1
|
Monaco CF, Jones CM, Sayles HR, Rudloff B, McFee R, Cupp AS, Davis JS. Luteal fibroblasts produce prostaglandins in response to IL1β in a MAPK-mediated manner. Mol Cell Endocrinol 2025; 596:112420. [PMID: 39577796 DOI: 10.1016/j.mce.2024.112420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/09/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
The corpus luteum is a temporary endocrine gland that is crucial for pregnancy, as it produces the progesterone needed to maintain optimal uterine conditions for implantation. In the absence of a conceptus, the corpus luteum becomes non-functional and undergoes rapid tissue remodeling to regress into a fibrotic corpus albicans. Early luteal regression is characterized by increased cytokine release. Because the role of fibroblasts in the bovine corpus luteum remains to be elucidated, the aim of this study was to elucidate the response of bovine luteal fibroblasts to inflammatory cytokines, tumor necrosis factor α (TNFα), and interleukin 1β (IL1β). Both cytokines induced canonical mitogen activated protein kinase (MAPK) signaling in luteal fibroblasts by phosphorylation of ERK1/2, p38 MAPK, and JNK. IL1β elevated expression and phosphorylation of cytosolic phospholipase A2 (cPLA2), an enzyme that mobilizes arachidonic acid for prostanoid synthesis. IL1β also elevated expression of prostaglandin-endoperoxide synthase 2 (PTGS2), another enzyme needed to synthesize prostanoids. IL1β increased PGF2α and PGE2 levels in the culture medium over 20-fold. Inhibition of MAPKs with small-molecule inhibitors abrogated the stimulatory effects of IL1β. IL1β also induced prostaglandin production in steroidogenic cells; however, there was no elevation in cPLA2. Therefore, actions of IL1β differ based on ovarian cell type. All together, we have identified luteal fibroblasts as potential inflammatory mediators during luteal regression.
Collapse
Affiliation(s)
- Corrine F Monaco
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Chloe M Jones
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Harlan R Sayles
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brooke Rudloff
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Renee McFee
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Andrea S Cupp
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - John S Davis
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA; US Department of Veterans Affairs VA Medical Center, Omaha, NE, USA.
| |
Collapse
|
2
|
Park SB, Yang Y, Bang SI, Kim TS, Cho D. AESIS-1, a Rheumatoid Arthritis Therapeutic Peptide, Accelerates Wound Healing by Promoting Fibroblast Migration in a CXCR2-Dependent Manner. Int J Mol Sci 2024; 25:3937. [PMID: 38612747 PMCID: PMC11012285 DOI: 10.3390/ijms25073937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
In patients with autoimmune disorders such as rheumatoid arthritis (RA), delayed wound healing is often observed. Timely and effective wound healing is a crucial determinant of a patient's quality of life, and novel materials for skin wound repair, such as bioactive peptides, are continuously being studied and developed. One such bioactive peptide, AESIS-1, has been studied for its well-established anti-rheumatoid arthritis properties. In this study, we attempted to use the anti-RA material AESIS-1 as a therapeutic wound-healing agent based on disease-modifying antirheumatic drugs (DMARDs), which can help restore prompt wound healing. The efficacy of AESIS-1 in wound healing was assessed using a full-thickness excision model in diabetic mice; this is a well-established model for studying chronic wound repair. Initial observations revealed that mice treated with AESIS-1 exhibited significantly advanced wound repair compared with the control group. In vitro studies revealed that AESIS-1 increased the migration activity of human dermal fibroblasts (HDFs) without affecting proliferative activity. Moreover, increased HDF cell migration is mediated by upregulating chemokine receptor expression, such as that of CXC chemokine receptor 2 (CXCR2). The upregulation of CXCR2 through AESIS-1 treatment enhanced the chemotactic reactivity to CXCR2 ligands, including CXC motif ligand 8 (CXCL8). AESIS-1 directly activates the ERK and p38 mitogen-activated protein kinase (MAPK) signaling cascades, which regulate the migration and expression of CXCR2 in fibroblasts. Our results suggest that the AESIS-1 peptide is a strong wound-healing substance that increases the movement of fibroblasts and the expression of CXCR2 by turning on the ERK and p38 MAPK signaling cascades.
Collapse
Affiliation(s)
- Seung Beom Park
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 02841, Republic of Korea;
| | - Yoolhee Yang
- Kine Sciences, 6F, 24, Eonju-ro85gil, Gangnam-gu, Seoul 06221, Republic of Korea; (Y.Y.); (D.C.)
| | - Sa Ik Bang
- Department of Plastic Surgery, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Gangnam-gu, Seoul 06351, Republic of Korea;
| | - Tae Sung Kim
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 02841, Republic of Korea;
| | - Daeho Cho
- Kine Sciences, 6F, 24, Eonju-ro85gil, Gangnam-gu, Seoul 06221, Republic of Korea; (Y.Y.); (D.C.)
- Institute of Convergence Science, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
3
|
Perreault LR, Daley MC, Watson MC, Rastogi S, Jaiganesh A, Porter EC, Duffy BM, Black LD. Characterization of cardiac fibroblast-extracellular matrix crosstalk across developmental ages provides insight into age-related changes in cardiac repair. Front Cell Dev Biol 2024; 12:1279932. [PMID: 38434619 PMCID: PMC10904575 DOI: 10.3389/fcell.2024.1279932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024] Open
Abstract
Heart failure afflicts an estimated 6.5 million people in the United States, driven largely by incidents of coronary heart disease (CHD). CHD leads to heart failure due to the inability of adult myocardial tissue to regenerate after myocardial infarction (MI). Instead, immune cells and resident cardiac fibroblasts (CFs), the cells responsible for the maintenance of the cardiac extracellular matrix (cECM), drive an inflammatory wound healing response, which leads to fibrotic scar tissue. However, fibrosis is reduced in fetal and early (<1-week-old) neonatal mammals, which exhibit a transient capability for regenerative tissue remodeling. Recent work by our laboratory and others suggests this is in part due to compositional differences in the cECM and functional differences in CFs with respect to developmental age. Specifically, fetal cECM and CFs appear to mitigate functional loss in MI models and engineered cardiac tissues, compared to adult CFs and cECM. We conducted 2D studies of CFs on solubilized fetal and adult cECM to investigate whether these age-specific functional differences are synergistic with respect to their impact on CF phenotype and, therefore, cardiac wound healing. We found that the CF migration rate and stiffness vary with respect to cell and cECM developmental age and that CF transition to a fibrotic phenotype can be partially attenuated in the fetal cECM. However, this effect was not observed when cells were treated with cytokine TGF-β1, suggesting that inflammatory signaling factors are the dominant driver of the fibroblast phenotype. This information may be valuable for targeted therapies aimed at modifying the CF wound healing response and is broadly applicable to age-related studies of cardiac remodeling.
Collapse
Affiliation(s)
- Luke R. Perreault
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Mark C. Daley
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Matthew C. Watson
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Sagar Rastogi
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Ajith Jaiganesh
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Elizabeth C. Porter
- Cellular, Molecular and Developmental Biology Program, Graduate School for Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Breanna M. Duffy
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Lauren D. Black
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
- Cellular, Molecular and Developmental Biology Program, Graduate School for Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
4
|
Wang Y, Jiao L, Qiang C, Chen C, Shen Z, Ding F, Lv L, Zhu T, Lu Y, Cui X. The role of matrix metalloproteinase 9 in fibrosis diseases and its molecular mechanisms. Biomed Pharmacother 2024; 171:116116. [PMID: 38181715 DOI: 10.1016/j.biopha.2023.116116] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
Fibrosis is a process of tissue repair that results in the slow creation of scar tissue to replace healthy tissue and can affect any tissue or organ. Its primary feature is the massive deposition of extracellular matrix (mainly collagen), eventually leading to tissue dysfunction and organ failure. The progression of fibrotic diseases has put a significant strain on global health and the economy, and as a result, there is an urgent need to find some new therapies. Previous studies have identified that inflammation, oxidative stress, some cytokines, and remodeling play a crucial role in fibrotic diseases and are essential avenues for treating fibrotic diseases. Among them, matrix metalloproteinases (MMPs) are considered the main targets for the treatment of fibrotic diseases since they are the primary driver involved in ECM degradation, and tissue inhibitors of metalloproteinases (TIMPs) are natural endogenous inhibitors of MMPs. Through previous studies, we found that MMP-9 is an essential target for treating fibrotic diseases. However, it is worth noting that MMP-9 plays a bidirectional regulatory role in different fibrotic diseases or different stages of the same fibrotic disease. Previously identified MMP-9 inhibitors, such as pirfenidone and nintedanib, suffer from some rather pronounced side effects, and therefore, there is an urgent need to investigate new drugs. In this review, we explore the mechanism of action and signaling pathways of MMP-9 in different tissues and organs, hoping to provide some ideas for developing safer and more effective biologics.
Collapse
Affiliation(s)
- Yuling Wang
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Linke Jiao
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Caoxia Qiang
- Department of Traditional Chinese Medicine, Tumor Hospital Affiliated to Nantong University, Jiangsu, China
| | - Chen Chen
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zihuan Shen
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Fan Ding
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Lifei Lv
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tingting Zhu
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingdong Lu
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangning Cui
- Department of Cardiovascular Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
5
|
Unzai T, Washisaka T, Tabata Y. An artificial silk elastin-like protein modifies the polarization of human macrophages line THP-1. J Biomater Appl 2023; 38:361-371. [PMID: 37494553 DOI: 10.1177/08853282231192186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
A silk elastin-like protein (SELP) is an artificial compound with silk fibroin-like and elastin-like tandem repeats. The objective of this study is to evaluate the influence of SELP on the polarization of human monocytoma cell line (THP-1)-derived macrophages. When the macrophages of inflammation-type (M1) were cultured with different concentrations of SELP solution, the secretion of a pro-inflammatory cytokine, tumor necrotizing factor (TNF) -α was significantly suppressed at the higher concentrations. In addition, the secretion of an anti-inflammation cytokine, interleukin (IL)-10, was significantly enhanced from the macrophage of M0-, M1-, and M2-types. By the incubation with soluble SELP, the morphology of M2-type macrophages changed to be of an extended shape. Following incubation with the sponge of SELP, M0-type macrophages secreted IL-10 with time. It is concluded that the SELP itself in solution has an ability to induce the anti-inflammation of M2-type macrophages.
Collapse
Affiliation(s)
- Tomo Unzai
- Laboratory of Biomaterials, Kyoto University Institute for Life and Medical Sciences, Kyoto, Japan
| | - Taichi Washisaka
- Laboratory of Biomaterials, Kyoto University Institute for Life and Medical Sciences, Kyoto, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Kyoto University Institute for Life and Medical Sciences, Kyoto, Japan
| |
Collapse
|
6
|
Bekedam FT, Goumans MJ, Bogaard HJ, de Man FS, Llucià-Valldeperas A. Molecular mechanisms and targets of right ventricular fibrosis in pulmonary hypertension. Pharmacol Ther 2023; 244:108389. [PMID: 36940790 DOI: 10.1016/j.pharmthera.2023.108389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/19/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
Right ventricular fibrosis is a stress response, predominantly mediated by cardiac fibroblasts. This cell population is sensitive to increased levels of pro-inflammatory cytokines, pro-fibrotic growth factors and mechanical stimulation. Activation of fibroblasts results in the induction of various molecular signaling pathways, most notably the mitogen-activated protein kinase cassettes, leading to increased synthesis and remodeling of the extracellular matrix. While fibrosis confers structural protection in response to damage induced by ischemia or (pressure and volume) overload, it simultaneously contributes to increased myocardial stiffness and right ventricular dysfunction. Here, we review state-of-the-art knowledge of the development of right ventricular fibrosis in response to pressure overload and provide an overview of all published preclinical and clinical studies in which right ventricular fibrosis was targeted to improve cardiac function.
