1
|
Catela C, Assimacopoulos S, Chen Y, Tsioras K, Feng W, Kratsios P. The Iroquois ( Iro/Irx) homeobox genes are conserved Hox targets involved in motor neuron development. iScience 2025; 28:112210. [PMID: 40230530 PMCID: PMC11995121 DOI: 10.1016/j.isci.2025.112210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 01/03/2025] [Accepted: 03/10/2025] [Indexed: 04/16/2025] Open
Abstract
The Iroquois (Iro/Irx) homeobox genes encode transcription factors with fundamental roles in animal development. Despite their link to various congenital conditions in humans, our understanding of Iro/Irx gene expression, function, and regulation remains incomplete. Here, we conducted a systematic expression analysis of all six mouse Irx genes in the embryonic spinal cord. We found that Irx1, Irx2, Irx3, Irx5, and Irx6 are expressed in specific groups of motor neurons (MNs). Further, we employed CRISPR-Cas9 gene editing to uncover essential but distinct roles for Irx2 and Irx6 in MN development. We also found that HOX proteins, which are conserved regulators of MN development across species, control Irx gene expression both in mouse and Caenorhabditis elegans MNs. Altogether, our study provides insights into Iro/Irx expression and function in the developing spinal cord and uncovers an ancient gene regulatory relationship between HOX and Iro/Irx genes.
Collapse
Affiliation(s)
- Catarina Catela
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60637, USA
| | - Stavroula Assimacopoulos
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60637, USA
| | - Yihan Chen
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60637, USA
| | - Konstantinos Tsioras
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60637, USA
| | - Weidong Feng
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60637, USA
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
- Neuroscience Institute, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Jasmine, Baraiya DH, Kavya TT, Mandal A, Chakraborty S, Sathish N, Francis CMR, Binoy Joseph D. Epithelial and mesenchymal compartments of the developing bladder and urethra display spatially distinct gene expression patterns. Dev Biol 2025; 520:155-170. [PMID: 39798644 PMCID: PMC7617630 DOI: 10.1016/j.ydbio.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
The lower urinary tract is comprised of the bladder and urethra and develops from the cloaca, a transient endoderm-derived structure formed from the caudal hindgut. After cloacal septation to form the urogenital sinus and anorectal tract, the bladder gradually develops from the anterior portion of the urogenital sinus while the urethra elongates distally into the genital tubercle. The bladder is a target for regenerative and reconstructive therapies but engineering an impermeable bladder epithelial lining has proven challenging. Urethral epithelial function, including its role as an active immune barrier, is poorly studied and neglected in regenerative therapy. A deeper understanding of epithelial patterning of the urogenital sinus by the surrounding mesenchyme, also accounting for sex-specific differences, can inform regenerative therapies. In this study, we identified spatially distinct genes in the epithelial and mesenchymal compartments of the developing mouse bladder and urethra that could be potential drivers of patterning in the lower urinary tract. Our data revealed spatially restricted domains of transcription factor expression in the epithelium that corresponded with bladder or urethra-specific differentiation. Additionally, we identified the genes Wnt2, Klf4 and Pitx2 that localize to the mesenchyme of the developing bladder and could be potential drivers of bladder differentiation. Our data revealed an increase in the expression of several chemokine genes including Cx3cl1 and Cxcl14 in the developing urethral epithelium that correlated with an increase in epithelial-associated macrophages in the urethra. A survey of sex-specific differences in epithelial and mesenchymal compartments revealed several differentially expressed genes between the male and female urethra but few sex-specific differences in bladder. By comparing spatially distinct gene expression in the developing lower urinary tract, our study provides insights into the divergent differentiation trajectories of the fetal bladder and urethra that establish their adult functions.
Collapse
Affiliation(s)
- Jasmine
- Institute for Stem Cell Science and Regenerative Medicine (iBRIC-inStem), GKVK-Post, Bellary Road, Bengaluru, Karnataka, 560065, India
| | - Divyeksha H Baraiya
- Institute for Stem Cell Science and Regenerative Medicine (iBRIC-inStem), GKVK-Post, Bellary Road, Bengaluru, Karnataka, 560065, India
| | - T T Kavya
- Institute for Stem Cell Science and Regenerative Medicine (iBRIC-inStem), GKVK-Post, Bellary Road, Bengaluru, Karnataka, 560065, India
| | - Aparna Mandal
- Institute for Stem Cell Science and Regenerative Medicine (iBRIC-inStem), GKVK-Post, Bellary Road, Bengaluru, Karnataka, 560065, India
| | - Shreya Chakraborty
- Institute for Stem Cell Science and Regenerative Medicine (iBRIC-inStem), GKVK-Post, Bellary Road, Bengaluru, Karnataka, 560065, India
| | - Neha Sathish
- Institute for Stem Cell Science and Regenerative Medicine (iBRIC-inStem), GKVK-Post, Bellary Road, Bengaluru, Karnataka, 560065, India
| | - Cynthia Marian Rebecca Francis
- Institute for Stem Cell Science and Regenerative Medicine (iBRIC-inStem), GKVK-Post, Bellary Road, Bengaluru, Karnataka, 560065, India
| | - Diya Binoy Joseph
- Institute for Stem Cell Science and Regenerative Medicine (iBRIC-inStem), GKVK-Post, Bellary Road, Bengaluru, Karnataka, 560065, India.
| |
Collapse
|
3
|
Li Y, Hu M, Zhang Z, Wu B, Zheng J, Zhang F, Hao J, Xue T, Li Z, Zhu C, Liu Y, Zhao L, Xu W, Xin P, Feng C, Wang W, Zhao Y, Qiu Q, Wang K. Origin and stepwise evolution of vertebrate lungs. Nat Ecol Evol 2025; 9:672-691. [PMID: 39953253 DOI: 10.1038/s41559-025-02642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/15/2025] [Indexed: 02/17/2025]
Abstract
Lungs are essential respiratory organs in terrestrial vertebrates, present in most bony fishes but absent in cartilaginous fishes, making them an ideal model for studying organ evolution. Here we analysed single-cell RNA sequencing data from adult and developing lungs across vertebrate species, revealing significant similarities in cell composition, developmental trajectories and gene expression patterns. Surprisingly, a large proportion of lung-related genes, coexpression patterns and many lung enhancers are present in cartilaginous fishes despite their lack of lungs, suggesting that a substantial genetic foundation for lung development existed in the last common ancestor of jawed vertebrates. In addition, the 1,040 enhancers that emerged since the last common ancestor of bony fishes probably contain lung-specific elements that led to the development of lungs. We further identified alveolar type 1 cells as a mammal-specific alveolar cell type, along with several mammal-specific genes, including ager and sfta2, that are highly expressed in lungs. Functional validation showed that deletion of sfta2 in mice leads to severe respiratory defects, highlighting its critical role in mammalian lung features. Our study provides comprehensive insights into the evolution of vertebrate lungs, demonstrating how both regulatory network modifications and the emergence of new genes have shaped lung development and specialization across species.
Collapse
Affiliation(s)
- Ye Li
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Mingliang Hu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Zhigang Zhang
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Baosheng Wu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jiangmin Zheng
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Fenghua Zhang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Jiaqi Hao
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Tingfeng Xue
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Zhaohong Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chenglong Zhu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yuxuan Liu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Lei Zhao
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Wenjie Xu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Peidong Xin
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Chenguang Feng
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
| | - Wen Wang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
- New Cornerstone Science Laboratory, Xi'an, China.
| | - Yilin Zhao
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China.
| | - Qiang Qiu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
| | - Kun Wang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| |
Collapse
|
4
|
Zhao R, Fu M, Shu S, Chen X, Wang X, Zhang N, Yang K, Hua X, Wang X, Song J. Single-Cell Transcriptomics Identified Fibrosis-Activated Valve Interstitial Cells Involved in Functional Tricuspid Regurgitation. JACC. ASIA 2025; 5:478-495. [PMID: 40148022 PMCID: PMC12042980 DOI: 10.1016/j.jacasi.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 01/02/2025] [Accepted: 01/18/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND The treatment of functional tricuspid regurgitation (TR) is still controversial. Characterizing the cellular composition of the tricuspid valve and identifying the molecular alterations of each cell type in valves with TR will advance our understanding of the mechanisms of TR and guide improvements in treatment. OBJECTIVES The authors aimed to investigate the changes in cellular composition and gene expression patterns of cells in regurgitant tricuspid valves and shed light on the mechanisms of functional TR. METHODS To improve our understanding of the pathogenesis of functional TR, we performed single-cell RNA sequencing of tricuspid valve from 10 patients, including 5 patients with moderate-to-severe functional TR and 5 nondiseased control subjects. Multiplexed fluorescence was used to detect the spatial distributions of valvular cell states and validated the cell-cell interaction. RESULTS We assessed the transcriptional profiles of 84,102 cells and identified 6 major cell clusters, along with 25 cell subtypes, in the specimens. Valve interstitial cells (VICs) were the largest population. VICs and lymphoid cells exhibited more heterogeneity in TR patients. VICs exhibited higher transcriptional activity toward matrifibrocyte-like cells and myofibroblast-like cell differentiation, myeloid cells activated immune response, and lymphoid cells promoted fibrosis. In TR, the alternation of COMP-CD47 and FGF2-FGFR1 interaction may occur in TR specimens, which may serve as promising therapeutic targets for TR. CONCLUSIONS Our single-cell atlas highlights the transcriptomic heterogeneity underlying the cell functions and interactions in human tricuspid valves and defines molecular and cellular perturbations in functional TR. We identified VIC clusters with fibrosis activation accumulated in TR valves.
