detrimental cardiovascular outcomes attributable to PM2.5 exposure have been described, including metabolic activation, oxidative stress, genotoxicity, inflammation, dysregulation of Ca2+ signaling, disturbance of autophagy, and induction of apoptosis, by which PM2.5 exposure impacts the functions and fates of multiple target cells in cardiovascular system or related organs and further alters a series of pathophysiological processes, such as cardiac autonomic nervous system imbalance, increasing blood pressure, metabolic disorder, accelerated atherosclerosis and plaque vulnerability, platelet aggregation and thrombosis, and disruption in cardiac structure and function, ultimately leading to cardiovascular events and death. Therein, oxidative stress and inflammation were suggested to play pivotal roles in those pathophysiological processes. CONCLUSION Those biology mechanisms have deepen insights into the etiology, course, prevention and treatment of this public health concern, although the underlying mechanisms have not yet been entirely clarified.
Collapse
Affiliation(s)
- Shaolong Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Fangfang Huang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yuqi Zhang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yashi Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Ying Zhang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yunchang Cao
- The Department of Molecular Biology, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Xinming Wang
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
50
|
Yang S, Wen L, Chai X, Song Y, Chen X, Chen ZF, Li R, Dong C, Qi Z, Cai Z. The protective effects of taurine and fish oil supplementation on PM 2.5-induced heart dysfunction among aged mice: A random double-blind study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:157966. [PMID: 35964740 DOI: 10.1016/j.scitotenv.2022.157966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/24/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
As it is nearly impossible to reduce PM2.5 concentrations in most cities to safe limits in a short period of time, dietary supplementation presents a promising approach for mitigating the adverse effects of PM2.5 exposure. A cross-sectional study showed that the elderly population of Linfen (PM2.5: 102 μg/m3) exhibited significantly lower serum taurine levels, as well as higher oxidative stress levels and cardiovascular health risks, than the corresponding population in Guangzhou (PM2.5: 39 μg/m3). We conducted a random double-blind study on aged mice that employed a "real-world" PM2.5 exposure system to simulate the conditions of Linfen with the aim of investigating the protective effects of taurine and fish oil supplementation on PM2.5-induced heart dysfunction. When compared with the placebo group, supplementation with taurine and fish oil not only maintained normal taurine levels, but also suppressed oxidative stress and inflammation in aged mice subjected to high concentrations of PM2.5. Variations in heart rate, contractile function, cardiac oxidative stress, inflammation and fibrosis among different groups of aged mice were used to clarify the beneficial effects of taurine and fish oil supplementation. Our results not only revealed the protective effects of taurine and fish oil supplementation on heart dysfunction induced by PM2.5 exposure from the aged mice experiments and also provided new means for the elderly to resist PM2.5 pollution at the individual level.
Collapse
Affiliation(s)
- Shiyi Yang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Luyao Wen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xuyang Chai
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Xin Chen
- The Center for Reproductive Medicine, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), 528300 Foshan, Guangdong, China
| | - Zhi-Feng Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Zenghua Qi
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zongwei Cai
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|