1
|
Muszka Z, Jenei V, Mácsik R, Mezhonova E, Diyab S, Csősz R, Bácsi A, Mázló A, Koncz G. Life-threatening risk factors contribute to the development of diseases with the highest mortality through the induction of regulated necrotic cell death. Cell Death Dis 2025; 16:273. [PMID: 40216765 PMCID: PMC11992264 DOI: 10.1038/s41419-025-07563-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 02/17/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025]
Abstract
Chronic diseases affecting the cardiovascular system, diabetes mellitus, neurodegenerative diseases, and various other organ-specific conditions, involve different underlying pathological processes. However, they share common risk factors that contribute to the development and progression of these diseases, including air pollution, hypertension, obesity, high cholesterol levels, smoking and alcoholism. In this review, we aim to explore the connection between four types of diseases with different etiologies and various risk factors. We highlight that the presence of risk factors induces regulated necrotic cell death, leading to the release of damage-associated molecular patterns (DAMPs), ultimately resulting in sterile inflammation. Therefore, DAMP-mediated inflammation may be the link explaining how risk factors can lead to the development and maintenance of chronic diseases. To explore these processes, we summarize the main cell death pathways activated by the most common life-threatening risk factors, the types of released DAMPs and how these events are associated with the pathophysiology of diseases with the highest mortality. Various risk factors, such as smoking, air pollution, alcoholism, hypertension, obesity, and high cholesterol levels induce regulated necrosis. Subsequently, the release of DAMPs leads to chronic inflammation, which increases the risk of many diseases, including those with the highest mortality rates.
Collapse
Affiliation(s)
- Zsuzsa Muszka
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Viktória Jenei
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
- Gyula Petrányi Doctoral School of Allergy and Clinical Immunology, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Rebeka Mácsik
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Evgeniya Mezhonova
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Silina Diyab
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Réka Csősz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary
| | - Anett Mázló
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary.
| | - Gábor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032, Debrecen, Hungary.
| |
Collapse
|
2
|
Liu W, Pratte KA, Castaldi PJ, Hersh C, Bowler RP, Banaei-Kashani F, Kechris KJ. A generalized higher-order correlation analysis framework for multi-omics network inference. PLoS Comput Biol 2025; 21:e1011842. [PMID: 40228208 PMCID: PMC11996223 DOI: 10.1371/journal.pcbi.1011842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 01/31/2025] [Indexed: 04/16/2025] Open
Abstract
Multiple -omics (genomics, proteomics, etc.) profiles are commonly generated to gain insight into a disease or physiological system. Constructing multi-omics networks with respect to the trait(s) of interest provides an opportunity to understand relationships between molecular features but integration is challenging due to multiple data sets with high dimensionality. One approach is to use canonical correlation to integrate one or two omics types and a single trait of interest. However, these types of methods may be limited due to (1) not accounting for higher-order correlations existing among features, (2) computational inefficiency when extending to more than two omics data when using a penalty term-based sparsity method, and (3) lack of flexibility for focusing on specific correlations (e.g., omics-to-phenotype correlation versus omics-to-omics correlations). In this work, we have developed a novel multi-omics network analysis pipeline called Sparse Generalized Tensor Canonical Correlation Analysis Network Inference (SGTCCA-Net) that can effectively overcome these limitations. We also introduce an implementation to improve the summarization of networks for downstream analyses. Simulation and real-data experiments demonstrate the effectiveness of our novel method for inferring omics networks and features of interest.
Collapse
Affiliation(s)
- Weixuan Liu
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Katherine A. Pratte
- Department of Biostatistics, National Jewish Health, Denver, Colorado, United States of America
| | - Peter J. Castaldi
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Craig Hersh
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Russell P. Bowler
- Division of Pulmonary Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Farnoush Banaei-Kashani
- Department of Computer Science and Engineering, College of Engineering, Design and Computing, University of Colorado Denver, Denver, Colorado, United States of America
| | - Katerina J. Kechris
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
3
|
Hong J, Xu Z, Xu F, Wu H, Liu J, Qu L. Immune-related diagnostic indicators and targeted therapies for COPD combined with NASH were identified and verified via WGCNA and LASSO. Front Immunol 2025; 16:1514422. [PMID: 40093012 PMCID: PMC11906333 DOI: 10.3389/fimmu.2025.1514422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 02/07/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction The incidence of chronic obstructive pulmonary disease (COPD) and non-alcoholic fatty liver disease (NAFLD) has increased significantly in past decades, posing a significant public health burden. An increasing amount of research points to a connection between COPD and NAFLD. This study aimed to identify the key genes of these two diseases, construct a diagnostic model, and predict potential therapeutic agents based on critical genes. Methods NAFLD and COPD datasets were obtained from the GEO database, differential genes were identified by differential analysis and WGCNA, PPI networks were constructed and enriched for differential genes and COPD-associated secreted proteins, small molecule compounds were screened, and immune cell infiltration was assessed. Meanwhile, LASSO and RF further screened the essential genes, and finally, two key genes were obtained. Subsequently, the nomogram diagnostic model and lncRNA-miRNA-mRNA network were constructed based on these two core genes, subjected to drug prediction and GSEA enrichment analysis, and validated in an external cohort using qRT-PCR. Results KEGG enrichment analysis indicated that the NF-kappa B and TNF signaling pathways may be associated with COPD and NASH co-morbidities. Ten small-molecule drugs associated with COPD and NASH were identified through cMAP analysis, including ansoprazole and atovaquone. In addition, we further identified the hub genes S100A9 and MYH2 for NAFLD and COPD by machine learning methods. The immune infiltration indicated that these two core genes might be involved in the immunomodulatory process of NASH by regulating the function or recruitment of specific immune cell types. A nomogram diagnostic model was constructed based on these two core genes. The AUC value for S100A9 was 0.887, for MYH2 was 0.877, and for the nomogram was 0.889, demonstrating excellent diagnostic efficacy. Two hundred fifty-four potential drugs targeting S100A9 and 67 MYH2 were searched in the DGIdb database. Meanwhile, the lncRNA-miRNA-mRNA network was constructed by predicting target miRNAs of biomarkers and further predicting lncRNAs targeting miRNAs. qRT-PCR analysis revealed that S100A9 was upregulated in both COPD and NAFLD, consistent with bioinformatic predictions, while MYH2 showed increased expression in COPD but decreased expression in NAFLD, diverging from the predicted downregulation in both diseases. These findings suggest that S100A9 serves as a common inflammatory marker for both diseases, whereas MYH2 may be regulated by disease-specific mechanisms, highlighting its potential for distinguishing COPD from NAFLD. Conclusion The hub genes S100A9 and MYH2 in COPD and NASH were identified by various bioinformatics methods and a diagnostic model was constructed to improve the diagnostic efficiency. We also revealed some potential biological mechanisms of COPD and NASH and potential drugs for COPD-related NASH. Our findings provide potential new diagnostic and therapeutic options for COPD-associated NASH and may help reduce its prevalence.
Collapse
Affiliation(s)
- Jianwei Hong
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Zikai Xu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Fangrui Xu
- Department of Medical Imaging, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Haifeng Wu
- Department of Emergency Medicine, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Nantong, Jiangsu, China
| | - Jinxia Liu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Lishuai Qu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| |
Collapse
|
4
|
Li S, Cao J, Yang Z, Jin S, Yang L, Chen H. Licorice and dried ginger decoction inhibits inflammation and alleviates mitochondrial dysfunction in chronic obstructive pulmonary disease by targeting siglec-1. Int Immunopharmacol 2025; 146:113789. [PMID: 39708484 DOI: 10.1016/j.intimp.2024.113789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease. Licorice and dried ginger decoction (LGD) is traditional Chinese medicine prescription with multiple effects. Glycyrrhetinic acid (GA) is the main bioactive components of LGD, which has been proven to have a relieving effect on various inflammatory diseases. Siglec-1 is a cell surface sialoadhesin and has been confirmed to be overexpressed in COPD and facilitate inflammatory reaction. This study is aimed to probe the interaction between LGD, GA, and siglec-1. METHODS Cigarette smoke (CS) combined with lipopolysaccharide (LPS) treatment was utilized to construct a COPD rat model. Cigarette smoke extract (CSE) was utilized to induce alveolar macrophage NR8383 to construct a COPD cell model. HE staining was applied for measuring histopathological changes of COPD rats. Enzyme-linked immunosorbent assay (ELISA), reverse transcription real-time polymerase chain reaction (RT-qPCR), and western blot were applied for testing the concentrations and expressions of proinflammatory factors. High performance liquid chromatography-tandem mass spectrometry (HPLC-MS) analysis was utilized to determine the combination between siglec-1 and GA. JC-1 assay was utilized to evaluate mitochondrial function. Reactive oxygen species (ROS) production was tested by dichloro-dihydro-fluorescein diacetate (DCFH-DA) staining. RESULTS LGD treatment notably alleviated lung injury and inflammatory response in COPD rats. In CSE-induced cells, LGD treatment suppressed the contents of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-8. Sialic-acid-binding Ig-like lectin 1 (Siglec-1) expression induced by CS was decreased after LGD treatment. Furthermore, we proved that GA could target siglec-1 to regulate the inflammatory response in COPD rats and cells. Additionally, GA could reduce ROS production and alleviate mitochondrial dysfunction to suppress COPD progression. CONCLUSION LGD inhibits inflammation and alleviates mitochondrial dysfunction in COPD by targeting siglec-1.