Collapse
Affiliation(s)
- Ruojin Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengxia Fu
- Galactophore Department, Galactophore Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Songren Shu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; The Cardiomyopathy Research Group, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; The Cardiomyopathy Research Group, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohu Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ningning Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; The Cardiomyopathy Research Group, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Keming Yang
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiumeng Hua
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; The Cardiomyopathy Research Group, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China; Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiac Surgery, Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
5
|
Su D, Krongbaramee T, Swearson S, Sweat Y, Sweat M, Shao F, Eliason S, Amendt BA. Irx1 mechanisms for oral epithelial basal stem cell plasticity during reepithelialization after injury. JCI Insight 2025; 10:e179815. [PMID: 39782692 PMCID: PMC11721312 DOI: 10.1172/jci.insight.179815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 11/11/2024] [Indexed: 01/12/2025] Open
Abstract
The oral mucosa undergoes daily insults, and stem cells in the epithelial basal cell layer regenerate gingiva tissue to maintain oral health. The Iroquois Homeobox 1 (IRX1) protein is expressed in the stem cell niches in human/mouse oral epithelium and mesenchyme under homeostasis. We found that Irx1+/- heterozygous (Het) mice have delayed wound closure, delayed morphological changes of regenerated epithelium, and defective keratinocyte proliferation and differentiation during wound healing. RNA-Seq analyses between WT and Irx1+/- mice at 3 days postinjury (dpi) found impaired epithelial migration and decreased keratinocyte-related genes upon injury. IRX1-expressing cells are found in the gingival epithelial basal cell layer, a stem cell niche for gingival maintenance. IRX1-expressing cells are also found in cell niches in the underlying stroma. IRX1 activates SOX9 in the transient amplifying layer to increase cell proliferation, and EGF signaling is activated to induce cell migration. Krt14CreERT lineage tracing experiments reveal defects in the stratification of the Irx1+/- HET mouse oral epithelium. IRX1 is primed at the base of the gingiva in the basal cell layer of the oral epithelium, facilitating rapid and scarless wound healing through activating SOX9 and the EGF signaling pathway.
Collapse
Affiliation(s)
- Dan Su
- Department of Anatomy and Cell Biology
- Craniofacial Anomalies Research Center, Carver College of Medicine, and
| | - Tadkamol Krongbaramee
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, Iowa, USA
- Division of Endodontics, Department of Restorative Dentistry & Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Samuel Swearson
- Department of Anatomy and Cell Biology
- Craniofacial Anomalies Research Center, Carver College of Medicine, and
| | - Yan Sweat
- Harvard University, Boston, Massachusetts, USA
| | - Mason Sweat
- Harvard University, Boston, Massachusetts, USA
| | - Fan Shao
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, Iowa, USA
| | - Steven Eliason
- Department of Anatomy and Cell Biology
- Craniofacial Anomalies Research Center, Carver College of Medicine, and
| | - Brad A. Amendt
- Department of Anatomy and Cell Biology
- Craniofacial Anomalies Research Center, Carver College of Medicine, and
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
6
|
Catela C, Assimacopoulos S, Chen Y, Tsioras K, Feng W, Kratsios P. The Iroquois ( Iro/Irx) homeobox genes are conserved Hox targets involved in motor neuron development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596714. [PMID: 38853975 PMCID: PMC11160718 DOI: 10.1101/2024.05.30.596714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The Iroquois (Iro/Irx) homeobox genes encode transcription factors with fundamental roles in animal development. Despite their link to various congenital conditions in humans, our understanding of Iro/Irx gene expression, function, and regulation remains incomplete. Here, we conducted a systematic expression analysis of all six mouse Irx genes in the embryonic spinal cord. We found five Irx genes (Irx1, Irx2, Irx3, Irx5, and Irx6) to be confined mostly to ventral spinal domains, offering new molecular markers for specific groups of post-mitotic motor neurons (MNs). Further, we engineered Irx2, Irx5, and Irx6 mouse mutants and uncovered essential but distinct roles for Irx2 and Irx6 in MN development. Last, we found that the highly conserved regulators of MN development across species, the HOX proteins, directly control Irx gene expression both in mouse and C. elegans MNs, critically expanding the repertoire of HOX target genes in the developing nervous system. Altogether, our study provides important insights into Iro/Irx expression and function in the developing spinal cord, and uncovers an ancient gene regulatory relationship between HOX and Iro/Irx genes.
Collapse
Affiliation(s)
- Catarina Catela
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Stavroula Assimacopoulos
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Yihan Chen
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Konstantinos Tsioras
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Weidong Feng
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
| |
Collapse
|
7
|
Pattaroni C, Begka C, Cardwell B, Jaffar J, Macowan M, Harris NL, Westall GP, Marsland BJ. Multi-omics integration reveals a nonlinear signature that precedes progression of lung fibrosis. Clin Transl Immunology 2024; 13:e1485. [PMID: 38269243 PMCID: PMC10807351 DOI: 10.1002/cti2.1485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/11/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024] Open
Abstract
Objectives Idiopathic pulmonary fibrosis (IPF) is a devastating progressive interstitial lung disease with poor outcomes. While decades of research have shed light on pathophysiological mechanisms associated with the disease, our understanding of the early molecular events driving IPF and its progression is limited. With this study, we aimed to model the leading edge of fibrosis using a data-driven approach. Methods Multiple omics modalities (transcriptomics, metabolomics and lipidomics) of healthy and IPF lung explants representing different stages of fibrosis were combined using an unbiased approach. Multi-Omics Factor Analysis of datasets revealed latent factors specifically linked with established fibrotic disease (Factor1) and disease progression (Factor2). Results Features characterising Factor1 comprised well-established hallmarks of fibrotic disease such as defects in surfactant, epithelial-mesenchymal transition, extracellular matrix deposition, mitochondrial dysfunction and purine metabolism. Comparatively, Factor2 identified a signature revealing a nonlinear trajectory towards disease progression. Molecular features characterising Factor2 included genes related to transcriptional regulation of cell differentiation, ciliogenesis and a subset of lipids from the endocannabinoid class. Machine learning models, trained upon the top transcriptomics features of each factor, accurately predicted disease status and progression when tested on two independent datasets. Conclusion This multi-omics integrative approach has revealed a unique signature which may represent the inflection point in disease progression, representing a promising avenue for the identification of therapeutic targets aimed at addressing the progressive nature of the disease.
Collapse
Affiliation(s)
- Céline Pattaroni
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
| | - Christina Begka
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
| | - Bailey Cardwell
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
| | - Jade Jaffar
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
| | - Matthew Macowan
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
| | - Nicola L Harris
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
| | - Glen P Westall
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
- Department of Respiratory MedicineAlfred HospitalMelbourneVICAustralia
| | - Benjamin J Marsland
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
| |
Collapse
|
8
|
Ori C, Ansari M, Angelidis I, Olmer R, Martin U, Theis FJ, Schiller HB, Drukker M. Human pluripotent stem cell fate trajectories toward lung and hepatocyte progenitors. iScience 2023; 26:108205. [PMID: 38026193 PMCID: PMC10663741 DOI: 10.1016/j.isci.2023.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 07/13/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
In this study, we interrogate molecular mechanisms underlying the specification of lung progenitors from human pluripotent stem cells (hPSCs). We employ single-cell RNA-sequencing with high temporal precision, alongside an optimized differentiation protocol, to elucidate the transcriptional hierarchy of lung specification to chart the associated single-cell trajectories. Our findings indicate that Sonic hedgehog, TGF-β, and Notch activation are essential within an ISL1/NKX2-1 trajectory, leading to the emergence of lung progenitors during the foregut endoderm phase. Additionally, the induction of HHEX delineates an alternate trajectory at the early definitive endoderm stage, preceding the lung pathway and giving rise to a significant hepatoblast population. Intriguingly, neither KDR+ nor mesendoderm progenitors manifest as intermediate stages in the lung and hepatic lineage development. Our multistep model offers insights into lung organogenesis and provides a foundation for in-depth study of early human lung development and modeling using hPSCs.
Collapse
Affiliation(s)
- Chaido Ori
- Institute of Stem Cell Research, Helmholtz Munich, Neuherberg, Munich, Germany
| | - Meshal Ansari
- Comprehensive Pneumology Center Munich (CPC-M), Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Department of Computational Health, Institute of Computational Biology, Helmholtz Munich, Munich, Germany
| | - Ilias Angelidis
- Comprehensive Pneumology Center Munich (CPC-M), Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Fabian J. Theis
- Department of Computational Health, Institute of Computational Biology, Helmholtz Munich, Munich, Germany
- TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Herbert B. Schiller
- Comprehensive Pneumology Center Munich (CPC-M), Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of Experimental Pneumology, LMU University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Micha Drukker
- Institute of Stem Cell Research, Helmholtz Munich, Neuherberg, Munich, Germany
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| |
Collapse
|
9
|
Rodenburg LW, Metzemaekers M, van der Windt IS, Smits SMA, den Hertog-Oosterhoff LA, Kruisselbrink E, Brunsveld JE, Michel S, de Winter-de Groot KM, van der Ent CK, Stadhouders R, Beekman JM, Amatngalim GD. Exploring intrinsic variability between cultured nasal and bronchial epithelia in cystic fibrosis. Sci Rep 2023; 13:18573. [PMID: 37903789 PMCID: PMC10616285 DOI: 10.1038/s41598-023-45201-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023] Open
Abstract
The nasal and bronchial epithelium are unified parts of the respiratory tract that are affected in the monogenic disorder cystic fibrosis (CF). Recent studies have uncovered that nasal and bronchial tissues exhibit intrinsic variability, including differences in mucociliary cell composition and expression of unique transcriptional regulatory proteins which relate to germ layer origin. In the present study, we explored whether intrinsic differences between nasal and bronchial epithelial cells persist in cell cultures and affect epithelial cell functioning in CF. Comparison of air-liquid interface (ALI) differentiated epithelial cells from subjects with CF revealed distinct mucociliary differentiation states of nasal and bronchial cultures. Moreover, using RNA sequencing we identified cell type-specific signature transcription factors in differentiated nasal and bronchial epithelial cells, some of which were already poised for expression in basal progenitor cells as evidenced by ATAC sequencing. Analysis of differentiated nasal and bronchial epithelial 3D organoids revealed distinct capacities for fluid secretion, which was linked to differences in ciliated cell differentiation. In conclusion, we show that unique phenotypical and functional features of nasal and bronchial epithelial cells persist in cell culture models, which can be further used to investigate the effects of tissue-specific features on upper and lower respiratory disease development in CF.
Collapse
Affiliation(s)
- Lisa W Rodenburg
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA, Utrecht, The Netherlands.
