1
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
2
|
Zapata-Mercado E, Azarova EV, Hristova K. Effect of reversible osmotic stress on live cell plasma membranes, probed via Laurdan general polarization measurements. Biophys J 2022; 121:2411-2418. [PMID: 35596525 DOI: 10.1016/j.bpj.2022.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/10/2021] [Accepted: 05/16/2022] [Indexed: 11/02/2022] Open
Abstract
Here we seek to gain insight into changes in the plasma membrane of live cells upon the application of osmotic stress using Laurdan, a fluorescent probe that reports on membrane organization, hydration, and dynamics. It is known that the application of osmotic stress to lipid vesicles causes a decrease in Laurdan's generalized polarization (GP), which has been interpreted as an indication of membrane stretching. In cells, we see the opposite effects, as GP increases when the osmolarity of the solution is decreased. This increase in GP is associated with the presence of caveolae, which are known to disassemble and flatten in response to osmotic stress.
Collapse
Affiliation(s)
- Elmer Zapata-Mercado
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Evgenia V Azarova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218.
| |
Collapse
|
3
|
Bertero L, Gambella A, Barreca A, Osella-Abate S, Chiusa L, Francia di Celle P, Lista P, Papotti M, Cassoni P. Caveolin-1 expression predicts favourable outcome and correlates with PDGFRA mutations in gastrointestinal stromal tumours (GISTs). J Clin Pathol 2021; 75:825-831. [PMID: 34155091 DOI: 10.1136/jclinpath-2021-207595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/08/2021] [Indexed: 11/04/2022]
Abstract
AIMS Novel prognostic markers are warranted for gastrointestinal stromal tumours. Caveolin-1 is a multifunctional protein that proved to be associated with outcome in multiple tumour types. Aim of this study was to investigate Caveolin-1 expression and prognostic efficacy in a series of gastrointestinal stromal tumours. METHODS Caveolin-1 expression was assessed by immunohistochemistry in a retrospective series of 66 gastrointestinal stromal tumours representative of the different molecular subtypes. Correlations with clinical, histopathological and molecular features were investigated. Statistical analyses were performed as appropriate. RESULTS Thirty-five cases out of 66 (53.0%) expressed Caveolin-1. Presence of Caveolin-1 expression correlated with favourable histopathologic and clinical traits, including a lower mitotic count (p=0.003) and lower relapse rate (p=0.005). Caveolin-1 expression also resulted associated with the presence of PDGFRA mutations (p=0.010). Outcome analyses showed a favourable prognostic significance of Caveolin-1 expression in terms of relapse-free survival (HR=0.14; 95% CI=0.03 to 0.63) and overall survival (HR=0.29; 95% CI=0.11 to 0.74), even after adjusting for the mutational subgroup (relapse-free survival: HR=0.14, 95% CI=0.04 to 0.44; overall survival: HR=0.29, 95% CI=0.11 to 0.51) and imatinib treatment (relapse-free survival: HR=0.14, 95% CI=0.02 to 0.81; overall survival: HR=0.29, 95% CI=0.17 to 0.48). CONCLUSION Caveolin-1 represents a novel prognostic marker in gastrointestinal stromal tumours. Further studies are warranted to validate these results and to explore the mechanisms linking Caveolin-1 expression with the PDGFRA oncogenic pathway.
Collapse
Affiliation(s)
- Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alessandro Gambella
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Antonella Barreca
- Pathology Unit, "Città della Salute e della Scienza di Torino" University Hospital, Turin, Italy
| | - Simona Osella-Abate
- Molecular Pathology Unit, "Città della Salute e della Scienza di Torino" University Hospital, Turin, Italy
| | - Luigi Chiusa
- Pathology Unit, "Città della Salute e della Scienza di Torino" University Hospital, Turin, Italy
| | - Paola Francia di Celle
- Molecular Pathology Unit, "Città della Salute e della Scienza di Torino" University Hospital, Turin, Italy
| | - Patrizia Lista
- Oncology Unit, "Città della Salute e della Scienza di Torino" University Hospital, Turin, Italy
| | - Mauro Papotti
- Pathology Unit, Department of Oncology, University of Turin, Turin, Italy
| | - Paola Cassoni
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
4
|
Wirth D, McCall A, Hristova K. Neural network strategies for plasma membrane selection in fluorescence microscopy images. Biophys J 2021; 120:2374-2385. [PMID: 33961865 PMCID: PMC8390876 DOI: 10.1016/j.bpj.2021.04.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/21/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022] Open
Abstract
In recent years, there has been an explosion of fluorescence microscopy studies of live cells in the literature. The analysis of the images obtained in these studies often requires labor-intensive manual annotation to extract meaningful information. In this study, we explore the utility of a neural network approach to recognize, classify, and select plasma membranes in high-resolution images, thus greatly speeding up data analysis and reducing the need for personnel training for highly repetitive tasks. Two different strategies are tested: 1) a semantic segmentation strategy, and 2) a sequential application of an object detector followed by a semantic segmentation network. Multiple network architectures are evaluated for each strategy, and the best performing solutions are combined and implemented in the Recognition Of Cellular Membranes software. We show that images annotated manually and with the Recognition Of Cellular Membranes software yield identical results by comparing Förster resonance energy transfer binding curves for the membrane protein fibroblast growth factor receptor 3. The approach that we describe in this work can be applied to other image selection tasks in cell biology.
Collapse
Affiliation(s)
- Daniel Wirth
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Alec McCall
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
5
|
VEGF/VEGFR-2 system exerts neuroprotection against Phoneutria nigriventer spider envenomation through PI3K-AKT-dependent pathway. Toxicon 2020; 185:76-90. [PMID: 32649934 DOI: 10.1016/j.toxicon.2020.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 01/19/2023]
Abstract
This study was undertaken to elucidate why VEGF/VEGFR-2 is elevated in the hippocampus of rats injected with Phoneutria nigriventer spider venom (PNV). PNV delays Na+ channels inactivation; blocks Ca2+ and K+ channels, increases glutamate release, causes blood-brain breakdown (BBBb), brain edema and severe excitotoxicity. Analytical FT-IR spectroscopy showed profound alteration in molecular biochemical state, with evidences for VEGFR-2 (KDR/Flk-1) signaling mediation. By blocking VEGF/VEGFR-2 binding via pre-treatment with itraconazole we demonstrated that animals' condition was deteriorated soon at 1-2 h post-PNV exposure concurrently with decreased expression of VEGF, BBB-associated proteins, ZO-1, β-catenin, laminin, P-gp (P-glycoprotein), Neu-N (neuron's viability marker) and MAPKphosphorylated-p38, while phosphorylated-ERK and Src pathways were increased. At 5 h and coinciding with incipient signs of animals' recuperation, the proteins associated with protection (HIF-1α, VEGF, VEGFR-1, VEGFR-2, Neu-N, occludin, β-catenin, laminin, P-gp efflux protein, phosphorylated-p38) increased thus indicating p38 pathway activation together with paracellular route strengthening. However, the BBB transcellular trafficking and caspase-3 increased (pro-apoptotic pathway activation). At 24 h, the transcellular route reestablished physiological state but the pro-survival pathway PI3K/(p-Akt) dropped in animals underwent VEGF/VEGFR-2 binding inhibition, whereas it was significantly activated at matched interval in PNV group without prior itraconazole; these results demonstrate impaired VEGF' survival effects at 24 h. The inhibition of VEGF/VEGFR-2 binding identified 5 h as turning point at which multi-level dynamic interplay was elicited to reverse hippocampal damage. Collectively, the data confirmed VEGFR-2 signaling via serine-threonine kinase Akt as neuroprotective pathway against PNV-induced damage. Further studies are needed to elucidate mechanisms underlying PNV effects.
Collapse
|
6
|
Filippini A, D’Alessio A. Caveolae and Lipid Rafts in Endothelium: Valuable Organelles for Multiple Functions. Biomolecules 2020; 10:biom10091218. [PMID: 32825713 PMCID: PMC7563503 DOI: 10.3390/biom10091218] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022] Open
Abstract
Caveolae are flask-shaped invaginations of the plasma membrane found in numerous cell types and are particularly abundant in endothelial cells and adipocytes. The lipid composition of caveolae largely matches that of lipid rafts microdomains that are particularly enriched in cholesterol, sphingomyelin, glycosphingolipids, and saturated fatty acids. Unlike lipid rafts, whose existence remains quite elusive in living cells, caveolae can be clearly distinguished by electron microscope. Despite their similar composition and the sharing of some functions, lipid rafts appear more heterogeneous in terms of size and are more dynamic than caveolae. Following the discovery of caveolin-1, the first molecular marker as well as the unique scaffolding protein of caveolae, we have witnessed a remarkable increase in studies aimed at investigating the role of these organelles in cell functions and human disease. The goal of this review is to discuss the most recent studies related to the role of caveolae and caveolins in endothelial cells. We first recapitulate the major embryological processes leading to the formation of the vascular tree. We next discuss the contribution of caveolins and cavins to membrane biogenesis and cell response to extracellular stimuli. We also address how caveolae and caveolins control endothelial cell metabolism, a central mechanism involved in migration proliferation and angiogenesis. Finally, as regards the emergency caused by COVID-19, we propose to study the caveolar platform as a potential target to block virus entry into endothelial cells.