Collapse
Affiliation(s)
- Sensen Li
- Department of Scientific Research Section, the First People's Hospital of Zhumadian, Affiliated Hospital of Huanghuai University, Zhumadian, Henan 463000, China; Zhumadian Key Laboratory of Chronic Disease Research, School of Medicine, Huanghuai University, Zhumadian, Henan 463000, China.
| | - Juan Cao
- Department of Scientific Research Section, the First People's Hospital of Zhumadian, Affiliated Hospital of Huanghuai University, Zhumadian, Henan 463000, China; Zhumadian Key Laboratory of Chronic Disease Research, School of Medicine, Huanghuai University, Zhumadian, Henan 463000, China
| | | | - Shaoju Jin
- Department of Pharmacology, Luohe Medical College, Luohe, Henan 462002, China.
| | - Lei Yang
- Department of Scientific Research Section, the First People's Hospital of Zhumadian, Affiliated Hospital of Huanghuai University, Zhumadian, Henan 463000, China; Zhumadian Key Laboratory of Chronic Disease Research, School of Medicine, Huanghuai University, Zhumadian, Henan 463000, China.
| | - Hao Chen
- Department of Scientific Research Section, the First People's Hospital of Zhumadian, Affiliated Hospital of Huanghuai University, Zhumadian, Henan 463000, China.
| |
Collapse
|
5
|
Hiraku Y, Tanaka A, Yamamoto M, Nakatani M, Kobayashi M, Kimura E, Ahmed S, Murata M. Microarray analysis of gene expression in lung tissues of indium-exposed rats: possible roles of S100 proteins in lung diseases. Arch Toxicol 2025; 99:245-258. [PMID: 39516272 PMCID: PMC11742277 DOI: 10.1007/s00204-024-03897-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Indium compounds are used in manufacturing displays of mobile phones and televisions. These compounds cause interstitial pneumonia in workers and lung cancer in animals, but their precise mechanisms are unclear. In this study, we performed microarray analysis of gene expression in lung tissues of indium-exposed rats. Male Wistar rats (8-week-old) were exposed to indium oxide (In2O3, mean particle diameter 0.14 μm) and indium-tin oxide (ITO, mean particle diameter 0.95 μm) by intratracheal instillation (10 mg indium/kg body weight/instillation) twice a week and five times in total. These rats were sacrificed immediately, 3 weeks and 12 weeks after the last instillation. Hematoxylin and eosin and Masson's trichrome staining showed that indium compounds induced infiltration of neutrophils and macrophages into alveolar space, and fibrosis around bronchial epithelium and in alveolar wall. Microarray analysis revealed that In2O3 and ITO significantly upregulated 233 and 676 genes at 12 weeks, respectively (> twofold, p < 0.05 by ANOVA + Tukey's test). In2O3 and ITO largely upregulated Lcn2 (lipocalin-2) (49.4- and 91.8-fold), S100a9 (30.2- and 46.5-fold) and S100a8 (11.5- and 22.0-fold), respectively. Metascape database predicted that these genes participate in immunomodulatory and inflammatory responses. Real-time PCR confirmed that these genes were upregulated by indium compounds throughout the experiments. In Western blotting, S100A9 expression was significantly increased by indium exposure, whereas LCN2 expression was only slightly increased. Fluorescent immunohistochemistry revealed that S100A9 and S100A8 were expressed in alveolar epithelial cells and neutrophils in indium-exposed rats. These results suggest that S100 proteins contribute to indium-induced lung diseases via neutrophil-mediated inflammatory responses.
Collapse
Affiliation(s)
- Yusuke Hiraku
- Department of Environmental Health, University of Fukui School of Medical Science, Eiheiji, Fukui, 910-1193, Japan.
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan.
| | - Akiyo Tanaka
- Center for Plasma Nano-Interface Engineering, Kyushu University, Fukuoka, Japan
| | - Masato Yamamoto
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Minori Nakatani
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Mayu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Eiki Kimura
- Department of Environmental Health, University of Fukui School of Medical Science, Eiheiji, Fukui, 910-1193, Japan
| | - Sharif Ahmed
- Department of Environmental Health, University of Fukui School of Medical Science, Eiheiji, Fukui, 910-1193, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| |
Collapse
|
6
|
Zhang L, Zuo L. Identification of immune-related hub genes in chronic obstructive pulmonary disease. J Natl Med Assoc 2024; 116:673-681. [PMID: 39578175 DOI: 10.1016/j.jnma.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/16/2024] [Accepted: 10/26/2024] [Indexed: 11/24/2024]
Abstract
OBJECTIVE As a prevalent persistent respiratory disease, chronic obstructive pulmonary disease (COPD) is featured by airflow limitation and chronic inflammation. This study focused on the identification of immune-related hub genes in COPD. METHODS We employed the GSE38974 dataset to analyze differentially expressed genes (DEGs) of COPD. Then, we obtained COPD immune-related DEGs (COPD-IMDEGs) based on the intersection of DEGs and immune-related genes. Subsequently, we carried out Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses on COPD-IMDEGs. We established a protein-protein interaction network based on COPD-IMDEGs. The hub genes were determined by utilizing the Maximal Clique Centrality method. We utilized receiver operating characteristic (ROC) curves to analyze the clinical significance of hub genes in COPD. In addition, potential drugs targeting hub genes were predicted based on interactions between hub gene-corresponding proteins and drugs. RESULTS A total of 45 COPD-IMDEGs were obtained through differential analysis. Enrichment analyses showed that COPD-IMDEGs were associated with cytokines, growth factors, and receptor ligands. Ten COPD-IMDEGs were identified as hub genes. As shown by ROC curves, these genes had potential value in identifying COPD patients. Drug prediction results showed that simvastatin and other drugs targeted hub genes. CONCLUSION This study analyzed the potential biological functions enriched by COPD-IMDEGs, identified ten genes as biological markers for diagnosing COPD, and predicted potential drugs for treating COPD.
Collapse
Affiliation(s)
- Lingyu Zhang
- Department of Respiratory and Critical Care Medicine, Daqing Oilfield General Hospital, Ward 45, Daqing, Heilongjiang 163000, China
| | - Liwei Zuo
- Emergency Department, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163000, China.
| |
Collapse
|
7
|
Guo S, Liu Q, Tan T, Chen X. MiR-24 regulates obstructive pulmonary disease in rats via S100A8. Exp Lung Res 2024; 50:172-183. [PMID: 39390946 DOI: 10.1080/01902148.2024.2411852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 09/05/2024] [Accepted: 09/28/2024] [Indexed: 10/12/2024]
Abstract
PURPOSE Chronic obstructive pulmonary disease (COPD) is a persistent inflammatory disorder characterized by minor airway inflammation and emphysema involving various cell types and cytokines. MicroRNAs (miRNAs) have emerged as critical regulators in the pathogenesis of lung diseases. This study investigates the impact of microRNA-24 (miR-24) on airway inflammatory responses in a rat model of COPD. MATERIALS AND METHODS The model was established by combining cigarette smoke exposure and lipopolysaccharide stimulation, and rat lung tissues were transfected with adeno-associated viruses overexpressing miR-24. Pathological changes in the lung were assessed using hematoxylin and eosin staining. Levels of pro-inflammatory cytokines, including tumor necrosis factor-alpha, interleukin-6, and interleukin-8, were measured using enzyme-linked immunosorbent assay. Expression of miR-24 and S100A8 was detected through quantitative reverse transcription PCR, while protein levels of S100A8, Toll-like receptor 4 (TLR4), and myeloid differentiation primary response 88 (MyD88) were assessed using western blotting. Bioinformatics analysis and dual-luciferase reporter assay were performed to determine the relationship between S100A8 and miR-24. RESULTS The results demonstrated the downregulation of miR-24 in rats with COPD, and its overexpression resulted in a significant decrease in S1008 mRNA levels. Additionally, the protein level of S100A8 was significantly increased in the lung tissues of COPD rats. The upregulation of miR-24, however, not only inhibited the protein expression of S100A8, TLR4, and MyD88 in lung tissues but also reduced the release of pro-inflammatory cytokines in the plasma and bronchoalveolar lavage fluid, thereby attenuating inflammatory responses and pathological injuries in the lung. CONCLUSIONS Our data suggest that miR-24 attenuates airway inflammatory responses in COPD by inhibiting the TLR4/MyD88 pathway via targeting S100A8.
Collapse
Affiliation(s)
- Sha Guo
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qin Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Tingting Tan
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiaoju Chen
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Walrath T, Najarro KM, Giesy LE, Khair S, Orlicky DJ, McMahan RH, Kovacs EJ. Reducing the excessive inflammation after burn injury in aged mice by maintaining a healthier intestinal microbiome. FASEB J 2024; 38:e70065. [PMID: 39305117 PMCID: PMC11465428 DOI: 10.1096/fj.202401020r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/09/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
One in six people are projected to be 65 years or older by 2050. As the population ages, better treatments for injuries that disproportionately impact the aged population will be needed. Clinical studies show that people aged 65 and older experience higher rates of morbidity and mortality after burn injury, including a greater incidence of pulmonary complications when compared to younger burn injured adults, which we and others believe is mediated, in part, by inflammation originating in the intestines. Herein, we use our clinically relevant model of scald burn injury in young and aged mice to determine whether cohousing aged mice with young mice or giving aged mice oral gavage of fecal material from young mice is sufficient to alter the microbiome of the aged mice and protect them from inflammation in the ileum and the lungs. Aged burn injured mice have less DNA expression of Bacteroidetes in the feces and an unhealthy Firmicutes/Bacteroidetes ratio. Both Bacteroidetes and the ratio of these two phyla are restored in aged burn injured by prior cohousing for a month with younger mice but not fecal transfer from young mice. This shift in the microbiome coincides with heightened expression of danger-associated molecular patterns (DAMP), and pro-inflammatory cytokine interleukin-6 (il6) in the ileum and lung of aged, burn injured mice, and heightened antimicrobial peptide camp in the lung. Cohousing reverses DAMP expression in the ileum and lung, and cathelicidin-related antimicrobial peptide protein (camp) in the lung, while fecal transfer heightened DAMPs while reducing camp in the lung, and also increased IL-6 protein in the lungs. These results highlight the importance of the intestinal microbiome in mediating inflammation within the gut-lung axis, giving insights into potential future treatments in the clinic.