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT, Utrecht, The Netherlands.
| | - Mieke Metzemaekers
- Department of Pulmonary Medicine, Erasmus University Medical Center, 3015 CE, Rotterdam, The Netherlands
- Department of Cell Biology, Erasmus University Medical Center, 3015 CE, Rotterdam, The Netherlands
| | - Isabelle S van der Windt
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT, Utrecht, The Netherlands
| | - Shannon M A Smits
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT, Utrecht, The Netherlands
| | - Loes A den Hertog-Oosterhoff
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT, Utrecht, The Netherlands
| | - Evelien Kruisselbrink
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT, Utrecht, The Netherlands
| | - Jesse E Brunsveld
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT, Utrecht, The Netherlands
| | - Sabine Michel
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA, Utrecht, The Netherlands
| | - Karin M de Winter-de Groot
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA, Utrecht, The Netherlands
| | - Cornelis K van der Ent
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA, Utrecht, The Netherlands
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus University Medical Center, 3015 CE, Rotterdam, The Netherlands
- Department of Cell Biology, Erasmus University Medical Center, 3015 CE, Rotterdam, The Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT, Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, 3584 CB, Utrecht, The Netherlands
| | - Gimano D Amatngalim
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, 3584 EA, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
10
|
Huang R, Zhang C, Zheng Y, Zhang W, Huang H, Qiu M, Li J, Li F. ISL1 regulates lung branching morphogenesis via Shh signaling pathway. J Biol Chem 2023; 299:105034. [PMID: 37442233 PMCID: PMC10406864 DOI: 10.1016/j.jbc.2023.105034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Lung branching morphogenesis relies on a complex coordination of multiple signaling pathways and transcription factors. Here, we found that ablation of the LIM homeodomain transcription factor Islet1 (Isl1) in lung epithelium resulted in defective branching morphogenesis and incomplete formation of five lobes. A reduction in mesenchymal cell proliferation was observed in Isl1ShhCre lungs. There was no difference in apoptosis between the wild-type (ShhCre) and Isl1ShhCre embryos. RNA-Seq and in situ hybridization analysis showed that Shh, Ptch1, Sox9, Irx1, Irx2, Tbx2, and Tbx3 were downregulated in the lungs of Isl1ShhCre embryos. ChIP assay implied the Shh gene served as a direct target of ISL1, since the transcription factor ISL1 could bind to the Shh epithelial enhancer sequence (MACS1). Also, activation of the Hedgehog pathway via ectopic gene expression rescued the defects caused by Isl1 ablation, confirming the genetic integration of Hedgehog signaling. In conclusion, our works suggest that epithelial Isl1 regulates lung branching morphogenesis through administrating the Shh signaling mediated epithelial-mesenchymal communications.
Collapse
Affiliation(s)
- Ruiqi Huang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Chujing Zhang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Yuting Zheng
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Wei Zhang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Huarong Huang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Jianying Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China.
| | - Feixue Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China.
| |
Collapse
|
11
|
Narwidina A, Miyazaki A, Iwata K, Kurogoushi R, Sugimoto A, Kudo Y, Kawarabayashi K, Yamakawa Y, Akazawa Y, Kitamura T, Nakagawa H, Yamaguchi-Ueda K, Hasegawa T, Yoshizaki K, Fukumoto S, Yamamoto A, Ishimaru N, Iwasaki T, Iwamoto T. Iroquois homeobox 3 regulates odontoblast proliferation and differentiation mediated by Wnt5a expression. Biochem Biophys Res Commun 2023; 650:47-54. [PMID: 36773339 DOI: 10.1016/j.bbrc.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
Iroquois homeobox (Irx) genes are TALE-class homeobox genes that are evolutionarily conserved across species and have multiple critical cellular functions in fundamental tissue development processes. Previous studies have shown that Irxs genes are expressed during tooth development. However, the precise roles of genes in teeth remain unclear. Here, we demonstrated for the first time that Irx3 is an essential molecule for the proliferation and differentiation of odontoblasts. Using cDNA synthesized from postnatal day 1 (P1) tooth germs, we examined the expression of all Irx genes (Irx1-Irx6) by RT-PCR and found that all genes except Irx4 were expressed in the tooth tissue. Irx1-Irx3 a were expressed in the dental epithelial cell line M3H1 cells, while Irx3 and Irx5 were expressed in the dental mesenchymal cell line mDP cells. Only Irx3 was expressed in both undifferentiated cell lines. Immunostaining also revealed the presence of IRX3 in the dental epithelial cells and mesenchymal condensation. Inhibition of endogenous Irx3 by siRNA blocks the proliferation and differentiation of mDP cells. Wnt3a, Wnt5a, and Bmp4 are factors involved in odontoblast differentiation and were highly expressed in mDP cells by quantitative PCR analysis. Interestingly, the expression of Wnt5a (but not Wnt3a or Bmp4) was suppressed by Irx3 siRNA. These results suggest that Irx3 plays an essential role in part through the regulation of Wnt5a expression during odontoblast proliferation and differentiation.
Collapse
Affiliation(s)
- Anrizandy Narwidina
- Department of Pediatric Dentistry, Graduate School of Oral Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan; Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Aya Miyazaki
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Kokoro Iwata
- Department of Pediatric Dentistry / Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Rika Kurogoushi
- Department of Pediatric Dentistry / Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Asuna Sugimoto
- Department of Pediatric Dentistry / Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Yasusei Kudo
- Department of Oral Bioscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Keita Kawarabayashi
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Yoshihito Yamakawa
- Department of Pediatric Dentistry, Graduate School of Oral Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan; Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Yuki Akazawa
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Takamasa Kitamura
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Hiroshi Nakagawa
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Kimiko Yamaguchi-Ueda
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Tomokazu Hasegawa
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Keigo Yoshizaki
- Orthodontics and Dentofacial Orthopedics Section, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, 812-8582, Japan
| | - Satoshi Fukumoto
- Pediatric Dentistry Section, Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka, 812-8582, Japan
| | - Akihito Yamamoto
- Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Tomonori Iwasaki
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8504, Japan
| | - Tsutomu Iwamoto
- Department of Pediatric Dentistry / Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan.
| |
Collapse
|
12
|
Iroquois Family Genes in Gastric Carcinogenesis: A Comprehensive Review. Genes (Basel) 2023; 14:genes14030621. [PMID: 36980893 PMCID: PMC10048635 DOI: 10.3390/genes14030621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Gastric cancer (GC) is the fifth leading cause of cancer-associated death worldwide, accounting for 768,793 related deaths and 1,089,103 new cases in 2020. Despite diagnostic advances, GC is often detected in late stages. Through a systematic literature search, this study focuses on the associations between the Iroquois gene family and GC. Accumulating evidence indicates that Iroquois genes are involved in the regulation of various physiological and pathological processes, including cancer. To date, information about Iroquois genes in GC is very limited. In recent years, the expression and function of Iroquois genes examined in different models have suggested that they play important roles in cell and cancer biology, since they were identified to be related to important signaling pathways, such as wingless, hedgehog, mitogen-activated proteins, fibroblast growth factor, TGFβ, and the PI3K/Akt and NF-kB pathways. In cancer, depending on the tumor, Iroquois genes can act as oncogenes or tumor suppressor genes. However, in GC, they seem to mostly act as tumor suppressor genes and can be regulated by several mechanisms, including methylation, microRNAs and important GC-related pathogens. In this review, we provide an up-to-date review of the current knowledge regarding Iroquois family genes in GC.
Collapse
|
13
|
Zhang Y, Zhang J, Sun C, Wu F. Identification of the occurrence and potential mechanisms of heterotopic ossification associated with 17-beta-estradiol targeting MKX by bioinformatics analysis and cellular experiments. PeerJ 2022; 9:e12696. [PMID: 35036166 PMCID: PMC8734462 DOI: 10.7717/peerj.12696] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Tendon heterotopic ossification (HO) is a common condition occurring secondary to tendon injury or surgical trauma that significantly affects the patient's quality of life. The treatment of tendon HO remains challenging due to a lack of clarity regarding the pathological mechanism. Mohawk (MKX) is a key factor in preventing tendon HO; however, its upstream regulatory mechanism remains to be understood. This study aimed to identify potential compounds that target and regulate MKX and explore their functional mechanisms. METHODS Bioinformatics analysis of MKX-related compounds and proteins was performed based on data from the STITCH and OncoBinder databases. Subsequently, the SymMap database was used to study MKX-related traditional Chinese medicine drugs and symptoms. Next, the OncoBinder genomic and proteomic discovery model was applied to identify potential regulators of MKX. The analytical tool Expert Protein Analysis System for proteomics was used to predict the three-dimensional structure of MKX, and the AutoDockTools software was used to identify pockets of activity at potential sites for molecular docking. Furthermore, we evaluated the effect of different doses of 17-beta-estradiol on bone marrow-derived mesenchymal stem cells (BM-MSCs). RESULTS By predicting the three-dimensional structure of MKX and simulating molecular docking, Pro-Tyr and 17-beta-Estradiol were found to target and bind to MKX. Analysis of the STITCH and OncoBinder databases showed that MKX had a significant regulatory correlation with suppressor interacting 3 A/histone deacetylase 1 (SIN3A/HDAC1). The GO and KEGG pathway enrichment analysis revealed that the functions of MKX and its associated proteins were mainly enriched in osteogenic-related pathways. Assessment of the proliferation of BM-MSCs revealed that 17-beta-estradiol possibly upregulated the mRNA expression of the HDAC1-SIN3A/BMP pathway-related RUNX2, thereby promoting the proliferation of BM-MSCs. CONCLUSIONS The compounds Pro-Tyr and 17-beta-Estradiol may bind to MKX and thus affect the interaction of MKX with SIN3A/HDAC1.
