1
|
Otani K, Komatsu R, Noguchi T, Suzuki W, Hirata Y, Matsuzawa A. The Selective 3-MST Inhibitor I3MT-3 Works as a Potent Caspase-1 Inhibitor. Int J Mol Sci 2025; 26:2237. [PMID: 40076859 PMCID: PMC11899812 DOI: 10.3390/ijms26052237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
I3MT-3 (HMPSNE) has been identified as a selective inhibitor of the supersulfide-producing enzyme 3-MST. In this study, we found that I3MT-3 inhibits inflammatory responses, including the secretion of the pro-inflammatory cytokine interleukin-1β (IL-1β) and inflammatory cell death pyroptosis, induced by the activation of the inflammasomes composed of NLRP1, NLRP3, or AIM2. However, interestingly, the knockdown of 3-MST did not affect the activation of the inflammasomes, suggesting that the inhibitory effect of I3MT-3 on inflammasome activation is mediated by alternative ways rather than the inhibition of 3-MST. Interestingly, an in vitro caspase assay revealed that I3MT-3 directly inhibits caspase-1 activation, and molecular docking simulations raised the possibility that the pyrimidone ring in I3MT-3 stabilizes direct interaction of I3MT-3 with caspase-1. Taken together, our data suggest that I3MT-3 inhibits inflammasome activation by targeting caspase-1, and show I3MT-3 as a potent inhibitor of caspase-1.
Collapse
Affiliation(s)
| | | | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | | | | | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
2
|
Li G, Hao Z, Wang H, Wang C, Liu D, Chen L, Sun Y. Pharmacological mechanism of action of Lianhua Qingwen in the treatment of COVID-19 and facial neuritis. World J Otorhinolaryngol Head Neck Surg 2025; 11:102-115. [PMID: 40070503 PMCID: PMC11891286 DOI: 10.1002/wjo2.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/13/2024] [Accepted: 04/10/2024] [Indexed: 03/14/2025] Open
Abstract
Objective Coronavirus disease-2019 (COVID-19) can cause not only respiratory symptoms but also facial paralysis. Lianhua Qingwen (LHQW) has been reported to have therapeutic effects on COVID-19 and facial neuritis (FN). We explored the potential mechanism of LHQW in the treatment of COVID-19 and FN through a network-pharmacology approach. Methods Active compounds and relevant targets of LHQW were obtained from the databases of Traditional Chinese Medicine Systems Pharmacology Database, HERB, UniProt Knowledge Base, SwissADME, and Swiss Target Prediction. Disease targets of COVID-19 and FN were acquired from Gene Cards. Database For Annotation, Visualization And Integrated Discovery and Metascape were used to search the biological functions of intersecting targets. After identifying the core targets and their corresponding ingredients, KEGG Mapper analyzes the localization of core targets in key pathways. AutoDock were employed to conduct molecular docking of the core targets and their corresponding ingredients. Results We obtained four core genes: interleukin (IL)-8, IL-1B, IL-6, and tumor necrosis factor (TNF)-α. Database searching revealed the anti-inflammatory and antiviral effects of LHQW may be related to the action of aleo-emodin, hyperforin, kaempferol, luteolin, and quercetin on these four genes by regulating the pathways of IL-17 and NOD-like receptor. The molecular-docking results of the four core targets and their corresponding active ingredients showed good binding activity between receptors and ligands. Conclusions We uncovered the active ingredients, potential targets, and biological pathways of LHQW for COVID-19 and FN coinfection. Our data provide a theoretical basis for further exploration of the mechanism of action of LHQW in treatment of COVID-19 and FN.
Collapse
Affiliation(s)
- Guang‐Jin Li
- Department of OtorhinolaryngologyThe Second Affiliated Hospital of Guilin Medical UniversityGuilinGuangxiChina
- Department of Otorhinolaryngology Head and Neck SurgeryThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiShandongChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiShandongChina
| | - Zhi‐Hong Hao
- Department of Otorhinolaryngology Head and Neck SurgeryThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiShandongChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiShandongChina
- School of Clinical MedicineShandong Second Medical University (Weifang Medical University)WeifangShandongChina
| | - Han‐Jing Wang
- Department of Otorhinolaryngology Head and Neck SurgeryThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiShandongChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiShandongChina
- School of Clinical MedicineShandong Second Medical University (Weifang Medical University)WeifangShandongChina
| | - Chen Wang
- Department of Otorhinolaryngology Head and Neck SurgeryThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiShandongChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiShandongChina
- School of Clinical MedicineShandong Second Medical University (Weifang Medical University)WeifangShandongChina
| | - Da‐Wei Liu
- Department of Otorhinolaryngology Head and Neck SurgeryThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiShandongChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiShandongChina
| | - Liang Chen
- Department of Otorhinolaryngology Head and Neck SurgeryThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiShandongChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiShandongChina
| | - Yan Sun
- Department of Otorhinolaryngology Head and Neck SurgeryThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiShandongChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiShandongChina
| |
Collapse
|
3
|
Zhang X, Lin J, Zuo D, Chen X, Xu G, Su J, Zhang W. The Tan-Re-Qing Capsule mitigates acute lung injury by suppressing the NLRP3 inflammasome and MAPK/NF-κB signaling pathways. Gene 2025; 933:149001. [PMID: 39401735 DOI: 10.1016/j.gene.2024.149001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/17/2024]
Abstract
OBJECTIVE The Tan-Re-Qing Capsule (TRQC), a traditional Chinese medicine (TCM) preparation, has been historically utilized in treating acute lung injury (ALI) and COVID-19-induced pulmonary diseases. This study aimed to explore the effect and underlying mechanisms of TRQC in lipopolysaccharide (LPS)-induced ALI models. METHODS The changes of acute lung injury and inflammatory response were observed after TRQC treatment of the LPS-induced ALI mouse model. Based on active compounds in TRQC and network pharmacology analysis, potential targeting signals were identified. The effects of TRQC on signaling in LPS-stimulated BMDMs were investigated. Additionally, the defecatory status of mice and the mechanism of Cl- secretion in HBE cells and T84 colonic epithelial cells were examined. RESULTS TRQC exhibited a notable amelioration of inflammatory injuries in ALI mice. Utilizing a systems-pharmacology approach based on active chemical compounds, TRQC was found to regulate inflammation-related pathways, including NF-κB, NOD-like signaling, and MAPK signaling. In vitro experiments demonstrated that TRQC effectively suppressed LPS-induced activation of macrophages and the assembly of the NLRP3 inflammasome induced by LPS and Nigericin. These effects were attributed to the suppression of NF-κB and NOD-like signaling pathways. Furthermore, TRQC blocked MAPK signaling, thereby mitigating the inhibitory effects of LPS and Nigericin on Ca2+-dependent Cl- efflux across colonic epithelial cells. This mechanism generated a cathartic effect, potentially aiding in the removal of harmful substances and pathogenic bacteria. CONCLUSION Our study demonstrates that TRQC significantly mitigates ALI by effectively suppressing the NLRP3 inflammasome and MAPK/NF-κB signaling pathways. These findings suggest that TRQC could serve as a promising therapeutic candidate for inflammatory lung diseases, offering a novel approach to managing conditions like ALI and potentially extending to other inflammatory diseases.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Respiratory Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Division of Pulmonary, Critical Care, Allergy, and Sleep, Department of Medicine, University of California, San Francisco, CA 94143, USA.