Collapse
Affiliation(s)
- Travis Walrath
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kevin M. Najarro
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lauren E. Giesy
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Shanawaj Khair
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David J. Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rachel H. McMahan
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Elizabeth J. Kovacs
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Veterans Health Administration, Eastern Colorado Health Care System, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, Colorado, USA
| |
Collapse
|
9
|
Xuan W, Wang S, Alarcon-Calderon A, Bagwell MS, Para R, Wang F, Zhang C, Tian X, Stalboerger P, Peterson T, Sabbah MS, Du Z, Sarrafian T, Mahlberg R, Hillestad ML, Rizzo SA, Paradise CR, Behfar A, Vassallo R. Nebulized platelet-derived extracellular vesicles attenuate chronic cigarette smoke-induced murine emphysema. Transl Res 2024; 269:76-93. [PMID: 38325750 DOI: 10.1016/j.trsl.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent lung disease usually resulting from cigarette smoking (CS). Cigarette smoking induces oxidative stress, which causes inflammation and alveolar epithelial cell apoptosis and represents a compelling therapeutic target for COPD. Purified human platelet-derived exosome product (PEP) is endowed with antioxidant enzymes and immunomodulatory molecules that mediate tissue repair. In this study, a murine model of CS-induced emphysema was used to determine whether nebulized PEP can influence the development of CS-induced emphysema through the mitigation of oxidative stress and inflammation in the lung. Nebulization of PEP effectively delivered the PEP vesicles into the alveolar region, with evidence of their uptake by type I and type II alveolar epithelial cells and macrophages. Lung function testing and morphometric assessment showed a significant attenuation of CS-induced emphysema in mice treated with nebulized PEP thrice weekly for 4 weeks. Whole lung immuno-oncology RNA sequencing analysis revealed that PEP suppressed several CS-induced cell injuries and inflammatory pathways. Validation of inflammatory cytokines and apoptotic protein expression on the lung tissue revealed that mice treated with PEP had significantly lower levels of S100A8/A9 expressing macrophages, higher levels of CD4+/FOXP3+ Treg cells, and reduced NF-κB activation, inflammatory cytokine production, and apoptotic proteins expression. Further validation using in vitro cell culture showed that pretreatment of alveolar epithelial cells with PEP significantly attenuated CS extract-induced apoptotic cell death. These data show that nebulization of exosomes like PEP can effectively deliver exosome cargo into the lung, mitigate CS-induced emphysema in mice, and suppress oxidative lung injury, inflammation, and apoptotic alveolar epithelial cell death.
Collapse
Affiliation(s)
- Weixia Xuan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester 55905, Minnesota.; Department of Respiratory Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shaohua Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester 55905, Minnesota
| | - Amarilys Alarcon-Calderon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester 55905, Minnesota
| | - Monique Simone Bagwell
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.; Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Rachel Para
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester 55905, Minnesota.; Touro College of Osteopathic Medicine, New York, NY
| | - Faping Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester 55905, Minnesota.; Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chujie Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester 55905, Minnesota.; Department of Cardiology, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710000, China
| | - Xue Tian
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester 55905, Minnesota.; Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Paul Stalboerger
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.; Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Timothy Peterson
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.; Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael S Sabbah
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.; Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Zeji Du
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.; Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Tiffany Sarrafian
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.; Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Ryan Mahlberg
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.; Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew L Hillestad
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.; Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Skylar A Rizzo
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.; Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN 55905, USA.; Mayo Clinic Medical Scientist Training Program, Rochester, MN, USA
| | | | - Atta Behfar
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.; Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN 55905, USA.; Center for Regenerative Therapeutics, Mayo Clinic, Rochester, MN, USA; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA; Summer Undergraduate Research Fellowship, Mayo Clinic, Rochester, MN, USA; Marriott Heart Disease Research Program, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Robert Vassallo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester 55905, Minnesota.; Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.
| |
Collapse
|
10
|
Kermani NZ, Li CX, Versi A, Badi Y, Sun K, Abdel-Aziz MI, Bonatti M, Maitland-van der Zee AH, Djukanovic R, Wheelock Å, Dahlen SE, Howarth P, Guo Y, Chung KF, Adcock IM. Endotypes of severe neutrophilic and eosinophilic asthma from multi-omics integration of U-BIOPRED sputum samples. Clin Transl Med 2024; 14:e1771. [PMID: 39073027 DOI: 10.1002/ctm2.1771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Clustering approaches using single omics platforms are increasingly used to characterise molecular phenotypes of eosinophilic and neutrophilic asthma. Effective integration of multi-omics platforms should lead towards greater refinement of asthma endotypes across molecular dimensions and indicate key targets for intervention or biomarker development. OBJECTIVES To determine whether multi-omics integration of sputum leads to improved granularity of the molecular classification of severe asthma. METHODS We analyzed six -omics data blocks-microarray transcriptomics, gene set variation analysis of microarray transcriptomics, SomaSCAN proteomics assay, shotgun proteomics, 16S microbiome sequencing, and shotgun metagenomic sequencing-from induced sputum samples of 57 severe asthma patients, 15 mild-moderate asthma patients, and 13 healthy volunteers in the U-BIOPRED European cohort. We used Monti consensus clustering algorithm for aggregation of clustering results and Similarity Network Fusion to integrate the 6 multi-omics datasets of the 72 asthmatics. RESULTS Five stable omics-associated clusters were identified (OACs). OAC1 had the best lung function with the least number of severe asthmatics with sputum paucigranulocytic inflammation. OAC5 also had fewer severe asthma patients but the highest incidence of atopy and allergic rhinitis, with paucigranulocytic inflammation. OAC3 comprised only severe asthmatics with the highest sputum eosinophilia. OAC2 had the highest sputum neutrophilia followed by OAC4 with both clusters consisting of mostly severe asthma but with more ex/current smokers in OAC4. Compared to OAC4, there was higher incidence of nasal polyps, allergic rhinitis, and eczema in OAC2. OAC2 had microbial dysbiosis with abundant Moraxella catarrhalis and Haemophilus influenzae. OAC4 was associated with pathways linked to IL-22 cytokine activation, with the prediction of therapeutic response to anti-IL22 antibody therapy. CONCLUSION Multi-omics analysis of sputum in asthma has defined with greater granularity the asthma endotypes linked to neutrophilic and eosinophilic inflammation. Modelling diverse types of high-dimensional interactions will contribute to a more comprehensive understanding of complex endotypes. KEY POINTS Unsupervised clustering on sputum multi-omics of asthma subjects identified 3 out of 5 clusters with predominantly severe asthma. One severe asthma cluster was linked to type 2 inflammation and sputum eosinophilia while the other 2 clusters to sputum neutrophilia. One severe neutrophilic asthma cluster was linked to Moraxella catarrhalis and to a lesser extent Haemophilus influenzae while the second cluster to activation of IL-22.
Collapse
Affiliation(s)
- Nazanin Zounemat Kermani
- National Heart and Lung Institute, Imperial College London, London, UK
- Data Science Institute, Imperial College London, London, UK
| | - Chuan-Xing Li
- Respiratory Medicine Unit, Department of Medicine & Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ali Versi
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Yusef Badi
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Kai Sun
- Data Science Institute, Imperial College London, London, UK
| | - Mahmoud I Abdel-Aziz
- Department of Pulmonology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Martina Bonatti
- Respiratory Medicine Unit, Department of Medicine & Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Ratko Djukanovic
- NIHR Southampton Respiratory Biomedical Research Unit and Clinical and Experimental Sciences, Southampton, UK
| | - Åsa Wheelock
- Respiratory Medicine Unit, Department of Medicine & Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Institute of Environmental Medicine, Centre for Allergy Research, Karolinska Institute, Stockholm, Sweden
| | - Sven-Erik Dahlen
- Respiratory Medicine Unit, Department of Medicine & Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Peter Howarth
- NIHR Southampton Respiratory Biomedical Research Unit and Clinical and Experimental Sciences, Southampton, UK
| | - Yike Guo
- Data Science Institute, Imperial College London, London, UK
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
- Data Science Institute, Imperial College London, London, UK
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, London, UK
- Data Science Institute, Imperial College London, London, UK
| |
Collapse
|
11
|
Lipskaia L, Breau M, Cayrou C, Churikov D, Braud L, Jacquet J, Born E, Fouillade C, Curras-Alonso S, Bauwens S, Jourquin F, Fiore F, Castellano R, Josselin E, Sánchez-Ferrer C, Giovinazzo G, Lachaud C, Gilson E, Flores I, Londono-Vallejo A, Adnot S, Géli V. mTert induction in p21-positive cells counteracts capillary rarefaction and pulmonary emphysema. EMBO Rep 2024; 25:1650-1684. [PMID: 38424230 PMCID: PMC10933469 DOI: 10.1038/s44319-023-00041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 03/02/2024] Open
Abstract
Lung diseases develop when telomeres shorten beyond a critical point. We constructed a mouse model in which the catalytic subunit of telomerase (mTert), or its catalytically inactive form (mTertCI), is expressed from the p21Cdkn1a locus. Expression of either TERT or TERTCI reduces global p21 levels in the lungs of aged mice, highlighting TERT non-canonical function. However, only TERT reduces accumulation of very short telomeres, oxidative damage, endothelial cell (ECs) senescence and senile emphysema in aged mice. Single-cell analysis of the lung reveals that p21 (and hence TERT) is expressed mainly in the capillary ECs. We report that a fraction of capillary ECs marked by CD34 and endowed with proliferative capacity declines drastically with age, and this is counteracted by TERT but not TERTCI. Consistently, only TERT counteracts decline of capillary density. Natural aging effects are confirmed using the experimental model of emphysema induced by VEGFR2 inhibition and chronic hypoxia. We conclude that catalytically active TERT prevents exhaustion of the putative CD34 + EC progenitors with age, thus protecting against capillary vessel loss and pulmonary emphysema.