Collapse
Affiliation(s)
- Antonio Filippini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Roma, Italy;
| | - Alessio D’Alessio
- Dipartimento di Scienze della Vita e Sanità Pubblica, Sezione di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “Agostino Gemelli”, IRCCS, 00168 Roma, Italia
- Correspondence:
| |
Collapse
|
7
|
Huang X, Yang X, Sun C, Huang S, Cheng M, Han Y. Biophysical signal transduction in cancer cells: Understanding its role in cancer pathogenesis and treatment. Biochim Biophys Acta Rev Cancer 2020; 1874:188402. [PMID: 32771535 DOI: 10.1016/j.bbcan.2020.188402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
Signaling between cells can promote both the development and progression of cancer. It has been found that chemical and physical signals, together with extracellular factors, can influence cancer progression. In this review, we focus on the physical microenvironment of cancer cells and examine the action of mechanical, electromagnetic, thermal, and acoustic signals on cancer cells, which may provide new directions for cancer research and treatment.
Collapse
Affiliation(s)
- XiaoLei Huang
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - XiaoXu Yang
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Chenchen Sun
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - ShuXia Huang
- Department of Psychology, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Min Cheng
- Department of Physiology, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Yangyang Han
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, PR China.
| |
Collapse
|
8
|
Jozic I, Sawaya AP, Pastar I, Head CR, Wong LL, Glinos GD, Wikramanayake TC, Brem H, Kirsner RS, Tomic-Canic M. Pharmacological and Genetic Inhibition of Caveolin-1 Promotes Epithelialization and Wound Closure. Mol Ther 2019; 27:1992-2004. [PMID: 31409528 PMCID: PMC6838864 DOI: 10.1016/j.ymthe.2019.07.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic wounds-including diabetic foot ulcers, venous leg ulcers, and pressure ulcers-represent a major health problem that demands an urgent solution and new therapies. Despite major burden to patients, health care professionals, and health care systems worldwide, there are no efficacious therapies approved for treatment of chronic wounds. One of the major obstacles in achieving wound closure in patients is the lack of epithelial migration. Here, we used multiple pre-clinical wound models to show that Caveolin-1 (Cav1) impedes healing and that targeting Cav1 accelerates wound closure. We found that Cav1 expression is significantly upregulated in wound edge biopsies of patients with non-healing wounds, confirming its healing-inhibitory role. Conversely, Cav1 was absent from the migrating epithelium and is downregulated in acutely healing wounds. Specifically, Cav1 interacted with membranous glucocorticoid receptor (mbGR) and epidermal growth factor receptor (EGFR) in a glucocorticoid-dependent manner to inhibit cutaneous healing. However, pharmacological disruption of caveolae by MβCD or CRISPR/Cas9-mediated Cav1 knockdown resulted in disruption of Cav1-mbGR and Cav1-EGFR complexes and promoted epithelialization and wound healing. Our data reveal a novel mechanism of inhibition of epithelialization and wound closure, providing a rationale for pharmacological targeting of Cav1 as potential therapy for patients with non-healing chronic wounds.
Collapse
Affiliation(s)
- Ivan Jozic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrew P Sawaya
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Cheyanne R Head
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lulu L Wong
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - George D Glinos
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Tongyu Cao Wikramanayake
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Harold Brem
- Division of Wound Healing and Regenerative Medicine, Newark Beth Israel Medical Center, RWJBarnabas Health, Newark, NJ 07112, USA
| | - Robert S Kirsner
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Cellular and Molecular Pharmacology Graduate Program in Biomedical Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
9
|
Lara-Lemus R. On The Role of Myelin and Lymphocyte Protein (MAL) In Cancer: A Puzzle With Two Faces. J Cancer 2019; 10:2312-2318. [PMID: 31258734 PMCID: PMC6584422 DOI: 10.7150/jca.30376] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/07/2019] [Indexed: 12/25/2022] Open
Abstract
Myelin and lymphocyte protein (MAL) is an integral membrane protein constituent of lipid rafts, and it is implicated in apical transport of proteins in polarized epithelial cells. However, beyond the involvement of MAL in apical sorting and as its function as a raft stabilizer, it is still not totally clear how MAL participates in cell proliferating processes. More controversial and interesting is the fact that MAL has been implicated in carcinogenesis in two opposite ways. First, this protein is overexpressed in ovarian cancer and some kinds of lymphomas where it seems to favor cancer progression. Conversely, it has been reported that downregulation of the MAL gene by promoter hypermethylation is a hallmark of several adenocarcinomas. So far, there is not enough experimental evidence to help us understand this phenomenon, and no MAL mutations or MAL isoforms have been associated with these opposite functions. This review provides an updated summary of the structure and functions of MAL, and we will discuss the possible mechanisms underlying its roles as a tumor suppressor and a tumor progression factor.
Collapse
Affiliation(s)
- Roberto Lara-Lemus
- Department of Research in Biochemistry, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”. Mexico City, 14080. Mexico
| |
Collapse
|
10
|
Gao X, Petricoin EF, Ward KR, Goldberg SR, Duane TM, Bonchev D, Arodz T, Diegelmann RF. Network proteomics of human dermal wound healing. Physiol Meas 2018; 39:124002. [PMID: 30524050 DOI: 10.1088/1361-6579/aaee19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The healing of wounds is critical in protecting the human body against environmental factors. The mechanisms involving protein expression during this complex physiological process have not been fully elucidated. APPROACH Here, we use reverse-phase protein microarrays (RPPA) involving 94 phosphoproteins to study tissue samples from tubes implanted in healing dermal wounds in seven human subjects tracked over two weeks. We compare the proteomic profiles to proteomes of controls obtained from skin biopsies from the same subjects. MAIN RESULTS Compared to previous proteomic studies of wound healing, our approach focuses on wound tissue instead of wound fluid, and has the sensitivity to go beyond measuring only highly abundant proteins. To study the temporal dynamics of networks involved in wound healing, we applied two network analysis methods that integrate the experimental results with prior knowledge about protein-protein physical and regulatory interactions, as well as higher-level biological processes and associated pathways. SIGNIFICANCE We uncovered densely connected networks of proteins that are up- or down-regulated during human wound healing, as well as their relationships to microRNAs and to proteins outside of our set of targets that we measured with proteomic microarrays.
Collapse
Affiliation(s)
- Xi Gao
- Department of Computer Science, School of Engineering, Virginia Commonwealth University, Richmond, VA, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The plasma membrane of eukaryotic cells is not a simple sheet of lipids and proteins but is differentiated into subdomains with crucial functions. Caveolae, small pits in the plasma membrane, are the most abundant surface subdomains of many mammalian cells. The cellular functions of caveolae have long remained obscure, but a new molecular understanding of caveola formation has led to insights into their workings. Caveolae are formed by the coordinated action of a number of lipid-interacting proteins to produce a microdomain with a specific structure and lipid composition. Caveolae can bud from the plasma membrane to form an endocytic vesicle or can flatten into the membrane to help cells withstand mechanical stress. The role of caveolae as mechanoprotective and signal transduction elements is reviewed in the context of disease conditions associated with caveola dysfunction.
Collapse
Affiliation(s)
- Robert G. Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland 4060, Australia
| |
Collapse
|
12
|
García-Cardeña G, Slegtenhorst BR. Hemodynamic Control of Endothelial Cell Fates in Development. Annu Rev Cell Dev Biol 2017; 32:633-648. [PMID: 27712101 DOI: 10.1146/annurev-cellbio-100814-125610] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biomechanical forces are emerging as critical regulators of embryogenesis, particularly in the developing cardiovascular system. From the onset of blood flow, the embryonic vasculature is continuously exposed to a variety of hemodynamic forces. These biomechanical stimuli are key determinants of vascular cell specification and remodeling and the establishment of vascular homeostasis. In recent years, major advances have been made in our understanding of mechano-activated signaling networks that control both spatiotemporal and structural aspects of vascular development. It has become apparent that a major site for mechanotransduction is situated at the interface of blood and the vessel wall and that this process is controlled by the vascular endothelium. In this review, we discuss the hemodynamic control of endothelial cell fates, focusing on arterial-venous specification, lymphatic development, and the endothelial-to-hematopoietic transition, and present some recent insights into the mechano-activated pathways driving these cell fate decisions in the developing embryo.
Collapse
Affiliation(s)
- Guillermo García-Cardeña
- Program in Developmental and Regenerative Biology, Harvard Medical School, Boston, Massachusetts 02115; .,Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Bendix R Slegtenhorst
- Program in Developmental and Regenerative Biology, Harvard Medical School, Boston, Massachusetts 02115; .,Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115.,Department of Surgery, Erasmus MC-University Medical Center, 3015 CE, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Mechanosensing in liver regeneration. Semin Cell Dev Biol 2017; 71:153-167. [DOI: 10.1016/j.semcdb.2017.07.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022]
|
14
|
Charles S, Raj V, Arokiaraj J, Mala K. Caveolin1/protein arginine methyltransferase1/sirtuin1 axis as a potential target against endothelial dysfunction. Pharmacol Res 2017; 119:1-11. [PMID: 28126510 DOI: 10.1016/j.phrs.2017.01.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/20/2016] [Accepted: 01/22/2017] [Indexed: 12/23/2022]
Abstract
Endothelial dysfunction (ED), an established response to cardiovascular risk factors, is characterized by increased levels of soluble molecules secreted by endothelial cells (EC). Evidence suggest that ED is an independent predictor of cardiac events and that it is associated with a deficiency in production or bioavailability of nitric oxide (NO) and/or an imbalance in the relative contribution of endothelium-derived relaxing and contracting factors. ED can be reversed by treating cardiovascular risk factors, hence, beyond ambiguity, ED contributes to initiation and progression of atherosclerotic disease. Majority of cardiovascular risk factors act by a common pathway, oxidative stress (OS), characterized by an imbalance in bioavailability of NO and reactive oxygen species (ROS). Enhanced ROS, through several mechanisms, alters competence of EC that leads to ED, reducing its potential to maintain homeostasis and resulting in development of cardiovascular disease (CVD). Influential mechanisms that have been implicated in the development of ED include (i) presence of elevated levels of NOS inhibitor, asymmetric dimethylarginine (ADMA) due to augmented enzyme activity of protein arginine methyl transferase-1 (PRMT1); (ii) decrease in NO generation by endothelial nitric oxide synthase (eNOS) uncoupling, or by reaction of NO with free radicals and (iii) impaired post translational modification of protein (PTM) such as eNOS, caveolin-1 (cav1) and sirtuin-1 (SIRT1). However, the inter-related mechanisms that concur to developing ED is yet to be understood. The events that possibly overlay include OS-induced sequestration of SIRT1 to caveolae facilitating cav1-SIRT1 association; potential increase in lysine acetylation of enzymes such as eNOS and PRMT1 leading to enhanced ADMA formation; imbalance in acetylation-methylation ratio (AMR); diminished NO generation and ED. Here we review current literature from research showing interdependent association between cav1-PRMT1-SIRT1 to the outcomes of experimental and clinical research aiming to preserve endothelial function with gene- or pharmaco-therapy.
