1
|
Murthy A, Rodriguez LR, Dimopoulos T, Bui S, Iyer S, Chavez K, Tomer Y, Abraham V, Cooper C, Renner DM, Katzen JB, Bentley ID, Ghadiali SN, Englert JA, Weiss SR, Beers MF. Activation of alveolar epithelial ER stress by β-coronavirus infection disrupts surfactant homeostasis in mice: implications for COVID-19 respiratory failure. Am J Physiol Lung Cell Mol Physiol 2024; 327:L232-L249. [PMID: 38860845 PMCID: PMC11444511 DOI: 10.1152/ajplung.00324.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024] Open
Abstract
COVID-19 syndrome is characterized by acute lung injury, hypoxemic respiratory failure, and high mortality. Alveolar type 2 (AT2) cells are essential for gas exchange, repair, and regeneration of distal lung epithelium. We have shown that the causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and other members of the β-coronavirus genus induce an endoplasmic reticulum (ER) stress response in vitro; however, the consequences for host AT2 cell function in vivo are less understood. To study this, two murine models of coronavirus infection were used-mouse hepatitis virus-1 (MHV-1) in A/J mice and a mouse-adapted SARS-CoV-2 strain. MHV-1-infected mice exhibited dose-dependent weight loss with histological evidence of distal lung injury accompanied by elevated bronchoalveolar lavage fluid (BALF) cell counts and total protein. AT2 cells showed evidence of both viral infection and increased BIP/GRP78 expression, consistent with activation of the unfolded protein response (UPR). The AT2 UPR included increased inositol-requiring enzyme 1α (IRE1α) signaling and a biphasic response in PKR-like ER kinase (PERK) signaling accompanied by marked reductions in AT2 and BALF surfactant protein (SP-B and SP-C) content, increases in surfactant surface tension, and emergence of a reprogrammed epithelial cell population (Krt8+ and Cldn4+). The loss of a homeostatic AT2 cell state was attenuated by treatment with the IRE1α inhibitor OPK-711. As a proof-of-concept, C57BL6 mice infected with mouse-adapted SARS-CoV-2 demonstrated similar lung injury and evidence of disrupted surfactant homeostasis. We conclude that lung injury from β-coronavirus infection results from an aberrant host response, activating multiple AT2 UPR stress pathways, altering surfactant metabolism/function, and changing AT2 cell state, offering a mechanistic link between SARS-CoV-2 infection, AT2 cell biology, and acute respiratory failure.NEW & NOTEWORTHY COVID-19 syndrome is characterized by hypoxemic respiratory failure and high mortality. In this report, we use two murine models to show that β-coronavirus infection produces acute lung injury, which results from an aberrant host response, activating multiple epithelial endoplasmic reticular stress pathways, disrupting pulmonary surfactant metabolism and function, and forcing emergence of an aberrant epithelial transition state. Our results offer a mechanistic link between SARS-CoV-2 infection, AT2 cell biology, and respiratory failure.
Collapse
Affiliation(s)
- Aditi Murthy
- Pulmonary and Critical Care Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
- PENN-CHOP Lung Biology Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Luis R Rodriguez
- Pulmonary and Critical Care Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
- PENN-CHOP Lung Biology Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Thalia Dimopoulos
- Pulmonary and Critical Care Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Sarah Bui
- Pulmonary and Critical Care Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
- PENN-CHOP Lung Biology Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Swati Iyer
- Pulmonary and Critical Care Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Katrina Chavez
- Pulmonary and Critical Care Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Yaniv Tomer
- Pulmonary and Critical Care Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Valsamma Abraham
- Pulmonary and Critical Care Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Charlotte Cooper
- Pulmonary and Critical Care Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - David M Renner
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Penn Center for Research on Coronaviruses and Emerging Pathogens, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Jeremy B Katzen
- Pulmonary and Critical Care Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
- PENN-CHOP Lung Biology Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Ian D Bentley
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Samir N Ghadiali
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
- Department of Biomedical Engineering, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Joshua A Englert
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
| | - Susan R Weiss
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Penn Center for Research on Coronaviruses and Emerging Pathogens, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Michael F Beers
- Pulmonary and Critical Care Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
- PENN-CHOP Lung Biology Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
2
|
Savin IA, Zenkova MA, Sen’kova AV. Bronchial Asthma, Airway Remodeling and Lung Fibrosis as Successive Steps of One Process. Int J Mol Sci 2023; 24:16042. [PMID: 38003234 PMCID: PMC10671561 DOI: 10.3390/ijms242216042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Bronchial asthma is a heterogeneous disease characterized by persistent respiratory system inflammation, airway hyperreactivity, and airflow obstruction. Airway remodeling, defined as changes in airway wall structure such as extensive epithelial damage, airway smooth muscle hypertrophy, collagen deposition, and subepithelial fibrosis, is a key feature of asthma. Lung fibrosis is a common occurrence in the pathogenesis of fatal and long-term asthma, and it is associated with disease severity and resistance to therapy. It can thus be regarded as an irreversible consequence of asthma-induced airway inflammation and remodeling. Asthma heterogeneity presents several diagnostic challenges, particularly in distinguishing between chronic asthma and other pulmonary diseases characterized by disruption of normal lung architecture and functions, such as chronic obstructive pulmonary disease. The search for instruments that can predict the development of irreversible structural changes in the lungs, such as chronic components of airway remodeling and fibrosis, is particularly difficult. To overcome these challenges, significant efforts are being directed toward the discovery and investigation of molecular characteristics and biomarkers capable of distinguishing between different types of asthma as well as between asthma and other pulmonary disorders with similar structural characteristics. The main features of bronchial asthma etiology, pathogenesis, and morphological characteristics as well as asthma-associated airway remodeling and lung fibrosis as successive stages of one process will be discussed in this review. The most common murine models and biomarkers of asthma progression and post-asthmatic fibrosis will also be covered. The molecular mechanisms and key cellular players of the asthmatic process described and systematized in this review are intended to help in the search for new molecular markers and promising therapeutic targets for asthma prediction and therapy.
Collapse
Affiliation(s)
| | | | - Aleksandra V. Sen’kova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrent’ev Ave 8, 630090 Novosibirsk, Russia; (I.A.S.); (M.A.Z.)
| |
Collapse
|
3
|
Feo-Lucas L, Godio C, Minguito de la Escalera M, Alvarez-Ladrón N, Villarrubia LH, Vega-Pérez A, González-Cintado L, Domínguez-Andrés J, García-Fojeda B, Montero-Fernández C, Casals C, Autilio C, Pérez-Gil J, Crainiciuc G, Hidalgo A, López-Bravo M, Ardavín C. Airway allergy causes alveolar macrophage death, profound alveolar disorganization and surfactant dysfunction. Front Immunol 2023; 14:1125984. [PMID: 37234176 PMCID: PMC10206250 DOI: 10.3389/fimmu.2023.1125984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Respiratory disorders caused by allergy have been associated to bronchiolar inflammation leading to life-threatening airway narrowing. However, whether airway allergy causes alveolar dysfunction contributing to the pathology of allergic asthma remains unaddressed. To explore whether airway allergy causes alveolar dysfunction that might contribute to the pathology of allergic asthma, alveolar structural and functional alterations were analyzed during house dust mite (HDM)-induced airway allergy in mice, by flow cytometry, light and electron microscopy, monocyte transfer experiments, assessment of intra-alveolarly-located cells, analysis of alveolar macrophage regeneration in Cx3cr1 cre:R26-yfp chimeras, analysis of surfactant-associated proteins, and study of lung surfactant biophysical properties by captive bubble surfactometry. Our results demonstrate that HDM-induced airway allergic reactions caused severe alveolar dysfunction, leading to alveolar macrophage death, pneumocyte hypertrophy and surfactant dysfunction. SP-B/C proteins were reduced in allergic lung surfactant, that displayed a reduced efficiency to form surface-active films, increasing the risk of atelectasis. Original alveolar macrophages were replaced by monocyte-derived alveolar macrophages, that persisted at least two months after the resolution of allergy. Monocyte to alveolar macrophage transition occurred through an intermediate stage of pre-alveolar macrophage and was paralleled with translocation into the alveolar space, Siglec-F upregulation, and downregulation of CX3CR1. These data support that the severe respiratory disorders caused by asthmatic reactions not only result from bronchiolar inflammation, but additionally from alveolar dysfunction compromising an efficient gas exchange.
Collapse
Affiliation(s)
- Lidia Feo-Lucas
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/ Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Cristina Godio
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/ Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - María Minguito de la Escalera
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/ Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Natalia Alvarez-Ladrón
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/ Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Laura H. Villarrubia
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/ Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Adrián Vega-Pérez
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/ Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Leticia González-Cintado
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/ Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Jorge Domínguez-Andrés
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/ Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Belén García-Fojeda
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Carlos Montero-Fernández
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Cristina Casals
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Chiara Autilio
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Madrid, Spain
| | - Jesús Pérez-Gil
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Madrid, Spain
| | | | - Andrés Hidalgo
- Centro Nacional de Investigaciones Cardiovaculares Carlos III, Madrid, Spain
| | - María López-Bravo
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/ Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carlos Ardavín
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/ Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
4
|
Cao TBT, Moon JY, Yoo HJ, Ban GY, Kim SH, Park HS. Down-regulated surfactant protein B in obese asthmatics. Clin Exp Allergy 2022; 52:1321-1329. [PMID: 35294785 DOI: 10.1111/cea.14124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/15/2022] [Accepted: 03/01/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Obesity is a common comorbid condition in adult asthmatics and known as a feature of asthma severity. However, the molecular mechanism under obesity-induced inflammation has not yet been fully understood. OBJECTIVE Considering the essential role of hydrophobic surfactant protein B (SP-B) in lung function, SP-B was targeted to examine its involvement in the development of obesity-induced airway inflammation in asthmatics. METHODS The aim was to examine an alteration in circulating SP-B according to obesity in adult asthmatics, 129 asthmatics were enrolled and classified into 3 groups (obese, overweight and normal-weight groups) according to body mass index (BMI). Circulating SP-B levels were determined by enzyme-linked immunosorbent assay. Four single nucleotide polymorphisms of SFTPB gene were genotyped. Serum ceramide levels were measured by liquid chromatography-tandem mass spectrometry. RESULTS Significantly lower serum SP-B levels were noted in the obese group than in the overweight or normal-weight group (p = .002). The serum SP-B level was significantly correlated with serum levels of C18:0 ceramide and transforming growth factor beta 1 as well as BMI (r = -0.200; r = -0.215; r = -0.332, p < .050 for all). An inverse correlation was noted between serum SP-B and fractional exhaled nitric oxide levels in female asthmatics (r = -0.287, p = .009). Genetic predisposition of the SFTPB gene at 9306 A>G to the obese and overweight groups was noted. CONCLUSION Obesity altered ceramide metabolism leading to pulmonary surfactant dysfunction and impaired resolution of airway inflammation, finally contributing to the phenotypes of obese asthmatics.