| | - Jiacheng Lin
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Dongliang Zuo
- Shanghai Institute for Advanced Immunochemical Studies, Shanghai Tech University, Shanghai 201210, China.
| | - Xuan Chen
- Department of Respiratory Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Guihua Xu
- Department of Respiratory Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jie Su
- School of Life Sciences and Biotechnology and State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China.
| | - Wei Zhang
- Department of Respiratory Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
4
|
Gu L, Zhu J, Nie Q, Xie B, Xue S, Zhang A, Li Q, Zhang Z, Li S, Li Y, Shi Q, Shi W, Zhao L, Liu S, Shi X. NLRP3 promotes inflammatory signaling and IL-1β cleavage in acute lung injury caused by cell wall extract of Lactobacillus casei. Commun Biol 2025; 8:20. [PMID: 39774843 PMCID: PMC11706994 DOI: 10.1038/s42003-025-07462-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
Gram-positive bacterial pneumonia is a significant cause of hospitalization and death. Shortage of a good experimental model and therapeutic targets hinders the cure of acute lung injury (ALI). This study has established a mouse model of ALI using Gram-positive bacteria Lactobacillus casie cell wall extracts (LCWE) and identified the key regulator NLRP3. We show that LCWE induces TNF, NF-κB signaling, and so on pathways. Similar to lipopolysaccharide (LPS), LCWE induces the infiltration of CD11b-positive cells and inflammation in lungs. LCWE also triggers inflammatory signaling through TLR2, different from LPS through TLR4. It suggests that cytokines amplify inflammation signaling relying on NLRP3 in LCWE-induced ALI. NLRP3 deletion disrupts inflammation, IL-1β cleavage, and the infiltration of neutrophils and macrophages in the injured lung. Our study highlights an animal ALI model for Gram-positive bacterial pneumonia and that NLRP3 is a key therapeutic target to prevent inflammation and lung damage in LCWE-induced ALI.
Collapse
Affiliation(s)
- Lingui Gu
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230023, P. R. China
| | - Jinjin Zhu
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230023, P. R. China
| | - Qingbing Nie
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230023, P. R. China
| | - Binghua Xie
- The Fuyang Hospital, Anhui Medical University, Fuyang, Anhui, 236000, P. R. China
| | - Shuo Xue
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230023, P. R. China
| | - Ailing Zhang
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230023, P. R. China
| | - Qiangwei Li
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230023, P. R. China
| | - Zhengzhong Zhang
- The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, 230023, P. R. China
| | - Shupeng Li
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230023, P. R. China
| | - Yusen Li
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230023, P. R. China
| | - Qinquan Shi
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230023, P. R. China
| | - Weiwei Shi
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230023, P. R. China
| | - Lei Zhao
- The Fuyang Hospital, Anhui Medical University, Fuyang, Anhui, 236000, P. R. China.
| | - Shuzhen Liu
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230023, P. R. China.
| | - Xuanming Shi
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230023, P. R. China.
| |
Collapse
|
5
|
Laurindo LF, Rodrigues VD, Laurindo LF, Cherain LMA, de Lima EP, Boaro BL, da Silva Camarinha Oliveira J, Chagas EFB, Catharin VCS, Dos Santos Haber JF, Dos Santos Bueno PC, Direito R, Barbalho SM. Targeting AMPK with Irisin: Implications for metabolic disorders, cardiovascular health, and inflammatory conditions - A systematic review. Life Sci 2025; 360:123230. [PMID: 39532260 DOI: 10.1016/j.lfs.2024.123230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Irisin-based interventions have gained attention for their potential to modulate the adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway in various diseases. Physiologically, irisin is a myokine released during physical exercise that exerts anti-inflammatory effects and is a metabolic and cardiometabolic enhancer. On the other hand, AMPK is crucial for maintaining energy balance and metabolic homeostasis. Therefore, individuals presenting low blood levels of irisin and AMPK dysregulation are more predisposed to metabolic disorders and cardiovascular health inflammatory conditions since regulating energy balance and metabolic homeostasis are crucial for preventing or treating these disorders. In light of those mentioned above and considering that no review has addressed the intricate relationships between irisin and AMPK regulation in the realm of metabolic disorders, cardiovascular health, and inflammatory conditions, we comprehensively reviewed studies involving irisin's effects on AMPK signaling in different models and interventions. Our systematic analysis involved in vitro studies, animal models, and their relevant clinical implications of irisin targeting AMPK due to the absence of relevant clinical trials. The outcomes and limitations of the included studies were extensively highlighted. Objectively, irisin improved metabolic disorders by enhancing β-cell function and insulin secretion in diabetes, mitigating myocardial injury in cardiovascular conditions, and reducing inflammation and oxidative stress in various injury models by targeting AMPK. However, the lack of clinical trials limits the generalizability of these findings to human subjects. Future research should focus on translating these findings into clinical applications and exploring the broader implications of irisin-based interventions in human health.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, 17519-030 São Paulo, Brazil; Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil; Department of Administration, Associate Degree in Hospital Management, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil.
| | - Victória Dogani Rodrigues
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, 17519-030 São Paulo, Brazil
| | - Lívia Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, 15090-000 São Paulo, Brazil
| | - Luana Maria Amaral Cherain
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, 17519-030 São Paulo, Brazil
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil
| | - Beatriz Leme Boaro
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, 17519-030 São Paulo, Brazil
| | - Jéssica da Silva Camarinha Oliveira
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, 17519-030 São Paulo, Brazil
| | - Eduardo Federighi Baisi Chagas
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil
| | - Vitor Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil
| | | | - Patrícia Cincotto Dos Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil; Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, 17500-000 São Paulo, Brazil; UNIMAR Charity Hospital, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil
| |
Collapse
|
6
|
Chen D, Plott T, Wiest M, Van Trump W, Komalo B, Nguyen D, Marsh C, Heinrich J, Fuller CJ, Nicolaisen L, Cambronero E, Nguyen A, Elabd C, Rubbo F, DeVay Jacobson R. A combined AI and cell biology approach surfaces targets and mechanistically distinct Inflammasome inhibitors. iScience 2024; 27:111404. [PMID: 39687021 PMCID: PMC11648265 DOI: 10.1016/j.isci.2024.111404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/20/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024] Open
Abstract
Inflammasomes are protein complexes that mediate innate immune responses whose dysregulation has been linked to a spectrum of acute and chronic human conditions, which dictates therapeutic development that is aligned with disease variability. We designed a scalable, physiologic high-content imaging assay in human PBMCs that we analyzed using a combination of machine-learning and cell biology methods. This resulted in a set of biologically interpretable readouts that can resolve a spectrum of cellular states associated with inflammasome activation and inhibition. These methods were applied to a phenotypic screen that surfaced mechanistically distinct inflammasome inhibitors from an annotated 12,000 compound library. A set of over 100 inhibitors, including an array of Raf-pathway inhibitors, were validated in downstream functional assays. This approach demonstrates how complementary machine learning-based methods can be used to generate profiles of cellular states associated with different stages of complex biological pathways and yield compound and target discovery.
