1
|
El-Sheikh SMA, Gomaa M, Saied R, Metwally MMM, Mahboub HH, Alharbi HM, Abdelazim AM, Heikal HS, Khamis T, Galal A. Benefits of fenugreek extract on renal tissue of ovariectomized rats treated with gentamicin: Biochemical, gene expression, and histopathological assessments. Tissue Cell 2025; 96:102999. [PMID: 40449037 DOI: 10.1016/j.tice.2025.102999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 05/28/2025] [Accepted: 05/28/2025] [Indexed: 06/02/2025]
Abstract
Estrogen deprivation is linked to a diverse range of functional and histological changes in different body systems, especially kidneys. Hence, this study assesses the potential benefits of fenugreek extract (FGE) in the protection of ovariectomized rats' renal tissues, even when they received gentamicin treatment (GEN). Forty adult Wistar female rats were assigned into 5 equivalent cohorts. Group 1 (Sham): rats subjected to sham surgery; group 2 (OVX): ovariectomized rats; group 3 (OVX+ FG): ovariectomized rats administered FGE orally with dose 200 mg/kg/day; group 4 (OVX + GEN): ovariectomized rats orally received distilled water for 8 weeks, then were intraperitoneally injected with gentamycin (GEN) with dose of 40 mg /kg/day for 10 days and group 5 (OVX + FG + GEN): ovariectomized rats orally received FGE for 8 weeks and then were intraperitoneally injected with GEN for 10 days concurrently with FGE with the same previous doses. The oral administration of FGE notably decreased serum creatinine, urea, uric acid, Tumor necrosis factor (TNF-α), and Malondialdehyde (MDA), and notably elevated estrogen, Ca, Ph, and Glutathione (GSH), Total antioxidant capacity (TAC), and Interleukin 10 (IL-10) levels in the OVX+ FG and OVX + FG + GEN groups contrasted to the ovariectomized and OVX + GEN groups. Furthermore, it caused an elevation in EGF expression and a decrease in Transforming growth factor beta (TGF-β), Platelet-derived growth factor B (PDGFB), and inducible nitric oxide synthase (iNOS) expressions. The histological changes occurred by the ovariectomy and GEN treatment were improved by FGE. These findings imply that FGE, even in women receiving GEN treatment, is a useful natural treatment for the control of renal abnormalities seen in postmenopausal women.
Collapse
Affiliation(s)
- Sawsan M A El-Sheikh
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed Gomaa
- Department of Surgery, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Randa Saied
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed M M Metwally
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras sidr, Egypt; Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Heba H Mahboub
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Sharkia, Zagazig, Egypt.
| | - Hanan M Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Aaser M Abdelazim
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 255, Bisha 67714, Saudi Arabia
| | - Hanim S Heikal
- Department of Animal Husbandry and Animal Wealth Development, Facultyof Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Azza Galal
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
2
|
Miljković R, Marinković E, Prodić I, Kovačević A, Protić-Rosić I, Vasić M, Lukić I, Gavrović-Jankulović M, Stojanović M. Ameliorative Effect of Banana Lectin in TNBS-Induced Colitis in C57BL/6 Mice Relies on the Promotion of Antioxidative Mechanisms in the Colon. Biomolecules 2025; 15:476. [PMID: 40305159 PMCID: PMC12024995 DOI: 10.3390/biom15040476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/22/2025] [Accepted: 03/05/2025] [Indexed: 05/02/2025] Open
Abstract
Background: The global burden of inflammatory bowel diseases (IBDs), including ulcerative colitis and Crohn's disease, is constantly rising. As IBDs significantly reduce patients' quality of life, prevention and efficient treatment of IBDs are of paramount importance. Although the molecular mechanisms underlying IBD pathogenesis are still not completely understood, numerous studies indicate the essential role of oxidative stress in the progression of the diseases. Objective: The aim of this study was to investigate whether prophylactic administration of recombinant banana lectin (rBanLec) could positively affect antioxidative mechanisms in the colon and thus prevent or alleviate the severity of experimental colitis induced in C57BL/6 mice. Methods: The prophylactic potential of rBanLec, a mannose-binding lectin with immunomodulatory properties, was investigated in a model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in C57BL/6 mice. Mice received rBanLec at various doses (0.1, 1 and 10 μg/mL) before the induction of colitis. The severity of the disease was assessed by weight loss and reduction in colon length, and correlated with histopathological findings, cytokine milieu, and oxidative stress markers in the colon. Results: The obtained results revealed that pretreatment with a low dose of rBanLec (0.1 μg/mL) significantly reduced the severity of TNBS-induced colitis, as indicated by reduced weight loss, less severe histopathological damage, and a favorable anti-inflammatory cytokine milieu (increased IL-10 and TGFβ). In addition, rBanLec pretreatment improved the activity of antioxidant enzymes (SOD, CAT, and GST) and reduced markers of oxidative stress such as nitric oxide levels at the peak of the disease. In contrast, higher doses of rBanLec exacerbated inflammatory responses. Conclusions: Our findings indicate that at low doses rBanLec can alleviate the severity of colitis by modulating oxidative stress and promoting anti-inflammatory cytokine responses, positioning rBanLec as a potential candidate for treating IBDs.
Collapse
Grants
- 451-03-66/2024-03/200177 Ministry of Science, Technological Development and Innovation, Serbia
- 451-03-66/2024-03/200007 Ministry of Science, Technological Development and Innovation, Serbia
- 451-03-66/2024-03/200168 Ministry of Science, Technological Development and Innovation, Serbia
- 451-03-136/2025-03/ 200177 Ministry of Science, Technological Development and Innovation, Serbia
- 451-03-136/2025-03/ 200007 Ministry of Science, Technological Development and Innovation, Serbia
- 451-03-136/2025-03/ 200168 Ministry of Science, Technological Development and Innovation, Serbia
Collapse
Affiliation(s)
- Radmila Miljković
- Department of Research and Development, Institute of Virology, Vaccines and Sera “Torlak”, 11221 Belgrade, Serbia; (R.M.); (I.P.); (A.K.); (M.V.); (I.L.)
| | - Emilija Marinković
- Institute for Immunology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Ivana Prodić
- Department of Research and Development, Institute of Virology, Vaccines and Sera “Torlak”, 11221 Belgrade, Serbia; (R.M.); (I.P.); (A.K.); (M.V.); (I.L.)
| | - Ana Kovačević
- Department of Research and Development, Institute of Virology, Vaccines and Sera “Torlak”, 11221 Belgrade, Serbia; (R.M.); (I.P.); (A.K.); (M.V.); (I.L.)
| | - Isidora Protić-Rosić
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11158 Belgrade, Serbia; (I.P.-R.); (M.G.-J.)
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Marko Vasić
- Department of Research and Development, Institute of Virology, Vaccines and Sera “Torlak”, 11221 Belgrade, Serbia; (R.M.); (I.P.); (A.K.); (M.V.); (I.L.)
| | - Ivana Lukić
- Department of Research and Development, Institute of Virology, Vaccines and Sera “Torlak”, 11221 Belgrade, Serbia; (R.M.); (I.P.); (A.K.); (M.V.); (I.L.)
| | - Marija Gavrović-Jankulović
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11158 Belgrade, Serbia; (I.P.-R.); (M.G.-J.)
| | - Marijana Stojanović
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia
| |
Collapse
|
3
|
DeConne TM, Buckley DJ, Trott DW, Martens CR. The role of T cells in vascular aging, hypertension, and atherosclerosis. Am J Physiol Heart Circ Physiol 2024; 327:H1345-H1360. [PMID: 39423035 DOI: 10.1152/ajpheart.00570.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Vascular dysfunction has emerged as a significant risk factor for the development of cardio- and cerebrovascular diseases (CVDs), which are currently the leading cause of morbidity and mortality worldwide. T lymphocytes (T cells) have been shown to be important modulators of vascular function in primary aging and CVDs, likely by producing inflammatory cytokines and reactive oxygen species that influence vasoprotective molecules. This review summarizes the role of T cells on vascular function in aging, hypertension, and atherosclerosis in animals and humans, and discusses potential T-cell targeted therapeutics to prevent, delay, or reverse vascular dysfunction.
Collapse
Affiliation(s)
- Theodore M DeConne
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - David J Buckley
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
| | - Daniel W Trott
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, United States
| | - Christopher R Martens
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
4
|
Lee KH, Lin YC, Tsai MT, Tu CF, Ou SM, Chen HY, Li FA, Tseng WC, Lin YP, Yang RB, Tarng DC. Plasma SCUBE2 as a novel biomarker associates with survival outcomes in patients with sepsis-associated acute kidney injury. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024; 57:720-729. [PMID: 39034165 DOI: 10.1016/j.jmii.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/03/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND The adverse effects of sepsis-associated acute kidney injury (SA-AKI) highlight the need for new biomarkers. Signal Peptide-Complement C1r/C1s, Uegf, Bmp1-Epidermal Growth Factor-like Domain-Containing Protein 2 (SCUBE2), important for angiogenesis and endothelial integrity, has been linked to increased mortality in models of lipopolysaccharide-induced lung injury. This research aimed to assess the utility of plasma SCUBE2 levels as a prognostic indicator for SA-AKI in intensive care unit (ICU) patients. METHODS Between September 2020 and December 2022, our study enrolled ICU patients diagnosed with stage 3 SA-AKI. We collected demographic information, illness severity indices, and laboratory data, including plasma SCUBE2 and sepsis-triggered cytokine levels. We employed receiver operating characteristic curves and DeLong tests to assess the predictive accuracy for survival, Kaplan-Meier curves to evaluate the relative risk of death, and multivariate logistic regression to identify independent mortality predictors. RESULTS Among the total of 200 participants, the survivors had significantly higher plasma SCUBE2 levels (115.9 ng/mL) compared to those who died (35.6 ng/mL). SCUBE2 levels showed a positive correlation with the anti-inflammatory cytokine IL-10 and a negative correlation with the APACHE II score, SOFA score, C-reactive protein, and monocyte chemoattractant protein-1. Multivariate analysis revealed that elevated SCUBE2 and IL-10 levels were independently protective against mortality, and associated with the most favorable 30-day survival outcomes. CONCLUSIONS In ICU patients with stage 3 SA-AKI, lower plasma levels of SCUBE2 were correlated with elevated pro-inflammatory factors, which impacted survival outcomes. This suggests that SCUBE2 could be a potential biomarker for predicting prognosis in patients with SA-AKI.
Collapse
Affiliation(s)
- Kuo-Hua Lee
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan; Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang-Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yuh-Charn Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Tsun Tsai
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan; Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang-Ming Chiao Tung University, Hsinchu, Taiwan
| | - Cheng-Fen Tu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shuo-Ming Ou
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan; Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang-Ming Chiao Tung University, Hsinchu, Taiwan
| | - Huan-Yuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Fu-An Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wei-Cheng Tseng
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan; Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang-Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yao-Ping Lin
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan; Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang-Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Der-Cherng Tarng
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan; Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang-Ming Chiao Tung University, Hsinchu, Taiwan; Department and Institute of Physiology, National Yang-Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
5
|
Singh K, Misra DP. Interleukin-10: Role in arterial wall homeostasis and dampening of inflammation in Takayasu arteritis. Int J Rheum Dis 2023; 26:1663-1666. [PMID: 37664962 DOI: 10.1111/1756-185x.14807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/16/2023] [Indexed: 09/05/2023]
Affiliation(s)
- Kritika Singh
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Durga Prasanna Misra
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| |
Collapse
|
6
|
Wolf ST, Dillon GA, Alexander LM, Jablonski NG, Kenney WL. Skin pigmentation is negatively associated with circulating vitamin D concentration and cutaneous microvascular endothelial function. Am J Physiol Heart Circ Physiol 2022; 323:490-498. [PMID: 35930446 PMCID: PMC9448272 DOI: 10.1152/ajpheart.00309.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/22/2022]
Abstract
Darkly pigmented individuals are at the greatest risk of hypovitaminosis D, which may result in microvascular endothelial dysfunction via reduced nitric oxide (NO) bioavailability and/or increased oxidative stress and inflammation. We investigated the associations among skin pigmentation (M-index; skin reflectance spectrophotometry), serum vitamin D concentration [25(OH)D], circulating inflammatory cytokine (TNF-α, IL-6, and IL-10) concentrations, and the NO contribution to local heating-induced cutaneous vasodilation (%NO-mediated vasodilation) in a diversely pigmented cohort of young adults. An intradermal microdialysis fiber was placed in the forearms of 33 healthy adults (14 men/19 women; 18-27 yr; M-index, 30-81 AU) for local delivery of pharmacological agents. Lactated Ringer's solution was perfused through the fiber during local heating-induced (39°C) cutaneous vasodilation. After attaining stable elevated blood flow, 15 mM NG-nitro-l-arginine methyl ester (l-NAME; NO synthase inhibiter) was infused to quantify %NO-mediated vasodilation. Red cell flux was measured (laser-Doppler flowmetry; LDF) and cutaneous vascular conductance (CVC = LDF/MAP) was normalized to maximal (%CVCmax; 28 mM sodium nitroprusside + 43°C). Serum [25(OH)D] and circulating cytokines were analyzed by ELISA and multiplex assay, respectively. M-index was negatively associated with [25(OH)D] (r = -0.57, P < 0.0001) and %NO-mediated vasodilation (r = -0.42, P = 0.02). Serum[25(OH)D] was positively related to %NO (r = 0.41, P = 0.02). Controlling for [25(OH)D] weakened the association between M-index and %NO-mediated dilation (P = 0.16, r = -0.26). There was a negative curvilinear relation between [25(OH)D] and circulating IL-6 (r = -0.56, P < 0.001), but not TNF-α or IL-10 (P ≥ 0.14). IL-6 was not associated with %NO-mediated vasodilation (P = 0.44). These data suggest that vitamin D insufficiency/deficiency may contribute to reduced microvascular endothelial function in healthy, darkly pigmented young adults.NEW & NOTEWORTHY Endothelial dysfunction, an antecedent to hypertension and overt CVD, is commonly observed in otherwise healthy Black adults, although the underlying causes remain unclear. We show that reduced vitamin D availability with increasing degrees of skin pigmentation is associated with reduced microvascular endothelial function, independent of race or ethnicity, in healthy young adults. Greater prevalence of vitamin D deficiency in more darkly pigmented individuals may predispose them to increased risk of endothelial dysfunction.