Collapse
Affiliation(s)
- Soniya Charles
- Department of Biotechnology, School of Bioengineering, SRM University, Potheri 603203, Tamil Nadu, India
| | - Vijay Raj
- Medical College Hospital and Research Center, SRM University, Potheri 603203, Tamil Nadu, India
| | - Jesu Arokiaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM University, Potheri 603203, Tamil Nadu, India
| | - Kanchana Mala
- Medical College Hospital and Research Center, SRM University, Potheri 603203, Tamil Nadu, India.
| |
Collapse
|
15
|
Han B, Copeland CA, Kawano Y, Rosenzweig EB, Austin ED, Shahmirzadi L, Tang S, Raghunathan K, Chung WK, Kenworthy AK. Characterization of a caveolin-1 mutation associated with both pulmonary arterial hypertension and congenital generalized lipodystrophy. Traffic 2016; 17:1297-1312. [PMID: 27717241 PMCID: PMC5197452 DOI: 10.1111/tra.12452] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 01/01/2023]
Abstract
Congenital generalized lipodystrophy (CGL) and pulmonary arterial hypertension (PAH) have recently been associated with mutations in the caveolin-1 ( CAV1 ) gene, which encodes the primary structural protein of caveolae. However, little is currently known about how these CAV1 mutations impact caveolae formation or contribute to the development of disease. Here, we identify a heterozygous F160X CAV1 mutation predicted to generate a C-terminally truncated mutant protein in a patient with both PAH and CGL using whole exome sequencing, and characterize the properties of CAV1 , caveolae-associated proteins and caveolae in skin fibroblasts isolated from the patient. We show that morphologically defined caveolae are present in patient fibroblasts and that they function in mechanoprotection. However, they exhibited several notable defects, including enhanced accessibility of the C-terminus of wild-type CAV1 in caveolae, reduced colocalization of cavin-1 with CAV1 and decreased stability of both 8S and 70S oligomeric CAV1 complexes that are necessary for caveolae formation. These results were verified independently in reconstituted CAV1 -/- mouse embryonic fibroblasts. These findings identify defects in caveolae that may serve as contributing factors to the development of PAH and CGL and broaden our knowledge of CAV1 mutations associated with human disease.
Collapse
Affiliation(s)
- Bing Han
- Department of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee
| | - Courtney A. Copeland
- Department of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee
| | - Yumeko Kawano
- Departments of Pediatrics and Medicine, Columbia University Medical Center, New York City, New York
| | - Erika Berman Rosenzweig
- Departments of Pediatrics and Medicine, Columbia University Medical Center, New York City, New York
| | - Eric D. Austin
- Division of Allergy, Pulmonary and Immunology Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - Sha Tang
- Ambry Genetics, Aliso Viejo, California
| | - Krishnan Raghunathan
- Departments of Pediatrics and Medicine, Columbia University Medical Center, New York City, New York
| | - Wendy K. Chung
- Departments of Pediatrics and Medicine, Columbia University Medical Center, New York City, New York
| | - Anne K. Kenworthy
- Department of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee
| |
Collapse
|
16
|
Molecular Changes Associated with the Protective Effects of Angiopoietin-1 During Blood-Brain Barrier Breakdown Post-Injury. Mol Neurobiol 2016; 54:4232-4242. [DOI: 10.1007/s12035-016-9973-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/09/2016] [Indexed: 11/30/2022]
|
17
|
Tran J, Magenau A, Rodriguez M, Rentero C, Royo T, Enrich C, Thomas SR, Grewal T, Gaus K. Activation of Endothelial Nitric Oxide (eNOS) Occurs through Different Membrane Domains in Endothelial Cells. PLoS One 2016; 11:e0151556. [PMID: 26977592 PMCID: PMC4792450 DOI: 10.1371/journal.pone.0151556] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 03/01/2016] [Indexed: 11/18/2022] Open
Abstract
Endothelial cells respond to a large range of stimuli including circulating lipoproteins, growth factors and changes in haemodynamic mechanical forces to regulate the activity of endothelial nitric oxide synthase (eNOS) and maintain blood pressure. While many signalling pathways have been mapped, the identities of membrane domains through which these signals are transmitted are less well characterized. Here, we manipulated bovine aortic endothelial cells (BAEC) with cholesterol and the oxysterol 7-ketocholesterol (7KC). Using a range of microscopy techniques including confocal, 2-photon, super-resolution and electron microscopy, we found that sterol enrichment had differential effects on eNOS and caveolin-1 (Cav1) colocalisation, membrane order of the plasma membrane, caveolae numbers and Cav1 clustering. We found a correlation between cholesterol-induced condensation of the plasma membrane and enhanced high density lipoprotein (HDL)-induced eNOS activity and phosphorylation suggesting that cholesterol domains, but not individual caveolae, mediate HDL stimulation of eNOS. Vascular endothelial growth factor (VEGF)-induced and shear stress-induced eNOS activity was relatively independent of membrane order and may be predominantly controlled by the number of caveolae on the cell surface. Taken together, our data suggest that signals that activate and phosphorylate eNOS are transmitted through distinct membrane domains in endothelial cells.
Collapse
Affiliation(s)
- Jason Tran
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, Australia
| | - Astrid Magenau
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, Australia
| | - Macarena Rodriguez
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, Australia
| | - Carles Rentero
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Teresa Royo
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Carlos Enrich
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Shane R. Thomas
- School of Medical Sciences, The University of New South Wales, Sydney, Australia
| | - Thomas Grewal
- Faculty of Pharmacy A15, University of Sydney, Sydney, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
18
|
McSweeney SR, Warabi E, Siow RCM. Nrf2 as an Endothelial Mechanosensitive Transcription Factor: Going With the Flow. Hypertension 2015; 67:20-9. [PMID: 26597822 DOI: 10.1161/hypertensionaha.115.06146] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Shane R McSweeney
- From the Cardiovascular Division, British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom (S.R.M., R.C.M.S.); and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan (E.W.)
| | - Eiji Warabi
- From the Cardiovascular Division, British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom (S.R.M., R.C.M.S.); and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan (E.W.)
| | - Richard C M Siow
- From the Cardiovascular Division, British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom (S.R.M., R.C.M.S.); and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan (E.W.).
| |
Collapse
|
19
|
Echarri A, Del Pozo MA. Caveolae - mechanosensitive membrane invaginations linked to actin filaments. J Cell Sci 2015; 128:2747-58. [PMID: 26159735 DOI: 10.1242/jcs.153940] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
An essential property of the plasma membrane of mammalian cells is its plasticity, which is required for sensing and transmitting of signals, and for accommodating the tensional changes imposed by its environment or its own biomechanics. Caveolae are unique invaginated membrane nanodomains that play a major role in organizing signaling, lipid homeostasis and adaptation to membrane tension. Caveolae are frequently associated with stress fibers, a major regulator of membrane tension and cell shape. In this Commentary, we discuss recent studies that have provided new insights into the function of caveolae and have shown that trafficking and organization of caveolae are tightly regulated by stress-fiber regulators, providing a functional link between caveolae and stress fibers. Furthermore, the tension in the plasma membrane determines the curvature of caveolae because they flatten at high tension and invaginate at low tension, thus providing a tension-buffering system. Caveolae also regulate multiple cellular pathways, including RhoA-driven actomyosin contractility and other mechanosensitive pathways, suggesting that caveolae could couple mechanotransduction pathways to actin-controlled changes in tension through their association with stress fibers. Therefore, we argue here that the association of caveolae with stress fibers could provide an important strategy for cells to deal with mechanical stress.