Collapse
Affiliation(s)
- Yunpeng Zhang
- Department of surgery, Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Jingwei Zhang
- Department of Orthopedics, Shanghai Fengxian District Central Hospital, Shanghai, China.,Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Chenyu Sun
- Department of Internal Medicine, AMITA Health Saint Joseph Hospital Chicago, Chicago, Illinois, United States of America
| | - Fan Wu
- Department of surgery, Shanghai Fengxian District Central Hospital, Shanghai, China
| |
Collapse
|
14
|
Landry-Truchon K, Houde N, Lhuillier M, Charron L, Hadchouel A, Delacourt C, Foulkes WD, Galmiche-Rolland L, Jeannotte L. Deletion of Yy1 in mouse lung epithelium unveils molecular mechanisms governing pleuropulmonary blastoma pathogenesis. Dis Model Mech 2020; 13:dmm045989. [PMID: 33158935 PMCID: PMC7790197 DOI: 10.1242/dmm.045989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Pleuropulmonary blastoma (PPB) is a very rare pediatric lung disease. It can progress from abnormal epithelial cysts to an aggressive sarcoma with poor survival. PPB is difficult to diagnose as it can be confounded with other cystic lung disorders, such as congenital pulmonary airway malformation (CPAM). PPB is associated with mutations in DICER1 that perturb the microRNA (miRNA) profile in lung. How DICER1 and miRNAs act during PPB pathogenesis remains unsolved. Lung epithelial deletion of the Yin Yang1 (Yy1) gene in mice causes a phenotype mimicking the cystic form of PPB and affects the expression of key regulators of lung development. Similar changes in expression were observed in PPB but not in CPAM lung biopsies, revealing a distinctive PPB molecular signature. Deregulation of molecules promoting epithelial-mesenchymal transition (EMT) was detected in PPB specimens, suggesting that EMT might participate in tumor progression. Changes in miRNA expression also occurred in PPB lung biopsies. miR-125a-3p, a candidate to regulate YY1 expression and lung branching, was abnormally highly expressed in PPB samples. Together, these findings support the concept that reduced expression of YY1, due to the abnormal miRNA profile resulting from DICER1 mutations, contributes to PPB development via its impact on the expression of key lung developmental genes.This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Kim Landry-Truchon
- Centre de recherche sur le cancer de l'Université Laval, Centre de recherche du CHU de Québec-Université Laval (Oncology Axis), Québec, Canada G1R 3S3
| | - Nicolas Houde
- Centre de recherche sur le cancer de l'Université Laval, Centre de recherche du CHU de Québec-Université Laval (Oncology Axis), Québec, Canada G1R 3S3
| | - Mickaël Lhuillier
- Inserm U1151, Institut Necker-Enfants Malades, Université de Paris, 75743 Paris, Cedex15, France
| | - Louis Charron
- Centre de recherche sur le cancer de l'Université Laval, Centre de recherche du CHU de Québec-Université Laval (Oncology Axis), Québec, Canada G1R 3S3
| | - Alice Hadchouel
- Inserm U1151, Institut Necker-Enfants Malades, Université de Paris, 75743 Paris, Cedex15, France
- AP-HP, Hôpital Necker-Enfants Malades, 75743 Paris, Cedex15, France
| | - Christophe Delacourt
- Inserm U1151, Institut Necker-Enfants Malades, Université de Paris, 75743 Paris, Cedex15, France
- AP-HP, Hôpital Necker-Enfants Malades, 75743 Paris, Cedex15, France
| | - William D Foulkes
- Department of Medical Genetics, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montréal, Canada H3T 1E2
| | | | - Lucie Jeannotte
- Centre de recherche sur le cancer de l'Université Laval, Centre de recherche du CHU de Québec-Université Laval (Oncology Axis), Québec, Canada G1R 3S3
- Department of Molecular Biology, Medical Biochemistry & Pathology, Université Laval, Québec, Canada G1V 0A6
| |
Collapse
|
15
|
Lundregan SL, Niskanen AK, Muff S, Holand H, Kvalnes T, Ringsby T, Husby A, Jensen H. Resistance to gapeworm parasite has both additive and dominant genetic components in house sparrows, with evolutionary consequences for ability to respond to parasite challenge. Mol Ecol 2020; 29:3812-3829. [DOI: 10.1111/mec.15491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 05/12/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Sarah L. Lundregan
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Alina K. Niskanen
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
- Ecology and Genetics Research Unit University of Oulu Oulu Finland
| | - Stefanie Muff
- Centre for Biodiversity Dynamics Department of Mathematical Sciences Norwegian University of Science and Technology Trondheim Norway
| | - Håkon Holand
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Thomas Kvalnes
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Thor‐Harald Ringsby
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Arild Husby
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
- Evolutionary Biology Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Henrik Jensen
- Centre for Biodiversity Dynamics Department of Biology Norwegian University of Science and Technology Trondheim Norway
| |
Collapse
|
16
|
Wei D, Raza SHA, Zhang J, Wang X, Khan R, Ma Y, Zhang G, Luoreng Z, Zan L. Characterization of the promoter region of the bovine IRX3 gene: roles of SREBF2 and PPARG. Physiol Genomics 2020; 52:160-167. [DOI: 10.1152/physiolgenomics.00091.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
As a member of the Iroquois homeobox gene family, the IRX3 gene plays an important role in regulating the growth, development and fat deposition of chordates. In the present study, we found, using real-time PCR, that the bovine IRX3 gene was highly expressed in lung, kidney, heart, subcutaneous fat and longissimus dorsi muscle. We cloned the full-length sequence of the bovine IRX3 gene promoter and constructed eight series of 5′ deletion promoter plasmid luciferase reporter assays and then transfected them to 3T3-L1 and C2C12 cell lines to detect its core promoter regions. The results showed that the core promoter of bovine IRX3 was located within a −292/−42 bp region relative to the transcriptional start site. Furthermore, sequence analysis identified eight CpG islands in the promoter region. A chromatin immunoprecipitation assay in combination with site-directed mutation and siRNA interference demonstrated that SREBF2 and PPARG binding occurs in region −292/−42 and is essential in bovine IRX3 transcription. These results lay an important theoretical foundation for exploring the molecular regulation mechanism of the IRX3 gene in bovine fat deposition.
Collapse
Affiliation(s)
- Dawei Wei
- School of Agriculture, Ningxia University, Yinchuan, China
- Ningxia Xihaigu High-end Cattle Industry Research Institute, Zhongwei, China
| | | | - Jiupan Zhang
- Guyuan Branch of Ningxia Academy of Agriculture and Forestry Sciences, Guyuan, China
| | - Xingping Wang
- School of Agriculture, Ningxia University, Yinchuan, China
- Ningxia Xihaigu High-end Cattle Industry Research Institute, Zhongwei, China
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling,China
| | - Yun Ma
- School of Agriculture, Ningxia University, Yinchuan, China
- Ningxia Xihaigu High-end Cattle Industry Research Institute, Zhongwei, China
| | - Guijie Zhang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Zhuoma Luoreng
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Linsen Zan
- Ningxia Xihaigu High-end Cattle Industry Research Institute, Zhongwei, China
- College of Animal Science and Technology, Northwest A&F University, Yangling,China
| |
Collapse
|
17
|
Zhu Q, Wu Y, Yang M, Wang Z, Zhang H, Jiang X, Chen M, Jin T, Wang T. IRX5 promotes colorectal cancer metastasis by negatively regulating the core components of the RHOA pathway. Mol Carcinog 2019; 58:2065-2076. [PMID: 31432570 DOI: 10.1002/mc.23098] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/27/2019] [Accepted: 07/31/2019] [Indexed: 01/20/2023]
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors worldwide. As tumor metastasis is the leading cause of death in patients with CRC, it is important to elucidate the molecular mechanisms that drive CRC metastasis. Studies have shown a close relationship between Iroquois homeobox (IRX) family genes and multiple cancers, while the mechanism by which IRX5 promotes CRC metastasis is unclear. Therefore, we focused on the involvement of IRX5 in CRC metastasis. In this study, analyses of clinical data indicated that the expression of IRX5 was coincided with metastatic colorectal tumors tissues and was negatively correlated with the overall survival of patients with CRC. Functional analysis showed that IRX5 promoted the migration and invasion of CRC cells, accompanied by a large number of cellular protrusions. IRX5-overexpressing cells were more likely to form metastatic tumors in nude mice. Further analysis demonstrated that the core components of the RHOA/ROCK1/LIMK1 pathway were significantly inhibited in IRX5-overexpressing cells. Overexpression of LIMK1 effectively reversed the enhanced cellular motility caused by IRX5 overexpression. Moreover, we found that high levels of IRX5 in intestinal tissues were correlated with the inflammatory response. IRX5 was significantly increased in azoxymethane/dextran sodium sulfate intestinal tissue of mice and IRX5-overexpressing may also enhance chemokines CXCL1 and CXCL8. In summary, our findings suggested that IRX5 promoted CRC metastasis by inhibiting the RHOA-ROCK1-LIMK1 axis, which correlates with a poor prognosis.
Collapse
Affiliation(s)
- Qiangqiang Zhu
- Department of Cell Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yiqi Wu
- Department of Cell Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mengli Yang
- Department of Cell Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhen Wang
- Department of Pathology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hailing Zhang
- Department of Cell Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinying Jiang
- Department of Cell Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Meng Chen
- Department of Molecular, Cellular and Biomedical Sciences, Medical Laboratory Science Program, College of Life Sciences and Agriculture, The University of New Hampshire, Durham, New Hampshire
| | - Tianyu Jin
- Department of Clinic School, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ting Wang
- Department of Cell Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
18
|
Whitsett JA, Kalin TV, Xu Y, Kalinichenko VV. Building and Regenerating the Lung Cell by Cell. Physiol Rev 2019; 99:513-554. [PMID: 30427276 DOI: 10.1152/physrev.00001.2018] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The unique architecture of the mammalian lung is required for adaptation to air breathing at birth and thereafter. Understanding the cellular and molecular mechanisms controlling its morphogenesis provides the framework for understanding the pathogenesis of acute and chronic lung diseases. Recent single-cell RNA sequencing data and high-resolution imaging identify the remarkable heterogeneity of pulmonary cell types and provides cell selective gene expression underlying lung development. We will address fundamental issues related to the diversity of pulmonary cells, to the formation and function of the mammalian lung, and will review recent advances regarding the cellular and molecular pathways involved in lung organogenesis. What cells form the lung in the early embryo? How are cell proliferation, migration, and differentiation regulated during lung morphogenesis? How do cells interact during lung formation and repair? How do signaling and transcriptional programs determine cell-cell interactions necessary for lung morphogenesis and function?
Collapse
Affiliation(s)
- Jeffrey A Whitsett
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, Ohio
| | - Tanya V Kalin
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, Ohio
| | - Yan Xu
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, Ohio
| | - Vladimir V Kalinichenko
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, Ohio
| |
Collapse
|
19
|
Miksiunas R, Mobasheri A, Bironaite D. Homeobox Genes and Homeodomain Proteins: New Insights into Cardiac Development, Degeneration and Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:155-178. [PMID: 30945165 DOI: 10.1007/5584_2019_349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiovascular diseases are the most common cause of human death in the developing world. Extensive evidence indicates that various toxic environmental factors and unhealthy lifestyle choices contribute to the risk, incidence and severity of cardiovascular diseases. Alterations in the genetic level of myocardium affects normal heart development and initiates pathological processes leading to various types of cardiac diseases. Homeobox genes are a large and highly specialized family of closely related genes that direct the formation of body structure, including cardiac development. Homeobox genes encode homeodomain proteins that function as transcription factors with characteristic structures that allow them to bind to DNA, regulate gene expression and subsequently control the proper physiological function of cells, tissues and organs. Mutations in homeobox genes are rare and usually lethal with evident alterations in cardiac function at or soon after the birth. Our understanding of homeobox gene family expression and function has expanded significantly during the recent years. However, the involvement of homeobox genes in the development of human and animal cardiac tissue requires further investigation. The phenotype of human congenital heart defects unveils only some aspects of human heart development. Therefore, mouse models are often used to gain a better understanding of human heart function, pathology and regeneration. In this review, we have focused on the role of homeobox genes in the development and pathology of human heart as potential tools for the future development of targeted regenerative strategies for various heart malfunctions.
