1
|
Li H, Wang J, Li Z, Wu Z, Zhang Y, Kong L, Yang Q, Wang D, Shi H, Shen G, Zou S, Zhu W, Fan K, Xu Z. Quantitative proteomics reveals the mechanism of endoplasmic reticulum stress-mediated pulmonary fibrosis in mice. Heliyon 2024; 10:e39150. [PMID: 39640640 PMCID: PMC11620036 DOI: 10.1016/j.heliyon.2024.e39150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
Pulmonary fibrosis is a progressive disease that can lead to respiratory failure. Many types of cells are involved in the progression of pulmonary fibrosis. This study utilized quantitative proteomics to investigate the mechanism of TGF-β-induced fibrosis-like changes in mouse epithelial cells. Our findings revealed that TGF-β significantly impacted biological processes related to the endoplasmic reticulum, mitochondrion, and ribonucleoprotein complex. Pull-down assay coupled with proteomics identified 114 proteins that may directly interact with TGF-β, and their functions were related to mitochondria, translation, ubiquitin ligase conjugation, mRNA processing, and actin binding. Among them, 17 molecules were also found in different expression proteins (DEPs) of quantitative proteomic, such as H1F0, MED21, SDF2L1, DAD1, and TMX1. Additionally, TGF-β decreased the folded structure and the number of ribosomes in the endoplasmic reticulum and increased the expression of key proteins in the unfolded protein response, including HRD1, PERK, and ERN1. Overall, our study suggested that TGF-β induced fibrotic changes in mouse lung epithelial cells by ER stress and initiated the unfolded protein response through the PRKCSH/IRE1 and PERK/GADD34/CHOP signaling pathways.
Collapse
Affiliation(s)
- Heng Li
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, People's Republic of China
- Tianjin key laboratory for prevention and control of occupational and environmental hazards, 300309, People's Republic of China
| | - Jin Wang
- Department of Clinical Laboratory, Tianjin Third Central Hospital, Tianjin, 300170, People's Republic of China
| | - Ziling Li
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, People's Republic of China
- Tianjin key laboratory for prevention and control of occupational and environmental hazards, 300309, People's Republic of China
| | - Zhidong Wu
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, People's Republic of China
- Tianjin key laboratory for prevention and control of occupational and environmental hazards, 300309, People's Republic of China
| | - Yan Zhang
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, People's Republic of China
- Tianjin key laboratory for prevention and control of occupational and environmental hazards, 300309, People's Republic of China
| | - Lingjia Kong
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, People's Republic of China
- Tianjin key laboratory for prevention and control of occupational and environmental hazards, 300309, People's Republic of China
| | - Qingqing Yang
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, People's Republic of China
- Tianjin key laboratory for prevention and control of occupational and environmental hazards, 300309, People's Republic of China
| | - Dong Wang
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, People's Republic of China
- Tianjin key laboratory for prevention and control of occupational and environmental hazards, 300309, People's Republic of China
| | - He Shi
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, People's Republic of China
- Tianjin key laboratory for prevention and control of occupational and environmental hazards, 300309, People's Republic of China
| | - Guozheng Shen
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, People's Republic of China
- Tianjin key laboratory for prevention and control of occupational and environmental hazards, 300309, People's Republic of China
| | - Shuang Zou
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, People's Republic of China
- Tianjin key laboratory for prevention and control of occupational and environmental hazards, 300309, People's Republic of China
| | - Wenqing Zhu
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, People's Republic of China
- Tianjin key laboratory for prevention and control of occupational and environmental hazards, 300309, People's Republic of China
| | - Kaiyuan Fan
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, People's Republic of China
- Tianjin key laboratory for prevention and control of occupational and environmental hazards, 300309, People's Republic of China
| | - Zhongwei Xu
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, People's Republic of China
- Tianjin key laboratory for prevention and control of occupational and environmental hazards, 300309, People's Republic of China
| |
Collapse
|
2
|
Zuo H, Zhou W, Zhou B, Zhang Y, Xu M, Huang S, Alinejad T, Chen C. CCDC59 alleviates bleomycin-induced inflammation and pulmonary fibrosis by increasing SP-B and SP-C expression in mice. Int Immunopharmacol 2024; 138:112645. [PMID: 38972208 DOI: 10.1016/j.intimp.2024.112645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND Pulmonary fibrosis is a progressive disease with high incidence and poor prognosis. It is urgent to explore new therapeutic methods for pulmonary fibrosis. As a new treatment method, gene therapy has attracted more and more attention. CCDC59 is a transcriptional coactivator of SP-B and SP-C. Our study mainly aims to explore the effect of overexpression of CCDC59 gene in pulmonary fibrosis of mice. METHODS CCDC59 overexpressing lentivirus was constructed and then concentrated. RT-qPCR, Western blotting, and immunofluorescence assays were used to detect the expression of CCDC59, SP-B and SP-C protein in cell line and lung tissues after infected with lentivirus. Immunohistochemical staining and hematoxylin-eosin staining assays were used to assess the degree of fibrosis and ELISA assay was used to detect the concentrations of inflammatory factors, SP-B, and SP-C in bronchoalveolar lavage fluid of mice. Dynamic changes of mice lung function at various time points were assessed by lung function test assay. HIPPO pathway and proliferation capacity of alveolar type II epithelial cells were evaluated by immunofluorescence staining and Western blotting. RESULTS Results showed that endotracheal instillation of CCDC59 overexpressed lentivirus significantly alleviated bleomycin-induced inflammation and pulmonary fibrosis in mice. Overexpression of CCDC59 protein in type II alveolar epithelial cells can enhance the expression of SP-B and SP-C. Overexpression of CCDC59 protein significantly protected against pulmonary inflammatory response and improved lung function of mice. Overexpression of CCDC59 protein significantly alleviated the hyperactivation of HIPPO pathway and increased the proliferative capacity of type II alveolar epithelial cells in lung. CONCLUSION CCDC59 can alleviate inflammation and pulmonary fibrosis in mice by upregulating the expression of SP-B and SP-C in type II alveolar epithelial cells and alleviating the hyperactivation of HIPPO pathway. Our study offers a new potential treatment for pulmonary fibrosis.
Collapse
Affiliation(s)
- Hao Zuo
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wanting Zhou
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Binqian Zhou
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yuting Zhang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Mengying Xu
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Shuai Huang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Tahereh Alinejad
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain), School of Pharmaceutical Sciences, Wenzhou Medical University, China
| | - Chengshui Chen
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China.
| |
Collapse
|
3
|
He A, He L, Chen T, Li X, Cao C. Biomechanical Properties and Cellular Responses in Pulmonary Fibrosis. Bioengineering (Basel) 2024; 11:747. [PMID: 39199705 PMCID: PMC11351367 DOI: 10.3390/bioengineering11080747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 09/01/2024] Open
Abstract
Pulmonary fibrosis is a fatal lung disease affecting approximately 5 million people worldwide, with a 5-year survival rate of less than 50%. Currently, the only available treatments are palliative care and lung transplantation, as there is no curative drug for this condition. The disease involves the excessive synthesis of the extracellular matrix (ECM) due to alveolar epithelial cell damage, leading to scarring and stiffening of the lung tissue and ultimately causing respiratory failure. Although multiple factors contribute to the disease, the exact causes remain unclear. The mechanical properties of lung tissue, including elasticity, viscoelasticity, and surface tension, are not only affected by fibrosis but also contribute to its progression. This paper reviews the alteration in these mechanical properties as pulmonary fibrosis progresses and how cells in the lung, including alveolar epithelial cells, fibroblasts, and macrophages, respond to these changes, contributing to disease exacerbation. Furthermore, it highlights the importance of developing advanced in vitro models, based on hydrogels and 3D bioprinting, which can accurately replicate the mechanical and structural properties of fibrotic lungs and are conducive to studying the effects of mechanical stimuli on cellular responses. This review aims to summarize the current understanding of the interaction between the progression of pulmonary fibrosis and the alterations in mechanical properties, which could aid in the development of novel therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Andong He
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310028, China
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, 59 Liuting Road, Ningbo 315010, China
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Lizhe He
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| | - Tianwei Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xuejin Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310028, China
| | - Chao Cao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, 59 Liuting Road, Ningbo 315010, China
| |
Collapse
|
4
|
Röpke T, Aschenbrenner F, Knudsen L, Welte T, Kolb M, Maus UA. Repetitive invasive lung function maneuvers do not accentuate experimental fibrosis in mice. Sci Rep 2024; 14:13774. [PMID: 38877042 PMCID: PMC11178923 DOI: 10.1038/s41598-024-64548-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
Assessment of lung function is an important clinical tool for the diagnosis and monitoring of chronic lung diseases, including idiopathic pulmonary fibrosis (IPF). In mice, lung function maneuvers use algorithm-based ventilation strategies including forced oscillation technique (FOT), negative pressure-driven forced expiratory (NPFE) and pressure-volume (PV) maneuvers via the FlexiVent system. This lung function test (LFT) is usually performed as end-point measurement only, requiring several mice for each time point to be analyzed. Repetitive lung function maneuvers would allow monitoring of a disease process within the same individual while reducing the numbers of laboratory animals. However, its feasibility in mice and impact on developing lung fibrosis has not been studied so far. Using orotracheal cannulation without surgical exposure of the trachea, we examined the tolerability to repetitive lung function maneuvers (up to four times) in one and the same mouse, both under healthy conditions and in a model of AdTGF-β1 induced lung fibrosis. In essence, we found that repetitive invasive lung function maneuvers were well tolerated and did not accentuate experimental lung fibrosis in mice. This study contributes to the 3R principle aiming to reduce the numbers of experimental animals used in biomedical research.
Collapse
Affiliation(s)
- Tina Röpke
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Franziska Aschenbrenner
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Lower Saxony, Germany
- German Center for Lung Research, Partner Site BREATH, Hannover, Lower Saxony, Germany
| | - Tobias Welte
- Clinic for Pneumology, Hannover Medical School, Hannover, Lower Saxony, Germany
- German Center for Lung Research, Partner Site BREATH, Hannover, Lower Saxony, Germany
| | - Martin Kolb
- Department of Medicine, Pathology, and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ulrich A Maus
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Lower Saxony, Germany.
- German Center for Lung Research, Partner Site BREATH, Hannover, Lower Saxony, Germany.
| |
Collapse
|
5
|
Roeder F, Röpke T, Steinmetz LK, Kolb M, Maus UA, Smith BJ, Knudsen L. Exploring alveolar recruitability using positive end-expiratory pressure in mice overexpressing TGF-β1: a structure-function analysis. Sci Rep 2024; 14:8080. [PMID: 38582767 PMCID: PMC10998853 DOI: 10.1038/s41598-024-58213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/26/2024] [Indexed: 04/08/2024] Open
Abstract
Pre-injured lungs are prone to injury progression in response to mechanical ventilation. Heterogeneous ventilation due to (micro)atelectases imparts injurious strains on open alveoli (known as volutrauma). Hence, recruitment of (micro)atelectases by positive end-expiratory pressure (PEEP) is necessary to interrupt this vicious circle of injury but needs to be balanced against acinar overdistension. In this study, the lung-protective potential of alveolar recruitment was investigated and balanced against overdistension in pre-injured lungs. Mice, treated with empty vector (AdCl) or adenoviral active TGF-β1 (AdTGF-β1) were subjected to lung mechanical measurements during descending PEEP ventilation from 12 to 0 cmH2O. At each PEEP level, recruitability tests consisting of two recruitment maneuvers followed by repetitive forced oscillation perturbations to determine tissue elastance (H) and damping (G) were performed. Finally, lungs were fixed by vascular perfusion at end-expiratory airway opening pressures (Pao) of 20, 10, 5 and 2 cmH2O after a recruitment maneuver, and processed for design-based stereology to quantify derecruitment and distension. H and G were significantly elevated in AdTGF-β1 compared to AdCl across PEEP levels. H was minimized at PEEP = 5-8 cmH2O and increased at lower and higher PEEP in both groups. These findings correlated with increasing septal wall folding (= derecruitment) and reduced density of alveolar number and surface area (= distension), respectively. In AdTGF-β1 exposed mice, 27% of alveoli remained derecruited at Pao = 20 cmH2O. A further decrease in Pao down to 2 cmH2O showed derecruitment of an additional 1.1 million alveoli (48%), which was linked with an increase in alveolar size heterogeneity at Pao = 2-5 cmH2O. In AdCl, decreased Pao resulted in septal folding with virtually no alveolar collapse. In essence, in healthy mice alveoli do not derecruit at low PEEP ventilation. The potential of alveolar recruitability in AdTGF-β1 exposed mice is high. H is optimized at PEEP 5-8 cmH2O. Lower PEEP folds and larger PEEP stretches septa which results in higher H and is more pronounced in AdTGF-β1 than in AdCl. The increased alveolar size heterogeneity at Pao = 5 cmH2O argues for the use of PEEP = 8 cmH2O for lung protective mechanical ventilation in this animal model.