Collapse
Affiliation(s)
- Asier Echarri
- Integrin Signaling Laboratory, Cell Biology & Physiology Program, Cell & Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, Madrid 28029, Spain
| | - Miguel A Del Pozo
- Integrin Signaling Laboratory, Cell Biology & Physiology Program, Cell & Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, Madrid 28029, Spain
| |
Collapse
|
20
|
Collins C, Tzima E, Patterson C. Inflammation. Atherosclerosis 2015. [DOI: 10.1002/9781118828533.ch4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Liu Y, Flores D, Carrisoza-Gaytán R, Rohatgi R. Cholesterol affects flow-stimulated cyclooxygenase-2 expression and prostanoid secretion in the cortical collecting duct. Am J Physiol Renal Physiol 2015; 308:F1229-37. [PMID: 25761882 DOI: 10.1152/ajprenal.00635.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/09/2015] [Indexed: 12/31/2022] Open
Abstract
Essential hypertension (eHTN) is associated with hypercholesterolemia, but how cholesterol contributes to eHTN is unknown. Recent evidence demonstrates that short-term dietary cholesterol ingestion induces epithelial Na channel (ENaC)-dependent Na absorption with a subsequent rise in blood pressure (BP), implicating cholesterol in salt-sensitive HTN. Prostaglandin E2 (PGE2), an autocrine/paracrine molecule, is induced by flow in endothelia to vasodilate the vasculature and inhibit ENaC-dependent Na absorption in the renal collecting duct (CD), which reduce BP. We hypothesize that cholesterol suppresses flow-mediated cyclooxygenase-2 (COX-2) expression and PGE2 release in the CD, which, in turn, affects Na absorption. Cortical CDs (CCDs) were microperfused at 0, 1, and 5 nl·min(-1)·mm(-1), and PGE2 release was measured. Secreted PGE2 was similar between no- and low-flow (151 ± 28 vs. 121 ± 48 pg·ml(-1)·mm(-1)) CCDs, but PGE2 was greatest from high-flow (578 ± 146 pg·ml(-1)·mm(-1); P < 0.05) CCDs. Next, mice were fed either a 0 or 1% cholesterol diet, injected with saline to generate high urine flow rates, and CCDs were microdissected for PGE2 secretion. CCDs isolated from cholesterol-fed mice secreted less PGE2 and had a lower PGE2-generating capacity than CCDs isolated from control mice, implying cholesterol repressed flow-induced PGE2 synthesis. Next, cholesterol extraction in a CD cell line induced COX-2 expression and PGE2 release while cholesterol incorporation, conversely, suppressed their expression. Moreover, fluid shear stress (FSS) and cholesterol extraction induced COX-2 protein abundance via p38-dependent activation. Thus cellular cholesterol composition affects biomechanical signaling, which, in turn, affects FSS-mediated COX-2 expression and PGE2 release via a p38-dependent mechanism.
Collapse
Affiliation(s)
- Yu Liu
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, The James J. Peters Veterans Affairs Medical Center, New York, New York; and
| | - Daniel Flores
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, The James J. Peters Veterans Affairs Medical Center, New York, New York; and
| | | | - Rajeev Rohatgi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, The James J. Peters Veterans Affairs Medical Center, New York, New York; and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
22
|
Jin X, Sun Y, Xu J, Liu W. Caveolin-1 mediates tissue plasminogen activator-induced MMP-9 up-regulation in cultured brain microvascular endothelial cells. J Neurochem 2015; 132:724-30. [PMID: 25683686 DOI: 10.1111/jnc.13065] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 02/03/2015] [Accepted: 02/09/2015] [Indexed: 12/01/2022]
Abstract
Thrombolysis with tissue plasminogen activator (tPA) increases matrix metalloproteinase-9 (MMP-9) activity in the ischemic brain, which exacerbates blood-brain barrier injury and increases the risk of symptomatic cerebral hemorrhage. The mechanism through which tPA enhances MMP-9 activity is not well understood. Here we report an important role of caveolin-1 in mediating tPA-induced MMP-9 synthesis. Brain microvascular endothelial cell line bEnd3 cells were incubated with 5 or 20 μg/ml tPA for 24 hrs before analyzing MMP-9 levels in the conditioned media and cellular extracts by gelatin zymography. tPA at a dose of 20 μg/mL tPA, but not 5 μg/mL, significantly increased MMP-9 level in cultured media while decreasing it in cellular extracts. Concurrently, tPA treatment induced a 2.3-fold increase of caveolin-1 protein levels in endothelial cells. Interestingly, knockdown of Cav-1 with siRNA inhibited tPA-induced MMP-9 mRNA up-regulation and MMP-9 increase in the conditioned media, but did not affect MMP-9 decrease in cellular extracts. These results suggest that caveolin-1 critically contributes to tPA-mediated MMP-9 up-regulation, but may not facilitate MMP-9 secretion in endothelial cells. Thrombolysis with tissue plasminogen activator (tPA) increases matrix metalloproteinase-9 (MMP-9) activity in the ischemic brain, which exacerbates ischemic blood brain barrier (BBB) injury and increases the risk of symptomatic cerebral hemorrhage. Our results suggest a novel mechanism underlying this tPA-MMP 9 axis. In response to tPA treatment, caveolin-1 protein levels increased in endothelial cells, which mediate MMP-9 mRNA up-regulation and its secretion into extracellular space. Caveolin-1 may, however, not facilitate MMP-9 secretion in endothelial cells. Our data suggest caveolin-1 as a novel therapeutic target for protecting the BBB against ischemic damage. The schematic outlines tPA-induced MMP-9 upreguation.
Collapse
Affiliation(s)
- Xinchun Jin
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | | | | | | |
Collapse
|
23
|
Quillon A, Fromy B, Debret R. Endothelium microenvironment sensing leading to nitric oxide mediated vasodilation: A review of nervous and biomechanical signals. Nitric Oxide 2015; 45:20-6. [DOI: 10.1016/j.niox.2015.01.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 01/07/2015] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
|
24
|
|
25
|
Coutinho P, Vega C, Pojoga LH, Rivera A, Prado GN, Yao TM, Adler G, Torres-Grajales M, Maldonado ER, Ramos-Rivera A, Williams JS, Williams G, Romero JR. Aldosterone's rapid, nongenomic effects are mediated by striatin: a modulator of aldosterone's effect on estrogen action. Endocrinology 2014; 155:2233-43. [PMID: 24654783 PMCID: PMC4020933 DOI: 10.1210/en.2013-1834] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The cellular responses to steroids are mediated by 2 general mechanisms: genomic and rapid/nongenomic effects. Identification of the mechanisms underlying aldosterone (ALDO)'s rapid vs their genomic actions is difficult to study, and these mechanisms are not clearly understood. Recent data suggest that striatin is a mediator of nongenomic effects of estrogen. We explored the hypothesis that striatin is an intermediary of the rapid/nongenomic effects of ALDO and that striatin serves as a novel link between the actions of the mineralocorticoid and estrogen receptors. In human and mouse endothelial cells, ALDO promoted an increase in phosphorylated extracellular signal-regulated protein kinases 1/2 (pERK) that peaked at 15 minutes. In addition, we found that striatin is a critical intermediary in this process, because reducing striatin levels with small interfering RNA (siRNA) technology prevented the rise in pERK levels. In contrast, reducing striatin did not significantly affect 2 well-characterized genomic responses to ALDO. Down-regulation of striatin with siRNA produced similar effects on estrogen's actions, reducing nongenomic, but not some genomic, actions. ALDO, but not estrogen, increased striatin levels. When endothelial cells were pretreated with ALDO, the rapid/nongenomic response to estrogen on phosphorylated endothelial nitric oxide synthase (peNOS) was enhanced and accelerated significantly. Importantly, pretreatment with estrogen did not enhance ALDO's nongenomic response on pERK. In conclusion, our results indicate that striatin is a novel mediator for both ALDO's and estrogen's rapid and nongenomic mechanisms of action on pERK and phosphorylated eNOS, respectively, thereby suggesting a unique level of interactions between the mineralocorticoid receptor and the estrogen receptor in the cardiovascular system.
Collapse
Affiliation(s)
- Patricia Coutinho
- Division of Endocrinology, Diabetes and Hypertension (P.C., C.V., L.H.P., G.N.P., T.M.Y., G.A., M.T.-G., E.R.M., A.R.-R., J.S.W., G.W., J.R.R.), Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, and Department of Laboratory Medicine (C.V., A.R., G.N.P., E.R.M.), Boston Children's Hospital and Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Shiroto T, Romero N, Sugiyama T, Sartoretto JL, Kalwa H, Yan Z, Shimokawa H, Michel T. Caveolin-1 is a critical determinant of autophagy, metabolic switching, and oxidative stress in vascular endothelium. PLoS One 2014; 9:e87871. [PMID: 24498385 PMCID: PMC3912129 DOI: 10.1371/journal.pone.0087871] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 12/30/2013] [Indexed: 01/29/2023] Open
Abstract
Caveolin-1 is a scaffolding/regulatory protein that interacts with diverse signaling molecules. Caveolin-1null mice have marked metabolic abnormalities, yet the underlying molecular mechanisms are incompletely understood. We found the redox stress plasma biomarker plasma 8-isoprostane was elevated in caveolin-1null mice, and discovered that siRNA-mediated caveolin-1 knockdown in endothelial cells promoted significant increases in intracellular H2O2. Mitochondrial ROS production was increased in endothelial cells after caveolin-1 knockdown; 2-deoxy-D-glucose attenuated this increase, implicating caveolin-1 in control of glycolytic pathways. We performed unbiased metabolomic characterizations of endothelial cell lysates following caveolin-1 knockdown, and discovered strikingly increased levels (up to 30-fold) of cellular dipeptides, consistent with autophagy activation. Metabolomic analyses revealed that caveolin-1 knockdown led to a decrease in glycolytic intermediates, accompanied by an increase in fatty acids, suggesting a metabolic switch. Taken together, these results establish that caveolin-1 plays a central role in regulation of oxidative stress, metabolic switching, and autophagy in the endothelium, and may represent a critical target in cardiovascular diseases.
Collapse
Affiliation(s)
- Takashi Shiroto
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Natalia Romero
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Toru Sugiyama
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Juliano L. Sartoretto
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hermann Kalwa
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Zhonghua Yan
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Thomas Michel
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
27
|
Abstract
Morphogenesis is the remarkable process by which cells self-assemble into complex tissues and organs that exhibit specialized form and function during embryological development. Many of the genes and chemical cues that mediate tissue and organ formation have been identified; however, these signals alone are not sufficient to explain how tissues and organs are constructed that exhibit their unique material properties and three-dimensional forms. Here, we review work that has revealed the central role that physical forces and extracellular matrix mechanics play in the control of cell fate switching, pattern formation, and tissue development in the embryo and how these same mechanical signals contribute to tissue homeostasis and developmental control throughout adult life.