Collapse
Affiliation(s)
- Larissa Lipskaia
- Institute for Lung Health, Justus Liebig University, Giessen, Germany
- INSERM U955 and Département de Physiologie, Hôpital Henri Mondor, FHU SENEC, AP-HP, 94010, Créteil, and Université Paris-Est Créteil (UPEC), Paris, France
| | - Marielle Breau
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (Equipe labellisée), Team Telomeres and Chromatin, Marseille, France
| | - Christelle Cayrou
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (Equipe labellisée), Team Telomeres and Chromatin, Marseille, France
| | - Dmitri Churikov
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (Equipe labellisée), Team Telomeres and Chromatin, Marseille, France
| | - Laura Braud
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (Equipe labellisée), Team Telomeres and Chromatin, Marseille, France
| | - Juliette Jacquet
- Institute for Lung Health, Justus Liebig University, Giessen, Germany
| | - Emmanuelle Born
- Institute for Lung Health, Justus Liebig University, Giessen, Germany
| | - Charles Fouillade
- Institut Curie, Inserm U1021, CNRS UMR 3347, University Paris-Saclay, PSL Research University, Orsay, France
| | - Sandra Curras-Alonso
- Institut Curie, PSL Research University, CNRS UMR3244, Sorbonne Université, Telomeres and Cancer, 75005, Paris, France
| | - Serge Bauwens
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculty of Medicine, Nice, France
| | - Frederic Jourquin
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (Equipe labellisée), Team Telomeres and Chromatin, Marseille, France
| | - Frederic Fiore
- Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Rémy Castellano
- Marseille Cancer Research Centre (CRCM), TrGET Preclinical Platform, Institut Paoli-Calmettes, Inserm, CNRS, Aix Marseille Université, Marseille, France
| | - Emmanuelle Josselin
- Marseille Cancer Research Centre (CRCM), TrGET Preclinical Platform, Institut Paoli-Calmettes, Inserm, CNRS, Aix Marseille Université, Marseille, France
| | | | - Giovanna Giovinazzo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029, Madrid, Spain
| | - Christophe Lachaud
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Team DNA Interstrand Crosslink Lesions and Blood Disorders, Marseille, France
| | - Eric Gilson
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Faculty of Medicine, Nice, France
| | - Ignacio Flores
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029, Madrid, Spain
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| | - Arturo Londono-Vallejo
- Institut Curie, PSL Research University, CNRS UMR3244, Sorbonne Université, Telomeres and Cancer, 75005, Paris, France
| | - Serge Adnot
- Institute for Lung Health, Justus Liebig University, Giessen, Germany.
- INSERM U955 and Département de Physiologie, Hôpital Henri Mondor, FHU SENEC, AP-HP, 94010, Créteil, and Université Paris-Est Créteil (UPEC), Paris, France.
| | - Vincent Géli
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix-Marseille University, Institut Paoli-Calmettes, Ligue Nationale Contre le Cancer (Equipe labellisée), Team Telomeres and Chromatin, Marseille, France.
| |
Collapse
|
12
|
Miura S, Iwamoto H, Namba M, Yamaguchi K, Sakamoto S, Horimasu Y, Masuda T, Miyamoto S, Nakashima T, Ohshimo S, Fujitaka K, Hamada H, Hattori N. High S100A9 level predicts poor survival, and the S100A9 inhibitor paquinimod is a candidate for treating idiopathic pulmonary fibrosis. BMJ Open Respir Res 2024; 11:e001803. [PMID: 38378778 PMCID: PMC10882411 DOI: 10.1136/bmjresp-2023-001803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND S100A9 is a damage-associated molecular pattern protein that may play an important role in the inflammatory response and fibrotic processes. Paquinimod is an immunomodulatory compound that prevents S100A9 activity. Its safety and pharmacokinetics have been confirmed in human clinical trials. In this study, we investigated the effects of paquinimod in preventing the development of lung fibrosis in vivo and examined the prognostic values of circulatory and lung S100A9 levels in patients with idiopathic pulmonary fibrosis (IPF). METHODS The expression and localisation of S100A9 and the preventive effect of S100A9 inhibition on fibrosis development were investigated in a mouse model of bleomycin-induced pulmonary fibrosis. In this retrospective cohort study, the S100A9 levels in the serum and bronchoalveolar lavage fluid (BALF) samples from 76 and 55 patients with IPF, respectively, were examined for associations with patient survival. RESULTS S100A9 expression was increased in the mouse lungs, especially in the inflammatory cells and fibrotic interstitium, after bleomycin administration. Treatment with paquinimod ameliorated fibrotic pathological changes and significantly reduced hydroxyproline content in the lung tissues of mice with bleomycin-induced pulmonary fibrosis. Additionally, we found that paquinimod reduced the number of lymphocytes and neutrophils in BALF and suppressed endothelial-mesenchymal transition in vivo. Kaplan-Meier curve analysis and univariate and multivariate Cox hazard proportion analyses revealed that high levels of S100A9 in the serum and BALF were significantly associated with poor prognoses in patients with IPF (Kaplan-Meier curve analysis: p=0.037 (serum) and 0.019 (BALF); multivariate Cox hazard proportion analysis: HR=3.88, 95% CI=1.06 to 14.21, p=0.041 (serum); HR=2.73, 95% CI=1.05 to 7.10, p=0.039 (BALF)). CONCLUSIONS The present results indicate that increased S100A9 expression is associated with IPF progression and that the S100A9 inhibitor paquinimod is a potential treatment for IPF.
Collapse
Affiliation(s)
- Shinichiro Miura
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masashi Namba
- Department of Clinical Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kakuhiro Yamaguchi
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shinjiro Sakamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasushi Horimasu
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takeshi Masuda
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shintaro Miyamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Taku Nakashima
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shinichiro Ohshimo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazunori Fujitaka
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
13
|
Jiang J, Wang M, Shen W, Wu J, Ma Q, Wang Z, Chen Z, Bian T, Ji N, Huang M, Zhang M. CD146 deficiency aggravates chronic obstructive pulmonary disease via the increased production of S100A9 and MMP-9 in macrophages. Int Immunopharmacol 2024; 127:111410. [PMID: 38109838 DOI: 10.1016/j.intimp.2023.111410] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of global death. As a molecule beyond adhesion, CD146 is involved in COPD pathogenesis. However, the mechanisms of CD146 in COPD remain largely elusive. We hypothesized that CD146 regulates the production of matrix metalloproteinase-9 (MMP-9) in macrophages and thereby contributes to COPD. Here, we constructed a murine model of COPD using lipopolysaccharide (LPS) and porcine pancreatic elastase (PPE). In COPD-like mice, LPS and PPE decreased the pulmonary expression of CD146. MMP-9 expression and bioactivity were increased in CD146 knockout COPD-like mice. In vitro, LPS decreased CD146 expression in macrophages. With or without LPS challenge, CD146-defective macrophages produced more MMP-9. Transcriptome analysis based on next-generation sequencing (NGS) revealed that S100A9 regulated MMP-9 production in CD146-defective macrophages. Targeting S100A9 with paquinimod decreased lung inflammation and alleviated alveolar destruction in COPD-like mice. Collectively, our study suggests that CD146 negatively regulates MMP-9 production in macrophages via the S100A9 pathway in COPD.