Collapse
Affiliation(s)
- Franziska Roeder
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Tina Röpke
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | | | - Martin Kolb
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada
| | - Ulrich A Maus
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Disease (DZL), Hannover, Germany
| | - Bradford J Smith
- Department of Bioengineering, College of Engineering Design and Computing, University of Colorado Denver|Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatric Pulmonary and Sleep Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Disease (DZL), Hannover, Germany.
| |
Collapse
|
6
|
Abstract
Pulmonary surfactant is a critical component of lung function in healthy individuals. It functions in part by lowering surface tension in the alveoli, thereby allowing for breathing with minimal effort. The prevailing thinking is that low surface tension is attained by a compression-driven squeeze-out of unsaturated phospholipids during exhalation, forming a film enriched in saturated phospholipids that achieves surface tensions close to zero. A thorough review of past and recent literature suggests that the compression-driven squeeze-out mechanism may be erroneous. Here, we posit that a surfactant film enriched in saturated lipids is formed shortly after birth by an adsorption-driven sorting process and that its composition does not change during normal breathing. We provide biophysical evidence for the rapid formation of an enriched film at high surfactant concentrations, facilitated by adsorption structures containing hydrophobic surfactant proteins. We examine biophysical evidence for and against the compression-driven squeeze-out mechanism and propose a new model for surfactant function. The proposed model is tested against existing physiological and pathophysiological evidence in neonatal and adult lungs, leading to ideas for biophysical research, that should be addressed to establish the physiological relevance of this new perspective on the function of the mighty thin film that surfactant provides.
Collapse
Affiliation(s)
- Fred Possmayer
- Department of Biochemistry, Western University, London, Ontario N6A 3K7, Canada
- Department of Obstetrics/Gynaecology, Western University, London, Ontario N6A 3K7, Canada
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manon, Honolulu, Hawaii 96822, United States
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96826, United States
| | - Ruud A W Veldhuizen
- Department of Physiology & Pharmacology, Western University, London, Ontario N6A 5C1, Canada
- Department of Medicine, Western University, London, Ontario N6A 3K7, Canada
- Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
| | - Nils O Petersen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Department of Chemistry, Western University, London, Ontario N6A 5B7, Canada
| |
Collapse
|
7
|
Gbotosho OT, Li W, Joiner CH, Brown LAS, Hyacinth HI. The inflammatory profiles of pulmonary alveolar macrophages and alveolar type 2 cells in SCD. Exp Biol Med (Maywood) 2023; 248:1013-1023. [PMID: 37012678 PMCID: PMC10581160 DOI: 10.1177/15353702231157940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/15/2023] [Indexed: 04/05/2023] Open
Abstract
The lung microenvironment plays a crucial role in maintaining lung homeostasis as well as the initiation and resolution of both acute and chronic lung injury. Acute chest syndrome (ACS) is a complication of sickle cell disease (SCD) like acute lung injury. Both the endothelial cells and peripheral blood mononuclear cells are known to secrete proinflammatory cytokines elevated during ACS episodes. However, in SCD, the lung microenvironment that may favor excessive production of proinflammatory cytokines and the contribution of other lung resident cells, such as alveolar macrophages and alveolar type 2 epithelial (AT-2) cells, to ACS pathogenesis is not completely understood. Here, we sought to understand the pulmonary microenvironment and the proinflammatory profile of lung alveolar macrophages (LAMs) and AT-2 cells at steady state in Townes sickle cell (SS) mice compared to control mice (AA). In addition, we examined lung function and micromechanics molecules essential for pulmonary epithelial barrier function in these mice. Our results showed that bronchoalveolar lavage (BAL) fluid in SS mice had elevated protein levels of pro-inflammatory cytokines interleukin (IL)-1β and IL-12 (p ⩽ 0.05) compared to AA controls. We showed for the first time, significantly increased protein levels of inflammatory mediators (Human antigen R (HuR), Toll-like receptor 4 (TLR4), MyD88, and PU.1) in AT-2 cells (1.4 to 2.2-fold) and LAM (17-21%) isolated from SS mice compared to AA control mice at steady state. There were also low levels of anti-inflammatory transcription factors (Nrf2 and PPARy) in SS mice compared to AA controls (p ⩽ 0.05). Finally, we found impaired lung function and a dysregulated composition of surfactant proteins (B and C). Our results demonstrate that SS mice at steady state had a compromised lung microenvironment with elevated expression of proinflammatory cytokines by AT-2 cells and LAM, as well as dysregulated expression of surfactant proteins necessary for maintaining the alveolar barrier integrity and lung function.
Collapse
Affiliation(s)
- Oluwabukola T Gbotosho
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Wei Li
- Aflac Cancer & Blood Disorders Center of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Clinton H Joiner
- Aflac Cancer & Blood Disorders Center of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lou Ann S Brown
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hyacinth I Hyacinth
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
8
|
Feo-Lucas L, Godio C, Minguito de la Escalera M, Alvarez-Ladrón N, Villarrubia LH, Vega-Pérez A, González-Cintado L, Domínguez-Andrés J, García-Fojeda B, Montero-Fernández C, Casals C, Autilio C, Pérez-Gil J, Crainiciuc G, Hidalgo A, López-Bravo M, Ardavín C. Airway allergy causes alveolar macrophage death, profound alveolar disorganization and surfactant dysfunction. Front Immunol 2023; 14:1125984. [PMID: 37234176 PMCID: PMC10206250 DOI: 10.3389/fimmu.2023.1125984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Respiratory disorders caused by allergy have been associated to bronchiolar inflammation leading to life-threatening airway narrowing. However, whether airway allergy causes alveolar dysfunction contributing to the pathology of allergic asthma remains unaddressed. To explore whether airway allergy causes alveolar dysfunction that might contribute to the pathology of allergic asthma, alveolar structural and functional alterations were analyzed during house dust mite (HDM)-induced airway allergy in mice, by flow cytometry, light and electron microscopy, monocyte transfer experiments, assessment of intra-alveolarly-located cells, analysis of alveolar macrophage regeneration in Cx3cr1 cre:R26-yfp chimeras, analysis of surfactant-associated proteins, and study of lung surfactant biophysical properties by captive bubble surfactometry. Our results demonstrate that HDM-induced airway allergic reactions caused severe alveolar dysfunction, leading to alveolar macrophage death, pneumocyte hypertrophy and surfactant dysfunction. SP-B/C proteins were reduced in allergic lung surfactant, that displayed a reduced efficiency to form surface-active films, increasing the risk of atelectasis. Original alveolar macrophages were replaced by monocyte-derived alveolar macrophages, that persisted at least two months after the resolution of allergy. Monocyte to alveolar macrophage transition occurred through an intermediate stage of pre-alveolar macrophage and was paralleled with translocation into the alveolar space, Siglec-F upregulation, and downregulation of CX3CR1. These data support that the severe respiratory disorders caused by asthmatic reactions not only result from bronchiolar inflammation, but additionally from alveolar dysfunction compromising an efficient gas exchange.
Collapse
Affiliation(s)
- Lidia Feo-Lucas
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/ Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Cristina Godio
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/ Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - María Minguito de la Escalera
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/ Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Natalia Alvarez-Ladrón
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/ Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Laura H. Villarrubia
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/ Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Adrián Vega-Pérez
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/ Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Leticia González-Cintado
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/ Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Jorge Domínguez-Andrés
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/ Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Belén García-Fojeda
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Carlos Montero-Fernández
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Cristina Casals
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Chiara Autilio
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Madrid, Spain
| | - Jesús Pérez-Gil
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Madrid, Spain
| | | | - Andrés Hidalgo
- Centro Nacional de Investigaciones Cardiovaculares Carlos III, Madrid, Spain
| | - María López-Bravo
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/ Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carlos Ardavín
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/ Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
9
|
Knudsen L, Hummel B, Wrede C, Zimmermann R, Perlman CE, Smith BJ. Acinar micromechanics in health and lung injury: what we have learned from quantitative morphology. Front Physiol 2023; 14:1142221. [PMID: 37025383 PMCID: PMC10070844 DOI: 10.3389/fphys.2023.1142221] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
Within the pulmonary acini ventilation and blood perfusion are brought together on a huge surface area separated by a very thin blood-gas barrier of tissue components to allow efficient gas exchange. During ventilation pulmonary acini are cyclically subjected to deformations which become manifest in changes of the dimensions of both alveolar and ductal airspaces as well as the interalveolar septa, composed of a dense capillary network and the delicate tissue layer forming the blood-gas barrier. These ventilation-related changes are referred to as micromechanics. In lung diseases, abnormalities in acinar micromechanics can be linked with injurious stresses and strains acting on the blood-gas barrier. The mechanisms by which interalveolar septa and the blood-gas barrier adapt to an increase in alveolar volume have been suggested to include unfolding, stretching, or changes in shape other than stretching and unfolding. Folding results in the formation of pleats in which alveolar epithelium is not exposed to air and parts of the blood-gas barrier are folded on each other. The opening of a collapsed alveolus (recruitment) can be considered as an extreme variant of septal wall unfolding. Alveolar recruitment can be detected with imaging techniques which achieve light microscopic resolution. Unfolding of pleats and stretching of the blood-gas barrier, however, require electron microscopic resolution to identify the basement membrane. While stretching results in an increase of the area of the basement membrane, unfolding of pleats and shape changes do not. Real time visualization of these processes, however, is currently not possible. In this review we provide an overview of septal wall micromechanics with focus on unfolding/folding as well as stretching. At the same time we provide a state-of-the-art design-based stereology methodology to quantify microarchitecture of alveoli and interalveolar septa based on different imaging techniques and design-based stereology.
Collapse
Affiliation(s)
- Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Germany
| | - Benjamin Hummel
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Richard Zimmermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Carrie E Perlman
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Bradford J Smith
- Department of Bioengineering, College of Engineering Design and Computing, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO, United States
- Department of Pediatric Pulmonary and Sleep Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
10
|
Doryab A, Heydarian M, Yildirim AÖ, Hilgendorff A, Behr J, Schmid O. Breathing-induced stretch enhances the efficacy of an inhaled and orally delivered anti-fibrosis drug in vitro. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
11
|
Bormann T, Maus R, Stolper J, Tort Tarrés M, Brandenberger C, Wedekind D, Jonigk D, Welte T, Gauldie J, Kolb M, Maus UA. Role of matrix metalloprotease-2 and MMP-9 in experimental lung fibrosis in mice. Respir Res 2022; 23:180. [PMID: 35804363 PMCID: PMC9270768 DOI: 10.1186/s12931-022-02105-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/29/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a diffuse parenchymal lung disease characterized by exuberant deposition of extracellular matrix (ECM) proteins in the lung interstitium, which contributes to substantial morbidity and mortality in IPF patients. Matrix metalloproteinases (MMPs) are a large family of zinc-dependent endopeptidases, many of which have been implicated in the regulation of ECM degradation in lung fibrosis. However, the roles of MMP-2 and -9 (also termed gelatinases A and B) have not yet been explored in lung fibrosis in detail. METHODS AdTGF-β1 was applied via orotracheal routes to the lungs of WT, MMP-2 KO, MMP-9 KO and MMP-2/-9 dKO mice on day 0 to induce lung fibrosis. Using hydroxyproline assay, FlexiVent based lung function measurement, histopathology, western blot and ELISA techniques, we analyzed MMP-2 and MMP-9 levels in BAL fluid and lung, collagen contents in lung and lung function in mice on day 14 and 21 post-treatment. RESULT IPF lung homogenates exhibited significantly increased levels of MMP-2 and MMP-9, relative to disease controls. Enzymatically active MMP-2 and MMP-9 was increased in lungs of mice exposed to adenoviral TGF-β1, suggesting a role for these metalloproteinases in lung fibrogenesis. However, we found that neither MMP-2 or MMP-9 nor combined MMP-2/-9 deletion had any effect on experimental lung fibrosis in mice. CONCLUSION Together, our data strongly suggest that both gelatinases MMP-2 and MMP-9 play only a subordinate role in experimental lung fibrosis in mice.
Collapse
Affiliation(s)
- Tina Bormann
- Division of Experimental Pneumology, Hannover Medical School, Feodor-Lynen-Strasse 21, 30625, Hannover, Germany
| | - Regina Maus
- Division of Experimental Pneumology, Hannover Medical School, Feodor-Lynen-Strasse 21, 30625, Hannover, Germany
| | - Jennifer Stolper
- Division of Experimental Pneumology, Hannover Medical School, Feodor-Lynen-Strasse 21, 30625, Hannover, Germany
| | - Meritxell Tort Tarrés
- Division of Experimental Pneumology, Hannover Medical School, Feodor-Lynen-Strasse 21, 30625, Hannover, Germany
| | - Christina Brandenberger
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Dirk Wedekind
- Institute of Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Danny Jonigk
- Department of Pathology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Tobias Welte
- Clinic for Pneumology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.,German Center for Lung Research, Partner Site BREATH, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Jack Gauldie
- Department of Medicine, Pathology, and Molecular Medicine, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Martin Kolb
- Department of Medicine, Pathology, and Molecular Medicine, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Ulrich A Maus
- Division of Experimental Pneumology, Hannover Medical School, Feodor-Lynen-Strasse 21, 30625, Hannover, Germany. .,German Center for Lung Research, Partner Site BREATH, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| |
Collapse
|
12
|
Regeneration or Repair? The Role of Alveolar Epithelial Cells in the Pathogenesis of Idiopathic Pulmonary Fibrosis (IPF). Cells 2022; 11:cells11132095. [PMID: 35805179 PMCID: PMC9266271 DOI: 10.3390/cells11132095] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease (ILD) with unknown etiology in which gradual fibrotic scarring of the lungs leads to usual interstitial pneumonia (UIP) and, ultimately, to death. IPF affects three million people worldwide, and the only currently available treatments include the antifibrotic drugs nintedanib and pirfenidone, which effectively reduce fibrosis progression are, unfortunately, not effective in curing the disease. In recent years, the paradigm of IPF pathogenesis has shifted from a fibroblast-driven disease to an epithelium-driven disease, wherein, upon recurrent microinjuries, dysfunctional alveolar type II epithelial cells (ATII) are not only unable to sustain physiological lung regeneration but also promote aberrant epithelial–mesenchymal crosstalk. This creates a drift towards fibrosis rather than regeneration. In the context of this review article, we discuss the most relevant mechanisms involved in IPF pathogenesis with a specific focus on the role of dysfunctional ATII cells in promoting disease progression. In particular, we summarize the main causes of ATII cell dysfunction, such as aging, environmental factors, and genetic determinants. Next, we describe the known mechanisms of physiological lung regeneration by drawing a parallel between embryonic lung development and the known pathways involved in ATII-driven alveolar re-epithelization after injury. Finally, we review the most relevant interventional clinical trials performed in the last 20 years with the aim of underlining the urgency of developing new therapies against IPF that are not only aimed at reducing disease progression by hampering ECM deposition but also boost the physiological processes of ATII-driven alveolar regeneration.