Collapse
Affiliation(s)
- Thi Bich Tra Cao
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Ji-Young Moon
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hyun-Ju Yoo
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ga-Young Ban
- Department of Pulmonary, Allergy, and Critical Care Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine Institute for Life Sciences, Seoul, Korea
| | - Seung-Hyun Kim
- Translational Research Laboratory for Inflammatory Disease, Clinical Trial Center, Ajou University Medical Center, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
5
|
Milad N, Morissette MC. Revisiting the role of pulmonary surfactant in chronic inflammatory lung diseases and environmental exposure. Eur Respir Rev 2021; 30:30/162/210077. [PMID: 34911693 DOI: 10.1183/16000617.0077-2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Pulmonary surfactant is a crucial and dynamic lung structure whose primary functions are to reduce alveolar surface tension and facilitate breathing. Though disruptions in surfactant homeostasis are typically thought of in the context of respiratory distress and premature infants, many lung diseases have been noted to have significant surfactant abnormalities. Nevertheless, preclinical and clinical studies of pulmonary disease too often overlook the potential contribution of surfactant alterations - whether in quantity, quality or composition - to disease pathogenesis and symptoms. In inflammatory lung diseases, whether these changes are cause or consequence remains a subject of debate. This review will outline 1) the importance of pulmonary surfactant in the maintenance of respiratory health, 2) the diseases associated with primary surfactant dysregulation, 3) the surfactant abnormalities observed in inflammatory pulmonary diseases and, finally, 4) the available research on the interplay between surfactant homeostasis and smoking-associated lung disease. From these published studies, we posit that changes in surfactant integrity and composition contribute more considerably to chronic inflammatory pulmonary diseases and that more work is required to determine the mechanisms underlying these alterations and their potential treatability.
Collapse
Affiliation(s)
- Nadia Milad
- Faculty of Medicine, Université Laval, Quebec City, QC, Canada.,Quebec Heart and Lung Institute - Université Laval, Quebec City, QC, Canada
| | - Mathieu C Morissette
- Quebec Heart and Lung Institute - Université Laval, Quebec City, QC, Canada .,Dept of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
6
|
Foucaud L, Demoulin B, Leblanc AL, Ioan I, Schweitzer C, Demoulin-Alexikova S. Modulation of protective reflex cough by acute immune driven inflammation of lower airways in anesthetized rabbits. PLoS One 2019; 14:e0226442. [PMID: 31887143 PMCID: PMC6936810 DOI: 10.1371/journal.pone.0226442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/26/2019] [Indexed: 11/19/2022] Open
Abstract
Chronic irritating cough in patients with allergic disorders may reflect behavioral or reflex response that is inappropriately matched to the stimulus present in the respiratory tract. Such dysregulated response is likely caused by sensory nerve damage driven by allergic mediators leading to cough hypersensitivity. Some indirect findings suggest that even acid-sensitive, capsaicin-insensitive A-δ fibers called “cough receptors” that are likely responsible for protective reflex cough may be modulated through immune driven inflammation. The aim of this study was to find out whether protective reflex cough is altered during acute allergic airway inflammation in rabbits sensitized to ovalbumin. In order to evaluate the effect of such inflammation exclusively on protective reflex cough, C-fiber mediated cough was silenced using general anesthesia. Cough provocation using citric acid inhalation and mechanical stimulation of trachea was realized in 16 ovalbumin (OVA) sensitized, anesthetized and tracheotomised rabbits 24h after OVA (OVA group, n = 9) or saline challenge (control group, n = 7). Number of coughs provoked by citric acid inhalation did not differ between OVA and control group (12,2 ±6,1 vs. 17,9 ± 6,9; p = 0.5). Allergic airway inflammation induced significant modulation of cough threshold (CT) to mechanical stimulus. Mechanically induced cough reflex in OVA group was either up-regulated (subgroup named “responders” CT: 50 msec (50–50); n = 5 p = 0.003) or down-regulated (subgroup named “non responders”, CT: 1200 msec (1200–1200); n = 4 p = 0.001) when compared to control group (CT: 150 msec (75–525)). These results advocate that allergen may induce longer lasting changes of reflex cough pathway, leading to its up- or down-regulation. These findings may be of interest as they suggest that effective therapies for chronic cough in allergic patients should target sensitized component of both, reflex and behavioral cough.
Collapse
Affiliation(s)
- Laurent Foucaud
- Research Unit EA 3450 DevAH—Development, Adaptation and Handicap, Campus Biologie Santé, University of Lorraine, Vandœuvre-Lès-Nancy, France
| | - Bruno Demoulin
- Research Unit EA 3450 DevAH—Development, Adaptation and Handicap, Campus Biologie Santé, University of Lorraine, Vandœuvre-Lès-Nancy, France
| | - Anne-Laure Leblanc
- Research Unit EA 3450 DevAH—Development, Adaptation and Handicap, Campus Biologie Santé, University of Lorraine, Vandœuvre-Lès-Nancy, France
| | - Iulia Ioan
- Research Unit EA 3450 DevAH—Development, Adaptation and Handicap, Campus Biologie Santé, University of Lorraine, Vandœuvre-Lès-Nancy, France
- Department of Pediatric Functional Testing, Hôpital d’Enfants, CHRU de Nancy, Vandoeuvre-Les-Nancy, France
| | - Cyril Schweitzer
- Research Unit EA 3450 DevAH—Development, Adaptation and Handicap, Campus Biologie Santé, University of Lorraine, Vandœuvre-Lès-Nancy, France
- Department of Pediatric Functional Testing, Hôpital d’Enfants, CHRU de Nancy, Vandoeuvre-Les-Nancy, France
| | - Silvia Demoulin-Alexikova
- Research Unit EA 3450 DevAH—Development, Adaptation and Handicap, Campus Biologie Santé, University of Lorraine, Vandœuvre-Lès-Nancy, France
- Department of Pediatric Functional Testing, Hôpital d’Enfants, CHRU de Nancy, Vandoeuvre-Les-Nancy, France
- * E-mail:
| |
Collapse
|
7
|
Singh BK, Lu W, Schmidt Paustian AM, Ge MQ, Koziol-White CJ, Flayer CH, Killingbeck SS, Wang N, Dong X, Riese MJ, Deshpande DA, Panettieri RA, Haczku A, Kambayashi T. Diacylglycerol kinase ζ promotes allergic airway inflammation and airway hyperresponsiveness through distinct mechanisms. Sci Signal 2019; 12:12/597/eaax3332. [PMID: 31481522 DOI: 10.1126/scisignal.aax3332] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Asthma is a chronic allergic inflammatory airway disease caused by aberrant immune responses to inhaled allergens, which leads to airway hyperresponsiveness (AHR) to contractile stimuli and airway obstruction. Blocking T helper 2 (TH2) differentiation represents a viable therapeutic strategy for allergic asthma, and strong TCR-mediated ERK activation blocks TH2 differentiation. Here, we report that targeting diacylglycerol (DAG) kinase zeta (DGKζ), a negative regulator of DAG-mediated cell signaling, protected against allergic asthma by simultaneously reducing airway inflammation and AHR though independent mechanisms. Targeted deletion of DGKζ in T cells decreased type 2 inflammation without reducing AHR. In contrast, loss of DGKζ in airway smooth muscle cells decreased AHR but not airway inflammation. T cell-specific enhancement of ERK signaling was only sufficient to limit type 2 airway inflammation, not AHR. Pharmacological inhibition of DGK diminished both airway inflammation and AHR in mice and also reduced bronchoconstriction of human airway samples in vitro. These data suggest that DGK is a previously unrecognized therapeutic target for asthma and reveal that the inflammatory and AHR components of asthma are not as interdependent as generally believed.
Collapse
Affiliation(s)
- Brenal K Singh
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wen Lu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amanda M Schmidt Paustian
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Moyar Q Ge
- Pulmonary, Critical Care and Sleep Division, University of California, Davis, Davis, CA 95616, USA
| | - Cynthia J Koziol-White
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Cameron H Flayer
- Pulmonary, Critical Care and Sleep Division, University of California, Davis, Davis, CA 95616, USA
| | - Sara S Killingbeck
- Pulmonary, Critical Care and Sleep Division, University of California, Davis, Davis, CA 95616, USA
| | - Nadan Wang
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Matthew J Riese
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI 53226, USA
| | - Deepak A Deshpande
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Angela Haczku
- Pulmonary, Critical Care and Sleep Division, University of California, Davis, Davis, CA 95616, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Linoleic acid metabolite leads to steroid resistant asthma features partially through NF-κB. Sci Rep 2017; 7:9565. [PMID: 28851976 PMCID: PMC5575291 DOI: 10.1038/s41598-017-09869-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/31/2017] [Indexed: 12/19/2022] Open
Abstract
Studies have highlighted the role of nutritional and metabolic modulators in asthma pathobiology. Steroid resistance is an important clinical problem in asthma but lacks good experimental models. Linoleic acid, a polyunsaturated fatty acid, has been linked to asthma and glucocorticoid sensitivity. Its 12/15–lipoxygenase metabolite, 13-S-hydroxyoctadecadienoic acid (HODE) induces mitochondrial dysfunction, with severe airway obstruction and neutrophilic airway inflammation. Here we show that HODE administration leads to steroid unresponsiveness in an otherwise steroid responsive model of allergic airway inflammation (AAI). HODE treatment to allergic mice further increased airway hyperresponsiveness and goblet metaplasia. Treatment with dexamethasone was associated with increased neutrophilic inflammation in HODE treated allergic mice; unlike control allergic mice that showed resolution of inflammation. HODE induced loss of steroid sensitivity was associated with increased p-NFkB in mice and reduced GR-α transcript levels in cultured human bronchial epithelia. In summary, HODE modifies typical AAI to recapitulate many of the phenotypic features seen in severe steroid unresponsive asthma. We speculate that since HODE is a natural metabolite, it may be relevant to the increased asthma severity and steroid insensitivity in patients who are obese or consume high fat diets. Further characterization of HODE induced steroid insensitivity may clarify the mechanisms.