Collapse
Affiliation(s)
- F T Bekedam
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - M J Goumans
- Department of Cell and Chemical Biology, Leiden UMC, 2300 RC Leiden, the Netherlands
| | - H J Bogaard
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - F S de Man
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands.
| | - A Llucià-Valldeperas
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Chalise U, Becirovic‐Agic M, Lindsey ML. The cardiac wound healing response to myocardial infarction. WIREs Mech Dis 2023; 15:e1584. [PMID: 36634913 PMCID: PMC10077990 DOI: 10.1002/wsbm.1584] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/31/2022] [Accepted: 05/18/2022] [Indexed: 01/14/2023]
Abstract
Myocardial infarction (MI) is defined as evidence of myocardial necrosis consistent with prolonged ischemia. In response to MI, the myocardium undergoes a series of wound healing events that initiate inflammation and shift to anti-inflammation before transitioning to tissue repair that culminates in scar formation to replace the region of the necrotic myocardium. The overall response to MI is determined by two major steps, the first of which is the secretion of proteases by infiltrating leukocytes to breakdown extracellular matrix (ECM) components, a necessary step to remove necrotic cardiomyocytes. The second step is the generation of new ECM that comprises the scar; and this step is governed by the cardiac fibroblasts as the major source of new ECM synthesis. The leukocyte component resides in the middle of the two-step process, contributing to both sides as the leukocytes transition from pro-inflammatory to anti-inflammatory and reparative cell phenotypes. The balance between the two steps determines the final quantity and quality of scar formed, which in turn contributes to chronic outcomes following MI, including the progression to heart failure. This review will summarize our current knowledge regarding the cardiac wound healing response to MI, primarily focused on experimental models of MI in mice. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Immune System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Upendra Chalise
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular ResearchUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Research ServiceNebraska‐Western Iowa Health Care SystemOmahaNebraskaUSA
| | - Mediha Becirovic‐Agic
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular ResearchUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Research ServiceNebraska‐Western Iowa Health Care SystemOmahaNebraskaUSA
| | - Merry L. Lindsey
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular ResearchUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Research ServiceNebraska‐Western Iowa Health Care SystemOmahaNebraskaUSA
| |
Collapse
|
8
|
Soliman AM, Barreda DR. Acute Inflammation in Tissue Healing. Int J Mol Sci 2022; 24:ijms24010641. [PMID: 36614083 PMCID: PMC9820461 DOI: 10.3390/ijms24010641] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
There are well-established links between acute inflammation and successful tissue repair across evolution. Innate immune reactions contribute significantly to pathogen clearance and activation of subsequent reparative events. A network of molecular and cellular regulators supports antimicrobial and tissue repair functions throughout the healing process. A delicate balance must be achieved between protection and the potential for collateral tissue damage associated with overt inflammation. In this review, we summarize the contributions of key cellular and molecular components to the acute inflammatory process and the effective and timely transition toward activation of tissue repair mechanisms. We further discuss how the disruption of inflammatory responses ultimately results in chronic non-healing injuries.
Collapse
Affiliation(s)
- Amro M. Soliman
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Daniel R. Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Correspondence: ; Tel.: +1-(780)492-0375
| |
Collapse
|
9
|
Unzai T, Washisaka T, Tabata Y. An Artificial Silk Elastin-Like Protein Modifies the Polarization of Macrophages. ACS APPLIED BIO MATERIALS 2022; 5:5657-5664. [PMID: 36445042 DOI: 10.1021/acsabm.2c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
A silk elastin-like protein (SELP) is an artificial compound with silk fibroin-like and elastin-like tandem repeats. The objective of this study is to evaluate the influence of SELP on the polarization of mouse bone marrow-derived macrophages. When the macrophages of inflammation-type (M1) were cultured with different concentrations of SELP solution, the secretion of a pro-inflammatory cytokine, tumor necrotizing factor (TNF)-α, was significantly suppressed at the higher concentrations. In addition, the secretion of an anti-inflammation cytokine, interleukin (IL)-10, was significantly enhanced from the macrophage of an original type (M0). By the incubation with soluble SELP, the morphology of M0- and M1-type macrophages changed to be of a round shape with a large size. Following incubation with the sponge of SELP, the M0-type macrophages secreted IL-10 with time. When injected into an air pouch of mice subcutis which had been prepared by the injection of air, the SELP sponge and 5 wt % of SELP solution induced IL-10 secretion to a significantly high extent compared with the saline injection. Cells isolated from the air pouch 24 h after the injection were stained by the CD206 of a M2 marker. It is concluded that the SELP itself in solution has an ability to induce the anti-inflammation M2-type macrophages.
Collapse
Affiliation(s)
- Tomo Unzai
- Laboratory of Biomaterials, Institute for Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Taichi Washisaka
- Laboratory of Biomaterials, Institute for Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
10
|
Braidotti N, Chen SN, Long CS, Cojoc D, Sbaizero O. Piezo1 Channel as a Potential Target for Hindering Cardiac Fibrotic Remodeling. Int J Mol Sci 2022; 23:8065. [PMID: 35897650 PMCID: PMC9330509 DOI: 10.3390/ijms23158065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Fibrotic tissues share many common features with neoplasms where there is an increased stiffness of the extracellular matrix (ECM). In this review, we present recent discoveries related to the role of the mechanosensitive ion channel Piezo1 in several diseases, especially in regulating tumor progression, and how this can be compared with cardiac mechanobiology. Based on recent findings, Piezo1 could be upregulated in cardiac fibroblasts as a consequence of the mechanical stress and pro-inflammatory stimuli that occurs after myocardial injury, and its increased activity could be responsible for a positive feedback loop that leads to fibrosis progression. The increased Piezo1-mediated calcium flow may play an important role in cytoskeleton reorganization since it induces actin stress fibers formation, a well-known characteristic of fibroblast transdifferentiation into the activated myofibroblast. Moreover, Piezo1 activity stimulates ECM and cytokines production, which in turn promotes the phenoconversion of adjacent fibroblasts into new myofibroblasts, enhancing the invasive character. Thus, by assuming the Piezo1 involvement in the activation of intrinsic fibroblasts, recruitment of new myofibroblasts, and uncontrolled excessive ECM production, a new approach to blocking the fibrotic progression can be predicted. Therefore, targeted therapies against Piezo1 could also be beneficial for cardiac fibrosis.
Collapse
Affiliation(s)
- Nicoletta Braidotti
- Department of Physics, University of Trieste, Via A. Valerio 2, 34127 Trieste, Italy;
- Institute of Materials, National Research Council of Italy (CNR-IOM), Area Science Park Basovizza, Strada Statale 14, Km 163,5, 34149 Trieste, Italy;
| | - Suet Nee Chen
- CU-Cardiovascular Institute, University of Colorado Anschutz Medical Campus, 12700 East 19th Ave., Aurora, CO 80045, USA;
| | - Carlin S. Long
- Center for the Prevention of Heart and Vascular Disease, University of California, 555 Mission Bay Blvd South, Rm 352K, San Francisco, CA 94143, USA;
| | - Dan Cojoc
- Institute of Materials, National Research Council of Italy (CNR-IOM), Area Science Park Basovizza, Strada Statale 14, Km 163,5, 34149 Trieste, Italy;
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, Via A. Valerio 6/A, 34127 Trieste, Italy
| |
Collapse
|
11
|
Bachmann JC, Baumgart SJ, Uryga AK, Bosteen MH, Borghetti G, Nyberg M, Herum KM. Fibrotic Signaling in Cardiac Fibroblasts and Vascular Smooth Muscle Cells: The Dual Roles of Fibrosis in HFpEF and CAD. Cells 2022; 11:1657. [PMID: 35626694 PMCID: PMC9139546 DOI: 10.3390/cells11101657] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022] Open
Abstract
Patients with heart failure with preserved ejection fraction (HFpEF) and atherosclerosis-driven coronary artery disease (CAD) will have ongoing fibrotic remodeling both in the myocardium and in atherosclerotic plaques. However, the functional consequences of fibrosis differ for each location. Thus, cardiac fibrosis leads to myocardial stiffening, thereby compromising cardiac function, while fibrotic remodeling stabilizes the atherosclerotic plaque, thereby reducing the risk of plaque rupture. Although there are currently no drugs targeting cardiac fibrosis, it is a field under intense investigation, and future drugs must take these considerations into account. To explore similarities and differences of fibrotic remodeling at these two locations of the heart, we review the signaling pathways that are activated in the main extracellular matrix (ECM)-producing cells, namely human cardiac fibroblasts (CFs) and vascular smooth muscle cells (VSMCs). Although these signaling pathways are highly overlapping and context-dependent, effects on ECM remodeling mainly act through two core signaling cascades: TGF-β and Angiotensin II. We complete this by summarizing the knowledge gained from clinical trials targeting these two central fibrotic pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kate M. Herum
- Research and Early Development, Novo Nordisk A/S, Novo Nordisk Park, 2760 Maaloev, Denmark; (J.C.B.); (S.J.B.); (A.K.U.); (M.H.B.); (G.B.); (M.N.)
| |
Collapse
|
12
|
Martinez L, Perla M, Tabbara M, Duque JC, Rojas MG, Falcon NS, Pereira-Simon S, Salman LH, Vazquez-Padron RI. Systemic Profile of Cytokines in Arteriovenous Fistula Patients and Their Associations with Maturation Failure. KIDNEY360 2022; 3:677-686. [PMID: 35721613 PMCID: PMC9136910 DOI: 10.34067/kid.0006022021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/13/2022] [Indexed: 11/27/2022]
Abstract
Background Systemic cytokines are elevated in patients with chronic kidney disease (CKD) and on hemodialysis compared with the general population. However, whether cytokine levels interfere with vascular remodeling, increasing the risk of arteriovenous fistula (AVF) failure, remains unknown. Methods This is a case-control study of 64 patients who underwent surgery for AVF creation (32 with AVF maturation failure and 32 matching controls with successful maturation). A total of 74 cytokines, including chemokines, interferons, interleukins, and growth factors, were measured in preoperative plasma samples using multiplex assays. Sixty-two patients were included in the statistical analyses. Associations with AVF failure were assessed using paired comparisons and conditional logistic regressions accounting for paired strata. Results Seven cytokines were significantly higher in patients with AVF maturation failure than in matching controls (G-CSF, IL-6, MDC, RANTES, SDF-1α/β, TGFα, and TPO). Of these, G-CSF (odds ratio [OR]=1.71; 95% confidence interval [95% CI], 1.05 to 2.79 per 10 pg/ml), MDC (OR=1.60, 95% CI, 1.08 to 2.38 per 100 pg/ml), RANTES (OR=1.55, 95% CI, 1.10 to 2.17 per 100 pg/ml), SDF-1α/β (OR=1.18, 95% CI, 1.04 to 1.33 per 1000 pg/ml), and TGFα (OR=1.39, 95% CI 1.003, 1.92 per 1 pg/ml) showed an incremental association by logistic regression. Conclusions This study identified a profile of plasma cytokines associated with adverse maturation outcomes in AVFs. These findings may open the doors for future therapeutics and markers for risk stratification.
Collapse
Affiliation(s)
- Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Mikael Perla
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Marwan Tabbara
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Juan C Duque
- Katz Family Division of Nephrology, Department of Medicine, University of Miami, Miami, Florida
| | - Miguel G Rojas
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Nieves Santos Falcon
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Simone Pereira-Simon
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Loay H Salman
- Division of Nephrology, Albany Medical College, Albany, New York
| | - Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida.,Bruce W. Carter VA Medical Center, Department of Veterans Affairs, Miami, Florida
| |
Collapse
|
13
|
Properties and Functions of Fibroblasts and Myofibroblasts in Myocardial Infarction. Cells 2022; 11:cells11091386. [PMID: 35563692 PMCID: PMC9102016 DOI: 10.3390/cells11091386] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/12/2022] [Accepted: 04/16/2022] [Indexed: 12/14/2022] Open
Abstract
The adult mammalian heart contains abundant interstitial and perivascular fibroblasts that expand following injury and play a reparative role but also contribute to maladaptive fibrotic remodeling. Following myocardial infarction, cardiac fibroblasts undergo dynamic phenotypic transitions, contributing to the regulation of inflammatory, reparative, and angiogenic responses. This review manuscript discusses the mechanisms of regulation, roles and fate of fibroblasts in the infarcted heart. During the inflammatory phase of infarct healing, the release of alarmins by necrotic cells promotes a pro-inflammatory and matrix-degrading fibroblast phenotype that may contribute to leukocyte recruitment. The clearance of dead cells and matrix debris from the infarct stimulates anti-inflammatory pathways and activates transforming growth factor (TGF)-β cascades, resulting in the conversion of fibroblasts to α-smooth muscle actin (α-SMA)-expressing myofibroblasts. Activated myofibroblasts secrete large amounts of matrix proteins and form a collagen-based scar that protects the infarcted ventricle from catastrophic complications, such as cardiac rupture. Moreover, infarct fibroblasts may also contribute to cardiac repair by stimulating angiogenesis. During scar maturation, fibroblasts disassemble α-SMA+ stress fibers and convert to specialized cells that may serve in scar maintenance. The prolonged activation of fibroblasts and myofibroblasts in the infarct border zone and in the remote remodeling myocardium may contribute to adverse remodeling and to the pathogenesis of heart failure. In addition to their phenotypic plasticity, fibroblasts exhibit remarkable heterogeneity. Subsets with distinct phenotypic profiles may be responsible for the wide range of functions of fibroblast populations in infarcted and remodeling hearts.