Collapse
|
13
|
Moog MT, Hinze C, Bormann T, Aschenbrenner F, Knudsen L, DeLuca DS, Jonigk D, Neubert L, Welte T, Gauldie J, Kolb M, Maus UA. B Cells Are Not Involved in the Regulation of Adenoviral TGF-β1- or Bleomycin-Induced Lung Fibrosis in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1259-1271. [PMID: 35149532 DOI: 10.4049/jimmunol.2100767] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an irreversible, age-related diffuse parenchymal lung disease of poorly defined etiology. Many patients with IPF demonstrate distinctive lymphocytic interstitial infiltrations within remodeled lung tissue with uncertain pathogenetic relevance. Histopathological examination of explant lung tissue of patients with IPF revealed accentuated lymphoplasmacellular accumulations in close vicinity to, or even infiltrating, remodeled lung tissue. Similarly, we found significant accumulations of B cells interfused with T cells within remodeled lung tissue in two murine models of adenoviral TGF-β1 or bleomycin (BLM)-induced lung fibrosis. Such B cell accumulations coincided with significantly increased lung collagen deposition, lung histopathology, and worsened lung function in wild-type (WT) mice. Surprisingly, B cell-deficient µMT knockout mice exhibited similar lung tissue remodeling and worsened lung function upon either AdTGF-β1 or BLM as for WT mice. Comparative transcriptomic profiling of sorted B cells collected from lungs of AdTGF-β1- and BLM-exposed WT mice identified a large set of commonly regulated genes, but with significant enrichment observed for Gene Ontology terms apparently not related to lung fibrogenesis. Collectively, although we observed B cell accumulations in lungs of IPF patients as well as two experimental models of lung fibrosis, comparative profiling of characteristic features of lung fibrosis between WT and B cell-deficient mice did not support a major involvement of B cells in lung fibrogenesis in mice.
Collapse
Affiliation(s)
- Marie T Moog
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Christopher Hinze
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Tina Bormann
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | | | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - David S DeLuca
- German Center for Lung Research, partner site Biomedical Research in Endstage and Obstructive Lung Disease Hanover, Hannover, Germany
| | - Danny Jonigk
- German Center for Lung Research, partner site Biomedical Research in Endstage and Obstructive Lung Disease Hanover, Hannover, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Lavinia Neubert
- German Center for Lung Research, partner site Biomedical Research in Endstage and Obstructive Lung Disease Hanover, Hannover, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- German Center for Lung Research, partner site Biomedical Research in Endstage and Obstructive Lung Disease Hanover, Hannover, Germany
- Clinic for Pneumology, Hannover Medical School, Hannover, Germany; and
| | - Jack Gauldie
- Department of Medicine, Pathology, and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Martin Kolb
- Department of Medicine, Pathology, and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ulrich A Maus
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany;
- German Center for Lung Research, partner site Biomedical Research in Endstage and Obstructive Lung Disease Hanover, Hannover, Germany
| |
Collapse
|
14
|
Liu H, Hu J, Zheng Q, Feng X, Zhan F, Wang X, Xu G, Hua F. Piezo1 Channels as Force Sensors in Mechanical Force-Related Chronic Inflammation. Front Immunol 2022; 13:816149. [PMID: 35154133 PMCID: PMC8826255 DOI: 10.3389/fimmu.2022.816149] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
Mechanical damage is one of the predisposing factors of inflammation, and it runs through the entire inflammatory pathological process. Repeated or persistent damaging mechanical irritation leads to chronic inflammatory diseases. The mechanism of how mechanical forces induce inflammation is not fully understood. Piezo1 is a newly discovered mechanically sensitive ion channel. The Piezo1 channel opens in response to mechanical stimuli, transducing mechanical signals into an inflammatory cascade in the cell leading to tissue inflammation. A large amount of evidence shows that Piezo1 plays a vital role in the occurrence and progression of chronic inflammatory diseases. This mini-review briefly presents new evidence that Piezo1 responds to different mechanical stresses to trigger inflammation in various tissues. The discovery of Piezo1 provides new insights for the treatment of chronic inflammatory diseases related to mechanical stress. Inhibiting the transduction of damaging mechanical signals into inflammatory signals can inhibit inflammation and improve the outcome of inflammation at an early stage. The pharmacology of Piezo1 has shown bright prospects. The development of tissue-specific Piezo1 drugs for clinical use may be a new target for treating chronic inflammation.
Collapse
Affiliation(s)
- Hailin Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qingcui Zheng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaojin Feng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fenfang Zhan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xifeng Wang
- Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
15
|
Wasnick RM, Shalashova I, Wilhelm J, Khadim A, Schmidt N, Hackstein H, Hecker A, Hoetzenecker K, Seeger W, Bellusci S, El Agha E, Ruppert C, Guenther A. Differential LysoTracker Uptake Defines Two Populations of Distal Epithelial Cells in Idiopathic Pulmonary Fibrosis. Cells 2022; 11:235. [PMID: 35053350 PMCID: PMC8773634 DOI: 10.3390/cells11020235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal degenerative lung disease of unknown etiology. Although in its final stages it implicates, in a reactive manner, all lung cell types, the initial damage involves the alveolar epithelial compartment, in particular the alveolar epithelial type 2 cells (AEC2s). AEC2s serve dual progenitor and surfactant secreting functions, both of which are deeply impacted in IPF. Thus, we hypothesize that the size of the surfactant processing compartment, as measured by LysoTracker incorporation, allows the identification of different epithelial states in the IPF lung. Flow cytometry analysis of epithelial LysoTracker incorporation delineates two populations (Lysohigh and Lysolow) of AEC2s that behave in a compensatory manner during bleomycin injury and in the donor/IPF lung. Employing flow cytometry and transcriptomic analysis of cells isolated from donor and IPF lungs, we demonstrate that the Lysohigh population expresses all classical AEC2 markers and is drastically diminished in IPF. The Lysolow population, which is increased in proportion in IPF, co-expressed AEC2 and basal cell markers, resembling the phenotype of the previously identified intermediate AEC2 population in the IPF lung. In that regard, we provide an in-depth flow-cytometry characterization of LysoTracker uptake, HTII-280, proSP-C, mature SP-B, NGFR, KRT5, and CD24 expression in human lung epithelial cells. Combining functional analysis with extracellular and intracellular marker expression and transcriptomic analysis, we advance the current understanding of epithelial cell behavior and fate in lung fibrosis.
Collapse
Affiliation(s)
- Roxana Maria Wasnick
- Universities of Giessen and Marburg Lung Center (UGMLC), The German Center for Lung Research (DZL), 35392 Giessen, Germany; (I.S.); (J.W.); (A.K.); (N.S.); (W.S.); (S.B.); (E.E.A.); (C.R.); (A.G.)
| | - Irina Shalashova
- Universities of Giessen and Marburg Lung Center (UGMLC), The German Center for Lung Research (DZL), 35392 Giessen, Germany; (I.S.); (J.W.); (A.K.); (N.S.); (W.S.); (S.B.); (E.E.A.); (C.R.); (A.G.)
| | - Jochen Wilhelm
- Universities of Giessen and Marburg Lung Center (UGMLC), The German Center for Lung Research (DZL), 35392 Giessen, Germany; (I.S.); (J.W.); (A.K.); (N.S.); (W.S.); (S.B.); (E.E.A.); (C.R.); (A.G.)
- Excellence Cluster Cardiopulmonary Institute (CPI), 35392 Giessen, Germany
- Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Ali Khadim
- Universities of Giessen and Marburg Lung Center (UGMLC), The German Center for Lung Research (DZL), 35392 Giessen, Germany; (I.S.); (J.W.); (A.K.); (N.S.); (W.S.); (S.B.); (E.E.A.); (C.R.); (A.G.)
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Nicolai Schmidt
- Universities of Giessen and Marburg Lung Center (UGMLC), The German Center for Lung Research (DZL), 35392 Giessen, Germany; (I.S.); (J.W.); (A.K.); (N.S.); (W.S.); (S.B.); (E.E.A.); (C.R.); (A.G.)
| | - Holger Hackstein
- Department of Clinical Immunology and Transfusion Medicine, 35392 Giessen, Germany;
| | - Andreas Hecker
- Department of General and Thoracic Surgery, University Hospital Giessen, 35392 Giessen, Germany;
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - Werner Seeger
- Universities of Giessen and Marburg Lung Center (UGMLC), The German Center for Lung Research (DZL), 35392 Giessen, Germany; (I.S.); (J.W.); (A.K.); (N.S.); (W.S.); (S.B.); (E.E.A.); (C.R.); (A.G.)
- Excellence Cluster Cardiopulmonary Institute (CPI), 35392 Giessen, Germany
- Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Saverio Bellusci
- Universities of Giessen and Marburg Lung Center (UGMLC), The German Center for Lung Research (DZL), 35392 Giessen, Germany; (I.S.); (J.W.); (A.K.); (N.S.); (W.S.); (S.B.); (E.E.A.); (C.R.); (A.G.)
- Excellence Cluster Cardiopulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Elie El Agha
- Universities of Giessen and Marburg Lung Center (UGMLC), The German Center for Lung Research (DZL), 35392 Giessen, Germany; (I.S.); (J.W.); (A.K.); (N.S.); (W.S.); (S.B.); (E.E.A.); (C.R.); (A.G.)
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Clemens Ruppert
- Universities of Giessen and Marburg Lung Center (UGMLC), The German Center for Lung Research (DZL), 35392 Giessen, Germany; (I.S.); (J.W.); (A.K.); (N.S.); (W.S.); (S.B.); (E.E.A.); (C.R.); (A.G.)
- Excellence Cluster Cardiopulmonary Institute (CPI), 35392 Giessen, Germany
- European IPF Registry/UGLMC Giessen Biobank, 35392 Giessen, Germany
| | - Andreas Guenther
- Universities of Giessen and Marburg Lung Center (UGMLC), The German Center for Lung Research (DZL), 35392 Giessen, Germany; (I.S.); (J.W.); (A.K.); (N.S.); (W.S.); (S.B.); (E.E.A.); (C.R.); (A.G.)
- Excellence Cluster Cardiopulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
- Department of General and Thoracic Surgery, University Hospital Giessen, 35392 Giessen, Germany;
- European IPF Registry/UGLMC Giessen Biobank, 35392 Giessen, Germany
- Lung Clinic Waldhof-Elgershausen, 35753 Greifenstein, Germany
| |
Collapse
|
16
|
Milad N, Morissette MC. Revisiting the role of pulmonary surfactant in chronic inflammatory lung diseases and environmental exposure. Eur Respir Rev 2021; 30:30/162/210077. [PMID: 34911693 DOI: 10.1183/16000617.0077-2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Pulmonary surfactant is a crucial and dynamic lung structure whose primary functions are to reduce alveolar surface tension and facilitate breathing. Though disruptions in surfactant homeostasis are typically thought of in the context of respiratory distress and premature infants, many lung diseases have been noted to have significant surfactant abnormalities. Nevertheless, preclinical and clinical studies of pulmonary disease too often overlook the potential contribution of surfactant alterations - whether in quantity, quality or composition - to disease pathogenesis and symptoms. In inflammatory lung diseases, whether these changes are cause or consequence remains a subject of debate. This review will outline 1) the importance of pulmonary surfactant in the maintenance of respiratory health, 2) the diseases associated with primary surfactant dysregulation, 3) the surfactant abnormalities observed in inflammatory pulmonary diseases and, finally, 4) the available research on the interplay between surfactant homeostasis and smoking-associated lung disease. From these published studies, we posit that changes in surfactant integrity and composition contribute more considerably to chronic inflammatory pulmonary diseases and that more work is required to determine the mechanisms underlying these alterations and their potential treatability.