Collapse
|
9
|
Takazono T, Sheppard DC. Aspergillus in chronic lung disease: Modeling what goes on in the airways. Med Mycol 2016; 55:39-47. [PMID: 27838644 DOI: 10.1093/mmy/myw117] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 09/08/2016] [Accepted: 10/12/2016] [Indexed: 12/19/2022] Open
Abstract
Aspergillus species cause a range of respiratory diseases in humans. While immunocompromised patients are at risk for the development of invasive infection with these opportunistic molds, patients with underlying pulmonary disease can develop chronic airway infection with Aspergillus species. These conditions span a range of inflammatory and allergic diseases including Aspergillus bronchitis, allergic bronchopulmonary aspergillosis, and severe asthma with fungal sensitization. Animal models are invaluable tools for the study of the molecular mechanism underlying the colonization of airways by Aspergillus and the host response to these non-invasive infections. In this review we summarize the state-of-the-art with respect to the available animal models of noninvasive and allergic Aspergillus airway disease; the key findings of host-pathogen interaction studies using these models; and the limitations and future directions that should guide the development and use of models for the study of these important pulmonary conditions.
Collapse
Affiliation(s)
- Takahiro Takazono
- Departments of Medicine, Microbiology and Immunology, McGill University, Montréal, Québec, Canada.,Department of Infectious Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Donald C Sheppard
- Departments of Medicine, Microbiology and Immunology, McGill University, Montréal, Québec, Canada .,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
10
|
Calkovska A, Uhliarova B, Joskova M, Franova S, Kolomaznik M, Calkovsky V, Smolarova S. Pulmonary surfactant in the airway physiology: a direct relaxing effect on the smooth muscle. Respir Physiol Neurobiol 2015; 209:95-105. [PMID: 25583659 DOI: 10.1016/j.resp.2015.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/05/2015] [Accepted: 01/05/2015] [Indexed: 12/13/2022]
Abstract
Beside alveoli, surface active material plays an important role in the airway physiology. In the upper airways it primarily serves in local defense. Lower airway surfactant stabilizes peripheral airways, provides the transport and defense, has barrier and anti-edematous functions, and possesses direct relaxant effect on the smooth muscle. We tested in vitro the effect of two surfactant preparations Curosurf® and Alveofact® on the precontracted smooth muscle of intra- and extra-pulmonary airways. Relaxation was more pronounced for lung tissue strip containing bronchial smooth muscle as the primary site of surfactant effect. The study does not confirm the participation of ATP-dependent potassium channels and cAMP-regulated epithelial chloride channels known as CFTR chloride channels, or nitric oxide involvement in contractile response of smooth muscle to surfactant.By controlling wall thickness and airway diameter, pulmonary surfactant is an important component of airway physiology. Thus, surfactant dysfunction may be included in pathophysiology of asthma, COPD, or other diseases with bronchial obstruction.
Collapse
Affiliation(s)
- A Calkovska
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovakia.
| | - B Uhliarova
- Department of Otorhinolaryngology, FD Roosevelt Faculty Hospital, Banska Bystrica, Slovakia.
| | - M Joskova
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovakia.
| | - S Franova
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovakia.
| | - M Kolomaznik
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovakia.
| | - V Calkovsky
- Clinic of Otorhinolaryngology and Head and Neck Surgery, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava and University Hospital Martin, Slovakia.
| | - S Smolarova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Slovakia.
| |
Collapse
|
11
|
Goncharova EA, Goncharov DA, James ML, Atochina-Vasserman EN, Stepanova V, Hong SB, Li H, Gonzales L, Baba M, Linehan WM, Gow AJ, Margulies S, Guttentag S, Schmidt LS, Krymskaya VP. Folliculin controls lung alveolar enlargement and epithelial cell survival through E-cadherin, LKB1, and AMPK. Cell Rep 2014; 7:412-423. [PMID: 24726356 PMCID: PMC4034569 DOI: 10.1016/j.celrep.2014.03.025] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/30/2014] [Accepted: 03/10/2014] [Indexed: 12/21/2022] Open
Abstract
Spontaneous pneumothoraces due to lung cyst rupture afflict patients with the rare disease Birt-Hogg-Dubé (BHD) syndrome, which is caused by mutations of the tumor suppressor gene folliculin (FLCN). The underlying mechanism of the lung manifestations in BHD is unclear. We show that BHD lungs exhibit increased alveolar epithelial cell apoptosis and that Flcn deletion in mouse lung epithelium leads to cell apoptosis, alveolar enlargement, and an impairment of both epithelial barrier and overall lung function. We find that Flcn-null epithelial cell apoptosis is the result of impaired AMPK activation and increased cleaved caspase-3. AMPK activator LKB1 and E-cadherin are downregulated by Flcn loss and restored by its expression. Correspondingly, Flcn-null cell survival is rescued by the AMPK activator AICAR or constitutively active AMPK. AICAR also improves lung condition of Flcn(f/f):SP-C-Cre mice. Our data suggest that lung cysts in BHD may result from an underlying defect in alveolar epithelial cell survival, attributable to FLCN regulation of the E-cadherin-LKB1-AMPK axis.
Collapse
Affiliation(s)
- Elena A Goncharova
- Pulmonary, Allergy and Critical Care Division, Airways Biology Initiative, Department of Medicine, Perelman School of Medicine, Philadelphia, PA 19104, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Dmitry A Goncharov
- Pulmonary, Allergy and Critical Care Division, Airways Biology Initiative, Department of Medicine, Perelman School of Medicine, Philadelphia, PA 19104, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Melane L James
- Pulmonary, Allergy and Critical Care Division, Airways Biology Initiative, Department of Medicine, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Elena N Atochina-Vasserman
- Pulmonary, Allergy and Critical Care Division, Airways Biology Initiative, Department of Medicine, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Victoria Stepanova
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Seung-Beom Hong
- Pulmonary, Allergy and Critical Care Division, Airways Biology Initiative, Department of Medicine, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Hua Li
- Pulmonary, Allergy and Critical Care Division, Airways Biology Initiative, Department of Medicine, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Linda Gonzales
- Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Masaya Baba
- Urologic Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - W Marston Linehan
- Urologic Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Andrew J Gow
- Department of Pharmacology & Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | - Susan Margulies
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Susan Guttentag
- Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Laura S Schmidt
- Urologic Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA; Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 20892, USA
| | - Vera P Krymskaya
- Pulmonary, Allergy and Critical Care Division, Airways Biology Initiative, Department of Medicine, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Bein K, Di Giuseppe M, Mischler SE, Ortiz LA, Leikauf GD. LPS-treated macrophage cytokines repress surfactant protein-B in lung epithelial cells. Am J Respir Cell Mol Biol 2013; 49:306-15. [PMID: 23590297 PMCID: PMC3824031 DOI: 10.1165/rcmb.2012-0283oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 03/07/2013] [Indexed: 02/04/2023] Open
Abstract
In the mouse lung, Escherichia coli LPS can decrease surfactant protein-B (SFTPB) mRNA and protein concentrations. LPS also regulates the expression, synthesis, and concentrations of a variety of gene and metabolic products that inhibit SFTPB gene expression. The purpose of the present study was to determine whether LPS acts directly or indirectly on pulmonary epithelial cells to trigger signaling pathways that inhibit SFTPB expression, and whether the transcription factor CCAAT/enhancer binding protein (C/EBP)-β (CEBPB) is a downstream inhibitory effector. To investigate the mechanism of SFTPB repression, the human pulmonary epithelial cell lines NCI-H441 (H441) and NCI-H820 (H820) and the mouse macrophage-like cell line RAW264.7 were treated with LPS. Whereas LPS did not decrease SFTPB transcripts in H441 or H820 cells, the conditioned medium of LPS-treated RAW264.7 cells decreased SFTPB transcripts in H441 and H820 cells, and inhibited SFTPB promoter activity in H441 cells. In the presence of neutralizing anti-tumor necrosis factor (TNF) antibodies, the conditioned medium of LPS-treated RAW264.7 cells did not inhibit SFTPB promoter activity. In H441 cells treated with recombinant TNF protein, SFTPB transcripts decreased, whereas CEBPB transcripts increased and the transient coexpression of CEBPB decreased SFTPB promoter activity. Further, CEBPB short, interfering RNA increased basal SFTPB transcripts and countered the decrease of SFTPB transcripts by TNF. Together, these findings suggest that macrophages participate in the repression of SFTPB expression by LPS, and that macrophage-released cytokines (including TNF) regulate the transcription factor CEBPB, which can function as a downstream transcriptional repressor of SFTPB gene expression in pulmonary epithelial cells.
