1
|
You Q, Hua M, Zhang X, Tang Y, Zhu F, Yu P. Inhibition of histone acetyltransferase KAT8 inhibits oxidative stress and NLRP3 inflammasome activation through reducing p53 acetylation in LPS-induced acute lung injury. Arch Biochem Biophys 2025:110425. [PMID: 40250723 DOI: 10.1016/j.abb.2025.110425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/26/2025] [Accepted: 04/16/2025] [Indexed: 04/20/2025]
Abstract
OBJECTIVE Acute lung injury (ALI) remains a life-threatening condition characterized by excessive inflammation and oxidative stress. This study aimed to investigate the role of Lysine acetyltransferase 8 (KAT8) in lipopolysaccharide (LPS)-induced ALI and explore its underlying molecular mechanisms. METHODS Gene and protein expression were analyzed via RT-qPCR and Western blot. Molecular interactions were validated using Co-immunoprecipitation (Co-IP), chromatin immunoprecipitation (ChIP), and luciferase reporter assays. Lung histopathology was evaluated by H&E staining. Oxidative stress markers (SOD, MPO, MDA, ROS) were quantified. RESULTS KAT8 expression was elevated in LPS-treated cells and lung tissues. Genetic silencing of KAT8 attenuated LPS-induced inflammatory cytokine secretion, oxidative stress, and NLRP3 inflammasome activation. Mechanistically, KAT8 promoted p53 acetylation, enhancing its binding to the NLRP3 promoter and upregulating its transcription. Conversely, p53 knockdown abolished KAT8-mediated inflammatory cytokine secretion, oxidative stress, and NLRP3 inflammasome activation in LPS-induced ALI. In vivo, pharmacological inhibition of KAT8 with MG149 alleviated LPS-induced ALI as evidenced by reduced neutrophil infiltration, pulmonary edema, and oxidative damage. Concurrently, MG149 suppressed p53 acetylation and NLRP3 activation in murine lungs. CONCLUSION This study identifies KAT8 as a key epigenetic regulator driving LPS-induced ALI via the p53/NLRP3 axis. Targeting KAT8 with MG149 represents a promising therapeutic strategy to mitigate inflammation and oxidative injury in ALI.
Collapse
Affiliation(s)
- Qian You
- Department of Respiratory and Critical Care Medicine, Wuxi Fifth People's Hospital, Affiliated Wuxi Fifth Hospital of Jiangnan University, Wuxi, Jiangsu 214000, China
| | - Meng Hua
- Department of Respiratory and Critical Care Medicine, Wuxi Fifth People's Hospital, Affiliated Wuxi Fifth Hospital of Jiangnan University, Wuxi, Jiangsu 214000, China
| | - Xiaoqing Zhang
- Department of Respiratory and Critical Care Medicine, Wuxi Fifth People's Hospital, Affiliated Wuxi Fifth Hospital of Jiangnan University, Wuxi, Jiangsu 214000, China
| | - Yao Tang
- Department of Tuberculosis, Huaian No. 4 People's Hospital, Huaian, Jiangsu 223000, China
| | - Feng Zhu
- Department of Respiratory and Critical Care Medicine, Wuxi Fifth People's Hospital, Affiliated Wuxi Fifth Hospital of Jiangnan University, Wuxi, Jiangsu 214000, China.
| | - Ping Yu
- Department of Respiratory and Critical Care Medicine, Wuxi Fifth People's Hospital, Affiliated Wuxi Fifth Hospital of Jiangnan University, Wuxi, Jiangsu 214000, China.
| |
Collapse
|
2
|
Possmayer F, Veldhuizen RAW, Jobe AH. Reflections on the introduction of surfactant therapy for neonates with respiratory distress. Am J Physiol Lung Cell Mol Physiol 2025; 328:L554-L563. [PMID: 39951688 DOI: 10.1152/ajplung.00355.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/02/2024] [Accepted: 12/10/2024] [Indexed: 02/16/2025] Open
Abstract
When pulmonary surfactant was first detected in the 1950s by Pattle and Clements, many thousands of infants perished each year due to a respiratory illness termed hyaline membrane disease. Hyaline membranes are formed by plasma leaking through damaged endothelial barriers into the terminal bronchiolar: alveolar spaces. Since the leaking plasma lacks erythrocytes, these clots are opaque. Insightful research by Avery and Mead soon led to the suggestion that the neonatal respiratory distress syndrome (RDS) did not arise because of the presence of hyaline membranes, but rather was related to the lack of sufficient pulmonary surfactant, mainly as a result of immaturity. Unfortunately, initial attempts at treating RDS with aerosolized dipalmitoyl-phosphatidylcholine, the major single molecular component, proved unsuccessful. Almost 20 years later, it was demonstrated by Enhorning and Robertson that treating prematurely delivered rabbit pups with natural surfactant prevents respiratory failure. Initially, it appeared unlikely that animal surfactants could be used for therapy with human infants. However, in 1980, Fujiwara demonstrated that a modified bovine surfactant extract promoted gaseous exchange with infants suffering from RDS. Soon a number of bovine and porcine-modified surfactants and two wholly synthetic formulations were shown to alleviate RDS. The present review relates some of the key scientific findings and significant clinical contributions responsible for reducing the neonatal morbidity and mortality associated with RDS. It further describes some of the more recent findings on the biological, biophysical, and physiological significance of pulmonary surfactant in health and disease.
Collapse
Affiliation(s)
- Fred Possmayer
- Departments of Biochemistry and Obstetrics & Gynaecology, Western University, London, Ontario, Canada
| | - Ruud A W Veldhuizen
- Department of Physiology & Pharmacology and The Department of Medicine, Western University, London, Ontario, Canada
| | - Alan H Jobe
- The Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, United States
| |
Collapse
|
3
|
Lee SE, Kim DY, Jeong TS, Park YS. Micro- and Nano-Plastic-Induced Adverse Health Effects on Lungs and Kidneys Linked to Oxidative Stress and Inflammation. Life (Basel) 2025; 15:392. [PMID: 40141737 PMCID: PMC11944196 DOI: 10.3390/life15030392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Micro- and nano-plastics (MNPs) are small plastic particles that result from the breakdown of larger plastics. They are widely dispersed in the environment and pose a threat to wildlife and humans. MNPs are present in almost all everyday items, including food, drinks, and household products. Air inhalation can also lead to exposure to MNPs. Research in animals indicates that once MNPs are absorbed, they can spread to various organs, including the liver, spleen, heart, lungs, thymus, reproductive organs, kidneys, and even the brain by crossing the blood-brain barrier. Furthermore, MPs can transport persistent organic pollutants or heavy metals from invertebrates to higher levels in the food chain. When ingested, the additives and monomers that comprise MNPs can disrupt essential biological processes in the human body, thereby leading to disturbances in the endocrine and immune systems. During the 2019 coronavirus (COVID-19) pandemic, there was a significant increase in the global use of polypropylene-based face masks, leading to insufficient waste management and exacerbating plastic pollution. This review examines the existing research on the impact of MNP inhalation on human lung and kidney health based on in vitro and in vivo studies. Over the past decades, a wide range of studies suggest that MNPs can impact both lung and kidney tissues under both healthy and diseased conditions. Therefore, this review emphasizes the need for additional studies employing multi-approach analyses of various associated biomarkers and mechanisms to gain a comprehensive and precise understanding of the impact of MNPs on human health.
Collapse
Affiliation(s)
- Seung Eun Lee
- Department of Microbiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Do Yun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Taek Seung Jeong
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yong Seek Park
- Department of Microbiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| |
Collapse
|
4
|
Gambadauro A, Galletta F, Andrenacci B, Foti Randazzese S, Patria MF, Manti S. Impact of E-Cigarettes on Fetal and Neonatal Lung Development: The Influence of Oxidative Stress and Inflammation. Antioxidants (Basel) 2025; 14:262. [PMID: 40227218 PMCID: PMC11939789 DOI: 10.3390/antiox14030262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 04/15/2025] Open
Abstract
Electronic cigarettes (e-cigs) recently increased their popularity as "safer" alternatives to traditional tobacco smoking, including among pregnant women. However, the effect of e-cig exposure on fetal and neonatal developing lungs remains poorly investigated. In this review, we analysed the impact of e-cig aerosol components (e.g., nicotine, solvents, and flavouring agents) on respiratory system development. We particularly emphasized the role of e-cig-related oxidative stress and inflammation on lung impairment. Nicotine contained in e-cigs can impair lung development at anatomical and molecular levels. Solvents and flavours induce inflammation and oxidative stress and contribute to compromising neonatal lung function. Studies suggest that prenatal e-cig aerosol exposure may increase the risk of future development of respiratory diseases in offspring, such as asthma and chronic obstructive pulmonary disease (COPD). Preventive strategies, such as smoking cessation programs and antioxidant supplementation, may be essential for safeguarding respiratory health. There is an urgent need to explore the safety profile and potential risks of e-cigs, especially considering the limited studies in humans. This review highlights the necessity of regulating e-cig use during pregnancy and promoting awareness of its potential consequences on fetal and neonatal development.
Collapse
Affiliation(s)
- Antonella Gambadauro
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98124 Messina, Italy; (F.G.); (S.M.)
| | - Francesca Galletta
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98124 Messina, Italy; (F.G.); (S.M.)
| | - Beatrice Andrenacci
- S.C. Pneumoinfettivologia Pediatrica, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (B.A.); (M.F.P.)
| | - Simone Foti Randazzese
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98124 Messina, Italy; (F.G.); (S.M.)
| | - Maria Francesca Patria
- S.C. Pneumoinfettivologia Pediatrica, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (B.A.); (M.F.P.)
| | - Sara Manti
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98124 Messina, Italy; (F.G.); (S.M.)
| |
Collapse
|
5
|
Wang Y, Ma Z, Peng W, Yu Q, Liang W, Cao L, Wang Z. 3,5,6,7,8,3',4'- Heptamethoxyflavonoid inhibits TGF-β1-induced epithelial-mesenchymal transition by regulating oxidative stress and autophagy through MEK/ERK/PI3K/AKT/mTOR signaling pathway. Sci Rep 2025; 15:4567. [PMID: 39915543 PMCID: PMC11802913 DOI: 10.1038/s41598-025-88869-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 01/31/2025] [Indexed: 02/09/2025] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a crucial pathological process in the pathogenesis of fibrosis. 3,5,6,7,8,3',4'-hepmethoxyflavone (HMF), the main active ingredient extracted from the Chinese herb Breynia fruticosa (L.) Hook. f., has been shown to have beneficial effects on regulating apoptosis and inhibiting collagen deposition. However, it remains unclear whether and how HMF alleviates transforming growth factor-β1 (TGF-β1)-induced EMT. The objective of this study was to investigate the impact of HMF on TGF-β1-induced EMT in human alveolar Type II epithelial cells (A549) and its underlying mechanism. In vitro culture of TGF-β1-induced EMT in A549 cells revealed that HMF reduced cell viability and migration, inhibited collagen deposition, decreased expression levels of mesenchymal cell markers and fibrosis markers α-SMA, MMP2, TIMP1, β-catenin, and Snail. Meanwhile, the expression level of E-cadherin increased as an epithelial cell marker. Additionally, we discussed the effects of HMF on oxidative stress and autophagy. Various experiments confirmed that HMF regulated the expression levels of Nrf2, keap-1, HO-1, ROS, MDA, SOD, GSH, and played a role in reducing oxidative stress. At the same time, HMF significantly activated autophagy by increasing expressions of Beclin-1 and LC3B as well as enhancing autophagosome content. The addition 3-MA, an autophagy inhibitor attenuated these beneficial effects. Furthermore, HMF significantly inhibited phosphorylation levels of MEK, ERK, PI3K, AKT, and mTOR through various pathways. In conclusion, HMF effectively inhibits TGF-β1-induced EMT in A549 cells by targeting the MEK/ERK/PI3K/AKT/mTOR signaling pathway. Moreover, it exhibits a close correlation with the suppression of oxidative stress and induction of autophagy.
Collapse
Affiliation(s)
- Yiting Wang
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, 528400, Guangdong, China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Hospital Preparation Transformation Branch, Zhongshan, China
| | - Zhiheng Ma
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, 528400, Guangdong, China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Hospital Preparation Transformation Branch, Zhongshan, China
| | - Weiwen Peng
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, 528400, Guangdong, China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Hospital Preparation Transformation Branch, Zhongshan, China
| | - Qinglian Yu
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, 528400, Guangdong, China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Hospital Preparation Transformation Branch, Zhongshan, China
| | - Wenjie Liang
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, 528400, Guangdong, China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Hospital Preparation Transformation Branch, Zhongshan, China
| | - Liu Cao
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, 528400, Guangdong, China
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Hospital Preparation Transformation Branch, Zhongshan, China
| | - Zhuqiang Wang
- Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan, 528400, Guangdong, China.
- National Engineering Research Center for Modernization of Traditional Chinese Medicine, Hospital Preparation Transformation Branch, Zhongshan, China.
| |
Collapse
|
6
|
Huang H, Shi Y, Zhou Y. The Protective Effects of Annexin A1 in Acute Lung Injury Mediated by Nrf2. Immun Inflamm Dis 2025; 13:e70111. [PMID: 39807748 PMCID: PMC11729740 DOI: 10.1002/iid3.70111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Acute lung injury (ALI), one of the most severe respiratory system diseases, is prevalent worldwide. Annexin A1 (AnxA1) is an important member of the annexin superfamily, known for its wide range of physiological functions. However, its potential protective effect against lipopolysaccharide (LPS)-induced ALI remains unclear. MATERIALS AND METHODS Mice were divided into four groups: Sham, LPS + vehicle, LPS + 0.1 μg AnxA1, and LPS + 0.5 μg AnxA1. Lung injury was assessed through histopathology, pulmonary wet-to-dry (W/D) ratio, cell counting of bronchoalveolar lavage fluid (BALF), oxidative stress analysis, and noninvasive pulmonary function testing. Gene and protein expression levels were measured using RT-PCR, ELISA, and western blot analysis. RESULTS AnxA1 alleviated LPS-induced ALI by protecting lung tissue from damage, reducing the lung wet/dry (W/D) weight ratio, and improving LPS-induced impaired lung function. Interestingly, administration of AnxA1 was found to repress the infiltration of inflammatory cells by decreasing the total cell count, neutrophils, and protein concentrations in bronchoalveolar lavage fluid (BALF). AnxA1 mitigated the inflammatory response in the pulmonary tissue by lowering the levels of IL-1β, IL-6, and TNF-α in BALF of ALI mice. Additionally, AnxA1 attenuated oxidative stress in lung tissues of ALI mice by restoring the activity of catalase (CAT), SOD, and glutathione (GSH) but reducing the levels of malondialdehyde (MDA). We also found that AnxA1 suppressed activation of the NLRP3 signaling pathway. Mechanistically, AnxA1 activated the Nrf2/HO-1 signaling pathway while preventing the activation of NF-κB. CONCLUSION Collectively, these findings suggest that AnxA1 alleviates LPS-induced ALI and might be a promising novel therapeutic agent against LPS-induced ALI.