Collapse
Affiliation(s)
- Nadia Milad
- Faculty of Medicine, Université Laval, Quebec City, QC, Canada.,Quebec Heart and Lung Institute - Université Laval, Quebec City, QC, Canada
| | - Mathieu C Morissette
- Quebec Heart and Lung Institute - Université Laval, Quebec City, QC, Canada .,Dept of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
17
|
Jia X, Huang J, Wu B, Yang M, Xu W. A Competitive Endogenous RNA Network Based on Differentially Expressed lncRNA in Lipopolysaccharide-Induced Acute Lung Injury in Mice. Front Genet 2021; 12:745715. [PMID: 34917127 PMCID: PMC8669720 DOI: 10.3389/fgene.2021.745715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/14/2021] [Indexed: 12/03/2022] Open
Abstract
Non-coding RNAs have remarkable roles in acute lung injury (ALI) initiation. Nevertheless, the significance of long non-coding RNAs (lncRNAs) in ALI is still unknown. Herein, we purposed to identify potential key genes in ALI and create a competitive endogenous RNA (ceRNA) modulatory network to uncover possible molecular mechanisms that affect lung injury. We generated a lipopolysaccharide-triggered ALI mouse model, whose lung tissue was subjected to RNA sequencing, and then we conducted bioinformatics analysis to select genes showing differential expression (DE) and to build a lncRNA-miRNA (microRNA)- mRNA (messenger RNA) modulatory network. Besides, GO along with KEGG assessments were conducted to identify major biological processes and pathways, respectively, involved in ALI. Then, RT-qPCR assay was employed to verify levels of major RNAs. A protein-protein interaction (PPI) network was created using the Search Tool for the Retrieval of Interacting Genes (STRING) database, and the hub genes were obtained with the Molecular Complex Detection plugin. Finally, a key ceRNA subnetwork was built from major genes and their docking sites. Overall, a total of 8,610 lncRNAs were identified in the normal and LPS groups. Based on the 308 DE lncRNAs [p-value < 0.05, |log2 (fold change) | > 1] and 3,357 DE mRNAs [p-value < 0.05, |log2 (fold change) | > 1], lncRNA-miRNA and miRNA-mRNA pairs were predicted using miRanda. The lncRNA-miRNA-mRNA network was created from 175 lncRNAs, 22 miRNAs, and 209 mRNAs in ALI. The RT-qPCR data keep in step with the RNA sequencing data. GO along with KEGG analyses illustrated that DE mRNAs in this network were mainly bound up with the inflammatory response, developmental process, cell differentiation, cell proliferation, apoptosis, and the NF-kappa B, PI3K-Akt, HIF-1, MAPK, Jak-STAT, and Notch signaling pathways. A PPI network on the basis of the 209 genes was established, and three hub genes (Nkx2-1, Tbx2, and Atf5) were obtained from the network. Additionally, a lncRNA-miRNA-hub gene subnetwork was built from 15 lncRNAs, 3 miRNAs, and 3 mRNAs. Herein, novel ideas are presented to expand our knowledge on the regulation mechanisms of lncRNA-related ceRNAs in the pathogenesis of ALI.
Collapse
Affiliation(s)
- Xianxian Jia
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jinhui Huang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bo Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Miao Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
18
|
He H, Chen J, Zhao J, Zhang P, Qiao Y, Wan H, Wang J, Mei M, Bao S, Li Q. PRMT7 targets of Foxm1 controls alveolar myofibroblast proliferation and differentiation during alveologenesis. Cell Death Dis 2021; 12:841. [PMID: 34497269 PMCID: PMC8426482 DOI: 10.1038/s41419-021-04129-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/23/2021] [Indexed: 02/05/2023]
Abstract
Although aberrant alveolar myofibroblasts (AMYFs) proliferation and differentiation are often associated with abnormal lung development and diseases, such as bronchopulmonary dysplasia (BPD), chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF), epigenetic mechanisms regulating proliferation and differentiation of AMYFs remain poorly understood. Protein arginine methyltransferase 7 (PRMT7) is the only reported type III enzyme responsible for monomethylation of arginine residue on both histone and nonhistone substrates. Here we provide evidence for PRMT7's function in regulating AMYFs proliferation and differentiation during lung alveologenesis. In PRMT7-deficient mice, we found reduced AMYFs proliferation and differentiation, abnormal elastin deposition, and failure of alveolar septum formation. We further shown that oncogene forkhead box M1 (Foxm1) is a direct target of PRMT7 and that PRMT7-catalyzed monomethylation at histone H4 arginine 3 (H4R3me1) directly associate with chromatin of Foxm1 to activate its transcription, and thereby regulate of cell cycle-related genes to inhibit AMYFs proliferation and differentiation. Overexpression of Foxm1 in isolated myofibroblasts (MYFs) significantly rescued PRMT7-deficiency-induced cell proliferation and differentiation defects. Thus, our results reveal a novel epigenetic mechanism through which PRMT7-mediated histone arginine monomethylation activates Foxm1 transcriptional expression to regulate AMYFs proliferation and differentiation during lung alveologenesis and may represent a potential target for intervention in pulmonary diseases.
Collapse
Affiliation(s)
- Huacheng He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Jilin Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Jian Zhao
- Department of Health Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China
| | - Peizhun Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Yulong Qiao
- Department of Health Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China
| | - Huajing Wan
- Laboratory of Pulmonary Immunology and Inflammation, Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Jincheng Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Mei Mei
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, P.R. China.
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100101, P.R. China.
| | - Qiuling Li
- Department of Health Sciences, Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China.
| |
Collapse
|
19
|
Romero Y, Aquino-Gálvez A. Hypoxia in Cancer and Fibrosis: Part of the Problem and Part of the Solution. Int J Mol Sci 2021; 22:8335. [PMID: 34361103 PMCID: PMC8348404 DOI: 10.3390/ijms22158335] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/16/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Adaptive responses to hypoxia are involved in the progression of lung cancer and pulmonary fibrosis. However, it has not been pointed out that hypoxia may be the link between these diseases. As tumors or scars expand, a lack of oxygen results in the activation of the hypoxia response, promoting cell survival even during chronic conditions. The role of hypoxia-inducible factors (HIFs) as master regulators of this adaptation is crucial in both lung cancer and idiopathic pulmonary fibrosis, which have shown the active transcriptional signature of this pathway. Emerging evidence suggests that interconnected feedback loops such as metabolic changes, fibroblast differentiation or extracellular matrix remodeling contribute to HIF overactivation, making it an irreversible phenomenon. This review will focus on the role of HIF signaling and its possible overlapping in order to identify new opportunities in therapy and regeneration.
Collapse
Affiliation(s)
- Yair Romero
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Arnoldo Aquino-Gálvez
- Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico
| |
Collapse
|
20
|
Linking Fibrotic Remodeling and Ultrastructural Alterations of Alveolar Epithelial Cells after Deletion of Nedd4-2. Int J Mol Sci 2021; 22:ijms22147607. [PMID: 34299227 PMCID: PMC8306112 DOI: 10.3390/ijms22147607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 11/24/2022] Open
Abstract
Our previous study showed that in adult mice, conditional Nedd4-2-deficiency in club and alveolar epithelial type II (AE2) cells results in impaired mucociliary clearance, accumulation of Muc5b and progressive, terminal pulmonary fibrosis within 16 weeks. In the present study, we investigated ultrastructural alterations of the alveolar epithelium in relation to interstitial remodeling in alveolar septa as a function of disease progression. Two, eight and twelve weeks after induction of Nedd4-2 knockout, lungs were fixed and subjected to design-based stereological investigation at the light and electron microscopic level. Quantitative data did not show any abnormalities until 8 weeks compared to controls. At 12 weeks, however, volume of septal wall tissue increased while volume of acinar airspace and alveolar surface area significantly decreased. Volume and surface area of alveolar epithelial type I cells were reduced, which could not be compensated by a corresponding increase of AE2 cells. The volume of collagen fibrils in septal walls increased and was linked with an increase in blood–gas barrier thickness. A high correlation between parameters reflecting interstitial remodeling and abnormal AE2 cell ultrastructure could be established. Taken together, abnormal regeneration of the alveolar epithelium is correlated with interstitial septal wall remodeling.
Collapse
|
21
|
Piñeiro-Hermida S, Autilio C, Martínez P, Bosch F, Pérez-Gil J, Blasco MA. Telomerase treatment prevents lung profibrotic pathologies associated with physiological aging. J Cell Biol 2021; 219:152010. [PMID: 32777016 PMCID: PMC7659728 DOI: 10.1083/jcb.202002120] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/23/2020] [Accepted: 07/17/2020] [Indexed: 02/08/2023] Open
Abstract
Short/dysfunctional telomeres are at the origin of idiopathic pulmonary fibrosis (IPF) in patients mutant for telomere maintenance genes. However, it remains unknown whether physiological aging leads to short telomeres in the lung, thus leading to IPF with aging. Here, we find that physiological aging in wild-type mice leads to telomere shortening and a reduced proliferative potential of alveolar type II cells and club cells, increased cellular senescence and DNA damage, increased fibroblast activation and collagen deposits, and impaired lung biophysics, suggestive of a fibrosis-like pathology. Treatment of both wild-type and telomerase-deficient mice with telomerase gene therapy prevented the onset of lung profibrotic pathologies. These findings suggest that short telomeres associated with physiological aging are at the origin of IPF and that a potential treatment for IPF based on telomerase activation would be of interest not only for patients with telomerase mutations but also for sporadic cases of IPF associated with physiological aging.
Collapse
Affiliation(s)
- Sergio Piñeiro-Hermida
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, Madrid, Spain
| | - Chiara Autilio
- Department of Biochemistry and Molecular Biology, Research Institute "Hospital 12 de Octubre (imas12)," Complutense University, Madrid, Spain
| | - Paula Martínez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, Madrid, Spain
| | - Fátima Bosch
- Center of Animal Biotechnology and Gene Therapy, Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jesús Pérez-Gil
- Department of Biochemistry and Molecular Biology, Research Institute "Hospital 12 de Octubre (imas12)," Complutense University, Madrid, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, Madrid, Spain
| |
Collapse
|
22
|
Lopez-Rodriguez E, Gay-Jordi G, Knudsen L, Ochs M, Serrano-Mollar A. Improved Alveolar Dynamics and Structure After Alveolar Epithelial Type II Cell Transplantation in Bleomycin Induced Lung Fibrosis. Front Med (Lausanne) 2021; 8:640020. [PMID: 33681265 PMCID: PMC7925848 DOI: 10.3389/fmed.2021.640020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressively and ultimately fatal lung disease. Previously it has been shown that intratracheal administration of alveolar epithelial type II cells (AE2C) in the animal model of bleomycin-induced pulmonary fibrosis is able to reverse fibrosis and restore surfactant protein levels. However, to date, it has not been evaluated whether these changes involve any improvement in alveolar dynamics. Consequently, the aim of the present work was to study lung physiology after AE2C transplantation at different time points during the development of injury and fibrosis. Lung fibrosis was induced by intratracheal instillation of bleomycin (4U/kg) in rat lungs. The animals were transplanted with AE2C (2.5 × 106 cells/animal) 3 or 7 days after bleomycin instillation. Assessments were done at day 7 and 14 after the induction of fibrosis to plot time dependent changes in lung physiology and mechanics. To assess the pressures and rates at which closed alveoli reopens invasive pulmonary tests using a small-animal mechanical ventilator (Flexivent®, Scireq, Canada) including de-recruitability tests and forced oscillation technique as well as quasi-static pressure volume loops were performed. Afterwards lungs were fixed by vascular perfusion and subjected to design-based stereological evaluation at light and electron microscopy level. AE2C delivered during the lung injury phase (3 days) of the disease are only able to slightly recover the volume of AE2C and volume fraction of LB in AE2C. However, it did not show either positive effects regarding ventilated alveolar surface nor any increase of lung compliance. On the other hand, when AE2C are delivered at the beginning of the fibrotic phase (7 days after bleomycin instillation), an increased ventilated alveolar surface to control levels and reduced septal wall thickness can be observed. Moreover, transplanted animals showed better lung performance, with increased inspiratory capacity and compliance. In addition, a detailed analysis of surfactant active forms [mainly tubular myelin, lamellar body (LB)-like structures and multilamellar vesicles (MLV)], showed an effective recovery during the pro-fibrotic phase due to the healthy AE2C transplantation. In conclusion, AE2C transplantation during fibrogenic phases of the disease improves lung performance, structure and surfactant ultrastructure in bleomycin-induced lung fibrosis.
Collapse
Affiliation(s)
- Elena Lopez-Rodriguez
- Institute of Functional Anatomy, Charité - Universitaetsmedizin Berlin, Berlin, Germany.,Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Gemma Gay-Jordi
- Experimental Pathology Department, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Cientificas (IIBB-CSIC) Barcelona, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Lars Knudsen
- Institute of Functional Anatomy, Charité - Universitaetsmedizin Berlin, Berlin, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Matthias Ochs
- Institute of Functional Anatomy, Charité - Universitaetsmedizin Berlin, Berlin, Germany.,Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,German Center for Lung Research (DZL), Berlin, Germany
| | - Anna Serrano-Mollar
- Experimental Pathology Department, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Cientificas (IIBB-CSIC) Barcelona, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
23
|
Mechanical ventilation-induced alterations of intracellular surfactant pool and blood-gas barrier in healthy and pre-injured lungs. Histochem Cell Biol 2020; 155:183-202. [PMID: 33188462 PMCID: PMC7910377 DOI: 10.1007/s00418-020-01938-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 12/18/2022]
Abstract
Mechanical ventilation triggers the manifestation of lung injury and pre-injured lungs are more susceptible. Ventilation-induced abnormalities of alveolar surfactant are involved in injury progression. The effects of mechanical ventilation on the surfactant system might be different in healthy compared to pre-injured lungs. In the present study, we investigated the effects of different positive end-expiratory pressure (PEEP) ventilations on the structure of the blood–gas barrier, the ultrastructure of alveolar epithelial type II (AE2) cells and the intracellular surfactant pool (= lamellar bodies, LB). Rats were randomized into bleomycin-pre-injured or healthy control groups. One day later, rats were either not ventilated, or ventilated with PEEP = 1 or 5 cmH2O and a tidal volume of 10 ml/kg bodyweight for 3 h. Left lungs were subjected to design-based stereology, right lungs to measurements of surfactant proteins (SP−) B and C expression. In pre-injured lungs without ventilation, the expression of SP-C was reduced by bleomycin; while, there were fewer and larger LB compared to healthy lungs. PEEP = 1 cmH2O ventilation of bleomycin-injured lungs was linked with the thickest blood–gas barrier due to increased septal interstitial volumes. In healthy lungs, increasing PEEP levels reduced mean AE2 cell size and volume of LB per AE2 cell; while in pre-injured lungs, volumes of AE2 cells and LB per cell remained stable across PEEPs. Instead, in pre-injured lungs, increasing PEEP levels increased the number and decreased the mean size of LB. In conclusion, mechanical ventilation-induced alterations in LB ultrastructure differ between healthy and pre-injured lungs. PEEP = 1 cmH2O but not PEEP = 5 cmH2O ventilation aggravated septal interstitial abnormalities after bleomycin challenge.