Collapse
Affiliation(s)
- Jingxian Jiang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weiyu Shen
- Departments of Respiratory and Critical Care Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jingjing Wu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiyun Ma
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Respiratory and Critical Care Medicine, the Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Zhengxia Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongqi Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Bian
- Departments of Respiratory and Critical Care Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Ningfei Ji
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Mingshun Zhang
- Jiangsu Province Engineering Research Center of Antibody Drug, NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
14
|
Liu W, Pratte KA, Castaldi PJ, Hersh C, Bowler RP, Banaei-Kashani F, Kechris KJ. A Generalized Higher-order Correlation Analysis Framework for Multi-Omics Network Inference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576667. [PMID: 38328226 PMCID: PMC10849540 DOI: 10.1101/2024.01.22.576667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Multiple -omics (genomics, proteomics, etc.) profiles are commonly generated to gain insight into a disease or physiological system. Constructing multi-omics networks with respect to the trait(s) of interest provides an opportunity to understand relationships between molecular features but integration is challenging due to multiple data sets with high dimensionality. One approach is to use canonical correlation to integrate one or two omics types and a single trait of interest. However, these types of methods may be limited due to (1) not accounting for higher-order correlations existing among features, (2) computational inefficiency when extending to more than two omics data when using a penalty term-based sparsity method, and (3) lack of flexibility for focusing on specific correlations (e.g., omics-to-phenotype correlation versus omics-to-omics correlations). In this work, we have developed a novel multi-omics network analysis pipeline called Sparse Generalized Tensor Canonical Correlation Analysis Network Inference (SGTCCA-Net) that can effectively overcome these limitations. We also introduce an implementation to improve the summarization of networks for downstream analyses. Simulation and real-data experiments demonstrate the effectiveness of our novel method for inferring omics networks and features of interest.
Collapse
Affiliation(s)
- Weixuan Liu
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Peter J. Castaldi
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, United States
| | - Craig Hersh
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, United States
| | - Russell P. Bowler
- Division of Pulmonary Medicine, Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Farnoush Banaei-Kashani
- Department of Computer Science and Engineering, College of Engineering, Design and Computing, University of Colorado Denver, Denver, CO, USA
| | - Katerina J. Kechris
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
15
|
Ghoshal A, Verma A, Bhaskar A, Dwivedi VP. The uncharted territory of host-pathogen interaction in tuberculosis. Front Immunol 2024; 15:1339467. [PMID: 38312835 PMCID: PMC10834760 DOI: 10.3389/fimmu.2024.1339467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
Mycobacterium tuberculosis (M.tb) effectively manipulates the host processes to establish the deadly respiratory disease, Tuberculosis (TB). M.tb has developed key mechanisms to disrupt the host cell health to combat immune responses and replicate efficaciously. M.tb antigens such as ESAT-6, 19kDa lipoprotein, Hip1, and Hsp70 destroy the integrity of cell organelles (Mitochondria, Endoplasmic Reticulum, Nucleus, Phagosomes) or delay innate/adaptive cell responses. This is followed by the induction of cellular stress responses in the host. Such cells can either undergo various cell death processes such as apoptosis or necrosis, or mount effective immune responses to clear the invading pathogen. Further, to combat the infection progression, the host secretes extracellular vesicles such as exosomes to initiate immune signaling. The exosomes can contain M.tb as well as host cell-derived peptides that can act as a double-edged sword in the immune signaling event. The host-symbiont microbiota produces various metabolites that are beneficial for maintaining healthy tissue microenvironment. In juxtaposition to the above-mentioned mechanisms, M.tb dysregulates the gut and respiratory microbiome to support its replication and dissemination process. The above-mentioned interconnected host cellular processes of Immunometabolism, Cellular stress, Host Microbiome, and Extracellular vesicles are less explored in the realm of exploration of novel Host-directed therapies for TB. Therefore, this review highlights the intertwined host cellular processes to control M.tb survival and showcases the important factors that can be targeted for designing efficacious therapy.
Collapse
Affiliation(s)
| | | | | | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
16
|
Gémes N, Balog JÁ, Neuperger P, Schlegl E, Barta I, Fillinger J, Antus B, Zvara Á, Hegedűs Z, Czimmerer Z, Manczinger M, Balogh GM, Tóvári J, Puskás LG, Szebeni GJ. Single-cell immunophenotyping revealed the association of CD4+ central and CD4+ effector memory T cells linking exacerbating chronic obstructive pulmonary disease and NSCLC. Front Immunol 2023; 14:1297577. [PMID: 38187374 PMCID: PMC10770259 DOI: 10.3389/fimmu.2023.1297577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction Tobacco smoking generates airway inflammation in chronic obstructive pulmonary disease (COPD), and its involvement in the development of lung cancer is still among the leading causes of early death. Therefore, we aimed to have a better understanding of the disbalance in immunoregulation in chronic inflammatory conditions in smoker subjects with stable COPD (stCOPD), exacerbating COPD (exCOPD), or non-small cell lung cancer (NSCLC). Methods Smoker controls without chronic illness were recruited as controls. Through extensive mapping of single cells, surface receptor quantification was achieved by single-cell mass cytometry (CyTOF) with 29 antibodies. The CyTOF characterized 14 main immune subsets such as CD4+, CD8+, CD4+/CD8+, CD4-/CD8-, and γ/δ T cells and other subsets such as CD4+ or CD8+ NKT cells, NK cells, B cells, plasmablasts, monocytes, CD11cdim, mDCs, and pDCs. The CD4+ central memory (CM) T cells (CD4+/CD45RA-/CD45RO+/CD197+) and CD4+ effector memory (EM) T cells (CD4+/CD45RA-/CD45RO+/CD197-) were FACS-sorted for RNA-Seq analysis. Plasma samples were assayed by Luminex MAGPIX® for the quantitative measurement of 17 soluble immuno-oncology mediators (BTLA, CD28, CD80, CD27, CD40, CD86, CTLA-4, GITR, GITRL, HVEM, ICOS, LAG-3, PD-1, PD-L1, PD-L2, TIM-3, TLR-2) in the four studied groups. Results Our focus was on T-cell-dependent differences in COPD and NSCLC, where peripheral CD4+ central memory and CD4+ effector memory cells showed a significant reduction in exCOPD and CD4+ CM showed elevation in NSCLC. The transcriptome analysis delineated a perfect correlation of differentially expressed genes between exacerbating COPD and NSCLC-derived peripheral CD4+ CM or CD4+ EM cells. The measurement of 17 immuno-oncology soluble mediators revealed a disease-associated phenotype in the peripheral blood of stCOPD, exCOPD, and NSCLC patients. Discussion The applied single-cell mass cytometry, the whole transcriptome profiling of peripheral CD4+ memory cells, and the quantification of 17 plasma mediators provided complex data that may contribute to the understanding of the disbalance in immune homeostasis generated or sustained by tobacco smoking in COPD and NSCLC.
Collapse
Affiliation(s)
- Nikolett Gémes
- Laboratory of Functional Genomics, HUN-REN Biological Research Centre, Szeged, Hungary
- PhD School in Biology, University of Szeged, Szeged, Hungary
| | - József Á. Balog
- Laboratory of Functional Genomics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Patrícia Neuperger
- Laboratory of Functional Genomics, HUN-REN Biological Research Centre, Szeged, Hungary
- PhD School in Biology, University of Szeged, Szeged, Hungary
| | | | - Imre Barta
- National Korányi Institute of Pulmonology, Budapest, Hungary
| | - János Fillinger
- National Korányi Institute of Pulmonology, Budapest, Hungary
| | - Balázs Antus
- National Korányi Institute of Pulmonology, Budapest, Hungary
| | - Ágnes Zvara
- Laboratory of Functional Genomics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Zoltán Hegedűs
- Laboratory of Bioinformatics, HUN-REN Biological Research Centre, Szeged, Hungary
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Zsolt Czimmerer
- Macrophage Polarization Group, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Máté Manczinger
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Gergő Mihály Balogh
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | | | - László G. Puskás
- Laboratory of Functional Genomics, HUN-REN Biological Research Centre, Szeged, Hungary
- Avicor Ltd., Szeged, Hungary
- Avidin Ltd., Szeged, Hungary
| | - Gábor J. Szebeni
- Laboratory of Functional Genomics, HUN-REN Biological Research Centre, Szeged, Hungary
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- CS-Smartlab Devices Ltd., Kozármisleny, Hungary
| |
Collapse
|
17
|
Zhang Y, Song Y, Du J, Liu W, Dong C, Huang Z, Zhang Z, Yang L, Wang T, Xiong S, Dong L, Guo Y, Dang J, He Q, Yu Z, Ma X. S100 calcium-binding protein A9 promotes skin regeneration through toll-like receptor 4 during tissue expansion. BURNS & TRAUMA 2023; 11:tkad030. [PMID: 37936894 PMCID: PMC10627002 DOI: 10.1093/burnst/tkad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/17/2023] [Indexed: 11/09/2023]
Abstract
Background In plastic surgery, tissue expansion is widely used for repairing skin defects. However, low expansion efficiency and skin rupture caused by thin, expanded skin remain significant challenges in promoting skin regeneration during expansion. S100 calcium-binding protein A9 (S100A9) is essential in promoting wound healing; however, its effects on skin regeneration during tissue expansion remain unclear. The aim of the present study was to explore the role of S100A9 in skin regeneration, particularly collagen production to investigate its importance in skin regeneration during tissue expansion. Methods The expression and distribution of S100A9 and its receptors-toll-like receptor 4 (TLR-4) and receptor for advanced glycation end products were studied in expanded skin. These characteristics were investigated in skin samples of rats and patients. Moreover, the expression of S100A9 was investigated in stretched keratinocytes in vitro. The effects of S100A9 on the proliferation and migration of skin fibroblasts were also observed. TAK-242 was used to inhibit the binding of S100A9 to TLR-4; the levels of collagen I (COL I), transforming growth factor beta (TGF-β), TLR-4 and phospho-extracellular signal-related kinase 1/2 (p-ERK1/2) in fibroblasts were determined. Furthermore, fibroblasts were co-cultured with stretched S100A9-knockout keratinocytes by siRNA transfection and the levels of COL I, TGF-β, TLR-4 and p-ERK1/2 in fibroblasts were investigated. Additionally, the area of expanded skin, thickness of the dermis, and synthesis of COL I, TGF-β, TLR-4 and p-ERK1/2 were analysed to determine the effects of S100A9 on expanded skin. Results Increased expression of S100A9 and TLR-4 was associated with decreased extracellular matrix (ECM) in the expanded dermis. Furthermore, S100A9 facilitated the proliferation and migration of human skin fibroblasts as well as the expression of COL I and TGF-β in fibroblasts via the TLR-4/ERK1/2 pathway. We found that mechanical stretch-induced S100A9 expression and secretion of keratinocytes stimulated COL I, TGF-β, TLR-4 and p-ERK1/2 expression in skin fibroblasts. Recombined S100A9 protein aided expanded skin regeneration and rescued dermal thinning in rats in vivo as well as increasing ECM deposition during expansion. Conclusions These findings demonstrate that mechanical stretch promoted expanded skin regeneration by upregulating S100A9 expression. Our study laid the foundation for clinically improving tissue expansion using S100A9.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Yajuan Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Jing Du