Collapse
Affiliation(s)
- Hui Huang
- Department of StomatologyLiyuan Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Yuqin Shi
- Department of Respiratory and Critical Care MedicineLiyuan Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Yuequan Zhou
- Department of Respiratory and Critical Care MedicineLiyuan Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
7
|
Fan Y, Ou Y, Xiao T, Wei Z, Zhu L, Zhu C, Ma Y, Qu S, Zhou W. Coordination-Driven Nanomedicine Mitigates One-Lung Ventilation-Induced Lung Injury via Radicals Scavenging and Cell Pyroptosis Inhibition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401056. [PMID: 39115137 DOI: 10.1002/smll.202401056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/21/2024] [Indexed: 11/21/2024]
Abstract
One-lung ventilation (OLV) during thoracic surgery often leads to post-operative complications, yet effective pharmacological interventions are lacking. This study reports a baicalin-based metal-coordination nanomedicine with disulfiram (DSF) co-loading to address one-lung ventilation-induced lung injury and reperfusion injury (OLV-LIRI). Baicalin, known for its robust antioxidant properties, suffers from poor water solubility and stability. Leveraging nanotechnology, baicalin's coordination is systematically explored with seven common metal ions, designing iron/copper-mediated binary coordination nanoparticles to overcome these limitations. The self-assembled nanoparticles, primarily formed through metal coordination and π-π stacking forces, encapsulated DSF, ensuring high colloidal stability in diverse physiological matrices. Upon a single-dose administration via endotracheal intubation, the nanoparticles efficiently accumulate in lung tissues and swiftly penetrate the pulmonary mucosa. Intracellularly, baicalin exhibits free radical scavenging activity to suppress inflammation. Concurrently, the release of Cu2+ and DSF enables the in situ generation of CuET, a potent inhibitor of cell pyroptosis. Harnessing these multifaceted mechanisms, the nanoparticles alleviate lung injury symptoms without notable toxic side effects, suggesting a promising preventive strategy for OLV-LIRI.
Collapse
Affiliation(s)
- Yujie Fan
- Department of Anesthesiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, Hunan, 410007, China
| | - Yangqin Ou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Ting Xiao
- Department of Anesthesiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, Hunan, 410007, China
| | - Ziye Wei
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - LiLing Zhu
- Department of Anesthesiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, Hunan, 410007, China
| | - Chenghao Zhu
- Department of Anesthesiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, Hunan, 410007, China
| | - Yiran Ma
- Hunan Prize Life Science Research Institute Co., LTD. No. 101 WenYi Road, Changsha, Hunan, 410008, China
| | - Shuangquan Qu
- Department of Anesthesiology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, Hunan, 410007, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
- Key Laboratory of Biological Nanotechnology, NHC. No. 87 XiangYa Road, Changsha, Hunan, 410008, China
| |
Collapse
|
8
|
Koyun GB, Berk S, Dogan OT. The importance of SII and FIB-4 scores in predicting mortality in idiopathic pulmonary fibrosis patients. Clin Biochem 2024; 131-132:110789. [PMID: 38977211 DOI: 10.1016/j.clinbiochem.2024.110789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
INTRODUCTION Quick and simple parameters are needed to predict mortality in patients with idiopathic pulmonary fibrosis (IPF). In this way, risky patients will have the opportunity to receive early and effective treatment. In this study, we examined whether the Fibrosis-4 index (FIB-4) and systemic immune inflammation index (SII) are associated with mortality in IPF patients. MATERIALS AND METHODS The study was designed retrospectively. 100 patients diagnosed with IPF were included in the study. Variables between living patients and deceased patients were examined. RESULTS Out of a total of 100 patients, 67 were divided into the surviving group and 33 into the non-surviving group. In multivariate analysis, high FIB-4 and SII values were significantly associated with an increased risk of death. CONCLUSION FIB-4 and SII are parameters that can predict mortality in IPF patients. In this way, IPF patients with high mortality risk will be identified earlier and more effective methods will be used in follow-up and treatment.
Collapse
Affiliation(s)
- Gorkem Berna Koyun
- Sivas Cumhuriyet University Hospital, Department of Chest Disease, Sivas, Turkey.
| | - Serdar Berk
- Sivas Cumhuriyet University Hospital, Department of Chest Disease, Sivas, Turkey
| | - Omer Tamer Dogan
- Sivas Cumhuriyet University Hospital, Department of Chest Disease, Sivas, Turkey
| |
Collapse
|
9
|
Hernández-Ayala LF, Guzmán-López EG, Pérez-González A, Reina M, Galano A. Molecular Insights on Coffee Components as Chemical Antioxidants. J MEX CHEM SOC 2024; 68:888-969. [DOI: 10.29356/jmcs.v68i4.2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Coffee is not only a delicious beverage but also an important dietary source of natural antioxidants. We live in a world where it is impossible to avoid pollution, stress, food additives, radiation, and other sources of oxidants that eventually lead to severe health disorders. Fortunately, there are chemicals in our diet that counteract the hazards posed by the reactive species that trigger oxidative stress. They are usually referred to as antioxidants; some of them can be versatile compounds that exert such a role in many ways. This review summarizes, from a chemical point of view, the antioxidant effects of relevant molecules found in coffee. Their mechanisms of action, trends in activity, and the influence of media and pH in aqueous solutions, are analyzed. Structure-activity relationships are discussed, and the protective roles of these compounds are examined. A particular section is devoted to derivatives of some coffee components, and another one to their bioactivity. The data used in the analysis come from theoretical and computational protocols, which have been proven to be very useful in this context. Hopefully, the information provided here will pro-mote further investigations into the amazing chemistry contained in our morning coffee cup.
Resumen. El café no solo es una bebida deliciosa, sino también una importante fuente dietética de antioxidantes naturales. Vivimos en un mundo donde es imposible evitar la contaminación, el estrés, los aditivos alimentarios, la radiación y otras fuentes de oxidantes que eventualmente conducen a trastornos de salud graves. Afortunadamente, existen sustancias químicas en nuestra dieta que contrarrestan los peligros planteados por las especies reactivas que desencadenan el estrés oxidativo. Por lo general, se les denomina antioxidantes; algunos de ellos pueden ser compuestos versátiles que ejercen dicho papel de muchas maneras. Este artículo de revisión resume, desde un punto de vista químico, los efectos antioxidantes de moléculas relevantes encontradas en el café. Se analizan sus mecanismos de acción, tendencias en la actividad y la influencia del medio y el pH en soluciones acuosas. Se discuten las relaciones estructura-actividad, y se examinan los roles protectores de estos compuestos. Se dedica una sección particular a los derivados de algunos componentes del café, y otra a su bioactividad. Los datos utilizados en el análisis provienen de protocolos teóricos y computacionales, que han demostrado ser muy útiles en este contexto. Se espera que la información proporcionada aquí promueva investigaciones futuras sobre la química contenida en nuestra taza de café matutina.
Collapse
|
10
|
Roy D, Kim J, Lee M, Kim S, Park J. PM10-bound microplastics and trace metals: A public health insight from the Korean subway and indoor environments. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135156. [PMID: 39079300 DOI: 10.1016/j.jhazmat.2024.135156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 08/17/2024]
Abstract
Inhalable airborne microplastics (MPs) presented in indoor and outdoor environments, can deeply penetrate the lungs, potentially triggering inflammation and respiratory illnesses. The present study aims to evaluate human health risks from respirable particulate matter (PM)-bound trace metals and MPs in indoor (SW- subway and IRH- indoor residential houses) and outdoor (OD) environments. This research provides an initial approach to human respiratory tract (HRT) mass depositions of PM10-bound total MPs and nine specific MP types to predict potential human health threats from inhalation exposure. Results indicate that PM-bound trace metals and MPs were around 4 times higher in SW microenvironments compared to OD locations. In IRH, cancer risk (CR) levels were estimated 9 and 4 times higher for PM10 and PM2.5, respectively. Additionally, MP particle depositions per gram of lung cell weight were highest in IRH (23.77), followed by OD and SW. Whereas, lifetime alveoli depositions of MPs were estimated at 13.73 MP/g, which exceeds previously reported respiratory disease fatality cases by 10 to 5 times. Prolonged exposure duration at IRH emerged as a key factor contributing to increased CR and MP lung deposition levels. This research highlights severe lung risks from inhaling PM-bound MPs and metals, offering valuable health insights.
Collapse
Affiliation(s)
- Debananda Roy
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jayun Kim
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Minjoo Lee
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seunga Kim
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Joonhong Park
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
11
|
Yutani R, Venketaraman V, Sheren N. Treatment of Acute and Long-COVID, Diabetes, Myocardial Infarction, and Alzheimer's Disease: The Potential Role of a Novel Nano-Compound-The Transdermal Glutathione-Cyclodextrin Complex. Antioxidants (Basel) 2024; 13:1106. [PMID: 39334765 PMCID: PMC11429141 DOI: 10.3390/antiox13091106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Oxidative stress (OS) occurs from excessive reactive oxygen species or a deficiency of antioxidants-primarily endogenous glutathione (GSH). There are many illnesses, from acute and post-COVID-19, diabetes, myocardial infarction to Alzheimer's disease, that are associated with OS. These dissimilar illnesses are, in order, viral infections, metabolic disorders, ischemic events, and neurodegenerative disorders. Evidence is presented that in many illnesses, (1) OS is an early initiator and significant promotor of their progressive pathophysiologic processes, (2) early reduction of OS may prevent later serious and irreversible complications, (3) GSH deficiency is associated with OS, (4) GSH can likely reduce OS and restore adaptive physiology, (5) effective administration of GSH can be accomplished with a novel nano-product, the GSH/cyclodextrin (GC) complex. OS is an overlooked pathological process of many illnesses. Significantly, with the GSH/cyclodextrin (GC) complex, therapeutic administration of GSH is now available to reduce OS. Finally, rigorous prospective studies are needed to confirm the efficacy of this therapeutic approach.
Collapse
Affiliation(s)
- Ray Yutani
- Department of Family Medicine, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vishwanath Venketaraman
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Nisar Sheren
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
12
|
Carlson DA, True C, Wilson CG. Oxidative stress and food as medicine. Front Nutr 2024; 11:1394632. [PMID: 39262430 PMCID: PMC11387802 DOI: 10.3389/fnut.2024.1394632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/24/2024] [Indexed: 09/13/2024] Open
Abstract
There has been a sea of change in our understanding of the contribution of food to both our well-being and disease states. When one addresses "food as medicine," the concept of oxidative stress needs to be included. This review interconnects the basic science findings of oxidative stress and redox balance with the medicinal use of food, emphasizing optimization of the redox balance. To better illustrate the impacts of oxidative stress, the concept of the "triple oxidant sink" is introduced as a theoretical gauge of redox balance. Utilizing the concept, the true importance of dietary and lifestyle factors can be emphasized, including the limitations of supplements or a handful of "superfoods," if the remainder of the factors are pro-oxidant. The effects of a whole plant food diet compared with those of dietary supplements, processed foods, animal based nutrients, or additional lifestyle factors can be visually demonstrated with this concept. This paper provides an overview of the process, acknowledging that food is not the only mechanism for balancing the redox status, but one that can be strategically used to dramatically improve the oxidative state, and thus should be used as medicine.
Collapse
Affiliation(s)
- DuWayne A Carlson
- Community Hospital of Grand Junction, Grand Junction, CO, United States
| | - Cheryl True
- Genesis Health System, Davenport, IA, United States
| | | |
Collapse
|
13
|
Lian Z, Kuerban R, Niu Z, Aisaiti P, Wu C, Yang X. Notch Signaling Is Associated with Pulmonary Fibrosis in Patients with Pigeon Breeder's Lung by Regulating Oxidative Stress. Emerg Med Int 2024; 2024:7610032. [PMID: 39139588 PMCID: PMC11321885 DOI: 10.1155/2024/7610032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/03/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
This study explored the molecular mechanism underlying the association of Notch signaling and oxidative stress with the occurrence of pulmonary fibrosis in patients with pigeon breeder's lung (PBL). Rat models of fibrotic PBL were constructed with freeze-dried protein powder, and the animals were divided into the control (intratracheal instillation of normal saline; n = 9), M (PBL model; intratracheal instillation of freeze-dried protein powder; n = 9), and M + D (PBL+ the Notch inhibitor DAPT; n = 9) groups. Immunohistochemistry was employed to observe the protein levels of pathway factors and α-SMA, and the levels of ROS, GSH-PX, SOD, and MDA were observed using ELISA. To verify the results of the animal experiment, cytological models were constructed. The M group and the M + D group had significantly increased α-SMA levels (P < 0.05). Although both groups had significantly higher key protein levels in the Notch channel, the M + D group had significantly lower levels relative to the M group (P < 0.05). Oxidative stress products were examined, and the levels of MDA and ROS were significantly increased, while those of GSH-PX and SOD were significantly decreased in the M and M + D groups as compared to the control, but the M group and the M + D group significantly differed (P < 0.05). These findings were further validated by the cytological experiment. Notch signaling is associated with pulmonary fibrosis in PBL by regulating cellular oxidative stress, and inhibiting this pathway can slow down pulmonary fibrosis progression.