Collapse
|
24
|
Yazicioglu T, Mühlfeld C, Autilio C, Huang CK, Bär C, Dittrich-Breiholz O, Thum T, Pérez-Gil J, Schmiedl A, Brandenberger C. Aging impairs alveolar epithelial type II cell function in acute lung injury. Am J Physiol Lung Cell Mol Physiol 2020; 319:L755-L769. [DOI: 10.1152/ajplung.00093.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Morbidity and mortality rates in acute lung injury (ALI) increase with age. As alveolar epithelial type II cells (AE2) are crucial for lung function and repair, we hypothesized that aging promotes senescence in AE2 and contributes to the severity and impaired regeneration in ALI. ALI was induced with 2.5 μg lipopolysaccharide/g body weight in young (3 mo) and old (18 mo) mice that were euthanized 24 h, 72 h, and 10 days later. Lung function, pulmonary surfactant activity, stereology, cell senescence, and single-cell RNA sequencing analyses were performed to investigate AE2 function in aging and ALI. In old mice, surfactant activity was severely impaired. A 60% mortality rate and lung function decline were observed in old, but not in young, mice with ALI. AE2 of young mice adapted to injury by increasing intracellular surfactant volume and proliferation rate. In old mice, however, this adaptive response was compromised, and AE2 of old mice showed signs of cell senescence, increased inflammatory signaling, and impaired surfactant metabolism in ALI. These findings provide evidence that ALI promotes a limited proliferation rate, increased inflammatory response, and surfactant dysfunction in old, but not in young, mice, supporting an impaired regenerative capacity and reduced survival rate in ALI with advancing age.
Collapse
Affiliation(s)
- Tolga Yazicioglu
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Chiara Autilio
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research Institute “Hospital 12 de Octubre (imas12)”, Complutense University, Madrid, Spain
| | - Cheng-Kai Huang
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | | | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Jesús Pérez-Gil
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research Institute “Hospital 12 de Octubre (imas12)”, Complutense University, Madrid, Spain
| | - Andreas Schmiedl
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Christina Brandenberger
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
25
|
Bleomycin induced apical-basal polarity loss in alveolar epithelial cell contributes to experimental pulmonary fibrosis. Exp Cell Res 2020; 396:112295. [PMID: 32971116 DOI: 10.1016/j.yexcr.2020.112295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/26/2020] [Accepted: 09/16/2020] [Indexed: 11/23/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal fibrosing interstitial lung disease with limited therapeutic options and a median survival of 3 years after diagnosis. Dysregulated epithelial regeneration is key event involved in initiating and sustaining IPF. The type II alveolar epithelial cells (AECIIs) play a crucial role for epithelial regeneration and stabilisation of alveoli. Loss of cell apical-basal polarity contributes to fibrosis. AECII has apical-basal polarity, but it is poorly understood whether AECII apical-basal polarity loss is involved in fibrosis. Bleomycin is a traditional inducer of pulmonary fibrosis. Here firstly we observed that bleomycin induced apical-basal polarity loss in cultured AECIIs. Next, cell polarity proteins lethal (2) giant larvae 1 (Lgl1), PAR-3A, aPKC and PAR-6B were investigated. We found bleomycin induced increases of Lgl1 protein and decreases of PAR-3A protein, and bleomycin-induced PAR-3A depression was mediated by increased-Lgl1. Then Lgl1 siRNA was transfected into AECIIs. Lgl1 siRNA prevented apical-basal polarity loss in bleomycin-treated AECIIs. At last, Lgl1-conditional knockout mice were applied in making animal models. Bleomycin induced pulmonary fibrosis, but this was attenuated in Lgl1-conditional knockout mice. Together, these data indicated that bleomycin mediated AECII apical-basal polarity loss which contributed to experimental pulmonary fibrosis. Inhibition of Lgl1 should be a potential therapeutic strategy for the disease.
Collapse
|
26
|
Xie S, Su J, Lu A, Lai Y, Mo S, Pu M, Yang T. Soluble (pro)renin receptor promotes the fibrotic response in renal proximal tubule epithelial cells in vitro via the Akt/β-catenin/Snail signaling pathway. Am J Physiol Renal Physiol 2020; 319:F941-F953. [PMID: 32865015 DOI: 10.1152/ajprenal.00197.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Tubulointerstitial fibrosis has been regarded as a critical event in the pathogenesis of chronic kidney disease. The soluble form of (pro)renin receptor (sPRR), generated by site-1 protease (S1P) cleavage of full-length PRR, can be detected in biological fluid and elevated under certain pathological conditions. The present study was designed to evaluate the potential role of sPRR in the regulation of the fibrotic response in a cultured human renal proximal tubular cell line (HK-2 cells) in the setting of transforming growth factor (TGF)-β or sPRR-His treatment. The TGF-β-induced fibrotic response of HK-2 cells was indicated by upregulation of fibronectin (FN) expression; meanwhile, TGF-β could also induce the generation of sPRR, due to enhanced cleavage of full-length PRR. To explore the role of sPRR in the fibrotic response of HK-2 cells, we blocked the production of sPRR with a the S1P inhibitor PF429242 and found that PF429242 remarkably suppressed TGF-β-induced sPRR generation and FN expression in HK-2 cells. Administration of sPRR-His restored the PF429242-attenuated FN expression in HK-2 cells, indicating that sPRR could promote the TGF-β-induced fibrotic response. Furthermore, sPRR-His alone also increased the abundance of FN in HK-2 cells. These data suggested that sPRR was sufficient and necessary for the TGF-β-induced fibrotic response of HK-2 cells. Mechanistically, sPRR activated the AKT and β-catenin pathway in HK-2 cells, and blockade of the AKT or β-catenin pathway significantly abrogated sPRR-induced FN and Snail expression. Taking together, sPRR promoted the fibrotic response of HK-2 cells by activating Akt/β-catenin/Snail signaling, and it may serve as a potential therapeutic target in renal fibrosis.
Collapse
Affiliation(s)
- Shiying Xie
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Jiahui Su
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Aihua Lu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ying Lai
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shiqi Mo
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Min Pu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tianxin Yang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah.,The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
27
|
Diem K, Fauler M, Fois G, Hellmann A, Winokurow N, Schumacher S, Kranz C, Frick M. Mechanical stretch activates piezo1 in caveolae of alveolar type I cells to trigger ATP release and paracrine stimulation of surfactant secretion from alveolar type II cells. FASEB J 2020; 34:12785-12804. [PMID: 32744386 DOI: 10.1096/fj.202000613rrr] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Secretion of pulmonary surfactant in the alveoli of the lungs is essential to maintain lung function. Stretching of alveoli during lung inflation is the main trigger for surfactant secretion. Yet, the molecular mechanisms how mechanical distension of alveoli results in surfactant secretion are still elusive. The alveolar epithelium consists of alveolar epithelial type I (ATI) and surfactant secreting type II (ATII) cells. ATI, but not ATII cells, express caveolae, small plasma membrane invaginations that can respond to plasma membrane stresses and serve mechanotransductive roles. Within this study, we investigated the role of caveolae as mechanosensors in the alveolus. We generated a human caveolin-1 knockout ATI cell (hAELVicav-/- ) using CRISPR/Cas9. Wildtype (hAELViwt ) and hAELVicav-/- cells grown on flexible membranes responded to increasing stretch amplitudes with rises in intracellular Ca2+ . The response was less frequent and started at higher stretch amplitudes in hAELVicav-/- cells. Stretch-induced Ca2+ -signals depended on Ca2+ -entry via piezo1 channels, localized within caveolae in hAELViwt and primary ATI cells. Ca2+ -entry via piezo1 activated pannexin-1 hemichannels resulting in ATP release from ATI cells. ATP release was reduced in hAELVicav-/- cells. In co-cultures resembling the alveolar epithelium, released ATP stimulated Ca2+ signals and surfactant secretion from neighboring ATII cells when co-cultured with hAELViwt but not hAELVicav-/- cells. In summary, we propose that caveolae in ATI cells are mechanosensors within alveoli regulating stretch-induced surfactant secretion from ATII cells.
Collapse
Affiliation(s)
- Kathrin Diem
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Michael Fauler
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Giorgio Fois
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Andreas Hellmann
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | - Natalie Winokurow
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm, Germany
| | - Stefan Schumacher
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm, Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| |
Collapse
|
28
|
Wang L, Liu H, He Q, Gan C, Li Y, Zhang Q, Yao Y, He F, Ye T, Yin W. Galangin ameliorated pulmonary fibrosis in vivo and in vitro by regulating epithelial-mesenchymal transition. Bioorg Med Chem 2020; 28:115663. [PMID: 32912432 DOI: 10.1016/j.bmc.2020.115663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 07/19/2020] [Indexed: 02/08/2023]
Abstract
Pulmonary fibrosis (PF) is a disease that is characterized by abnormal epithelial-mesenchymal transition (EMT) and persistent inflammatory injury, with high mortality and poor prognosis, but the current therapies are accompanied by certain adverse side effects. In this study, we investigated the role of galangin (GA), an anti-inflammatory and anti-tumoral phytochemical extracted from galangal, in preventing and curing bleomycin (BLM)-induced pulmonary fibrosis and the underlying mechanism. Histopathological staining confirmed that GA dramatically moderated bleomycin-induced pulmonary fibrosis in mice. Compared with the vehicle treatment, GA treatment inhibited the expression of vimentin and increased the expression of E-cadherin. The expression of α-Smooth muscle actin (α-SMA), which is a myofibroblast marker, was also suppressed. In addition, GA diminished the increase in the numbers of CD4+CD69+ and CD8+CD69+ T cells and dendritic cells induced by bleomycin, and reduced the residence of inflammatory cells in the lung tissues. Notably, GA inhibited the TGF-β1-induced EMT and fibroblast differentiation in vitro, which further confirmed the potential protective effect of GA on pulmonary fibrosis. Taken together, our results suggest that GA exerts a beneficial effect on bleomycin-induced pulmonary fibrosis by attenuating EMT and inflammatory damage and may have prevent potential of pulmonary fibrosis.
Collapse
Affiliation(s)
- Liqun Wang
- West China School of Public Health and Healthy Food Evaluation Research Center and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hongyao Liu
- Laboratory of Liver Surgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Qiurong He
- West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Cailing Gan
- Laboratory of Liver Surgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yali Li
- West China School of Public Health and Healthy Food Evaluation Research Center and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qianyu Zhang
- West China School of Public Health and Healthy Food Evaluation Research Center and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuqin Yao
- West China School of Public Health and Healthy Food Evaluation Research Center and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Fang He
- West China School of Public Health and Healthy Food Evaluation Research Center and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tinghong Ye
- Laboratory of Liver Surgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Wenya Yin
- West China School of Public Health and Healthy Food Evaluation Research Center and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
29
|
Ruwisch J, Sehlmeyer K, Roldan N, Garcia-Alvarez B, Perez-Gil J, Weaver TE, Ochs M, Knudsen L, Lopez-Rodriguez E. Air Space Distension Precedes Spontaneous Fibrotic Remodeling and Impaired Cholesterol Metabolism in the Absence of Surfactant Protein C. Am J Respir Cell Mol Biol 2020; 62:466-478. [PMID: 31922895 DOI: 10.1165/rcmb.2019-0358oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Surfactant protein (SP)-C deficiency is found in samples from patients with idiopathic pulmonary fibrosis, especially in familial forms of this disease. We hypothesized that SP-C may contribute to fibrotic remodeling in aging mice and alveolar lipid homeostasis. For this purpose, we analyzed lung function, alveolar dynamics, lung structure, collagen content, and expression of genes related to lipid and cholesterol metabolism of aging SP-C knockout mice. In addition, in vitro experiments with an alveolar macrophage cell line exposed to lipid vesicles with or without cholesterol and/or SP-C were performed. Alveolar dynamics showed progressive alveolar derecruitment with age and impaired oxygen saturation. Lung structure revealed that decreasing volume density of alveolar spaces was accompanied by increasing of the ductal counterparts. Simultaneously, septal wall thickness steadily increased, and fibrotic wounds appeared in lungs from the age of 50 weeks. This remarkable phenotype is unique to the 129Sv strain, which has an increased absorption of cholesterol, linking the accumulation of cholesterol and the absence of SP-C to a fibrotic remodeling process. The findings of this study suggest that overall loss of SP-C results in an age-dependent, complex, heterogeneous phenotype characterized by a combination of overdistended air spaces and fibrotic wounds that resembles combined emphysema and pulmonary fibrosis in patients with idiopathic pulmonary fibrosis. Addition of SP-C to cholesterol-laden lipid vesicles enhanced the expression of cholesterol metabolism and transport genes in an alveolar macrophage cell line, identifying a potential new lipid-protein axis involved in lung remodeling.