Collapse
Affiliation(s)
- S Tony Wolf
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - Gabrielle A Dillon
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - Lacy M Alexander
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
- Graduate Program in Physiology, The Pennsylvania State University, University Park, Pennsylvania
| | - Nina G Jablonski
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania
| | - W Larry Kenney
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
- Graduate Program in Physiology, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
7
|
Freitas RAD, Lima VV, Bomfim GF, Giachini FRC. Interleukin-10 in the Vasculature: Pathophysiological Implications. Curr Vasc Pharmacol 2021; 20:230-243. [PMID: 34961448 DOI: 10.2174/1570161120666211227143459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/18/2021] [Accepted: 11/16/2021] [Indexed: 11/22/2022]
Abstract
Interleukin-10 (IL-10) is an important immunomodulatory cytokine, initially characterized as an anti-inflammatory agent released by immune cells during infectious and inflammatory processes. IL-10 exhibits biological functions that extend to the regulation of different intracellular signaling pathways directly associated with vascular function. This cytokine plays a vital role in vascular tone regulation through the change of important proteins involved in vasoconstriction and vasodilation. Numerous investigations covered here have shown that therapeutic strategies inducing IL-10 result in anti-inflammatory, anti-hypertrophic, antihyperplastic, anti-apoptotic and antihypertensive effects. This non-systematic review summarizes the modulating effects mediated by IL-10 in vascular tissue, particularly on vascular tone, and the intracellular pathway induced by this cytokine. We also highlight the advances in IL-10 manipulation as a therapeutic target in different cardiovascular pathophysiologies, including the physiological implications in animals and humans. Finally, the review illustrates current and potential future perspectives of the potential use of IL-10 in clinical trials, based on the clinical evidence.
Collapse
Affiliation(s)
| | - Victor Vitorino Lima
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra do Garças - Brazil
| | | | - Fernanda Regina Casagrande Giachini
- Institute of Biological Sciences, Federal University of Goias, Goiânia - Brazil.
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra do Garças - Brazil
| |
Collapse
|
8
|
Memi G, Yazgan B. Adropin and spexin hormones regulate the systemic inflammation in adenine-induced chronic kidney failure in rat. CHINESE J PHYSIOL 2021; 64:194-201. [PMID: 34472450 DOI: 10.4103/cjp.cjp_13_21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Chronic kidney disease is one of the major global health problems. Chronic renal failure is stimulated by many cytokines and chemokines. Adropin and spexin (SPX) are peptides hormones. These peptides could affect inflammatory conditions, but this is unclear. Due to the limited information, we planned to investigate the impact of adropin and SPX hormones on systemic inflammation in adenine induced chronic kidney failure rat model. Chronic kidney failure was induced by administering adenine hemisulfate. Renal functions were measured by an autoanalyzer. Granulocyte colony-stimulating factor (G-CSF), interferon-gamma (IFN-γ), interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-10, IL-12, IL-13, IL-17A, tumor necrosis factor-alpha, Eotaxin, growth-regulated oncogene-alpha, IP-10, monocyte chemoattractant protein (MCP)-1, MCP-3, macrophage inflammatory protein (MIP)-1α, MIP-2, and RANTES levels were determined by Luminex. We observed an increase in 24-h urine volume and serum creatinine. Blood urea nitrogen (BUN) and urine protein levels were also significantly higher in the chronic kidney failure (CKF) group. Urine protein and 24-h urine volume were reduced with adropin and SPX treatments. Furthermore, G-CSF, IFN-γ, IL-4, IL-5, IL-10, IL-12, IL-17A, and GRO-α significantly increased by CKF induction; however, these cytokines and chemokines significantly decreased by adropin treatment in the CKF group. Furthermore, adropin increased IP-10, MCP-1, MIP-1α, and MIP-2 levels. In addition, SPX treatment had a more limited effect, decreasing only G-CSF, IFN-γ, and IL-5 levels. The combined adropin + SPX treatment significantly reduced G-CSF, IFN-γ, IL-4, IL-5, IL-12, and IL-17A. Furthermore, IP-10, MCP-1, MCP-3, and MIP-2 were significantly increased by these combined treatments. Our findings indicate that renal functions and inflammatory response were modulated by adropin and SPX peptides. These peptides may have protective effects on systemic inflammation and renal failure progression.
Collapse
Affiliation(s)
- Gulsun Memi
- Department of Physiology, School of Medicine, Adıyaman University, Adıyaman, Turkey
| | - Burak Yazgan
- Department of Medical Services and Techniques, Sabuncuoglu Serefeddin Health Services Vocational School; Department of Molecular Medicine, Institute of Health Sciences, Amasya University, Amasya, Turkey
| |
Collapse
|
9
|
Changes in Gut Microbiota Induced by Doxycycline Influence in Vascular Function and Development of Hypertension in DOCA-Salt Rats. Nutrients 2021; 13:nu13092971. [PMID: 34578849 PMCID: PMC8464928 DOI: 10.3390/nu13092971] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 12/20/2022] Open
Abstract
Previous experiments in animals and humans show that shifts in microbiota and its metabolites are linked to hypertension. The present study investigates whether doxycycline (DOX, a broad-spectrum tetracycline antibiotic) improves dysbiosis, prevent cardiovascular pathology and attenuate hypertension in deoxycorticosterone acetate (DOCA)-salt rats, a renin-independent model of hypertension. Male Wistar rats were randomly assigned to three groups: control, DOCA-salt hypertensive rats, DOCA-salt treated with DOX for 4 weeks. DOX decreased systolic blood pressure, improving endothelial dysfunction and reducing aortic oxidative stress and inflammation. DOX decreased lactate-producing bacterial population and plasma lactate levels, improved gut barrier integrity, normalized endotoxemia, plasma noradrenaline levels and restored the Treg content in aorta. These data demonstrate that DOX through direct effects on gut microbiota and its non-microbial effects (anti-inflammatory and immunomodulatory) reduces endothelial dysfunction and the increase in blood pressure in this low-renin form of hypertension.
Collapse
|
10
|
Chen L, Holder R, Porter C, Shah Z. Vitamin D3 attenuates doxorubicin-induced senescence of human aortic endothelial cells by upregulation of IL-10 via the pAMPKα/Sirt1/Foxo3a signaling pathway. PLoS One 2021; 16:e0252816. [PMID: 34101754 PMCID: PMC8186764 DOI: 10.1371/journal.pone.0252816] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/21/2021] [Indexed: 01/10/2023] Open
Abstract
The toxicity of doxorubicin to the cardiovascular system often limits its benefits and widespread use as chemotherapy. The mechanisms involved in doxorubicin-induced cardiovascular damage and possible protective interventions are not well-explored. Using human aortic endothelial cells, we show vitamin D3 strongly attenuates doxorubicin-induced senescence and cell cycle arrest. We further show the protective effects of vitamin D3 are mediated by the upregulation of IL-10 and FOXO3a expression through fine modulation of pAMPKα/SIRT1/FOXO3a complex activity. These results have great significance in finding a target for mitigating doxorubicin-induced cardiovascular toxicity.
Collapse
Affiliation(s)
- Lei Chen
- Department of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Rachel Holder
- Department of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Charles Porter
- Department of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Zubair Shah
- Department of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
11
|
Kim DH, Chun SY, Lee E, Kim B, Yoon B, Gil H, Han MH, Ha YS, Lee JN, Kwon TG, Kim BS, Jang BI. IL-10 Deficiency Aggravates Renal Inflammation, Fibrosis and Functional Failure in High-Fat Dieted Obese Mice. Tissue Eng Regen Med 2021; 18:399-410. [PMID: 33547567 PMCID: PMC8169746 DOI: 10.1007/s13770-020-00328-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND: High-fat diet-induced obesity is one of the major cause of chronic renal failure. This obesity-related renal failure is mainly caused by inflammatory processes. However, the role of the major anti-inflammatory cytokine interleukin (IL)-10 has not been researched intensively. METHODS: To evaluate the effect of IL-10 deficiency on obesity-related renal failure, the in vivo study was carried with four animal groups; (1) Low-fat dieted C57BL/6 mice, (2) Low-fat dieted IL-10 knockout (KO) mice, (3) High‐fat dieted C57BL/6 mice and (4) High‐fat dieted IL-10 KO mice group. The analysis was carried with blood/urine chemistry, H&E, Oil-Red-O, periodic acid-Schiff and Masson’s trichrome staining immunohistochemistry and real-time PCR methods. RESULTS: At week 12, high‐fat dieted IL-10 KO mice showed 1) severe lipid accumulation in kidneys, cholesterol elevation (in total, serum kidney) and low-density lipoprotein increasion through the SCAP-SREBP2-LDLr pathway; (2) serious histopathologic alterations showing glomerulosclerosis, tubulointerstitial fibrosis and immune cell infiltration; (3) increased pro‐inflammatory cytokines and chemokines expression; (4) enhanced renal fibrosis; and (5) serious functional failure with high serum creatinine and BUN and proteinuria excretion compared to other groups. CONCLUSION: IL-10 deficiency aggravates renal inflammation, fibrosis and functional failure in high-fat dieted obese mice, thus IL-10 therapy could be applied to obesity-related chronic renal failure.
Collapse
Affiliation(s)
- Dae Hwan Kim
- Department of Laboratory Animal Research Support Team, Yeungnam University Medical Center, Daegu, 42415, Republic of Korea
| | - So Young Chun
- BioMedical Research Institute, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - EunHye Lee
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Bomi Kim
- BioMedical Research Institute, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - BoHyun Yoon
- BioMedical Research Institute, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Haejung Gil
- BioMedical Research Institute, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Man-Hoon Han
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Yun-Sok Ha
- Department of Urology, Kyungpook National University Chilgok Hospital, Daegu, Korea
| | - Jun Nyung Lee
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Tae Gyun Kwon
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Bum Soo Kim
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| | - Byung Ik Jang
- Department of Internal Medicine, School of Medicine, Yeungnam University, Daegu, Republic of Korea.
| |
Collapse
|
12
|
Mechanisms of vascular dysfunction in the interleukin-10-deficient murine model of preeclampsia indicate nitric oxide dysregulation. Kidney Int 2020; 99:646-656. [PMID: 33144212 DOI: 10.1016/j.kint.2020.09.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022]
Abstract
Preeclampsia is a pregnancy-specific hypertensive disorder characterized by proteinuria, and vascular injury in the second half of pregnancy. We hypothesized that endothelium-dependent vascular dysfunction is present in a murine model of preeclampsia based on administration of human preeclamptic sera to interleukin-10-/- mice and studied mechanisms that underlie vascular injury. Pregnant wild type and IL-10-/- mice were injected with either normotensive or severe preeclamptic patient sera (sPE) during gestation. A preeclampsia-like phenotype was confirmed by blood pressure measurements; assessment of albuminuria; measurement of angiogenic factors; demonstration of foot process effacement and endotheliosis in kidney sections; and by accumulation of glycogen in placentas from IL-10-/- mice injected with sPE sera (IL-10-/-sPE). Vasomotor function of isolated aortas was assessed. The IL-10-/-sPE murine model demonstrated significantly augmented aortic contractions to phenylephrine and both impaired endothelium-dependent and, to a lesser extent, endothelium-independent relaxation compared to wild type normotensive mice. Treatment of isolated aortas with indomethacin, a cyclooxygenase inhibitor, improved, but failed to normalize contraction to phenylephrine to that of wild type normotensive mice, suggesting the additional contribution from nitric oxide downregulation and effects of indomethacin-resistant vasoconstricting factors. In contrast, indomethacin normalized relaxation of aortas derived from IL-10-/-sPE mice. Thus, our results identify the role of IL-10 deficiency in dysregulation of the cyclooxygenase pathway and vascular dysfunction in the IL-10-/-sPE murine model of preeclampsia and point towards a possible contribution of nitric oxide dysregulation. These compounds and related mechanisms may serve both as diagnostic markers and therapeutic targets for preventive and treatment strategies in preeclampsia.