Collapse
Affiliation(s)
- Kiflai Bein
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219-3130, USA.
| | | | | | | | | |
Collapse
|
13
|
Taguchi A, Hanash S, Rundle A, McKeague IW, Tang D, Darakjy S, Gaziano JM, Sesso HD, Perera F. Circulating pro-surfactant protein B as a risk biomarker for lung cancer. Cancer Epidemiol Biomarkers Prev 2013; 22:1756-61. [PMID: 23897585 DOI: 10.1158/1055-9965.epi-13-0251] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Our prior studies of lung cancer suggested that a novel biomarker (pro-surfactant protein B or pro-SFTPB) might serve as a predictive marker for this disease. We aimed to determine the potential use of pro-SFTPB for distinguishing lung cancer cases from matched controls as a risk marker. METHODS Study subjects were drawn from the longitudinal Physicians' Health Study (PHS). Cases (n = 188) included individuals who were cancer-free at study enrollment but developed lung cancer during follow-up. Controls (n = 337) were subjects who did not develop lung cancer. Cases and controls were matched on date of study enrollment, age at enrollment, and smoking status and amount. Baseline plasma samples drawn at enrollment were analyzed for pro-SFTPB using ELISA to detect differences in protein expression levels for cases and controls. RESULTS Pro-SFTPB nondetectable status was significantly associated with lung cancer risk [OR = 5.88; 95% confidence interval (CI) 1.24-27.48]. Among subjects with detectable levels of the protein, increasing plasma concentration of pro-SFTPB was associated with higher lung cancer risk (OR = 1.41 per unit increase in log pro-SFTPB; 95% CI 1.08-1.84). CONCLUSION These results suggest a nonlinear, J-shaped association between plasma pro-SFTPB levels and lung cancer risk, with both nondetectable and higher levels of the marker being associated with lung cancer. IMPACT These results show promise of a risk marker that could contribute to predicting risk for lung cancer development and to narrowing the high-risk population for low-dose computed tomography screening.
Collapse
Affiliation(s)
- Ayumu Taguchi
- Authors' Affiliations: Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Epidemiology, Biostatistics, and Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York; Divisions of Preventive Medicine and Aging, Department of Medicine, Brigham and Women's Hospital; and Boston VA Medical Center, Boston, Massachusetts
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Jiang Z, Fehrenbach ML, Ravaioli G, Kokalari B, Redai IG, Sheardown SA, Wilson S, Macphee C, Haczku A. The effect of lipoprotein-associated phospholipase A2 deficiency on pulmonary allergic responses in Aspergillus fumigatus sensitized mice. Respir Res 2012; 13:100. [PMID: 23140447 PMCID: PMC3546878 DOI: 10.1186/1465-9921-13-100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/06/2012] [Indexed: 12/05/2022] Open
Abstract
Background Lipoprotein-associated phospholipase A2 (Lp-PLA2)/platelet-activating factor acetylhydrolase (PAF-AH) has been implicated in the pathogenesis of cardiovascular disease. A therapeutic targeting of this enzyme was challenged by the concern that increased circulating platelet activating factor (PAF) may predispose to or increase the severity of the allergic airway response. The aim of this study was to investigate whether Lp-PLA2 gene deficiency increases the risk of PAF and IgE-mediated inflammatory responses in vitro and in vivo using mouse models. Methods Lp-PLA2-/- mice were generated and back crossed to the C57BL/6 background. PAF-AH activity was measured using a hydrolysis assay in serum and bronchoalveolar lavage (BAL) samples obtained from mice. Aspergillus fumigatus (Af)-specific serum was prepared for passive allergic sensitization of mice in vivo and mast cells in vitro. β- hexosaminidase release was studied in bone marrow derived mast cells sensitized with Af-specific serum or DNP-IgE and challenged with Af or DNP, respectively. Mice were treated with lipopolysaccharide (LPS) and PAF intratracheally and studied 24 hours later. Mice were sensitized either passively or actively against Af and were studied 48 hours after a single intranasal Af challenge. Airway responsiveness to methacholine, inflammatory cell influx in the lung tissue and BAL, immunoglobulin (ELISA) and cytokine (Luminex) profiles were compared between the wild type (WT) and Lp-PLA2-/- mice. Results PAF-AH activity was reduced but not completely abolished in Lp-PLA2-/- serum or by in vitro treatment of serum samples with a high saturating concentration of the selective Lp-PLA2 inhibitor, SB-435495. PAF inhalation significantly enhanced airway inflammation of LPS treated WT and Lp-PLA2-/- mice to a similar extent. Sensitized WT and Lp-PLA2-/- bone-marrow derived mast cells released β-hexosaminidase following stimulation by allergen or IgE crosslinking to equivalent levels. Wild type and Lp-PLA2-/- mice responded to passive or active allergic sensitization by significant IgE production, airway inflammation and hyperresponsiveness after Af challenge. BAL cell influx was not different between these strains while IL-4, IL-5, IL-6 and eotaxin release was attenuated in Lp-PLA2-/- mice. There were no differences in the amount of total IgE levels in the Af sensitized WT and Lp-PLA2-/- mice. Conclusions We conclude that Lp-PLA2 deficiency in C57BL/6 mice did not result in a heightened airway inflammation or hyperresponsiveness after PAF/LPS treatment or passive or active allergic sensitization and challenge.
Collapse
Affiliation(s)
- Zhilong Jiang
- Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sharma SK, Almeida FA, Kierstein S, Hortobagyi L, Lin T, Larkin A, Peterson J, Yagita H, Zangrilli JG, Haczku A. Systemic FasL neutralization increases eosinophilic inflammation in a mouse model of asthma. Allergy 2012; 67:328-35. [PMID: 22175699 DOI: 10.1111/j.1398-9995.2011.02763.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2011] [Indexed: 01/23/2023]
Abstract
BACKGROUND Eosinophils and lymphocytes are pathogenically important in allergic inflammation and sensitive to Fas-mediated apoptosis. Fas ligand (FasL) activity therefore should play a role in regulating the allergic immune response. We aimed to characterize the role of FasL expression in airway eosinophilia in Aspergillus fumigatus (Af)-induced sensitization and to determine whether FasL neutralization alters the inflammatory response. METHODS Sensitized Balb/c mice were killed before (day 0) and 1, 7 and 10 days after a single intranasal challenge with Af. Animals received either neutralizing antibody to FasL (clone MFL4) or irrelevant hamster IgG via intraperitoneal injection on days -1 and 5. FasL expression, BAL and tissue inflammatory cell and cytokine profile, and apoptosis were assessed. RESULTS Postchallenge FasL gene expression in BAL cells and TUNEL positivity in the airways coincided with the height of inflammatory cell influx on day 1, while soluble FasL protein was released on day 7, preceding resolution of the inflammatory changes. Although eosinophil numbers showed a negative correlation with soluble FasL levels in the airways, MBP(+) eosinophils remained TUNEL negative in the submucosal tissue, throughout the 10-day period after Af challenge. Systemic FasL neutralization significantly enhanced BAL and tissue eosinophil counts. This effect was associated with increased activation of T cells and release of IL-5, IL-9, and GM-CSF in the BAL fluid of mice, indicating an involvement of pro-eosinophilic survival pathways. CONCLUSIONS FasL activity may play an active role in resolving eosinophilic inflammation through regulating T cells and pro-eosinophilic cytokine release during the allergic airway response.
Collapse
Affiliation(s)
| | - F. A. Almeida
- Division of Pulmonary and Critical Care; Thomas Jefferson University; Philadelphia; PA; USA
| | - S. Kierstein
- Pulmonary, Allergy and Critical Care Division; University of Pennsylvania School of Medicine; Philadelphia; PA; USA
| | - L. Hortobagyi
- Pulmonary, Allergy and Critical Care Division; University of Pennsylvania School of Medicine; Philadelphia; PA; USA
| | - T. Lin
- Division of Pulmonary and Critical Care; Thomas Jefferson University; Philadelphia; PA; USA
| | - A. Larkin
- Center for Translational Medicine; Thomas Jefferson University; Philadelphia; PA; USA
| | - J. Peterson
- Center for Translational Medicine; Thomas Jefferson University; Philadelphia; PA; USA
| | - H. Yagita
- Juntendo University School of Medicine; Tokyo; Japan
| | | | - A. Haczku
- Pulmonary, Allergy and Critical Care Division; University of Pennsylvania School of Medicine; Philadelphia; PA; USA
| |
Collapse
|
16
|
Schmiedl A, Krainski J, Schwichtenhövel F, Schade J, Klemann C, Raber KA, Zscheppang K, Beekmann T, Acevedo C, Glaab T, Wedekind D, Pabst R, von Hörsten S, Stephan M. Reduced airway inflammation in CD26/DPP4-deficient F344 rats is associated with altered recruitment patterns of regulatory T cells and expression of pulmonary surfactant proteins. Clin Exp Allergy 2011; 40:1794-808. [PMID: 20560982 DOI: 10.1111/j.1365-2222.2010.03547.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION CD26 is highly expressed on lung epithelial cells as well as on immune cells. Ovalbumin (OVA)-induced airway inflammation induces a further increase of CD26 expression. CD26-deficient rat strains exhibit blunted clinical courses in models of experimental asthma. OBJECTIVE (1) To investigate the involvement of regulatory T cells (Tregs) and the surfactant system in a rat model of genetic CD26 deficiency. (2) To investigate regulatory mechanisms dependent on the endogenous CD26 expression. (3) To investigate the impact of CD26 on surfactant protein (SP)-levels under inflammatory conditions. METHODS Wild-type and CD26-deficient F344 rats were sensitized to and challenged with OVA. Subsequently, airway inflammation, SP levels as well as surface tension of the bronchoalveolar lavage (BAL) fluid were evaluated. RESULTS CD26 deficiency led to decreased airway inflammation, e.g. reduced numbers of eosinophils and activated T cells in the BAL. Remarkably, the CD26-deficient rats exhibited a significantly increased influx of FoxP3(+) Tregs into the lungs and increased IL-10-secretion/production by draining lymph node cells in culture experiments. Furthermore, in OVA-challenged CD26-deficient rats, the increase of the expression of the collectins SP-A and SP-D as well as of the surface tension-active SP-B was significantly less pronounced than in the CD26-positive strain. Only in the wild-type rats, functional alterations of the surfactant system, e.g. the increased surface tension were obvious after OVA challenge. CONCLUSION Reduced airway inflammation in CD26-deficient F344 rats appear to be mediated by differences in the recruitment and activity of Tregs. This altered inflammation is associated with differences in the SP expression as well as function.