Collapse
Affiliation(s)
- Daniel Chen
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - Tempest Plott
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - Michael Wiest
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - Will Van Trump
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - Ben Komalo
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - Dat Nguyen
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - Charlie Marsh
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - Jarred Heinrich
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - Colin J. Fuller
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - Lauren Nicolaisen
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - Elisa Cambronero
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - An Nguyen
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - Christian Elabd
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | - Francesco Rubbo
- Spring Discovery, Inc., 1125 Industrial Road, San Carlos, CA 94070, USA
| | | |
Collapse
|
7
|
Li R, Deng H, Han Y, Tong Y, Hou Y, Huang T, Xiao M, Deng L, Zhao X, Chen Y, Feng P, Chen R, Yang Z, Qi H, Jia Z, Feng W. Therapeutic effects of Lianhua Qingke on COPD and influenza virus-induced exacerbation of COPD are associated with the inhibition of NF-κB signaling and NLRP3 inflammasome responses. Int Immunopharmacol 2024; 142:113213. [PMID: 39317049 DOI: 10.1016/j.intimp.2024.113213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/01/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Lianhua Qingke (LHQK), a traditional Chinese medicine (TCM) used clinically for the treatment of respiratory diseases with acute tracheobronchitis, and cough, has demonstrated promising efficacy in suppressing inflammation, inhibitingmucin secretion, reducing goblet cell hyperplasia andmaintainingairway epithelial integrity. However, its efficacy in managing chronic obstructive pulmonary disease (COPD) progression, particularly virus-induced acute exacerbations of COPD (AECOPD),remains unclear. Here, cigarette smoke (CS)-induced COPD and CS+virus (influenza H1N1)-triggered AECOPD mouse models were employed to evaluated the therapeutic potential of LHQK. The findings demonstrated that LHQK treatment led to significant improved pulmonary function, suppressed pulmonary inflammation, alleviated lung histopathological changes, and preserved airway epithelial integrity in COPD mice. Additionally, LHQK treatment effectively inhibited viral replication in the lungs of AECOPD mice and decreased recruitment of immune cells (M1 macrophages, progenitor-exhausted T cells and CD8 + T cells) to the lungs. Western blot analysis indicated that the therapeutic effects of LHQK are associated with the inhibition ofNF-κB signaling and NLRP3 inflammasome activation. Collectively, these findings elucidate the underlying mechanisms by which LHQK mitigates COPD and AECOPD, thereby supporting its potential as a therapeutic option for individuals afflicted with these conditions.
Collapse
Affiliation(s)
- Runfeng Li
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Guangdong 510120, China
| | - Huihuang Deng
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Guangdong 510120, China
| | - Yu Han
- Department of Pharmacy, Hebei Children's Hospital, Shijiazhuang Hebei 050031, China
| | - Yanan Tong
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang Hebei 050035, China
| | - Yunlong Hou
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang Hebei 050035, China; Hebei Academy of Integrated Traditional Chinese and Western Medicine, Hebei 050035, China
| | - Tao Huang
- Guangdong Key Laboratory of Chemical Measurement and Emergency Test Technology, China National Analytical Center, Institute of Analysis, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Mengjie Xiao
- Guangdong Key Laboratory of Chemical Measurement and Emergency Test Technology, China National Analytical Center, Institute of Analysis, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Lingzhu Deng
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Guangdong 510120, China
| | - Xin Zhao
- Guangdong Key Laboratory of Chemical Measurement and Emergency Test Technology, China National Analytical Center, Institute of Analysis, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yaorong Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Guangdong 510120, China
| | - Pei Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa 519020, Macau
| | - Ruifeng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa 519020, Macau
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Guangdong 510120, China; Guangzhou Laboratory, Guangzhou, Guangdong 510120, China
| | - Hui Qi
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang Hebei 050035, China; Hebei Academy of Integrated Traditional Chinese and Western Medicine, Hebei 050035, China.
| | - Zhenhua Jia
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang Hebei 050035, China; Hebei Academy of Integrated Traditional Chinese and Western Medicine, Hebei 050035, China; Affiliated Yiling Hospital of Hebei Medical University, Shijiazhuang, Hebei 050091, China.
| | - Wei Feng
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang Hebei 050035, China; Hebei Academy of Integrated Traditional Chinese and Western Medicine, Hebei 050035, China.
| |
Collapse
|
8
|
Tang J, Tie X, Zhi S, Wang Z, Zhao Q, Qu Z, Lu G, Li Q, Wu Y, Shi Y. Discovery of novel 5-phenyl-1H-pyrrole-2-carboxylic acids as Keap1-Nrf2 inhibitors for acute lung injury treatment. Bioorg Chem 2024; 153:107741. [PMID: 39232343 DOI: 10.1016/j.bioorg.2024.107741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
Oxidative stress is intricately linked to acute lung injury (ALI) and cerebral ischemic/reperfusion (I/R) injury. The Keap1 (Kelch-like ECH-Associating protein 1)-Nrf2 (nuclear factor erythroid 2-related factor 2)-ARE (antioxidant response element) signaling pathway, recognized as a crucial regulatory mechanism in oxidative stress, holds immense potential for the treatment of both diseases. In our laboratory, we initially screened a compound library and identified compound 3, which exhibited a dissociation constant of 5090 nM for Keap1. To enhance its binding affinity, we developed a novel 5-phenyl-1H-pyrrole-2-carboxylic acid Keap1-Nrf2 inhibitor through scaffold hopping from compound 3. Structure-activity relationship studies identified compound 19 as the most potent, with a KD2 of 42.2 nM against Keap1. Furthermore, compound 19 showed significant protection against LPS-induced injury in BEAS-2B cells and promoted Nrf2 nuclear translocation. Subsequently, we investigated its therapeutic effects in mouse models of ALI injury. Compound 19 effectively alleviated symptoms at doses of 15 mg/kg for ALI injury. Additionally, it facilitated Nrf2 translocation to the nucleus, increased Nrf2 levels, and upregulated the expression of HO-1 and NQO1 in affected tissues.