Collapse
Affiliation(s)
- Tadanori Mammoto
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115;
| | | | | |
Collapse
|
28
|
Povero D, Eguchi A, Niesman IR, Andronikou N, de Mollerat du Jeu X, Mulya A, Berk M, Lazic M, Thapaliya S, Parola M, Patel HH, Feldstein AE. Lipid-induced toxicity stimulates hepatocytes to release angiogenic microparticles that require Vanin-1 for uptake by endothelial cells. Sci Signal 2013; 6:ra88. [PMID: 24106341 DOI: 10.1126/scisignal.2004512] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Angiogenesis is a key pathological feature of experimental and human steatohepatitis, a common chronic liver disease that is associated with obesity. We demonstrated that hepatocytes generated a type of membrane-bound vesicle, microparticles, in response to conditions that mimicked the lipid accumulation that occurs in the liver in some forms of steatohepatitis and that these microparticles promoted angiogenesis. When applied to an endothelial cell line, medium conditioned by murine hepatocytes or a human hepatocyte cell line exposed to saturated free fatty acids induced migration and tube formation, two processes required for angiogenesis. Medium from hepatocytes in which caspase 3 was inhibited or medium in which the microparticles were removed by ultracentrifugation lacked proangiogenic activity. Isolated hepatocyte-derived microparticles induced migration and tube formation of an endothelial cell line in vitro and angiogenesis in mice, processes that depended on internalization of microparticles. Microparticle internalization required the interaction of the ectoenzyme Vanin-1 (VNN1), an abundant surface protein on the microparticles, with lipid raft domains of endothelial cells. Large quantities of hepatocyte-derived microparticles were detected in the blood of mice with diet-induced steatohepatitis, and microparticle quantity correlated with disease severity. Genetic ablation of caspase 3 or RNA interference directed against VNN1 protected mice from steatohepatitis-induced pathological angiogenesis in the liver and resulted in a loss of the proangiogenic effects of microparticles. Our data identify hepatocyte-derived microparticles as critical signals that contribute to angiogenesis and liver damage in steatohepatitis and suggest a therapeutic target for this condition.
Collapse
Affiliation(s)
- Davide Povero
- 1Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sun J, Nguyen T, Kohr MJ, Murphy E. Cardioprotective Role of Caveolae in Ischemia-Reperfusion Injury. ACTA ACUST UNITED AC 2013; 3. [PMID: 26989575 DOI: 10.4172/2161-1025.1000114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Caveolae are flask-like invaginations of the plasma membrane enriched in cholesterol, sphingolipids, the marker protein caveolin and the coat protein cavin. In cardiomyocytes, multiple signaling molecules are concentrated and organized within the caveolae to mediate signaling transduction. Recent studies suggest that caveolae and caveolae-associated signaling molecules play an important role in protecting the myocardium against ischemia-reperfusion injury. For example, cardiac-specific overexpression of caveolin-3 has been shown to lead to protection that mimics ischemic preconditioning, while the knockout of caveolin-3 abolished ischemic preconditioning. In this review, we discuss the molecular mechanisms and signaling pathways that are involved in caveolae-mediated cardioprotection, and examine the potential for caveolae as a therapeutic target for pharmaceutical intervention to treat cardiovascular disease.
Collapse
Affiliation(s)
- Junhui Sun
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tiffany Nguyen
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark J Kohr
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Pathology, Johns Hopkins Medical Institutions, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Elizabeth Murphy
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
30
|
Lee HJ, Li N, Evans SM, Diaz MF, Wenzel PL. Biomechanical force in blood development: extrinsic physical cues drive pro-hematopoietic signaling. Differentiation 2013; 86:92-103. [PMID: 23850217 DOI: 10.1016/j.diff.2013.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/17/2013] [Accepted: 06/19/2013] [Indexed: 02/07/2023]
Abstract
The hematopoietic system is dynamic during development and in adulthood, undergoing countless spatial and temporal transitions during the course of one's life. Microenvironmental cues in the many unique hematopoietic niches differ, characterized by distinct soluble molecules, membrane-bound factors, and biophysical features that meet the changing needs of the blood system. Research from the last decade has revealed the importance of substrate elasticity and biomechanical force in determination of stem cell fate. Our understanding of the role of these factors in hematopoiesis is still relatively poor; however, the developmental origin of blood cells from the endothelium provides a model for comparison. Many endothelial mechanical sensors and second messenger systems may also determine hematopoietic stem cell fate, self renewal, and homing behaviors. Further, the intimate contact of hematopoietic cells with mechanosensitive cell types, including osteoblasts, endothelial cells, mesenchymal stem cells, and pericytes, places them in close proximity to paracrine signaling downstream of mechanical signals. The objective of this review is to present an overview of the sensors and intracellular signaling pathways activated by mechanical cues and highlight the role of mechanotransductive pathways in hematopoiesis.
Collapse
Affiliation(s)
- Hyun Jung Lee
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, University of Texas Medical School at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
31
|
Chai Q, Wang XL, Zeldin DC, Lee HC. Role of caveolae in shear stress-mediated endothelium-dependent dilation in coronary arteries. Cardiovasc Res 2013; 100:151-9. [PMID: 23787000 DOI: 10.1093/cvr/cvt157] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
AIMS Caveolae are membrane microdomains where important signalling pathways are assembled and molecular effects transduced. In this study, we hypothesized that shear stress-mediated vasodilation (SSD) of mouse small coronary arteries (MCA) is caveolae-dependent. METHODS AND RESULTS MCA (80-150 μm) isolated from wild-type (WT) and caveolin-1 null (Cav-1(-/-)) mice were subjected to physiological levels of shear stress (1-25 dynes/cm(2)) with and without pre-incubation of inhibitors of nitric oxide synthase (L-NAME), cyclooxygenase (indomethacin, INDO), or cytochrome P450 epoxygenase (SKF 525A). SSD was endothelium-dependent in WT and Cav-1(-/-) coronaries but that in Cav-1(-/-) was significantly diminished compared with WT. Pre-incubation with L-NAME, INDO, or SKF 525A significantly reduced SSD in WT but not in Cav-1(-/-) mice. Vessels from the soluble epoxide hydrolase null (Ephx2(-/-)) mice showed enhanced SSD, which was further augmented by the presence of arachidonic acid. In donor-detector-coupled vessel experiments, Cav-1(-/-) donor vessels produced diminished dilation in WT endothelium-denuded detector vessels compared with WT donor vessels. Shear stress elicited a robust intracellular Ca(2+) increase in vascular endothelial cells isolated from WT but not those from Cav-1(-/-) mice. CONCLUSION Integrity of caveolae is critical for endothelium-dependent SSD in MCA. Cav-1(-/-) endothelium is deficient in shear stress-mediated generation of vasodilators including NO, prostaglandins, and epoxyeicosatrienoic acids. Caveolae plays a critical role in endothelial signal transduction from shear stress to vasodilator production and release.
Collapse
Affiliation(s)
- Qiang Chai
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
32
|
Ramkhelawon B, Rivas D, Lehoux S. Shear stress activates extracellular signal-regulated kinase 1/2 via the angiotensin II type 1 receptor. FASEB J 2013; 27:3008-16. [PMID: 23585396 DOI: 10.1096/fj.12-222299] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mechanical factors such as strain, pressure, and shear stress are key regulators of cell function, but the molecular mechanisms underlying the detection and responses to such stimuli are poorly understood. Whether the angiotensin II (AngII) AT1 receptor (AT1R) transduces shear stress in endothelial cells (ECs) is unknown. We exposed human umbilical cord endothelial cells (HUVECs) to a shear stress of 0 (control) or 15 dyn/cm(2) for 5 or 10 min. The colocalization of AT1R with caveolin-1 (Cav1), endosomal markers Rab5, EEA1, and Rab7, and lysosomal marker Lamp-1 increased in shear stimulated cells, detected by immunocytochemistry. Shear stress reduced labeling of wild-type mouse ECs (18±3% of unsheared control, P<0.01) but not Cav1(-/-) ECs (90±10%) with fluorescent AngII, confirming that internalization of AT1R requires Cav1. Shear stress activated ERK1/2 2-fold (P<0.01), which was prevented by the AT1R blocker losartan. NADPH oxidase inhibition with apocynin prevented both the colocalization of AT1R with Cav1 and the induction of ERK1/2 by shear stress. Moreover, shear-dependent ERK1/2 activation was minimal in CHO cells expressing an AT1Ra mutant that does not internalize, compared with cells expressing wild-type AT1Ra (P<0.05). Hence, AT1R may be an important transducer of shear stress-dependent activation of ERK1/2.
Collapse
|
33
|
Abstract
Blood vessels alter their morphology and function in response to changes in blood flow, and their responses are based on blood flow detection by the vascular endothelium. Endothelial cells (ECs) covering the inner surface of blood vessels sense shear stress generated by flowing blood and transmit the signal into the interior of the cell, which evokes a cellular response. The EC response to shear stress is closely linked to the regulation of vascular tone, blood coagulation and fibrinolysis, angiogenesis, and vascular remodelling, and it plays an important role in maintaining the homoeostasis of the circulatory system. Impairment of the EC response to shear stress leads to the development of vascular diseases such as hypertension, thrombosis, aneurysms, and atherosclerosis. Rapid progress has been made in elucidating shear stress mechanotransduction by using in vitro methods that apply controlled levels of shear stress to cultured ECs in fluid-dynamically designed flow-loading devices. The results have revealed that shear stress is converted into intracellular biochemical signals that are mediated by a variety of membrane molecules and microdomains, including ion channels, receptors, G-proteins, adhesion molecules, the cytoskeleton, caveolae, the glycocalyx, and primary cilia, and that multiple downstream signalling pathways become activated almost simultaneously. Nevertheless, neither the shear-stress-sensing mechanisms nor the sensor molecules that initially sense shear stress are yet known. Their identification would contribute to a better understanding of the pathophysiology of the vascular diseases that occur in a blood flow-dependent manner and to the development of new treatments for them.