Collapse
Affiliation(s)
- Zhichuang Lian
- Graduate SchoolXinjiang Medical University, Urumqi 830001, China
| | - Remila Kuerban
- Department of Respiratory and Critical Care MedicinePeople's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China
| | - Zongxin Niu
- Department of Respiratory and Critical Care MedicinePeople's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China
| | - Paruzha Aisaiti
- Department of Respiratory and Critical Care MedicinePeople's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China
| | - Chao Wu
- Graduate SchoolXinjiang Medical University, Urumqi 830001, China
| | - Xiaohong Yang
- Graduate SchoolXinjiang Medical University, Urumqi 830001, China
| |
Collapse
|
14
|
Kilic KD, Erisik D, Taskiran D, Turhan K, Kose T, Cetin EO, Sendemi R A, Uyanikgil Y. Protective effects of E-CG-01 (3,4-lacto cycloastragenol) against bleomycin-induced lung fibrosis in C57BL/6 mice. Biomed Pharmacother 2024; 177:117016. [PMID: 38943992 DOI: 10.1016/j.biopha.2024.117016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 07/01/2024] Open
Abstract
Idiopathic pulmonary fibrosis is an aging-related, chronic lung disease, with unclear pathogenesis and no effective treatment. One of the triggering factors in cell aging is oxidative stress and it is known to have a role in idiopathic pulmonary fibrosis. In this paper, the protective effect of the E-CG-01 (3,4-lacto-cycloastragenol) molecule in terms of its antioxidant properties was evaluated in the bleomycin induced mice lung fibrosis model. Bleomycin sulfate was administered as a single dose (2.5 U/kg body weight) intratracheally to induce lung fibrosis. E-CG-01 was administered intraperitoneally in three different doses (2 mg/kg/day, 6 mg/kg/day, and 10 mg/kg/day) for 14 days, starting three days before the bleomycin administration. Fibrosis was examined by Hematoxylin-Eosin, Masson Trichrome, and immunohistochemical staining for TGF-beta1, Type I collagen Ki-67, and gama-H2AX markers. Activity analysis of catalase and Superoxide dismutase enzymes, measurement of total oxidant, total glutathione, and Malondialdehyde levels. In histological analysis, it was determined that all three different doses of the molecule provided a prophylactic effect against the progression of fibrosis compared to the bleomycin control group. However, it was observed that only the molecule applied in the high dose decreased the total oxidant stress level. Lung weight ratio increased in the BLM group but significantly reduced with high-dose E-CG-01. E-CG-01 at all doses reduced collagen deposition, TGF-β expression, and Ki-67 expression compared to the BLM group. Intermediate and high doses of E-CG-01 also significantly reduced alveolar wall thickness and edema formation. These findings suggest that E-CG-01 has potential therapeutic effects in mitigating lung fibrosis through its antioxidant properties.
Collapse
Affiliation(s)
- Kubilay Dogan Kilic
- Ege University, Faculty of Medicine, Department of Histology and Embryology, İzmir, Turkiye; Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde, Berlin, Germany.
| | - Derya Erisik
- Ege University, Faculty of Medicine, Department of Histology and Embryology, İzmir, Turkiye
| | - Dilek Taskiran
- Ege University, Faculty of Medicine, Department of Physiology, İzmir, Turkiye
| | - Kutsal Turhan
- Ege University, Faculty of Medicine, Department of Thoracic Surgery, İzmir, Turkiye; Acibadem Kent Hospital, Department of Thoracic Surgery, İzmir, Türkiye
| | - Timur Kose
- Ege University, Faculty of Medicine, Department of Biostatistics and Medical Informatics, İzmir, Turkiye
| | - Emel Oyku Cetin
- Ege University, Faculty of Pharmacy, Department of Biopharmaceutics and Pharmacokinetics, İzmir, Turkiye
| | - Aylin Sendemi R
- Ege University, Faculty of Engineering, Department of Bioengineering, İzmir, Turkiye
| | - Yiğit Uyanikgil
- Ege University, Faculty of Medicine, Department of Histology and Embryology, İzmir, Turkiye; Ege University, Cord Blood Cell - Tissue Research and Application Center, İzmir, Turkiye; Ege University, Institute of Health Sciences, Department of Stem Cell, İzmir, Turkiye
| |
Collapse
|
15
|
Liang J, Huang G, Liu X, Zhang X, Rabata A, Liu N, Fang K, Taghavifar F, Dai K, Kulur V, Jiang D, Noble PW. Lipid Deficiency Contributes to Impaired Alveolar Progenitor Cell Function in Aging and Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2024; 71:242-253. [PMID: 38657143 PMCID: PMC11299087 DOI: 10.1165/rcmb.2023-0290oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/24/2024] [Indexed: 04/26/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an aging-associated interstitial lung disease resulting from repeated epithelial injury and inadequate epithelial repair. Alveolar type II cells (AEC2s) are progenitor cells that maintain epithelial homeostasis and repair the lung after injury. In the current study, we assessed lipid metabolism in AEC2s from human lungs of patients with IPF and healthy donors, as well as AEC2s from bleomycin-injured young and old mice. Through single-cell RNA sequencing, we observed that lipid metabolism-related genes were downregulated in IPF AEC2s and bleomycin-injured mouse AEC2s. Aging aggravated this decrease and hindered recovery of lipid metabolism gene expression in AEC2s after bleomycin injury. Pathway analyses revealed downregulation of genes related to lipid biosynthesis and fatty acid β-oxidation in AEC2s from IPF lungs and bleomycin-injured, old mouse lungs compared with the respective controls. We confirmed decreased cellular lipid content in AEC2s from IPF lungs and bleomycin-injured, old mouse lungs using immunofluorescence staining and flow cytometry. Futhermore, we show that lipid metabolism was associated with AEC2 progenitor function. Lipid supplementation and PPARγ (peroxisome proliferator activated receptor γ) activation promoted progenitor renewal capacity of both human and mouse AEC2s in three-dimensional organoid cultures. Lipid supplementation also increased AEC2 proliferation and expression of SFTPC in AEC2s. In summary, we identified a lipid metabolism deficiency in AEC2s from lungs of patients with IPF and bleomycin-injured old mice. Restoration of lipid metabolism homeostasis in AEC2s might promote AEC2 progenitor function and offer new opportunities for therapeutic approaches to IPF.
Collapse
Affiliation(s)
- Jiurong Liang
- Department of Medicine and Women’s Guild Lung Institute, and
| | - Guanling Huang
- Department of Medicine and Women’s Guild Lung Institute, and
| | - Xue Liu
- Department of Medicine and Women’s Guild Lung Institute, and
| | - Xuexi Zhang
- Department of Medicine and Women’s Guild Lung Institute, and
| | - Anas Rabata
- Department of Medicine and Women’s Guild Lung Institute, and
| | - Ningshan Liu
- Department of Medicine and Women’s Guild Lung Institute, and
| | - Kai Fang
- Department of Medicine and Women’s Guild Lung Institute, and
| | | | - Kristy Dai
- Department of Medicine and Women’s Guild Lung Institute, and
| | - Vrishika Kulur
- Department of Medicine and Women’s Guild Lung Institute, and
| | - Dianhua Jiang
- Department of Medicine and Women’s Guild Lung Institute, and
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Paul W. Noble
- Department of Medicine and Women’s Guild Lung Institute, and
| |
Collapse
|
16
|
Lee S, Lee CH, Lee J, Jeong Y, Park JH, Nam IJ, Lee DS, Lee HM, Ahn SY, Kim E, Jeong S, Yu SS, Lee W. Botanical formulation HX110B ameliorates PPE-induced emphysema in mice via regulation of PPAR/RXR signaling pathway. PLoS One 2024; 19:e0305911. [PMID: 39052574 PMCID: PMC11271920 DOI: 10.1371/journal.pone.0305911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 06/04/2024] [Indexed: 07/27/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD), an inflammatory lung disease, causes approximately 3 million deaths each year; however, its pathological mechanisms are not fully understood. In this study, we examined whether HX110B, a mixture of Taraxacum officinale, Dioscorea batatas, and Schizonepeta tenuifolia extracts, could suppress porcine pancreatic elastase (PPE)-induced emphysema in mice and its mechanism of action. The therapeutic efficacy of HX110B was tested using a PPE-induced emphysema mouse model and human bronchial epithelial cell line BEAS-2B. In vivo data showed that the alveolar wall and air space expansion damaged by PPE were improved by HX110B administration. HX110B also effectively suppresses the expression levels of pro-inflammatory mediators including IL-6, IL-1β, MIP-2, and iNOS, while stimulating the expression of lung protective factors such as IL-10, CC16, SP-D, and sRAGE. Moreover, HX110B improved the impaired OXPHOS subunit gene expression. In vitro analysis revealed that HX110B exerted its effects by activating the PPAR-RXR signaling pathways. Overall, our data demonstrated that HX110B could be a promising therapeutic option for COPD treatment.
Collapse
Affiliation(s)
- Soojin Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Chang Hyung Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Jungkyu Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Yoonseon Jeong
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Jong-Hyung Park
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - In-Jeong Nam
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Doo Suk Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Hyun Myung Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Soo-Yeon Ahn
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Eujung Kim
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Seungyeon Jeong
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Seung-Shin Yu
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Wonwoo Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| |
Collapse
|
17
|
Rezaie F, Ghafouri Khosroshahi A, Larki-Harchegani A, Nourian A, Khosravi H. Hydroalcoholic Sumac Extract as a Protective Agent Against X-Ray-Induced Pulmonary Fibrosis. Rep Biochem Mol Biol 2024; 13:231-242. [PMID: 39995652 PMCID: PMC11847579 DOI: 10.61186/rbmb.13.2.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/23/2024] [Indexed: 02/26/2025]
Abstract
Background X-ray exposure can result in acute or chronic damage to lung tissue, leading to pneumonitis and fibrosis. Given the potent antioxidant properties of sumac, this study investigates the impact of hydroalcoholic sumac extract on X-ray-induced pulmonary fibrosis in rats. Methods In this experimental study, 36 rats were randomly divided into six groups of six rats each. The treatment and sham groups received intraperitoneal administration of the extract daily for one week before exposure to X-ray radiation. On the seventh day, all rats except those in group 3 were exposed to 2 Gy of 6 MV X-rays using an electro-linear accelerator. Lung tissue was subsequently removed to assess the subacute effects of the extract. Data analysis involved independent sample t-tests and one-way ANOVA using SPSS 26. Results A single dose of X-rays significantly increased oxidative stress and lung tissue damage in rats. However, rats receiving vitamin C and hydroalcoholic sumac extract at two different doses (100 and 400 mg/kg intraperitoneally) positively improved lung damage and decreased antioxidant parameters. Conclusions The findings demonstrate that hydroalcoholic sumac extract can mitigate oxidative stress and enhance lung repair following X-ray radiation exposure.
Collapse
Affiliation(s)
- Faezeh Rezaie
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| | | | - Amir Larki-Harchegani
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Alireza Nourian
- Department of Pathobiology, School of Veterinary Science, Bu-Ali Sina University, Hamadan, Iran.
| | - Hossein Khosravi
- Department of Radiology, School of Allied Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
18
|
Li Y, Tuerxun H, Zhao Y, Liu X, Li X, Wen S, Zhao Y. The new era of lung cancer therapy: Combining immunotherapy with ferroptosis. Crit Rev Oncol Hematol 2024; 198:104359. [PMID: 38615871 DOI: 10.1016/j.critrevonc.2024.104359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/12/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Ferroptosis is an unconventional programmed cell death mode caused by phospholipid peroxidation dependent on iron. Emerging immunotherapies (especially immune checkpoint inhibitors) have the potential to enhance lung cancer patients' long-term survival. Although immunotherapy has yielded significant positive applications in some patients, there are still many mechanisms that can cause lung cancer cells to evade immunity, thus leading to the failure of targeted therapies. Immune-tolerant cancer cells are insensitive to conventional death pathways such as apoptosis and necrosis, whereas mesenchymal and metastasis-prone cancer cells are particularly vulnerable to ferroptosis, which plays a vital role in mediating immune tolerance resistance by tumors and immune cells. As a result, triggering lung cancer cell ferroptosis holds significant therapeutic potential for drug-resistant malignancies. Here, we summarize the mechanisms underlying the suppression of ferroptosis in lung cancer, highlight its function in the lung cancer immune microenvironment, and propose possible therapeutic strategies.
Collapse
Affiliation(s)
- Yawen Li
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Halahati Tuerxun
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yixin Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xingyu Liu
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xi Li
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Shuhui Wen
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yuguang Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
19
|
Wang Y, Huang X, Luo G, Xu Y, Deng X, Lin Y, Wang Z, Zhou S, Wang S, Chen H, Tao T, He L, Yang L, Yang L, Chen Y, Jin Z, He C, Han Z, Zhang X. The aging lung: microenvironment, mechanisms, and diseases. Front Immunol 2024; 15:1383503. [PMID: 38756780 PMCID: PMC11096524 DOI: 10.3389/fimmu.2024.1383503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
With the development of global social economy and the deepening of the aging population, diseases related to aging have received increasing attention. The pathogenesis of many respiratory diseases remains unclear, and lung aging is an independent risk factor for respiratory diseases. The aging mechanism of the lung may be involved in the occurrence and development of respiratory diseases. Aging-induced immune, oxidative stress, inflammation, and telomere changes can directly induce and promote the occurrence and development of lung aging. Meanwhile, the occurrence of lung aging also further aggravates the immune stress and inflammatory response of respiratory diseases; the two mutually affect each other and promote the development of respiratory diseases. Explaining the mechanism and treatment direction of these respiratory diseases from the perspective of lung aging will be a new idea and research field. This review summarizes the changes in pulmonary microenvironment, metabolic mechanisms, and the progression of respiratory diseases associated with aging.
Collapse
Affiliation(s)
- Yanmei Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Xuewen Huang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guofeng Luo
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunying Xu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiqian Deng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhanzhan Wang
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Shuwei Zhou
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Siyu Wang
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Haoran Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Tao
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Lei He
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Luchuan Yang
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Li Yang
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences (Sichuan Second Hospital of T.C.M), Chengdu, China
| | - Yutong Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zi Jin
- Department of Anesthesiology and Pain Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Chengshi He
- Department of Respiratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohong Zhang
- Department of Emergency Medicine Center, Sichuan Province People’s Hospital University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
20
|
Kong J, Fan R, Zhang Y, Jia Z, Zhang J, Pan H, Wang Q. Oxidative stress in the brain-lung crosstalk: cellular and molecular perspectives. Front Aging Neurosci 2024; 16:1389454. [PMID: 38633980 PMCID: PMC11021774 DOI: 10.3389/fnagi.2024.1389454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Oxidative stress is caused by an imbalance between the production of reactive oxygen species (ROS) and the body's ability to counteract their harmful effects, playing a key role in the pathogenesis of brain and lung-related diseases. This review comprehensively examines the intricate mechanisms by which oxidative stress influences cellular and molecular pathways, contributing to neurodegenerative, cardiovascular, and respiratory disorders. Emphasizing the detrimental effects on both brain and lung health, we discuss innovative diagnostic biomarkers, such as 8-hydroxy-2'-deoxyguanosine (8-OHdG), and the potential of antioxidant therapies. For these topics, we provide insights into future research directions in the field of oxidative stress treatment, including the development of personalized treatment approaches, the discovery and validation of novel biomarkers, and the development of new drug delivery systems. This review not only provides a new perspective on understanding the role of oxidative stress in brain and lung-related diseases but also offers new insights for future clinical treatments.