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Wei Liu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Chen Dong
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Zhaosong Huang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Zhe Zhang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Liu Yang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Tong Wang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Shaoheng Xiong
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Liwei Dong
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Yaotao Guo
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Juanli Dang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Qiang He
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Zhou Yu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Xianjie Ma
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Road, Xi’an, Shaanxi Province 710032, China
| |
Collapse
|
18
|
You H, Dong M. Identification of Immuno-Inflammation-Related Biomarkers for Acute Myocardial Infarction Based on Bioinformatics. J Inflamm Res 2023; 16:3283-3302. [PMID: 37576155 PMCID: PMC10417757 DOI: 10.2147/jir.s421196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023] Open
Abstract
Purpose Previous studies have confirmed that inflammation and immunity are involved in the pathogenesis of acute myocardial infarction (AMI). However, only few related genes are identified as biomarkers for the diagnosis and treatment of AMI. Patients and Methods GSE48060 and GSE60993 datasets were retrieved from Gene Expression Omnibus. The differentially expressed immuno-inflammation-related genes (DEIIRGs) were obtained from GSE48060, and the biomarkers for AMI were screened and validated using the "Neuralnet" package and GSE60993 dataset. Further, the biomarker-based nomogram was constructed, and miRNAs, transcription factors (TFs), and potential drugs targeting the biomarkers were explored. Furthermore, immune infiltration analysis was analyzed in AMI. Finally, the biomarkers were verified by assessing their mRNA levels using real-time quantitative PCR (RT-qPCR). Results First, eight biomarkers were screened via bioinformatics, and the artificial neural network model indicated a higher prediction accuracy for AMI even in the validation dataset. Nomogram had accurate forecasting ability for AMI as well. The TFs GTF2I, PHOX2B, RUNX1, and FOS targeting hsa-miR-1297 could regulate the expressions of ADM and CBLB, and RORA could effectively interact with melatonin and citalopram. RT-qPCR results for ADM, PI3, MMP9, NRG1 and CBLB were consistent with those of bioinformatic analysis. Conclusion In conclusion, eight key immuno-inflammation-related genes, namely, SH2D1B, ADM, PI3, MMP9, NRG1, CBLB, RORA, and FASLG, may serve as the potential biomarkers for AMI, in which the downregulation of CBLB and upregulation of ADM, PI3, and NRG1 in AMI was detected for the first time, providing a new strategy for the diagnosis and treatment of AMI.
Collapse
Affiliation(s)
- Hongjun You
- Department of Cardiovascular Medicine, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, 710068, People’s Republic of China
| | - Mengya Dong
- Department of Cardiovascular Medicine, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, 710068, People’s Republic of China
| |
Collapse
|
19
|
Kapellos TS, Baßler K, Fujii W, Nalkurthi C, Schaar AC, Bonaguro L, Pecht T, Galvao I, Agrawal S, Saglam A, Dudkin E, Frishberg A, de Domenico E, Horne A, Donovan C, Kim RY, Gallego-Ortega D, Gillett TE, Ansari M, Schulte-Schrepping J, Offermann N, Antignano I, Sivri B, Lu W, Eapen MS, van Uelft M, Osei-Sarpong C, van den Berge M, Donker HC, Groen HJM, Sohal SS, Klein J, Schreiber T, Feißt A, Yildirim AÖ, Schiller HB, Nawijn MC, Becker M, Händler K, Beyer M, Capasso M, Ulas T, Hasenauer J, Pizarro C, Theis FJ, Hansbro PM, Skowasch D, Schultze JL. Systemic alterations in neutrophils and their precursors in early-stage chronic obstructive pulmonary disease. Cell Rep 2023; 42:112525. [PMID: 37243592 PMCID: PMC10320832 DOI: 10.1016/j.celrep.2023.112525] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/18/2023] [Accepted: 05/01/2023] [Indexed: 05/29/2023] Open
Abstract
Systemic inflammation is established as part of late-stage severe lung disease, but molecular, functional, and phenotypic changes in peripheral immune cells in early disease stages remain ill defined. Chronic obstructive pulmonary disease (COPD) is a major respiratory disease characterized by small-airway inflammation, emphysema, and severe breathing difficulties. Using single-cell analyses we demonstrate that blood neutrophils are already increased in early-stage COPD, and changes in molecular and functional neutrophil states correlate with lung function decline. Assessing neutrophils and their bone marrow precursors in a murine cigarette smoke exposure model identified similar molecular changes in blood neutrophils and precursor populations that also occur in the blood and lung. Our study shows that systemic molecular alterations in neutrophils and their precursors are part of early-stage COPD, a finding to be further explored for potential therapeutic targets and biomarkers for early diagnosis and patient stratification.
Collapse
Affiliation(s)
- Theodore S Kapellos
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; Comprehensive Pneumology Center (CPC), Institute of Lung Health and Immunity (LHI), Member of the German Center for Lung Research (DZL), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Kevin Baßler
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Wataru Fujii
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Christina Nalkurthi
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW 2007, Australia
| | - Anna C Schaar
- Institute of Computational Biology (ICB), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Department of Mathematics, Technische Universität München, 85748 Garching, Germany
| | - Lorenzo Bonaguro
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases and the University of Bonn, 53127 Bonn, Germany
| | - Tal Pecht
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Izabela Galvao
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW 2007, Australia
| | - Shobhit Agrawal
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Adem Saglam
- Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases and the University of Bonn, 53127 Bonn, Germany
| | - Erica Dudkin
- Computational Life Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Amit Frishberg
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; Institute of Computational Biology (ICB), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Elena de Domenico
- Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases and the University of Bonn, 53127 Bonn, Germany
| | - Arik Horne
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Chantal Donovan
- University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW 2007, Australia; Immune Health, Hunter Medical Research Institute, New Lambton and The University of Newcastle, Newcastle, NSW 2305, Australia
| | - Richard Y Kim
- University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW 2007, Australia; Immune Health, Hunter Medical Research Institute, New Lambton and The University of Newcastle, Newcastle, NSW 2305, Australia
| | - David Gallego-Ortega
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Garvan Institute of Medical Research, and St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia
| | - Tessa E Gillett
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 AB Groningen, the Netherlands; GRIAC Research Institute, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Meshal Ansari
- Comprehensive Pneumology Center (CPC), Institute of Lung Health and Immunity (LHI), Member of the German Center for Lung Research (DZL), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Computational Biology (ICB), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Jonas Schulte-Schrepping
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Nina Offermann
- Immunregulation, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Ignazio Antignano
- Immunregulation, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Burcu Sivri
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Wenying Lu
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, 7250 TAS, Australia
| | - Mathew S Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, 7250 TAS, Australia
| | - Martina van Uelft
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Collins Osei-Sarpong
- Immunogenomics & Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Maarten van den Berge
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 AB Groningen, the Netherlands; Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Hylke C Donker
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 AB Groningen, the Netherlands; Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Harry J M Groen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 AB Groningen, the Netherlands; Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Sukhwinder S Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, 7250 TAS, Australia
| | - Johanna Klein
- Department of Internal Medicine II, Pneumology, University Hospital Bonn, 53127 Bonn, Germany
| | - Tina Schreiber
- Department of Internal Medicine II, Pneumology, University Hospital Bonn, 53127 Bonn, Germany
| | - Andreas Feißt
- University Clinics for Radiology, University Hospital Bonn, 53127 Bonn, Germany
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center (CPC), Institute of Lung Health and Immunity (LHI), Member of the German Center for Lung Research (DZL), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Herbert B Schiller
- Comprehensive Pneumology Center (CPC), Institute of Lung Health and Immunity (LHI), Member of the German Center for Lung Research (DZL), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Martijn C Nawijn
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9700 AB Groningen, the Netherlands; GRIAC Research Institute, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Matthias Becker
- Modular HPC and AI, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Kristian Händler
- Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases and the University of Bonn, 53127 Bonn, Germany; Institute of Human Genetics, University of Lübeck, 23562 Lübeck, Germany
| | - Marc Beyer
- Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases and the University of Bonn, 53127 Bonn, Germany; Immunogenomics & Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Melania Capasso
- Immunregulation, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Thomas Ulas
- Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases and the University of Bonn, 53127 Bonn, Germany
| | - Jan Hasenauer
- Institute of Computational Biology (ICB), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Department of Mathematics, Technische Universität München, 85748 Garching, Germany; Computational Life Sciences, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Carmen Pizarro
- Department of Internal Medicine II, Pneumology, University Hospital Bonn, 53127 Bonn, Germany
| | - Fabian J Theis
- Institute of Computational Biology (ICB), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Department of Mathematics, Technische Universität München, 85748 Garching, Germany
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW 2007, Australia; University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW 2007, Australia
| | - Dirk Skowasch
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, 7250 TAS, Australia
| | - Joachim L Schultze
- Comprehensive Pneumology Center (CPC), Institute of Lung Health and Immunity (LHI), Member of the German Center for Lung Research (DZL), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Department of Mathematics, Technische Universität München, 85748 Garching, Germany.