Collapse
Affiliation(s)
- Jannik Ruwisch
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,BREATH (Biomedical Research in Endstage and Obstructive Lung Disease Hannover), Member of the German Center for Lung Research, Hannover, Germany
| | - Kirsten Sehlmeyer
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,BREATH (Biomedical Research in Endstage and Obstructive Lung Disease Hannover), Member of the German Center for Lung Research, Hannover, Germany
| | - Nuria Roldan
- Alveolix AG and ARTORG Center, University of Bern, Bern, Switzerland.,Biochemistry and Molecular Biology Department, Faculty of Biology, and Research Institute "Hospital 12 de Octubre," Complutense University Madrid, Madrid, Spain
| | - Begoña Garcia-Alvarez
- Biochemistry and Molecular Biology Department, Faculty of Biology, and Research Institute "Hospital 12 de Octubre," Complutense University Madrid, Madrid, Spain
| | - Jesus Perez-Gil
- Biochemistry and Molecular Biology Department, Faculty of Biology, and Research Institute "Hospital 12 de Octubre," Complutense University Madrid, Madrid, Spain
| | - Timothy E Weaver
- Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,BREATH (Biomedical Research in Endstage and Obstructive Lung Disease Hannover), Member of the German Center for Lung Research, Hannover, Germany.,Institute of Vegetative Anatomy, Charité-Universitaetsmedizin Berlin, Berlin, Germany
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,BREATH (Biomedical Research in Endstage and Obstructive Lung Disease Hannover), Member of the German Center for Lung Research, Hannover, Germany.,Institute of Vegetative Anatomy, Charité-Universitaetsmedizin Berlin, Berlin, Germany
| | - Elena Lopez-Rodriguez
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,BREATH (Biomedical Research in Endstage and Obstructive Lung Disease Hannover), Member of the German Center for Lung Research, Hannover, Germany.,Institute of Vegetative Anatomy, Charité-Universitaetsmedizin Berlin, Berlin, Germany
| |
Collapse
|
30
|
Agudelo CW, Samaha G, Garcia-Arcos I. Alveolar lipids in pulmonary disease. A review. Lipids Health Dis 2020; 19:122. [PMID: 32493486 PMCID: PMC7268969 DOI: 10.1186/s12944-020-01278-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Lung lipid metabolism participates both in infant and adult pulmonary disease. The lung is composed by multiple cell types with specialized functions and coordinately acting to meet specific physiologic requirements. The alveoli are the niche of the most active lipid metabolic cell in the lung, the type 2 cell (T2C). T2C synthesize surfactant lipids that are an absolute requirement for respiration, including dipalmitoylphosphatidylcholine. After its synthesis and secretion into the alveoli, surfactant is recycled by the T2C or degraded by the alveolar macrophages (AM). Surfactant biosynthesis and recycling is tightly regulated, and dysregulation of this pathway occurs in many pulmonary disease processes. Alveolar lipids can participate in the development of pulmonary disease from their extracellular location in the lumen of the alveoli, and from their intracellular location in T2C or AM. External insults like smoke and pollution can disturb surfactant homeostasis and result in either surfactant insufficiency or accumulation. But disruption of surfactant homeostasis is also observed in many chronic adult diseases, including chronic obstructive pulmonary disease (COPD), and others. Sustained damage to the T2C is one of the postulated causes of idiopathic pulmonary fibrosis (IPF), and surfactant homeostasis is disrupted during fibrotic conditions. Similarly, surfactant homeostasis is impacted during acute respiratory distress syndrome (ARDS) and infections. Bioactive lipids like eicosanoids and sphingolipids also participate in chronic lung disease and in respiratory infections. We review the most recent knowledge on alveolar lipids and their essential metabolic and signaling functions during homeostasis and during some of the most commonly observed pulmonary diseases.
Collapse
Affiliation(s)
- Christina W Agudelo
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA
| | - Ghassan Samaha
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA
| | - Itsaso Garcia-Arcos
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA.
| |
Collapse
|
31
|
Sehlmeyer K, Ruwisch J, Roldan N, Lopez-Rodriguez E. Alveolar Dynamics and Beyond - The Importance of Surfactant Protein C and Cholesterol in Lung Homeostasis and Fibrosis. Front Physiol 2020; 11:386. [PMID: 32431623 PMCID: PMC7213507 DOI: 10.3389/fphys.2020.00386] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Surfactant protein C (SP-C) is an important player in enhancing the interfacial adsorption of lung surfactant lipid films to the alveolar air-liquid interface. Doing so, surface tension drops down enough to stabilize alveoli and the lung, reducing the work of breathing. In addition, it has been shown that SP-C counteracts the deleterious effect of high amounts of cholesterol in the surfactant lipid films. On its side, cholesterol is a well-known modulator of the biophysical properties of biological membranes and it has been proven that it activates the inflammasome pathways in the lung. Even though the molecular mechanism is not known, there are evidences suggesting that these two molecules may interplay with each other in order to keep the proper function of the lung. This review focuses in the role of SP-C and cholesterol in the development of lung fibrosis and the potential pathways in which impairment of both molecules leads to aberrant lung repair, and therefore impaired alveolar dynamics. From molecular to cellular mechanisms to evidences in animal models and human diseases. The evidences revised here highlight a potential SP-C/cholesterol axis as target for the treatment of lung fibrosis.
Collapse
Affiliation(s)
- Kirsten Sehlmeyer
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Centre for Lung Research, Hanover, Germany
| | - Jannik Ruwisch
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Centre for Lung Research, Hanover, Germany
| | - Nuria Roldan
- Alveolix AG and ARTORG Center, University of Bern, Bern, Switzerland
| | - Elena Lopez-Rodriguez
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Centre for Lung Research, Hanover, Germany
- Institute of Functional Anatomy, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
32
|
Schulte H, Mühlfeld C, Brandenberger C. Age-Related Structural and Functional Changes in the Mouse Lung. Front Physiol 2019; 10:1466. [PMID: 31866873 PMCID: PMC6904284 DOI: 10.3389/fphys.2019.01466] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/14/2019] [Indexed: 01/01/2023] Open
Abstract
Lung function declines with advancing age. To improve our understanding of the structure-function relationships leading to this decline, we investigated structural alterations in the lung and their impact on micromechanics and lung function in the aging mouse. Lung function analysis was performed in 3, 6, 12, 18, and 24 months old C57BL/6 mice (n = 7-8/age), followed by lung fixation and stereological sample preparation. Lung parenchymal volume, total, ductal and alveolar airspace volume, alveolar volume and number, septal volume, septal surface area and thickness were quantified by stereology as well as surfactant producing alveolar epithelial type II (ATII) cell volume and number. Parenchymal volume, total and ductal airspace volume increased in old (18 and 24 months) compared with middle-aged (6 and 12 months) and young (3 months) mice. While the alveolar number decreased from young (7.5 × 106) to middle-aged (6 × 106) and increased again in old (9 × 106) mice, the mean alveolar volume and mean septal surface area per alveolus conversely first increased in middle-aged and then declined in old mice. The ATII cell number increased from middle-aged (8.8 × 106) to old (11.8 × 106) mice, along with the alveolar number, resulting in a constant ratio of ATII cells per alveolus in all age groups (1.4 ATII cells per alveolus). Lung compliance and inspiratory capacity increased, whereas tissue elastance and tissue resistance decreased with age, showing greatest changes between young and middle-aged mice. In conclusion, alveolar size declined significantly in old mice concomitant with a widening of alveolar ducts and late alveolarization. These changes may partly explain the functional alterations during aging. Interestingly, despite age-related lung remodeling, the number of ATII cells per alveolus showed a tightly controlled relation in all age groups.
Collapse
Affiliation(s)
- Henri Schulte
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany.,Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hanover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hanover, Germany
| | - Christina Brandenberger
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany.,Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hanover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hanover, Germany
| |
Collapse
|
33
|
Albert RK, Smith B, Perlman CE, Schwartz DA. Is Progression of Pulmonary Fibrosis due to Ventilation-induced Lung Injury? Am J Respir Crit Care Med 2019; 200:140-151. [PMID: 31022350 PMCID: PMC6635778 DOI: 10.1164/rccm.201903-0497pp] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023] Open
Affiliation(s)
| | - Bradford Smith
- Department of Bioengineering, University of Colorado, Aurora, Colorado; and
| | - Carrie E. Perlman
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey
| | | |
Collapse
|
34
|
Snijder J, Peraza J, Padilla M, Capaccione K, Salvatore MM. Pulmonary fibrosis: a disease of alveolar collapse and collagen deposition. Expert Rev Respir Med 2019; 13:615-619. [DOI: 10.1080/17476348.2019.1623028] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Juan Snijder
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Jellyana Peraza
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Maria Padilla
- Department of Pulmonary Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kathleen Capaccione
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Mary M. Salvatore
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
35
|
Surfactant dysfunction and alveolar collapse are linked with fibrotic septal wall remodeling in the TGF-β1-induced mouse model of pulmonary fibrosis. J Transl Med 2019; 99:830-852. [PMID: 30700849 DOI: 10.1038/s41374-019-0189-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/20/2018] [Accepted: 12/17/2018] [Indexed: 11/08/2022] Open
Abstract
In human idiopathic pulmonary fibrosis (IPF), collapse of distal airspaces occurs in areas of the lung not (yet) remodeled. Mice lungs overexpressing transforming growth factor-β1 (TGF-β1) recapitulate this abnormality: surfactant dysfunction results in alveolar collapse preceding fibrosis and loss of alveolar epithelial type II (AE2) cells' apical membrane surface area. Here we examined whether surfactant dysfunction-related alveolar collapse due to TGF-β1 overexpression is linked to septal wall remodeling and AE2 cell abnormalities. Three and 6 days after gene transfer of TGF-β1, mice received either intratracheal surfactant (Surf-groups: Curosurf®, 100 mg/kg bodyweight) or 0.9% NaCl (Saline-groups). On days 7 (D7) and 14 (D14), lung mechanics were assessed followed by design-based stereology at light and electron microscopic level to quantify structures. Compared with Saline, Surf showed significantly improved tissue elastance, increased numbers of open alveoli, as well as reduced alveolar size heterogeneity on D7. Deterioration in lung mechanics was highly correlated to the loss of open alveoli. On D14, lung mechanics, number of open alveoli, and alveolar size heterogeneity remained significantly improved in the Surf-group. Volumes of extracellular matrix and collagen fibrils in septal walls were significantly reduced, whereas the apical membrane surface area of AE2 cells was increased in Surf compared with Saline. In remodeled tissue with collapsed alveoli, three-dimensional reconstruction of AE2 cells based on scanning electron microscopy array tomography revealed that AE2 cells were trapped without contact to airspaces in the TGF-β1 mouse model. Similar observations were made in human IPF. Based on correlation analyses, the number of open alveoli and of alveolar size heterogeneity were highly linked with the loss of apical membrane surface area of AE2 cells and deposition of collagen fibrils in septal walls on D14. In conclusion, surfactant replacement therapy stabilizes alveoli and prevents extracellular matrix deposition in septal walls in the TGF-β1 model.
Collapse
|
36
|
Hollenbach J, Lopez-Rodriguez E, Mühlfeld C, Schipke J. Voluntary Activity Modulates Sugar-Induced Elastic Fiber Remodeling in the Alveolar Region of the Mouse Lung. Int J Mol Sci 2019; 20:ijms20102438. [PMID: 31108840 PMCID: PMC6567106 DOI: 10.3390/ijms20102438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/11/2023] Open
Abstract
Diabetes and respiratory diseases are frequently comorbid conditions. However, the mechanistic links between hyperglycemia and lung dysfunction are not entirely understood. This study examined the effects of high sucrose intake on lung mechanics and alveolar septal composition and tested voluntary activity as an intervention strategy. C57BL/6N mice were fed a control diet (CD, 7% sucrose) or a high sucrose diet (HSD, 35% sucrose). Some animals had access to running wheels (voluntary active; CD-A, HSD-A). After 30 weeks, lung mechanics were assessed, left lungs were used for stereological analysis and right lungs for protein expression measurement. HSD resulted in hyperglycemia and higher static compliance compared to CD. Lung and septal volumes were increased and the septal ratio of elastic-to-collagen fibers was decreased despite normal alveolar epithelial volumes. Elastic fibers appeared more loosely arranged accompanied by an increase in elastin protein expression. Voluntary activity prevented hyperglycemia in HSD-fed mice. The parenchymal airspace volume, but not the septal volume, was increased. The septal extracellular matrix (ECM) composition together with the protein expression of ECM components was similar to control levels in the HSD-A-group. In conclusion, HSD was associated with elastic fiber remodeling and reduced pulmonary elasticity. Voluntary activity alleviated HSD-induced ECM alterations, possibly by preventing hyperglycemia.
Collapse
Affiliation(s)
- Julia Hollenbach
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany.
| | - Elena Lopez-Rodriguez
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany.
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany.
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), 30625 Hannover, Germany.
| | - Julia Schipke
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany.