Collapse
Affiliation(s)
- Rokas Miksiunas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Daiva Bironaite
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
| |
Collapse
|
20
|
Genome-wide identification of transcription factors that are critical to non-small cell lung cancer. Cancer Lett 2018; 434:132-143. [DOI: 10.1016/j.canlet.2018.07.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/04/2018] [Accepted: 07/13/2018] [Indexed: 12/25/2022]
|
21
|
Id2 Determines Intestinal Identity through Repression of the Foregut Transcription Factor Irx5. Mol Cell Biol 2018; 38:MCB.00250-17. [PMID: 29463648 PMCID: PMC5902590 DOI: 10.1128/mcb.00250-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 02/13/2018] [Indexed: 12/12/2022] Open
Abstract
The cellular components and function of the gastrointestinal epithelium exhibit distinct characteristics depending on the region, e.g., stomach or intestine. How these region-specific epithelial characteristics are generated during development remains poorly understood. Here, we report on the involvement of the helix-loop-helix inhibitor Id2 in establishing the specific characteristics of the intestinal epithelium. Id2−/− mice developed tumors in the small intestine. Histological analysis indicated that the intestinal tumors were derived from gastric metaplasia formed in the small intestine during development. Heterotopic Id2 expression in developing gastric epithelium induced a fate change to intestinal epithelium. Gene expression analysis revealed that foregut-enriched genes encoding Irx3 and Irx5 were highly induced in the midgut of Id2−/− embryos, and transgenic mice expressing Irx5 in the midgut endoderm developed tumors recapitulating the characteristics of Id2−/− mice. Altogether, our results demonstrate that Id2 plays a crucial role in the development of regional specificity in the gastrointestinal epithelium.
Collapse
|
22
|
Hu W, Xin Y, Zhang L, Hu J, Sun Y, Zhao Y. Iroquois Homeodomain transcription factors in ventricular conduction system and arrhythmia. Int J Med Sci 2018; 15:808-815. [PMID: 30008591 PMCID: PMC6036080 DOI: 10.7150/ijms.25140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/29/2018] [Indexed: 02/05/2023] Open
Abstract
Iroquois homeobox genes, Irx, encode cardiac transcription factors, Irx1-6 in most mammals. These six transcription factors are expressed in different patterns mainly in the ventricular part of the heart. Existing researches show that Irx genes play key roles in the differentiation and development of ventricular conduction system and the establishment and maintenance of gradient expression of potassium channels, Kv4.2. Our main focus of this review is on the recent advances in the discovery of above-mentioned genes and the function of the encoding products, how Irx genes establish ventricular conduction system and regulate ventricular repolarization, how the individual and complementary functions can be verified to complement our cognition and leads to novel therapeutic approaches.
Collapse
Affiliation(s)
- Wenyu Hu
- Department of Cardiology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yanguo Xin
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Lin Zhang
- Department of Cardiology, Jinqiu Hosipital Of Liaoning Province, Shenyang, Liaoning110001, China
| | - Jian Hu
- Department of Cardiology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yingxian Sun
- Department of Cardiology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yinan Zhao
- Department of Neurology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| |
Collapse
|
23
|
Bolte C, Whitsett JA, Kalin TV, Kalinichenko VV. Transcription Factors Regulating Embryonic Development of Pulmonary Vasculature. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2018; 228:1-20. [PMID: 29288383 DOI: 10.1007/978-3-319-68483-3_1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lung morphogenesis is a highly orchestrated process beginning with the appearance of lung buds on approximately embryonic day 9.5 in the mouse. Endodermally derived epithelial cells of the primitive lung buds undergo branching morphogenesis to generate the tree-like network of epithelial-lined tubules. The pulmonary vasculature develops in close proximity to epithelial progenitor cells in a process that is regulated by interactions between the developing epithelium and underlying mesenchyme. Studies in transgenic and knockout mouse models demonstrate that normal lung morphogenesis requires coordinated interactions between cells lining the tubules, which end in peripheral saccules, juxtaposed to an extensive network of capillaries. Multiple growth factors, microRNAs, transcription factors, and their associated signaling cascades regulate cellular proliferation, migration, survival, and differentiation during formation of the peripheral lung. Dysregulation of signaling events caused by gene mutations, teratogens, or premature birth causes severe congenital and acquired lung diseases in which normal alveolar architecture and the pulmonary capillary network are disrupted. Herein, we review scientific progress regarding signaling and transcriptional mechanisms regulating the development of pulmonary vasculature during lung morphogenesis.
Collapse
Affiliation(s)
- Craig Bolte
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, USA.,Division of Pulmonary Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Jeffrey A Whitsett
- Division of Pulmonary Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, USA.,Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Tanya V Kalin
- Division of Pulmonary Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Vladimir V Kalinichenko
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, USA. .,Division of Pulmonary Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, USA. .,Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, USA.
| |
Collapse
|
24
|
WANG PEI, ZHUANG CHUNBO, HUANG DA, XU KESHU. Downregulation of miR-377 contributes to IRX3 deregulation in hepatocellular carcinoma. Oncol Rep 2016; 36:247-52. [DOI: 10.3892/or.2016.4815] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/26/2016] [Indexed: 11/06/2022] Open
|
25
|
Boucherat O, Landry-Truchon K, Bérubé-Simard FA, Houde N, Beuret L, Lezmi G, Foulkes WD, Delacourt C, Charron J, Jeannotte L. Epithelial inactivation of Yy1 abrogates lung branching morphogenesis. Development 2015; 142:2981-95. [PMID: 26329601 DOI: 10.1242/dev.120469] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Yin Yang 1 (YY1) is a multifunctional zinc-finger-containing transcription factor that plays crucial roles in numerous biological processes by selectively activating or repressing transcription, depending upon promoter contextual differences and specific protein interactions. In mice, Yy1 null mutants die early in gestation whereas Yy1 hypomorphs die at birth from lung defects. We studied how the epithelial-specific inactivation of Yy1 impacts on lung development. The Yy1 mutation in lung epithelium resulted in neonatal death due to respiratory failure. It impaired tracheal cartilage formation, altered cell differentiation, abrogated lung branching and caused airway dilation similar to that seen in human congenital cystic lung diseases. The cystic lung phenotype in Yy1 mutants can be partly explained by the reduced expression of Shh, a transcriptional target of YY1, in lung endoderm, and the subsequent derepression of mesenchymal Fgf10 expression. Accordingly, SHH supplementation partially rescued the lung phenotype in vitro. Analysis of human lung tissues revealed decreased YY1 expression in children with pleuropulmonary blastoma (PPB), a rare pediatric lung tumor arising during fetal development and associated with DICER1 mutations. No evidence for a potential genetic interplay between murine Dicer and Yy1 genes during lung morphogenesis was observed. However, the cystic lung phenotype resulting from the epithelial inactivation of Dicer function mimics the Yy1 lung malformations with similar changes in Shh and Fgf10 expression. Together, our data demonstrate the crucial requirement for YY1 in lung morphogenesis and identify Yy1 mutant mice as a potential model for studying the genetic basis of PPB.
Collapse
Affiliation(s)
- Olivier Boucherat
- Centre de Recherche sur le Cancer de l'Université Laval; CRCHUQ, L'Hôtel-Dieu de Québec, Québec, G1R 3S3, Canada
| | - Kim Landry-Truchon
- Centre de Recherche sur le Cancer de l'Université Laval; CRCHUQ, L'Hôtel-Dieu de Québec, Québec, G1R 3S3, Canada
| | - Félix-Antoine Bérubé-Simard
- Centre de Recherche sur le Cancer de l'Université Laval; CRCHUQ, L'Hôtel-Dieu de Québec, Québec, G1R 3S3, Canada
| | - Nicolas Houde
- Centre de Recherche sur le Cancer de l'Université Laval; CRCHUQ, L'Hôtel-Dieu de Québec, Québec, G1R 3S3, Canada
| | - Laurent Beuret
- Centre de Recherche sur le Cancer de l'Université Laval; CRCHUQ, L'Hôtel-Dieu de Québec, Québec, G1R 3S3, Canada
| | - Guillaume Lezmi
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie Pédiatrique, Université Paris-Descartes, Paris, 75015, France Inserm U955, IMRB, Equipe 04, Créteil, 94011, France
| | - William D Foulkes
- Department of Medical Genetics, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montréal, H3G 1A4, Canada
| | - Christophe Delacourt
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie Pédiatrique, Université Paris-Descartes, Paris, 75015, France Inserm U955, IMRB, Equipe 04, Créteil, 94011, France
| | - Jean Charron
- Centre de Recherche sur le Cancer de l'Université Laval; CRCHUQ, L'Hôtel-Dieu de Québec, Québec, G1R 3S3, Canada
| | - Lucie Jeannotte
- Centre de Recherche sur le Cancer de l'Université Laval; CRCHUQ, L'Hôtel-Dieu de Québec, Québec, G1R 3S3, Canada
| |
Collapse
|
26
|
Scarlett K, Pattabiraman V, Barnett P, Liu D, Anderson LM. The proangiogenic effect of iroquois homeobox transcription factor Irx3 in human microvascular endothelial cells. J Biol Chem 2015; 290:6303-15. [PMID: 25512384 PMCID: PMC4358267 DOI: 10.1074/jbc.m114.601146] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/14/2014] [Indexed: 12/29/2022] Open
Abstract
Angiogenesis is a dynamic process required for embryonic development. However, postnatal vascular growth is characteristic of multiple disease states. Despite insights into the multistep process in which adhesion molecules, extracellular matrix proteins, growth factors, and their receptors work in concert to form new vessels from the preexisting vasculature, there remains a lack of insight of the nuclear transcriptional mechanisms that occur within endothelial cells (ECs) in response to VEGF. Iroquois homeobox gene 3 (Irx3) is a transcription factor of the Iroquois family of homeobox genes. Irx homeodomain transcription factors are involved in the patterning and development of several tissues. Irx3 is known for its role during embryogenesis in multiple organisms. However, the expression and function of Irx3 in human postnatal vasculature remains to be investigated. Here we show that Irx3 is expressed in human microvascular endothelial cells, and expression is elevated by VEGF stimulation. Genetic Irx3 gain and loss of function studies in human microvascular endothelial cells resulted in the modulation of EC migration during wound healing, chemotaxis and invasion, and tubulogenesis. Additionally, we observed increased delta-like ligand 4 (Dll4) expression, which suggests an increase in EC tip cell population. Finally, siRNA screening studies revealed that transient knockdown of Hey1, a downstream Notch signaling mediator, resulted in increased Irx3 expression in response to VEGF treatment. Strategies to pharmacologically regulate Irx3 function in adult endothelial cells may provide new therapies for angiogenesis.