Collapse
|
13
|
Zheng J, Wang W, Hong T, Yang S, Shen J, Liu C. Suppression of microRNA-155 exerts an anti-inflammatory effect on CD4+ T cell-mediated inflammatory response in the pathogenesis of atherosclerosis. Acta Biochim Biophys Sin (Shanghai) 2020; 52:654-664. [PMID: 32372074 DOI: 10.1093/abbs/gmaa040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 12/27/2022] Open
Abstract
In the current study, we aimed to investigate the effects of miR-155 on CD4+ T cell-mediated immune response in the pathogenesis of atherosclerosis. CD34+ hematopoietic stem cells, CD4+ T lymphocytes, endothelial cells (ECs), and vascular smooth muscle cells (VSMCs) were harvested from the same donor. Knockdown of miR-155 in the CD4+ T cells was achieved by lentiviral transfection, whereas control RNA-transfected or untransfected lymphocytes were used as controls. The transfected CD4+ T cells were activated by incubating with oxidized low-density lipoprotein-treated dendritic cells. The proliferative capacities, phenotype distribution, and cytokine secretion profiles of the activated CD4+ T cells from different groups were evaluated. The activated lymphocytes were used to treat ECs co-cultivated with VSMCs. The ability of the CD4+ T cells to induce the apoptosis of the ECs and to promote the proliferation of the VSMCs was investigated. Inhibition of miR-155 was found to significantly reduce the proliferation rate of the transfected CD4+ T cells. CD4+ T lymphocytes transfected with the miR-155 inhibitor showed increased populations of T helper type 2 and regulatory T cells, as well as more production of anti-inflammatory cytokines. MiR-155 knockdown was also shown to significantly hamper the ability to CD4+ T cells to induce EC apoptosis and to promote the growth of VSMCs. Our data suggested that inhibition of miR-155 in CD4+ T cells could slow down the formation of atherosclerotic plaques. These results lay the groundwork for future research on the therapeutic potential of miR-155 against atherosclerosis-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Jiayu Zheng
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wenshuo Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Tao Hong
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shouguo Yang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jinqiang Shen
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chen Liu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
14
|
Mahmoudi MJ, Hedayat M, Taghvaei M, Harsini S, Nematipour E, Rezaei N, Farhadi E, Mahmoudi M, Sadr M, Esfahanian N, Nourijelyani K, Amirzargar AA. Interleukin-10 and Transforming Growth Factor Beta1 Gene Polymorphisms in Chronic Heart Failure. ACTA BIO-MEDICA : ATENEI PARMENSIS 2019; 90:221-227. [PMID: 31124999 PMCID: PMC6776215 DOI: 10.23750/abm.v90i2.6681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 11/06/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND As cytokines, including interleukin-10 (IL-10) and transforming growth factor beta 1(TGF-β1) seem to contribute towards the pathogenesis of chronic heart failure (CHF), this study was performed to assess the associations of certain single nucleotide polymorphisms (SNPs) of these genes in a case control study. METHODS This investigation was carried out to determine the frequency of alleles, genotypes and haplotypes of TGF-β1 and IL-10 single-nucleotide polymorphisms (SNPs) in 57 Iranian patients with CHF compared with 140 healthy subjects using polymerase chain reaction with sequence-specific primers method. RESULTS Results of the analyzed data divulged a negative association for both TGF-β1 GC genotype at codon 25 (P=0.047) and CT genotype at codon 10 (P=0.018) and CHF proneness. Although, TGF-β1 CC genotype at codon 10 was found to be positively associated with CHF (P=0.011). Moreover, the frequency of IL-10 (-1082, -819, -592) ATA haplotype and TGF-β1 (codon 10, codon 25) TG haplotype were significantly lower in the patients group (P=0.004 and P=0.040, respectively), while TGF-β1 (codon 10, codon 25) CG haplotype was overrepresented in patients with CHF (P=0.007). CONCLUSIONS Cytokine gene polymorphisms might affect vulnerability to CHF. Particular genotypes and haplotypes in IL-10 and TGF-β1 genes could render individuals more susceptible to CHF.
Collapse
|
15
|
Li H, Wei C, Zhou R, Wang B, Zhang Y, Shao C, Luo Y. Mouse models in modeling aging and cancer. Exp Gerontol 2019; 120:88-94. [PMID: 30876950 DOI: 10.1016/j.exger.2019.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/19/2019] [Accepted: 03/05/2019] [Indexed: 02/04/2023]
Abstract
Mouse models have been widely used in the research of human diseases. Aging, just as cancer, is influenced by the interaction of various genetic and environmental factors. Currently, aging could be induced by many mechanism, including telomere dysfunction, oxidase stress, DNA damage and epigenetic changes. Many of these genetic pathways are also shared by aging and cancer. The mouse models generated to study these pathways might manifest either aging or cancer phenotypes, sometimes both, which in deed has worked as a good model system in understanding the correlation between aging and cancer. Here, we reviewed these mouse models that were generated to model aging or cancer. These mouse models might help us put those related pathways in context and discover essential interactions in cancer and aging regulation.
Collapse
Affiliation(s)
- Haili Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Lab of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Chuanyu Wei
- Lab of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Ruoyu Zhou
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Lab of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Boyuan Wang
- Lab of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yongjin Zhang
- Lab of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Chihao Shao
- Lab of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Ying Luo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Lab of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| |
Collapse
|
16
|
Wang F, Cao Y, Ma L, Pei H, Rausch WD, Li H. Dysfunction of Cerebrovascular Endothelial Cells: Prelude to Vascular Dementia. Front Aging Neurosci 2018; 10:376. [PMID: 30505270 PMCID: PMC6250852 DOI: 10.3389/fnagi.2018.00376] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/29/2018] [Indexed: 12/19/2022] Open
Abstract
Vascular dementia (VaD) is the second most common type of dementia after Alzheimer's disease (AD), characterized by progressive cognitive impairment, memory loss, and thinking or speech problems. VaD is usually caused by cerebrovascular disease, during which, cerebrovascular endothelial cells (CECs) are vulnerable. CEC dysfunction occurs before the onset of VaD and can eventually lead to dysregulation of cerebral blood flow and blood-brain barrier damage, followed by the activation of glia and inflammatory environment in the brain. White matter, neuronal axons, and synapses are compromised in this process, leading to cognitive impairment. The present review summarizes the mechanisms underlying CEC impairment during hypoperfusion and pathological role of CECs in VaD. Through the comprehensive examination and summarization, endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) signaling pathway, Ras homolog gene family member A (RhoA) signaling pathway, and CEC-derived caveolin-1 (CAV-1) are proposed to serve as targets of new drugs for the treatment of VaD.
Collapse
Affiliation(s)
- Feixue Wang
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Cao
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Lina Ma
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Pei
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Wolf Dieter Rausch
- Department for Biomedical Sciences, Institute of Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Hao Li
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Du WY, Xiao Y, Yao JJ, Hao Z, Zhao YB. Chlorogenic acid in the oxidative stress injury triggered by Shuang-Huang-Lian injection. Exp Ther Med 2018; 16:2901-2908. [PMID: 30214512 PMCID: PMC6125947 DOI: 10.3892/etm.2018.6567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 07/26/2018] [Indexed: 11/09/2022] Open
Abstract
Injections of Chinese herbs are a novel approach to prepare traditional Chinese medicines. However, as injections of Chinese herbs have been extensively used, adverse drug reactions (ADRs) have been on the increase. Additionally, the mechanism for injections of Chinese herbs remains unclear. This study explored the potential role played by chlorogenic acid (CGA) in initiating oxidative stress injury triggered by the utilization of injections of Chinese herbs and the underlying mechanism. A total of 90 male Wistar rats were raised for varying periods by using Shuang-Huang-Lian (SHL) injection or CGA in diverse dosages. Western blot analysis examined the expression of nicotinamide adenine dinucleotide phosphate oxidase subunits, spectrophotometry was used to examine the activity taken by catalase, ELISA was used to examine the concentrations of inflammatory factors in serum, and intravital microscopy was employed to examine the microcirculation. The results showed that the excessive peroxide production induced by CGA in high-dose or SHL in the venule walls may well be through nicotinamide adenine dinucleotide phosphate oxidase along with a decline in the activity of catalase, and led to imbalance of basal levels of pro-(TNF-α) and anti-(IL-10) inflammatory cytokines. On the basis of the aforementioned results, the mechanism hidden behind the adverse effects of CGA induced by irrational use of Chinese herbal injection can be identified from a deeper perspective.
Collapse
Affiliation(s)
- Wen-Yuan Du
- Medical and Electronic Experimental Center, The TCM Hospital of Shijiazhuang Affiliated to Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050051, P.R. China
| | - Ying Xiao
- Institute of Chemical Engineering, Shijiazhuang University, Shijiazhuang, Hebei 050035, P.R. China
| | - Jian-Jing Yao
- Medical and Electronic Experimental Center, The TCM Hospital of Shijiazhuang Affiliated to Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050051, P.R. China
| | - Zhe Hao
- The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei 050011, P.R. China
| | - Yu-Bin Zhao
- Medical and Electronic Experimental Center, The TCM Hospital of Shijiazhuang Affiliated to Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
18
|
O-Glycosylation with O-linked β-N-acetylglucosamine increases vascular contraction: Possible modulatory role on Interleukin-10 signaling pathway. Life Sci 2018; 209:78-84. [PMID: 30075176 DOI: 10.1016/j.lfs.2018.07.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 01/29/2023]
Abstract
AIMS The interleukin-10 (IL-10) is an immuno-regulatory cytokine that plays a protective effect in the vasculature. IL-10 binding to its receptor, activating the IL-10/JAK1/STAT3 cascade to exert its effects. Therefore, STAT3 phosphorylation is essential for IL-10 actions. O-Glycosylation with linked β-N-acetylglucosamine (O-GlcNAc) is a post-translational modification able to regulate many proteins by interfering with protein on a phosphorylation level. Our aim was to determine whether O-GlcNAc promotes the inhibition of IL-10-pathway (JAK1/STAT3/IL-10), inactivationg its action in the vasculature. MAIN METHODS Mice (C57BL/6) aortic segments were incubated with vehicle or Thiamet G (0.1 mM, for 24 h) to increase global O-GlcNAc levels. Aortas from knockout mice for IL-10 were also used. Vascular reactivity and western blot tests were performed to evaluate protein expression. KEY FINDINGS High levels of O-GlcNAc, induced by Thiamet G incubation, increased vascular expression of JAK1, but decreased expression and activity of STAT3. In addition, IL-10 levels were diminished in arteries treated with Thiamet G. Absence of IL-10, as well as augmented O-GlcNAcylation, increased vascular reactivity to constrictor stimuli, an effect that was abolished by ERK 1/2 inhibitor. High levels of O-GlcNAc and the absence of IL-10 also leads to increased vascular expression of ERK1/2. SIGNIFICANCE Our data suggest that O-GlcNAc modification seems to (dys)regulate IL-10 signaling pathway and consequently, compromise the protective effect of this cytokine in vasculature. It is possible that there is a promising relationship in pathophysiological conditions where changes in O-GlcNAcylation and IL-10 levels are observed, such as hypertension and diabetes.