Collapse
Affiliation(s)
- Joji Ando
- Laboratory of Biomedical Engineering, School of Medicine, Dokkyo Medical University, 880 Kita-kobayashi, Mibu, Tochigi 321-0293, Japan.
| | | |
Collapse
|
34
|
Hanson CA, Drake KR, Baird MA, Han B, Kraft LJ, Davidson MW, Kenworthy AK. Overexpression of caveolin-1 is sufficient to phenocopy the behavior of a disease-associated mutant. Traffic 2013; 14:663-77. [PMID: 23469926 DOI: 10.1111/tra.12066] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 03/05/2013] [Accepted: 03/07/2013] [Indexed: 12/30/2022]
Abstract
Mutations and alterations in caveolin-1 expression levels have been linked to a number of human diseases. How misregulation of caveolin-1 contributes to disease is not fully understood, but has been proposed to involve the intracellular accumulation of mutant forms of the protein. To better understand the molecular basis for trafficking defects that trap caveolin-1 intracellularly, we compared the properties of a GFP-tagged version of caveolin-1 P132L, a mutant form of caveolin-1 previously linked to breast cancer, with wild-type caveolin-1. Unexpectedly, wild-type caveolin-1-GFP also accumulated intracellularly, leading us to examine the mechanisms underlying the abnormal localization of the wild type and mutant protein in more detail. We show that both the nature of the tag and cellular context impact the subcellular distribution of caveolin-1, demonstrate that even the wild-type form of caveolin-1 can function as a dominant negative under some conditions, and identify specific conformation changes associated with incorrectly targeted forms of the protein. In addition, we find intracellular caveolin-1 is phosphorylated on Tyr14, but phosphorylation is not required for mistrafficking of the protein. These findings identify novel properties of mistargeted forms of caveolin-1 and raise the possibility that common trafficking defects underlie diseases associated with overexpression and mutations in caveolin-1.
Collapse
Affiliation(s)
- Caroline A Hanson
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Kim HN, Jiao A, Hwang NS, Kim MS, Kang DH, Kim DH, Suh KY. Nanotopography-guided tissue engineering and regenerative medicine. Adv Drug Deliv Rev 2013; 65:536-58. [PMID: 22921841 PMCID: PMC5444877 DOI: 10.1016/j.addr.2012.07.014] [Citation(s) in RCA: 267] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 07/19/2012] [Accepted: 07/23/2012] [Indexed: 12/14/2022]
Abstract
Human tissues are intricate ensembles of multiple cell types embedded in complex and well-defined structures of the extracellular matrix (ECM). The organization of ECM is frequently hierarchical from nano to macro, with many proteins forming large scale structures with feature sizes up to several hundred microns. Inspired from these natural designs of ECM, nanotopography-guided approaches have been increasingly investigated for the last several decades. Results demonstrate that the nanotopography itself can activate tissue-specific function in vitro as well as promote tissue regeneration in vivo upon transplantation. In this review, we provide an extensive analysis of recent efforts to mimic functional nanostructures in vitro for improved tissue engineering and regeneration of injured and damaged tissues. We first characterize the role of various nanostructures in human tissues with respect to each tissue-specific function. Then, we describe various fabrication methods in terms of patterning principles and material characteristics. Finally, we summarize the applications of nanotopography to various tissues, which are classified into four types depending on their functions: protective, mechano-sensitive, electro-active, and shear stress-sensitive tissues. Some limitations and future challenges are briefly discussed at the end.
Collapse
Affiliation(s)
- Hong Nam Kim
- Division of WCU Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, Republic of Korea
| | - Alex Jiao
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Nathaniel S. Hwang
- School of Chemical and Biological Engineering, Institute for Chemical Processing, Seoul National University, Seoul 151-742, Republic of Korea
| | - Min Sung Kim
- Division of WCU Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, Republic of Korea
| | - Do Hyun Kang
- Division of WCU Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, Republic of Korea
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Kahp-Yang Suh
- Division of WCU Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, Republic of Korea
- Institute of Biological Engineering, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
36
|
Yamamoto K, Ando J. Endothelial cell and model membranes respond to shear stress by rapidly decreasing the order of their lipid phases. J Cell Sci 2013; 126:1227-34. [PMID: 23378020 DOI: 10.1242/jcs.119628] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Endothelial cells (ECs) sense shear stress and transduce blood flow information into functional responses that play important roles in vascular homeostasis and pathophysiology. A unique feature of shear-stress-sensing is the involvement of many different types of membrane-bound molecules, including receptors, ion channels and adhesion proteins, but the mechanisms remain unknown. Because cell membrane properties affect the activities of membrane-bound proteins, shear stress might activate various membrane-bound molecules by altering the physical properties of EC membranes. To determine how shear stress influences the cell membrane, cultured human pulmonary artery ECs were exposed to shear stress and examined for changes in membrane lipid order and fluidity by Laurdan two-photon imaging and FRAP measurements. Upon shear stress stimulation, the lipid order of EC membranes rapidly decreased in an intensity-dependent manner, and caveolar membrane domains changed from the liquid-ordered state to the liquid-disordered state. Notably, a similar decrease in lipid order occurred when the artificial membranes of giant unilamellar vesicles were exposed to shear stress, suggesting that this is a physical phenomenon. Membrane fluidity increased over the entire EC membranes in response to shear stress. Addition of cholesterol to ECs abolished the effects of shear stress on membrane lipid order and fluidity and markedly suppressed ATP release, which is a well-known EC response to shear stress and is involved in shear-stress Ca(2+) signaling. These findings indicate that EC membranes directly respond to shear stress by rapidly decreasing their lipid phase order and increasing their fluidity; these changes could be linked to shear-stress-sensing and response mechanisms.
Collapse
Affiliation(s)
- Kimiko Yamamoto
- Laboratory of System Physiology, Department of Biomedical Engineering, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan.
| | | |
Collapse
|
37
|
Vascular Endothelium. TISSUE FUNCTIONING AND REMODELING IN THE CIRCULATORY AND VENTILATORY SYSTEMS 2013. [DOI: 10.1007/978-1-4614-5966-8_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Increased caveolae density and caveolin-1 expression accompany impaired NO-mediated vasorelaxation in diet-induced obesity. Histochem Cell Biol 2012; 139:309-21. [DOI: 10.1007/s00418-012-1032-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2012] [Indexed: 01/24/2023]
|
39
|
Abstract
Caveolins (Cavs) are integrated plasma membrane proteins that are complex signaling regulators with numerous partners and whose activity is highly dependent on cellular context. Cavs are both positive and negative regulators of cell signaling in and/or out of caveolae, invaginated lipid raft domains whose formation is caveolin expression dependent. Caveolins and rafts have been implicated in membrane compartmentalization; proteins and lipids accumulate in these membrane microdomains where they transmit fast, amplified and specific signaling cascades. The concept of plasma membrane organization within functional rafts is still in exploration and sometimes questioned. In this chapter, we discuss the opposing functions of caveolin in cell signaling regulation focusing on the role of caveolin both as a promoter and inhibitor of different signaling pathways and on the impact of membrane domain localization on caveolin functionality in cell proliferation, survival, apoptosis and migration.
Collapse
|
40
|
Yamamoto K, Furuya K, Nakamura M, Kobatake E, Sokabe M, Ando J. Visualization of flow-induced ATP release and triggering of Ca2+ waves at caveolae in vascular endothelial cells. J Cell Sci 2012; 124:3477-83. [PMID: 22010198 DOI: 10.1242/jcs.087221] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endothelial cells (ECs) release ATP in response to shear stress, a fluid mechanical force generated by flowing blood but, although its release has a crucial role in controlling a variety of vascular functions by activating purinergic receptors, the mechanism of ATP release has never been established. To analyze the dynamics of ATP release, we developed a novel chemiluminescence imaging method by using cell-surface-attached firefly luciferase and a CCD camera. Upon stimulation of shear stress, cultured human pulmonary artery ECs simultaneously released ATP in two different manners, a highly concentrated, localized manner and a less concentrated, diffuse manner. The localized ATP release occurred at caveolin-1-rich regions of the cell membrane, and was blocked by caveolin-1 knockdown with siRNA and the depletion of plasma membrane cholesterol with methyl-β-cyclodexrin, indicating involvement of caveolae in localized ATP release. Ca(2+) imaging with Fluo-4 combined with ATP imaging revealed that shear stress evoked an increase in intracellular Ca(2+) concentration and the subsequent Ca(2+) wave that originated from the same sites as the localized ATP release. These findings suggest that localized ATP release at caveolae triggers shear-stress-dependent Ca(2+) signaling in ECs.