Collapse
Affiliation(s)
| | | | - Petrina Barnett
- the Cancer Center for Therapeutic Development, Clark Atlanta University, Atlanta, Georgia 30314
| | - Dong Liu
- From the Cardiovascular Research Institute and Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia 30310 and
| | - Leonard M Anderson
- From the Cardiovascular Research Institute and Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia 30310 and
| |
Collapse
|
27
|
Role of Frizzled6 in the molecular mechanism of beta-carotene action in the lung. Toxicology 2014; 320:67-73. [DOI: 10.1016/j.tox.2014.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/10/2014] [Accepted: 03/12/2014] [Indexed: 12/12/2022]
|
28
|
Molecular Control of Interdigital Cell Death and Cell Differentiation by Retinoic Acid during Digit Development. J Dev Biol 2014. [DOI: 10.3390/jdb2020138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
29
|
Abstract
Adult stem cells are controlled by an intricate interplay of potent Wnt agonists, antagonists, and anti-antagonists. This review by de Lau et al. focuses on the complex physical and functional interactions of three recently discovered protein families that control stem cell activity by regulating surface expression of Wnt receptors: Lgr5 and its homologs, the E3 ligases Rnf43 and Znrf3, and the secreted R-spondin ligands. Lgr5 was originally discovered as a common Wnt target gene in adult intestinal crypts and colon cancer. It was subsequently identified as an exquisite marker of multiple Wnt-driven adult stem cell types. Lgr5 and its homologs, Lgr4 and Lgr6, constitute the receptors for R-spondins, potent Wnt signal enhancers and stem cell growth factors. The Lgr5/R-spondin complex acts by neutralizing Rnf43 and Znrf3, two transmembrane E3 ligases that remove Wnt receptors from the stem cell surface. Rnf43/Znrf3 are themselves encoded by Wnt target genes and constitute a negative Wnt feedback loop. Thus, adult stem cells are controlled by an intricate interplay of potent Wnt agonists, antagonists, and anti-antagonists.
Collapse
Affiliation(s)
- Wim de Lau
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Centre Utrecht, 3584 CT Utrecht, The Netherlands
| | | | | | | |
Collapse
|
30
|
Smemo S, Tena JJ, Kim KH, Gamazon ER, Sakabe NJ, Gómez-Marín C, Aneas I, Credidio FL, Sobreira DR, Wasserman NF, Lee JH, Puviindran V, Tam D, Shen M, Son JE, Vakili NA, Sung HK, Naranjo S, Acemel RD, Manzanares M, Nagy A, Cox NJ, Hui CC, Gomez-Skarmeta JL, Nóbrega MA. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 2014; 507:371-5. [PMID: 24646999 PMCID: PMC4113484 DOI: 10.1038/nature13138] [Citation(s) in RCA: 914] [Impact Index Per Article: 83.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 02/10/2014] [Indexed: 12/18/2022]
Abstract
Genome-wide association studies (GWAS) have reproducibly associated variants within introns of FTO with increased risk for obesity and type 2 diabetes (T2D). Although the molecular mechanisms linking these noncoding variants with obesity are not immediately obvious, subsequent studies in mice demonstrated that FTO expression levels influence body mass and composition phenotypes. However, no direct connection between the obesity-associated variants and FTO expression or function has been made. Here we show that the obesity-associated noncoding sequences within FTO are functionally connected, at megabase distances, with the homeobox gene IRX3. The obesity-associated FTO region directly interacts with the promoters of IRX3 as well as FTO in the human, mouse and zebrafish genomes. Furthermore, long-range enhancers within this region recapitulate aspects of IRX3 expression, suggesting that the obesity-associated interval belongs to the regulatory landscape of IRX3. Consistent with this, obesity-associated single nucleotide polymorphisms are associated with expression of IRX3, but not FTO, in human brains. A direct link between IRX3 expression and regulation of body mass and composition is demonstrated by a reduction in body weight of 25 to 30% in Irx3-deficient mice, primarily through the loss of fat mass and increase in basal metabolic rate with browning of white adipose tissue. Finally, hypothalamic expression of a dominant-negative form of Irx3 reproduces the metabolic phenotypes of Irx3-deficient mice. Our data suggest that IRX3 is a functional long-range target of obesity-associated variants within FTO and represents a novel determinant of body mass and composition.
Collapse
Affiliation(s)
- Scott Smemo
- 1] Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA [2]
| | - Juan J Tena
- 1] Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Carretera de Utrera Km1, Sevilla 41013, Spain [2]
| | - Kyoung-Han Kim
- 1] Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada [2]
| | - Eric R Gamazon
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Noboru J Sakabe
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Carlos Gómez-Marín
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Carretera de Utrera Km1, Sevilla 41013, Spain
| | - Ivy Aneas
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Flavia L Credidio
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Débora R Sobreira
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Nora F Wasserman
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Ju Hee Lee
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Vijitha Puviindran
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Davis Tam
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Michael Shen
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Joe Eun Son
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada
| | - Niki Alizadeh Vakili
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Hoon-Ki Sung
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada
| | - Silvia Naranjo
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Carretera de Utrera Km1, Sevilla 41013, Spain
| | - Rafael D Acemel
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Carretera de Utrera Km1, Sevilla 41013, Spain
| | - Miguel Manzanares
- Cardiovascular Development and Repair Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada
| | - Nancy J Cox
- 1] Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA [2] Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Chi-Chung Hui
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jose Luis Gomez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Carretera de Utrera Km1, Sevilla 41013, Spain
| | - Marcelo A Nóbrega
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
31
|
Díaz-Hernández ME, Bustamante M, Galván-Hernández CI, Chimal-Monroy J. Irx1 and Irx2 are coordinately expressed and regulated by retinoic acid, TGFβ and FGF signaling during chick hindlimb development. PLoS One 2013; 8:e58549. [PMID: 23505533 PMCID: PMC3594311 DOI: 10.1371/journal.pone.0058549] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 02/07/2013] [Indexed: 01/17/2023] Open
Abstract
The Iroquois homeobox (Irx) genes play a crucial role in the regionalization and patterning of tissues and organs during metazoan development. The Irx1 and Irx2 gene expression pattern during hindlimb development has been investigated in different species, but its regulation during hindlimb morphogenesis has not been explored yet. The aim of this study was to evaluate the gene expression pattern of Irx1 and Irx2 as well as their regulation by important regulators of hindlimb development such as retinoic acid (RA), transforming growth factor β (TGFβ) and fibroblast growth factor (FGF) signaling during chick hindlimb development. Irx1 and Irx2 were coordinately expressed in the interdigital tissue, digital primordia, joints and in the boundary between cartilage and non-cartilage tissue. Down-regulation of Irx1 and Irx2 expression at the interdigital tissue coincided with the onset of cell death. RA was found to down-regulate their expression by a bone morphogenetic protein-independent mechanism before any evidence of cell death. Furthermore, TGFβ protein regulated Irx1 and Irx2 in a stage-dependent manner at the interdigital tissue, it inhibited their expression when it was administered to the interdigital tissue at developing stages before their normal down-regulation. TGFβ administered to the interdigital tissue at developing stages after normal down-regulation of Irx1 and Irx2 evidenced that expression of these genes marked the boundary between cartilage tissue and non-cartilage tissue. It was also found that at early stages of hindlimb development FGF signaling inhibited the expression of Irx2. In conclusion, the present study demonstrates that Irx1 and Irx2 are coordinately expressed and regulated during chick embryo hindlimb development as occurs in other species of vertebrates supporting the notion that the genomic architecture of Irx clusters is conserved in vertebrates.
Collapse
Affiliation(s)
- Martha Elena Díaz-Hernández
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México. México, Distrito Federal, México
| | | | | | | |
Collapse
|
32
|
Abstract
The four vertebrate R-spondin proteins are secreted agonists of the canonical Wnt/β-catenin signaling pathway. These proteins are approximately 35 kDa, and are characterized by two amino-terminal furin-like repeats, which are necessary and sufficient for Wnt signal potentiation, and a thrombospondin domain situated more towards the carboxyl terminus that can bind matrix glycosaminoglycans and/or proteoglycans. Although R-spondins are unable to initiate Wnt signaling, they can potently enhance responses to low-dose Wnt proteins. In humans, rare disruptions of the gene encoding R-spondin1 cause a syndrome of XX sex reversal (phenotypic male), palmoplantar keratosis (a thickening of the palms and soles caused by excess keratin formation) and predisposition to squamous cell carcinoma of the skin. Mutations in the gene encoding R-spondin4 cause anonychia (absence or hypoplasia of nails on fingers and toes). Recently, leucine-rich repeat-containing G-protein-coupled receptor (Lgr)4, Lgr5 and Lgr6, three closely related orphans of the leucine-rich repeat family of G-protein-coupled receptors, have been identified as receptors for R-spondins. Lgr5 and Lgr6 are markers for adult stem cells. Because R-spondins are potent stimulators of adult stem cell proliferation in vivo and in vitro, these findings might guide the therapeutic use of R-spondins in regenerative medicine.
Collapse
Affiliation(s)
- Wim B M de Lau
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, The Netherlands
| | | | | |
Collapse
|
33
|
Herriges JC, Yi L, Hines EA, Harvey JF, Xu G, Gray P, Ma Q, Sun X. Genome-scale study of transcription factor expression in the branching mouse lung. Dev Dyn 2012; 241:1432-53. [PMID: 22711520 PMCID: PMC3529173 DOI: 10.1002/dvdy.23823] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2012] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Mammalian lung development consists of a series of precisely choreographed events that drive the progression from simple lung buds to the elaborately branched organ that fulfills the vital function of gas exchange. Strict transcriptional control is essential for lung development. Among the large number of transcription factors encoded in the mouse genome, only a small portion of them are known to be expressed and function in the developing lung. Thus a systematic investigation of transcription factors expressed in the lung is warranted. RESULTS To enrich for genes that may be responsible for regional growth and patterning, we performed a screen using RNA in situ hybridization to identify genes that show restricted expression patterns in the embryonic lung. We focused on the pseudoglandular stage during which the lung undergoes branching morphogenesis, a cardinal event of lung development. Using a genome-scale probe set that represents over 90% of the transcription factors encoded in the mouse genome, we identified 62 transcription factor genes with localized expression in the epithelium, mesenchyme, or both. Many of these genes have not been previously implicated in lung development. CONCLUSIONS Our findings provide new starting points for the elucidation of the transcriptional circuitry that controls lung development.