Collapse
Affiliation(s)
- Jianda Kong
- College of Sports Science, Qufu Normal University, Jining, China
| | - Rao Fan
- College of Sports Science, Qufu Normal University, Jining, China
| | - Yuanqi Zhang
- College of Sports Science, Qufu Normal University, Jining, China
| | - Zixuan Jia
- College of Sport and Health, Shandong Sport University, Jinan, China
| | - Jing Zhang
- College of Sport and Health, Shandong Sport University, Jinan, China
| | - Huixin Pan
- College of Sport and Health, Shandong Sport University, Jinan, China
| | - Qinglu Wang
- College of Sport and Health, Shandong Sport University, Jinan, China
| |
Collapse
|
21
|
Fontes BLM, de Souza E Souza LC, da Silva de Oliveira APS, da Fonseca RN, Neto MPC, Pinheiro CR. The possible impacts of nano and microplastics on human health: lessons from experimental models across multiple organs. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024:1-35. [PMID: 38517360 DOI: 10.1080/10937404.2024.2330962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The widespread production and use of plastics have resulted in accumulation of plastic debris in the environment, gradually breaking down into smaller particles over time. Nano-plastics (NPs) and microplastics (MPs), defined as particles smaller than 100 nanometers and 5 millimeters, respectively, raise concerns due to their ability to enter the human body through various pathways including ingestion, inhalation, and skin contact. Various investigators demonstrated that these particles may produce physical and chemical damage to human cells, tissues, and organs, disrupting cellular processes, triggering inflammation and oxidative stress, and impacting hormone and neurotransmitter balance. In addition, micro- and nano-plastics (MNPLs) may carry toxic chemicals and pathogens, exacerbating adverse effects on human health. The magnitude and nature of these effects are not yet fully understood, requiring further research for a comprehensive risk assessment. Nevertheless, evidence available suggests that accumulation of these particles in the environment and potential human uptake are causes for concern. Urgent measures to reduce plastic pollution and limit human exposure to MNPLs are necessary to safeguard human health and the environment. In this review, current knowledge regarding the influence of MNPLs on human health is summarized, including toxicity mechanisms, exposure pathways, and health outcomes across multiple organs. The critical need for additional research is also emphasized to comprehensively assess potential risks posed by degradation of MNPLs on human health and inform strategies for addressing this emerging environmental health challenge. Finally, new research directions are proposed including evaluation of gene regulation associated with MNPLs exposure.
Collapse
Affiliation(s)
- Bernardo Lannes Monteiro Fontes
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lorena Cristina de Souza E Souza
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Santos da Silva de Oliveira
- Núcleo Multidisciplinar de Pesquisas em Biologia - NUMPEX-BIO, Campus Duque de Caxias Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Duque de Caxias, Brazil
| | - Rodrigo Nunes da Fonseca
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marinaldo Pacifico Cavalcanti Neto
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cintia Rodrigues Pinheiro
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Zhao J, Ma X, Li S, Liu C, Liu Y, Tan J, Yu L, Li X, Li W. Berberine hydrochloride ameliorates PM2.5-induced pulmonary fibrosis in mice through inhibiting oxidative stress and inflammatory. Chem Biol Interact 2023; 386:110731. [PMID: 37839514 DOI: 10.1016/j.cbi.2023.110731] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
Elevated levels of respirable particulate matter (PM) have been strongly linked to disease incidence and mortality in population-based epidemiological studies. Berberine hydrochloride (BBR), an isoquinoline alkaloid found in Coptis chinensis, exhibits antipyretic, anti-inflammatory, and antioxidant properties. However, the protective effects and underlying mechanism of BBR against pulmonary fibrosis remain unclear. This study aimed to investigate the protective effect of BBR on lung tissue damage using a mouse model of PM2.5-induced pulmonary fibrosis. SPF grade C57BL/6 mice were randomly assigned to four groups, each consisting of 10 mice. The mice were pretreated with BBR (50 mg/kg) by gavage for 45 consecutive days. A tracheal drip of PM2.5 suspension (8 mg/kg) was administered once every three days for a total of 15 times to induce lung fibrosis. Moreover, the results demonstrated that PM2.5 was found to inhibit the PPARγ signaling pathway, increase ROS expression, upregulate protein levels of IL-6, IL-1β, TNF-α, as well as regulation of gene expression of STAT3 and SOCS3. Importantly, PM2.5 induced lung fibrosis by promoting collagen deposition, upregulating gene expression of fibrosis markers (TGF-β1, FN, α-SMA, COL-1, and COL-3), and downregulating E-cadherin expression. Remarkably, our findings suggest that these injuries could be reversed by BBR pretreatment. BBR acts as a PPARγ agonist in PM2.5-induced pulmonary fibrosis, activating the PPARγ signaling pathway to mitigate oxidative and inflammatory factor-mediated lung injury. This study provides valuable insights for the future prevention and treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jiali Zhao
- School of Public Health, Weifang Medical University, Weifang, 261053, China
| | - Xuan Ma
- School of Public Health, Weifang Medical University, Weifang, 261053, China
| | - Siqi Li
- School of Public Health, Weifang Medical University, Weifang, 261053, China
| | - Chen Liu
- School of Public Health, Weifang Medical University, Weifang, 261053, China
| | - Yumei Liu
- School of Public Health, Weifang Medical University, Weifang, 261053, China; Weifang Key Laboratory of Health Inspection and Quarantine, Weifang, 261053, China
| | - Jinfeng Tan
- Weifang Environmental Monitoring Station, Weifang, 261044, China
| | - Li Yu
- School of Basic Medicine, Weifang Medical University, Weifang, 261053, China
| | - Xiaohong Li
- School of Public Health, Weifang Medical University, Weifang, 261053, China; "Healthy Shandong" Major Social Risk Prediction and Management Collaborative Innovation Center, Weifang, 261053, China; Weifang Key Laboratory of Health Inspection and Quarantine, Weifang, 261053, China.
| | - Wanwei Li
- School of Public Health, Weifang Medical University, Weifang, 261053, China; "Healthy Shandong" Major Social Risk Prediction and Management Collaborative Innovation Center, Weifang, 261053, China; Weifang Key Laboratory of Health Inspection and Quarantine, Weifang, 261053, China.
| |
Collapse
|
23
|
Bae S, Kim IK, Im J, Lee H, Lee SH, Kim SW. Impact of lipopolysaccharide-induced acute lung injury in aged mice. Exp Lung Res 2023; 49:193-204. [PMID: 38006357 DOI: 10.1080/01902148.2023.2285061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
Study Aim: As the geriatric population rapidly expands, there has been a concurrent increase in elderly admissions to intensive care units (ICUs). Acute lung injury (ALI) is a prevalent reason for these admissions and carries poorer survival rates for the aged population compared to younger counterparts. The aging lung is subject to physiological, cellular, and immunological changes. However, our understanding of how aging impacts the clinical progression of ALI is limited. This study explored the effect of aging using a murine model of ALI. Methods: Female C57BL/6J mice, aged 7-8 wk (young) and 18 months (aged), were divided into four groups: young controls, aged controls, young with ALI (YL), and aged with ALI (AL). ALI was induced via intratracheal administration of lipopolysaccharide (LPS, 0.5 mg/kg). The animals were euthanized 72 h after LPS exposure. Results: The AL group exhibited a significantly increased wet/dry ratio compared to the other three groups, including the YL group. The bronchoalveolar lavage (BAL) fluid in the AL group had more cells overall, including more neutrophils, than the other groups. Inflammatory cytokines in BAL fluid showed similar trends. Histological analyses demonstrated more severe lung injury and fibrosis in the AL group than in the other groups. Increased transcription of senescence-associated secretory phenotype markers, including PAI-1 and MUC5B, was more prominent in the AL group than in the other groups. This trend was also observed in BAL samples from humans with pneumonia. Conclusions: Aging may amplify lung damage and inflammatory responses in ALI. This suggests that physicians should exercise increased caution in the clinical management of aged patients with ALI.
Collapse
Affiliation(s)
- Sukjin Bae
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - In Kyoung Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeonghyeon Im
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Heayon Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang Haak Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sei Won Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
24
|
Ruan Z, Li D, Huang D, Liang M, Xu Y, Qiu Z, Chen X. Relationship between an ageing measure and chronic obstructive pulmonary disease, lung function: a cross-sectional study of NHANES, 2007-2010. BMJ Open 2023; 13:e076746. [PMID: 37918922 PMCID: PMC10626813 DOI: 10.1136/bmjopen-2023-076746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/28/2023] [Indexed: 11/04/2023] Open
Abstract
OBJECTIVES Chronic obstructive pulmonary disease (COPD) is a disease associated with ageing. However, actual age does not accurately reflect the degree of biological ageing. Phenotypic age (PhenoAge) is a new indicator of biological ageing, and phenotypic age minus actual age is known as phenotypic age acceleration (PhenoAgeAccel). This research aimed to analyse the relationship between PhenoAgeAccel and lung function and COPD. DESIGN A cross-sectional study. PARTICIPANTS Data for the study were obtained from the National Health and Nutrition Examination Survey (NHANES) 2007-2010. We defined people with forced expiratory volume in 1 s/forced vital capacity <0.70 after inhaled bronchodilators as COPD and the rest of the population as non-COPD. Adults aged 40 years or older were enrolled in the study. PRIMARY AND SECONDARY OUTCOME MEASURES Linear and logistic regression were used to investigate the relationship between PhenoAgeAccel, lung function and COPD. Subgroup analysis was performed by gender, age, ethnicity and smoking index COPD. In addition, we analysed the relationship between the smoking index, respiratory symptoms and PhenoAgeAccel. Multiple models were used to reduce confounding bias. RESULTS 5397 participants were included in our study, of which 1042 had COPD. Compared with PhenoAgeAccel Quartile1, Quartile 4 had a 52% higher probability of COPD; elevated PhenoAgeAccel was also significantly associated with reduced lung function. Further subgroup analysis showed that high levels of PhenoAgeAccel had a more significant effect on lung function in COPD, older adults and whites (P for interaction <0.05). Respiratory symptoms and a high smoking index were related to higher indicators of ageing. CONCLUSIONS Our study found that accelerated ageing is associated with the development of COPD and impaired lung function. Smoking cessation and anti-ageing therapy have potential significance in COPD.
Collapse
Affiliation(s)
- Zhishen Ruan
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dan Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Di Huang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Minghao Liang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yifei Xu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhanjun Qiu
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Xianhai Chen
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| |
Collapse
|
25
|
Liang J, Huang G, Liu X, Liu N, Taghavifar F, Dai K, Yao C, Deng N, Wang Y, Chen P, Hogaboam C, Stripp BR, Parks WC, Noble PW, Jiang D. Reciprocal interactions between alveolar progenitor dysfunction and aging promote lung fibrosis. eLife 2023; 12:e85415. [PMID: 37314162 PMCID: PMC10292844 DOI: 10.7554/elife.85415] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/13/2023] [Indexed: 06/15/2023] Open
Abstract
Aging is a critical risk factor in idiopathic pulmonary fibrosis (IPF). Dysfunction and loss of type 2 alveolar epithelial cells (AEC2s) with failed regeneration is a seminal causal event in the pathogenesis of IPF, although the precise mechanisms for their regenerative failure and demise remain unclear. To systematically examine the genomic program changes of AEC2s in aging and after lung injury, we performed unbiased single-cell RNA-seq analyses of lung epithelial cells from uninjured or bleomycin-injured young and old mice, as well as from lungs of IPF patients and healthy donors. We identified three AEC2 subsets based on their gene signatures. Subset AEC2-1 mainly exist in uninjured lungs, while subsets AEC2-2 and AEC2-3 emerged in injured lungs and increased with aging. Functionally, AEC2 subsets are correlated with progenitor cell renewal. Aging enhanced the expression of the genes related to inflammation, stress responses, senescence, and apoptosis. Interestingly, lung injury increased aging-related gene expression in AEC2s even in young mice. The synergistic effects of aging and injury contributed to impaired AEC2 recovery in aged mouse lungs after injury. In addition, we also identified three subsets of AEC2s from human lungs that formed three similar subsets to mouse AEC2s. IPF AEC2s showed a similar genomic signature to AEC2 subsets from bleomycin-injured old mouse lungs. Taken together, we identified synergistic effects of aging and AEC2 injury in transcriptomic and functional analyses that promoted fibrosis. This study provides new insights into the interactions between aging and lung injury with interesting overlap with diseased IPF AEC2 cells.