Collapse
Affiliation(s)
- Jiaqin Tang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Xin Tie
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Shumeng Zhi
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Zhizhong Wang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Qipeng Zhao
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Zhuo Qu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China.
| | - Guangyuan Lu
- Ningxia Key Laboratory of Craniocerebral Diseases, Incubation Base of National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China.
| | - Qin Li
- Department of Clinical Laboratory, People's Hospital of Ningxia Hui Autonomous Region (Ningxia Medical University), No.301, Zhengyuan North Street, Jinfeng District, Yinchuan City 750001, China.
| | - Yanran Wu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China.
| | - Ying Shi
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China.
| |
Collapse
|
9
|
Chang J, Gao X, Yang F, Qiang P, Fan L, Liu Z, Shimosawa T, Xu Q, Chang Y. Esaxerenone Inhibits Interferon-γ Induced Pyroptosis of Macrophages in the Lungs of Aldosterone-treated Mice. Inflammation 2024; 47:2145-2158. [PMID: 38713304 DOI: 10.1007/s10753-024-02030-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024]
Abstract
Lung immune cells such as lymphocytes and macrophages can induce an inflammatory response due to the activation of mineralocorticoid receptor (MR), which is manifested by the infiltration of inflammatory cells and the secretion of inflammatory cytokines and subsequent apoptosis, pyroptosis and necrosis of intrinsic lung cells and immune cells. Macrophages are immune cells that are abundant in the lung and act as the first line of defense against pathogens but are also aggravating factors of infection. The activation of the renin-angiotensin-aldosterone system (RAAS), especially aldosterone-stimulated MR activation, can induce macrophage and CD8+ T cell aggregation and the secretion of cytokines such as tumor necrosis factor-α (TNF-α) and interferon-gamma (IFN-γ). Increased IFN-γ secretion can induce macrophage pyroptosis and the release of interleukin 1-β (IL-1β), aggravating lung injury. In this study, lung injury in C57BL/6 mice was induced by subcutaneous micro-osmotic pump infusion of aldosterone. After 12 weeks of administration, the kidney, heart, blood vessels and lungs all showed obvious inflammatory injury, which manifested as rapid accumulation of macrophages. The overexpression of IFN-γ in the lungs of aldosterone-treated mice and the stimulation of MH-S and RAW264.7 alveolar macrophages (AMs) with aldosterone in vitro showed that IFN-γ induced pyroptosis of macrophages via the activation of the inflammasome, and the MR blocker esaxerenone effectively inhibited this effect and alleviated lung injury. In addition, IFN-γ secreted by CD8+ T cells is associated with macrophage pyroptosis. In conclusion, the inhibition of macrophage pyroptosis can effectively alleviate lung injury.
Collapse
Affiliation(s)
- Jingyue Chang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Xiaomeng Gao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Fan Yang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Panpan Qiang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Lili Fan
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Ziqian Liu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Tatsuo Shimosawa
- Department of Clinical Laboratory, School of Medicine, International University of Health and Welfare, Narita, 286-8686, Japan
| | - Qingyou Xu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
| | - Yi Chang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
| |
Collapse
|
10
|
Bao L, Li M, Li J, Gao J. Circular RNA circVAPA mediates alveolar macrophage activation by modulating miR-212-3p/Sirt1 axis in acute respiratory distress syndrome. J Mol Histol 2024; 56:7. [PMID: 39612054 PMCID: PMC11607097 DOI: 10.1007/s10735-024-10312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/28/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a life-threatening condition associated with the inflammatory activation of alveolar macrophages. Here, we examined the role of circVAPA in regulating inflammasome activation and macrophage inflammatory polarization in an ARDS model. METHODS circVAPA expression levels were analyzed in macrophages isolated from healthy controls and patients with ARDS. In vitro cell models of mouse alveolar macrophages and an in vivo mouse ARDS model were established through Lipopolysaccharide (LPS) stimulation. The effects of circVAPA knockdown on macrophage inflammatory polarization, inflammasome activation, and pulmonary tissue damage were investigated in both cell and animal models. The interaction between circVAPA and downstream factors was verified through a luciferase reporter assay and by silencing circVAPA. RESULTS circVAPA upregulation in alveolar macrophages was associated with the inflammation in ARDS patients. circVAPA was also upregulated in LPS-stimulated mouse alveolar macrophages (MH-S cells). Additionally, circVAPA knockdown attenuated the inflammatory activation of MH-S cells and reduced the expression of pyroptosis-related proteins. circVAPA silencing also mitigated the inflammatory effects of LPS-stimulated MH-S cells on lung epithelial cells (MLE-12), and alleviated the inflammatory damage in the pulmonary tissue of ARDS mouse model. We further showed that miR-212-3p/Sirt1 axis mediated the functional role of circVAPA in the inflammatory polarization of MH-S cells. CONCLUSION Our data suggest that circVAPA promotes inflammasome activity and macrophage inflammation by modulating miR-212-3p/Sirt1 axis in ARDS. Targeting circVAPA may be employed to suppress the inflammatory activation of alveolar macrophages in ARDS.
Collapse
Affiliation(s)
- Lingyun Bao
- Department of Neonatology, Kunming Children's Hospital, Kunming, Yunnan, China.
| | - Mingpan Li
- Department of Neonatology, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Jiaxin Li
- Department of Neonatology, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Jin Gao
- Department of Neonatology, Kunming Children's Hospital, Kunming, Yunnan, China
| |
Collapse
|
11
|
Reisser Y, Hornung F, Häder A, Lauf T, Nietzsche S, Löffler B, Deinhardt-Emmer S. Telomerase RNA component knockout exacerbates Staphylococcus aureus pneumonia by extensive inflammation and dysfunction of T cells. eLife 2024; 13:RP100433. [PMID: 39607755 PMCID: PMC11604217 DOI: 10.7554/elife.100433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
The telomerase RNA component (Terc) constitutes a non-coding RNA critical for telomerase function, commonly associated with aging and pivotal in immunomodulation during inflammation. Our study unveils heightened susceptibility to pneumonia caused by Staphylococcus aureus (S. aureus) in Terc knockout (Tercko/ko) mice compared to both young and old infected counterparts. The exacerbated infection in Tercko/ko mice correlates with heightened inflammation, manifested by elevated interleukin-1β (IL-1β) levels and activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome within the lung. Employing mRNA sequencing methods alongside in vitro analysis of alveolar macrophages (AMs) and T cells, our study elucidates a compelling correlation between Tercko/ko, inflammation, and impaired T cell functionality. Terc deletion results in compromised T cell function, characterized by dysregulation of the T cell receptor and absence of CD247, potentially compromising the host's capacity to mount an effective immune response against S. aureus. This investigation provides insights into the intricate mechanisms governing increased vulnerability to severe pneumonia in the context of Terc deficiency, which might also contribute to aging-related pathologies, while also highlighting the influence of Terc on T cell function.