Collapse
Affiliation(s)
- Kimiko Yamamoto
- Laboratory of System Physiology, Department of Biomedical Engineering, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Xing Y, Gu Y, Xu LC, Siedlecki CA, Donahue HJ, You J. Effects of membrane cholesterol depletion and GPI-anchored protein reduction on osteoblastic mechanotransduction. J Cell Physiol 2011; 226:2350-9. [PMID: 21660958 PMCID: PMC3071886 DOI: 10.1002/jcp.22579] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We previously demonstrated that oscillatory fluid flow activates MC3T3-E1 osteoblastic cell calcium signaling pathways via a mechanism involving ATP releases and P2Y(2) puringeric receptors. However, the molecular mechanisms by which fluid flow initiates cellular responses are still unclear. Accumulating evidence suggests that lipid rafts, one of the important membrane structural components, may play an important role in transducing extracellular fluid shear stress to intracellular responses. Due to the limitations of current techniques, there is no direct approach to study the role of lipid rafts in transmitting fluid shear stress. In this study, we targeted two important membrane components associated with lipid rafts, cholesterol, and glycosylphosphatidylinositol-anchored proteins (GPI-anchored proteins), to disrupt the integrity of cell membrane structures. We first demonstrated that membrane cholesterol depletion with the treatment of methyl-β-cyclodextrin inhibits oscillatory fluid flow induced intracellular calcium mobilization and ERK1/2 phosphorylation in MC3T3-E1 osteoblastic cells. Secondly, we used a novel approach to decrease the levels of GPI-anchored proteins on cell membranes by overexpressing glycosylphosphatidylinositol-specific phospholipase D in MC3T3-E1 osteoblastic cells. This resulted in significant inhibition of intracellular calcium mobilization and ERK1/2 phosphorylation in response to oscillatory fluid flow. Finally, we demonstrated that cholesterol depletion inhibited oscillatory fluid flow induced ATP releases, which were responsible for the activation of calcium signaling pathways in MC3T3-E1 osteoblastic cells. Our findings suggest that cholesterol and GPI-anchored proteins, two membrane structural components related to lipid rafts, may play an important role in osteoblastic cell mechanotransduction.
Collapse
Affiliation(s)
- Yanghui Xing
- Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine Hershey, PA 17033
| | - Yan Gu
- Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine Hershey, PA 17033
| | - Li-Chong Xu
- Division of Artificial Organs, Department of Surgery, The Pennsylvania State University College of Medicine Hershey, PA 17033
| | - Christopher A. Siedlecki
- Division of Artificial Organs, Department of Surgery, The Pennsylvania State University College of Medicine Hershey, PA 17033
| | - Henry J. Donahue
- Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine Hershey, PA 17033
| | - Jun You
- Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine Hershey, PA 17033
| |
Collapse
|
42
|
Sinha B, Köster D, Ruez R, Gonnord P, Bastiani M, Abankwa D, Stan RV, Butler-Browne G, Vedie B, Johannes L, Morone N, Parton RG, Raposo G, Sens P, Lamaze C, Nassoy P. Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 2011; 144:402-13. [PMID: 21295700 PMCID: PMC3042189 DOI: 10.1016/j.cell.2010.12.031] [Citation(s) in RCA: 673] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 10/27/2010] [Accepted: 12/23/2010] [Indexed: 12/15/2022]
Abstract
The functions of caveolae, the characteristic plasma membrane invaginations, remain debated. Their abundance in cells experiencing mechanical stress led us to investigate their role in membrane-mediated mechanical response. Acute mechanical stress induced by osmotic swelling or by uniaxial stretching results in a rapid disappearance of caveolae, in a reduced caveolin/Cavin1 interaction, and in an increase of free caveolins at the plasma membrane. Tether-pulling force measurements in cells and in plasma membrane spheres demonstrate that caveola flattening and disassembly is the primary actin- and ATP-independent cell response that buffers membrane tension surges during mechanical stress. Conversely, stress release leads to complete caveola reassembly in an actin- and ATP-dependent process. The absence of a functional caveola reservoir in myotubes from muscular dystrophic patients enhanced membrane fragility under mechanical stress. Our findings support a new role for caveolae as a physiological membrane reservoir that quickly accommodates sudden and acute mechanical stresses.
Collapse
Affiliation(s)
- Bidisha Sinha
- Université P. et M. Curie/CNRS UMR168, Centre de Recherche, Laboratoire Physico-Chimie, 26 rue d’Ulm, 75248 Paris Cedex 05, France
- Institut Curie, Centre de Recherche, Laboratoire Physico-Chimie, 26 rue d’Ulm, 75248 Paris Cedex 05, France
| | - Darius Köster
- Université P. et M. Curie/CNRS UMR168, Centre de Recherche, Laboratoire Physico-Chimie, 26 rue d’Ulm, 75248 Paris Cedex 05, France
- Institut Curie, Centre de Recherche, Laboratoire Physico-Chimie, 26 rue d’Ulm, 75248 Paris Cedex 05, France
| | - Richard Ruez
- CNRS UMR144, Centre de Recherche, Laboratoire Trafic, Signalisation et Ciblage Intracellulaires, 26 rue d’Ulm, 75248 Paris Cedex 05, France
- Institut Curie, Centre de Recherche, Laboratoire Trafic, Signalisation et Ciblage Intracellulaires, 26 rue d’Ulm, 75248 Paris Cedex 05, France
| | - Pauline Gonnord
- CNRS UMR144, Centre de Recherche, Laboratoire Trafic, Signalisation et Ciblage Intracellulaires, 26 rue d’Ulm, 75248 Paris Cedex 05, France
- Institut Curie, Centre de Recherche, Laboratoire Trafic, Signalisation et Ciblage Intracellulaires, 26 rue d’Ulm, 75248 Paris Cedex 05, France
| | - Michele Bastiani
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland 4072, Australia
- Center for Microscopy and Microanalysis, Brisbane, Queensland 4072, Australia
| | - Daniel Abankwa
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland 4072, Australia
- Center for Microscopy and Microanalysis, Brisbane, Queensland 4072, Australia
| | - Radu. V. Stan
- Dartmouth Medical School, Borwell 502W, HB7600, One Medical Center Drive, 03756 Lebanon, NH, USA
| | - Gillian Butler-Browne
- Institut de Myologie – Hôpital Pitié-Salpétrière, UM76 UPMC, U974 Inserm, UMR7215 - CNRS-AIM, 47, bld de l’hôpital, 75651 Paris cedex 13, France
| | - Benoit Vedie
- Laboratoire de Biochimie, Hôpital Européen Georges Pompidou, 20 rue Leblanc, 75015 Paris, France
| | - Ludger Johannes
- CNRS UMR144, Centre de Recherche, Laboratoire Trafic, Signalisation et Ciblage Intracellulaires, 26 rue d’Ulm, 75248 Paris Cedex 05, France
- Institut Curie, Centre de Recherche, Laboratoire Trafic, Signalisation et Ciblage Intracellulaires, 26 rue d’Ulm, 75248 Paris Cedex 05, France
| | - Nobuhiro Morone
- National Center of Neurology and Psychiatry, National Institute of Neuroscience, Department of Ultrastructural Research, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Robert G. Parton
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland 4072, Australia
- Center for Microscopy and Microanalysis, Brisbane, Queensland 4072, Australia
| | - Graça Raposo
- CNRS UMR144, Centre de Recherche, Laboratoire Trafic, Signalisation et Ciblage Intracellulaires, 26 rue d’Ulm, 75248 Paris Cedex 05, France
- PICT IBiSA Institut Curie, Laboratoire Structure et Compartiments Membranaires, Institut Curie, 26 rue d’Ulm, 75248 Paris Cedex 05, France
- Centre de Recherche, Laboratoire Structure et Compartiments Membranaires, Institut Curie, 26 rue d’Ulm, 75248 Paris Cedex 05, France
| | - Pierre Sens
- ESPCI, CNRS-UMR 7083 - Physico-Chimie Théorique, 10 rue Vauquelin, 75231 Paris Cedex 05, France
| | - Christophe Lamaze
- CNRS UMR144, Centre de Recherche, Laboratoire Trafic, Signalisation et Ciblage Intracellulaires, 26 rue d’Ulm, 75248 Paris Cedex 05, France
- Institut Curie, Centre de Recherche, Laboratoire Trafic, Signalisation et Ciblage Intracellulaires, 26 rue d’Ulm, 75248 Paris Cedex 05, France
| | - Pierre Nassoy
- Université P. et M. Curie/CNRS UMR168, Centre de Recherche, Laboratoire Physico-Chimie, 26 rue d’Ulm, 75248 Paris Cedex 05, France
- Institut Curie, Centre de Recherche, Laboratoire Physico-Chimie, 26 rue d’Ulm, 75248 Paris Cedex 05, France
| |
Collapse
|
43
|
Case N, Xie Z, Sen B, Styner M, Zou M, O'Conor C, Horowitz M, Rubin J. Mechanical activation of β-catenin regulates phenotype in adult murine marrow-derived mesenchymal stem cells. J Orthop Res 2010; 28:1531-8. [PMID: 20872592 PMCID: PMC3046385 DOI: 10.1002/jor.21156] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Regulation of skeletal remodeling appears to influence the differentiation of multipotent mesenchymal stem cells (MSC) resident in the bone marrow. As murine marrow cultures are contaminated with hematopoietic cells, they are problematic for studying direct effects of mechanical input. Here we use a modified technique to isolate marrow-derived MSC (mdMSC) from adult mice, yielding a population able to differentiate into adipogenic and osteogenic phenotypes that is devoid of hematopoietic cells. In pure mdMSC populations, a daily strain regimen inhibited adipogenic differentiation, suppressing expression of PPARγ and adiponectin. Strain increased β-catenin and inhibition of adipogenesis required this effect. Under osteogenic conditions, strain activated β-catenin signaling and increased expression of WISP1 and COX2. mdMSC were also generated from mice lacking caveolin-1, a protein known to sequester β-catenin: caveolin-1((-/-)) mdMSC exhibited retarded differentiation along both adipogenic and osteogenic lineages but retained mechanical responses that involved β-catenin activation. Interestingly, caveolin-1((-/-)) mdMSC failed to express bone sialoprotein and did not form mineralized nodules. In summary, mdMSC from adult mice respond to both soluble factors and mechanical input, with mechanical activation of β-catenin influencing phenotype. As such, these cells offer a useful model for studies of direct mechanical regulation of MSC differentiation and function.