Collapse
|
14
|
Graham C, Sethu P. Myocardial Fibrosis: Cell Signaling and In Vitro Modeling. CARDIOVASCULAR SIGNALING IN HEALTH AND DISEASE 2022:287-321. [DOI: 10.1007/978-3-031-08309-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
15
|
From dissection of fibrotic pathways to assessment of drug interactions to reduce cardiac fibrosis and heart failure. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100036. [PMID: 34909666 PMCID: PMC8663973 DOI: 10.1016/j.crphar.2021.100036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiac fibrosis is characterized by extracellular matrix deposition in the cardiac interstitium, and this contributes to cardiac contractile dysfunction and progression of heart failure. The main players involved in this process are the cardiac fibroblasts, which, in the presence of pro-inflammatory/pro-fibrotic stimuli, undergo a complete transformation acquiring a more proliferative, a pro-inflammatory and a secretory phenotype. This review discusses the cellular effectors and molecular pathways implicated in the pathogenesis of cardiac fibrosis and suggests potential strategies to monitor the effects of specific drugs designed to slow down the progression of this disease by specifically targeting the fibroblasts.
Collapse
|
16
|
Emran T, Chowdhury NI, Sarker M, Bepari AK, Hossain M, Rahman GMS, Reza HM. L-carnitine protects cardiac damage by reducing oxidative stress and inflammatory response via inhibition of tumor necrosis factor-alpha and interleukin-1beta against isoproterenol-induced myocardial infarction. Biomed Pharmacother 2021; 143:112139. [PMID: 34507121 DOI: 10.1016/j.biopha.2021.112139] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
BRIEF INTRODUCTION Myocardial infarction (MI) is a common manifestation of certain cardiac diseases where oxidative stress and fibrosis aggravate the condition markedly. MAIN OBJECTIVE OF THE STUDY Investigation of L-carnitine's cardioprotective roles and mechanism of action in a rat model of MI. METHODS To develop a MI animal model, Isoproterenol (ISO) was administered in male Long Evans rats where animals were divided into five groups (six rats/group). The oxidative stress and antioxidant enzyme activities were determined by different biochemical tests. The real-time PCR was performed to determine the expression of TNF-α and Il-1β. Histopathological observations by hematoxylin-eosin and Masson trichrome were made to observe the tissue damage and fibrosis in heart and kidney. SIGNIFICANT FINDINGS FROM THE STUDY The ISO-treated rats showed increased levels of troponin I and lipid peroxidation and lower antioxidant enzyme activity in heart and kidney tissues. The levels of TNF-α and IL-1β were also increased in ISO-rats. Co-administration of L-carnitine with ISO reversed all these parameters. The elevated levels of uric acid and creatinine kinase and ALP, AST and ALT activities in ISO-rats were also significantly reduced by L-carnitine administration. L-carnitine markedly decreased the infiltration of inflammatory cells and improved the tissue architecture in heart and kidney. Control animals did not show any appreciable response upon L-carnitine administration. RELEVANT CONTRIBUTION TO KNOWLEDGE These results suggest that L-carnitine plays a defensive role against cardiac and renal damage in ISO-treated MI rat model via suppressing oxidative stress and increasing antioxidant enzyme functions through inhibition of TNF-α and IL-1β.
Collapse
Affiliation(s)
- Tushar Emran
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Bashundhara R/A, Dhaka 1229, Bangladesh
| | - Nowreen Islam Chowdhury
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Bashundhara R/A, Dhaka 1229, Bangladesh
| | - Manoneeta Sarker
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Bashundhara R/A, Dhaka 1229, Bangladesh
| | - Asim Kumar Bepari
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Bashundhara R/A, Dhaka 1229, Bangladesh
| | - Murad Hossain
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Bashundhara R/A, Dhaka 1229, Bangladesh
| | - G M Sayedur Rahman
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Bashundhara R/A, Dhaka 1229, Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Bashundhara R/A, Dhaka 1229, Bangladesh.
| |
Collapse
|
17
|
Jelemenský M, Kovácsházi C, Ferenczyová K, Hofbauerová M, Kiss B, Pállinger É, Kittel Á, Sayour VN, Görbe A, Pelyhe C, Hambalkó S, Kindernay L, Barančík M, Ferdinandy P, Barteková M, Giricz Z. Helium Conditioning Increases Cardiac Fibroblast Migration Which Effect Is Not Propagated via Soluble Factors or Extracellular Vesicles. Int J Mol Sci 2021; 22:10504. [PMID: 34638845 PMCID: PMC8508629 DOI: 10.3390/ijms221910504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022] Open
Abstract
Helium inhalation induces cardioprotection against ischemia/reperfusion injury, the cellular mechanism of which remains not fully elucidated. Extracellular vesicles (EVs) are cell-derived, nano-sized membrane vesicles which play a role in cardioprotective mechanisms, but their function in helium conditioning (HeC) has not been studied so far. We hypothesized that HeC induces fibroblast-mediated cardioprotection via EVs. We isolated neonatal rat cardiac fibroblasts (NRCFs) and exposed them to glucose deprivation and HeC rendered by four cycles of 95% helium + 5% CO2 for 1 h, followed by 1 h under normoxic condition. After 40 h of HeC, NRCF activation was analyzed with a Western blot (WB) and migration assay. From the cell supernatant, medium extracellular vesicles (mEVs) were isolated with differential centrifugation and analyzed with WB and nanoparticle tracking analysis. The supernatant from HeC-treated NRCFs was transferred to naïve NRCFs or immortalized human umbilical vein endothelial cells (HUVEC-TERT2), and a migration and angiogenesis assay was performed. We found that HeC accelerated the migration of NRCFs and did not increase the expression of fibroblast activation markers. HeC tended to decrease mEV secretion of NRCFs, but the supernatant of HeC or the control NRCFs did not accelerate the migration of naïve NRCFs or affect the angiogenic potential of HUVEC-TERT2. In conclusion, HeC may contribute to cardioprotection by increasing fibroblast migration but not by releasing protective mEVs or soluble factors from cardiac fibroblasts.
Collapse
Affiliation(s)
- Marek Jelemenský
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (M.J.); (K.F.); (L.K.); (M.B.)
| | - Csenger Kovácsházi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (C.K.); (B.K.); (V.N.S.); (A.G.); (C.P.); (S.H.); (P.F.)
| | - Kristína Ferenczyová
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (M.J.); (K.F.); (L.K.); (M.B.)
| | - Monika Hofbauerová
- Institute of Physics, Slovak Academy of Sciences, Dúbravská Cesta 9, 84511 Bratislava, Slovakia;
- Centre for Advanced Materials Application, Slovak Academy of Sciences, Dúbravská Cesta 9, 84511 Bratislava, Slovakia
| | - Bernadett Kiss
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (C.K.); (B.K.); (V.N.S.); (A.G.); (C.P.); (S.H.); (P.F.)
- MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
| | - Éva Pállinger
- Department of Genetics, Cell and Immunobiology, Semmelweis University, 1089 Budapest, Hungary;
| | - Ágnes Kittel
- Institute of Experimental Medicine, Eötvös Loránd Research Network, 1083 Budapest, Hungary;
| | - Viktor Nabil Sayour
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (C.K.); (B.K.); (V.N.S.); (A.G.); (C.P.); (S.H.); (P.F.)
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (C.K.); (B.K.); (V.N.S.); (A.G.); (C.P.); (S.H.); (P.F.)
- MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Csilla Pelyhe
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (C.K.); (B.K.); (V.N.S.); (A.G.); (C.P.); (S.H.); (P.F.)
| | - Szabolcs Hambalkó
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (C.K.); (B.K.); (V.N.S.); (A.G.); (C.P.); (S.H.); (P.F.)
| | - Lucia Kindernay
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (M.J.); (K.F.); (L.K.); (M.B.)
| | - Miroslav Barančík
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (M.J.); (K.F.); (L.K.); (M.B.)
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (C.K.); (B.K.); (V.N.S.); (A.G.); (C.P.); (S.H.); (P.F.)
- MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Monika Barteková
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (M.J.); (K.F.); (L.K.); (M.B.)
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 81372 Bratislava, Slovakia
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (C.K.); (B.K.); (V.N.S.); (A.G.); (C.P.); (S.H.); (P.F.)
- Pharmahungary Group, 6722 Szeged, Hungary
| |
Collapse
|
18
|
Li X, Li L, Lei W, Chua HZ, Li Z, Huang X, Wang Q, Li N, Zhang H. Traditional Chinese medicine as a therapeutic option for cardiac fibrosis: Pharmacology and mechanisms. Biomed Pharmacother 2021; 142:111979. [PMID: 34358754 DOI: 10.1016/j.biopha.2021.111979] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are one of the leading causes of death worldwide and cardiac fibrosis is a common pathological process for cardiac remodeling in cardiovascular diseases. Cardiac fibrosis not only accelerates the deterioration progress of diseases but also becomes a pivotal contributor for futile treatment in clinical cardiovascular trials. Although cardiac fibrosis is common and prevalent, effective medicines to provide sufficient clinical intervention for cardiac fibrosis are still unavailable. Traditional Chinese medicine (TCM) is the natural essence experienced boiling, fry, and other processing methods, including active ingredients, extracts, and herbal formulas, which have been applied to treat human diseases for a long history. Recently, research has increasingly focused on the great potential of TCM for the prevention and treatment of cardiac fibrosis. Here, we aim to clarify the identified pro-fibrotic mechanisms and intensively summarize the application of TCM in improving cardiac fibrosis by working on these mechanisms. Through comprehensively analyzing, TCM mainly regulates the following pathways during ameliorating cardiac fibrosis: attenuation of inflammation and oxidative stress, inhibition of cardiac fibroblasts activation, reduction of extracellular matrix accumulation, modulation of the renin-angiotensin-aldosterone system, modulation of autophagy, regulation of metabolic-dependent mechanisms, and targeting microRNAs. We also discussed the deficiencies and the development direction of anti-fibrotic therapies on cardiac fibrosis. The data reviewed here demonstrates that TCM shows a robust effect on alleviating cardiac fibrosis, which provides us a rich source of new drugs or drug candidates. Besides, we also hope this review may give some enlightenment for treating cardiac fibrosis in clinical practice.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Lin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Wei Lei
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Hui Zi Chua
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Zining Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xianglong Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China.
| | - Qilong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Nan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
19
|
Sandora N, Putra MA, Busro PW, Ardiansyah, Muttaqin C, Makdinata W, Fitria NA, Kusuma TR. Preparation of Cell-Seeded Heart Patch In Vitro; Co-Culture of Adipose-Derived Mesenchymal Stem Cell and Cardiomyocytes in Amnion Bilayer Patch. Cardiovasc Eng Technol 2021; 13:193-206. [PMID: 34322787 DOI: 10.1007/s13239-021-00565-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/12/2021] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Cardiovascular disease is the second killer across the globe, while coronary disease is the major cause. Cell therapy is one alternative to regenerate the infarcted heart wall. MATERIALS AND METHODS In this study, the cardiomyogenesis capacity of human adipose stem cells (hAdSC) and human cardiomyocytes (hCardio) cultured in a 3-D biological scaffold (decellularised amnion bilayer) for nine days in a static condition was investigated. The cardiomyogenesis capacity of hAdSC were identified using immunohistochemistry and RT-PCR. The population of the cells isolated from the heart tissue expressed cTnT-1 (13.38 ± 11.38%), cKit (7.85 ± 4.2%), ICAM (85.53 ± 8.69%), PECAM (61.63 ± 7.18%) and VCAM (35.9 ± 9.11%), while from the fat tissue expressed the mesenchymal phenotypes (CD73, CD90, CD105, but not CD45, CD34, CD11b, CD19 and HLA-DR). Two age groups of hAdSC donors were compared, the youngsters (30-40yo) and the elderly (60-70 yo). RESULTS The co-culture showed that after 5-day incubation, the seeded graft in the hAdSC-30 group had a tube-like appearance while the hAdSC-60 group demonstrated a disorganised pattern, despite of the MSC expressions of the hAdSC-60 were significantly higher. Initial co-culture showed no difference of ATP counts among all groups, however the hAdSC-30 group had the highest ATP count after 9 days culture (p = 0.004). After normalising to the normal myocardium, only the hAdSC-60 group expressed cTnT and MHC, very low, seen during the initial cultivation, but then disappeared. Meanwhile, the hAdSC-30 group expressed α-actinin, MHC and cTnT in the Day-5. The PPAR also was higher in the Day-5 compared to the Day-9 (p < 0.005). CONCLUSION Cardiomyogenesis capacity of hAdSC co-cultured with hCardio in a 3-D scaffold taken from the 30-40yo donor showed better morphology and viability than the 60-70yo group, but maintained less than 5 days in this system.