Collapse
Affiliation(s)
- Yasmina Reisser
- Institute of Medical Microbiology, Jena University HospitalJenaGermany
| | - Franziska Hornung
- Institute of Medical Microbiology, Jena University HospitalJenaGermany
| | - Antje Häder
- Institute of Medical Microbiology, Jena University HospitalJenaGermany
| | - Thurid Lauf
- Institute of Medical Microbiology, Jena University HospitalJenaGermany
- Else Kröner Graduate School for Medical Students 'JSAM', Jena University HospitalJenaGermany
| | - Sandor Nietzsche
- Center for Electron Microscopy, Jena University HospitalJenaGermany
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University HospitalJenaGermany
| | | |
Collapse
|
12
|
Li M, Ma L, Lv J, Zheng Z, Lu W, Yin X, Lin W, Wang P, Cui J, Hu L, Liu J. Design, synthesis, and biological evaluation of oridonin derivatives as novel NLRP3 inflammasome inhibitors for the treatment of acute lung injury. Eur J Med Chem 2024; 277:116760. [PMID: 39197252 DOI: 10.1016/j.ejmech.2024.116760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024]
Abstract
Acute lung injury (ALI) is a severe respiratory disorder closely associated with the excessive activation of the NLRP3 inflammasome. Oridonin (Ori), a natural diterpenoid compound, had been confirmed as a specific covalent NLRP3 inflammasome inhibitor, which was completely different from that of MCC950. However, the further clinical application of Ori was limited by its weak inhibitory activity against NLRP3 inflammasome (IC50 = 1240.67 nM). Fortunately, through systematic structure-optimization of Ori, D6 demonstrated the enhancement of IL-1β inhibitory activity (IC50 = 41.79 nM), which was better than the parent compound Ori. Then, by using SPR, molecular docking and MD simulation, D6 was verified to directly interact with NLRP3 via covalent and non-covalent interaction. The further anti-inflammatory mechanism studies were revealed that D6 could inhibit the activation of NLRP3 inflammasome without affecting the initiation phase of NLRP3 inflammasome activation, and D6 was a broad-spectrum and selective NLRP3 inflammasome inhibitor. Finally, D6 demonstrated a favorable therapeutic effect on LPS-induced ALI in mice model, and the potent pharmacodynamic effect of D6 was correlated with the specific inhibition of NLRP3 inflammasome activation in vivo. Thus, D6 is proved as a potent NLRP3 inhibitor, and has the potential to develop as a novel anti-ALI agent.
Collapse
Affiliation(s)
- Mengting Li
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lingyu Ma
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiahao Lv
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhe Zheng
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenyu Lu
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xunkai Yin
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weijiang Lin
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ping Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jian Cui
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jian Liu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
13
|
El-Maradny YA, Badawy MA, Mohamed KI, Ragab RF, Moharm HM, Abdallah NA, Elgammal EM, Rubio-Casillas A, Uversky VN, Redwan EM. Unraveling the role of the nucleocapsid protein in SARS-CoV-2 pathogenesis: From viral life cycle to vaccine development. Int J Biol Macromol 2024; 279:135201. [PMID: 39216563 DOI: 10.1016/j.ijbiomac.2024.135201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The nucleocapsid protein (N protein) is the most abundant protein in SARS-CoV-2. Viral RNA and this protein are bound by electrostatic forces, forming cytoplasmic helical structures known as nucleocapsids. Subsequently, these nucleocapsids interact with the membrane (M) protein, facilitating virus budding into early secretory compartments. SCOPE OF REVIEW Exploring the role of the N protein in the SARS-CoV-2 life cycle, pathogenesis, post-sequelae consequences, and interaction with host immunity has enhanced our understanding of its function and potential strategies for preventing SARS-CoV-2 infection. MAJOR CONCLUSION This review provides an overview of the N protein's involvement in SARS-CoV-2 infectivity, highlighting its crucial role in the virus-host protein interaction and immune system modulation, which in turn influences viral spread. GENERAL SIGNIFICANCE Understanding these aspects identifies the N protein as a promising target for developing effective antiviral treatments and vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Yousra A El-Maradny
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria 21934, Egypt; Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Moustafa A Badawy
- Industrial Microbiology and Applied Chemistry program, Faculty of Science, Alexandria University, Egypt.
| | - Kareem I Mohamed
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Renad F Ragab
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Hamssa M Moharm
- Genetics, Biotechnology Department, Faculty of Agriculture, Alexandria University, Egypt.
| | - Nada A Abdallah
- Medicinal Plants Department, Faculty of Agriculture, Alexandria University, Egypt.
| | - Esraa M Elgammal
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), El Alamein 51718, Egypt.
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan, JAL 48900, Mexico; Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, JAL 48900, Mexico.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, 21934 Alexandria, Egypt.
| |
Collapse
|
14
|
Hsieh LL, Looney M, Figueroa A, Massaccesi G, Stavrakis G, Anaya EU, D'Alessio FR, Ordonez AA, Pekosz AS, DeFilippis VR, Karakousis PC, Karaba AH, Cox AL. Bystander monocytic cells drive infection-independent NLRP3 inflammasome response to SARS-CoV-2. mBio 2024; 15:e0081024. [PMID: 39240187 PMCID: PMC11481483 DOI: 10.1128/mbio.00810-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/26/2024] [Indexed: 09/07/2024] Open
Abstract
The pathogenesis of COVID-19 is associated with a hyperinflammatory immune response. Monocytes and macrophages play a central role in this hyperinflammatory response to SARS-CoV-2. NLRP3 inflammasome activation has been observed in monocytes of patients with COVID-19, but the mechanism and consequences of inflammasome activation require further investigation. In this study, we inoculated a macrophage-like THP-1 cell line, primary differentiated human nasal epithelial cell (hNEC) cultures, and primary monocytes with SARS-CoV-2. We found that the activation of the NLRP3 inflammasome in macrophages does not rely on viral replication, receptor-mediated entry, or actin-dependent entry. SARS-CoV-2 productively infected hNEC cultures without triggering the production of inflammasome cytokines IL-18 and IL-1β. Importantly, these cytokines did not inhibit viral replication in hNEC cultures. SARS-CoV-2 inoculation of primary monocytes led to inflammasome activation and induced a macrophage phenotype in these cells. Monocytic cells from bronchoalveolar lavage (BAL) fluid, but not from peripheral blood, of patients with COVID-19, showed evidence of inflammasome activation, expressed the proinflammatory marker CD11b, and displayed oxidative burst. These findings highlight the central role of activated macrophages, as a result of direct viral sensing, in COVID-19 and support the inhibition of IL-1β and IL-18 as potential therapeutic strategies to reduce immunopathology without increasing viral replication. IMPORTANCE Inflammasome activation is associated with severe COVID-19. The impact of inflammasome activation on viral replication and mechanistic details of this activation are not clarified. This study advances our understanding of the role of inflammasome activation in macrophages by identifying TLR2, NLRP3, ASC, and caspase-1 as dependent factors in this activation. Further, it highlights that SARS-CoV-2 inflammasome activation is not a feature of nasal epithelial cells but rather activation of bystander macrophages in the airway. Finally, we demonstrate that two pro inflammatory cytokines produced by inflammasome activation, IL-18 and IL-1β, do not restrict viral replication and are potential targets to ameliorate pathological inflammation in severe COVID-19.