Collapse
Affiliation(s)
- A Schmiedl
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Forbes LR, Haczku A. SP-D and regulation of the pulmonary innate immune system in allergic airway changes. Clin Exp Allergy 2010; 40:547-62. [PMID: 20447075 DOI: 10.1111/j.1365-2222.2010.03483.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The airway mucosal surfaces are constantly exposed to inhaled particles that can be potentially toxic, infectious or allergenic and should elicit inflammatory changes. The proximal and distal air spaces, however, are normally infection and inflammation free due to a specialized interplay between cellular and molecular components of the pulmonary innate immune system. Surfactant protein D (SP-D) is an epithelial-cell-derived immune modulator that belongs to the small family of structurally related Ca(2+)-dependent C-type collagen-like lectins. While collectins can be detected in mucosal surfaces of various organs, SP-A and SP-D (the 'lung collectins') are constitutively expressed in the lung at high concentrations. Both proteins are considered important players of the pulmonary immune responses. Under normal conditions however, SP-A-/- mice display no pathological features in the lung. SP-D-/- mice, on the other hand, show chronic inflammatory alterations indicating a special importance of this molecule in regulating immune homeostasis and the function of the innate immune cells. Recent studies in our laboratory and others implied significant associations between changes in SP-D levels and the presence of airway inflammation both in animal models and patients raising a potential usefulness of this molecule as a disease biomarker. Research on wild-type and mutant recombinant molecules in vivo and in vitro showed that SP-D binds carbohydrates, lipids and nucleic acids with a broad spectrum specificity and initiates phagocytosis of inhaled pathogens as well as apoptotic cells. Investigations on gene-deficient and conditional over expressor mice in addition, provided evidence that SP-D directly modulates macrophage and dendritic cell function as well as T cell-dependent inflammatory events. Thus, SP-D has a unique, dual functional capacity to induce pathogen elimination on the one hand and control of pro-inflammatory mechanisms on the other, suggesting a potential suitability for therapeutic prevention and treatment of chronic airway inflammation without compromising the host defence function of the airways. This paper will review recent findings on the mechanisms of immune-protective function of SP-D in the lung.
Collapse
Affiliation(s)
- L R Forbes
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
18
|
Haczku A, Panettieri RA. Social stress and asthma: the role of corticosteroid insensitivity. J Allergy Clin Immunol 2010; 125:550-8. [PMID: 20153032 DOI: 10.1016/j.jaci.2009.11.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 11/02/2009] [Accepted: 11/05/2009] [Indexed: 02/07/2023]
Abstract
Psychosocial stress alters susceptibility to infectious and systemic illnesses and may enhance airway inflammation in asthma by modulating immune cell function through neural and hormonal pathways. Stress activates the hypothalamic-pituitary-adrenal axis. Release of endogenous glucocorticoids, as a consequence, may play a prominent role in altering the airway immune homeostasis. Despite substantial corticosteroid and catecholamine plasma levels, chronic psychosocial stress evokes asthma exacerbations. Animal studies suggest that social stress induces corticosteroid insensitivity that in part may be a result of impaired glucocorticoid receptor expression and/or function. Such mechanisms likely promote and amplify airway inflammation in response to infections, allergen, or irritant exposure. This review discusses evidence of an altered corticosteroid responsive state as a consequence of chronic psychosocial stress. Elucidation of the mechanisms of stress-induced impairment of glucocorticoid responsiveness and immune homeostasis may identify novel therapeutic targets that could improve asthma management.
Collapse
Affiliation(s)
- Angela Haczku
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pa 19104-3403, USA.
| | | |
Collapse
|
19
|
Sunil VR, Patel KJ, Mainelis G, Turpin BJ, Ridgely S, Laumbach RJ, Kipen HM, Nazarenko Y, Veleeparambil M, Gow AJ, Laskin JD, Laskin DL. Pulmonary effects of inhaled diesel exhaust in aged mice. Toxicol Appl Pharmacol 2009; 241:283-93. [PMID: 19729031 DOI: 10.1016/j.taap.2009.08.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 08/20/2009] [Accepted: 08/23/2009] [Indexed: 11/25/2022]
Abstract
Pulmonary morbidity and mortality resulting from exposure to fine particulate matter (PM) increases with age. The present studies analyzed potential mechanisms underlying increased susceptibility of the elderly to PM using diesel exhaust (DE) as a model. Mice (2 m and 18 m) were exposed to DE (0, 300, and 1000 microg/m(3)) for 3 h once (single) or 3 h/day for 3 days (repeated). Bronchoalveolar lavage fluid (BAL), serum and lung tissue were collected 0 and 24 h later. Exposure to DE resulted in structural alterations in the lungs of older but not younger mice, including patchy thickening of the alveolar septa and inflammatory cell localization in alveolar spaces. These effects were most pronounced 24 h after a single exposure to the higher dose of DE. Significant increases in BAL nitrogen oxides were also noted in older mice, as well as expression of lipocalin 24p3, an oxidative stress marker in the lung with no effects in younger mice. Following DE inhalation, expression of Tumor Necrosis Factor alpha (TNFalpha) was upregulated in lungs of both younger and older mice; however, this was attenuated in older animals. Whereas exposure to DE resulted in increases in lung Interleukin-6 (IL-6) expression in both older and younger mice, IL-8 increased only in older animals. In younger mice, constitutive expression of manganese superoxide dismutase (MnSOD) decreased after DE exposure, while in older mice, constitutive MnSOD was not detectable and DE had no effect on expression of this antioxidant. Taken together, these results suggest that altered generation of inflammatory mediators and MnSOD may contribute to increased susceptibility of older mice to inhaled DE.
Collapse
Affiliation(s)
- Vasanthi R Sunil
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bates JHT, Rincon M, Irvin CG. Animal models of asthma. Am J Physiol Lung Cell Mol Physiol 2009; 297:L401-10. [PMID: 19561139 DOI: 10.1152/ajplung.00027.2009] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Studies in animal models form the basis for much of our current understanding of the pathophysiology of asthma, and are central to the preclinical development of drug therapies. No animal model completely recapitulates all features of the human disease, however. Research has focused primarily on ways to generate allergic inflammation by sensitizing and challenging animals with a variety of foreign proteins, leading to an increased understanding of the immunological factors that mediate the inflammatory response and its physiological expression in the form of airways hyperresponsiveness. Animal models of exaggerated airway narrowing are also lending support to the notion that asthma may represent an abnormality of the airway smooth muscle. The mouse is now the species of choice for asthma research involving animals. This presents practical challenges for physiological study because the mouse is so small, but modern imaging methodologies, coupled with the forced oscillation technique for measuring lung mechanics, have allowed the asthma phenotype in mice to be precisely characterized.
Collapse
Affiliation(s)
- Jason H T Bates
- Vermont Lung Center and Center for Immunology and Infectious Disease, University of Vermont College of Medicine, HSRF 228, 149 Beaumont Ave., Burlington, VT 05405-0075, USA.
| | | | | |
Collapse
|
21
|
Bailey MT, Kierstein S, Sharma S, Spaits M, Kinsey SG, Tliba O, Amrani Y, Sheridan JF, Panettieri RA, Haczku A. Social stress enhances allergen-induced airway inflammation in mice and inhibits corticosteroid responsiveness of cytokine production. THE JOURNAL OF IMMUNOLOGY 2009; 182:7888-96. [PMID: 19494313 DOI: 10.4049/jimmunol.0800891] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chronic psychosocial stress exacerbates asthma, but the underlying mechanisms remain poorly understood. We hypothesized that psychosocial stress aggravates allergic airway inflammation by altering innate immune cell function. The effects of stress on airway inflammation, lung function, and glucocorticoid responsiveness were studied in a novel in vivo murine model of combined social disruption stress and allergic sensitization. The effects of corticosterone were assessed on cytokine profile and glucocorticoid receptor activation in LPS-stimulated spleen cell cultures in vitro. Airway inflammation resolved 48 h after a single allergen provocation in sensitized control mice, but not in animals that were repeatedly exposed to stress before allergen challenge. The enhanced eosinophilic airway inflammation 48 h after allergen challenge in these mice was associated with increased levels of IL-5, GM-CSF, IgG1, thymus-activated and regulatory chemokine, TNF-alpha, and IL-6 in the airways and a diminished inhibition of these mediators by corticosterone in LPS-stimulated splenocyte cultures in vitro. Stress-induced reduction of the corticosteroid effects paralleled increased p65 expression and a decreased DNA-binding capability of the glucocorticoid receptor in vitro. Furthermore, glucocorticoid receptor mRNA and protein expression in the lungs of mice exposed to both stress and allergen was markedly reduced in comparison with that in either condition alone or in naive mice. Thus, exposure to repeated social stress before allergen inhalation enhances and prolongs airway inflammation and alters corticosterone responsiveness. We speculate that these effects were mediated at least in part by impaired glucocorticoid receptor expression and function.
Collapse
Affiliation(s)
- Michael T Bailey
- Department of Oral Biology and Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hortobágyi L, Kierstein S, Krytska K, Zhu X, Das AM, Poulain F, Haczku A. Surfactant protein D inhibits TNF-alpha production by macrophages and dendritic cells in mice. J Allergy Clin Immunol 2008; 122:521-528. [PMID: 18554706 DOI: 10.1016/j.jaci.2008.05.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 04/14/2008] [Accepted: 05/01/2008] [Indexed: 01/28/2023]
Abstract
BACKGROUND Surfactant protein (SP) D shares target cells with the proinflammatory cytokine TNF-alpha, an important autocrine stimulator of dendritic cells and macrophages in the airways. OBJECTIVE We sought to study the mechanisms by which TNF-alpha and SP-D can affect cellular components of the pulmonary innate immune system. METHODS Cytokine and SP-D protein and mRNA expression was assessed by means of ELISA, Western blotting, and real-time PCR, respectively, by using in vivo models of allergic airway sensitization. Macrophage and dendritic cell phenotypes were analyzed by means of FACS analysis. Maturation of bone marrow-derived dendritic cells was investigated in vitro. RESULTS TNF-alpha, elicited either by allergen exposure or pulmonary overexpression, induced SP-D, IL-13, and mononuclear cell influx in the lung. Recombinant IL-13 by itself was also capable of enhancing SP-D in vivo and in vitro, and the SP-D response to allergen challenge was impaired in IL-13-deficient mice. Allergen-induced increase of SP-D in the airways coincided with resolution of TNF-alpha release and cell influx. SP-D-deficient mice had constitutively high numbers of alveolar mononuclear cells expressing TNF-alpha, MHC class II, CD86, and CD11b, characteristics of proinflammatory, myeloid dendritic cells. Recombinant SP-D significantly suppressed all of these molecules in bone marrow-derived dendritic cell cultures. CONCLUSIONS TNF-alpha can contribute to enhanced SP-D production in the lung indirectly through inducing IL-13. SP-D, on the other hand, can antagonize the proinflammatory effects of TNF-alpha on macrophages and dendritic cells, at least partly, by inhibiting production of this cytokine.