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), 30625 Hannover, Germany.
| |
Collapse
|
37
|
Kloth C, Gruben N, Ochs M, Knudsen L, Lopez-Rodriguez E. Flow cytometric analysis of the leukocyte landscape during bleomycin-induced lung injury and fibrosis in the rat. Am J Physiol Lung Cell Mol Physiol 2019; 317:L109-L126. [PMID: 31042078 DOI: 10.1152/ajplung.00176.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bleomycin-induced lung injury and fibrosis is a well-described model to investigate lung inflammatory and remodeling mechanisms. Rat models are clinically relevant and are also widely used, but rat bronchoalveolar lavage (BAL) cells are not fully characterized with flow cytometry due to the limited availability of antibodies for this species. We optimized a comprehensive time-dependent flow cytometric analysis of cells after bleomycin challenge, confirming previous studies in other species and correlating them to histological staining, cytokine profiling, and collagen accumulation analysis in rat lungs. For this purpose, we describe a novel panel of rat surface markers and a strategy to identify and follow BAL cells over time. By combining surface markers in rat alveolar cells (CD45+), granulocytes and other myeloid cells, monocytes and macrophages can be identified by the expression of CD11b/c. Moreover, different activation states of macrophages (CD163+) can be observed: steady state (CD86-MHC-IIlow), activation during inflammation (CD86+,MHC-IIhigh), activation during remodeling (CD86+MHC-IIlow), and a population of newly recruited monocytes (CD163-α-granulocyte-). Hydroxyproline measured as marker of collagen content in lung tissue showed positive correlation with the reparative phase (CD163- cells and tissue inhibitor of metalloproteinases (TIMP) and IL-10 increase). In conclusion, after a very early granulocytic recruitment, inflammation in rat lungs is observed by activated macrophages, and high release of IL-6 and fibrotic remodeling is characterized by recovery of the macrophage population together with TIMP, IL-10, and IL-18 production. Recruited monocytes and a second peak of granulocytes appear in the transitioning phase, correlating with immunostaining of arginase-1 in the tissue, revealing the importance of events leading the changes from injury to aberrant repair.
Collapse
Affiliation(s)
- Christina Kloth
- Institute of Functional and Applied Anatomy, Hannover Medical School , Hannover , Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL) , Hannover , Germany.,Cluster of excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover , Germany.,Institute of Experimental Haematology, Hannover Medical School , Hannover , Germany
| | - Nele Gruben
- Institute of Functional and Applied Anatomy, Hannover Medical School , Hannover , Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL) , Hannover , Germany.,Cluster of excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover , Germany
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School , Hannover , Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL) , Hannover , Germany.,Cluster of excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover , Germany.,Institute of Vegetative Anatomy, Charité - Universitaetsmedizin Berlin, Berlin , Germany
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School , Hannover , Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL) , Hannover , Germany.,Cluster of excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover , Germany
| | - Elena Lopez-Rodriguez
- Institute of Functional and Applied Anatomy, Hannover Medical School , Hannover , Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL) , Hannover , Germany.,Cluster of excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover , Germany.,Institute of Vegetative Anatomy, Charité - Universitaetsmedizin Berlin, Berlin , Germany
| |
Collapse
|
38
|
Liu J, Dong S, Li L, Wang H, Zhao J, Zhao Y. The E3 ubiquitin ligase HECW1 targets thyroid transcription factor 1 (TTF1/NKX2.1) for its degradation in the ubiquitin-proteasome system. Cell Signal 2019; 58:91-98. [PMID: 30849519 DOI: 10.1016/j.cellsig.2019.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/02/2019] [Accepted: 03/04/2019] [Indexed: 12/11/2022]
Abstract
Thyroid transcription factor 1 (TTF1/NKX2.1), is a nuclear protein member of the NKX2 family of homeodomain transcription factors. It plays a critical role in regulation of multiple organ functions by promoting gene expression, such as thyroid hormone in thyroid and surfactant proteins in the lung. However, molecular regulation of TTF1 has not been well investigated, especially regarding its protein degradation. Here we show that protein kinase C agonist, phorbol esters (PMA), reduces TTF1 protein levels in time- and dose-dependent manners, without altering TTF1 mRNA levels. TTF1 is ubiquitinated and degraded in the proteasome in response to PMA, suggesting that PMA induces TTF1 degradation in the ubiquitin-proteasome system. Furthermore, we demonstrate that an E3 ubiquitin ligase, named HECT, C2 and WW domain containing E3 ubiquitin protein ligase 1 (HECW1), targets TTF1 for its ubiquitination and degradation, while downregulation of HECW1 attenuates PMA-induced TTF1 ubiquitination and degradation. A lysine residue lys151 was identified as the ubiquitin acceptor site within the TTF1. A lys151 to arginine mutant of TTF1 (TTF1K151R) is resistant to PMA- or HECW1-mediated ubiquitination and degradation. Further, we reveal that overexpression of TTF1 increases lung epithelial cell migration and proliferation, while the effects are reversed by HECW1. This study is the first to demonstrate that the E3 ubiquitin ligase HECW1 regulates TTF1 degradation by site-specific ubiquitination. This study will provide a new direction to clarify the molecular regulation of TTF1 in lung and its role in lung epithelial remodeling after injury.
Collapse
Affiliation(s)
- Jia Liu
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun, Jilin, China; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Su Dong
- Department of Anesthesia, The First Hospital of Jilin University, Changchun, Jilin, China; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Lian Li
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Heather Wang
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Jing Zhao
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Yutong Zhao
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
39
|
Knudsen L, Ochs M. The micromechanics of lung alveoli: structure and function of surfactant and tissue components. Histochem Cell Biol 2018; 150:661-676. [PMID: 30390118 PMCID: PMC6267411 DOI: 10.1007/s00418-018-1747-9] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2018] [Indexed: 12/14/2022]
Abstract
The mammalian lung´s structural design is optimized to serve its main function: gas exchange. It takes place in the alveolar region (parenchyma) where air and blood are brought in close proximity over a large surface. Air reaches the alveolar lumen via a conducting airway tree. Blood flows in a capillary network embedded in inter-alveolar septa. The barrier between air and blood consists of a continuous alveolar epithelium (a mosaic of type I and type II alveolar epithelial cells), a continuous capillary endothelium and the connective tissue layer in-between. By virtue of its respiratory movements, the lung has to withstand mechanical challenges throughout life. Alveoli must be protected from over-distension as well as from collapse by inherent stabilizing factors. The mechanical stability of the parenchyma is ensured by two components: a connective tissue fiber network and the surfactant system. The connective tissue fibers form a continuous tensegrity (tension + integrity) backbone consisting of axial, peripheral and septal fibers. Surfactant (surface active agent) is the secretory product of type II alveolar epithelial cells and covers the alveolar epithelium as a biophysically active thin and continuous film. Here, we briefly review the structural components relevant for gas exchange. Then we describe our current understanding of how these components function under normal conditions and how lung injury results in dysfunction of alveolar micromechanics finally leading to lung fibrosis.
Collapse
Affiliation(s)
- Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. .,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany. .,REBIRTH Cluster of Excellence, Hannover, Germany.
| |
Collapse
|
40
|
Correll KA, Edeen KE, Redente EF, Zemans RL, Edelman BL, Danhorn T, Curran‐Everett D, Mikels‐Vigdal A, Mason RJ. TGF beta inhibits HGF, FGF7, and FGF10 expression in normal and IPF lung fibroblasts. Physiol Rep 2018; 6:e13794. [PMID: 30155985 PMCID: PMC6113132 DOI: 10.14814/phy2.13794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/11/2018] [Accepted: 06/22/2018] [Indexed: 11/24/2022] Open
Abstract
TGF beta is a multifunctional cytokine that is important in the pathogenesis of pulmonary fibrosis. The ability of TGF beta to stimulate smooth muscle actin and extracellular matrix gene expression in fibroblasts is well established. In this report, we evaluated the effect of TGF beta on the expression of HGF, FGF7 (KGF), and FGF10, important growth and survival factors for the alveolar epithelium. These growth factors are important for maintaining type II cells and for restoration of the epithelium after lung injury. Under conditions of normal serum supplementation or serum withdrawal TGF beta inhibited fibroblast expression of HGF, FGF7, and FGF10. We confirmed these observations with genome wide RNA sequencing of the response of control and IPF fibroblasts to TGF beta. In general, gene expression in IPF fibroblasts was similar to control fibroblasts. Reduced expression of HGF, FGF7, and FGF10 is another means whereby TGF beta impairs epithelial healing and promotes fibrosis after lung injury.
Collapse
Affiliation(s)
| | | | | | - Rachel L. Zemans
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineUniversity of MichiganAnn ArborMichigan
| | | | | | | | | | | |
Collapse
|
41
|
Correll KA, Edeen KE, Zemans RL, Redente EF, Mikels-Vigdal A, Mason RJ. TGF beta inhibits expression of SP-A, SP-B, SP-C, but not SP-D in human alveolar type II cells. Biochem Biophys Res Commun 2018; 499:843-848. [PMID: 29621540 DOI: 10.1016/j.bbrc.2018.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/01/2018] [Indexed: 01/28/2023]
Abstract
TGF beta is a multifunctional cytokine that regulates alveolar epithelial cells as well as immune cells and fibroblasts. TGF beta inhibits surfactant protein A, B and C expression in fetal human lung and can inhibit type II cell proliferation induced by FGF7 (KGF). However, little is known about direct effects of TGF beta on adult human type II cells. We cultured alveolar type II cells under air/liquid interface conditions to maintain their state of differentiation with or without TGF beta. TGF beta markedly decreased expression of SP-A, SP-B, SP-C, fatty acid synthase, and the phospholipid transporter ABCA3. However, TGF beta increased protein levels of SP-D with little change in mRNA levels, indicating that it is regulated independently from other components of surfactant. TGF beta is a negative regulator of both the protein and the phospholipid components of surfactant. TGF beta did not induce EMT changes in highly differentiated human type II cells. SP-D is an important host defense molecule and regulated independently from the other surfactant proteins. Taken together these data are the first report of the effect of TGF beta on highly differentiated adult human type II cells. The effects on the surfactant system are likely important in the development of fibrotic lung diseases.
Collapse
Affiliation(s)
- Kelly A Correll
- National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Karen E Edeen
- National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Rachel L Zemans
- Division of Pulmonary and Critical Care Medicine/Department of Medicine, University of Michigan BSRB /SPC2200, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | | | | | - Robert J Mason
- National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA.
| |
Collapse
|
42
|
Cao K, Lei X, Liu H, Zhao H, Guo J, Chen Y, Xu Y, Cheng Y, Liu C, Cui J, Li B, Cai J, Gao F, Yang Y. Polydatin alleviated radiation-induced lung injury through activation of Sirt3 and inhibition of epithelial-mesenchymal transition. J Cell Mol Med 2017; 21:3264-3276. [PMID: 28609013 PMCID: PMC5706589 DOI: 10.1111/jcmm.13230] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/08/2017] [Indexed: 12/17/2022] Open
Abstract
Radiation-induced lung injury (RILI) is one of the most common and fatal complications of thoracic radiotherapy. It is characterized with two main features including early radiation pneumonitis and fibrosis in later phase. This study was to investigate the potential radioprotective effects of polydatin (PD), which was shown to exert anti-inflammation and anti-oxidative capacities in other diseases. In this study, we demonstrated that PD-mitigated acute inflammation and late fibrosis caused by irradiation. PD treatment inhibited TGF-β1-Smad3 signalling pathway and epithelial-mesenchymal transition. Moreover, radiation-induced imbalance of Th1/Th2 was also alleviated by PD treatment. Besides its free radical scavenging capacity, PD induced a huge increase of Sirt3 in culture cells and lung tissues. The level of Nrf2 and PGC1α in lung tissues was also elevated. In conclusion, our data showed that PD attenuated radiation-induced lung injury through inhibiting epithelial-mesenchymal transition and increased the expression of Sirt3, suggesting PD as a novel potential radioprotector for RILI.
Collapse
Affiliation(s)
- Kun Cao
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Xiao Lei
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Hu Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Hainan Zhao
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Jiaming Guo
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Yuanyuan Chen
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Yang Xu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Ying Cheng
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Cong Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Jianguo Cui
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Bailong Li
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Jianming Cai
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Fu Gao
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Yanyong Yang
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| |
Collapse
|
43
|
Steffen L, Ruppert C, Hoymann HG, Funke M, Ebener S, Kloth C, Mühlfeld C, Ochs M, Knudsen L, Lopez-Rodriguez E. Surfactant replacement therapy reduces acute lung injury and collapse induration-related lung remodeling in the bleomycin model. Am J Physiol Lung Cell Mol Physiol 2017; 313:L313-L327. [PMID: 28450283 DOI: 10.1152/ajplung.00033.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/11/2017] [Accepted: 04/22/2017] [Indexed: 12/13/2022] Open
Abstract
Bleomycin-induced lung injury leads to surfactant dysfunction and permanent loss of alveoli due to a remodeling process called collapse induration. Collapse induration also occurs in acute interstitial lung disease and idiopathic pulmonary fibrosis in humans. We hypothesized that surfactant dysfunction aggravates lung injury and early remodeling resulting in collapse induration within 7 days after lung injury. Rats received bleomycin to induce lung injury and either repetitive surfactant replacement therapy (SRT: 100 mg Curosurf/kg BW = surf group) or saline (0.9% NaCl = saline group). After 3 (D3) or 7 (D7) days, invasive pulmonary function tests were performed to determine tissue elastance (H) and static compliance (Cst). Bronchoalveolar lavage (BAL) was taken for surfactant function, inflammatory markers, and protein measurements. Lungs were fixed by vascular perfusion for design-based stereology and electron microscopic analyses. SRT significantly improved minimum surface tension of alveolar surfactant as well as H and Cst at D3 and D7. At D3 decreased inflammatory markers including neutrophilic granulocytes, IL-1β, and IL-6 correlated with reduced BAL-protein levels after SRT. Numbers of open alveoli were significantly increased at D3 and D7 in SRT groups whereas at D7 there was also a significant reduction in septal wall thickness and parenchymal tissue volume. Septal wall thickness and numbers of open alveoli highly correlated with improved lung mechanics after SRT. In conclusion, reduction in surface tension was effective to stabilize alveoli linked with an attenuation of parameters of acute lung injury at D3 and collapse induration at D7. Hence, SRT modifies disease progression to collapse induration.