Collapse
Affiliation(s)
- Normalina Sandora
- Institute of Medical Education and Research Indonesia, Jakarta, 10430, Indonesia.
| | - Muhammad Arza Putra
- Department of Thoracic Surgery, RSCM, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Pribadi Wiranda Busro
- Department of Thoracic Surgery, RSCM, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ardiansyah
- Department of Thoracic Surgery, RSCM, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Chaidar Muttaqin
- Department of Thoracic Surgery, RSCM, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - William Makdinata
- Department of Thoracic Surgery, RSCM, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Nur Amalina Fitria
- Institute of Medical Education and Research Indonesia, Jakarta, 10430, Indonesia
| | - Tyas Rahmah Kusuma
- Institute of Medical Education and Research Indonesia, Jakarta, 10430, Indonesia
| |
Collapse
|
20
|
De Luca G, Cavalli G, Campochiaro C, Bruni C, Tomelleri A, Dagna L, Matucci-Cerinic M. Interleukin-1 and Systemic Sclerosis: Getting to the Heart of Cardiac Involvement. Front Immunol 2021; 12:653950. [PMID: 33833766 PMCID: PMC8021854 DOI: 10.3389/fimmu.2021.653950] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic sclerosis (SSc) is rare, severe connective tissue disease characterized by endothelial and vascular damage, immune activation, and resulting in inflammation and fibrosis of skin and internal organs, including the heart. SSc is associated with high morbidity and mortality. Cardiac involvement is frequent in SSc patients, even though often asymptomatic at early stages, and represents one of the major causes of SSc-related mortality. Heart involvement has a variable clinical presentation, and its pathogenesis is not completely understood. Myocardial fibrosis is traditionally considered the immunopathologic hallmark of heart involvement in SSc. This unique histological feature is paralleled by distinctive clinical and prognostic features. The so-called "vascular hypothesis" represents the most credited hypothesis to explain myocardial fibrosis. More recently, the prominent role of an inflammatory myocardial process has been identified as a cardinal event in the evolution to fibrosis, thus also delineating an "inflammation-driven pathway to fibrosis". The pro-inflammatory cytokine interleukin (IL)-1 has an apical and cardinal role in the myocardial inflammatory cascade and in cardiac dysfunction. The primary aim of this perspective article is: to present the emerging evidence on the role of IL-1 and inflammasome in both SSc and heart inflammation, to review the complex interplay between cellular metabolism and inflammasome activation, and to discuss the rationale for targeted inhibition of IL-1 for the treatment of SSc-heart involvement, providing preliminary experimental and clinical data to support this hypothesis.
Collapse
Affiliation(s)
- Giacomo De Luca
- Unit of Immunology, Rheumatology, Allergy and Rare diseases (UnIRAR), IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Giulio Cavalli
- Unit of Immunology, Rheumatology, Allergy and Rare diseases (UnIRAR), IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Corrado Campochiaro
- Unit of Immunology, Rheumatology, Allergy and Rare diseases (UnIRAR), IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Cosimo Bruni
- Department of Experimental and Clinical Medicine, University of Florence, and Division of Rheumatology AOUC, Florence, Italy
| | - Alessandro Tomelleri
- Unit of Immunology, Rheumatology, Allergy and Rare diseases (UnIRAR), IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Lorenzo Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare diseases (UnIRAR), IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, University of Florence, and Division of Rheumatology AOUC, Florence, Italy
| |
Collapse
|
21
|
Mo F, Luo Y, Yan Y, Li J, Lai S, Wu W. Are activated B cells involved in the process of myocardial fibrosis after acute myocardial infarction? An in vivo experiment. BMC Cardiovasc Disord 2021; 21:5. [PMID: 33407160 PMCID: PMC7789158 DOI: 10.1186/s12872-020-01775-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Inflammatory cells infiltrate into the ischemic and hypoxic myocardial tissue after myocardial infarction. B cells gather at the site of myocardial injury and secrete cytokines to regulate immune inflammation and fiber repair processes. METHODS The animal experiment used ligation of the left anterior descending (LAD) artery of C57BL/6 mice to establish a mouse acute myocardial infarction (AMI) model to observe changes in activated B cells and cytokines at different time points. Twelve-week-old C57BL/6 male mice were randomly divided into the Sham group (24 mice) (thread under the LAD artery without ligation) and the AMI group (64 mice). In addition, C57BL/6 B-cell knockout (BKO) mice and C57BL/6 wild-type (WT) mice were used to establish AMI models to observe the expression levels of cardiomyocyte cytokines, such as TNF-α IL-1β, IL-6, TGF-β1, COL1-A1, COL3-AIII, TIMP, and MMP9. Moreover, pathological and collagen changes in the myocardium were analysed. One-way ANOVA and LSD method was used for comparisons of multiple and pairwise groups respectively. P < 0.05 indicated significant differences. RESULTS An AMI model of C57BL/6 mice was established successfully. The ratio of activated B cells and the expression of TNF-α, IL-1β, IL-6, TGF-β1, and B cell activating factor (BAFF) in the 5-day subgroup were the highest in the myocardium, spleen and peripheral blood with the most obvious myocardial inflammatory cell infiltration. The cytokines mRNA expression levels in the 5-day subgroup of the BKO group were decreased compared with those in the WT group (P < 0.05). Among the 2-week subgroups of the Sham, WT and BKO groups, the the LVEDd and LVESd of the BKO group were lower than those of the WT group (P < 0.05), and the left ventricular ejection fraction was higher than that of the WT group (P < 0.05). CONCLUSION Activated B cells participate in the sustained state of myocardial inflammation and immune system activation after AMI, and may affect the metabolism of myocardial collagen after AMI by secreting cytokines. Moreover, B cells promote the expression of myocardial collagen Type I and Type III and damage the left ventricular ejection function.
Collapse
Affiliation(s)
- Fanrui Mo
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, China
- Department of Cardiology, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Ying Luo
- Guangxi Medical University, Nanning, China
| | - Yuluan Yan
- Department of Cardiology, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Juan Li
- Department of Cardiology, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Shayi Lai
- Department of Cardiology, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Weifeng Wu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, China.
| |
Collapse
|
22
|
Aujla PK, Kassiri Z. Diverse origins and activation of fibroblasts in cardiac fibrosis. Cell Signal 2020; 78:109869. [PMID: 33278559 DOI: 10.1016/j.cellsig.2020.109869] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/21/2022]
Abstract
Cardiac fibroblasts (cFBs) have emerged as a heterogenous cell population. Fibroblasts are considered the main cell source for synthesis of the extracellular matrix (ECM) and as such a dysregulation in cFB function, activity, or viability can lead to disrupted ECM structure or fibrosis. Fibrosis can be initiated in response to different injuries and stimuli, and can be reparative (beneficial) or reactive (damaging). FBs need to be activated to myofibroblasts (MyoFBs) which have augmented capacity in synthesizing ECM proteins, causing fibrosis. In addition to the resident FBs in the myocardium, a number of other cells (pericytes, fibrocytes, mesenchymal, and hematopoietic cells) can transform into MyoFBs, further driving the fibrotic response. Multiple molecules including hormones, cytokines, and growth factors stimulate this process leading to generation of activated MyoFBs. Contribution of different cell types to cFBs and MyoFBs can result in an exponential increase in the number of MyoFBs and an accelerated pro-fibrotic response. Given the diversity of the cell sources, and the array of interconnected signalling pathways that lead to formation of MyoFBs and subsequently fibrosis, identifying a single target to limit the fibrotic response in the myocardium has been challenging. This review article will delineate the importance and relevance of fibroblast heterogeneity in mediating fibrosis in different models of heart failure and will highlight important signalling pathways implicated in myofibroblast activation.
Collapse
Affiliation(s)
- Preetinder K Aujla
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
23
|
Interleukin-1β Modulation of the Mechanobiology of Primary Human Pulmonary Fibroblasts: Potential Implications in Lung Repair. Int J Mol Sci 2020; 21:ijms21228417. [PMID: 33182538 PMCID: PMC7696791 DOI: 10.3390/ijms21228417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 12/16/2022] Open
Abstract
Pro-inflammatory cytokines like interleukin-1β (IL-1β) are upregulated during early responses to tissue damage and are expected to transiently compromise the mechanical microenvironment. Fibroblasts are key regulators of tissue mechanics in the lungs and other organs. However, the effects of IL-1β on fibroblast mechanics and functions remain unclear. Here we treated human pulmonary fibroblasts from control donors with IL-1β and used Atomic Force Microscopy to unveil that IL-1β significantly reduces the stiffness of fibroblasts concomitantly with a downregulation of filamentous actin (F-actin) and alpha-smooth muscle (α-SMA). Likewise, COL1A1 mRNA was reduced, whereas that of collagenases MMP1 and MMP2 were upregulated, favoring a reduction of type-I collagen. These mechanobiology changes were functionally associated with reduced proliferation and enhanced migration upon IL-1β stimulation, which could facilitate lung repair by drawing fibroblasts to sites of tissue damage. Our observations reveal that IL-1β may reduce local tissue rigidity by acting both intracellularly and extracellularly through the downregulation of fibroblast contractility and type I collagen deposition, respectively. These IL-1β-dependent mechanical effects may enhance lung repair further by locally increasing pulmonary tissue compliance to preserve normal lung distension and function. Moreover, our results support that IL-1β provides innate anti-fibrotic protection that may be relevant during the early stages of lung repair.
Collapse
|
24
|
Hitscherich P, Lee EJ. Crosstalk Between Cardiac Cells and Macrophages Postmyocardial Infarction: Insights from In Vitro Studies. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:475-485. [PMID: 33096955 DOI: 10.1089/ten.teb.2020.0198] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cardiovascular disease, including myocardial infarction (MI), is the leading cause of death in the western world. Following MI, a large number of cardiomyocytes are lost and inflammatory cells such as monocytes and macrophages migrate into the damaged region to remove dead cells and tissue. These inflammatory cells secrete growth factors to induce degradation of the extracellular matrix in the myocardium and recruit cardiac fibroblasts. However, the contribution of specific macrophage subsets on cardiac cell function and survival in the steady state as well as in the diseased state is not well known. There is an increasing demand for in vitro cardiac disease models to bridge the critical missing link in the existing experimental methods. In this review, studies using in vitro models to examine the interaction between macrophages and cardiac cells, including cardiomyocytes, endothelial cells, and fibroblasts, are summarized to better understand the complex inflammatory cascade post-MI. The current challenges and the future directions of in vitro cardiac models are also discussed. Detailed and more mechanistic insights into macrophages and cardiac cell interactions during the multiphase repair process could potentially revolutionize the development of treatments and diagnostic alternatives. Impact statement The inflammatory cascade postmyocardial infarction (MI) is very complex. In vitro cardiac disease model studies bridge the critical missing link in the existing experimental methods and provide insights, including multicellular interaction post-MI. Detailed and more mechanistic insights into macrophages and cardiac cell interactions during the multiphase repair process could potentially revolutionize in developing treatments and diagnostic alternatives.
Collapse
Affiliation(s)
- Pamela Hitscherich
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Eun Jung Lee
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|
25
|
Patel KHK, Jones TN, Sattler S, Mason JC, Ng FS. Proarrhythmic electrophysiological and structural remodeling in rheumatoid arthritis. Am J Physiol Heart Circ Physiol 2020; 319:H1008-H1020. [PMID: 32946265 DOI: 10.1152/ajpheart.00401.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic inflammatory disorders, including rheumatoid arthritis (RA), are associated with a twofold increase in the incidence of sudden cardiac death (SCD) compared with the healthy population. Although this is partly explained by an increased prevalence of coronary artery disease, growing evidence suggests that ischemia alone cannot completely account for the increased risk. The present review explores the mechanisms of cardiac electrophysiological remodeling in response to chronic inflammation in RA. In particular, it focuses on the roles of nonischemic structural remodeling, altered cardiac ionic currents, and autonomic nervous system dysfunction in ventricular arrhythmogenesis and SCD. It also explores whether common genetic elements predispose to both RA and SCD. Finally, it evaluates the potential dual effects of disease-modifying therapy in both diminishing and promoting the risk of ventricular arrhythmias and SCD.