Collapse
Affiliation(s)
| | - Sonja Kierstein
- Department of Medicine, University of Pennsylvania, Philadelphia
| | - Kateryna Krytska
- Department of Medicine, University of Pennsylvania, Philadelphia
| | - Xiaoping Zhu
- Department of Medicine, University of Pennsylvania, Philadelphia
| | | | | | - Angela Haczku
- Department of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
23
|
Kierstein S, Krytska K, Sharma S, Amrani Y, Salmon M, Panettieri RA, Zangrilli J, Haczku A. Ozone inhalation induces exacerbation of eosinophilic airway inflammation and hyperresponsiveness in allergen-sensitized mice. Allergy 2008; 63:438-46. [PMID: 18315731 DOI: 10.1111/j.1398-9995.2007.01587.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Ozone (O(3)) exposure evokes asthma exacerbations by mechanisms that are poorly understood. We used a murine model to characterize the effects of O(3) on allergic airway inflammation and hyperresponsiveness and to identify factors that might contribute to the O(3)-induced exacerbation of asthma. METHODS BALB/c mice were sensitized and challenged with Aspergillus fumigatus (Af). A group of sensitized and challenged mice was exposed to 3.0 ppm of O(3) for 2 h and studied 12 h later (96 h after Af challenge). Naive mice and mice exposed to O(3) alone were used as controls. Bronchoalveolar lavage (BAL) cellular and cytokine content, lung function [enhanced pause (P(enh))], isometric force generation by tracheal rings and gene and protein expression of Fas and FasL were assessed. Apoptosis of eosinophils was quantified by FACS. RESULTS In sensitized mice allergen challenge induced a significant increase of P(enh) and contractile force in tracheal rings that peaked 24 h after challenge and resolved by 96 h. O(3) inhalation induced an exacerbation of airway hyperresponsiveness accompanied by recurrence of neutrophils and enhancement of eosinophils 96 h after allergen challenge. The combination of allergen and O(3) exposure inhibited Fas and FasL gene and protein expression and eosinophil apoptosis and increased interleukin-5 (IL-5), granulocyte-macrophage-colony stimulating factor (GM-CSF) and G-CSF protein levels. CONCLUSIONS O(3) affects airway responsiveness of allergen-primed airways indirectly by increasing viability of eosinophils and eosinophil-mediated pathological changes.
Collapse
Affiliation(s)
- S Kierstein
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104-3403, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Jain D, Keslacy S, Tliba O, Cao Y, Kierstein S, Amin K, Panettieri RA, Haczku A, Amrani Y. Essential role of IFNbeta and CD38 in TNFalpha-induced airway smooth muscle hyper-responsiveness. Immunobiology 2008; 213:499-509. [PMID: 18514752 DOI: 10.1016/j.imbio.2007.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/10/2007] [Accepted: 12/12/2007] [Indexed: 10/22/2022]
Abstract
We recently identified autocrine interferon (IFN)beta as a novel mechanism mediating tumor necrosis factor (TNF)alpha-induced expression of inflammatory genes in airway smooth muscle (ASM) cells, including CD38, known to regulate calcium signaling. Here, we investigated the putative involvement of IFNbeta in regulating TNFalpha-induced airway hyper-responsiveness (AHR), a defining feature of asthma. Using our pharmacodynamic model to assess ex vivo AHR isolated murine tracheal rings, we found that TNFalpha-induced enhanced contractile responses to carbachol and bradykinin was abrogated by neutralizing anti-IFNbeta antibody or in tracheal rings deficient in CD38. In cultured human ASM cells, where CD38 has been involved in TNFalpha-induced enhanced calcium signals to carbachol and bradykinin, we found that neutralizing anti-IFNbeta prevented TNFalpha enhancing action only on carbachol responses but not to that induced by bradykinin. In a well-characterized model of allergic asthma (mice sensitized and challenged with Aspergillus fumigatus (Af)), we found heightened expression of both IFNbeta and CD38 in the airways. Furthermore, allergen-associated AHR to methacholine, assessed by lung resistance and dynamic compliance, was completely suppressed in CD38-deficient mice, despite the preservation of airway inflammation. These data provide the first evidence that ASM-derived IFNbeta and CD38 may play a significant role in the development of TNFalpha-associated AHR.
Collapse
Affiliation(s)
- Deepika Jain
- Pulmonary and Critical Care Division, University of Pennsylvania Medical Center, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zosky GR, Larcombe AN, White OJ, Burchell JT, Janosi TZ, Hantos Z, Holt PG, Sly PD, Turner DJ. Ovalbumin-sensitized mice are good models for airway hyperresponsiveness but not acute physiological responses to allergen inhalation. Clin Exp Allergy 2007; 38:829-38. [PMID: 18070158 DOI: 10.1111/j.1365-2222.2007.02884.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Asthma is a chronic inflammatory disease that is characterized clinically by airway hyperresponsiveness (AHR) to bronchoconstricting agents. The physiological response of the asthmatic lung to inhaled allergen is often characterized by two distinct phases: an early-phase response (EPR) within the first hour following exposure that subsides and a late-phase response (LPR) that is more prolonged and may occur several hours later. Mouse models of asthma have become increasingly popular and should be designed to exhibit an EPR, LPR and AHR. OBJECTIVE To determine whether a common model of asthma is capable of demonstrating an EPR, LPR and AHR. METHODS BALB/c mice were sensitized to ovalbumin (OVA) and challenged with one or three OVA aerosols. Changes in lung mechanics in response to allergen inhalation were assessed using a modification of the low-frequency forced oscillation technique (LFOT). In order to assess AHR, changes in lung mechanics in response to aerosolized methacholine were assessed using LFOT. Inflammatory cell infiltration into the lung was measured via bronchoalveolar lavage (BAL). ELISAs were used to measure inflammatory cytokines in the BAL and levels of IgE in the serum. RESULTS An EPR was only detectable after three OVA aerosols in approximately half of the mice studied. There was no evidence of an LPR despite a clear increase in cellular infiltration 6 h post-allergen challenge. AHR was present after a single OVA aerosol but not after three OVA aerosols. CONCLUSIONS The lack of an LPR, limited EPR and the absence of a link between the LPR and AHR highlight the limitations of this mouse model as a complete model of the lung dysfunction associated with asthma.
Collapse
Affiliation(s)
- G R Zosky
- Centre for Child Health Research, Telethon Institute for Child Health Research, University of Western Australia, Perth, WA, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proc Natl Acad Sci U S A 2007; 104:18886-91. [PMID: 18006663 DOI: 10.1073/pnas.0610868104] [Citation(s) in RCA: 325] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe a microfabricated airway system integrated with computerized air-liquid two-phase microfluidics that enables on-chip engineering of human airway epithelia and precise reproduction of physiologic or pathologic liquid plug flows found in the respiratory system. Using this device, we demonstrate cellular-level lung injury under flow conditions that cause symptoms characteristic of a wide range of pulmonary diseases. Specifically, propagation and rupture of liquid plugs that simulate surfactant-deficient reopening of closed airways lead to significant injury of small airway epithelial cells by generating deleterious fluid mechanical stresses. We also show that the explosive pressure waves produced by plug rupture enable detection of the mechanical cellular injury as crackling sounds.
Collapse
|
27
|
Helyes Z, Elekes K, Németh J, Pozsgai G, Sándor K, Kereskai L, Börzsei R, Pintér E, Szabó A, Szolcsányi J. Role of transient receptor potential vanilloid 1 receptors in endotoxin-induced airway inflammation in the mouse. Am J Physiol Lung Cell Mol Physiol 2007; 292:L1173-81. [PMID: 17237150 DOI: 10.1152/ajplung.00406.2006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Airways are densely innervated by capsaicin-sensitive sensory neurons expressing transient receptor potential vanilloid 1 (TRPV1) receptors/ion channels, which play an important regulatory role in inflammatory processes via the release of sensory neuropeptides. The aim of the present study was to investigate the role of TRPV1 receptors in endotoxin-induced airway inflammation and consequent bronchial hyperreactivity with functional, morphological, and biochemical techniques using receptor gene-deficient mice. Inflammation was evoked by intranasal administration of Escherichia coli lipopolysaccharide (60 microl, 167 microg/ml) in TRPV1 knockout (TRPV1(-/-)) mice and their wild-type counterparts (TRPV1(+/+)) 24 h before measurement. Airway reactivity was assessed by unrestrained whole body plethysmography, and its quantitative indicator, enhanced pause (Penh), was calculated after inhalation of the bronchoconstrictor carbachol. Histological examination and spectrophotometric myeloperoxidase measurement was performed from the lung. Somatostatin concentration was measured in the lung and plasma with radioimmunoassay. Bronchial hyperreactivity, histological lesions (perivascular/peribronchial edema, neutrophil/macrophage infiltration, goblet cell hyperplasia), and myeloperoxidase activity were significantly greater in TRPV(-/-) mice. Inflammation markedly elevated lung and plasma somatostatin concentrations in TRPV1(+/+) but not TRPV1(-/-) animals. In TRPV1(-/-) mice, exogenous administration of somatostatin-14 (4 x 100 microg/kg ip) diminished inflammation and hyperreactivity. Furthermore, in wild-type mice, antagonizing somatostatin receptors by cyclo-somatostatin (4 x 250 microg/kg ip) increased these parameters. This study provides the first evidence for a novel counterregulatory mechanism during endotoxin-induced airway inflammation, which is mediated by somatostatin released from sensory nerve terminals in response to activation of TRPV1 receptors of the lung. It reaches the systemic circulation and inhibits inflammation and consequent bronchial hyperreactivity.