Collapse
Affiliation(s)
- Lilian Steffen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Germany and Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research, Hannover, Germany
| | - Clemens Ruppert
- Department of Internal Medicine, Justus-Liebig-University Giessen, Germany, and Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Heinz-Gerd Hoymann
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Manuela Funke
- Department of Pulmonary Medicine, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Clinical Research, University of Bern, Bern, Switzerland; and
| | - Simone Ebener
- Department of Pulmonary Medicine, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Clinical Research, University of Bern, Bern, Switzerland; and
| | - Christina Kloth
- Institute of Functional and Applied Anatomy, Hannover Medical School, Germany and Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research, Hannover, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Germany and Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research, Hannover, Germany.,Cluster of Excellence Regenerative Biology to Reconstructive Therapy, Hannover, Germany
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Germany and Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research, Hannover, Germany.,Cluster of Excellence Regenerative Biology to Reconstructive Therapy, Hannover, Germany
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Germany and Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research, Hannover, Germany; .,Cluster of Excellence Regenerative Biology to Reconstructive Therapy, Hannover, Germany
| | - Elena Lopez-Rodriguez
- Institute of Functional and Applied Anatomy, Hannover Medical School, Germany and Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research, Hannover, Germany.,Cluster of Excellence Regenerative Biology to Reconstructive Therapy, Hannover, Germany
| |
Collapse
|
44
|
Cong X, Hubmayr RD, Li C, Zhao X. Plasma membrane wounding and repair in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2017; 312:L371-L391. [PMID: 28062486 PMCID: PMC5374305 DOI: 10.1152/ajplung.00486.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/12/2022] Open
Abstract
Various pathophysiological conditions such as surfactant dysfunction, mechanical ventilation, inflammation, pathogen products, environmental exposures, and gastric acid aspiration stress lung cells, and the compromise of plasma membranes occurs as a result. The mechanisms necessary for cells to repair plasma membrane defects have been extensively investigated in the last two decades, and some of these key repair mechanisms are also shown to occur following lung cell injury. Because it was theorized that lung wounding and repair are involved in the pathogenesis of acute respiratory distress syndrome (ARDS) and idiopathic pulmonary fibrosis (IPF), in this review, we summarized the experimental evidence of lung cell injury in these two devastating syndromes and discuss relevant genetic, physical, and biological injury mechanisms, as well as mechanisms used by lung cells for cell survival and membrane repair. Finally, we discuss relevant signaling pathways that may be activated by chronic or repeated lung cell injury as an extension of our cell injury and repair focus in this review. We hope that a holistic view of injurious stimuli relevant for ARDS and IPF could lead to updated experimental models. In addition, parallel discussion of membrane repair mechanisms in lung cells and injury-activated signaling pathways would encourage research to bridge gaps in current knowledge. Indeed, deep understanding of lung cell wounding and repair, and discovery of relevant repair moieties for lung cells, should inspire the development of new therapies that are likely preventive and broadly effective for targeting injurious pulmonary diseases.
Collapse
Affiliation(s)
- Xiaofei Cong
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - Rolf D Hubmayr
- Emerius, Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota; and
| | - Changgong Li
- Department of Pediatrics, University of Southern California, Los Angeles, California
| | - Xiaoli Zhao
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia;
| |
Collapse
|
45
|
Knudsen L, Ruppert C, Ochs M. Tissue remodelling in pulmonary fibrosis. Cell Tissue Res 2016; 367:607-626. [PMID: 27981380 DOI: 10.1007/s00441-016-2543-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/19/2016] [Indexed: 12/16/2022]
Abstract
Many lung diseases result in fibrotic remodelling. Fibrotic lung disorders can be divided into diseases with known and unknown aetiology. Among those with unknown aetiology, idiopathic pulmonary fibrosis (IPF) is a common diagnosis. Because of its progressive character leading to a rapid decline in lung function, it is a fatal disease with poor prognosis and limited therapeutic options. Thus, IPF has motivated many studies in the last few decades in order to increase our mechanistic understanding of the pathogenesis of the disease. The current concept suggests an ongoing injury of the alveolar epithelium, an impaired regeneration capacity, alveolar collapse and, finally, a fibroproliferative response. The origin of lung injury remains elusive but a diversity of factors, which will be discussed in this article, has been shown to be associated with IPF. Alveolar epithelial type II (AE2) cells play a key role in lung fibrosis and their crucial role for epithelial regeneration, stabilisation of alveoli and interaction with fibroblasts, all known to be responsible for collagen deposition, will be illustrated. Whereas mechanisms of collagen deposition and fibroproliferation are the focus of many studies in the field, the awareness of other mechanisms in this disease is currently limited to biochemical and imaging studies including quantitative assessments of lung structure in IPF and animal models assigning alveolar collapse and collapse induration crucial roles for the degradation of the lung resulting in de-aeration and loss of surface area. Dysfunctional AE2 cells, instable alveoli and mechanical stress trigger remodelling that consists of collapsed alveoli absorbed by fibrotic tissue (i.e., collapse induration).
Collapse
Affiliation(s)
- Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg Strasse 1, 30625, Hannover, Germany. .,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany. .,REBIRTH, Cluster of Excellence, Hannover Medical School, Hannover, Germany.
| | - Clemens Ruppert
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg, Giessen, Germany
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg Strasse 1, 30625, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany.,REBIRTH, Cluster of Excellence, Hannover Medical School, Hannover, Germany
| |
Collapse
|
46
|
Kling KM, Lopez-Rodriguez E, Pfarrer C, Mühlfeld C, Brandenberger C. Aging exacerbates acute lung injury-induced changes of the air-blood barrier, lung function, and inflammation in the mouse. Am J Physiol Lung Cell Mol Physiol 2016; 312:L1-L12. [PMID: 27815259 DOI: 10.1152/ajplung.00347.2016] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/28/2016] [Indexed: 01/07/2023] Open
Abstract
Acute lung injury (ALI) is characterized by hypoxemia, enhanced permeability of the air-blood barrier, and pulmonary edema. Particularly in the elderly, ALI is associated with increased morbidity and mortality. The reasons for this, however, are poorly understood. We hypothesized that age-related changes in pulmonary structure, function, and inflammation lead to a worse prognosis in ALI. ALI was induced in young (10 wk old) and old (18 mo old) male C57BL/6 mice by intranasal application of 2.5 mg lipopolysaccharide (LPS)/kg body wt or saline (control mice). After 24 h, lung function was assessed, and lungs were either processed for stereological or inflammatory analysis, such as bronchoalveolar lavage fluid (BALF) cytometry and qPCR. Both young and old mice developed severe signs of ALI, including alveolar and septal edema and enhanced inflammatory BALF cells. However, the pathology of ALI was more pronounced in old compared with young mice with nearly sixfold higher BALF protein concentration, twice the number of neutrophils, and significantly higher expression of neutrophil chemokine Cxcl1, adhesion molecule Icam-1, and metalloprotease-9, whereas the expression of tight junction protein occludin significantly decreased. The old LPS mice had thicker alveolar septa attributable to higher volumes of interstitial cells and extracellular matrix. Tissue resistance and elastance reflected observed changes at the ultrastructural level in the lung parenchyma in ALI of young and old mice. In summary, the pathology of ALI with advanced age in mice is characterized by a greater neutrophilic inflammation, leakier air-blood barrier, and altered lung function, which is in line with findings in elderly patients.
Collapse
Affiliation(s)
- Katharina Maria Kling
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Elena Lopez-Rodriguez
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Christiane Pfarrer
- Department of Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany; and
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Cluster of Excellence from Regenerative Biology to Reconstructive Therapy (REBIRTH), Hannover, Germany
| | - Christina Brandenberger
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; .,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Cluster of Excellence from Regenerative Biology to Reconstructive Therapy (REBIRTH), Hannover, Germany
| |
Collapse
|
47
|
Lung remodeling associated with recovery from acute lung injury. Cell Tissue Res 2016; 367:495-509. [DOI: 10.1007/s00441-016-2521-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 09/29/2016] [Indexed: 12/18/2022]
|
48
|
Wang K, Qin S, Liang Z, Zhang Y, Xu Y, Chen A, Guo X, Cheng H, Zhang X, Ke Y. Epithelial disruption of Gab1 perturbs surfactant homeostasis and predisposes mice to lung injuries. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1149-L1159. [PMID: 27793798 DOI: 10.1152/ajplung.00107.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 10/19/2016] [Indexed: 12/21/2022] Open
Abstract
GRB2-associated-binding protein 1 (Gab1) belongs to Gab adaptor family, which integrates multiple signals in response to the epithelial growth factors. Recent genetic studies identified genetic variants of human Gab1 gene as potential risk factors of asthmatic inflammation. However, the functions of Gab1 in lungs remain largely unknown. Alveolar type-II cells (AT-IIs) are responsible for surfactant homeostasis and essentially regulate lung inflammation following various injuries (3). In this study, in vitro knockdown of Gab1 was shown to decrease the surfactant proteins (SPs) levels in AT-IIs. We further examined in vivo Gab1 functions through alveolar epithelium-specific Gab1 knockout mice (Gab1Δ/Δ). In vivo Gab1 deficiency leads to a decrease in SP synthesis and the appearance of disorganized lamellar bodies. Histological analysis of the lung sections in Gab1Δ/Δ mice shows no apparent pathological alterations or inflammation. However, Gab1Δ/Δ mice demonstrate inflammatory responses during the LPS-induced acute lung injury. Similarly, in mice challenged with bleomycin, fibrotic lesions were found to be aggravated in Gab1Δ/Δ These observations suggest that the abolishment of Gab1 in AT-IIs impairs SP homeostasis, predisposing mice to lung injuries. In addition, we observed that the production of surfactants in AT-IIs overexpressing Gab1 mutants, in which Shp2 phosphatase and PI3K kinase binding sites have been mutated (Gab1ΔShp2, Gab1ΔPI3K), has been considerably attenuated. Together, these findings provide the direct evidence about the roles of docking protein Gab1 in lungs, adding to our understanding of acute and interstitial lung diseases caused by the disruption of alveolar SP homeostasis.
Collapse
Affiliation(s)
- Kai Wang
- Department of Respiratory Medicine, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shenlu Qin
- Department of Pathology and Pathophysiology, and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zuyu Liang
- Department of Respiratory Medicine, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yun Zhang
- Department of Pathology and Pathophysiology, and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingchun Xu
- Department of Pulmonary Diseases, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; and
| | - An Chen
- Department of Neonatal, Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohong Guo
- Department of Pathology and Pathophysiology, and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xue Zhang
- Department of Pathology and Pathophysiology, and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuehai Ke
- Department of Pathology and Pathophysiology, and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, China;
| |
Collapse
|
49
|
Lung surfactant metabolism: early in life, early in disease and target in cell therapy. Cell Tissue Res 2016; 367:721-735. [PMID: 27783217 DOI: 10.1007/s00441-016-2520-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/27/2016] [Indexed: 01/07/2023]
Abstract
Lung surfactant is a complex mixture of lipids and proteins lining the alveolar epithelium. At the air-liquid interface, surfactant lowers surface tension, avoiding alveolar collapse and reducing the work of breathing. The essential role of lung surfactant in breathing and therefore in life, is highlighted by surfactant deficiency in premature neonates, which causes neonatal respiratory distress syndrome and results in early death after birth. In addition, defects in surfactant metabolism alter lung homeostasis and lead to disease. Special attention should be paid to two important key cells responsible for surfactant metabolism: alveolar epithelial type II cells (AE2C) and alveolar macrophages (AM). On the one hand, surfactant deficiency coming from abnormal AE2C function results in high surface tension, promoting alveolar collapse and mechanical stress in the epithelium. This epithelial injury contributes to tissue remodeling and lung fibrosis. On the other hand, impaired surfactant catabolism by AM leads to accumulation of surfactant in air spaces and the associated altered lung function in pulmonary alveolar proteinosis (PAP). We review here two recent cell therapies that aim to recover the activity of AE2C or AM, respectively, therefore targeting the restoring of surfactant metabolism and lung homeostasis. Applied therapies successfully show either transplantation of healthy AE2C in fibrotic lungs, to replace injured AE2C cells and surfactant, or transplantation of bone marrow-derived macrophages to counteract accumulation of surfactant lipid and proteinaceous material in the alveolar spaces leading to PAP. These therapies introduce an alternative treatment with great potential for patients suffering from lung diseases.
Collapse
|