Collapse
|
19
|
Cubro H, Kashyap S, Nath MC, Ackerman AW, Garovic VD. The Role of Interleukin-10 in the Pathophysiology of Preeclampsia. Curr Hypertens Rep 2018; 20:36. [PMID: 29713810 DOI: 10.1007/s11906-018-0833-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW The pathophysiology of preeclampsia is complex and not entirely understood. A key feature in preeclampsia development is an immunological imbalance that shifts the maternal immune response from one of tolerance towards one promoting chronic inflammation and endothelial dysfunction. As a key regulator of immunity, IL-10 not only has immunomodulatory activity, but also directly benefits vasculature and promotes successful cellular interactions at the maternal-fetal interface. Here we focus on the mechanisms by which the dysregulation of IL-10 may contribute to the pathophysiology of preeclampsia. RECENT FINDINGS Dysregulation of IL-10 has been demonstrated in various animal models of preeclampsia. Decreased IL-10 production in both placenta and peripheral blood mononuclear cells has been reported in human studies, but with inconsistent results. The significance of IL-10 in preeclampsia has shifted from a key biomarker to one with therapeutic potential. As such, a better understanding of the role of this cytokine in the pathophysiology of preeclampsia is of paramount importance.
Collapse
Affiliation(s)
- Hajrunisa Cubro
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Sonu Kashyap
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Allan W Ackerman
- Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Vesna D Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
20
|
Lee S, Bice A, Hood B, Ruiz J, Kim J, Prisby RD. Intermittent PTH 1-34 administration improves the marrow microenvironment and endothelium-dependent vasodilation in bone arteries of aged rats. J Appl Physiol (1985) 2018; 124:1426-1437. [PMID: 29420158 DOI: 10.1152/japplphysiol.00847.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Inflammation coincides with diminished marrow function, vasodilation of blood vessels, and bone mass. Intermittent parathyroid hormone (PTH) administration independently improves marrow and vascular function, potentially impacting bone accrual. Currently, the influence of marrow and intermittent PTH administration on aged bone blood vessels has not been examined. Vasodilation of the femoral principal nutrient artery (PNA) was assessed in the presence and absence of marrow. Furthermore, we determined the influence of PTH 1-34 on 1) endothelium-dependent vasodilation and signaling pathways [i.e., nitric oxide (NO) and prostacyclin (PGI2)], 2) endothelium-independent vasodilation, 3) cytokine production by marrow cells, and 4) bone microarchitecture and bone static and dynamic properties. Young (4-6 mo) and old (22-24 mo) male Fischer-344 rats were treated with PTH 1-34 or a vehicle for 2 wk. In the absence and presence of marrow, femoral PNAs were given cumulative doses of acetylcholine, with and without the NO and PGI2 blockers, and diethylamine NONOate. Marrow-derived cytokines and bone parameters in the distal femur were assessed. Exposure to marrow diminished endothelium-dependent vasodilation in young rats. Reduced bone volume and NO-mediated vasodilation occurred with old age and were partially reversed with PTH. Additionally, PTH treatment in old rats restored endothelium-dependent vasodilation in the presence of marrow and augmented IL-10, an anti-inflammatory cytokine. Endothelium-independent vasodilation was unaltered, and PTH treatment reduced osteoid surfaces in old rats. In conclusion, the marrow microenvironment reduced vascular function in young rats, and PTH treatment improved the marrow microenvironment and vasodilation with age. NEW & NOTEWORTHY This study investigated the influence of the marrow microenvironment on bone vascular function in young and old rats. An inflamed marrow microenvironment may reduce vasodilator capacity of bone blood vessels, diminishing delivery of blood flow to the skeleton. In young rats, the presence of the marrow reduced vasodilation in the femoral principal nutrient artery (PNA). However, intermittent parathyroid hormone administration (i.e., a treatment for osteoporosis) improved the marrow microenvironment and vasodilator capacity in old PNAs.
Collapse
Affiliation(s)
- Seungyong Lee
- Department of Kinesiology, University of Texas at Arlington , Arlington, Texas.,Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - Ashley Bice
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - Brianna Hood
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - Juan Ruiz
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - Jahyun Kim
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - Rhonda D Prisby
- Department of Kinesiology, University of Texas at Arlington , Arlington, Texas.,Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| |
Collapse
|
21
|
Mouradian GC, Gaurav R, Pugliese S, El Kasmi K, Hartman B, Hernandez-Lagunas L, Stenmark KR, Bowler RP, Nozik-Grayck E. Superoxide Dismutase 3 R213G Single-Nucleotide Polymorphism Blocks Murine Bleomycin-Induced Fibrosis and Promotes Resolution of Inflammation. Am J Respir Cell Mol Biol 2017; 56:362-371. [PMID: 27805412 DOI: 10.1165/rcmb.2016-0153oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Loss of extracellular superoxide dismutase 3 (SOD3) contributes to inflammatory and fibrotic lung diseases. The human SOD3 R213G polymorphism decreases matrix binding, redistributing SOD3 from the lung to extracellular fluids, and protects against LPS-induced alveolar inflammation. We used R213G mice expressing a naturally occurring single-nucleotide polymorphism, rs1799895, within the heparin-binding domain of SOD3, which results in an amino acid substitution at position 213 to test the hypothesis that the redistribution of SOD3 into the extracellular fluids would impart protection against bleomycin-induced lung fibrosis and secondary pulmonary hypertension (PH). In R213G mice, SOD3 content and activity was increased in extracellular fluids and decreased in lung at baseline, with greater increases in bronchoalveolar lavage fluid (BALF) SOD3 compared with wild-type mice 3 days after bleomycin. R213G mice developed less fibrosis based on pulmonary mechanics, fibrosis scoring, collagen quantification, and gene expression at 21 days, and less PH by right ventricular systolic pressure and pulmonary arteriole medial wall thickening at 28 days. In wild-type mice, macrophages, lymphocytes, neutrophils, proinflammatory cytokines, and protein increased in BALF on Day 7 and/or 21. In R213G mice, total BALF cell counts increased on Day 7 but resolved by 21 days. At 1 or 3 days, BALF pro- and antiinflammatory cytokines and BALF protein were higher in R213G mice, resolving by 21 days. We conclude that the redistribution of SOD3 as a result of the R213G single-nucleotide polymorphism protects mice from bleomycin-induced fibrosis and secondary PH by improved resolution of alveolar inflammation.
Collapse
Affiliation(s)
- Gary C Mouradian
- 1 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| | - Rohit Gaurav
- 2 Department of Medicine, National Jewish Health, Denver, Colorado
| | - Steve Pugliese
- 1 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| | - Karim El Kasmi
- 1 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| | - Brittany Hartman
- 2 Department of Medicine, National Jewish Health, Denver, Colorado
| | - Laura Hernandez-Lagunas
- 1 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| | - Kurt R Stenmark
- 1 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| | - Russell P Bowler
- 2 Department of Medicine, National Jewish Health, Denver, Colorado
| | - Eva Nozik-Grayck
- 1 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| |
Collapse
|
22
|
Garcia JM, Stillings SA, Leclerc JL, Phillips H, Edwards NJ, Robicsek SA, Hoh BL, Blackburn S, Doré S. Role of Interleukin-10 in Acute Brain Injuries. Front Neurol 2017; 8:244. [PMID: 28659854 PMCID: PMC5466968 DOI: 10.3389/fneur.2017.00244] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/17/2017] [Indexed: 12/23/2022] Open
Abstract
Interleukin-10 (IL-10) is an important anti-inflammatory cytokine expressed in response to brain injury, where it facilitates the resolution of inflammatory cascades, which if prolonged causes secondary brain damage. Here, we comprehensively review the current knowledge regarding the role of IL-10 in modulating outcomes following acute brain injury, including traumatic brain injury (TBI) and the various stroke subtypes. The vascular endothelium is closely tied to the pathophysiology of these neurological disorders and research has demonstrated clear vascular endothelial protective properties for IL-10. In vitro and in vivo models of ischemic stroke have convincingly directly and indirectly shown IL-10-mediated neuroprotection; although clinically, the role of IL-10 in predicting risk and outcomes is less clear. Comparatively, conclusive studies investigating the contribution of IL-10 in subarachnoid hemorrhage are lacking. Weak indirect evidence supporting the protective role of IL-10 in preclinical models of intracerebral hemorrhage exists; however, in the limited number of clinical studies, higher IL-10 levels seen post-ictus have been associated with worse outcomes. Similarly, preclinical TBI models have suggested a neuroprotective role for IL-10; although, controversy exists among the several clinical studies. In summary, while IL-10 is consistently elevated following acute brain injury, the effect of IL-10 appears to be pathology dependent, and preclinical and clinical studies often paradoxically yield opposite results. The pronounced and potent effects of IL-10 in the resolution of inflammation and inconsistency in the literature regarding the contribution of IL-10 in the setting of acute brain injury warrant further rigorously controlled and targeted investigation.
Collapse
Affiliation(s)
- Joshua M Garcia
- College of Medicine, University of Florida, Gainesville, FL, United States
| | | | - Jenna L Leclerc
- Department of Anesthesiology, College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Harrison Phillips
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States
| | - Nancy J Edwards
- Department of Neurology, University of California, San Francisco, CA, United States.,Department of Neurosurgery, University of California, San Francisco, CA, United States
| | - Steven A Robicsek
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States.,Department of Neurosurgery, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Brian L Hoh
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Spiros Blackburn
- Department of Neurosurgery, University of Texas, Houston, TX, United States
| | - Sylvain Doré
- Department of Anesthesiology, College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States.,Department of Neurology, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Psychology, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Psychiatry, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Pharmaceutics, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
23
|
Obesity Induces Artery-Specific Alterations: Evaluation of Vascular Function and Inflammatory and Smooth Muscle Phenotypic Markers. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5038602. [PMID: 28466012 PMCID: PMC5390568 DOI: 10.1155/2017/5038602] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/19/2017] [Indexed: 02/06/2023]
Abstract
Vascular alterations are expected to occur in obese individuals but the impact of obesity could be different depending on the artery type. We aimed to evaluate the obesity effects on the relaxing and contractile responses and inflammatory and smooth muscle (SM) phenotypic markers in two vascular beds. Obesity was induced in C57Bl/6 mice by 16-week high-fat diet and vascular reactivity, mRNA expression of inflammatory and SM phenotypic markers, and collagen deposition were evaluated in small mesenteric arteries (SMA) and thoracic aorta (TA). Endothelium-dependent relaxation in SMA and TA was not modified by obesity. In contrast, contraction induced by depolarization and contractile agonists was reduced in SMA, whereas only contraction induced by adrenergic agonist was reduced in TA of obese mice. Obesity increased the mRNA expression of pro- and anti-inflammatory cytokines in SMA and TA. The expression of genes necessary for maintaining contractile ability was increased by obesity, but the increase was more pronounced in TA. Collagen deposition was increased in SMA, but not in TA, of obese mice. Although the endothelial function was still preserved, the SM of the two artery types was impaired by obesity, but the impairment was higher in SMA, which could be associated with SM phenotypic changes.
Collapse
|
24
|
Eibel B, Markoski MM, Rodrigues CG, Dipp T, de Salles FB, Giusti II, Nardi NB, Plentz RDM, Kalil RAK. VEGF gene therapy cooperatively recruits molecules from the immune system and stimulates cell homing and angiogenesis in refractory angina. Cytokine 2016; 91:44-50. [PMID: 27997860 DOI: 10.1016/j.cyto.2016.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 10/26/2016] [Accepted: 12/06/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND New vessels are formed in response to stimuli from angiogenic factors, a process in which paracrine signaling is fundamental. OBJECTIVE To investigate the cooperative paracrine signaling profile in response to Vascular Endothelial Growth Factor (VEGF) gene therapy in patients with coronary artery disease (CAD) and refractory angina. METHOD A cohort study was conducted in which plasma was collected from patients who underwent gene therapy with a plasmid expressing VEGF 165 (10) and from surgical procedure controls (4). Blood samples were collected from both groups prior to baseline and on days 3, 9 and 27 after the interventions and subjected to systemic analysis of protein expression (Interleukin-6, IL-6; Tumor Necrosis Factor-α, TNF-α; Interleukin-10, IL-10; Stromal Derived Factor-1 α, SDF-1α; VEGF; Angiopoietin-1, ANGPT-1; and Endothelin-1, ET-1) using the enzyme-linked immunosorbent assay (ELISA). RESULTS Analysis showed an increase in proinflammatory IL-6 (p=0.02) and ET-1 (p=0.05) on day 3 after gene therapy and in VEGF (p=0.02) on day 9. A strong positive correlation was found between mobilization of endothelial progenitor cells and TNF-α on day 9 (r=0.71; p=0.03). Furthermore, a strong correlation between β-blockers, antiplatelets, and vasodilators with SDF-1α baseline in the group undergoing gene therapy was verified (r=0.74; p=0.004). CONCLUSION Analysis of cooperative paracrine signaling after VEGF gene therapy suggests that the immune system cell and angiogenic molecule expression as well as the endothelial progenitor cell mobilization are time-dependent, influenced by chronic inflammatory process and continuous pharmacological treatment.