Collapse
Affiliation(s)
- John C. Herriges
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Lan Yi
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Elizabeth A. Hines
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Julie F. Harvey
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Guoliang Xu
- Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China 200031
| | - Paul Gray
- Department of Anatomy and Neurobiology, Washington University, St. Louis, MO 63110
| | - Qiufu Ma
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Xin Sun
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
34
|
Kim KH, Rosen A, Bruneau BG, Hui CC, Backx PH. Iroquois homeodomain transcription factors in heart development and function. Circ Res 2012; 110:1513-24. [PMID: 22628575 DOI: 10.1161/circresaha.112.265041] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Numerous cardiac transcription factors play overlapping roles in both the specification and proliferation of the cardiac tissues and chambers during heart development. It has become increasingly apparent that cardiac transcription factors also play critical roles in the regulation of expression of many functional genes in the prenatal and postnatal hearts. Accordingly, mutations of cardiac transcription factors cannot only result in congenital heart defects but also alter heart function thereby predisposing to heart disease and cardiac arrhythmias. In this review, we summarize the roles of Iroquois homeobox (Irx) family of transcription factors in heart development and function. In all, 6 Irx genes are expressed with distinct and overlapping patterns in the mammalian heart. Studies in several animal models demonstrate that Irx genes are important for the establishment of ventricular chamber properties, the ventricular conduction system, as well as heterogeneity of the ventricular repolarization. The molecular mechanisms by which Irx proteins regulate gene expression and the clinical relevance of Irx functions in the heart are discussed.
Collapse
Affiliation(s)
- Kyoung-Han Kim
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
35
|
Fagman H, Amendola E, Parrillo L, Zoppoli P, Marotta P, Scarfò M, De Luca P, de Carvalho DP, Ceccarelli M, De Felice M, Di Lauro R. Gene expression profiling at early organogenesis reveals both common and diverse mechanisms in foregut patterning. Dev Biol 2011; 359:163-75. [PMID: 21924257 PMCID: PMC3206993 DOI: 10.1016/j.ydbio.2011.08.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 08/24/2011] [Indexed: 11/30/2022]
Abstract
The thyroid and lungs originate as neighboring bud shaped outgrowths from the midline of the embryonic foregut. When and how organ specific programs regulate development into structures of distinct shapes, positions and functions is incompletely understood. To characterize, at least in part, the genetic basis of these events, we have employed laser capture microdissection and microarray analysis to define gene expression in the mouse thyroid and lung primordia at E10.5. By comparing the transcriptome of each bud to that of the whole embryo as well as to each other, we broadly describe the genes that are preferentially expressed in each developing organ as well as those with an enriched expression common to both. The results thus obtained provide a valuable resource for further analysis of genes previously unrecognized to participate in thyroid and lung morphogenesis and to discover organ specific as well as common developmental mechanisms. As an initial step in this direction we describe a regulatory pathway involving the anti-apoptotic gene Bcl2 that controls cell survival in early thyroid development.
Collapse
Affiliation(s)
| | - Elena Amendola
- IRGS, Biogem, Ariano Irpino (AV), Italy
- Stazione Zoologica Anton Dohrn, Naples, Italy
| | | | | | | | | | | | | | - Michele Ceccarelli
- IRGS, Biogem, Ariano Irpino (AV), Italy
- Dipartimento di Scienze Biologiche ed Ambientali, Università del Sannio, Benevento, Italy
| | - Mario De Felice
- IRGS, Biogem, Ariano Irpino (AV), Italy
- Dipartimento di Biologia e Patologia, Università di Napoli Federico II, Naples, Italy
| | - Roberto Di Lauro
- IRGS, Biogem, Ariano Irpino (AV), Italy
- Dipartimento di Biologia e Patologia, Università di Napoli Federico II, Naples, Italy
| |
Collapse
|
36
|
Doi T, Lukošiūtė A, Ruttenstock E, Dingemann J, Puri P. Expression of Iroquois genes is up-regulated during early lung development in the nitrofen-induced pulmonary hypoplasia. J Pediatr Surg 2011; 46:62-6. [PMID: 21238641 DOI: 10.1016/j.jpedsurg.2010.09.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 09/30/2010] [Indexed: 11/17/2022]
Abstract
BACKGROUND/PURPOSE Iroquois homeobox (Irx) genes have been implicated in the early lung morphogenesis of vertebrates. Irx1-3 and Irx5 gene expression is seen in fetal lung in rodents up to day (D) 18.5 of gestation. Fetal lung in Irx knockdown mice shows loss of mesenchyme and dilated airspaces, whereas nitrofen-induced hypoplastic lung displays thickened mesenchyme and diminished airspaces. We hypothesized that the Irx genes are up-regulated during early lung morphogenesis in the nitrofen-induced hypoplastic lung. METHODS Pregnant rats were exposed either to olive oil or nitrofen on D9. Fetal lungs harvested on D15 were divided into control and nitrofen groups; and the lungs harvested on D18 were divided into control, nitrofen without congenital diaphragmatic hernia (CDH[-]), and nitrofen with CDH (CDH[+]). Irx gene expression levels were analyzed by reverse transcriptase polymerase chain reaction. Immunohistochemistry was performed to evaluate protein expression of Irx family. RESULTS Pulmonary Irx1-3 and Irx5 messenger RNA expression levels were significantly up-regulated in nitrofen group compared with controls at D15. On D15, Irx immunoreactivity was increased in nitrofen-induced hypoplastic lung compared with controls. CONCLUSION Overexpression of Irx genes in the early lung development may cause pulmonary hypoplasia in the nitrofen CDH model by inducing lung dysmorphogenesis with thickened mesenchyme and diminished airspaces.
Collapse
Affiliation(s)
- Takashi Doi
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland
| | | | | | | | | |
Collapse
|
37
|
The Mohawk homeobox gene is a critical regulator of tendon differentiation. Proc Natl Acad Sci U S A 2010; 107:10538-42. [PMID: 20498044 DOI: 10.1073/pnas.1000525107] [Citation(s) in RCA: 231] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mohawk (Mkx) is a member of the Three Amino acid Loop Extension superclass of atypical homeobox genes that is expressed in developing tendons. To investigate the in vivo functions of Mkx, we generated Mkx(-/-) mice. These mice had hypoplastic tendons throughout the body. Despite the reduction in tendon mass, the cell number in tail tendon fiber bundles was similar between wild-type and Mkx(-/-) mice. We also observed small collagen fibril diameters and a down-regulation of type I collagen in Mkx(-/-) tendons. These data indicate that Mkx plays a critical role in tendon differentiation by regulating type I collagen production in tendon cells.
Collapse
|
38
|
Guo X, Liu W, Pan Y, Ni P, Ji J, Guo L, Zhang J, Wu J, Jiang J, Chen X, Cai Q, Li J, Zhang J, Gu Q, Liu B, Zhu Z, Yu Y. Homeobox gene IRX1 is a tumor suppressor gene in gastric carcinoma. Oncogene 2010; 29:3908-20. [PMID: 20440264 DOI: 10.1038/onc.2010.143] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The IRX1 tumor suppressor gene is located on 5p15.33, a cancer susceptibility locus. Loss of heterozygosity of 5p15.33 in gastric cancer was identified in our previous work. In this study, we analyzed the molecular features and function of IRX1. We found that IRX1 expression was lost or reduced in gastric cancer. However, no mutations were identified in IRX1-encoding regions. IRX1 transcription was suppressed by hypermethylation, and the expression of IRX1 mRNA was partially restored in gastric cancer cells after 5-Aza-dC treatment. Restoring IRX1 expression in SGC-7901 and NCI-N87 gastric cancer cells inhibited growth, invasion and tumorigenesis in vitro and in vivo. We identified a number of target genes by global microarray analysis after IRX1 transfection combined with real-time PCR and chromatin immunoprecipitation assay. BDKRB2, an angiogenesis-related gene, HIST2H2BE and FGF7, cell proliferation and invasion-related genes, were identified as direct IRX1 target genes. The hypermethylation of IRX1 was not only detected in primary gastric cancer tissues but also in the peripheral blood of gastric cancer patients, suggesting IRX1 could potentially serve as a biomarker for gastric cancer.
Collapse
Affiliation(s)
- X Guo
- Department of Surgery of Shanghai Ruijin Hospital and Shanghai Institute of Digestive Surgery, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Shih B, Brown JJ, Armstrong DJ, Lindau T, Bayat A. Differential gene expression analysis of subcutaneous fat, fascia, and skin overlying a Dupuytren's disease nodule in comparison to control tissue. Hand (N Y) 2009; 4:294-301. [PMID: 19184239 PMCID: PMC2724615 DOI: 10.1007/s11552-009-9164-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Accepted: 01/05/2009] [Indexed: 01/06/2023]
Abstract
Dupuytren's disease (DD) is a benign fibroproliferative tumor with an unknown etiology and high recurrence postsurgery. Several observations suggest the possible involvement of skin overlying nodule (SON) and the subcutaneous fat in the pathogenesis of DD. This study aims to (1) compare the gene expression levels of SON and subcutaneous fat in DD and normal subjects and (2) to compare transverse palmar fascia (Skoog's fibers) from DD patients as internal control tissue, with palmar fascia (transverse carpal ligament) from patients undergoing carpal tunnel release as external control. Skin, fat, and fascia were obtained from five DD patients of Caucasian origin (age = 66 +/- 14) and from five control subjects (age = 57 +/- 19) undergoing carpal tunnel release. Total ribonucleic acids was extracted from each sample and used for complementary deoxyribonucleic acid synthesis. Real-time quantitative polymerase chain reaction was used to assess the gene expression levels of six candidate genes: A disintegrin and metalloproteinase domain (ADAM12), aldehyde dehydrogenase 1 family member A1 (ALDH1A1), iroquois homeoboxprotein 6 (IRX6), periostin, osteoblast specific factor, proteoglycan 4, and tenascin C. Using independent t test, ADAM12, ALDH1A1, and IRX6 expression levels in DD fats were significantly (p < 0.05) higher than those in the controls. There is no significant difference in the gene expression levels of all six genes when comparing disease and control fascia and skin. Interestingly, ADAM12 up-regulation has also been observed in several other fibrotic and proliferative disorders. In conclusion, this study demonstrates potential roles for subcutaneous fat in DD pathogenesis as well as supports the use of transverse palmar fascia as appropriate control tissues in DD research.