Collapse
Affiliation(s)
| | | | - Susanne Sattler
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Justin C Mason
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Fu Siong Ng
- National Heart and Lung Institute, Imperial College London, United Kingdom
| |
Collapse
|
26
|
Thomas TP, Grisanti LA. The Dynamic Interplay Between Cardiac Inflammation and Fibrosis. Front Physiol 2020; 11:529075. [PMID: 33041853 PMCID: PMC7522448 DOI: 10.3389/fphys.2020.529075] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Heart failure is a leading cause of death worldwide. While there are multiple etiologies contributing to the development of heart failure, all cause result in impairments in cardiac function that is characterized by changes in cardiac remodeling and compliance. Fibrosis is associated with nearly all forms of heart failure and is an important contributor to disease pathogenesis. Inflammation also plays a critical role in the heart and there is a large degree of interconnectedness between the inflammatory and fibrotic response. This review discusses the cellular and molecular mechanisms contributing to inflammation and fibrosis and the interplay between the two.
Collapse
Affiliation(s)
- Toby P Thomas
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Laurel A Grisanti
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
27
|
Zeigler AC, Nelson AR, Chandrabhatla AS, Brazhkina O, Holmes JW, Saucerman JJ. Computational model predicts paracrine and intracellular drivers of fibroblast phenotype after myocardial infarction. Matrix Biol 2020; 91-92:136-151. [PMID: 32209358 PMCID: PMC7434705 DOI: 10.1016/j.matbio.2020.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/14/2020] [Accepted: 03/16/2020] [Indexed: 01/09/2023]
Abstract
The fibroblast is a key mediator of wound healing in the heart and other organs, yet how it integrates multiple time-dependent paracrine signals to control extracellular matrix synthesis has been difficult to study in vivo. Here, we extended a computational model to simulate the dynamics of fibroblast signaling and fibrosis after myocardial infarction (MI) in response to time-dependent data for nine paracrine stimuli. This computational model was validated against dynamic collagen expression and collagen area fraction data from post-infarction rat hearts. The model predicted that while many features of the fibroblast phenotype at inflammatory or maturation phases of healing could be recapitulated by single static paracrine stimuli (interleukin-1 and angiotensin-II, respectively), mimicking the reparative phase required paired stimuli (e.g. TGFβ and endothelin-1). Virtual overexpression screens simulated with either static cytokine pairs or post-MI paracrine dynamic predicted phase-specific regulators of collagen expression. Several regulators increased (Smad3) or decreased (Smad7, protein kinase G) collagen expression specifically in the reparative phase. NADPH oxidase (NOX) overexpression sustained collagen expression from reparative to maturation phases, driven by TGFβ and endothelin positive feedback loops. Interleukin-1 overexpression had mixed effects, both enhancing collagen via the TGFβ positive feedback loop and suppressing collagen via NFκB and BAMBI (BMP and activin membrane-bound inhibitor) incoherent feed-forward loops. These model-based predictions reveal network mechanisms by which the dynamics of paracrine stimuli and interacting signaling pathways drive the progression of fibroblast phenotypes and fibrosis after myocardial infarction.
Collapse
Affiliation(s)
- Angela C Zeigler
- Department of Biomedical Engineering, University of Virginia, PO Box 800759, Charlottesville, VA 22908-0759, USA
| | - Anders R Nelson
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Anirudha S Chandrabhatla
- Department of Biomedical Engineering, University of Virginia, PO Box 800759, Charlottesville, VA 22908-0759, USA
| | - Olga Brazhkina
- Department of Biomedical Engineering, University of Virginia, PO Box 800759, Charlottesville, VA 22908-0759, USA; Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA, USA
| | - Jeffrey W Holmes
- Department of Biomedical Engineering, University of Virginia, PO Box 800759, Charlottesville, VA 22908-0759, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA; Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, PO Box 800759, Charlottesville, VA 22908-0759, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
28
|
Gibb AA, Lazaropoulos MP, Elrod JW. Myofibroblasts and Fibrosis: Mitochondrial and Metabolic Control of Cellular Differentiation. Circ Res 2020; 127:427-447. [PMID: 32673537 DOI: 10.1161/circresaha.120.316958] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiac fibrosis is mediated by the activation of resident cardiac fibroblasts, which differentiate into myofibroblasts in response to injury or stress. Although myofibroblast formation is a physiological response to acute injury, such as myocardial infarction, myofibroblast persistence, as occurs in heart failure, contributes to maladaptive remodeling and progressive functional decline. Although traditional pathways of activation, such as TGFβ (transforming growth factor β) and AngII (angiotensin II), have been well characterized, less understood are the alterations in mitochondrial function and cellular metabolism that are necessary to initiate and sustain myofibroblast formation and function. In this review, we highlight recent reports detailing the mitochondrial and metabolic mechanisms that contribute to myofibroblast differentiation, persistence, and function with the hope of identifying novel therapeutic targets to treat, and potentially reverse, tissue organ fibrosis.
Collapse
Affiliation(s)
- Andrew A Gibb
- From the Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Michael P Lazaropoulos
- From the Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - John W Elrod
- From the Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| |
Collapse
|
29
|
Neutrophils Modulate Fibroblast Function and Promote Healing and Scar Formation after Murine Myocardial Infarction. Int J Mol Sci 2020; 21:ijms21103685. [PMID: 32456225 PMCID: PMC7279328 DOI: 10.3390/ijms21103685] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022] Open
Abstract
AIM Recruitment of neutrophils to the heart following acute myocardial infarction (MI) initiates inflammation and contributes to adverse post-infarct left ventricular (LV) remodeling. However, therapeutic inhibition of neutrophil recruitment into the infarct zone has not been beneficial in MI patients, suggesting a possible dual role for neutrophils in inflammation and repair following MI. Here, we investigate the effect of neutrophils on cardiac fibroblast function following MI. Methods and Results: We found that co-incubating neutrophils with isolated cardiac fibroblasts enhanced the production of provisional extracellular matrix proteins and reduced collagen synthesis when compared to control or co-incubation with mononuclear cells. Furthermore, we showed that neutrophils are required to induce the transient up-regulation of transforming growth factor (TGF)-ß1 expression in fibroblasts, a key requirement for terminating the pro-inflammatory phase and allowing the reparatory phase to form a mature scar after MI. Conclusion: Neutrophils are essential for both initiation and termination of inflammatory events that control and modulate the healing process after MI. Therefore, one should exercise caution when testing therapeutic strategies to inhibit neutrophil recruitment into the infarct zone in MI patients.
Collapse
|
30
|
Burr SD, Harmon MB, Jr JAS. The Impact of Diabetic Conditions and AGE/RAGE Signaling on Cardiac Fibroblast Migration. Front Cell Dev Biol 2020; 8:112. [PMID: 32158758 PMCID: PMC7052116 DOI: 10.3389/fcell.2020.00112] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetic individuals have an increased risk for developing cardiovascular disease due to stiffening of the left ventricle (LV), which is thought to occur, in part, by increased AGE/RAGE signaling inducing fibroblast differentiation. Advanced glycated end-products (AGEs) accumulate within the body over time, and under hyperglycemic conditions, the formation and accumulation of AGEs is accelerated. AGEs exert their effect by binding to their receptor (RAGE) and can induce myofibroblast differentiation, leading to increased cell migration. Previous studies have focused on fibroblast migration during wound healing, in which diabetics have impaired fibroblast migration compared to healthy individuals. However, the impact of diabetic conditions as well as AGE/RAGE signaling has not been extensively studied in cardiac fibroblasts. Therefore, the goal of this study was to determine how the AGE/RAGE signaling pathway impacts cell migration in non-diabetic and diabetic cardiac fibroblasts. Cardiac fibroblasts were isolated from non-diabetic and diabetic mice with and without functional RAGE and used to perform a migration assay. Cardiac fibroblasts were plated on plastic, non-diabetic, or diabetic collagen, and when confluency was reached, a line of migration was generated by scratching the plate and followed by treatment with pharmacological agents that modify AGE/RAGE signaling. Modification of the AGE/RAGE signaling cascade was done with ERK1/2 and PKC-ζ inhibitors as well as treatment with exogenous AGEs. Diabetic fibroblasts displayed an increase in migration compared to non-diabetic fibroblasts whereas inhibiting the AGE/RAGE signaling pathway resulted in a significant increase in migration. The results indicate that the AGE/RAGE signaling cascade causes a decrease in cardiac fibroblast migration and altering the pathway will produce alterations in cardiac fibroblast migration.
Collapse
Affiliation(s)
- Stephanie D Burr
- Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, Oxford, MS, United States
| | - Mallory B Harmon
- Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, Oxford, MS, United States
| | - James A Stewart Jr
- Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, Oxford, MS, United States
| |
Collapse
|
31
|
Guo M, Liu T, Zhang S, Yang L. RASSF1-AS1, an antisense lncRNA of RASSF1A, inhibits the translation of RASSF1A to exacerbate cardiac fibrosis in mice. Cell Biol Int 2019; 43:1163-1173. [PMID: 30571844 DOI: 10.1002/cbin.11085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cardiac fibrosis is associated with various cardiovascular diseases and can eventually lead to heart failure. Dysregulation of long non-coding RNAs (lncRNAs) are recognized as one of the key mechanisms of cardiac diseases. However, the roles and underlying mechanisms of lncRNAs in cardiac fibrosis have not been explicitly defined. Here, we investigated the role of an antisense (AS) lncRNA from the Ras association domain-containing protein 1 isoform A (RASSF1A) gene locus, named RASSF1-AS1, in the development of cardiac fibrosis. Cardiac fibrosis mouse model was established by isoproterenol injection. We found that RASSF1A protein was downregulated, whereas RASSF1-AS1 was markedly upregulated during cardiac fibrosis. Overexpression and knockdown of mouse primary cardiac fibroblasts showed that RASSF1-AS1 negatively regulated RASSF1A expression at the post-transcriptional level. According to the landscape analysis and sense-AS binding evaluation, RASSF1-AS1 partially overlaps with RASSF1A messenger RNA (mRNA) at the exon2 region. RNA pull-down and luciferase activity assays confirmed that RASSF1-AS1 directly bound to RASSF1A mRNA and suppressed its translation. Furthermore, wild-type RASSF1-AS1 had a promoting effect on nuclear factor-κB activation and cardiac fibrosis, but mutated RASSF1-AS1, in which the binding region was deleted, had no effect. In conclusion, RASSF1-AS1 inhibits the translation of RASSF1A to exacerbate cardiac fibrosis in mice, indicating a potential application of RASSF1-AS1 as a therapy target for cardiac fibrosis.