Collapse
Affiliation(s)
- Bruna Eibel
- Laboratório de Cardiologia Molecular e Celular (Serviço de Medicina Experimental)/Secretaria de Cirurgia, Instituto de Cardiologia/Fundação Universitária de Cardiologia (IC/FUC), Brazil
| | - Melissa M Markoski
- Laboratório de Cardiologia Molecular e Celular (Serviço de Medicina Experimental)/Secretaria de Cirurgia, Instituto de Cardiologia/Fundação Universitária de Cardiologia (IC/FUC), Brazil
| | - Clarissa G Rodrigues
- Laboratório de Cardiologia Molecular e Celular (Serviço de Medicina Experimental)/Secretaria de Cirurgia, Instituto de Cardiologia/Fundação Universitária de Cardiologia (IC/FUC), Brazil
| | - Thiago Dipp
- Faculdade de Desenvolvimento do Rio Grande do Sul (FADERGS), Brazil
| | - Felipe B de Salles
- Instituto do Coração/Faculdade de Medicina da Universidade de São Paulo (INCOR/FMUSP), Brazil
| | - Imarilde I Giusti
- Laboratório de Cardiologia Molecular e Celular (Serviço de Medicina Experimental)/Secretaria de Cirurgia, Instituto de Cardiologia/Fundação Universitária de Cardiologia (IC/FUC), Brazil
| | | | - Rodrigo D M Plentz
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Brazil
| | - Renato A K Kalil
- Laboratório de Cardiologia Molecular e Celular (Serviço de Medicina Experimental)/Secretaria de Cirurgia, Instituto de Cardiologia/Fundação Universitária de Cardiologia (IC/FUC), Brazil; Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Brazil.
| |
Collapse
|
25
|
Chu A, Thamotharan S, Ganguly A, Wadehra M, Pellegrini M, Devaskar SU. Gestational food restriction decreases placental interleukin-10 expression and markers of autophagy and endoplasmic reticulum stress in murine intrauterine growth restriction. Nutr Res 2016; 36:1055-1067. [PMID: 27865347 PMCID: PMC5119922 DOI: 10.1016/j.nutres.2016.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/27/2016] [Accepted: 08/03/2016] [Indexed: 12/25/2022]
Abstract
Intrauterine growth restriction (IUGR) affects up to 10% of pregnancies and often results in short- and long-term sequelae for offspring. The mechanisms underlying IUGR are poorly understood, but it is known that healthy placentation is essential for nutrient provision to fuel fetal growth, and is regulated by immunologic inputs. We hypothesized that in pregnancy, maternal food restriction (FR) resulting in IUGR would decrease the overall immunotolerant milieu in the placenta, leading to increased cellular stress and death. Our specific objectives were to evaluate (1) key cytokines (eg, IL-10) that regulate maternal-fetal tolerance, (2) cellular processes (autophagy and endoplasmic reticulum [ER] stress) that are immunologically mediated and important for cellular survival and functioning, and (3) the resulting IUGR phenotype and placental histopathology in this animal model. After subjecting pregnant mice to mild and moderate FR from gestational day 10 to 19, we collected placentas and embryos at gestational day 19. We examined RNA sequencing data to identify immunologic pathways affected in IUGR-associated placentas and validated messenger RNA expression changes of genes important in cellular integrity. We also evaluated histopathologic changes in vascular and trophoblastic structures as well as protein expression changes in autophagy, ER stress, and apoptosis in the mouse placentas. Several differentially expressed genes were identified in FR compared with control mice, including a considerable subset that regulates immune tolerance, inflammation, and cellular integrity. In summary, maternal FR decreases the anti-inflammatory effect of IL-10 and suppresses placental autophagic and ER stress responses, despite evidence of dysregulated vascular and trophoblast structures leading to IUGR.
Collapse
Affiliation(s)
- Alison Chu
- David Geffen School of Medicine at UCLA, Department of Pediatrics, Division of Neonatology & Developmental Biology, Neonatal Research Center of the UCLA Children's Discovery and Innovation Institute, 10833 Le Conte Avenue, MDCC 22-412, Los Angeles, CA, 90095, USA.
| | - Shanthie Thamotharan
- David Geffen School of Medicine at UCLA, Department of Pediatrics, Division of Neonatology & Developmental Biology, Neonatal Research Center of the UCLA Children's Discovery and Innovation Institute, 10833 Le Conte Avenue, MDCC 22-412, Los Angeles, CA, 90095, USA.
| | - Amit Ganguly
- David Geffen School of Medicine at UCLA, Department of Pediatrics, Division of Neonatology & Developmental Biology, Neonatal Research Center of the UCLA Children's Discovery and Innovation Institute, 10833 Le Conte Avenue, MDCC 22-412, Los Angeles, CA, 90095, USA.
| | - Madhuri Wadehra
- David Geffen School of Medicine at UCLA, Department of Pathology, 4525 MacDonald Research Laboratories, Los Angeles, CA, 90095, USA.
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, 3000 Terasaki Life Sciences Building, 610 Charles Young Drive East, Los Angeles, CA, 90095, USA.
| | - Sherin U Devaskar
- David Geffen School of Medicine at UCLA, Department of Pediatrics, Division of Neonatology & Developmental Biology, Neonatal Research Center of the UCLA Children's Discovery and Innovation Institute, 10833 Le Conte Avenue, MDCC 22-412, Los Angeles, CA, 90095, USA.
| |
Collapse
|
26
|
Effects of Glutamate and Aspartate on Serum Antioxidative Enzyme, Sex Hormones, and Genital Inflammation in Boars Challenged with Hydrogen Peroxide. Mediators Inflamm 2016; 2016:4394695. [PMID: 27777497 PMCID: PMC5061961 DOI: 10.1155/2016/4394695] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/07/2016] [Indexed: 11/17/2022] Open
Abstract
Background. Oxidative stress is associated with infertility. This study was conducted to determine the effects of glutamate and aspartate on serum antioxidative enzymes, sex hormones, and genital inflammation in boars suffering from oxidative stress. Methods. Boars were randomly divided into 4 groups: the nonchallenged control (CON) and H2O2-challenged control (BD) groups were fed a basal diet supplemented with 2% alanine; the other two groups were fed the basal diet supplemented with 2% glutamate (GLU) or 2% aspartate (ASP). The BD, GLU, and ASP groups were injected with hydrogen peroxide (H2O2) on day 15. The CON group was injected with 0.9% sodium chloride solution on the same day. Results. Dietary aspartate decreased the malondialdehyde (MDA) level in serum (P < 0.05) compared with the BD group. Additionally, aspartate maintained serum luteinizing hormone (LH) at a relatively stable level. Moreover, glutamate and aspartate increased transforming growth factor-β1 (TGF-β1) and interleukin-10 (IL-10) levels in the epididymis and testis (P < 0.05) compared with the BD group. Conclusion. Both glutamate and aspartate promoted genital mRNA expressions of anti-inflammatory factors after oxidative stress. Aspartate more effectively decreased serum MDA and prevented fluctuations in serum sex hormones after H2O2 challenge than did glutamate.
Collapse
|
27
|
Miteva K, Van Linthout S, Pappritz K, Müller I, Spillmann F, Haag M, Stachelscheid H, Ringe J, Sittinger M, Tschöpe C. Human Endomyocardial Biopsy Specimen-Derived Stromal Cells Modulate Angiotensin II-Induced Cardiac Remodeling. Stem Cells Transl Med 2016; 5:1707-1718. [PMID: 27460853 DOI: 10.5966/sctm.2016-0031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 06/13/2016] [Indexed: 12/17/2022] Open
Abstract
: Cardiac-derived adherent proliferating cells (CardAPs) are cells derived from human endomyocardial biopsy specimens; they share several properties with mesenchymal stromal cells. The aims of this study were to evaluate whether intramyocardial injection of CardAPs modulates cardiac fibrosis and hypertrophy in a mouse model of angiotensin II (Ang II)-induced systolic heart failure and to analyze underlying mechanisms. Intramyocardial application of 200,000 CardAPs improved left ventricular function. This was paralleled by a decline in left ventricular remodeling, as indicated by a reduction in cardiac fibrosis and hypertrophy. CardAPs reduced the ratio of the left ventricle to body weight and cardiac myosin expression (heavy chain), and decreased the Ang II-induced phosphorylation state of the cardiomyocyte hypertrophy mediators Akt, extracellular-signal regulated kinase (ERK) 1, and ERK2. In accordance with the antifibrotic and antihypertrophic effects of CardAPs shown in vivo, CardAP supplementation with cardiac fibroblasts decreased the Ang II-induced reactive oxygen species production, α-SMA expression, fibroblast proliferation, and collagen production. Coculture of CardAPs with HL-1 cardiomyocytes downregulated the Ang II-induced expression of myosin in HL-1. All antifibrotic and antihypertrophic features of CardAPs were mediated in a nitric oxide- and interleukin (IL)-10-dependent manner. Moreover, CardAPs induced a systemic immunomodulation, as indicated by a decrease in the activity of splenic mononuclear cells and an increase in splenic CD4CD25FoxP3, CD4-IL-10, and CD8-IL-10 T-regulatory cells in Ang II mice. Concomitantly, splenocytes from Ang II CardAPs mice induced less collagen in fibroblasts compared with splenocytes from Ang II mice. We conclude that CardAPs improve Ang II-induced cardiac remodeling involving antifibrotic and antihypertrophic effects via paracrine actions and immunomodulatory properties. SIGNIFICANCE Despite effective pharmacological treatment with angiotensin II type I receptor antagonists or angiotensin II-converting enzyme inhibitors, morbidity and mortality associated with heart failure are still substantial, prompting the search of novel therapeutic strategies. There is accumulating evidence supporting the use of cell therapy for cardiac repair. This study demonstrates that cells derived from human endomyocardial biopsies, cardiac-derived adherent proliferating cells (CardAPs), have the potential to reduce angiotensin II-induced cardiac remodeling and improve left ventricular function in angiotensin II mice. The mechanism involves antifibrotic and antihypertrophic effects via paracrine actions and immunomodulatory properties. These findings support the potential of CardAPs for the treatment of heart failure.
Collapse
Affiliation(s)
- Kapka Miteva
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Sophie Van Linthout
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
- Department of Cardiology, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
| | - Kathleen Pappritz
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Irene Müller
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Frank Spillmann
- Department of Cardiology, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Marion Haag
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
- Laboratory for Tissue Engineering, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Harald Stachelscheid
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Jochen Ringe
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
- Department of Cardiology, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Michael Sittinger
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
- Laboratory for Tissue Engineering, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Carsten Tschöpe
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
- Department of Cardiology, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
28
|
Kim HY, Cha HJ, Kim HS. CCL5 upregulates IL-10 expression and partially mediates the antihypertensive effects of IL-10 in the vascular smooth muscle cells of spontaneously hypertensive rats. Hypertens Res 2015; 38:666-74. [PMID: 25971630 DOI: 10.1038/hr.2015.62] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 02/15/2015] [Accepted: 03/17/2015] [Indexed: 02/05/2023]
Abstract
Interleukin (IL)-10 inhibits angiotensin (Ang) II-induced vascular dysfunction and reduces blood pressure in hypertensive pregnant rats. The chemokine CCL5 has also been shown to downregulate Ang II-induced hypertensive mediators in spontaneously hypertensive rats (SHRs). This study investigated the effects of CCL5 on IL-10 expression, as well as its mechanisms of action in the vascular smooth muscle cells (VSMCs) of SHRs. CCL5 increased IL-10 expression in the VSMCs of SHRs; the s.c. injection of CCL5 (1.5 μg kg(-1), twice a day) for 3 weeks into SHRs with established hypertension upregulated IL-10 expression in both the thoracic aorta and the VSMCs and decreased systolic blood pressure. CCL5-induced the elevation of IL-10 expression, an effect mediated primarily via the activation of an Ang II subtype II receptor (AT2 R). Dimethylarginine dimethylaminohydrolase (DDAH)-1 activity also contributed to the elevation of IL-10 expression via CCL5 in the VSMCs of SHRs. Moreover, CCL5 partially mediated the inhibitory effects of IL-10 on Ang II-induced 12-lipoxygenase (LO) and endothelin (ET)-1 expression in the VSMCs of SHRs. Taken together, this study provides novel evidence that CCL5 plays a role in the upregulation of IL-10 activity in the VSMCs of SHRs.