Collapse
Affiliation(s)
- Leon L. Hsieh
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Monika Looney
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alexis Figueroa
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Guido Massaccesi
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Georgia Stavrakis
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Eduardo U. Anaya
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Franco R. D'Alessio
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alvaro A. Ordonez
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew S. Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Victor R. DeFilippis
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Petros C. Karakousis
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Andrew H. Karaba
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrea L. Cox
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Kim HI, Han Y, Kim MH, Boo M, Cho KJ, Kim HL, Lee IS, Jung JH, Kim W, Um JY, Park J, Ko SG. The multi-herbal decoction SH003 alleviates LPS-induced acute lung injury by targeting inflammasome and extracellular traps in neutrophils. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155926. [PMID: 39128302 DOI: 10.1016/j.phymed.2024.155926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/07/2024] [Accepted: 07/28/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Acute lung injury (ALI) is a devastating condition caused by sepsis, pneumonia, trauma, and more recently, COVID-19. SH003, an herbal formula consisted of Astragalus membranaceus, Angelica gigas and Trichosanthes kirilowii, is known for its effects on cancer and immunoregulation. HYPOTHESIS/PURPOSE Previous studies show SH003 exerts a promising anti-inflammatory effect. This study investigates the effect of modified SH003 on ALI using in silico, in vivo, and in vitro models. STUDY DESIGN AND METHODS We performed in silico-based analysis of SH003 on ALI-related pathways. C57BL/6 mice were intraperitoneally subjected to lipopolysaccharide (LPS) to induce septic ALI, followed by oral administration of SH003 for 2 weeks. Dexamethasone was used as the positive control. Human peripheral blood-derived polymorphonuclear neutrophils (PMN) were used to investigate the effect and mechanisms of SH003 on neutrophil extracellular trap (NET) formation. RESULTS Network pharmacology analysis suggested SH003 regulates lung inflammation by modulating NET formation. SH003 significantly reduced mortality in sepsis in vivo by inhibiting local and systemic inflammation, likely via nuclear factor kappa B and mitogen-activated protein kinase pathways-mediated inflammasome suppression. SH003 also decreased NET-related markers in lung tissues and inhibited LPS- and phorbol myristate acetate-induced NET formation in PMN. Cytometry time-of-flight analysis confirmed regulation of NETosis-related pathways by SH003. CONCLUSION SH003 effectively inhibits excessive immune responses in the lung by suppressing inflammasome activation and NET formation. These findings suggest SH003 as a potential therapeutic agent for septic ALI.
Collapse
Affiliation(s)
- Hyo In Kim
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Yohan Han
- Department of Microbiology and Sarcopenia Total Solution Center, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Mi-Hye Kim
- College of Korean Medicine, Woosuk University, Jeonju, Republic of Korea
| | - Mina Boo
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Kwang-Jin Cho
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hye-Lin Kim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - In-Seon Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ji Hoon Jung
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Woojin Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jinbong Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, Kyung Hee University, Seoul, Republic of Korea.
| | - Seong-Gyu Ko
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Singh N, Nagar E, Roy D, Arora N. NLRP3/GSDMD mediated pyroptosis induces lung inflammation susceptibility in diesel exhaust exposed mouse strains. Gene 2024; 918:148459. [PMID: 38608794 DOI: 10.1016/j.gene.2024.148459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Genetic diversity among species influences the disease severity outcomes linked to air pollution. However, the mechanism responsible for this variability remain elusive and needs further investigation. OBJECTIVE To investigate the genetic factors and pathways linked with differential susceptibility in mouse strains associated with diesel exhaust exposure. METHODS C57BL/6 and Balb/c mice were exposed to diesel exhaust (DE) for 5 days/week for 30 min/day for 8 weeks. Body weight of mice was recorded every week and airway hyperresponsiveness towards DE exposure was recorded after 24 h of last exposure. Mice were euthanised to collect BALF, blood, lung tissues for immunobiochemical assays, structural integrity and genetic studies. RESULTS C57BL/6 mice showed significantly decreased body weight in comparison to Balb/c mice (p < 0.05). Both mouse strains showed lung resistance and damage to elastance upon DE exposure compared to respective controls (p < 0.05) with more pronounced effects in C57BL/6 mice. Lung histology showed increase in bronchiolar infiltration and damage to the wall in C57BL/6 mice (p < 0.05). DE exposure upregulated pro-inflammatory and Th2 cytokine levels in C57BL/6 in comparison to Balb/c mice. C57BL/6 mice showed increase in Caspase-1 and ASC expression confirming activation of downstream pathway. This showed significant activation of inflammasome pathway in C57BL/6 mice with ∼2-fold increase in NLRP3 and elevated IL-1β expression. Gasdermin-D levels were increased in C57BL/6 mice demonstrating induction of pyroptosis that corroborated with IL-1β secretion (p < 0.05). Genetic variability among both species was confirmed with sanger's sequencing suggesting presence of SNPs in 3'UTRs of IL-1β gene influencing expression between mouse strains. CONCLUSIONS C57BL/6 mice exhibited increased susceptibility to diesel exhaust in contrast to Balb/c mice via activation of NLRP3-related pyroptosis. Differential susceptibility between strains may be attributed via SNPs in the 3'UTRs of the IL-1β gene.
Collapse
Affiliation(s)
- Naresh Singh
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ekta Nagar
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Deepti Roy
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Naveen Arora
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
17
|
Huang Q, Ren Y, Yuan P, Huang M, Liu G, Shi Y, Jia G, Chen M. Targeting the AMPK/Nrf2 Pathway: A Novel Therapeutic Approach for Acute Lung Injury. J Inflamm Res 2024; 17:4683-4700. [PMID: 39051049 PMCID: PMC11268519 DOI: 10.2147/jir.s467882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
ALI(acute lung injury) is a severe respiratory dysfunction caused by various intrapulmonary and extrapulmonary factors. It is primarily characterized by oxidative stress and affects the integrity of the pulmonary barrier. In severe cases, ALI can progress to ARDS(acute respiratory distress syndrome), a condition that poses a serious threat to the lives of affected patients. To date, the etiological mechanisms underlying ALI remain elusive, and available therapeutic options are quite limited. AMPK(AMP-activated protein kinase), an essential serine/threonine protein kinase, performs a pivotal function in the regulation of cellular energy levels and cellular regulatory mechanisms, including the detection of redox signals and mitigating oxidative stress. Meanwhile, Nrf2(nuclear factor erythroid 2-related factor 2), a critical transcription factor, alleviates inflammation and oxidative responses by interacting with multiple signaling pathways and contributing to the modulation of oxidative enzymes associated with inflammation and programmed cell death. Indeed, AMPK induces the dissociation of Nrf2 from Keap1(kelch-like ECH-associated protein-1) and facilitates its translocation into the nucleus to trigger the transcription of downstream antioxidant genes, ultimately suppressing the expression of inflammatory cells in the lungs. Given their roles, AMPK and Nrf2 hold promise as novel treatment targets for ALI. This study aimed to summarise the current status of research on the AMPK/Nrf2 signaling pathway in ALI, encompassing recently reported natural compounds and drugs that can activate the AMPK/Nrf2 signaling pathway to alleviate lung injury, and provide a theoretical reference for early intervention in lung injury and future research on lung protection.