Collapse
Affiliation(s)
- Min Guo
- Department of Geriatric, Shandong Energy Zibo Mining Group Co. Ltd. Central Hospital, 133 Zikuang Road, Zichuan District, Zibo, Shandong, 255120, P.R. China
| | - Tangyu Liu
- Department of Cardiovascular Medicine, Shandong Energy Zibo Mining Group Co. Ltd. Central Hospital, 133 Zikuang Road, Zichuan District, Zibo, Shandong, 255120, P.R. China
| | - Shujie Zhang
- Department of Geriatric, Shandong Energy Zibo Mining Group Co. Ltd. Central Hospital, 133 Zikuang Road, Zichuan District, Zibo, Shandong, 255120, P.R. China
| | - Longbiao Yang
- Department of Orthopedics, Shandong Energy Zibo Mining Group Co. Ltd. Central Hospital, 133 Zikuang Road, Zichuan District, Zibo, Shandong, 255120, P.R. China
| |
Collapse
|
32
|
El-Hawwary AA, Omar NM. The influence of ginger administration on cisplatin-induced cardiotoxicity in rat: Light and electron microscopic study. Acta Histochem 2019; 121:553-562. [PMID: 31068261 DOI: 10.1016/j.acthis.2019.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023]
Abstract
Cisplatin is a powerful chemotherapeutic agent. Cardiotoxicity is one of its major adverse effects. Ginger is a commonly used element in herbal medicine due to its anti-oxidant potentials. This study was planned to assess the histological changes induced by cisplatin in the cardiac muscle and to clarify the possible protective influence of ginger intake. Forty rats were divided into four groups. Control; given normal saline. Ginger; received oral ginger (500 mg/kg/day) for 12 days. Cisplatin; given cisplatin (2 mg/kg/day) daily by intraperitoneal injection for 1 week. Cisplatin + Ginger; received ginger (500 mg/kg/day) for 5 days prior to and concomitant with intraperitoneal injection of cisplatin (2 mg/kg/day) for 1 week. Serum levels of lactate dehydrogenase (LDH) and creatine kinase (CK) were estimated. Cardiac specimens were subjected to light, electron microscopic and immunohistochemical study using anti-P53 and anti-TNF-α antibodies. Morphometric and statistical studies were done. In Cisplatin group, cardiac muscle fibers appeared disorganized, disrupted or degenerated with pyknotic nuclei and showed a significant rise in the number of anti-P53 positive nuclei. Significant increments in the percent area of collagenous fibers and TNF-α immune-expression were observed. Ultrastructurally, the cardiomyocytes displayed disorganized or interrupted myofibrils, swollen disrupted mitochondria, and widening of intercalated discs. Serum levels of CK and LDH were significantly elevated. Cisplatin + Ginger group showed marked improvement in the cardiac histology and ultrastructure, downregulation of P53 and TNF-α immune-expressions and reduction in CK and LDH serum levels. In conclusion, ginger exhibits a protective effect against cisplatin cardiotoxicity mostly through its anti-apoptotic, anti-oxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Amany A El-Hawwary
- Department of Medical Histology & Cell Biology, Faculty of Medicine, Mansoura University, Egypt
| | - Nesreen Moustafa Omar
- Department of Medical Histology & Cell Biology, Faculty of Medicine, Mansoura University, Egypt.
| |
Collapse
|
33
|
Transcript levels for extracellular matrix proteins are altered in MK5-deficient cardiac ventricular fibroblasts. J Mol Cell Cardiol 2019; 132:164-177. [DOI: 10.1016/j.yjmcc.2019.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/22/2019] [Accepted: 05/15/2019] [Indexed: 11/22/2022]
|
34
|
Humeres C, Frangogiannis NG. Fibroblasts in the Infarcted, Remodeling, and Failing Heart. JACC Basic Transl Sci 2019; 4:449-467. [PMID: 31312768 PMCID: PMC6610002 DOI: 10.1016/j.jacbts.2019.02.006] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
Abstract
Expansion and activation of fibroblasts following cardiac injury is important for repair but may also contribute to fibrosis, remodeling, and dysfunction. The authors discuss the dynamic alterations of fibroblasts in failing and remodeling myocardium. Emerging concepts suggest that fibroblasts are not unidimensional cells that act exclusively by secreting extracellular matrix proteins, thus promoting fibrosis and diastolic dysfunction. In addition to their involvement in extracellular matrix expansion, activated fibroblasts may also exert protective actions, preserving the cardiac extracellular matrix, transducing survival signals to cardiomyocytes, and regulating inflammation and angiogenesis. The functional diversity of cardiac fibroblasts may reflect their phenotypic heterogeneity.
Collapse
Key Words
- AT1, angiotensin type 1
- ECM, extracellular matrix
- FAK, focal adhesion kinase
- FGF, fibroblast growth factor
- IL, interleukin
- MAPK, mitogen-activated protein kinase
- MRTF, myocardin-related transcription factor
- PDGF, platelet-derived growth factor
- RNA, ribonucleic acid
- ROCK, Rho-associated coiled-coil containing kinase
- ROS, reactive oxygen species
- SMA, smooth muscle actin
- TGF, transforming growth factor
- TRP, transient receptor potential
- cytokines
- extracellular matrix
- fibroblast
- infarction
- lncRNA, long noncoding ribonucleic acid
- miRNA, micro–ribonucleic acid
- remodeling
Collapse
Affiliation(s)
- Claudio Humeres
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
35
|
Nawaito SA, Sahadevan P, Clavet-Lanthier MÉ, Pouliot P, Sahmi F, Shi Y, Gillis MA, Lesage F, Gaestel M, Sirois MG, Calderone A, Tardif JC, Allen BG. MK5 haplodeficiency decreases collagen deposition and scar size during post-myocardial infarction wound repair. Am J Physiol Heart Circ Physiol 2019; 316:H1281-H1296. [PMID: 30901279 DOI: 10.1152/ajpheart.00532.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
MK5 is a protein serine/threonine kinase activated by p38, ERK3, and ERK4 MAPKs. MK5 mRNA and immunoreactivity are detected in mouse cardiac fibroblasts, and MK5 haplodeficiency attenuates the increase in collagen 1-α1 mRNA evoked by pressure overload. The present study examined the effect of MK5 haplodeficiency on reparative fibrosis following myocardial infarction (MI). Twelve-week-old MK5+/- and wild-type littermate (MK5+/+) mice underwent ligation of the left anterior descending coronary artery (LADL). Surviving mice were euthanized 8 or 21 days post-MI. Survival rates did not differ significantly between MK5+/+ and MK5+/- mice, with rupture of the LV wall being the primary cause of death. Echocardiographic imaging revealed similar increases in LV end-diastolic diameter, myocardial performance index, and wall motion score index in LADL-MK5+/+ and LADL-MK5+/- mice. Area at risk did not differ between LADL-MK5+/+ and LADL-MK5+/- hearts. In contrast, infarct size, scar area, and scar collagen content were reduced in LADL-MK5+/- hearts. Immunohistochemical analysis of mice experiencing heart rupture revealed increased MMP-9 immunoreactivity in the infarct border zone of LADL-MK5+/- hearts compared with LADL-MK5+/+. Although inflammatory cell infiltration was similar in LADL-MK5+/+ and LADL-MK5+/- hearts, angiogenesis was more pronounced in the infarct border zone of LADL-MK5+/- mice. Characterization of ventricular fibroblasts revealed reduced motility and proliferation in fibroblasts isolated from MK5-/- mice compared with those from both wild-type and haplodeficient mice. siRNA-mediated knockdown of MK5 in fibroblasts from wild-type mice also impaired motility. Hence, reduced MK5 expression alters fibroblast function and scar morphology but not mortality post-MI. NEW & NOTEWORTHY MK5/PRAK is a protein serine/threonine kinase activated by p38 MAPK and/or atypical MAPKs ERK3/4. MK5 haplodeficiency reduced infarct size, scar area, and scar collagen content post-myocardial infarction. Motility and proliferation were reduced in cultured MK5-null cardiac myofibroblasts.
Collapse
Affiliation(s)
- Sherin Ali Nawaito
- Department of Pharmacology and Physiology, Université de Montréal , Montreal, Quebec, Canada.,Montreal Heart Institute , Montreal, Quebec, Canada.,Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Pramod Sahadevan
- Department of Biochemistry and Molecular Medicine, Université de Montréal , Montreal, Quebec, Canada.,Montreal Heart Institute , Montreal, Quebec, Canada
| | | | | | - Fatiha Sahmi
- Montreal Heart Institute , Montreal, Quebec, Canada
| | - Yanfen Shi
- Montreal Heart Institute , Montreal, Quebec, Canada
| | | | - Frederic Lesage
- Department of Electrical Engineering, Université de Montréal , Montreal, Quebec, Canada.,Montreal Heart Institute , Montreal, Quebec, Canada
| | - Matthias Gaestel
- Institute of Biochemistry, Hannover Medical School, Hannover, Germany
| | - Martin G Sirois
- Department of Pharmacology and Physiology, Université de Montréal , Montreal, Quebec, Canada.,Montreal Heart Institute , Montreal, Quebec, Canada
| | - Angelo Calderone
- Department of Pharmacology and Physiology, Université de Montréal , Montreal, Quebec, Canada.,Montreal Heart Institute , Montreal, Quebec, Canada
| | - Jean-Claude Tardif
- Department of Medicine, Université de Montréal , Montreal, Quebec, Canada.,Montreal Heart Institute , Montreal, Quebec, Canada
| | - Bruce G Allen
- Department of Biochemistry and Molecular Medicine, Université de Montréal , Montreal, Quebec, Canada.,Department of Medicine, Université de Montréal , Montreal, Quebec, Canada.,Montreal Heart Institute , Montreal, Quebec, Canada
| |
Collapse
|
36
|
Kazimierczyk E, Eljaszewicz A, Zembko P, Tarasiuk E, Rusak M, Kulczynska-Przybik A, Lukaszewicz-Zajac M, Kaminski K, Mroczko B, Szmitkowski M, Dabrowska M, Sobkowicz B, Moniuszko M, Tycinska A. The relationships among monocyte subsets, miRNAs and inflammatory cytokines in patients with acute myocardial infarction. Pharmacol Rep 2018; 71:73-81. [PMID: 30481637 DOI: 10.1016/j.pharep.2018.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/22/2018] [Accepted: 09/11/2018] [Indexed: 01/31/2023]
Abstract
BACKGROUND Acute myocardial infarction (AMI) causes irreversible myocardial damage and release of inflammatory mediators, including cytokines, chemokines and miRNAs. We aimed to investigate changes in the levels of cytokines (IL-6, TNF-α and IL-10), miRNAs profiles (miR-146 and miR-155) and distribution of different monocyte subsets (CD14++CD16-, CD14++CD16+, CD14+CD16++) in the acute and post-healing phases of AMI. METHODS In eighteen consecutive AMI patients (mean age 56.78 ± 12.4 years, mean left ventricle ejection fraction - LVEF: 41.9 ± 9.8%), treated invasively, monocyte subsets frequencies were evaluated (flow cytometry), cytokine concentrations were analyzed (ELISA) as well as plasma miRNAs were isolated twice - on admission and after 19.2 ± 5.9 weeks of follow-up. Measurements were also performed among healthy volunteers. RESULTS AMI patients presented significantly decreased frequencies of classical cells in comparison to healthy controls (median 71.22% [IQR: 64.4-79.04] vs. 84.35% [IQR: 81.2-86.7], p = 0.001) and higher percent of both intermediate and non-classical cells, yet without statistical significance (median 6.54% [IQR: 5.14-16.64] vs. 5.87% [IQR: 4.48-8.6], p = 0.37 and median 5.99% [IQR: 3.39-11.5] vs. 5.26% [IQR: 3.62-6.2], p = 0.42, respectively). In AMI patients both, analyzed plasma miRNA concentrations were higher than in healthy subjects (miR-146: median 5.48 [IQR: 2.4-11.27] vs. 1.84 [IQR: 0.87-2.53], p = 0.003; miR-155: median 25.35 [IQR: 8.17-43.15] vs. 8.4 [IQR: 0.08-16.9], p = 0.027, respectively), and returned back to the values found in the control group in follow-up. miR-155/miR-146 ratio correlated with the frequencies of classical monocytes (r=0.6, p = 0.01) and miR-155 correlated positively with the concentration of inflammatory cytokines - IL-6 and TNF-α. CONCLUSIONS These results may suggest cooperation of both pro-inflammatory and anti-inflammatory signals in AMI in order to promote appropriate healing of the infarcted myocardium.
Collapse
Affiliation(s)
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Białystok, Poland
| | - Paula Zembko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Białystok, Poland
| | - Ewa Tarasiuk
- Department of Cardiology, Medical University of Bialystok, Białystok, Poland
| | - Malgorzata Rusak
- Department of Hematological Diagnostics, Medical University of Bialystok, Białystok, Poland
| | | | | | - Karol Kaminski
- Department of Cardiology, Medical University of Bialystok, Białystok, Poland; Department of Population Medicine and Prevention of Civilization Diseases, Medical University of Bialystok, Białystok, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Białystok, Poland; Department of Biochemical Diagnostics, Medical University of Bialystok, Białystok, Poland
| | - Maciej Szmitkowski
- Department of Biochemical Diagnostics, Medical University of Bialystok, Białystok, Poland
| | - Milena Dabrowska
- Department of Hematological Diagnostics, Medical University of Bialystok, Białystok, Poland
| | - Bozena Sobkowicz
- Department of Cardiology, Medical University of Bialystok, Białystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Białystok, Poland; Department of Allergology and Internal Medicine, Medical University of Bialystok, Białystok, Poland
| | - Agnieszka Tycinska
- Department of Cardiology, Medical University of Bialystok, Białystok, Poland.
| |
Collapse
|
37
|
Ma ZG, Yuan YP, Wu HM, Zhang X, Tang QZ. Cardiac fibrosis: new insights into the pathogenesis. Int J Biol Sci 2018; 14:1645-1657. [PMID: 30416379 PMCID: PMC6216032 DOI: 10.7150/ijbs.28103] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/02/2018] [Indexed: 12/21/2022] Open
Abstract
Cardiac fibrosis is defined as the imbalance of extracellular matrix (ECM) production and degradation, thus contributing to cardiac dysfunction in many cardiac pathophysiologic conditions. This review discusses specific markers and origin of cardiac fibroblasts (CFs), and the underlying mechanism involved in the development of cardiac fibrosis. Currently, there are no CFs-specific molecular markers. Most studies use co-labelling with panels of antibodies that can recognize CFs. Origin of fibroblasts is heterogeneous. After fibrotic stimuli, the levels of myocardial pro-fibrotic growth factors and cytokines are increased. These pro-fibrotic growth factors and cytokines bind to its receptors and then trigger the activation of signaling pathway and transcriptional factors via Smad-dependent or Smad independent-manners. These fibrosis-related transcriptional factors regulate gene expression that are involved in the fibrosis to amplify the fibrotic response. Understanding the mechanisms responsible for initiation, progression, and amplification of cardiac fibrosis are of great clinical significance to find drugs that can prevent the progression of cardiac fibrosis.