Collapse
Affiliation(s)
- Hye Young Kim
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Hye Ju Cha
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Hee Sun Kim
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, South Korea
| |
Collapse
|
29
|
Kim HY, Cha HJ, Choi JH, Kang YJ, Park SY, Kim HS. CCL5 Inhibits Elevation of Blood Pressure and Expression of Hypertensive Mediators in Developing Hypertension State Spontaneously Hypertensive Rats. ACTA ACUST UNITED AC 2015. [DOI: 10.4167/jbv.2015.45.2.138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Hye Young Kim
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Korea
| | - Hye Ju Cha
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Korea
| | - Jin Hee Choi
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Korea
| | - Young Jin Kang
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Korea
| | - So Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Korea
| | - Hee Sun Kim
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Korea
| |
Collapse
|
30
|
Shao Y, Cheng Z, Li X, Chernaya V, Wang H, Yang XF. Immunosuppressive/anti-inflammatory cytokines directly and indirectly inhibit endothelial dysfunction--a novel mechanism for maintaining vascular function. J Hematol Oncol 2014; 7:80. [PMID: 25387998 PMCID: PMC4236671 DOI: 10.1186/s13045-014-0080-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/13/2014] [Indexed: 12/14/2022] Open
Abstract
Endothelial dysfunction is a pathological status of the vascular system, which can be broadly defined as an imbalance between endothelium-dependent vasoconstriction and vasodilation. Endothelial dysfunction is a key event in the progression of many pathological processes including atherosclerosis, type II diabetes and hypertension. Previous reports have demonstrated that pro-inflammatory/immunoeffector cytokines significantly promote endothelial dysfunction while numerous novel anti-inflammatory/immunosuppressive cytokines have recently been identified such as interleukin (IL)-35. However, the effects of anti-inflammatory cytokines on endothelial dysfunction have received much less attention. In this analytical review, we focus on the recent progress attained in characterizing the direct and indirect effects of anti-inflammatory/immunosuppressive cytokines in the inhibition of endothelial dysfunction. Our analyses are not only limited to the importance of endothelial dysfunction in cardiovascular disease progression, but also expand into the molecular mechanisms and pathways underlying the inhibition of endothelial dysfunction by anti-inflammatory/immunosuppressive cytokines. Our review suggests that anti-inflammatory/immunosuppressive cytokines serve as novel therapeutic targets for inhibiting endothelial dysfunction, vascular inflammation and cardio- and cerebro-vascular diseases.
Collapse
Affiliation(s)
- Ying Shao
- Department of Pharmacology, Center for Metabolic Disease Research and Cardiovascular Research Center, Temple University School of Medicine, MERB 1059, 3500 North Broad Street, Philadelphia, PA, 19140, USA.
| | - Zhongjian Cheng
- Department of Pharmacology, Center for Metabolic Disease Research and Cardiovascular Research Center, Temple University School of Medicine, MERB 1059, 3500 North Broad Street, Philadelphia, PA, 19140, USA.
| | - Xinyuan Li
- Department of Pharmacology, Center for Metabolic Disease Research and Cardiovascular Research Center, Temple University School of Medicine, MERB 1059, 3500 North Broad Street, Philadelphia, PA, 19140, USA.
| | - Valeria Chernaya
- Department of Pharmacology, Center for Metabolic Disease Research and Cardiovascular Research Center, Temple University School of Medicine, MERB 1059, 3500 North Broad Street, Philadelphia, PA, 19140, USA.
| | - Hong Wang
- Department of Pharmacology, Center for Metabolic Disease Research and Cardiovascular Research Center, Temple University School of Medicine, MERB 1059, 3500 North Broad Street, Philadelphia, PA, 19140, USA.
| | - Xiao-feng Yang
- Department of Pharmacology, Center for Metabolic Disease Research and Cardiovascular Research Center, Temple University School of Medicine, MERB 1059, 3500 North Broad Street, Philadelphia, PA, 19140, USA. .,Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
31
|
Markers of subclinical atherosclerosis in premenopausal women with vitamin D deficiency and effect of vitamin D replacement. Atherosclerosis 2014; 237:784-9. [PMID: 25463121 DOI: 10.1016/j.atherosclerosis.2014.10.096] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 10/05/2014] [Accepted: 10/17/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND Recent studies have revealed a relationship between vitamin D deficiency and atherosclerosis. This study aims to investigate the impact of vitamin D deficiency and replacement on markers of subclinical atherosclerosis in young premenopausal women in whom vitamin D deficiency is prevalent. METHODS Thirty-one premenopausal vitamin D deficient women and 27 age and gender-matched control subjects were enrolled in this study. Markers of subclinical atherosclerosis including carotid intima-media thickness (cIMT), flow-mediated dilatation (FMD), endothelial progenitor cell (EPC) count and cytokine levels were determined at baseline. All measurements were repeated at 6-month follow-up in vitamin D-deficient subjects after vitamin D replacement. RESULTS Vitamin D deficient premenopausal women had lower FMD (9.9 ± 1.3 vs. 13.8 ± 1.7%, p < 0.001) and EPC counts at baseline. This population also had lower IL-10 and higher IL-17 levels. A 6-month vitamin D replacement therapy resulted in a significant increase in FMD (9.9 ± 1.3 vs. 11.4 ± 1.4%, p < 0.001) and EPC counts. Furthermore, cytokine profile shifted toward a more anti-inflammatory phenotype including elevated IL-10 and decreased IL-17 levels. cIMT was not different between patient and control groups and did not change following vitamin D replacement. Change in 25(OH)D and IL-17 levels were independent predictors of the change in FMD measurements following vitamin D replacement. CONCLUSION This study demonstrates that endothelial function is impaired in otherwise healthy vitamin D deficient young premenopausal women and improves with 6-month replacement therapy. Immune-modulatory effects of vitamin D may, at least partly, be responsible for its beneficial effects on vascular health.
Collapse
|
32
|
Cheng SB, Sharma S. Interleukin-10: a pleiotropic regulator in pregnancy. Am J Reprod Immunol 2014; 73:487-500. [PMID: 25269386 DOI: 10.1111/aji.12329] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/09/2014] [Indexed: 12/14/2022] Open
Abstract
Pregnancy is a unique and well-choreographed physiological process that involves intricate interplay of inflammatory and anti-inflammatory milieu, hormonal changes, and cellular and molecular events at the maternal-fetal interface. IL-10 is a pregnancy compatible cytokine that plays a vital role in maintaining immune tolerance. A wide array of cell types including both immune and non-immune cells secret IL-10 in an autocrine and paracrine manner. IL-10 binds to a specific receptor complex and activates JAK-STAT and PI3K-Akt signaling pathways while inhibiting NF-κB signaling pathway. IL-10 exerts its anti-inflammatory effects mainly by decreasing pro-inflammatory cytokines such as IL-1, IL-6, IL-12, and TNF-α, by inducing heme oxygenase-1, and by inhibiting antigen presentation via blocking major histocompatibility complex (MHC) class II expression. Prior studies from our group and others have shown that IL-10 also functions as a potent protector against vascular dysfunction, and enhancement of IL-10 may serve as an immunotherapeutic intervention to treat adverse pregnancy outcomes. This review seeks to critically evaluate the archetypal functions of IL-10 as an immune suppressive factor as well as its novel functions as a vascular protector and modulator of endoplasmic reticulum (ER) stress and autophagy in the context of normal and adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Shi-Bin Cheng
- Department of Pediatrics, Women and Infants' Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Surendra Sharma
- Department of Pediatrics, Women and Infants' Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
33
|
Impaired hydrogen sulfide synthesis and IL-10 signaling underlie hyperhomocysteinemia-associated exacerbation of colitis. Proc Natl Acad Sci U S A 2014; 111:13559-64. [PMID: 25187563 DOI: 10.1073/pnas.1413390111] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Vitamin B deficiencies, which can lead to hyperhomocysteinemia (Hhcy), are commonly reported in patients with inflammatory bowel disease (IBD) and may be a causative underlying factor. However, the mechanism for this effect is not known. Hydrogen sulfide (H2S) is a gaseous mediator that promotes tissue repair and resolution of inflammation. In experimental colitis, a marked increase in colonic H2S synthesis drives ulcer healing and resolution of inflammation. Because H2S synthesis is in part dependent upon enzymes that require vitamin B6 as a cofactor, we tested the hypothesis that Hhcy in rodent models would increase the susceptibility to colitis. In all three models tested, diet-induced Hhcy significantly exacerbated colitis. The usual elevation of colonic H2S synthesis after induction of colitis was absent in all three models of colitis. Administration of an H2S donor to Hhcy rats significantly decreased the severity of colitis. Compared with wild-type mice, interleukin (IL) 10-deficient mice on a normal diet had decreased levels of colonic H2S synthesis, a 40% increase in serum homocysteine, and a phenotype similar to wild-type mice with Hhcy. IL-10-deficient mice fed the vitamin B-deficient diet exhibited more severe colonic inflammation, but the normal elevation of colonic H2S synthesis was absent. Administration of IL-10 to the IL-10-deficient mice restored colonic H2S synthesis and significantly decreased serum homocysteine levels. These results suggest that the exacerbation of colitis in Hhcy is due in part to impaired colonic H2S synthesis. Moreover, IL-10 plays a novel role in promoting H2S production and homocysteine metabolism, which may have therapeutic value in conditions characterized by Hhcy.
Collapse
|
34
|
Kim HY, Kim HS. IL-10 up-regulates CCL5 expression in vascular smooth muscle cells from spontaneously hypertensive rats. Cytokine 2014; 68:40-9. [DOI: 10.1016/j.cyto.2014.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 02/14/2014] [Accepted: 02/25/2014] [Indexed: 01/14/2023]
|
35
|
Schindler TH, Quercioli A, Valenta I, Ambrosio G, Wahl RL, Dilsizian V. Quantitative Assessment of Myocardial Blood Flow—Clinical and Research Applications. Semin Nucl Med 2014; 44:274-93. [DOI: 10.1053/j.semnuclmed.2014.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Ozturk H, Ozturk H, Terzi EH, Bugdayci G, Duran A. Interleukin 10 Reduces Testicular Damage in Experimental Testicular Ischemia/Reperfusion Injury. Urology 2014; 83:508.e1-6. [DOI: 10.1016/j.urology.2013.09.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/29/2013] [Accepted: 09/20/2013] [Indexed: 10/26/2022]
|
37
|
Spoto B, Zoccali C. Spleen IL-10, a key player in obesity-driven renal risk. Nephrol Dial Transplant 2013; 28:1061-4. [PMID: 23674834 DOI: 10.1093/ndt/gft094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Belinda Spoto
- CNR-IBIM & Nephrology, Dialysis and Transplantation Unit of Reggio Calabria, Reggio Calabria, Italy
| | | |
Collapse
|
38
|
Kinzenbaw DA, Chu Y, Peña Silva RA, Didion SP, Faraci FM. Interleukin-10 protects against aging-induced endothelial dysfunction. Physiol Rep 2013; 1:e00149. [PMID: 24400151 PMCID: PMC3871464 DOI: 10.1002/phy2.149] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 10/15/2013] [Accepted: 10/16/2013] [Indexed: 12/22/2022] Open
Abstract
Carotid and cerebrovascular disease increase markedly with age contributing to stroke and cognitive impairment. Inflammation is a key element of vascular disease. In these studies, we tested the hypothesis that interleukin-10 (IL-10), a potent anti-inflammatory cytokine, protects against aging-induced endothelial dysfunction. Responses of carotid arteries from adult (5 ± 1 months) and old (22 ± 1 months) wild-type and IL-10-deficient mice were examined in vitro. Acetylcholine (an endothelium-dependent agonist) produced relaxation in arteries from adult wild-type that was not altered in old mice. In contrast, relaxation to acetylcholine in arteries from old IL-10-deficient mice was reduced by ∼50% (P < 0.05). Tempol, a scavenger of superoxide, did not affect responses in adult or old wild-type mice, but restored vasodilation to acetylcholine to normal in old IL-10-deficient mice. Responses of the carotid artery to nitroprusside (an endothelium-independent agonist) were not altered in any group. Vascular expression of IL-6 (a proinflammatory mediator of vascular disease) and components of NADPH oxidase (a major source of superoxide) was increased in old IL-10-deficient mice compared with wild-type (P < 0.05). These findings provide the first evidence that age-related and superoxide-mediated endothelial dysfunction occurs earlier with IL-10 deficiency. Our findings suggest a novel role for IL-10 to protect against age-related increases in expression of IL-6, oxidative stress, and endothelial dysfunction.