Collapse
Affiliation(s)
- Qianxia Huang
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Yingcong Ren
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Ping Yuan
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Ma Huang
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Guoyue Liu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Yuanzhi Shi
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Guiyang Jia
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Miao Chen
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| |
Collapse
|
18
|
Han J, Zhang X, Cai M, Tian F, Xu Y, Chen H, He W, Zhang J, Tian H. TSPO deficiency exacerbates acute lung injury via NLRP3 inflammasome-mediated pyroptosis. Chin Med J (Engl) 2024; 137:1592-1602. [PMID: 38644799 PMCID: PMC11230828 DOI: 10.1097/cm9.0000000000003105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a common cause of respiratory failure in many critically ill patients. Although inflammasome activation plays an important role in the induction of acute lung injury (ALI) and ARDS, the regulatory mechanism of this process is still unclear. When cells are stimulated by inflammation, the integrity and physiological function of mitochondria play a crucial part in pyroptosis. However, the underlying mechanisms and function of mitochondrial proteins in the process of pyroptosis are largely not yet known. Here, we identified the 18-kDa translocator protein (TSPO), a mitochondrial outer membrane protein, as an important mediator regulating nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome activation in macrophages during ALI. METHODS TSPO gene knockout (KO) and lipopolysaccharide (LPS)-induced ALI/ARDS mouse models were employed to investigate the biological role of TSPO in the pathogenesis of ARDS. Murine macrophages were used to further characterize the effect of TSPO on the NLRP3 inflammasome pathway. Activation of NLRP3 inflammasome was preformed through LPS + adenosine triphosphate (ATP) co-stimulation, followed by detection of mitochondrial membrane potential, reactive oxygen species (ROS) production, and cell death to evaluate the potential biological function of TSPO. Comparisons between two groups were performed with a two-sided unpaired t -test. RESULTS TSPO- KO mice exhibited more severe pulmonary inflammation in response to LPS-induced ALI. TSPO deficiency resulted in enhanced activation of the NLRP3 inflammasome pathway, promoting more proinflammatory cytokine production of macrophages in LPS-injured lung tissue, including interleukin (IL)-1β, IL-18, and macrophage inflammatory protein (MIP)-2. Mitochondria in TSPO -KO macrophages tended to depolarize in response to cellular stress. The increased production of mitochondrial damage-associated molecular pattern led to enhanced mitochondrial membrane depolarization and pyroptosis in TSPO -KO cells. CONCLUSION TSPO may be the key regulator of cellular pyroptosis, and it plays a vital protective role in ARDS occurrence and development.
Collapse
Affiliation(s)
- Jingyi Han
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
- CAMS Key Laboratory of T Cell and Immunotherapy, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China
| | - Xue Zhang
- CAMS Key Laboratory of T Cell and Immunotherapy, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China
| | - Menghua Cai
- CAMS Key Laboratory of T Cell and Immunotherapy, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, Jiangsu 213000, China
| | - Feng Tian
- CAMS Key Laboratory of T Cell and Immunotherapy, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China
| | - Yi Xu
- CAMS Key Laboratory of T Cell and Immunotherapy, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, Jiangsu 213000, China
| | - Hui Chen
- CAMS Key Laboratory of T Cell and Immunotherapy, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, Jiangsu 213000, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Wei He
- CAMS Key Laboratory of T Cell and Immunotherapy, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, Jiangsu 213000, China
| | - Jianmin Zhang
- CAMS Key Laboratory of T Cell and Immunotherapy, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing 100005, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, Jiangsu 213000, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
19
|
Jiang L, Ye C, Huang Y, Hu Z, Wei G. Targeting the TRAF3-ULK1-NLRP3 regulatory axis to control alveolar macrophage pyroptosis in acute lung injury. Acta Biochim Biophys Sin (Shanghai) 2024; 56:789-804. [PMID: 38686458 PMCID: PMC11187487 DOI: 10.3724/abbs.2024035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/04/2024] [Indexed: 05/02/2024] Open
Abstract
Acute lung injury (ALI) is a serious condition characterized by damage to the lungs. Recent research has revealed that activation of the NLRP3 inflammasome in alveolar macrophages, a type of immune cell in the lungs, plays a key role in the development of ALI. This process, known as pyroptosis, contributes significantly to ALI pathogenesis. Researchers have conducted comprehensive bioinformatics analyses and identified 15 key genes associated with alveolar macrophage pyroptosis in ALI. Among these, NLRP3 has emerged as a crucial regulator. This study further reveal that the ULK1 protein diminishes the expression of NLRP3, thereby reducing the immune response of alveolar macrophages and mitigating ALI. Conversely, TRAF3, another protein, is found to inhibit ULK1 through a process called ubiquitination, leading to increased activation of the NLRP3 inflammasome and exacerbation of ALI. This TRAF3-mediated suppression of ULK1 and subsequent activation of NLRP3 are confirmed through various in vitro and in vivo experiments. The presence of abundant M0 and M1 alveolar macrophages in the ALI tissue samples further support these findings. This research highlights the TRAF3-ULK1-NLRP3 regulatory axis as a pivotal pathway in ALI development and suggests that targeting this axis could be an effective therapeutic strategy for ALI treatment.
Collapse
Affiliation(s)
- Lei Jiang
- />Department of Thoracic Surgerythe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330000China
| | - Chunlin Ye
- />Department of Thoracic Surgerythe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330000China
| | - Yunhe Huang
- />Department of Thoracic Surgerythe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330000China
| | - Zhi Hu
- />Department of Thoracic Surgerythe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330000China
| | - Guangxia Wei
- />Department of Thoracic Surgerythe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330000China
| |
Collapse
|
20
|
Yu C, Li Y, Li Y, Li S, Zeng F, Yu J, Ji Z, Li K, Zhai H. A novel mechanism for regulating lung immune homeostasis: Zukamu granules alleviated acute lung injury in mice by inhibiting NLRP3 inflammasome activation and regulating Th17/Treg cytokine balance. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117831. [PMID: 38280662 DOI: 10.1016/j.jep.2024.117831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 01/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acute lung injury (ALI) is a severely acute lung inflammation with high morbidity and mortality. Zukamu granules (ZKMG) is one of the Uygur patent drugs commonly used in clinic, which is included in the National Essential Drugs List (2018 edition). Clinical studies have shown that ZKMG has a significant effect on acute upper respiratory tract infection, and has better anti-inflammatory and antipyretic effects. However, the immunomodulatory mechanism of ZKMG on ALI is still not clear. AIM OF THE STUDY The aim of this study is to investigate the lung protective effect and immunomodulatory mechanism of ZKMG on lipopolysaccharide (LPS) -induced ALI mice, and to provide an important basis for the treatment strategy and theoretical basis of ALI. MATERIALS AND METHODS First, network pharmacology was used to predict the potential signaling pathways and biological processes of ZKMG related to immunology. Molecular docking technique was used to predict the possibility between the core components of ZKMG acting on NLRP3 protein. In addition, protein levels of F4/80 in lung tissues were assessed by Immunohistochemistry (IHC). The contents of IL-1β, IL-18, IL-17A and IL-10 in the lung tissue and serum, MPO in the lung tissue were detected by enzyme-linked immunosorbent assay (ELISA). Real-time quantitative PCR analysis (RT-qPCR) was used to detect NLRP3 mRNA in lung tissue. Protein levels of NLRP3, Caspase-1, Cleaved caspase-1 p20, ASC, and GSDMD were detected by Western blot (WB). RESULTS The results of network pharmacology showed that the immune pathways of ZKMG were mainly Th17 signaling pathway, IL-17 signaling pathway, NOD-like receptor signaling pathway, etc. Molecular docking results showed that the core components of ZKMG had good binding ability to NLRP3 protein. The verification experiments showed that ZKMG can reduce the degree of lung injury, and reduce the level of inflammatory infiltration of neutrophils and macrophages by reducing the content of MPO and F4/80. In addition, ZKMG can reduce NLRP3 mRNA, inhibit the expression of NLRP3/Caspase-1/GSDMD and other related pathway proteins, and reduce inflammatory factors such as IL-1β and IL-18. It can also reduce the content of pro-inflammatory cytokine IL-17A, increase the content of anti-inflammatory cytokine IL-10 in lung tissue. CONCLUSION ZKMG can reduce the degree of lung tissue injury in ALI by inhibiting NLRP3/Caspase-1/GSDMD signaling pathway and restoring the IL-17A/IL-10 cytokine balance, and its protective mechanism may be related to the regulation of lung immune homeostasis. It will provide a new strategy for studying the regulation of lung immune homeostasis.