Collapse
Affiliation(s)
- Natasha Case
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Tabouillot T, Muddana HS, Butler PJ. Endothelial Cell Membrane Sensitivity to Shear Stress is Lipid Domain Dependent. Cell Mol Bioeng 2010; 4:169-181. [PMID: 22247740 DOI: 10.1007/s12195-010-0136-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Blood flow-associated shear stress causes physiological and pathophysiological biochemical processes in endothelial cells that may be initiated by alterations in plasma membrane lipid domains characterized as liquid-ordered (l(o)), such as rafts or caveolae, or liquid-disordered (l(d)). To test for domain-dependent shear sensitivity, we used time-correlated single photon counting instrumentation to assess the photophysics and dynamics of the domain-selective lipid analogues DiI-C(12) and DiI-C(18) in endothelial cells subjected to physiological fluid shear stress. Under static conditions, DiI-C(12) fluorescence lifetime was less than DiI-C(18) lifetime and the diffusion coefficient of DiI-C(12) was greater than the DiI-C(18) diffusion coefficient, confirming that DiI-C(12) probes l(d), a more fluid membrane environment, and DiI-C(18) probes the l(o) phase. Domains probed by DiI-C(12) exhibited an early (10 s) and transient decrease of fluorescence lifetime after the onset of shear while domains probed by DiI-C(18) exhibited a delayed decrease of fluorescence lifetime that was sustained for the 2 min the cells were subjected to flow. The diffusion coefficient of DiI-C(18) increased after shear imposition, while that of DiI-C(12) remained constant. Determination of the number of molecules (N) in the control volume suggested that DiI-C(12)-labeled domains increased in N immediately after step-shear, while N for DiI-C(18)-stained membrane transiently decreased. These results demonstrate that membrane microdomains are differentially sensitive to fluid shear stress.
Collapse
Affiliation(s)
- Tristan Tabouillot
- Department of Bioengineering, The Pennsylvania State University, 205 Hallowell Building, University Park, PA 16802, USA
| | | | | |
Collapse
|
45
|
Kim J, Ahn S, Ko YG, Boo YC, Chi SG, Ni CW, Go YM, Jo H, Park H. X-linked inhibitor of apoptosis protein controls alpha5-integrin-mediated cell adhesion and migration. Am J Physiol Heart Circ Physiol 2010; 299:H300-9. [PMID: 20472758 PMCID: PMC8868572 DOI: 10.1152/ajpheart.00180.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 05/13/2010] [Indexed: 11/22/2022]
Abstract
The association of integrins with caveolin-1 regulates cell adhesion. However, the vascular ramifications of this association remain to be clearly determined. We recently reported that the X chromosome-linked inhibitor of apoptosis protein (XIAP)-caveolin-1 interaction is critical to endothelial cell survival. Thus, we hypothesized that XIAP performs a crucial function in integrin/caveolin-1-mediated endothelial cell survival. In this study, we demonstrated that XIAP is recruited into the alpha(5)-integrin complex via caveolin-1 binding and mediates cell adhesion. We also determined that XIAP is critical to shear stress-stimulated ERK activation in an alpha(5)-integrin-dependent manner but is not important to VEGF-induced ERK activation. This differential activation of ERK is partly attributable to unique localizations of the receptors. Furthermore, we confirmed that XIAP is an essential molecule in the efficient recruitment of focal adhesion kinase (FAK) into the alpha(5)-integrin-associated complex. This alpha(5)-integrin-caveolin-1-XIAP-FAK multicomplex regulates endothelial cell migration via a mechanism that involves shear-dependent ERK activation. Together, our results indicate that XIAP stabilizes the alpha(5)-integrin-associated focal adhesion complex, thereby further regulating endothelial cell adhesion and migration. The findings of this study provide us with greater insight into the molecular mechanisms underlying the control of vascular function by integrins.
Collapse
Affiliation(s)
- Jongmin Kim
- Dept. of Molecular Biology and Institute of Nanosensor and Biotechnology, BK21 Graduate Program for RNA Biology, Dankook Univiersity, 126, Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do 448-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Shynlova O, Kwong R, Lye SJ. Mechanical stretch regulates hypertrophic phenotype of the myometrium during pregnancy. Reproduction 2010; 139:247-53. [PMID: 19776098 DOI: 10.1530/rep-09-0260] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The adaptive growth of the uterus is a critical event that involves changes in cellular phenotypes throughout pregnancy. In early pregnancy, uterine growth is due to hyperplasia of uterine smooth muscle cells (SMCs) within the myometrium; however, the major component of myometrial growth occurs after mid-gestation. This study sought to test the hypothesis that increase in myometrial growth seen during late pregnancy is due to SMC hypertrophy caused by mechanical stretch of uterine tissue by a growing fetus(es) by providing direct measurements of individual SMC size. We employed a stereological approach to calculate the average cell volumes of uterine myocytes through diameter measurements using the Stereoinvestigator statistical software. Uterine tissues were collected from nonpregnant Wistar rats, as well as from gravid and nongravid horns of unilaterally pregnant animals on gestational days (d) 8 (early gestation), 14 (mid-gestation), 19 (late gestation), 22 (term), and 4 days post partum. Anti-caveolin-1 immunostaining was used to clearly delineate SMC boundaries. The stereological analysis revealed that the dramatic increase in myometrial growth seen during late gestation (d19-22) is due to a threefold increase in the size of uterine myocytes. A significant increase in SMC volumes was detected in the gravid uterine horn as compared with the corresponding empty horn of unilateral term pregnant animals (day 22, mean cell volume 1114 vs 361 microm(3), P<0.05), indicating the effect of uterine occupancy. The restriction of the hypertrophy to cells within the gravid horn suggests that it may be a response to the biological mechanical stretch of uterine walls by the growing fetus(es) and placenta(s).
Collapse
Affiliation(s)
- Oksana Shynlova
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 25 Orde Street, Room 6-1019, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
47
|
Sharma A, Yu C, Bernatchez PN. New insights into caveolae, caveolins and endothelial function. Can J Cardiol 2010; 26 Suppl A:5A-8A. [DOI: 10.1016/s0828-282x(10)71053-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
48
|
Wang Y, Maciejewski BS, Drouillard D, Santos M, Hokenson MA, Hawwa RL, Huang Z, Sanchez-Esteban J. A role for caveolin-1 in mechanotransduction of fetal type II epithelial cells. Am J Physiol Lung Cell Mol Physiol 2010; 298:L775-83. [PMID: 20172952 DOI: 10.1152/ajplung.00327.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mechanical forces are critical for fetal lung development. Using surfactant protein C (SP-C) as a marker, we previously showed that stretch-induced fetal type II cell differentiation is mediated via the ERK pathway. Caveolin-1, a major component of the plasma membrane microdomains, is important as a signaling protein in blood vessels exposed to shear stress. Its potential role in mechanotransduction during fetal lung development is unknown. Caveolin-1 is a marker of type I epithelial cell phenotype. In this study, using immunocytochemistry, Western blotting, and immunogold electron microscopy, we first demonstrated the presence of caveolin-1 in embryonic day 19 (E19) rat fetal type II epithelial cells. By detergent-free purification of lipid raft-rich membrane fractions and fluorescence immunocytochemistry, we found that mechanical stretch translocates caveolin-1 from the plasma membrane to the cytoplasm. Disruption of the lipid rafts with cholesterol-chelating agents further increased stretch-induced ERK activation and SP-C gene expression compared with stretch samples without disruptors. Similar results were obtained when caveolin-1 gene was knocked down by small interference RNA. In contrast, adenovirus overexpression of the wild-type caveolin-1 or delivery of caveolin-1 scaffolding domain peptide inside the cells decreased stretch-induced ERK phosphorylation and SP-C mRNA expression. In conclusion, our data suggest that caveolin-1 is present in E19 fetal type II epithelial cells. Caveolin-1 is translocated from the plasma membrane to the cytoplasm by mechanical stretch and functions as an inhibitory protein in stretch-induced type II cell differentiation via the ERK pathway.
Collapse
Affiliation(s)
- Yulian Wang
- Department of Pediatrics, Women & Infants Hospital of Rhode Island and Warren Alpert Medical School of Brown University, Providence, Rhode Island 02905, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
All blood vessels are lined by a layer of endothelial cells that help to control vascular permeability. The luminal surface of vascular endothelial cells is studded with transport vesicles called caveolae that are directly in contact with the blood and can transport molecules into and across the endothelium. The vasculature within distinct tissue types expresses a unique array of proteins that can be used to target intravenously injected antibodies directly to that tissue. When the tissue-specific proteins are concentrated in caveolae, the antibodies can be rapidly pumped out of the blood and into the tissue. Tumors appear to be a distinct tissue type with their own unique marker proteins. Targeting accessible proteins at the surface of tumor vasculature with radiolabeled antibodies destroys tumors and drastically increases animal survival. One day, it may be possible to specifically pump targeted molecules into tumors. This could increase therapeutic efficacy and decrease side effects because most of the drug would accumulate specifically in the tumor. Thus, targeting caveolae may provide a universal portal to pump drugs, imaging agents, and gene vectors out of the blood and into underlying tissue.
Collapse
|
50
|
Mechanotransduction by TRP Channels: General Concepts and Specific Role in the Vasculature. Cell Biochem Biophys 2009; 56:1-18. [DOI: 10.1007/s12013-009-9067-2] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|