Collapse
Affiliation(s)
- Dale A Kinzenbaw
- Department of Internal Medicine, Cardiovascular Center, Carver College of Medicine, University of Iowa Iowa City, 52242, Iowa
| | - Yi Chu
- Department of Internal Medicine, Cardiovascular Center, Carver College of Medicine, University of Iowa Iowa City, 52242, Iowa
| | - Ricardo A Peña Silva
- Department of Internal Medicine, Cardiovascular Center, Carver College of Medicine, University of Iowa Iowa City, 52242, Iowa
| | - Sean P Didion
- Department of Internal Medicine, Cardiovascular Center, Carver College of Medicine, University of Iowa Iowa City, 52242, Iowa ; Department of Pharmacology, University of Mississippi Medical Center Jackson, 39216, Mississippi
| | - Frank M Faraci
- Department of Internal Medicine, Cardiovascular Center, Carver College of Medicine, University of Iowa Iowa City, 52242, Iowa ; Department of Pharmacology, Cardiovascular Center, Carver College of Medicine, University of Iowa Iowa City, 52242, Iowa
| |
Collapse
|
39
|
Interleukin 10 antioxidant effect decreases leukocytes/endothelial interaction induced by tumor necrosis factor α. Shock 2013; 39:83-8. [PMID: 23247124 DOI: 10.1097/shk.0b013e318278ae36] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Little is known about the endothelial mechanisms involved in the anti-inflammatory effects of interleukin 10 (IL-10). The goal of this study was to evaluate the effects of IL-10 on endothelial oxidative stress and endothelial inflammation induced by tumor necrosis factor α (TNF-α). Production of reactive oxygen species (ROS) in perfused human umbilical vein endothelial cells (HUVECs) was studied by fluorescent microscopy using dichlorodihydrofluorescein diacetate. Tumor necrosis factor α (1 ng/mL) was added to the perfusion medium in the absence and presence of IL-10 (1 ng/mL). The role of phosphatidylinositol 3-kinase (PI3-kinase) was assessed using wortmannin and LY 2940002 (inhibitors of PI3-kinase). Specific inhibition of p110 α and p110 γ/δ PI3-kinase subunits was studied using A66 and TG100-115. As well, levels of ceramide and intercellular adhesion molecule 1 (ICAM-1) expression were measured. Finally, the effect of IL-10 on TNF-α-induced leukocyte/endothelium interaction was examined using an ex vivo perfused vessel model. Interleukin 10 significantly reduced dichlorodihydrofluorescein diacetate fluorescence induced by TNF-α in HUVECs (12.5% ± 3.2% vs. 111.7% ± 21.6% at 60 min). Pretreatment by LY2940002 or wortmannin restored ROS production induced by TNF-α in the presence of IL-10. In HUVECs treated by TNF-α + IL-10, inhibition of p110 α PI3-kinase subunit significantly increased ROS production, whereas p110 γ/δ inhibition did not have a significant effect. Pretreatment with IL-10 significantly decreased TNF-α-induced increased levels of ceramide (TNF-α vs. TNF-α + IL-10: 6,278 ± 1,013 vs. 1,440 ± 130 pmol/mg prot), as well as ICAM-1 expression and leukocyte adhesion (TNF-α vs. TNF-α + IL-10: 26.8 ± 2.6 vs. 6.7 ± 0.4 adherent leukocytes/field at 15 min). Interleukin 10 decreases the level of inflammation induced by TNF-α in endothelial cells by reducing the TNF-α-induced ROS production, ICAM-1 expression, and leukocyte adhesion to the endothelium. The antioxidant effect of IL-10 is mediated through PI3-kinase and is paralleled by a decrease in ceramide synthesis induced by TNF-α.
Collapse
|
40
|
Endothelial activation microparticles and inflammation status improve with exercise training in african americans. Int J Hypertens 2013; 2013:538017. [PMID: 23691280 PMCID: PMC3652180 DOI: 10.1155/2013/538017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/10/2013] [Indexed: 02/07/2023] Open
Abstract
African Americans have the highest prevalence of hypertension in the world which may emanate from their predisposition to heightened endothelial inflammation. The purpose of this study was to determine the effects of a 6-month aerobic exercise training (AEXT) intervention on the inflammatory biomarkers interleukin-10 (IL-10), interleukin-6 (IL-6), and endothelial microparticle (EMP) CD62E+ and endothelial function assessed by flow-mediated dilation (FMD) in African Americans. A secondary purpose was to evaluate whether changes in IL-10, IL-6, or CD62E+ EMPs predicted the change in FMD following the 6-month AEXT intervention. A pre-post design was employed with baseline evaluation including office blood pressure, FMD, fasting blood sampling, and graded exercise testing. Participants engaged in 6 months of AEXT. Following the AEXT intervention, all baseline tests were repeated. FMD significantly increased, CD62E+ EMPs and IL-6 significantly decreased, and IL-10 increased but not significantly following AEXT. Changes in inflammatory biomarkers did not significantly predict the change in FMD. The change in VO2 max significantly predicted the change in IL-10. Based on these results, AEXT may be a viable, nonpharmacological method to improve inflammation status and endothelial function and thereby contribute to risk reduction for cardiovascular disease in African Americans.
Collapse
|
41
|
Interleukin-10 controls the protective effects of circulating microparticles from patients with septic shock on tissue-engineered vascular media. Clin Sci (Lond) 2013; 125:77-85. [DOI: 10.1042/cs20120441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
During sepsis, inflammation can be orchestrated by the interaction between circulating and vascular cells that, under activation, release MPs (microparticles). Previously, we reported that increased circulating MPs in patients with sepsis play a pivotal role in ex vivo vascular function suggesting that they are protective against vascular hyporeactivity. The present study was designed to investigate the effects of MPs from patients with sepsis on the contractile response of TEVM (tissue-engineered vascular media). TEVM that were composed only of a media layer were produced by tissue engineering from human arterial SMCs (smooth muscle cells) isolated from umbilical cords. TEVM was incubated with MPs isolated from whole blood of 16 patients with sepsis. TEVM were incubated for 24 h with MPs and used for the study of vascular contraction, direct measurements of NO and O2− (superoxide anion) production by EPR and quantification of mRNA cytokine expression. MPs from patients with sepsis increased contraction induced by histamine in TEVM. This effect was not associated with inflammation, neither linked to the activation of NF-κB (nuclear factor κB) pathway nor to the increase in iNOS (inducible NO synthase) and COX (cyclo-oxygenase)-2 expression. In contrast, mRNA expression of IL (interleukin)-10 was enhanced. Then, we investigated the effect of IL-10 on vascular hyporeactivity induced by LPS (lipopolysaccharide). Although IL-10 treatment did not modify the contractile response in TEVM by itself, this interleukin restored contraction in LPS-treated TEVM. In addition, IL-10 treatment both prevented vascular hyporeactivity induced by LPS injection in mice and improved survival of LPS-injected mice. These findings show an association between the capacity of MPs from patients with sepsis to restore vascular hyporeactivity induced by LPS and their ability to increase IL-10 in the tissue-engineered blood vessel model.
Collapse
|
42
|
Massilamany C, Gangaplara A, Kim H, Stanford C, Rathnaiah G, Steffen D, Lee J, Reddy J. Copper-zinc superoxide dismutase-deficient mice show increased susceptibility to experimental autoimmune encephalomyelitis induced with myelin oligodendrocyte glycoprotein 35-55. J Neuroimmunol 2013; 256:19-27. [PMID: 23294897 PMCID: PMC4100484 DOI: 10.1016/j.jneuroim.2012.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/26/2012] [Accepted: 12/11/2012] [Indexed: 12/29/2022]
Abstract
In this report, we have addressed the role of copper-zinc superoxide dismutase (SOD1) deficiency in the mediation of central nervous system autoimmunity. We demonstrate that SOD1-deficient C57Bl/6 mice develop more severe autoimmune encephalomyelitis induced with myelin oligodendrocyte glycoprotein (MOG) 35-55, compared with wild type mice. This alteration in the disease phenotype was not due to aberrant expansion of MOG-specific T cells nor their ability to produce inflammatory cytokines; rather lymphocytes generated in SOD1-deficient mice were more prone to spontaneous cell death when compared with their wild type littermate controls. The data point to a role for SOD1 in the maintenance of self-tolerance leading to the suppression of autoimmune responses.
Collapse
MESH Headings
- Age Factors
- Animals
- Brain/drug effects
- Brain/pathology
- CD4 Antigens/metabolism
- Cell Death/drug effects
- Cell Death/genetics
- Cell Proliferation/drug effects
- Cytokines/metabolism
- Dactinomycin/analogs & derivatives
- Dactinomycin/metabolism
- Dose-Response Relationship, Drug
- Dose-Response Relationship, Immunologic
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Flow Cytometry
- Freund's Adjuvant/toxicity
- Genetic Predisposition to Disease/genetics
- Histocompatibility Antigens Class II/metabolism
- Lipopolysaccharides/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myelin-Oligodendrocyte Glycoprotein/toxicity
- Neutrophil Infiltration/drug effects
- Neutrophil Infiltration/genetics
- Peptide Fragments/toxicity
- Superoxide Dismutase/deficiency
- Superoxide Dismutase-1
- T-Lymphocytes/classification
- T-Lymphocytes/drug effects
- T-Lymphocytes/metabolism
- Time Factors
Collapse
Affiliation(s)
- Chandirasegaran Massilamany
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Arunakumar Gangaplara
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Heejeong Kim
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Charlotte Stanford
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Govardhan Rathnaiah
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - David Steffen
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Jaekwon Lee
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| |
Collapse
|
43
|
Hasnain SZ, Tauro S, Das I, Tong H, Chen ACH, Jeffery PL, McDonald V, Florin TH, McGuckin MA. IL-10 promotes production of intestinal mucus by suppressing protein misfolding and endoplasmic reticulum stress in goblet cells. Gastroenterology 2013; 144:357-368.e9. [PMID: 23123183 DOI: 10.1053/j.gastro.2012.10.043] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 10/23/2012] [Accepted: 10/28/2012] [Indexed: 01/24/2023]
Abstract
BACKGROUND & AIMS Protein misfolding and endoplasmic reticulum (ER) stress have been observed in intestinal secretory cells from patients with inflammatory bowel diseases and induce intestinal inflammation in mice. However, it is not clear how immune factors affect ER stress and therefore disease symptoms. METHODS We analyzed the effects of interleukin (IL)-10 on ER stress in intestinal tissues in wild-type C57BL/6, Winnie, IL-10(-/-), and Winnie × IL-10(+/-) mice. In Winnie mice, misfolding of the intestinal mucin Muc2 initiates ER stress and inflammation. We also analyzed the effects of different inhibitors of IL-10 signaling and the N-glycosylation inhibitor tunicamycin in cultured human LS174T goblet cells. RESULTS Administration of neutralizing antibodies against IL-10 or its receptor (IL-10R1) to Winnie mice rapidly exacerbated ER stress and intestinal inflammation compared with mice given vehicle (controls). Antibodies against IL-10 also increased accumulation of misfolded Muc2 in the ER of goblet cells of Winnie mice and increased T-cell production of inflammatory cytokines. Winnie × IL-10(+/-) mice and IL-10(-/-) mice with a single Winnie allele each developed more severe inflammation than Winnie mice or IL-10(-/-) mice. Administration of tunicamycin to wild-type mice caused intestinal ER stress, which increased when IL-10R1 was blocked. In LS174T cells, induction of ER stress with tunicamycin and misfolding of MUC2 were reduced by administration of IL-10; this reduction required STAT1 and STAT3. In LS174T cells incubated with tunicamycin, IL-10 up-regulated genes involved in MUC2 folding and in ER-associated degradation and maintained correct folding of MUC2, its transport from the ER, and its O-glycosylation and secretion. CONCLUSIONS IL-10 prevents protein misfolding and ER stress by maintaining mucin production in goblet cells and helps the intestine preserve the mucus barrier.