Collapse
Affiliation(s)
- Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hu R, Xu Y, Zhang Z. Surfactant protein B 1580 polymorphism is associated with susceptibility to chronic obstructive pulmonary disease in Chinese Han population. ACTA ACUST UNITED AC 2006; 24:216-8, 238. [PMID: 15315329 DOI: 10.1007/bf02831993] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Whether surfactant protein B (SP-B)-18A/C and 1580C/T polymorphism were associated with susceptibility to chronic obstructive pulmonary disease (COPD) in Chinese Han population was investigated. After genomic DNA was isolated from blood of COPD smokers and control smokers, the genotypes of SP-B-18A/C and SP-B1580C/T polymorphism loci were determined by polymerase chain reaction-restriction fragment length polymorphism analysis (PCR-RFLP) respectively. The results showed that there was significant difference in genotypes distribution frequency of SP-B1580C/T polymorphism locus between COPD smokers and control smokers. C-->T mutation rate (including TT homozygote and CT heterozygote) in COPD smokers was higher than in control smokers (57.9% vs 41.7%, chi2 = 4.93, P<0.05), whereas there was no significant difference in genotypes distribution frequency of SP-B1580-18A/C locus between COPD smokers and control smokers. The allele frequency (29.1%) of SP-B1580-18A/C locus is lower than T allele (70.9%) in Chinese Han Population, and the distribution was different from that in Mexican, in which, the A and T allele frequencies were 85% and 15% respectively. It was concluded that SP-B1580 T allele was probably associated with increased susceptibility to COPD in Chinese Han population; The polymorphism of SP-B-18A/C locus maybe varied with race.
Collapse
Affiliation(s)
- Ruicheng Hu
- Department of Respiratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | |
Collapse
|
29
|
Erpenbeck VJ, Schmidt R, Günther A, Krug N, Hohlfeld JM. Surfactant protein levels in bronchoalveolar lavage after segmental allergen challenge in patients with asthma. Allergy 2006; 61:598-604. [PMID: 16629790 DOI: 10.1111/j.1398-9995.2006.01062.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Allergic asthma is associated with airway inflammation and dysfunction of pulmonary surfactant. Because surfactant proteins (SP) account for immunomodulatory functions as well as biophysical functions, we hypothesized that the allergic response in asthma might be accompanied by a dysregulation of SPs. METHODS We measured levels of SP-A, SP-B, SP-C and SP-D by enzyme-linked immunosorbent assay in bronchoalveolar lavage (BAL) fluid of 23 asthma patients and 10 healthy control subjects under well-controlled conditions before and 24 h after segmental allergen provocation. These data were related to surfactant function, Th(2) cytokine levels in BAL fluid and to the degree of eosinophilic inflammation. RESULTS In patients with asthma, allergen challenge increased BAL levels of SP-B, SP-C and SP-D while SP-A was decreased. For SP-B and SP-D, a moderate increase was also observed after saline challenge. In contrast, no alterations were observed in healthy control subjects. Levels of SP-B and SP-C in asthmatics correlated with the ratio of small to large surfactant aggregates (SA/LA ratio) and correlated negatively with BAL surface activity. Furthermore, increased SP-C but not SP-B levels after allergen challenge correlated with eosinophil numbers, interleukin (IL)-5, and IL-13 in BAL while increased SP-D levels only correlated with eosinophil numbers. CONCLUSIONS This study demonstrates significant alterations of all SPs in BAL fluid after allergen challenge of which SP-C was most closely related to surfactant dysfunction and the degree of the allergic inflammation.
Collapse
Affiliation(s)
- V J Erpenbeck
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | | | | | | | | |
Collapse
|
30
|
Koetzler R, Saifeddine M, Yu Z, Schürch FS, Hollenberg MD, Green FHY. Surfactant as an airway smooth muscle relaxant. Am J Respir Cell Mol Biol 2006; 34:609-15. [PMID: 16415252 DOI: 10.1165/rcmb.2005-0228oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A variety of clinical and experimental evidence indicates that surfactant may be important in the pathogenesis and treatment of asthma. The purpose of this study was to determine the pharmacologic effect of pulmonary surfactant and its major lipid and protein constituents on bronchial smooth muscle. First-generation bronchi from male Sprague-Dawley rats were contracted with methacholine and exposed to two kinds of surfactant: whole rat surfactant and two bovine surfactant extracts in clinical use. The latter lack the hydrophilic surfactant-associated proteins (SP)-A and SP-D. All the surfactants relaxed the rat bronchi in a concentration-dependent manner; however, whole rat surfactant was more potent than the bovine extracts. Both surfactant lipids and SP-A contributed to the bronchial relaxation. The relaxation response produced by the highest concentration (0.5 mg/ml) of whole rat surfactant was equivalent to that caused by substance P (5 microM) and approximately half of that caused by 1 microM isoproterenol. The relaxation response was epithelium-dependent and blocked by indomethacin but not by N-omega-nitro-L-arginine methyl ester. We conclude that surfactant can relax airway smooth muscle directly via a prostanoid-mediated, epithelium-dependent process that does not involve nitric oxide synthase.
Collapse
Affiliation(s)
- Rommy Koetzler
- Department of Pathology & Laboratory Medicine, Faculty of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, AB T2N 4N1 Canada
| | | | | | | | | | | |
Collapse
|
31
|
Pulkkinen V, Haataja R, Hannelius U, Helve O, Pitkänen OM, Karikoski R, Rehn M, Marttila R, Lindgren CM, Hästbacka J, Andersson S, Kere J, Hallman M, Laitinen T. G protein-coupled receptor for asthma susceptibility associates with respiratory distress syndrome. Ann Med 2006; 38:357-66. [PMID: 16938805 DOI: 10.1080/07853890600756453] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Respiratory distress syndrome (RDS) and bronchopulmonary dysplasia (BPD) have some common features with asthma. AIM To study whether G protein-coupled receptor for asthma susceptibility (GPRA) contributes to RDS or BPD. METHODS A haplotype association study was performed in a case-control setting of 521 Finnish infants (including 176 preterm neonates with RDS and 37 with BPD). Immunoreactivity of GPRA isoforms A and B was determined in pulmonary samples of fetuses, term infants and preterm infants with RDS or BPD. GPRA mRNA expression was determined by quantitative real-time polymerase chain reaction (PCR) in samples from nasal respiratory epithelium of adults, term infants and preterm infants. RESULTS In infants with RDS born at 32-35 weeks of gestation, GPRA haplotype H1 was significantly underrepresented in RDS, whereas haplotype H4/H5 was associated with an increased risk. As in asthma, GPRA B isoform was induced in bronchial smooth muscle cells in RDS and BPD. In nasal respiratory epithelium, relative GPRA mRNA expression was strong in adults, weak in preterm and slightly higher in term samples. CONCLUSIONS The results suggest that near-term RDS and asthma share the same susceptibility and protective GPRA haplotypes. Altered GPRA expression may play a role in the pathogenesis of RDS and BPD in preterm infants.
Collapse
Affiliation(s)
- Ville Pulkkinen
- Department of Medical Genetics, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Haczku A, Emami K, Fischer MC, Kadlecek S, Ishii M, Panettieri RA, Rizi RR. Hyperpolarized 3He MRI in asthma measurements of regional ventilation following allergic sensitization and challenge in mice--preliminary results. Acad Radiol 2005; 12:1362-70. [PMID: 16253848 DOI: 10.1016/j.acra.2005.08.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 08/16/2005] [Accepted: 08/16/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE AND OBJECTIVES Quantitative regional measurement of physiological parameters of lung may improve both early detection of asthma and its response to treatment by elucidating the characteristics of airway obstruction. Recent emergence of hyperpolarized helium-3 magnetic resonance imaging as a sensitive pulmonary imaging tool has shown great potential in capturing important structural and functional aspects of normal and diseased lungs. The objective of this study was to investigate regional ventilation changes in the mouse lung following allergen sensitization and challenge. MATERIALS AND METHODS A murine model of allergic airway inflammation was created in mice following allergen challenge using Af and IgE-mediated asthma. The creation of model was verified using pulmonary function test and histology. Regional fractional ventilation was then measured in the animals using hyperpolarized 3He MRI on a pixel-by-pixel basis with a planar resolution of 0.24 mm. The sensitized and healthy animals were then compared statistically to assess the potential sensitivity of this technique in detection of such pulmonary abnormalities. RESULTS In this work, we have demonstrated for the first time the quantitative measurement of regional ventilation in normal and asthmatic mice. Results of this study show significant changes in regional ventilation in murine model of allergic airway sensitization compared with that in normal control animals. CONCLUSION Further development of this technique can potentially serve as a quantitative marker to investigate the physiology of allergen-induced airway hyperresponsiveness and to assist in disease treatment and prevention.
Collapse
Affiliation(s)
- Angela Haczku
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104-6100, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Scanlon ST, Milovanova T, Kierstein S, Cao Y, Atochina EN, Tomer Y, Russo SJ, Beers MF, Haczku A. Surfactant protein-A inhibits Aspergillus fumigatus-induced allergic T-cell responses. Respir Res 2005; 6:97. [PMID: 16120217 PMCID: PMC1208955 DOI: 10.1186/1465-9921-6-97] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Accepted: 08/24/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The pulmonary surfactant protein (SP)-A has potent immunomodulatory activities but its role and regulation during allergic airway inflammation is unknown. METHODS We studied changes in SP-A expression in the bronchoalveolar lavage (BAL) using a murine model of single Aspergillus fumigatus (Af) challenge of sensitized animals. RESULTS SP-A protein levels in the BAL fluid showed a rapid, transient decline that reached the lowest values (25% of controls) 12 h after intranasal Af provocation of sensitized mice. Decrease of SP-A was associated with influx of inflammatory cells and increase of IL-4 and IL-5 mRNA and protein levels. Since levels of SP-A showed a significant negative correlation with these BAL cytokines (but not with IFN-gamma), we hypothesized that SP-A exerts an inhibitory effect on Th2-type immune responses. To study this hypothesis, we used an in vitro Af-rechallenge model. Af-induced lymphocyte proliferation of cells isolated from sensitized mice was inhibited in a dose-dependent manner by addition of purified human SP-A (0.1-10 microg/ml). Flow cytometric studies on Af-stimulated lymphocytes indicated that the numbers of CD4+ (but not CD8+) T cells were significantly increased in the parental population and decreased in the third and fourth generation in the presence of SP-A. Further, addition of SP-A to the tissue culture inhibited Af-induced IL-4 and IL-5 production suggesting that SP-A directly suppressed allergen-stimulated CD4+ T cell function. CONCLUSION We speculate that a transient lack of this lung collectin following allergen exposure of the airways may significantly contribute to the development of a T-cell dependent allergic immune response.