| |
Collapse
|
20
|
Sitoe N, Chelene I, Ligeiro S, Castiano C, Ahmed MIM, Held K, Nhassengo P, Khosa C, Matavele-Chissumba R, Hoelscher M, Rachow A, Geldmacher C. Effect of TB Treatment on Neutrophil-Derived Soluble Inflammatory Mediators in TB Patients with and without HIV Coinfection. Pathogens 2023; 12:794. [PMID: 37375484 DOI: 10.3390/pathogens12060794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
The mycobacteriological analysis of sputum samples is the gold standard for tuberculosis diagnosis and treatment monitoring. However, sputum production can be challenging after the initiation of TB treatment. As a possible alternative, we therefore investigated the dynamics of neutrophil-derived soluble inflammatory mediators during TB treatment in relation to HIV ART status and the severity of lung impairment. Plasma samples of TB patients with (N = 47) and without HIV (N = 21) were analyzed at baseline, month 2, month 6 (end of TB treatment) and month 12. Plasma levels of MMP-1, MMP-8, MPO and S100A8 markedly decreased over the course of TB treatment and remained at similar levels thereafter. Post-TB treatment initiation, significantly elevated plasma levels of MMP-8 were detected in TB patients living with HIV, especially if they were not receiving ART treatment at baseline. Our data confirm that the plasma levels of neutrophil-based biomarkers can be used as candidate surrogate markers for TB treatment outcome and HIV-infection influenced MMP-8 and S100A8 levels. Future studies to validate our results and to understand the dynamics of neutrophils-based biomarkers post-TB treatment are needed.
Collapse
Affiliation(s)
- Nádia Sitoe
- Instituto Nacional de Saúde, Marracuene 3943, Mozambique
- CIH LMU Center for International Health, Ludwig-Maximilians University, 80802 Munich, Germany
| | - Imelda Chelene
- Instituto Nacional de Saúde, Marracuene 3943, Mozambique
| | - Sofia Ligeiro
- Instituto Nacional de Saúde, Marracuene 3943, Mozambique
| | - Celso Castiano
- Instituto Nacional de Saúde, Marracuene 3943, Mozambique
| | - Mohamed I M Ahmed
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80802 Munich, Germany
- German Center for Infection Research, Partner Site Munich, 80802 Munich, Germany
| | - Kathrin Held
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80802 Munich, Germany
- German Center for Infection Research, Partner Site Munich, 80802 Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, 80799 Munich, Germany
| | | | - Celso Khosa
- Instituto Nacional de Saúde, Marracuene 3943, Mozambique
| | | | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80802 Munich, Germany
- German Center for Infection Research, Partner Site Munich, 80802 Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, 80799 Munich, Germany
| | - Andrea Rachow
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80802 Munich, Germany
- German Center for Infection Research, Partner Site Munich, 80802 Munich, Germany
| | - Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80802 Munich, Germany
- German Center for Infection Research, Partner Site Munich, 80802 Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, 80799 Munich, Germany
| |
Collapse
|
21
|
Kayongo A, Robertson NM, Siddharthan T, Ntayi ML, Ndawula JC, Sande OJ, Bagaya BS, Kirenga B, Mayanja-Kizza H, Joloba ML, Forslund SK. Airway microbiome-immune crosstalk in chronic obstructive pulmonary disease. Front Immunol 2023; 13:1085551. [PMID: 36741369 PMCID: PMC9890194 DOI: 10.3389/fimmu.2022.1085551] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) has significantly contributed to global mortality, with three million deaths reported annually. This impact is expected to increase over the next 40 years, with approximately 5 million people predicted to succumb to COPD-related deaths annually. Immune mechanisms driving disease progression have not been fully elucidated. Airway microbiota have been implicated. However, it is still unclear how changes in the airway microbiome drive persistent immune activation and consequent lung damage. Mechanisms mediating microbiome-immune crosstalk in the airways remain unclear. In this review, we examine how dysbiosis mediates airway inflammation in COPD. We give a detailed account of how airway commensal bacteria interact with the mucosal innate and adaptive immune system to regulate immune responses in healthy or diseased airways. Immune-phenotyping airway microbiota could advance COPD immunotherapeutics and identify key open questions that future research must address to further such translation.
Collapse
Affiliation(s)
- Alex Kayongo
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda,Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Medicine, Center for Emerging Pathogens, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, United States
| | | | - Trishul Siddharthan
- Division of Pulmonary Medicine, School of Medicine, University of Miami, Miami, FL, United States
| | - Moses Levi Ntayi
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda,Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Josephine Caren Ndawula
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Obondo J. Sande
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Bernard S. Bagaya
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Bruce Kirenga
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Harriet Mayanja-Kizza
- Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Moses L. Joloba
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Sofia K. Forslund
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany,Experimental and Clinical Research Center, a cooperation of Charité - Universitatsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany,Charité-Universitatsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany,*Correspondence: Sofia K. Forslund,
| |
Collapse
|
22
|
Abstract
Smoking is a well-established risk factor for chronic obstructive pulmonary disease (COPD). Chronic lung inflammation continues even after smoking cessation and leads to COPD progression. To date, anti-inflammatory therapies are ineffective in improving pulmonary function and COPD symptoms, and new molecular targets are urgently needed to deal with this challenge. The receptor for advanced glycation end-products (RAGE) was shown to be relevant in COPD pathogenesis, since it is both a genetic determinant of low lung function and a determinant of COPD susceptibility. Moreover, RAGE is involved in the physiological response to cigarette smoke exposure. Since innate and acquired immunity plays an essential role in the development of chronic inflammation and emphysema in COPD, here we summarized the roles of RAGE and its ligand HMGB1 in COPD immunity.
Collapse
Affiliation(s)
- Lin Chen
- Department of Respiratory and Critical Care Medicine, Liuzhou People's Hospital, LiuZhou, Guangxi, China
| | - Xuejiao Sun
- Department of Respiratory and Critical Care Medicine, Liuzhou People's Hospital, LiuZhou, Guangxi, China
| | - Xiaoning Zhong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
23
|
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex, heterogeneous, smoking-related disease of significant global impact. The complex biology of COPD is ultimately driven by a few interrelated processes, including proteolytic tissue remodeling, innate immune inflammation, derangements of the host-pathogen response, aberrant cellular phenotype switching, and cellular senescence, among others. Each of these processes are engendered and perpetuated by cells modulating their environment or each other. Extracellular vesicles (EVs) are powerful effectors that allow cells to perform a diverse array of functions on both adjacent and distant tissues, and their pleiotropic nature is only beginning to be appreciated. As such, EVs are candidates to play major roles in these fundamental mechanisms of disease behind COPD. Furthermore, some such roles for EVs are already established, and EVs are implicated in significant aspects of COPD pathogenesis. Here, we discuss known and potential ways that EVs modulate the environment of their originating cells to contribute to the processes that underlie COPD.
Collapse
Affiliation(s)
- Derek W Russell
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA;
- Birmingham VA Medical Center, Birmingham, Alabama, USA
| | - Kristopher R Genschmer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA;
| | - J Edwin Blalock
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA;
| |
Collapse
|
24
|
Ou G, Zhu M, Huang Y, Luo W, Zhao J, Zhang W, Xia H, Wang S, He R, Xiao Q, Deng Y, Qiu R. HSP60 regulates the cigarette smoke-induced activation of TLR4-NF-κB-MyD88 signalling pathway and NLRP3 inflammasome. Int Immunopharmacol 2022; 103:108445. [PMID: 34998273 DOI: 10.1016/j.intimp.2021.108445] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 12/25/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by increased cellular stress and inflammation. Heat shock protein 60 (HSP60) is a highly conserved stress protein that acts as a cellular "danger" signal for immune reactions. In this study, we investigated the role of HSP60 in COPD and explored the underlying mechanisms. Expression levels of HSP60 in patients with acute exacerbation of COPD (AECOPD), stable COPD, and healthy people were detected by Western blotting and enzyme-linked immunosorbent assay (ELISA). Moreover, the effect and molecular mechanism of HSP60 in COPD were studied in cigarette smoke (CS)-treated C57BL/6 mice and macrophages. The results showed significant upregulation of HSP60 expression in the peripheral blood mononuclear cells (PBMCs) and sera of patients with AECOPD compared to those with stable COPD or healthy people. CS induced the expression of HSP60 in the COPD mouse model, accelerated the activation of toll-like receptor 4 (TLR4) and NLR family pyrin domain containing 3 (NLRP3) signalling pathways, promoted the increase of inflammatory cells in alveolar lavage fluid and serum inflammatory factors, and induced destruction of lung tissue structure. Furthermore, HSP60 knockdown affected TLR4 and MyD88 expression, IκBα degradation, and nuclear localization of NF-κB and NLRP3 inflammasome activity. Our study revealed that CS stimulates the expression of HSP60, activating the TLR4-MyD88-NF-κB signalling pathway and the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Guochun Ou
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Mingmei Zhu
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Yufang Huang
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Wen Luo
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Jie Zhao
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Wenbo Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Hangbiao Xia
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Shuhong Wang
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Rong He
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Qing Xiao
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Yan Deng
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Rong Qiu
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan 629000, China; Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China.