Collapse
Affiliation(s)
- Jiurong Liang
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical CenterLos AngelesUnited States
| | - Guanling Huang
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical CenterLos AngelesUnited States
| | - Xue Liu
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical CenterLos AngelesUnited States
| | - Ningshan Liu
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical CenterLos AngelesUnited States
| | - Forough Taghavifar
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical CenterLos AngelesUnited States
| | - Kristy Dai
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical CenterLos AngelesUnited States
| | - Changfu Yao
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical CenterLos AngelesUnited States
| | - Nan Deng
- Genomics Core, Cedars-Sinai Medical Centerlos AngelesUnited States
| | - Yizhou Wang
- Genomics Core, Cedars-Sinai Medical Centerlos AngelesUnited States
| | - Peter Chen
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical CenterLos AngelesUnited States
| | - Cory Hogaboam
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical CenterLos AngelesUnited States
| | - Barry R Stripp
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical CenterLos AngelesUnited States
| | - William C Parks
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical CenterLos AngelesUnited States
- Department of Biomedical Sciences, Cedars-Sinai Medical CenterLos AngelesUnited States
| | - Paul W Noble
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical CenterLos AngelesUnited States
| | - Dianhua Jiang
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical CenterLos AngelesUnited States
- Department of Biomedical Sciences, Cedars-Sinai Medical CenterLos AngelesUnited States
| |
Collapse
|
26
|
Lee YJ, Hwang IC, Ahn HY. The association between oxidative balance score and lung function: A nationwide cross-sectional survey. Heliyon 2023; 9:e14650. [PMID: 36994413 PMCID: PMC10040707 DOI: 10.1016/j.heliyon.2023.e14650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Purpose Given the impact of oxidative imbalance on the development of airway pathologies, this study was undertaken to investigate the association between oxidative balance (OB) scores and lung function in the adult Korean population. Methods Data of 17,368 adults with available OB scores and pulmonary function test results were extracted from the 2013-2019 Korean National Health and Nutrition Examination Surveys. Multivariable logistic regression models were used to calculate the odds ratios (ORs) and 95% confidence intervals (CIs) for reduced forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) per 1-point decrease in OB score. Dose dependent association of reduced lung function with OB scores was also investigated. Results Males, low-income subjects, individuals with comorbidities, and those with reduced pulmonary function had lower OB scores (representing oxidative balance). Overall, the association between oxidative imbalance and reduced lung function was remarkable in FVC than FEV1 (OR [95% CI], 1.06 [1.04-1.07] vs. 1.03 [1.02-1.04]; both p < 0.001). Linear relationships between the level of reduced lung function and OB scores were significantly noted (p for trend<0.001 in both FEV1 and FVC). Conclusion Our findings suggest that oxidative imbalance is associated with reduced pulmonary function.
Collapse
Affiliation(s)
- Yoo Jeong Lee
- Department of Family Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - In Cheol Hwang
- Department of Family Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
- Corresponding author. 1198 Guwol-dong, Namdong-gu, Incheon 405-760, Republic of Korea.
| | - Hong Yup Ahn
- Department of Statistics, Dongguk University, Seoul, Republic of Korea
| |
Collapse
|
27
|
Xu Z, Xue Y, Wen H, Chen C. Association of oxidative balance score and lung health from the National Health and Nutrition Examination Survey 2007-2012. Front Nutr 2023; 9:961950. [PMID: 36698460 PMCID: PMC9869685 DOI: 10.3389/fnut.2022.961950] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023] Open
Abstract
Background Oxidative stress is associated with outcomes of chronic lung disease. The oxidative stress-related exposures of diet and lifestyle can be evaluated by the oxidative balance score (OBS), and higher OBS scores indicate more significant antioxidant exposures. But the relationship between OBS and lung health is unknown. Purpose The aim of this study was to explore the association between OBS and lung health (respiratory symptoms, chronic lung disease, and lung function). Methods A series of models, including weighted linear models, weighted logistic regression, and weighted multinomial logistic regression, were performed to assess the associations of OBS with respiratory symptoms, chronic lung disease, and lung function. The models adjusted by age, race/ethnicity, gender, educational background, poverty-to-income ratio, and dietary energy were also performed. Results Cross-sectional data of 5,214 participants from the National Health and Nutrition Examination Survey for the years 2007-2012 were analyzed. For every one-unit increase in OBS, the odds of wheezing/chronic bronchitis decreased by 6%. Increased OBS was associated with higher percent-predicted forced expiratory volume in one second (FEV1) (adjusted mean difference (MD), 0.21%; 95% CI: 0.10-0.32) and percent-predicted forced vital capacity (FVC) (adjusted MD, 0.15%; 95% CI: 0.07-0.24). A significantly lower risk of wheezing/chronic bronchitis was found in participants in the second/third/fourth OBS quartile compared to those in the first OBS quartile (all P for trend < 0.05). Moreover, higher percent-predicted FEV1 and FVC were also found in the third quartile and fourth quartile (all P for trend < 0.05). Furthermore, both dietary and lifestyle components were tightly related to pulmonary outcomes. Many associations were maintained after stratified by sex or after sensitivity analyses. Conclusion Oxidative balance score was negatively correlated with the diagnosis of chronic bronchitis/wheezing/restrictive spirometry pattern and positively correlated with percent-predicted FVC and FEV1. It seems that the higher the OBS score, the better the pulmonary outcomes. The findings highlight the importance of adherence to an antioxidant diet and lifestyle and that it contributes to lung health.
Collapse
Affiliation(s)
- Zhixiao Xu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yincong Xue
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Interventional Pulmonology of Zhejiang Province, Wenzhou, China
| | - Hezhi Wen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Interventional Pulmonology of Zhejiang Province, Wenzhou, China
| | - Chengshui Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Interventional Pulmonology of Zhejiang Province, Wenzhou, China.,The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| |
Collapse
|
28
|
Xu Y, Liu X, Zhang Z. STV-Na attenuates lipopolysaccharide-induced lung injury in mice via the TLR4/NF-kB pathway. Immun Inflamm Dis 2023; 11:e770. [PMID: 36705406 PMCID: PMC9846117 DOI: 10.1002/iid3.770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Acute lung injury (ALI) is a potentially fatal disorder that is largely caused by inflammation. Sodium isostevanol (STV-Na) is a terpenoid produced from stevioside, which possesses anti-inflammatory and antioxidative stress characteristics. nevertheless, it is still unclear how STV-Na affects ALI. Therefore, we investigated the possible STV-Na therapeutic impacts on lipopolysaccharide (LPS)-induced (ALI). METHODS We employed hematoxylin-eosin staining to observe the impact of STV-Na on lung histopathological alterations and used kits to detect the oxidative stress status of lung tissues, such as superoxide dismutase, malondialdehyde, and glutathione. The reactive oxygen species and myeloperoxidase expression in the tissues of lung was assessed by immunofluorescence and immunohistochemistry. Additionally, we detected the impact of STV-Na on inflammatory cell infiltration in lung tissue using Wright-Giemsa staining solution and immunohistochemistry, which was found to reduce inflammation in lung tissue by enzyme-linked immunosorbent assay. Finally, using WB, we examined the impact of STV-Na on the TLR4/NF-kB pathway. RESULTS We observed that STV-Na attenuated lung histopathological alterations in LPS-induced lung damage in mice, reduced infiltration of inflammatory cell and oxidative stress in the tissue of lung, and via the TLR4/NF-kB pathway, there is a reduction in the inflammatory responses in mouse lung tissue. CONCLUSIONS These outcomes indicate that the response of inflammatory cells to LPS-induced ALI in mice was attenuated by STV-Na.
Collapse
Affiliation(s)
- Yanhong Xu
- Department of RespiratoryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xiaoming Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Xinjiang Medical UniversityXinjiang Medical UniversityXinjiangUrumqiChina
| | - Zhihui Zhang
- Department of Plastic Surgery, The First Affiliated Hospital of Xinjiang Medical UniversityXinjiang Medical UniversityXinjiangUrumqiChina
| |
Collapse
|
29
|
Zhang Y, Zhang J, Fu Z. Role of autophagy in lung diseases and ageing. Eur Respir Rev 2022; 31:31/166/220134. [PMID: 36543345 PMCID: PMC9879344 DOI: 10.1183/16000617.0134-2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/08/2022] [Indexed: 12/24/2022] Open
Abstract
The lungs face ongoing chemical, mechanical, biological, immunological and xenobiotic stresses over a lifetime. Advancing age progressively impairs lung function. Autophagy is a "housekeeping" survival strategy involved in numerous physiological and pathological processes in all eukaryotic cells. Autophagic activity decreases with age in several species, whereas its basic activity extends throughout the lifespan of most animals. Dysregulation of autophagy has been proven to be closely related to the pathogenesis of several ageing-related pulmonary diseases. This review summarises the role of autophagy in the pathogenesis of pulmonary diseases associated with or occurring in the context of ageing, including acute lung injury, chronic obstructive pulmonary disease, asthma and pulmonary fibrosis, and describes its potential as a therapeutic target.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China,Corresponding author: Zhiling Fu ()
| |
Collapse
|
30
|
Elsholtzia bodinieri Vaniot Ameliorated Acute Lung Injury by NQO1, BCL2 and PTGS2 In Silico and In Vitro Analyses. Int J Mol Sci 2022; 23:ijms232415651. [PMID: 36555290 PMCID: PMC9779453 DOI: 10.3390/ijms232415651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Acute lung injury (ALI) is a clinical respiratory disease caused by various factors, which lacks effective pharmacotherapy to reduce the mortality rate. Elsholtzia bodinieri Vaniot is an annual herbaceous plant used as a traditional herbal tea and folk medicine. Here we used bioinformatic databases and software to explore and analyze the potential key genes in ALI regulated by E. bodinieri Vaniot, including B cell leukemia/lymphoma 2 (Bcl2), prostaglandin-endoperoxide synthase 2 (Ptgs2) and NAD(P)H dehydrogenase, quinone 1 (Nqo1). In an inflammatory cells model, we verified bioinformatics results, and further mechanistic analysis showed that methanol extract of E. bodinieri Vaniot (EBE) could alleviate oxidative stress by upregulating the expression of NQO1, suppress pyroptosis by upregulating the expression of BCL2, and attenuate inflammation by downregulating the expression of PTGS2. In sum, our results demonstrated that EBE treatment could alleviate oxidative stress, suppress pyroptosis and attenuate inflammation by regulating NQO1, BCL2 and PTGS2 in a cells model, and E. bodinieri Vaniot might be a promising source for functional food or as a therapeutic agent.
Collapse
|
31
|
Elliot S, Catanuto P, Pereira-simon S, Xia X, Shahzeidi S, Roberts E, Ludlow J, Hamdan S, Daunert S, Parra J, Stone R, Pastar I, Tomic-Canic M, Glassberg MK. Urine-derived exosomes from individuals with IPF carry pro-fibrotic cargo. eLife 2022; 11:e79543. [PMID: 36454035 PMCID: PMC9714968 DOI: 10.7554/elife.79543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022] Open
Abstract
Background MicroRNAs (miRNA) and other components contained in extracellular vesicles may reflect the presence of a disease. Lung tissue, sputum, and sera of individuals with idiopathic pulmonary fibrosis (IPF) show alterations in miRNA expression. We designed this study to test whether urine and/or tissue derived exosomal miRNAs from individuals with IPF carry cargo that can promote fibrosis. Methods Exosomes were isolated from urine (U-IPFexo), lung tissue myofibroblasts (MF-IPFexo), serum from individuals with IPF (n=16) and age/sex-matched controls without lung disease (n=10). We analyzed microRNA expression of isolated exosomes and their in vivo bio-distribution. We investigated the effect on ex vivo skin wound healing and in in vivo mouse lung models. Results U-IPFexo or MF-IPFexo expressed miR-let-7d, miR-29a-5p, miR-181b-3p and miR-199a-3p consistent with previous reports of miRNA expression obtained from lung tissue/sera from patients with IPF. In vivo bio-distribution experiments detected bioluminescent exosomes in the lung of normal C57Bl6 mice within 5 min after intravenous infusion, followed by distribution to other organs irrespective of exosome source. Exosomes labeled with gold nanoparticles and imaged by transmission electron microscopy were visualized in alveolar epithelial type I and type II cells. Treatment of human and mouse lung punches obtained from control, non-fibrotic lungs with either U-IPFexo or MF-IPFexo produced a fibrotic phenotype. A fibrotic phenotype was also induced in a human ex vivo skin model and in in vivo lung models. Conclusions Our results provide evidence of a systemic feature of IPF whereby exosomes contain pro-fibrotic miRNAs when obtained from a fibrotic source and interfere with response to tissue injury as measured in skin and lung models. Funding This work was supported in part by Lester and Sue Smith Foundation and The Samrick Family Foundation and NIH grants R21 AG060338 (SE and MKG), U01 DK119085 (IP, RS, MTC).
Collapse
Affiliation(s)
- Sharon Elliot
- DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of MedicineMiamiUnited States
| | - Paola Catanuto
- DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of MedicineMiamiUnited States
| | - Simone Pereira-simon
- DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of MedicineMiamiUnited States
| | - Xiaomei Xia
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of MiamiMiamiUnited States
| | | | - Evan Roberts
- Cancer Modeling Shared Resource Sylvester Comprehensive Cancer Center, University of MiamiMiamiUnited States
| | | | - Suzana Hamdan
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of MedicineMiamiUnited States
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami Miller School of MedicineMiamiUnited States
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of MedicineMiamiUnited States
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami Miller School of MedicineMiamiUnited States
- Miami Clinical and Translational Science Institute, University of Miami Miller School of MedicineMiamiUnited States
| | - Jennifer Parra
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of MiamiMiamiUnited States
| | - Rivka Stone
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of MiamiMiamiUnited States
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of MiamiMiamiUnited States
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of MiamiMiamiUnited States
| | - Marilyn K Glassberg
- DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of MedicineMiamiUnited States
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of MiamiMiamiUnited States
- Department of Medicine, Stritch School of Medicine, Loyola University ChicagoChicagoUnited States
| |
Collapse
|
32
|
Mapamba DA, Sauli E, Mrema L, Lalashowi J, Magombola D, Buza J, Olomi W, Wallis RS, Ntinginya NE. Impact of N-Acetyl Cysteine (NAC) on Tuberculosis (TB) Patients-A Systematic Review. Antioxidants (Basel) 2022; 11:2298. [PMID: 36421484 PMCID: PMC9687770 DOI: 10.3390/antiox11112298] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 05/19/2024] Open
Abstract
Sustained TB infection overproduces reactive oxygen species (ROS) as a host defense mechanism. Research shows ROS is destructive to lung tissue. Glutathione (GSH) neutralizes ROS, although it is consumed. NAC is a precursor of GSH synthesis, and administering an appropriate dose of NAC to patients with respiratory conditions may enhance lung recovery and replenish GSH. The present review searched for articles reporting on the effects of NAC in TB treatment from 1960 to 31 May 2022. The PICO search strategy was used in Google Scholar, PubMed, SciFinder, and Wiley online library databases. The COVIDENCE tool was used to delete inappropriate content. We eventually discovered five clinical trials, one case report, seven reviews, in vitro research, and four experimental animal studies from the twenty-four accepted articles. The use of NAC resulted in increased GSH levels, decreased treatment time, and was safe with minimal adverse events. However, the evidence is currently insufficient to estimate the overall effects of NAC, thus the study warrants more NAC clinical trials to demonstrate its effects in TB treatment.