Collapse
Affiliation(s)
- Sumaira Z Hasnain
- Immunity, Infection and Inflammation Program, Mater Medical Research Institute, Mater Health Services and the University of Queensland, South Brisbane, Queensland, Australia
| | - Sharyn Tauro
- Immunity, Infection and Inflammation Program, Mater Medical Research Institute, Mater Health Services and the University of Queensland, South Brisbane, Queensland, Australia
| | - Indrajit Das
- Immunity, Infection and Inflammation Program, Mater Medical Research Institute, Mater Health Services and the University of Queensland, South Brisbane, Queensland, Australia
| | - Hui Tong
- Immunity, Infection and Inflammation Program, Mater Medical Research Institute, Mater Health Services and the University of Queensland, South Brisbane, Queensland, Australia
| | - Alice C-H Chen
- Immunity, Infection and Inflammation Program, Mater Medical Research Institute, Mater Health Services and the University of Queensland, South Brisbane, Queensland, Australia
| | - Penny L Jeffery
- Immunity, Infection and Inflammation Program, Mater Medical Research Institute, Mater Health Services and the University of Queensland, South Brisbane, Queensland, Australia
| | - Victoria McDonald
- Immunity, Infection and Inflammation Program, Mater Medical Research Institute, Mater Health Services and the University of Queensland, South Brisbane, Queensland, Australia
| | - Timothy H Florin
- Immunity, Infection and Inflammation Program, Mater Medical Research Institute, Mater Health Services and the University of Queensland, South Brisbane, Queensland, Australia
| | - Michael A McGuckin
- Immunity, Infection and Inflammation Program, Mater Medical Research Institute, Mater Health Services and the University of Queensland, South Brisbane, Queensland, Australia.
| |
Collapse
|
44
|
Biomarkers of antioxidant status, inflammation, and cartilage metabolism are affected by acute intense exercise but not superoxide dismutase supplementation in horses. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:920932. [PMID: 22919442 PMCID: PMC3423952 DOI: 10.1155/2012/920932] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 05/06/2012] [Indexed: 12/22/2022]
Abstract
Objectives were to evaluate effects of (1) repetitive arthrocentesis on biomarkers of inflammation (prostaglandin E(2), PGE(2)) and aggrecan synthesis (chondroitin sulfate-846; CS) in synovial fluid (SF); (2) exercise and superoxide dismutase (SOD) supplementation on biomarkers of inflammation, antioxidant status, and aggrecan synthesis, in horses. Preliminary trial. Standardbreds underwent four arthrocentesis procedures within 48 h and exhibited elevated CS and no changes in PGE(2). Exercise trial. this randomized crossover design used twelve Standardbred mares which received either treatment (3000 IU d(-1) oral SOD powder) or placebo (cellulose powder) for 6 wks which culminated with them running a repeated sprint exercise test (RSET). Samples were collected before (PRE), during (PEAK), and following exercise (POST). Exercise resulted in increased (P < 0.05) antioxidant defenses including erythrocyte SOD, total glutathione, glutathione peroxidase, gene transcripts for interferon-gamma, interleukin-10, and interleukin-1β in blood, and decreased plasma nitric oxide. Exercise increased (P < 0.05) SF CS and adjusted-PGE(2), and higher (P < 0.05) CS and PGE(2) were found in hock versus carpus joints. No treatment effects were detected. Results suggest normal adaptive responses likely due to exercise-induced tissue microdamage and oxidative stress. Additional research is needed to identify benefit(s) of SOD supplementation in horses.
Collapse
|
45
|
Quercioli A, Pataky Z, Montecucco F, Carballo S, Thomas A, Staub C, Di Marzo V, Vincenti G, Ambrosio G, Ratib O, Golay A, Mach F, Harsch E, Schindler TH. Coronary vasomotor control in obesity and morbid obesity: contrasting flow responses with endocannabinoids, leptin, and inflammation. JACC Cardiovasc Imaging 2012; 5:805-815. [PMID: 22897994 DOI: 10.1016/j.jcmg.2012.01.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/24/2012] [Accepted: 01/26/2012] [Indexed: 11/23/2022]
Abstract
OBJECTIVES This study sought to investigate abnormalities in coronary circulatory function in 2 different disease entities of obese (OB) and morbidly obese (MOB) individuals and to evaluate whether these would differ in severity with different profiles of endocannabinoids, leptin, and C-reactive protein (CRP) plasma levels. BACKGROUND There is increasing evidence that altered plasma levels of endocannabinoids, leptin, and CRP may affect coronary circulatory function in OB and MOB. METHODS Myocardial blood flow (MBF) responses to cold pressor test from rest and during pharmacologically induced hyperemia were measured with N-13 ammonia positron emission tomography/computed tomography. Study participants (n = 111) were divided into 4 groups based on their body mass index (BMI) (kg/m(2)): 1) control group (BMI: 20 to 24.9, n = 30); 2) overweight group (BMI: 25 to 29.9, n = 31), 3) OB group (BMI: 30 to 39.9, n = 25); and 4) MOB group (BMI ≥40, n = 25). RESULTS The cold pressor test-induced change in endothelium-related MBF response (ΔMBF) progressively declined in overweight and OB groups when compared with the control group [median: 0.19 (interquartile range [IQR] 0.08, 0.27) and 0.11 (0.03, 0.17) vs. 0.27 (0.23, 0.38) ml/g/min; p ≤ 0.01, respectively], whereas it did not differ significantly between OB and MOB groups [median: 0.11 (IQR: 0.03, 0.17) and 0.09 (-0.01, 0.19) ml/g/min; p = 0.93]. Compared with control subjects, hyperemic MBF subjects comparably declined in the overweight, OB, and MOB groups [median: 2.40 (IQR 1.92, 2.63) vs. 1.94 (1.65, 2.30), 2.05 (1.67, 2.38), and 2.14 (1.78, 2.76) ml/g/min; p ≤ 0.05, respectively]. In OB individuals, ΔMBF was inversely correlated with increase in endocannabinoid anandamide (r = -0.45, p = 0.044), but not with leptin (r = -0.02, p = 0.946) or with CRP (r = -0.33, p = 0.168). Conversely, there was a significant and positive correlation among ΔMBF and elevated leptin (r = 0.43, p = 0.031) and CRP (r = 0.55, p = 0.006), respectively, in MOB individuals that was not observed for endocannabinoid anandamide (r = 0.07, p = 0.740). CONCLUSIONS Contrasting associations of altered coronary endothelial function with increases in endocannabinoid anandamide, leptin, and CRP plasma levels identify and characterize OB and MOB as different disease entities affecting coronary circulatory function.
Collapse
Affiliation(s)
- Alessandra Quercioli
- Department of Specialties in Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Association of promoter region single nucleotide polymorphisms at positions −819C/T and −592C/A of interleukin 10 gene with ischemic heart disease. Inflamm Res 2012; 61:899-905. [DOI: 10.1007/s00011-012-0482-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Accepted: 04/19/2012] [Indexed: 02/01/2023] Open
|
47
|
Abstract
BACKGROUND AND HYPOTHESIS Interleukin (IL)-10 is an anti-inflammatory cytokine. Nox1 is a mitogenic oxidase (p65-mox). The objective of this study was to test a hypothesis that IL-10 deficiency would cause vascular remodeling via the upregulation of Nox1. METHODS AND RESULTS Recombinant adeno-associated virus (AAV) carrying short hairpin small interference RNA for Nox1 (AAV.Nox1shRNA) was constructed for in-vivo-specific inhibition of Nox1. Three groups of IL-10 gene knockout (IL-10KO) mice and three groups of wild-type mice were used. Three groups of each strain received intravenous delivery of AAV.Nox1shRNA, AAV with scrambled shRNA, and PBS, respectively. Animals were euthanized at 3 weeks after gene delivery. IL-10KO increased Nox1 protein expression, NADPH oxidase activity, and superoxide production in aortas. IL-10KO also resulted in a significant decrease in aortic medial thickness, a loss of smooth muscle cells (SMCs), and an increase in vascular collagen deposition, indicating vascular remodeling. The IL-10KO induced increases in NADPH oxidase activity and superoxide production, and vascular remodeling were abolished by silencing of Nox1 (p65-mox), suggesting that these effects may be mediated by the upregulation of Nox1. In addition, IL-10KO increased endothelin-1 levels in plasma and aortas, and this effect was partially blocked by silencing of Nox1. RNA interference silencing of Nox1 obliterated the IL-10KO-induced increases in IL-6 expression in aortas, superoxide production, and matrix metalloproteinase-9 activity in aortic SMCs, and SMC migration. CONCLUSION IL-10 is essential for the maintenance of normal vasculature, as IL-10 deficiency resulted in vascular damage and remodeling. The IL-10KO-induced vascular structure damage may be mediated by the upregulation of Nox1.
Collapse
|
48
|
Kassan M, Galan M, Partyka M, Trebak M, Matrougui K. Interleukin-10 released by CD4(+)CD25(+) natural regulatory T cells improves microvascular endothelial function through inhibition of NADPH oxidase activity in hypertensive mice. Arterioscler Thromb Vasc Biol 2012; 31:2534-42. [PMID: 21817097 DOI: 10.1161/atvbaha.111.233262] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE We previously demonstrated that a reduced number of CD(4+)CD(25+)-regulatory T cells (Tregs) was associated with microvascular dysfunction in hypertension. However, the underlying mechanism by which Tregs regulate vascular endothelial function remains unknown. METHODS AND RESULTS Control and interleukin (IL)-10(-/-) knockout mice were infused with angiotensin II (400 ng/kg/min) for 2 weeks (hypertensive [HT] and HT-IL-10(-/-)). Endothelium-dependent relaxation (EDR) in response to acetylcholine was significantly reduced in mesenteric resistance artery (MRA) from HT and HT-IL-10(-/-) compared with control and IL-10(-/-) mice. Importantly, the incubation of MRA from HT mice with the conditioned media of cultured Tregs, isolated from control mice, reduced NADPH oxidase activity and improved EDR, whereas no effect was observed in MRA from control mice incubated with the same media. These effects were reversed when MRAs were preincubated with IL-10 antibody or IL-10 receptor antagonist, whereas incubation with transforming growth factor-β receptor antagonist had no effect. The transfer of cultured Tregs, isolated from control mice, into HT-IL-10(-/-) mice reduced systolic blood pressure (SBP) and NADPH oxidase activity and improved EDR in MRA compared with untreated HT-IL-10(-/-) mice. In vivo treatment of HT mice with IL-10 (1000 ng/mouse) significantly reduced SBP and NADPH oxidase activity and improved EDR in MRA compared with untreated HT mice. The transfer of cultured Tregs, isolated from IL-10(-/-) mice, into HT mice did not reduce SBP or NADPH oxidase activity or improve EDR. The incubation of MRA from HT mice with apocynin improved EDR, whereas NADPH oxidase substrate attenuated EDR in MRA from control mice, which was reversed with exogenous IL-10. CONCLUSION These data demonstrate that IL-10 released from Tregs attenuates NADPH oxidase activity, which is a critical process in the improvement of microvascular endothelial function in hypertension, suggesting that Tregs/IL-10 could be a therapeutic target for treatment of vasculopathy in hypertension.
Collapse
Affiliation(s)
- Modar Kassan
- Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
49
|
Expanding the beneficial pleiotropic repertoire of interleukin-10. J Hypertens 2011; 29:2061-3. [DOI: 10.1097/hjh.0b013e32834c3041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Araña Rosaínz MDJ, Ojeda MO, Acosta JR, Elías-Calles LC, González NO, Herrera OT, García Álvarez CT, Rodríguez EM, Báez ME, Seijas EÁ, Valdés RF. Imbalanced low-grade inflammation and endothelial activation in patients with type 2 diabetes mellitus and erectile dysfunction. J Sex Med 2011; 8:2017-30. [PMID: 21554550 DOI: 10.1111/j.1743-6109.2011.02277.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Erectile dysfunction (ED) is highly prevalent among type 2 diabetes mellitus patients (T2DM). Although a link among systemic inflammation, endothelial dysfunction, and ED is described in clinical situations mainly related with coronary heart disease (CHD) risk, evidences of this link in T2DM patients are rather limited. AIMS To evaluate the association between endothelial dysfunction and balance of pro-/anti-inflammatory mediators with ED presence and severity in T2DM. METHODS We conducted a cross-sectional study of 190 T2DM patients without symptomatic CHD, 150 out of them with ED and 40 without ED. Serum levels of E-selectin, intercellular adhesion molecule-1, tumor necrosis factor-α (TNF-α), and interleukin (IL)-10 were measured using specific enzyme-linked immunosorbent assays (ELISAs). ED presence and severity were tested by the five-item version of the International Index of Erectile Function questionnaire. MAIN OUTCOME MEASURES Differences in circulating levels of endothelial dysfunction (ICAM-1, E-selectin) and inflammatory/anti-inflammatory (TNF-α, IL-10, TNF-α : IL-10 ratio) markers between T2DM patients with and without ED, and assessment of biomarkers ED predictive value while adjusting for other known ED risk factors. RESULTS Patients with ED were older and had longer duration of diabetes than patients without ED. E-selectin serum levels were significantly increased, while IL-10 were lower in patients with ED; because TNF-α levels tend to be higher, TNF-α : IL-10 ratio was more elevated in ED patients. No significant differences of ICAM-1 levels were observed between study groups. Endothelial activation markers and TNF-α, as well as diabetes duration, were negatively correlated with erectile function. On multivariate analysis including age, duration of diabetes, insulin treatment, hypertension, insulin resistance, fair-to-poor glycemic control, and metabolic syndrome, increments in E-selectin levels and TNF-α : IL-10 ratio predicted independently ED presence, while IL-10 increases were associated with lower risk of ED in T2DM patients. CONCLUSIONS ED in T2DM patients without symptomatic CHD is associated with systemic endothelial dysfunction and a predominant, imbalanced low-grade inflammatory response.
Collapse
|