| |
Collapse
|
25
|
Lee HS, Park HW. Role of mTOR in the development of asthma in mice with cigarette smoke-induced cellular senescence. J Gerontol A Biol Sci Med Sci 2021; 77:433-442. [PMID: 34723336 PMCID: PMC8893251 DOI: 10.1093/gerona/glab303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Indexed: 11/14/2022] Open
Abstract
The role of cellular senescence in the development of asthma is not well known. We aimed to evaluate the susceptibility of mice with cellular senescence to asthma development and determine whether the mTOR pathway played an important role in this process. Cellular senescence was induced in mice by intranasal instillation of 2% cigarette smoke extract (CSE). Subsequently, a low dose (0.1 μg) of house dust mite (HDM) allergens, which cause no inflammation and airway hyperresponsiveness (AHR) in mice without cellular senescence, was administered intranasally. To evaluate the role of the mTOR pathway in this model, rapamycin (TORC1 inhibitor) was injected intraperitoneally before CSE instillation. CSE significantly increased senescence-associated β-gal activity in lung homogenate and S100A8/9+ p-mTOR+ population in lung cells. Moreover, S100A8/9+ or HMGB1+ populations in airway epithelial cells with p-mTOR activity increased remarkably. Rapamycin attenuated all changes. Subsequent administration of low-dose HDM allergen induced murine asthma characterized by increased AHR, serum HDM-specific immunoglobulin E, and eosinophilic airway inflammation; these asthma characteristics disappeared after rapamycin injection. In vitro experiments showed significant activation of bone marrow-derived cells cocultured with S100A9 or HMGB1 overexpressing MLE-12 cells treated with HDM allergen, compared to those treated with HDM allergen only. CSE increased the levels of senescence markers (S100A8/9 and HMGB1) in airway epithelial cells, making the mice susceptible to asthma development due to low-dose HDM allergens by activating dendritic cells. Because rapamycin significantly attenuated asthma characteristics, the mTOR pathway may be important in this murine model.
Collapse
Affiliation(s)
- Hyun Seung Lee
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Heung-Woo Park
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
26
|
Johnstone KF, Wei Y, Bittner-Eddy PD, Vreeman GW, Stone IA, Clayton JB, Reilly CS, Walbon TB, Wright EN, Hoops SL, Boyle WS, Costalonga M, Herzberg MC. Calprotectin (S100A8/A9) Is an Innate Immune Effector in Experimental Periodontitis. Infect Immun 2021; 89:e0012221. [PMID: 34097505 PMCID: PMC8445179 DOI: 10.1128/iai.00122-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/12/2021] [Indexed: 01/26/2023] Open
Abstract
Upregulated in inflammation, calprotectin (complexed S100A8 and S100A9; S100A8/A9) functions as an innate immune effector molecule, promoting inflammation, and also as an antimicrobial protein. We hypothesized that antimicrobial S100A8/A9 would mitigate change to the local microbial community and promote resistance to experimental periodontitis in vivo. To test this hypothesis, S100A9-/- and wild-type (WT; S100A9+/+) C57BL/6 mice were compared using a model of ligature-induced periodontitis. On day 2, WT mice showed fewer infiltrating innate immune cells than S100A9-/- mice; by day 5, the immune cell numbers were similar. At 5 days post ligature placement, oral microbial communities sampled with swabs differed significantly in beta diversity between the mouse genotypes. Ligatures recovered from molar teeth of S100A9-/- and WT mice contained significantly dissimilar microbial genera from each other and the overall oral communities from swabs. Concomitantly, the S100A9-/- mice had significantly greater alveolar bone loss than WT mice around molar teeth in ligated sites. When the oral microflora was ablated by antibiotic pretreatment, differences disappeared between WT and S100A9-/- mice in their immune cell infiltrates and alveolar bone loss. Calprotectin, therefore, suppresses emergence of a dysbiotic, proinflammatory oral microbial community, which reduces innate immune effector activity, including early recruitment of innate immune cells, mitigating subsequent alveolar bone loss and protecting against experimental periodontitis.
Collapse
Affiliation(s)
- Karen F. Johnstone
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yuping Wei
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Peter D. Bittner-Eddy
- Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gerrit W. Vreeman
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ian A. Stone
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jonathan B. Clayton
- BioTechnology Institute, Computer Science and Engineering, University of Minnesota, Saint Paul, Minnesota, USA
| | - Cavan S. Reilly
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Travis B. Walbon
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Elisa N. Wright
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Susan L. Hoops
- BioTechnology Institute, Computer Science and Engineering, University of Minnesota, Saint Paul, Minnesota, USA
| | - William S. Boyle
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Massimo Costalonga
- Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mark C. Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
27
|
Cigarette Smoke Condensate Exposure Induces Receptor for Advanced Glycation End-Products (RAGE)-Dependent Sterile Inflammation in Amniotic Epithelial Cells. Int J Mol Sci 2021; 22:ijms22158345. [PMID: 34361111 PMCID: PMC8348034 DOI: 10.3390/ijms22158345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/26/2022] Open
Abstract
Maternal smoking is a risk factor of preterm prelabor rupture of the fetal membranes (pPROM), which is responsible for 30% of preterm births worldwide. Cigarettes induce oxidative stress and inflammation, mechanisms both implicated in fetal membranes (FM) weakening. We hypothesized that the receptor for advanced glycation end-products (RAGE) and its ligands can result in cigarette-dependent inflammation. FM explants and amniotic epithelial cells (AECs) were treated with cigarette smoke condensate (CSC), combined or not with RAGE antagonist peptide (RAP), an inhibitor of RAGE. Cell suffering was evaluated by measuring lactate dehydrogenase (LDH) medium-release. Extracellular HMGB1 (a RAGE ligand) release by amnion and choriodecidua explants were checked by western blot. NF-κB pathway induction was determined by a luciferase gene reporter assay, and inflammation was evaluated by cytokine RT-qPCR and protein quantification. Gelatinase activity was assessed using a specific assay. CSC induced cell suffering and HMGB1 secretion only in the amnion, which is directly associated with a RAGE-dependent response. CSC also affected AECs by inducing inflammation (cytokine release and NFκB activation) and gelatinase activity through RAGE engagement, which was linked to an increase in extracellular matrix degradation. This RAGE dependent CSC-induced inflammation associated with an increase of gelatinase activity could explain a pathological FM weakening directly linked to pPROM.
Collapse
|
28
|
The S100 Protein Family as Players and Therapeutic Targets in Pulmonary Diseases. Pulm Med 2021; 2021:5488591. [PMID: 34239729 PMCID: PMC8214497 DOI: 10.1155/2021/5488591] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
The S100 protein family consists of over 20 members in humans that are involved in many intracellular and extracellular processes, including proliferation, differentiation, apoptosis, Ca2+ homeostasis, energy metabolism, inflammation, tissue repair, and migration/invasion. Although there are structural similarities between each member, they are not functionally interchangeable. The S100 proteins function both as intracellular Ca2+ sensors and as extracellular factors. Dysregulated responses of multiple members of the S100 family are observed in several diseases, including the lungs (asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, cystic fibrosis, pulmonary hypertension, and lung cancer). To this degree, extensive research was undertaken to identify their roles in pulmonary disease pathogenesis and the identification of inhibitors for several S100 family members that have progressed to clinical trials in patients for nonpulmonary conditions. This review outlines the potential role of each S100 protein in pulmonary diseases, details the possible mechanisms observed in diseases, and outlines potential therapeutic strategies for treatment.
Collapse
|
29
|
Kotsiou OS, Papagiannis D, Papadopoulou R, Gourgoulianis KI. Calprotectin in Lung Diseases. Int J Mol Sci 2021; 22:1706. [PMID: 33567747 PMCID: PMC7915440 DOI: 10.3390/ijms22041706] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
Calprotectin (CLP) is a heterodimer formed by two S-100 calcium-binding cytosolic proteins, S100A8 and S100A9. It is a multifunctional protein expressed mainly by neutrophils and released extracellularly by activated or damaged cells mediating a broad range of physiological and pathological responses. It has been more than 20 years since the implication of S100A8/A9 in the inflammatory process was shown; however, the evaluation of its role in the pathogenesis of respiratory diseases or its usefulness as a biomarker for the appropriate diagnosis and prognosis of lung diseases have only gained attention in recent years. This review aimed to provide current knowledge regarding the potential role of CLP in the pathophysiology of lung diseases and describe how this knowledge is, up until now, translated into daily clinical practice. CLP is involved in numerous cellular processes in lung health and disease. In addition to its anti-microbial functions, CLP also serves as a molecule with pro- and anti-tumor properties related to cell survival and growth, angiogenesis, DNA damage response, and the remodeling of the extracellular matrix. The findings of this review potentially introduce CLP in daily clinical practice within the spectrum of respiratory diseases.
Collapse
Affiliation(s)
- Ourania S. Kotsiou
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
- Department of Nursing, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| | - Dimitrios Papagiannis
- Department of Nursing, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| | - Rodanthi Papadopoulou
- Human Nutrition, School of Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G31 2ER, UK;
| | | |
Collapse
|