Collapse
Affiliation(s)
- Daniel Adon Mapamba
- National Institute for Medical Research-Mbeya Medical Research Center, Mbeya 53107, Tanzania
- The Nelson Mandela African Institution of Science and Technology, Arusha 23118, Tanzania
| | - Elingarami Sauli
- The Nelson Mandela African Institution of Science and Technology, Arusha 23118, Tanzania
| | - Lucy Mrema
- National Institute for Medical Research-Mbeya Medical Research Center, Mbeya 53107, Tanzania
| | - Julieth Lalashowi
- National Institute for Medical Research-Mbeya Medical Research Center, Mbeya 53107, Tanzania
| | - David Magombola
- National Institute for Medical Research-Mbeya Medical Research Center, Mbeya 53107, Tanzania
| | - Joram Buza
- The Nelson Mandela African Institution of Science and Technology, Arusha 23118, Tanzania
| | - Willyhelmina Olomi
- National Institute for Medical Research-Mbeya Medical Research Center, Mbeya 53107, Tanzania
| | | | - Nyanda Elias Ntinginya
- National Institute for Medical Research-Mbeya Medical Research Center, Mbeya 53107, Tanzania
| |
Collapse
|
33
|
Ma JH, Zhang YT, Wang LP, Sun QY, Zhang H, Li JJ, Han NN, Zhu YY, Xie XY, Li X. K63 Ubiquitination of P21 Can Facilitate Pellino-1 in the Context of Chronic Obstructive Pulmonary Disease and Lung Cellular Senescence. Cells 2022; 11:cells11193115. [PMID: 36231077 PMCID: PMC9563803 DOI: 10.3390/cells11193115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 12/04/2022] Open
Abstract
Chronic obstructive pulmonary diseases (COPD) is a kind of age-related, airflow-obstruction disease mostly caused by cigarette smoke. However, the relationship between COPD and lung cellular senescence is still not fully understood. Here, we found silencing Pellino-1 could inhibit the protein level of P21. Then, through constructing cell lines expressed ubiquitin-HA, we found that the E3 ubiquitin ligase Pellino-1 could bind to senescence marker p21 and modify p21 by K63-site ubiquitination by co-IP assays. Furthermore, we found that p21-mediated lung cellular senescence could be inhibited by silencing Pellino-1 in a D-galactose senescence mice model. Moreover, by constructing a COPD mouse model with shPellino-1 adenovirus, we found that silencing Pellino-1 could inhibit COPD and inflammation via reduction of SASPs regulated by p21. Taken together, our study findings elucidated that silencing E3 ligase Pellino-1 exhibits therapeutic potential for treatment to attenuate the progression of lung cellular senescence and COPD.
Collapse
Affiliation(s)
- Jia-Hui Ma
- Marine College, Shandong University, Weihai 264200, China
| | - Yi-Ting Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Lu-Ping Wang
- College of Biomedical Engineering and Instrumentation Science, Zhejiang University, Hangzhou 310000, China
| | - Qing-Yu Sun
- Marine College, Shandong University, Weihai 264200, China
| | - Hao Zhang
- Marine College, Shandong University, Weihai 264200, China
| | - Jian-Jiang Li
- Marine College, Shandong University, Weihai 264200, China
| | - Ning-Ning Han
- Marine College, Shandong University, Weihai 264200, China
| | - Yao-Yao Zhu
- Marine College, Shandong University, Weihai 264200, China
| | - Xiao-Yu Xie
- Marine College, Shandong University, Weihai 264200, China
| | - Xia Li
- Marine College, Shandong University, Weihai 264200, China
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
- Correspondence: ; Tel.: +86-531-88382612
| |
Collapse
|
34
|
Lu K, Zhan D, Fang Y, Li L, Chen G, Chen S, Wang L. Microplastics, potential threat to patients with lung diseases. FRONTIERS IN TOXICOLOGY 2022; 4:958414. [PMID: 36245793 PMCID: PMC9555848 DOI: 10.3389/ftox.2022.958414] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 01/28/2023] Open
Abstract
Air pollution is one of the major risk factors for lung disease. Microplastics are a ubiquitous environmental pollutant, both indoors and in outdoor air. Microplastics have also been found in human lung tissue and sputum. However, there is a paucity of information on the effects and mechanisms of microplastics on lung disease. In this mini-review, we reviewed the possible mechanisms by which air microplastics' exposure affects lung disease and, at the same time, pointed out the limitations of current studies.
Collapse
Affiliation(s)
- Kuo Lu
- The Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, The Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou, China
| | - Danting Zhan
- The Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, The Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou, China
| | - Yingying Fang
- The Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, The Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou, China
| | - Lei Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectom aend Manipulation, The Brain Cogntion and Brain Disease Institute (BCBDI), Shenzhen Institutes of Adavnced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shnezhen Fundamental Research Institutions, Shenzhen, China
| | - Guobing Chen
- The Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, The Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou, China,Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, China
| | - Shanze Chen
- The Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, The Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou, China,*Correspondence: Shanze Chen, ; Lingwei Wang,
| | - Lingwei Wang
- The Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, The Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou, China,*Correspondence: Shanze Chen, ; Lingwei Wang,
| |
Collapse
|
35
|
Fujii J, Osaki T, Bo T. Ascorbate Is a Primary Antioxidant in Mammals. Molecules 2022; 27:6187. [PMID: 36234722 PMCID: PMC9572970 DOI: 10.3390/molecules27196187] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022] Open
Abstract
Ascorbate (vitamin C in primates) functions as a cofactor for a number of enzymatic reactions represented by prolyl hydroxylases and as an antioxidant due to its ability to donate electrons, which is mostly accomplished through non-enzymatic reaction in mammals. Ascorbate directly reacts with radical species and is converted to ascorbyl radical followed by dehydroascorbate. Ambiguities in physiological relevance of ascorbate observed during in vivo situations could be attributed in part to presence of other redox systems and the pro-oxidant properties of ascorbate. Most mammals are able to synthesize ascorbate from glucose, which is also considered to be an obstacle to verify its action. In addition to animals with natural deficiency in the ascorbate synthesis, such as guinea pigs and ODS rats, three strains of mice with genetic removal of the responsive genes (GULO, RGN, or AKR1A) for the ascorbate synthesis have been established and are being used to investigate the physiological roles of ascorbate. Studies using these mice, along with ascorbate transporter (SVCT)-deficient mice, largely support its ability in protection against oxidative insults. While combined actions of ascorbate in regulating epigenetics and antioxidation appear to effectively prevent cancer development, pharmacological doses of ascorbate and dehydroascorbate may exert tumoricidal activity through redox-dependent mechanisms.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Tsukasa Osaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Tomoki Bo
- Laboratory Animal Center, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| |
Collapse
|
36
|
Shen Y, Xiang Y, Huang X, Zhang Y, Yue Z. Pharmacogenomic Cluster Analysis of Lung Cancer Cell Lines Provides Insights into Preclinical Model Selection in NSCLC. Interdiscip Sci 2022; 14:712-721. [PMID: 35476185 DOI: 10.1007/s12539-022-00517-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Human lung cell lines are utilized widely for investigating tumor biology, experimental therapy, anticancer drug screening and biomarkers identification. However, the consistency of drug responses of these established cell lines and non-small cell lung cancer (NSCLC) is uncertain. In this study, we assessed the drug response consistency between lung cell lines and NSCLC tumors in The Cancer Genome Atlas by hierarchical clustering using copy number variations in driver genes, and profiled the molecular patterns and correlations in cell lines. We found that some frequently used cell lines of NSCLC subtypes were not clustered with their matched subtypes of tumor. Mutation profiles in the oxidative stress response and squamous differentiation pathway in lung cell lines were in concordance with lung squamous cell carcinoma. Furthermore, lung cell lines and tumors in the same sub-cluster had very similar responses to certain drugs but some were inconsistent, suggesting that clustering through copy number variation data could capture part of the suitability of lung cell lines. The analysis of these results could aid investigators in evaluating drug response models and eventually enabling personalized treatment recommendations for individual patients with NSCLC.
Collapse
Affiliation(s)
- Yueyue Shen
- School of Information and Computer, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Ying Xiang
- School of Information and Computer, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xiaolong Huang
- School of Information and Computer, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Youhua Zhang
- School of Information and Computer, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Zhenyu Yue
- School of Information and Computer, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| |
Collapse
|
37
|
Abou Baker DH. Can natural products modulate cytokine storm in SARS-CoV2 patients? BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 35:e00749. [PMID: 35702395 PMCID: PMC9181898 DOI: 10.1016/j.btre.2022.e00749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 01/08/2023]
Abstract
Currently, the number of cases and deaths of SARS-CoV2, especially among the chronic disease groups, due to aggressive SARS-CoV2 infection is increasing day by day. Various infections, particularly viral ones, cause a cytokine storm resulting in shortness of breath, bleeding, hypotension, and ultimately multi-organ failure due to over-expression of certain cytokines and necrosis factors. The most prominent clinical feature of SARS-CoV2 is the presence of elevated proinflammatory cytokines in the serum of patients with SARS-CoV2. Severe cases exhibit higher levels of cytokines, leading to a "cytokine storm" that further increases disease severity and causes acute respiratory distress syndrome, multiple organ failure, and death. Therefore, targeted cytokine production could be a potential therapeutic option for patients severely infected with SARS-CoV2. Given the current scenario, great scientific progress has been made in understanding the disease and its forms of treatment. Because of natural ingredients properties, they have the potential to be used as potential agents with the ability to modulate immune responses. Moreover, they can be used safely because they have no toxic effects, are biodegradable and biocompatible. However, these natural substances can continue to be used in the development of new therapies and vaccines. Finally, the aim and approach of this review article is to highlight current research on the possible use of natural products with promising potential as immune response activators. Moreover, consider the expected use of natural products when developing potential therapies and vaccines.
Collapse
Affiliation(s)
- Doha H. Abou Baker
- Medicinal and Aromatic Plants Department, National Research Centre, Pharmaceutical and Drug Industries Institute, Dokki, Giza, PO 12622, Egypt
| |
Collapse
|
38
|
Fudosteine attenuates acute lung injury in septic mice by inhibiting pyroptosis via the TXNIP/NLRP3/GSDMD pathway. Eur J Pharmacol 2022; 926:175047. [DOI: 10.1016/j.ejphar.2022.175047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/08/2022] [Accepted: 05/18/2022] [Indexed: 12/29/2022]
|
39
|
Kang JY, Xu MM, Sun Y, Ding ZX, Wei YY, Zhang DW, Wang YG, Shen JL, Wu HM, Fei GH. Melatonin attenuates LPS-induced pyroptosis in acute lung injury by inhibiting NLRP3-GSDMD pathway via activating Nrf2/HO-1 signaling axis. Int Immunopharmacol 2022; 109:108782. [PMID: 35468366 DOI: 10.1016/j.intimp.2022.108782] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/05/2022] [Accepted: 04/14/2022] [Indexed: 01/06/2023]
Abstract
Acute lung injury (ALI)/ acute respiratory distress syndrome (ARDS) is featured by intensive inflammatory responses and oxidative stress, which lead to cytokine storms and pyroptosis. Here, we aimed to investigate whether melatonin was capable of alleviating LPS-induced ALI via activating the nuclear factor erythroid 2-related factor 2/heme oxygenase 1 (Nrf2/HO-1) signaling axis and inhibiting pyroptosis. Mice were injected with melatonin (30 mg/kg) intraperitoneally for consecutive five days before LPS instillation intratracheally, and human alveolar epithelial cell (AECⅡ) A549 cell lines and murine macrophages Raw264.7 cell lines were pretreated with melatonin (400 μM) before LPS (10 μg/ml) stimulation. The result demonstrated that LPS induced obvious lung injury characterized by alveolar damage, neutrophil infiltration and lung edema as well as the reduction of the survival rate of mice, which were totally reversed by melatonin pretreatment. Mechanistically, melatonin pretreatment activated nuclear factor erythroid2-related factor (Nrf) 2 signaling, subsequently, drove antioxidant pathways including significant increases in the expression of Nrf2, HO-1, NQO1, Mn-SOD and Catalase in vivo and in vitro. Simultaneously, melatonin inhibited ROS and MDA overproduction, iNOS expression as well as TNF-α and IL-1β expression and release. Furthermore, melatonin inhibited LPS-induced pyroptosis by reversing the overexpression of NLRP3, Caspase-1, IL-1β, IL-18 and GSDMD-N, as well as LDH release and TUNEL-positive cells in A549 cells and Raw264.7 cells. Overall, the current study suggests that melatonin exerts protective roles on LPS-induced ALI and pyroptosis by inhibiting NLRP3-GSDMD pathway via activating Nrf2/HO-1 signaling axis.
Collapse
Affiliation(s)
- Jia-Ying Kang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China; Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
| | - Meng-Meng Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China; Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
| | - Ying Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China; Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
| | - Zhen-Xing Ding
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China; Emergency Department, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
| | - Yuan-Yuan Wei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China; Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
| | - Da-Wei Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China; Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China
| | - Yue-Guo Wang
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China; Department of Emergency Critical Care Medicine, First Affiliated Hospital of Anhui Provincial Hospital, Division of Life Science and Medicine, University of Science and Technology of China, 230001 Hefei, Anhui, China
| | - Ji-Long Shen
- Provincial Laboratory of Microbiology and Parasitology of Anhui Medical University, 230022 Hefei, Anhui, China
| | - Hui-Mei Wu
- Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China; Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care, First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Guang-He Fei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China; Key Laboratory of Respiratory Disease Research and Medical Transformation of Anhui Province, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China.
| |
Collapse
|
40
|
Garcia-Arcos I, Park SS, Mai M, Alvarez-Buve R, Chow L, Cai H, Baumlin-Schmid N, Agudelo CW, Martinez J, Kim MD, Dabo AJ, Salathe M, Goldberg IJ, Foronjy RF. LRP1 loss in airway epithelium exacerbates smoke-induced oxidative damage and airway remodeling. J Lipid Res 2022; 63:100185. [PMID: 35202607 PMCID: PMC8953659 DOI: 10.1016/j.jlr.2022.100185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
The LDL receptor-related protein 1 (LRP1) partakes in metabolic and signaling events regulated in a tissue-specific manner. The function of LRP1 in airways has not been studied. We aimed to study the function of LRP1 in smoke-induced disease. We found that bronchial epithelium of patients with chronic obstructive pulmonary disease and airway epithelium of mice exposed to smoke had increased LRP1 expression. We then knocked out LRP1 in human bronchial epithelial cells in vitro and in airway epithelial club cells in mice. In vitro, LRP1 knockdown decreased cell migration and increased transforming growth factor β activation. Tamoxifen-inducible airway-specific LRP1 knockout mice (club Lrp1-/-) induced after complete lung development had increased inflammation in the bronchoalveolar space and lung parenchyma at baseline. After 6 months of smoke exposure, club Lrp1-/- mice showed a combined restrictive and obstructive phenotype, with lower compliance, inspiratory capacity, and forced expiratory volume0.05/forced vital capacity than WT smoke-exposed mice. This was associated with increased values of Ashcroft fibrotic index. Proteomic analysis of room air exposed-club Lrp1-/- mice showed significantly decreased levels of proteins involved in cytoskeleton signaling and xenobiotic detoxification as well as decreased levels of glutathione. The proteome fingerprint created by smoke eclipsed many of the original differences, but club Lrp1-/- mice continued to have decreased lung glutathione levels and increased protein oxidative damage and airway cell proliferation. Therefore, LRP1 deficiency leads to greater lung inflammation and damage and exacerbates smoke-induced lung disease.