Collapse
Affiliation(s)
- Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, RP China
| | - Yu-Pei Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, RP China
| | - Hai-Ming Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, RP China
| | - Xin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, RP China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, RP China
| |
Collapse
|
38
|
Frangogiannis NG. Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol Aspects Med 2018; 65:70-99. [PMID: 30056242 DOI: 10.1016/j.mam.2018.07.001] [Citation(s) in RCA: 559] [Impact Index Per Article: 79.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022]
Abstract
Cardiac fibrosis is a common pathophysiologic companion of most myocardial diseases, and is associated with systolic and diastolic dysfunction, arrhythmogenesis, and adverse outcome. Because the adult mammalian heart has negligible regenerative capacity, death of a large number of cardiomyocytes results in reparative fibrosis, a process that is critical for preservation of the structural integrity of the infarcted ventricle. On the other hand, pathophysiologic stimuli, such as pressure overload, volume overload, metabolic dysfunction, and aging may cause interstitial and perivascular fibrosis in the absence of infarction. Activated myofibroblasts are the main effector cells in cardiac fibrosis; their expansion following myocardial injury is primarily driven through activation of resident interstitial cell populations. Several other cell types, including cardiomyocytes, endothelial cells, pericytes, macrophages, lymphocytes and mast cells may contribute to the fibrotic process, by producing proteases that participate in matrix metabolism, by secreting fibrogenic mediators and matricellular proteins, or by exerting contact-dependent actions on fibroblast phenotype. The mechanisms of induction of fibrogenic signals are dependent on the type of primary myocardial injury. Activation of neurohumoral pathways stimulates fibroblasts both directly, and through effects on immune cell populations. Cytokines and growth factors, such as Tumor Necrosis Factor-α, Interleukin (IL)-1, IL-10, chemokines, members of the Transforming Growth Factor-β family, IL-11, and Platelet-Derived Growth Factors are secreted in the cardiac interstitium and play distinct roles in activating specific aspects of the fibrotic response. Secreted fibrogenic mediators and matricellular proteins bind to cell surface receptors in fibroblasts, such as cytokine receptors, integrins, syndecans and CD44, and transduce intracellular signaling cascades that regulate genes involved in synthesis, processing and metabolism of the extracellular matrix. Endogenous pathways involved in negative regulation of fibrosis are critical for cardiac repair and may protect the myocardium from excessive fibrogenic responses. Due to the reparative nature of many forms of cardiac fibrosis, targeting fibrotic remodeling following myocardial injury poses major challenges. Development of effective therapies will require careful dissection of the cell biological mechanisms, study of the functional consequences of fibrotic changes on the myocardium, and identification of heart failure patient subsets with overactive fibrotic responses.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer G46B, Bronx, NY, 10461, USA.
| |
Collapse
|
39
|
Zhang N, Wei WY, Li LL, Hu C, Tang QZ. Therapeutic Potential of Polyphenols in Cardiac Fibrosis. Front Pharmacol 2018; 9:122. [PMID: 29497382 PMCID: PMC5818417 DOI: 10.3389/fphar.2018.00122] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/02/2018] [Indexed: 01/02/2023] Open
Abstract
Cardiac fibrosis, in response to injury and stress, is central to a broad constellation of cardiovascular diseases. Fibrosis decreases myocardial wall compliance due to extracellular matrix (ECM) accumulation, leading to impaired systolic and diastolic function and causing arrhythmogenesis. Although some conventional drugs, such as β-blockers and renin-angiotensin-aldosterone system (RAAS) inhibitors, have been shown to alleviate cardiac fibrosis in clinical trials, these traditional therapies do not tend to target all the fibrosis-associated mechanisms, and do not hamper the progression of cardiac fibrosis in patients with heart failure. Polyphenols are present in vegetables, fruits, and beverages and had been proposed as attenuators of cardiac fibrosis in different models of cardiovascular diseases. Together with results found in the literature, we can show that some polyphenols exert anti-fibrotic and myocardial protective effects by mediating inflammation, oxidative stress, and fibrotic molecular signals. This review considers an overview of the mechanisms of cardiac fibrosis, illustrates their involvement in different animal models of cardiac fibrosis treated with some polyphenols and projects the future direction and therapeutic potential of polyphenols on cardiac fibrosis.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wen-Ying Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ling-Li Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Can Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
40
|
Chung CC, Kao YH, Yao CJ, Lin YK, Chen YJ. A comparison of left and right atrial fibroblasts reveals different collagen production activity and stress-induced mitogen-activated protein kinase signalling in rats. Acta Physiol (Oxf) 2017; 220:432-445. [PMID: 27875022 DOI: 10.1111/apha.12835] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 12/22/2022]
Abstract
AIM Atrial fibrosis plays a pivotal role in the pathophysiology of heart failure (HF). The left atrium (LA) experiences greater fibrosis than the right atrium (RA) during HF. It is not clear whether LA cardiac fibroblasts contain distinctive activities that predispose LA to fibrosis. METHODS LA and RA fibrosis were evaluated in healthy and isoproterenol-induced HF Sprague Dawley rats. Rat LA and RA primary isolated fibroblasts were subjected to proliferation assay, oxidative stress assay, cell migration analysis, collagen measurement, cytokine array and Western blot. RESULTS Healthy rat LA and RA had a similar extent of collagen deposition. HF significantly increased fibrosis to a greater severity in LA than in RA. Compared to isolated RA fibroblasts, the in vitro experiments showed that isolated LA fibroblasts had higher oxidative stress and exhibited higher collagen, transforming growth factor-β1, connective tissue growth factor production and less vascular endothelial growth factor (VEGF) production, but had similar migration, myofibroblast differentiation and proliferation activities. VEGF significantly increased the collagen production ability of LA fibroblasts, but not RA fibroblasts. LA fibroblasts had more phosphorylated ERK1/2 and P38 expression. ERK inhibitor (PD98059, 50 μmol L-1 ) significantly attenuated collagen production and increased VEGF production in RA fibroblasts but not in LA fibroblasts. P38 inhibitor (SB203580, 30 μmol L-1 ) significantly attenuated collagen production in LA fibroblasts but not in RA fibroblasts. P38 inhibitor also significantly increased VEGF production in RA and LA fibroblasts. CONCLUSIONS Differences in profibrotic activity between LA and RA fibroblasts may be caused by different responses to mitogen-activated protein kinase signalling.
Collapse
Affiliation(s)
- C.-C. Chung
- Graduate Institute of Clinical Medicine; College of Medicine; Taipei Medical University; Taipei Taiwan
- Division of Cardiovascular Medicine; Department of Internal Medicine; Wan Fang Hospital; School of Medicine; College of Medicine; Taipei Medical University; Taipei Taiwan
| | - Y.-H. Kao
- Graduate Institute of Clinical Medicine; College of Medicine; Taipei Medical University; Taipei Taiwan
- Department of Medical Education and Research; Wan Fang Hospital; Taipei Medical University; Taipei Taiwan
| | - C.-J. Yao
- Cancer Center; Wan Fang Hospital; Taipei Medical University; Taipei Taiwan
- Department of Internal Medicine; School of Medicine; College of Medicine; Taipei Medical University; Taipei Taiwan
| | - Y.-K. Lin
- Division of Cardiovascular Medicine; Department of Internal Medicine; Wan Fang Hospital; School of Medicine; College of Medicine; Taipei Medical University; Taipei Taiwan
| | - Y.-J. Chen
- Graduate Institute of Clinical Medicine; College of Medicine; Taipei Medical University; Taipei Taiwan
- Division of Cardiovascular Medicine; Department of Internal Medicine; Wan Fang Hospital; School of Medicine; College of Medicine; Taipei Medical University; Taipei Taiwan
| |
Collapse
|
41
|
Ma Y, Iyer RP, Jung M, Czubryt MP, Lindsey ML. Cardiac Fibroblast Activation Post-Myocardial Infarction: Current Knowledge Gaps. Trends Pharmacol Sci 2017; 38:448-458. [PMID: 28365093 DOI: 10.1016/j.tips.2017.03.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/05/2017] [Accepted: 03/06/2017] [Indexed: 12/21/2022]
Abstract
In response to myocardial infarction (MI), the wound healing response of the left ventricle (LV) comprises overlapping inflammatory, proliferative, and maturation phases, and the cardiac fibroblast is a key cell type involved in each phase. It has recently been appreciated that, early post-MI, fibroblasts transform to a proinflammatory phenotype and secrete cytokines and chemokines as well as matrix metalloproteinases (MMPs). Later post-MI, fibroblasts are activated to anti-inflammatory and proreparative phenotypes and generate anti-inflammatory and proangiogenic factors and extracellular matrix (ECM) components that form the infarct scar. Additional studies are needed to systematically examine how fibroblast activation shifts over the timeframe of the MI response and how modulation at different activation stages could alter wound healing and LV remodeling in distinct ways. This review summarizes current fibroblast knowledge as the foundation for a discussion of existing knowledge gaps.
Collapse
Affiliation(s)
- Yonggang Ma
- Mississippi Center for Heart Research, Department of Biophysics and Physiology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Rugmani Padmanabhan Iyer
- Mississippi Center for Heart Research, Department of Biophysics and Physiology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Mira Jung
- Mississippi Center for Heart Research, Department of Biophysics and Physiology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Michael P Czubryt
- St Boniface Hospital Albrechtsen Research Centre Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Merry L Lindsey
- Mississippi Center for Heart Research, Department of Biophysics and Physiology, University of Mississippi Medical Center, Jackson, MS, USA; Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, USA.
| |
Collapse
|
42
|
Okada M, Murata N, Yamawaki H. Canstatin stimulates migration of rat cardiac fibroblasts via secretion of matrix metalloproteinase-2. Am J Physiol Cell Physiol 2017; 312:C199-C208. [DOI: 10.1152/ajpcell.00329.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 11/22/2022]
Abstract
Type IV collagen, a nonfibrillar type, is ubiquitously expressed in the basement membrane around cardiomyocytes. Canstatin, a cleaved product of α2 chain of type IV collagen, is an antiangiogenic factor. Because it has not been clarified whether canstatin exerts other biological activities in heart, we investigated the effects of canstatin on adult rat cardiac fibroblasts. Cell migration was determined by Boyden chamber assay. Western blotting was performed to detect secretion of matrix metalloproteinase-2 (MMP-2) and MMP-9 and phosphorylation of extracellular signal-regulated kinase (ERK). Localization of MMP-2 was detected by immunofluorescence staining. Canstatin (250 ng/ml) significantly increased migration, secretion, and activity of MMP-2 but not MMP-9. CTTHWGFTLC peptide, an MMP inhibitor and small interfering RNA (siRNA) against MMP-2 suppressed the canstatin-induced (250 ng/ml, 24 h) migration. Canstatin (250 ng/ml, 30 min) significantly increased phosphorylation of ERK. PD98059, a MEK inhibitor, significantly suppressed the canstatin-induced (250 ng/ml, 24 h) migration but not secretion of MMP-2. An increase in MMP-2 expression was observed in cytoplasm of the canstatin-treated (250 ng/ml) cardiac fibroblasts (within 30 min). Canstatin induced actin stress fiber formation, which was inhibited by Y-27632, a Rho-associated kinase inhibitor. Y-27632 also suppressed the canstatin-induced (250 ng/ml, 24 h) MMP-2 secretion. Canstatin (250 ng/ml, 30 min) failed to induce ERK phosphorylation in MMP-2 siRNA-treated cardiac fibroblasts. In conclusion, this study revealed a novel function of canstatin for inducing cell migration of adult rat cardiac fibroblasts at least in part by ERK phosphorylation through MMP-2 secretion, possibly via actin cytoskeletal change.