Collapse
Affiliation(s)
- Barbara Shih
- Plastic & Reconstructive Surgery Research, Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, UK
| | - Jason J. Brown
- Plastic & Reconstructive Surgery Research, Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, UK
| | - Daniel J. Armstrong
- The Pulvertaft Hand Centre, Derbyshire Royal Infirmary, London Road, Derby, DE1 2QY UK
| | - Tommy Lindau
- The Pulvertaft Hand Centre, Derbyshire Royal Infirmary, London Road, Derby, DE1 2QY UK
| | - Ardeshir Bayat
- Plastic & Reconstructive Surgery Research, Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, UK ,Department of Plastic, Reconstructive and Hand Surgery, South Manchester University Hospital Foundation Trust, Manchester, UK
| |
Collapse
|
40
|
Anderson DM, Beres BJ, Wilson-Rawls J, Rawls A. The homeobox gene Mohawk represses transcription by recruiting the sin3A/HDAC co-repressor complex. Dev Dyn 2009; 238:572-80. [PMID: 19235719 DOI: 10.1002/dvdy.21873] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mohawk is an atypical homeobox gene expressed in embryonic progenitor cells of skeletal muscle, tendon, and cartilage. We demonstrate that Mohawk functions as a transcriptional repressor capable of blocking the myogenic conversion of 10T1/2 fibroblasts. The repressor activity is located in three small, evolutionarily conserved domains (MRD1-3) in the carboxy-terminal half of the protein. Point mutation analysis revealed six residues in MRD1 are sufficient for repressor function. The carboxy-terminal half of Mohawk is able to recruit components of the Sin3A/HDAC co-repressor complex (Sin3A, Hdac1, and Sap18) and a subset of Polymerase II general transcription factors (Tbp, TFIIA1 and TFIIB). Furthermore, Sap18, a protein that bridges the Sin3A/HDAC complex to DNA-bound transcription factors, is co-immunoprecipitated by MRD1. These data predict that Mohawk can repress transcription through recruitment of the Sin3A/HDAC co-repressor complex, and as a result, repress target genes required for the differentiation of cells to the myogenic lineage.
Collapse
Affiliation(s)
- Douglas M Anderson
- School of Life Sciences, Center for Evolutionary Functional Genomics, Arizona State University, Tempe, Arizona 85287-4501, USA
| | | | | | | |
Collapse
|
41
|
Shih B, Wijeratne D, Armstrong DJ, Lindau T, Day P, Bayat A. Identification of biomarkers in Dupuytren's disease by comparative analysis of fibroblasts versus tissue biopsies in disease-specific phenotypes. J Hand Surg Am 2009; 34:124-36. [PMID: 19121738 DOI: 10.1016/j.jhsa.2008.09.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 09/11/2008] [Accepted: 09/12/2008] [Indexed: 02/02/2023]
Abstract
PURPOSE Biomarkers are molecular mediators that can serve as indicators of normal biological processes, pathologic processes, and therapeutic interventions. This study aims to identify potential biomarkers in Dupuytren's disease (DD), a fibroproliferative benign tumor with an unknown etiology and high recurrence after surgery. METHODS Bioinformatic analytical techniques were employed to identify candidate genes that may be differentially expressed in DD, which included gene expression analysis of microarray data and thorough literature searches in genetic linkage and other related biomolecular studies. All DD cases were males with advanced DD (n = 5, 66 years +/- 14). RNA was extracted from biopsies and corresponding cultures of normal fascia (unaffected transverse palmar fascia), palmar nodule and cord from each patient. Real-time reverse transcription-polymerase chain reactions were performed to determine the gene expression levels for disease-related transcripts. RESULTS The bioinformatic analysis revealed 25 candidate genes, which were further short-listed to 6 genes via functional annotation. The 6 selected candidate genes included: A disintegrin and metalloproteinase domain (ADAM12), aldehyde dehydrogenase 1 family member (ALDH1) A1, Iroquois homeobox protein 6 (IRX6), proteoglycan 4 (PRG4), tenascin C (TNC), and periostin (POSTN). The culturing treatments were shown to have significant impact on the gene expression for ALDH1A1, PRG4, and TNC. In tissue biopsies, significant fold changes were observed for ADAM12, POSTN, and TNC in the cord and/or nodule when compared with that of normal fascia. ADAM12 and POSTN are associated with accelerated or abnormal cell growth, whereas TNC has been associated with fibrotic diseases and cell migration. CONCLUSIONS This study demonstrated differential gene expression results in DD tissue biopsies compared with that of their corresponding cultures. ADAM12, POSTN, and TNC were identified from the cord and nodule biopsy samples as potential biomarkers in relation to DD development.
Collapse
Affiliation(s)
- Barbara Shih
- Plastic & Reconstructive Surgery Research, Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, UK
| | | | | | | | | | | |
Collapse
|
42
|
Myrthue A, Rademacher BLS, Pittsenbarger J, Kutyba-Brooks B, Gantner M, Qian DZ, Beer TM. The iroquois homeobox gene 5 is regulated by 1,25-dihydroxyvitamin D3 in human prostate cancer and regulates apoptosis and the cell cycle in LNCaP prostate cancer cells. Clin Cancer Res 2008; 14:3562-70. [PMID: 18519790 DOI: 10.1158/1078-0432.ccr-07-4649] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
1,25-Dihydroxyvitamin D3 [1,25(OH)2D3], the most active metabolite of vitamin D3, has significant antitumor activity in a broad range of preclinical models of cancer. In this study, we show that the Iroquois homeobox gene 5 (Irx5) is down-regulated by 1,25(OH)2D3 in human prostate cancer samples from patients randomly assigned to receive weekly high-dose 1,25(OH)2D3 or placebo before radical prostatectomy. Down-regulation of Irx5 by 1,25(OH)2D3 was also shown in the human androgen-sensitive prostate cancer cell line LNCaP and in estrogen-sensitive MCF-7 breast cancer cells. Knockdown of Irx5 by RNA interference showed a significant reduction in LNCaP cell viability, which was accompanied by an increase in p21 protein expression, G2-M arrest, and an increase in apoptosis. The induced apoptosis was partially mediated by p53, and p53 protein expression was increased as a result of Irx5 knockdown. Cell survival was similarly reduced by Irx5 knockdown in the colon cancer cell line HCT 116 and in MCF-7 breast cancer cells, each being derived from clinical tumor types that seem to be inhibited by 1,25(OH)2D3. Overexpression of Irx5 led to a reduction of p21 and p53 expression. This is the first report that Irx5 is regulated by 1,25(OH)2D3 in humans and the first report to show that Irx5 is involved in the regulation of both the cell cycle and apoptosis in human prostate cancer cells. Irx5 may be a promising new therapeutic target in cancer treatment.
Collapse
Affiliation(s)
- Anne Myrthue
- Division of Hematology and Medical Oncology, Oregon Health and Science University, CH-14R, 3303 SW Bond Avenue, Portland, OR 97239, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Raouf A, Zhao Y, To K, Stingl J, Delaney A, Barbara M, Iscove N, Jones S, McKinney S, Emerman J, Aparicio S, Marra M, Eaves C. Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell 2008; 3:109-18. [PMID: 18593563 DOI: 10.1016/j.stem.2008.05.018] [Citation(s) in RCA: 270] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 04/09/2008] [Accepted: 05/15/2008] [Indexed: 01/16/2023]
Abstract
Mature mammary epithelial cells are generated from undifferentiated precursors through a hierarchical process, but the molecular mechanisms involved, particularly in the human mammary gland, are poorly understood. To address this issue, we isolated highly purified subpopulations of primitive bipotent and committed luminal progenitor cells as well as mature luminal and myoepithelial cells from normal human mammary tissue and compared their transcriptomes obtained using three different methods. Elements unique to each subset of mammary cells were identified, and changes that accompany their differentiation in vivo were shown to be recapitulated in vitro. These include a stage-specific change in NOTCH pathway gene expression during the commitment of bipotent progenitors to the luminal lineage. Functional studies further showed NOTCH3 signaling to be critical for this differentiation event to occur in vitro. Taken together, these findings provide an initial foundation for future delineation of mechanisms that perturb primitive human mammary cell growth and differentiation.
Collapse
Affiliation(s)
- Afshin Raouf
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Maher AR, Milsom AB, Gunaruwan P, Abozguia K, Ahmed I, Weaver RA, Thomas P, Ashrafian H, Born GVR, James PE, Frenneaux MP. Hypoxic modulation of exogenous nitrite-induced vasodilation in humans. Circulation 2008; 117:670-7. [PMID: 18212289 DOI: 10.1161/circulationaha.107.719591] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND It has been proposed that under hypoxic conditions, nitrite may release nitric oxide, which causes potent vasodilation. We hypothesized that nitrite would have a greater dilator effect in capacitance than in resistance vessels because of lower oxygen tension and that resistance-vessel dilation should become more pronounced during hypoxemia. The effect of intra-arterial infusion of nitrite on forearm blood flow and forearm venous volumes was assessed during normoxia and hypoxia. METHODS AND RESULTS Forty healthy volunteers were studied. After baseline infusion of 0.9% saline, sodium nitrite was infused at incremental doses from 40 nmol/min to 7.84 mumol/min. At each stage, forearm blood flow was measured by strain-gauge plethysmography. Forearm venous volume was assessed by radionuclide plethysmography. Changes in forearm blood flow and forearm venous volume in the infused arm were corrected for those in the control arm. The peak percentage of venodilation during normoxia was 35.8+/-3.4% (mean+/-SEM) at 7.84 micromol/min (P<0.001) and was similar during hypoxia. In normoxia, arterial blood flow, assessed by the forearm blood flow ratio, increased from 1.04+/-0.09 (baseline) to 1.62+/-0.18 (nitrite; P<0.05) versus 1.07+/-0.09 (baseline) to 2.37+/-0.15 (nitrite; P<0.005) during hypoxia. This result was recapitulated in vitro in vascular rings. CONCLUSIONS Nitrite is a potent venodilator in normoxia and hypoxia. Arteries are modestly affected in normoxia but potently dilated in hypoxia, which suggests the important phenomenon of hypoxic augmentation of nitrite-mediated vasodilation in vivo. The use of nitrite as a selective arterial vasodilator in ischemic territories and as a potent venodilator in heart failure has therapeutic implications.
Collapse
Affiliation(s)
- Abdul R Maher
- Birmingham University, Birmingham, B15 2TT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|