Collapse
Affiliation(s)
- Itsaso Garcia-Arcos
- Departments of Medicine and Cell Biology, SUNY Downstate Medical Center, New York, NY, USA.
| | - Sangmi S Park
- Departments of Medicine and Cell Biology, SUNY Downstate Medical Center, New York, NY, USA
| | - Michelle Mai
- Departments of Medicine and Cell Biology, SUNY Downstate Medical Center, New York, NY, USA
| | - Roger Alvarez-Buve
- Respiratory Department, Hospital University Arnau de Vilanova and Santa Maria, IRB Lleida, University of Lleida, Lleida, Catalonia, Spain
| | - Lillian Chow
- Departments of Medicine and Cell Biology, SUNY Downstate Medical Center, New York, NY, USA
| | - Huchong Cai
- Departments of Medicine and Cell Biology, SUNY Downstate Medical Center, New York, NY, USA
| | | | - Christina W Agudelo
- Departments of Medicine and Cell Biology, SUNY Downstate Medical Center, New York, NY, USA
| | - Jennifer Martinez
- Departments of Medicine and Cell Biology, SUNY Downstate Medical Center, New York, NY, USA
| | - Michael D Kim
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Abdoulaye J Dabo
- Departments of Medicine and Cell Biology, SUNY Downstate Medical Center, New York, NY, USA
| | - Matthias Salathe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ira J Goldberg
- Department of Medicine, NYU Langone School of Medicine, New York, NY, USA
| | - Robert F Foronjy
- Departments of Medicine and Cell Biology, SUNY Downstate Medical Center, New York, NY, USA
| |
Collapse
|
41
|
Kato K, Papageorgiou I, Shin YJ, Kleinhenz JM, Palumbo S, Hahn S, Irish JD, Rounseville SP, Knox KS, Hecker L. Lung-Targeted Delivery of Dimethyl Fumarate Promotes the Reversal of Age-Dependent Established Lung Fibrosis. Antioxidants (Basel) 2022; 11:492. [PMID: 35326142 PMCID: PMC8944574 DOI: 10.3390/antiox11030492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 01/27/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF), a severe and deadly form of lung fibrosis, is widely regarded as a disease of aging. We previously demonstrated that aged mice with persistent lung fibrosis and IPF lung myofibroblasts exhibit deficient Nrf2-mediated antioxidant responses. Tecfidera is an orally administered FDA-approved drug for the treatment of multiple sclerosis, where the active pharmaceutical ingredient is dimethyl fumarate (DMF), an active Nrf2 activator. However, no studies have evaluated the efficacy of DMF for age-associated persistent lung fibrosis. Here, we demonstrate that in IPF lung fibroblasts, DMF treatment inhibited both TGF-β-mediated pro-fibrotic phenotypes and led to a reversal of established pro-fibrotic phenotypes. We also evaluated the pre-clinical efficacy of lung-targeted (inhaled) vs. systemic (oral) delivery of DMF in an aging murine model of bleomycin-induced persistent lung fibrosis. DMF or vehicle was administered daily to aged mice by oral gavage or intranasal delivery from 3-6 weeks post-injury when mice exhibited non-resolving lung fibrosis. In contrast to systemic (oral) delivery, only lung-targeted (inhaled) delivery of DMF restored lung Nrf2 expression levels, reduced lung oxidative stress, and promoted the resolution of age-dependent established fibrosis. This is the first study to demonstrate the efficacy of lung-targeted DMF delivery to promote the resolution of age-dependent established lung fibrosis.
Collapse
Affiliation(s)
- Kosuke Kato
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA; (K.K.); (I.P.); (Y.-J.S.); (J.M.K.)
| | - Ioannis Papageorgiou
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA; (K.K.); (I.P.); (Y.-J.S.); (J.M.K.)
| | - Yoon-Joo Shin
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA; (K.K.); (I.P.); (Y.-J.S.); (J.M.K.)
| | - Jennifer M. Kleinhenz
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA; (K.K.); (I.P.); (Y.-J.S.); (J.M.K.)
| | - Sunny Palumbo
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, Department of Medicine, University of Arizona, Tucson, AZ 85721, USA; (S.P.); (S.H.); (J.D.I.); (S.P.R.)
| | - Seongmin Hahn
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, Department of Medicine, University of Arizona, Tucson, AZ 85721, USA; (S.P.); (S.H.); (J.D.I.); (S.P.R.)
| | - Joseph D. Irish
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, Department of Medicine, University of Arizona, Tucson, AZ 85721, USA; (S.P.); (S.H.); (J.D.I.); (S.P.R.)
| | - Skye P. Rounseville
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, Department of Medicine, University of Arizona, Tucson, AZ 85721, USA; (S.P.); (S.H.); (J.D.I.); (S.P.R.)
| | - Kenneth S. Knox
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA;
| | - Louise Hecker
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA; (K.K.); (I.P.); (Y.-J.S.); (J.M.K.)
- Atlanta VA Healthcare System, Atlanta, GA 30033, USA
| |
Collapse
|
42
|
Aydemir D, Malik AN, Kulac I, Basak AN, Lazoglu I, Ulusu NN. Impact of the Amyotrophic Lateral Sclerosis Disease on the Biomechanical Properties and Oxidative Stress Metabolism of the Lung Tissue Correlated With the Human Mutant SOD1G93A Protein Accumulation. Front Bioeng Biotechnol 2022; 10:810243. [PMID: 35284425 PMCID: PMC8914018 DOI: 10.3389/fbioe.2022.810243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/31/2022] [Indexed: 01/19/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease, and ALS incidence is increasing worldwide. Patients with ALS have respiratory failure at the disease’s end stages, leading to death; thus, the lung is one of the most affected organs during disease progression. Tissue stiffness increases in various lung diseases because of impaired extracellular matrix (ECM) homeostasis leading to tissue damage and dysfunction at the end. According to the literature, oxidative stress is the major contributor to ECM dysregulation, and mutant protein accumulation in ALS have been reported as causative to tissue damage and oxidative stress. In this study, we used SOD1G93A and SOD1WT rats and measured lung stiffness of rats by using a custom-built stretcher, where H&E staining is used to evaluate histopathological changes in the lung tissue. Oxidative stress status of lung tissues was assessed by measuring glucose 6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6-PGD), glutathione reductase (GR), glutathione s-transferase (GST), catalase (CAT), and superoxide dismutase 1 (SOD1) levels. Western blot experiments were performed to evaluate the accumulation of the SOD1G93A mutated protein. As a result, increased lung stiffness, decreased antioxidant status, elevated levels of oxidative stress, impaired mineral and trace element homeostasis, and mutated SOD1G93A protein accumulation have been found in the mutated rats even at the earlier stages, which can be possible causative of increased lung stiffness and tissue damage in ALS. Since lung damage has altered at the very early stages, possible therapeutic approaches can be used to treat ALS or improve the life quality of patients with ALS.
Collapse
Affiliation(s)
- Duygu Aydemir
- Department of Medical Biochemistry, School of Medicine, Koc University, Istanbul, Turkey
- Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Anjum Naeem Malik
- Manufacturing and Automation Research Center, Department of Mechanical Engineering, Koc University, Istanbul, Turkey
| | - Ibrahim Kulac
- Department of Pathology, Koc University School of Medicine, Istanbul, Turkey
| | - Ayse Nazli Basak
- Suna and İnan Kirac Foundation, Neurodegeneration Research Laboratory, NDAL-KUTTAM, School of Medicine, Koc University, Istanbul, Turkey
| | - Ismail Lazoglu
- Manufacturing and Automation Research Center, Department of Mechanical Engineering, Koc University, Istanbul, Turkey
| | - Nuriye Nuray Ulusu
- Department of Medical Biochemistry, School of Medicine, Koc University, Istanbul, Turkey
- Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
- *Correspondence: Nuriye Nuray Ulusu,
| |
Collapse
|
43
|
Guo T, Long Y, Shen Q, Guo W, Duan W, Ouyang X, Peng H. Clinical profiles of SS-ILD compared with SS-NILD in a Chinese population: a retrospective analysis of 735 patients. Ann Med 2021; 53:1340-1348. [PMID: 34402690 PMCID: PMC8382016 DOI: 10.1080/07853890.2021.1965205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/02/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Interstitial lung disease (ILD) is a serious complication in patients with Sjögren's syndrome (SS). Most studies on primary SS (pSS) with ILD are limited in sample size, and studies on secondary SS (sSS) with ILD are rare. This study aimed to elucidate both primary and secondary SS-associated ILD (SS-ILD) based on a large cohort. METHODS The medical records of hospitalized patients diagnosed with SS at the Second Xiangya Hospital of Central South University from January 2010 to May 2020 were retrospectively reviewed. Clinical manifestations, medical history, biological results and imaging data were collected. RESULTS Of the 735 SS patients enrolled in this study, 563 (76.6%) were diagnosed with pSS, 172 (23.4%) were diagnosed with sSS. Additionally, 316 (43.0%) were diagnosed with SS-ILD. No significant difference was found between the pSS and sSS groups concerning the incidence of ILD (p = .718). Factors associated with SS-ILD were older age (p < .001), male sex (p = .032), female sex at menopause (p = .002), Raynaud's phenomenon (p < .001), low levels of albumin (p = .010) and respiratory symptoms (p < .001). The SS-ILD group showed higher counts of platelets (p < .001). The three most frequent high-resolution CT (HRCT) findings of SS-ILD were irregular linear opacities (42.7%), grid shadows (30.7%) and pleural thickening (28.5%). NSIP (56.3%) was the most frequent HRCT pattern. Compared with pSS patients with ILD (pSS-ILD) patients, sSS patients with ILD (sSS-ILD) patients had a higher incidence of proteinuria (p < .001) and hypercreatinaemia (p = .013), a higher level of erythrocyte sedimentation rate (ESR) (p = .003), low levels of complement 3 (C3) (p = .013), lymphocytes (p = .009) and leukocytes (p = .024), and worse DLCO (%Pred) (p = .035). CONCLUSIONS ILD is a common pulmonary involvement in both pSS patients and sSS patients. Older age, male sex, female sex at menopause, Raynaud's phenomenon, low albumin levels and respiratory symptoms are risk factors associated with SS-ILD. NSIP is important HRCT feature of SS-ILD. sSS-ILD patients showed worse laboratory results and pulmonary function.KEY MESSAGEOlder age, male sex, female sex at menopause, Raynaud's phenomenon, low albumin levels and respiratory symptoms are risk factors associated with SS-ILD.SS-ILD patients show higher counts of platelets and less purpura.sSS-ILD patients have worse laboratory results and pulmonary function.
Collapse
Affiliation(s)
- Ting Guo
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central-South University, Changsha, China
- Research Unit of Respiratory Disease, Central-South University, Changsha, China
- The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, China
| | - Yaomei Long
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central-South University, Changsha, China
- Research Unit of Respiratory Disease, Central-South University, Changsha, China
- The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, China
| | - Qinxue Shen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central-South University, Changsha, China
- Research Unit of Respiratory Disease, Central-South University, Changsha, China
- The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, China
| | - Wei Guo
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central-South University, Changsha, China
- Research Unit of Respiratory Disease, Central-South University, Changsha, China
- The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, China
| | - Wang Duan
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central-South University, Changsha, China
- Research Unit of Respiratory Disease, Central-South University, Changsha, China
- The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, China
| | - Xiaoli Ouyang
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central-South University, Changsha, China
- Research Unit of Respiratory Disease, Central-South University, Changsha, China
- The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, China
| | - Hong Peng
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central-South University, Changsha, China
- Research Unit of Respiratory Disease, Central-South University, Changsha, China
- The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, China
| |
Collapse
|
44
|
Ramasubramanian R, Kalhan R, Jacobs DR, Washko GR, Hou L, Gross MD, Guan W, Thyagarajan B. Gene expression of oxidative stress markers and lung function: A CARDIA lung study. Mol Genet Genomic Med 2021; 9:e1832. [PMID: 34800009 PMCID: PMC8683624 DOI: 10.1002/mgg3.1832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/14/2021] [Accepted: 09/14/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Circulating markers of oxidative stress have been associated with lower lung function. Our objective was to study the association of gene expression levels of oxidative stress pathway genes (ALOX12, ALOX15, ARG2, GSTT1, LPO, MPO, NDUFB3, PLA2G7, and SOD3) and lung function forced expiratory volume in one second (FEV1 ), forced vital capacity (FVC) in Coronary Artery Risk Development in Young Adults study. METHODS Lung function was measured using spirometry and the Nanostring platform was used to estimate gene expression levels. Linear regression models were used to study association of lung function measured at year 30, 10-year decline in lung function and gene expression after adjustment for center, smoking, and BMI, measured at year 25. RESULTS The 10-year decline of FEV1 was faster in highest NDUFB3 quartile compared to the lowest (difference = -2.09%; p = 0.001) after adjustment for multiple comparisons. The 10-year decline in FEV1 and FVC was nominally slower in highest versus lowest quartile of PLA2G7 (difference = 1.14%; p = 0.02, and difference = 1.06%; p = 0.005, respectively). The other genes in the study were not associated with FEV1 or FVC. CONCLUSION Higher gene expression levels in oxidative stress pathway genes are associated with faster 10-year FEV1 decline.