Collapse
Affiliation(s)
- Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Naoki Murata
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| |
Collapse
|
43
|
Chacar S, Farès N, Bois P, Faivre JF. Basic Signaling in Cardiac Fibroblasts. J Cell Physiol 2016; 232:725-730. [DOI: 10.1002/jcp.25624] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Stéphanie Chacar
- Laboratoire Signalisation et Transports Ioniques Membranaires (STIM); Université de Poitiers; CNRS; Poitiers France
- Laboratoire de recherche en Physiologie et Physiopathologie (LRPP); pôle technologie santé; Faculté de Médecine; Université Saint Joseph; Beyrouth Liban
| | - Nassim Farès
- Laboratoire de recherche en Physiologie et Physiopathologie (LRPP); pôle technologie santé; Faculté de Médecine; Université Saint Joseph; Beyrouth Liban
| | - Patrick Bois
- Laboratoire Signalisation et Transports Ioniques Membranaires (STIM); Université de Poitiers; CNRS; Poitiers France
| | - Jean-François Faivre
- Laboratoire Signalisation et Transports Ioniques Membranaires (STIM); Université de Poitiers; CNRS; Poitiers France
| |
Collapse
|
44
|
The role of cardiac fibroblasts in post-myocardial heart tissue repair. Exp Mol Pathol 2016; 101:231-240. [DOI: 10.1016/j.yexmp.2016.09.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/30/2016] [Accepted: 09/07/2016] [Indexed: 12/22/2022]
|
45
|
Poole A, Kacer D, Cooper E, Tarantini F, Prudovsky I. Sustained Inhibition of Proliferative Response After Transient FGF Stimulation Is Mediated by Interleukin 1 Signaling. J Cell Physiol 2016. [PMID: 26218437 DOI: 10.1002/jcp.25111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Transient FGF stimulation of various cell types results in FGF memory--a sustained blockage of efficient proliferative response to FGF and other growth factors. FGF memory establishment requires HDAC activity, indicating its epigenetic character. FGF treatment stimulates proinflammatory NFκB signaling, which is also critical for FGF memory formation. The search for FGF-induced mediators of FGF memory revealed that FGF stimulates HDAC-dependent expression of the inflammatory cytokine IL1α. Similarly to FGF, transient cell treatment with recombinant IL1α inhibits the proliferative response to further FGF and EGF stimulation, but does not prevent FGF receptor-mediated signaling. Interestingly, like cells pretreated with FGF1, cells pretreated with IL1α exhibit enhanced restructuring of actin cytoskeleton and increased migration in response to FGF stimulation. IRAP, a specific inhibitor of IL 1 receptor, and a neutralizing anti-IL1α antibody prevent the formation of FGF memory and rescue an efficient proliferative response to FGF restimulation. A similar effect results following treatment with the anti-inflammatory agents aspirin and dexamethasone. Thus, FGF memory is mediated by proinflammatory IL1 signaling. It may play a role in the limitation of proliferative response to tissue damage and prevention of wound-induced hyperplasia.
Collapse
Affiliation(s)
- Ashleigh Poole
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Maine
| | - Doreen Kacer
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Maine
| | - Emily Cooper
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Maine
| | - Francesca Tarantini
- Department of Clinical and Experimental Medicine, Research Unit of Medicine of Ageing, University of Florence, Florence, Italy
| | - Igor Prudovsky
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Maine
| |
Collapse
|
46
|
Abstract
Myocardial fibrosis is a significant global health problem associated with nearly all forms of heart disease. Cardiac fibroblasts comprise an essential cell type in the heart that is responsible for the homeostasis of the extracellular matrix; however, upon injury, these cells transform to a myofibroblast phenotype and contribute to cardiac fibrosis. This remodeling involves pathological changes that include chamber dilation, cardiomyocyte hypertrophy and apoptosis, and ultimately leads to the progression to heart failure. Despite the critical importance of fibrosis in cardiovascular disease, our limited understanding of the cardiac fibroblast impedes the development of potential therapies that effectively target this cell type and its pathological contribution to disease progression. This review summarizes current knowledge regarding the origins and roles of fibroblasts, mediators and signaling pathways known to influence fibroblast function after myocardial injury, as well as novel therapeutic strategies under investigation to attenuate cardiac fibrosis.
Collapse
Affiliation(s)
- Joshua G Travers
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH
| | - Fadia A Kamal
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH
| | - Jeffrey Robbins
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH
| | - Katherine E Yutzey
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH
| | - Burns C Blaxall
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH.
| |
Collapse
|
47
|
microRNA-29b Mediates the Antifibrotic Effect of Tanshinone IIA in Postinfarct Cardiac Remodeling. J Cardiovasc Pharmacol 2016; 65:456-64. [PMID: 25636075 DOI: 10.1097/fjc.0000000000000214] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Tanshinone IIA (TSN) is one of the main components isolated from Danshen, which is widely used for the treatment of cardiovascular diseases. The transforming growth factor beta (TGF-β) signaling pathway and microRNA (miR)-29b play important roles in the progression of cardiac fibrosis and the modulation of cardiac fibroblast (CF) function. Our study investigated the role of miR-29b in the cardioprotective effects of TSN in postinfarct cardiac remodeling. METHODS AND RESULTS Echocardiography demonstrated that medium-dose TSN (TSN-M) and high-dose TSN (TSN-H) significantly inhibited postinfarct cardiac fibrosis and improved the impaired left ventricular function in rats subjected to acute myocardial infarction. Moreover, quantitative real-time polymerase chain reaction and Western blot demonstrated that TSN-M and TSN-H downregulated the expression of TGF-β1, Col1a1, Col3a1, and α-SMA but upregulated the expression of miR-29b. CFs treated with TSN showed inhibited TGF-β signaling pathway, downregulated expression of Col1a1, Col3a1, and α-SMA, and upregulated miR-29b expression in vitro. Furthermore, treatment with a miR-29b inhibitor dramatically inhibited these TSN-induced antifibrotic effects, suggesting that miR-29b may be responsible for the antifibrotic effects of TSN. In addition, treatment with Smad3 siRNA significantly inhibited miR-29b expression in CFs, which implies that Smad3 signaling promotes miR-29b expression on CFs. CONCLUSIONS TSN exerts antifibrotic effects in postinfarct cardiac fibrosis by upregulating the expression of miR-29b, which is mediated by the TGF-β-Smad3 signaling pathway.
Collapse
|
48
|
Del Rio R, Quintanilla RA, Orellana JA, Retamal MA. Neuron-Glia Crosstalk in the Autonomic Nervous System and Its Possible Role in the Progression of Metabolic Syndrome: A New Hypothesis. Front Physiol 2015; 6:350. [PMID: 26648871 PMCID: PMC4664731 DOI: 10.3389/fphys.2015.00350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/09/2015] [Indexed: 01/26/2023] Open
Abstract
Metabolic syndrome (MS) is characterized by the following physiological alterations: increase in abdominal fat, insulin resistance, high concentration of triglycerides, low levels of HDL, high blood pressure, and a generalized inflammatory state. One of the pathophysiological hallmarks of this syndrome is the presence of neurohumoral activation, which involve autonomic imbalance associated to hyperactivation of the sympathetic nervous system. Indeed, enhanced sympathetic drive has been linked to the development of endothelial dysfunction, hypertension, stroke, myocardial infarct, and obstructive sleep apnea. Glial cells, the most abundant cells in the central nervous system, control synaptic transmission, and regulate neuronal function by releasing bioactive molecules called gliotransmitters. Recently, a new family of plasma membrane channels called hemichannels has been described to allow the release of gliotransmitters and modulate neuronal firing rate. Moreover, a growing amount of evidence indicates that uncontrolled hemichannel opening could impair glial cell functions, affecting synaptic transmission and neuronal survival. Given that glial cell functions are disturbed in various metabolic diseases, we hypothesize that progression of MS may relies on hemichannel-dependent impairment of glial-to-neuron communication by a mechanism related to dysfunction of inflammatory response and mitochondrial metabolism of glial cells. In this manuscript, we discuss how glial cells may contribute to the enhanced sympathetic drive observed in MS, and shed light about the possible role of hemichannels in this process.
Collapse
Affiliation(s)
- Rodrigo Del Rio
- Centro de Investigación Biomédica, Universidad Autónoma de Chile Santiago, Chile ; Dirección de Investigación, Universidad Científica del Sur Lima, Perú
| | | | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Mauricio A Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina. Clínica Alemana Universidad del Desarrollo Santiago, Chile
| |
Collapse
|
49
|
Tang XL, Liu JX, Dong W, Li P, Li L, Hou JC, Zheng YQ, Lin CR, Ren JG. Protective effect of kaempferol on LPS plus ATP-induced inflammatory response in cardiac fibroblasts. Inflammation 2015; 38:94-101. [PMID: 25189464 DOI: 10.1007/s10753-014-0011-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Inflammatory response is an important mechanism in the pathogenesis of cardiovascular diseases. Cardiac fibroblasts play a crucial role in cardiac inflammation and might become a potential therapeutic target in cardiovascular diseases. Kaempferol, a flavonoid commonly existing in many edible fruits, vegetables, and Chinese herbs, is well known to possess anti-inflammatory property and thus has a therapeutic potential for the treatment of inflammatory diseases. To date, the effect of kaempferol on cardiac fibroblasts inflammation is unknown. In this study, we investigated the anti-inflammatory effect of kaempferol on lipopolysaccharide (LPS) plus ATP-induced cardiac fibroblasts and explored the underlying mechanisms. Our results showed that kaempferol at concentrations of 12.5 and 25 μg/mL significantly suppressed the release of TNF-α, IL-1β, IL-6, and IL-18 and inhibited activation of NF-κB and Akt in LPS plus ATP-induced cardiac fibroblasts. These findings suggest that kaempferol attenuates cardiac fibroblast inflammation through suppression of activation of NF-κB and Akt.
Collapse
Affiliation(s)
- Xi-Lan Tang
- Experimental Research Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lin CC, Pan CS, Wang CY, Liu SW, Hsiao LD, Yang CM. Tumor necrosis factor-alpha induces VCAM-1-mediated inflammation via c-Src-dependent transactivation of EGF receptors in human cardiac fibroblasts. J Biomed Sci 2015; 22:53. [PMID: 26173590 PMCID: PMC4502472 DOI: 10.1186/s12929-015-0165-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 07/07/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Tumor necrosis factor-α (TNF-α) is a proinflammatory cytokine and elevated in the regions of tissue injury and inflammatory diseases. The deleterious effects of TNF-α on fibroblasts may aggravate heart inflammation mediated through the up-regulation of adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1). However, the mechanisms underlying TNF-α-induced VCAM-1 expression in cardiac fibroblasts remain unknown. This study aimed to investigate the roles of TNF-α in VCAM-1 expression and its effects on human cardiac fibroblasts (HCFs). RESULTS The primary culture HCFs were used in this study. The results obtained with Western blotting, real time-quantitative PCR, and promoter activity analyses showed that TNF-α-induced VCAM-1 expression was mediated through TNF receptor (TNFR) 1-dependent gene up-regulation. Activation of TNFR1 by TNF-α transactivated c-Src-dependent EGF receptor (EGFR) linking to PI3K/Akt cascade, and then led to transcriptional activity of NF-κB. Moreover, the results of promoter reporter assay demonstrated that the phosphorylated p65 NF-κB turned on VCAM-1 gene expression. Subsequently, up-regulation of VCAM-1 promoted monocytes adhesion to HCFs challenged with TNF-α determined by cell adhesion assay. CONCLUSIONS Taken together, these results indicate that in HCFs, activation of NF-κB by c-Src-mediated transactivation of EGFR/PI3K/Akt cascade is required for TNF-α-induced VCAM-1 expression. Finally, increased VCAM-1 enhances monocytes adhering to HCFs challenged with TNF-α. Understanding the mechanisms of VCAM-1 up-regulated by TNF-α on HCFs may provide rationally therapeutic interventions for heart injury or inflammatory diseases.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo, Kwei-Shan, Tao-Yuan, Taiwan.,College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Chih-Shuo Pan
- Department of Physiology, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan.,Department of Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, Taiwan
| | - Chen-Yu Wang
- Department of Physiology, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan.,Department of Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, Taiwan
| | - Shiau-Wen Liu
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo, Kwei-Shan, Tao-Yuan, Taiwan.,College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo, Kwei-Shan, Tao-Yuan, Taiwan.,College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Department of Physiology, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan. .,Department of Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, Taiwan.
| |
Collapse
|