Collapse
Affiliation(s)
- Seth Thomas Scanlon
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Tatyana Milovanova
- Institute for Environmental Medicine, University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Sonja Kierstein
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Yang Cao
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Elena N Atochina
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Yaniv Tomer
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Scott J Russo
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Michael F Beers
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Angela Haczku
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, USA
| |
Collapse
|
34
|
Schmiedl A, Tschernig T, Brasch F, Pabst R, Bargsten G. Decrease of the surface fraction of surfactant proteins containing clara cells and type II pneumocytes in a rat asthma model. ACTA ACUST UNITED AC 2005; 56:265-72. [PMID: 15816355 DOI: 10.1016/j.etp.2004.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In asthma surfactant proteins (SP) might differ in distribution and composition and thus play a role in pathophysiology of this disease. Therefore, the well-established animal model of ovalbumin sensitized and challenged rats were used to study the distribution of surfactant proteins in Clara cells and type II pneumocytes. Serial sections of paraffin embedded lung tissue were sequentially immunostained by the avidin-biotin-peroxidase complex (ABC) technique. Antisera against SP-A, SP-B and Clara cell specific protein (CC10) were used. We determined stereologically' the surface fraction of immunolabelled cells and semiquantitatively the percentage of test fields containing labelled alveolar macrophages. In allergen sensitized and provocated rat lungs: (1) the surface fraction of SP-A and SP-B positive Clara cells was significantly reduced, (2) the surface fraction of Clara cells stained with CC10 was coincided with controls, (3) the surface fraction of SP-A and not of SP-B possitive type II pneumocytes decreased significantly, (4) a significantly higher percentage of test fields with SP-A labelled alveolar macrophages was evaluated. Thus, in this animal model of asthma the inflammatory process after allergen challenge is accompanied by alterations in the distribution patterns of SP in Clara cells and type II pneumocytes.
Collapse
Affiliation(s)
- Andreas Schmiedl
- Department I, Centre of Anatomy, Hannover Medical School, Hannover, Germany.
| | | | | | | | | |
Collapse
|
35
|
Yang G, Haczku A, Chen H, Martin V, Galczenski H, Tomer Y, Van Besien CR, Evans JF, Panettieri RA, Funk CD, Van Beisen CR. Transgenic smooth muscle expression of the human CysLT1 receptor induces enhanced responsiveness of murine airways to leukotriene D4. Am J Physiol Lung Cell Mol Physiol 2004; 286:L992-1001. [PMID: 15064240 DOI: 10.1152/ajplung.00367.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cysteinyl leukotrienes (CysLTs) exert potent proinflammatory actions and contribute to many of the symptoms of asthma. Using a model of allergic sensitization and airway challenge with Aspergillus fumigatus (Af), we have found that Th2-type inflammation and airway hyperresponsiveness (AHR) to methacholine (MCh) were associated with increased LTD(4) responsiveness in mice. To explore the importance of increased CysLT signaling in airway smooth muscle function, we generated transgenic mice that overexpress the human CysLT1 receptor (hCysLT(1)R) via the alpha-actin promoter. These receptors were expressed abundantly and induced intracellular calcium mobilization in airway smooth muscle cells from transgenic mice. Force generation in tracheal ring preparations ex vivo and airway reactivity in vivo in response to LTD(4) were greatly amplified in hCysLT(1)R-overexpressing mice, indicating that the enhanced signaling induces coordinated functional changes of the intact airway smooth muscle. The increase of AHR imposed by overexpression of the hCysLT(1)R was greater in transgenic BALB/c mice than in transgenic B6 x SJL mice. In addition, sensitization- and challenge-induced increases in airway responsiveness were significantly greater in transgenic mice than that of nontransgenic mice compared with their respective nonsensitized controls. The amplified AHR in sensitized transgenic mice was not due to an enhanced airway inflammation and was not associated with similar enhancement in MCh responsiveness. These results indicate that a selective hCysLT(1)R-induced contractile mechanism synergizes with allergic AHR. We speculate that hCysLT(1)R signaling contributes to a hypercontractile state of the airway smooth muscle.
Collapse
Affiliation(s)
- Guochang Yang
- Center for Experimental Therapeutics, Rm. 814BRBII/III, Univ. of Pennsylvania, 421 Curie Blvd., Philadelphia, PA 19104-6160, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Baritussio A. Lung surfactant, asthma, and allergens: a story in evolution. Am J Respir Crit Care Med 2004; 169:550-1. [PMID: 14982818 DOI: 10.1164/rccm.2312019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
37
|
Atochina EN, Beers MF, Tomer Y, Scanlon ST, Russo SJ, Panettieri RA, Haczku A. Attenuated allergic airway hyperresponsiveness in C57BL/6 mice is associated with enhanced surfactant protein (SP)-D production following allergic sensitization. Respir Res 2003; 4:15. [PMID: 14748931 PMCID: PMC314399 DOI: 10.1186/1465-9921-4-15] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Accepted: 12/08/2003] [Indexed: 12/03/2022] Open
Abstract
Background C57BL/6 mice have attenuated allergic airway hyperresponsiveness (AHR) when compared with Balb/c mice but the underlying mechanisms remain unclear. SP-D, an innate immune molecule with potent immunosuppressive activities may have an important modulatory role in the allergic airway response and the consequent physiological changes. We hypothesized that an elevated SP-D production is associated with the impaired ability of C57BL/6 mice to develop allergic AHR. Methods SP-D mRNA and protein expression was investigated during development of allergic airway changes in a model of Aspergillus fumigatus (Af)-induced allergic inflammation. To study whether strain dependency of allergic AHR is associated with different levels of SP-D in the lung, Balb/c and C57BL/6 mice were compared. Results Sensitization and exposure to Af induced significant airway inflammation in both mouse strains in comparison with naïve controls. AHR to acetylcholine however was significantly attenuated in C57BL/6 mice in spite of increased eosinophilia and serum IgE when compared with Balb/c mice (p < 0.05). Af challenge of sensitized C57BL/6 mice induced a markedly increased SP-D protein expression in the SA surfactant fraction (1,894 ± 170% of naïve controls) that was 1.5 fold greater than the increase in Balb/c mice (1,234 ± 121% p < 0.01). These changes were selective since levels of the hydrophobic SP-B and SP-C and the hydrophilic SP-A were significantly decreased following sensitization and challenge with Af in both strains. Further, sensitized and exposed C57BL/6 mice had significantly lower IL-4 and IL-5 in the BAL fluid than that of Balb/c mice (p < 0.05). Conclusions These results suggest that enhanced SP-D production in the lung of C57BL/6 mice may contribute to an attenuated AHR in response to allergic airway sensitization. SP-D may act by inhibiting synthesis of Th2 cytokines.
Collapse
Affiliation(s)
- Elena N Atochina
- Pulmonary, Allergy & Critical Care Division, Department of Medicine, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA
| | - Michael F Beers
- Pulmonary, Allergy & Critical Care Division, Department of Medicine, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA
| | - Yaniv Tomer
- Pulmonary, Allergy & Critical Care Division, Department of Medicine, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA
| | - Seth T Scanlon
- Pulmonary, Allergy & Critical Care Division, Department of Medicine, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA
| | - Scott J Russo
- Pulmonary, Allergy & Critical Care Division, Department of Medicine, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA
| | - Reynold A Panettieri
- Pulmonary, Allergy & Critical Care Division, Department of Medicine, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA
| | - Angela Haczku
- Pulmonary, Allergy & Critical Care Division, Department of Medicine, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
38
|
Jain D, Dodia C, Bates SR, Hawgood S, Poulain FR, Fisher AB. SP-A is necessary for increased clearance of alveolar DPPC with hyperventilation or secretagogues. Am J Physiol Lung Cell Mol Physiol 2003; 284:L759-65. [PMID: 12676766 DOI: 10.1152/ajplung.00200.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of surfactant protein-A (SP-A) in pulmonary uptake and metabolism of [(3)H]dipalmitoylphosphatidylcholine ([(3)H]DPPC) was studied in SP-A gene-targeted mice (SP-A -/-). Unilamellar liposomes were instilled into the trachea of anesthetized mice. Uptake was measured as dpm in lungs plus liver and kidney for in vivo experiments and in lungs and perfusate for isolated lung experiments. [(3)H]DPPC uptake increased with CO(2)-induced hyperventilation in wild-type mice (SP-A +/+) but was unchanged in SP-A -/-. Secretagogue treatment approximately doubled the uptake of [(3)H]DPPC in isolated lungs from SP-A +/+ but had no effect in SP-A -/-. Lungs degraded 23 +/- 1.2% of internalized [(3)H]DPPC in SP-A +/+ and 36 +/- 0.6% in SP-A -/-; degradation increased with 8-bromoadenosine 3',5'-cyclic monophosphate in SP-A +/+ but was unchanged in SP-A -/-. Activity of lysosomal-type phospholipase A(2) (PLA(2)) was significantly greater in lungs from SP-A -/- compared with SP-A +/+. Thus SP-A is necessary for lungs to respond to hyperventilation or secretagogues with increased DPPC uptake and also modulates the PLA(2)-mediated degradation of internalized DPPC.
Collapse
Affiliation(s)
- Deepika Jain
- Institute for Environmental Medicine, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|