Collapse
Affiliation(s)
- Ramya Ramasubramanian
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota, USA
| | - Ravi Kalhan
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - David R Jacobs
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota, USA
| | - George R Washko
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Applied Chest Imaging Laboratory, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Myron D Gross
- Department of Pathology and Laboratory Medicine, University of Minnesota School of Medicine, Minneapolis, Minnesota, USA
| | - Weihua Guan
- Department of Biostatistics, University of Minnesota School of Public Health, Minneapolis, Minnesota, USA
| | - Bharat Thyagarajan
- Department of Pathology and Laboratory Medicine, University of Minnesota School of Medicine, Minneapolis, Minnesota, USA
| |
Collapse
|
45
|
Li BS, Jin AL, Zhou Z, Seo JH, Choi BM. DRG2 Accelerates Senescence via Negative Regulation of SIRT1 in Human Diploid Fibroblasts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7301373. [PMID: 34777693 PMCID: PMC8580627 DOI: 10.1155/2021/7301373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022]
Abstract
Accumulating evidence suggests that developmentally regulated GTP-binding protein 2 (DRG2), an evolutionarily conserved GTP-binding protein, plays an important role in regulating cell growth, inflammation, and mitochondria dynamics. However, the effect of DRG2 in aging remains unclear. In this study, we found that endogenous DRG2 protein expression is upregulated in oxidative stress-induced premature senescence models and tissues of aged mice. Ectopic expression of DRG2 significantly promoted senescence-associated β-galactosidase (SA-β-gal) activity and inhibited cell growth, concomitant with increase in levels of acetyl (ac)-p53 (Lys382), ac-nuclear factor-kB (NF-κB) p65 (Lys310), p21 Waf1/Cip1 , and p16 Ink4a and a decrease in cyclin D1. In this process, reactive oxygen species (ROS) and phosphorylation of H2A histone family member X (H2A.X), forming γ-H2A.X, were enhanced. Mechanistically, ectopic expression of DRG2 downregulated Sirtuin-1 (SIRT1), resulting in augmented acetylation of p53 and NF-κB p65. Additionally, DRG2 knockdown significantly abolished oxidative stress-induced premature senescence. Our results provide a possible molecular mechanism for investigation of cellular senescence and aging regulated by DRG2.
Collapse
Affiliation(s)
- Bing Si Li
- Department of Biochemistry, Wonkwang University School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| | - Ai Lin Jin
- Department of Biochemistry, Wonkwang University School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| | - ZiQi Zhou
- Department of Herbology, Wonkwang University School of Korean Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| | - Jae Ho Seo
- Department of Biochemistry, Wonkwang University School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
- Sarcopenia Total Solution Center, Wonkwang University School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| | - Byung-Min Choi
- Department of Biochemistry, Wonkwang University School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| |
Collapse
|
46
|
Kato K, Shin YJ, Palumbo S, Papageorgiou I, Hahn S, Irish JD, Rounseville SP, Krafty RT, Wollin L, Sauler M, Hecker L. Leveraging ageing models of pulmonary fibrosis: the efficacy of nintedanib in ageing. Eur Respir J 2021; 58:2100759. [PMID: 34531276 PMCID: PMC8613836 DOI: 10.1183/13993003.00759-2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/26/2021] [Indexed: 11/07/2022]
Abstract
Nintedanib is one of two US Food and Drug Administration (FDA)-approved treatments for idiopathic pulmonary fibrosis (IPF). The clinical efficacy of nintedanib for inhibiting the progression of lung fibrosis is well-established [1]. However, although nintedanib is overwhelmingly prescribed to elderly patients, the impact of ageing on its efficacy is difficult to discern from clinical data due to the magnitude of confounding variables that exist among human subjects (genetics, gender, comorbidities, disease stage at the onset of treatment, etc .). A recent post hoc meta-analysis of five IPF clinical trials suggested that the effect of nintedanib in reducing the rate of forced vital capacity decline is consistent across patients with age (patients >75 versus patients <75 years of age) [2]. However, it is important to note that the average age of IPF diagnosis is 66 years and the average patient ages in these cohorts were 78 (>75) versus 64 (<75) years. Further, one could argue that patients in both cohorts represent the elderly population. This study highlights the complexity of evaluating the impact of ageing on efficacy in a clinical setting. To date, all pre-clinical efficacy studies with nintedanib have been performed in young animals. We therefore sought to determine whether ageing impacts the efficacy of nintedanib for inhibiting the development of lung fibrosis. Bleomycin-induced lung injury in young (2 month) and aged (18 month) mice was followed by treatment with nintedanib or vehicle from day 10–21 (figure 1a), using a previously described protocol [3]. We previously demonstrated in this injury model that the severity of lung fibrosis is identical in young and aged mice, in terms of the net increase in total lung collagen following injury [4]. Although some prior studies have reported seemingly contradictory results, indicating increased severity of fibrosis in aged mice [5, 6], this discrepancy could be attributed to increased baseline levels of collagen in aged mice and the methodology/analyses used for fibrosis assessment, as the net increase in collagen appear to be similar in both young and aged mice [5, 6]. In line with our previous findings, both young and aged vehicle-treated mice demonstrated similar levels of fibrosis severity and a similar decline in lung function at 3 weeks post-injury (figure 1b–d, g–h). Also consistent with numerous prior reports [7, 8], we found that in young mice, nintedanib demonstrated efficacy for inhibiting the development of fibrosis (figure 1b–g) and led to improved lung function (figure 1h). Interestingly, nintedanib also significantly inhibited the development of lung fibrosis in aged mice, to a similar extent as young cohorts (figure 1b–g). Although nintedanib treatment resulted in lung functional improvement to a similar extent in both young (49%) and aged (57%) mice (figure 1h), results did not reach statistical significance in aged mice. Of note, there is less than 47% power to detect mean differences between the aged-vehicle and aged-nintedanib groups given the observed effect and sample sizes of aged mice; the trending p- value of 0.06 is displayed to provide a better understanding of the results. No significant differences in survival rate were observed between nintedanib- versus vehicle-treated groups for both young (68% versus 72%, respectively) and aged mice (83% versus 76%, respectively) during this treatment period (day 10–21). Overall, these data indicate that ageing does not impact the efficacy of nintedanib in terms of its ability to inhibit the development of de novo lung fibrosis. Although nintedanib is overwhelmingly prescribed to elderly patients, this is the first study to demonstrate that ageing does not impact the efficacy of nintedanib. This study sheds light on the utility of aged animal models in pulmonary fibrosis. https://bit.ly/3zA9RC5
Collapse
Affiliation(s)
- Kosuke Kato
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, Dept of Medicine, Emory University, Atlanta, GA, USA
| | - Yoon-Joo Shin
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, Dept of Medicine, Emory University, Atlanta, GA, USA
| | - Sunny Palumbo
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, Dept of Medicine, University of Arizona, Tucson, AZ, USA
| | - Ioannis Papageorgiou
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, Dept of Medicine, Emory University, Atlanta, GA, USA
| | - Seongmin Hahn
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, Dept of Medicine, University of Arizona, Tucson, AZ, USA
| | - Joseph D Irish
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, Dept of Medicine, University of Arizona, Tucson, AZ, USA
| | - Skye P Rounseville
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, Dept of Medicine, University of Arizona, Tucson, AZ, USA
| | - Robert T Krafty
- Dept of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Lutz Wollin
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Maor Sauler
- Dept of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Louise Hecker
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, Dept of Medicine, Emory University, Atlanta, GA, USA
- Atlanta VA Healthcare System, Atlanta, GA, USA
| |
Collapse
|
47
|
Zheng S, Chen Q, Jiang H, Guo C, Luo J, Li S, Wang H, Li H, Zheng X, Weng Z. No significant benefit of moderate-dose vitamin C on severe COVID-19 cases. Open Med (Wars) 2021; 16:1403-1414. [PMID: 34616916 PMCID: PMC8459914 DOI: 10.1515/med-2021-0361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/27/2021] [Accepted: 08/21/2021] [Indexed: 12/24/2022] Open
Abstract
There is no specific drug for coronavirus disease 2019 (COVID-19). We aimed to investigate the possible clinical efficacy of moderate-dose vitamin C infusion among inpatients with severe COVID-19. Data of 397 adult patients with severe COVID-19 admitted to a designated clinical center of Wuhan Union Hospital (China) between February 13 and February 29, 2020, were collected. Besides standard therapies, patients were treated with vitamin C (2–4 g/day) or not. The primary outcome was all-cause death. Secondary outcome was clinical improvement of 2 points on a 6-point ordinal scale. About 70 participants were treated with intravenous vitamin C, and 327 did not receive it. No significant association was found between vitamin C use and death on inverse probability treatment weighting (IPTW) analysis (weighted hazard ratio [HR], 2.69; 95% confidence interval [CI], 0.91–7.89). Clinical improvement occurred in 74.3% (52/70) of patients in the vitamin C group and 95.1% (311/327) in the no vitamin C group. No significant difference was observed between the two groups on IPTW analysis (weighted HR, 0.76; 95% CI, 0.55–1.07). Our findings revealed that in patients with severe COVID-19, treatment with moderate dose of intravenous vitamin C had no significant benefit on reducing the risk of death and obtaining clinical improvement.
Collapse
Affiliation(s)
- Shaoping Zheng
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiaosen Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongbo Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chunxia Guo
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinzhuo Luo
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sumeng Li
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huadong Li
- Department of Infectious Diseases, Wuhan Jinyintan Hospital, Wuhan, China
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihong Weng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
48
|
KARAGOZ E, KİZİLGUL M. Interference of high dose intravenous vitamin C with blood glucose testing in a patient with COVID-19 infection. JOURNAL OF HEALTH SCIENCES AND MEDICINE 2021. [DOI: 10.32322/jhsm.888191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
49
|
Pérez-Peiró M, Martín-Ontiyuelo C, Rodó-Pi A, Piccari L, Admetlló M, Durán X, Rodríguez-Chiaradía DA, Barreiro E. Iron Replacement and Redox Balance in Non-Anemic and Mildly Anemic Iron Deficiency COPD Patients: Insights from a Clinical Trial. Biomedicines 2021; 9:1191. [PMID: 34572377 PMCID: PMC8470868 DOI: 10.3390/biomedicines9091191] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022] Open
Abstract
In COPD patients, non-anemic iron deficiency (NAID) is a common systemic manifestation. We hypothesized that in COPD patients with NAID, iron therapy may improve systemic oxidative stress. The FACE (Ferinject assessment in patients with COPD and iron deficiency to improve exercise tolerance) study was a single-blind, unicentric, parallel-group, placebo-controlled clinical trial (trial registry: 2016-001238-89). Sixty-six patients were enrolled (randomization 2:1): iron arm, n = 44 and placebo arm, n = 22, with similar clinical characteristics. Serum levels of 3-nitrotyrosine, MDA-protein adducts, and reactive carbonyls, catalase, superoxide dismutase (SOD), glutathione, Trolox equivalent antioxidant capacity (TEAC), and iron metabolism biomarkers were quantified in both groups. In the iron-treated patients compared to placebo, MDA-protein adducts and 3-nitrotyrosine serum levels significantly declined, while those of GSH increased and iron metabolism parameters significantly improved. Hepcidin was associated with iron status parameters. This randomized clinical trial evidenced that iron replacement elicited a decline in serum oxidative stress markers along with an improvement in GSH levels in patients with stable severe COPD. Hepcidin may be a surrogate biomarker of iron status and metabolism in patients with chronic respiratory diseases. These findings have potential clinical implications in the management of patients with severe COPD.
Collapse
Affiliation(s)
- Maria Pérez-Peiró
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (M.P.-P.); (C.M.-O.); (A.R.-P.); (L.P.); (M.A.); (D.A.R.-C.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Clara Martín-Ontiyuelo
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (M.P.-P.); (C.M.-O.); (A.R.-P.); (L.P.); (M.A.); (D.A.R.-C.)
| | - Anna Rodó-Pi
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (M.P.-P.); (C.M.-O.); (A.R.-P.); (L.P.); (M.A.); (D.A.R.-C.)
| | - Lucilla Piccari
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (M.P.-P.); (C.M.-O.); (A.R.-P.); (L.P.); (M.A.); (D.A.R.-C.)
| | - Mireia Admetlló
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (M.P.-P.); (C.M.-O.); (A.R.-P.); (L.P.); (M.A.); (D.A.R.-C.)
| | - Xavier Durán
- Scientific and Technical Department, Hospital del Mar-IMIM, 08003 Barcelona, Spain;
| | - Diego A. Rodríguez-Chiaradía
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (M.P.-P.); (C.M.-O.); (A.R.-P.); (L.P.); (M.A.); (D.A.R.-C.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Spain; (M.P.-P.); (C.M.-O.); (A.R.-P.); (L.P.); (M.A.); (D.A.R.-C.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| |
Collapse
|
50
|
Zhang F, Liu H. Identification of ferroptosis-associated genes exhibiting altered expression in pulmonary arterial hypertension. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:7619-7630. [PMID: 34814266 DOI: 10.3934/mbe.2021377] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening illness and ferroptosis is an iron-dependent form of regulated cell death, driven by the accumulation of lipid peroxides to levels that are sufficient to trigger cell death. However, only few studies have examined PAH-associated ferroptosis. In the present study, lung samples mRNA expression profiles (derived from 15 patients with PAH and 11 normal controls) were downloaded from a public database, and 514 differentially expressed genes (DEGs) were identified using the Wilcoxon rank-sum test and weighted gene correlation network analyses. These DEGs were screened for ferroptosis-associated genes using the FerrDb database: eight ferroptosis-associated genes were identified. Finally, the construction of gene-microRNA (miRNA) and gene-transcription factor (TF) networks, in conjunction with gene ontology and biological pathway enrichment analysis, were used to inform hypotheses regarding the molecular mechanisms underlying PAH-associated ferroptosis. Ferroptosis-associated genes were largely involved in oxidative stress responses and could be regulated by several identified miRNAs and TFs. This suggests the existence of modulatable pathways that are potentially involved in PAH-associated ferroptosis. Our findings provide novel directions for targeted therapy of PAH in regard to ferroptosis. These findings may ultimately help improve the therapeutic outcomes of PAH.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hongtao Liu
- Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| |
Collapse
|