Collapse
Affiliation(s)
- Chenqian Yu
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yanan Li
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yixuan Li
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Siyu Li
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Fengping Zeng
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jing Yu
- Institute of Traditional Uygur Medicine, Xinjiang Medical University, Urumqi, 830011, China
| | - Zhihong Ji
- New Cicon Pharmaceutical Co. LTD., Urumchi, 830001, China
| | - Keao Li
- New Cicon Pharmaceutical Co. LTD., Urumchi, 830001, China
| | - Huaqiang Zhai
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Institute of Traditional Uygur Medicine, Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
21
|
Wen H, Miao W, Liu B, Chen S, Zhang JS, Chen C, Quan MY. SPAUTIN-1 alleviates LPS-induced acute lung injury by inhibiting NF-κB pathway in neutrophils. Int Immunopharmacol 2024; 130:111741. [PMID: 38394887 DOI: 10.1016/j.intimp.2024.111741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Acute lung injury (ALI) is an inflammatory condition characterized by acute damage to lung tissue. SPAUTIN-1, recognized as a small molecule drug targeting autophagy and USP10/13, has been reported for its potential to inhibit oxidative stress damage in various tissue injuries. However, the role and mechanism of SPAUTIN-1 in ALI remain unclear. This study aims to elucidate the protective effects of SPAUTIN-1 on ALI, with a particular focus on its role and mechanism in pulmonary inflammatory responses. METHODS Lipopolysaccharides (LPS) were employed to induce inflammation-mediated ALI. Bleomycin was used to induce non-inflammation-mediated ALI. The mechanism of SPAUTIN-1 action was identified through RNA-Sequencing and subsequently validated in mouse primary cells. Tert-butyl hydroperoxide (TBHP) was utilized to create an in vitro model of lung epithelial cell oxidative stress with MLE-12 cells. RESULTS SPAUTIN-1 significantly mitigated LPS-induced lung injury and inflammatory responses, attenuated necroptosis and apoptosis in lung epithelial cells, and inhibited autophagy in leukocytes and epithelial cells. However, SPAUTIN-1 exhibited no significant effect on bleomycin-induced lung injury. RNA-sequencing results demonstrated that SPAUTIN-1 significantly inhibited the NF-κB signaling pathway in leukocytes, a finding consistently confirmed by mouse primary cell assays. In vitro experiments further revealed that SPAUTIN-1 effectively mitigated oxidative stress injury in MLE-12 cells induced by TBHP. CONCLUSION SPAUTIN-1 alleviated LPS-induced inflammatory injury by inhibiting the NF-κB pathway in leukocytes and protected epithelial cells from oxidative damage, positioning it as a potential therapeutic candidate for ALI.
Collapse
Affiliation(s)
- Hezhi Wen
- Zhejiang Key Laboratory of Interventional Pulmonology, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Wanqi Miao
- Zhejiang Key Laboratory of Interventional Pulmonology, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Bin Liu
- Zhejiang Key Laboratory of Interventional Pulmonology, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Shiyin Chen
- Wenzhou Medical University, Wenzhou 325000, China
| | - Jin-San Zhang
- Zhejiang Key Laboratory of Interventional Pulmonology, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Chengshui Chen
- Zhejiang Key Laboratory of Interventional Pulmonology, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| | - Mei-Yu Quan
- Zhejiang Key Laboratory of Interventional Pulmonology, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
22
|
Osorio-Valencia S, Zhou B. Roles of Macrophages and Endothelial Cells and Their Crosstalk in Acute Lung Injury. Biomedicines 2024; 12:632. [PMID: 38540245 PMCID: PMC10968255 DOI: 10.3390/biomedicines12030632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 11/11/2024] Open
Abstract
Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), present life-threatening conditions characterized by inflammation and endothelial injury, leading to increased vascular permeability and lung edema. Key players in the pathogenesis and resolution of ALI are macrophages (Mφs) and endothelial cells (ECs). The crosstalk between these two cell types has emerged as a significant focus for potential therapeutic interventions in ALI. This review provides a brief overview of the roles of Mφs and ECs and their interplay in ALI/ARDS. Moreover, it highlights the significance of investigating perivascular macrophages (PVMs) and immunomodulatory endothelial cells (IMECs) as crucial participants in the Mφ-EC crosstalk. This sheds light on the pathogenesis of ALI and paves the way for innovative treatment approaches.
Collapse
Affiliation(s)
| | - Bisheng Zhou
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
| |
Collapse
|
23
|
Huang Q, Le Y, Li S, Bian Y. Signaling pathways and potential therapeutic targets in acute respiratory distress syndrome (ARDS). Respir Res 2024; 25:30. [PMID: 38218783 PMCID: PMC10788036 DOI: 10.1186/s12931-024-02678-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common condition associated with critically ill patients, characterized by bilateral chest radiographical opacities with refractory hypoxemia due to noncardiogenic pulmonary edema. Despite significant advances, the mortality of ARDS remains unacceptably high, and there are still no effective targeted pharmacotherapeutic agents. With the outbreak of coronavirus disease 19 worldwide, the mortality of ARDS has increased correspondingly. Comprehending the pathophysiology and the underlying molecular mechanisms of ARDS may thus be essential to developing effective therapeutic strategies and reducing mortality. To facilitate further understanding of its pathogenesis and exploring novel therapeutics, this review provides comprehensive information of ARDS from pathophysiology to molecular mechanisms and presents targeted therapeutics. We first describe the pathogenesis and pathophysiology of ARDS that involve dysregulated inflammation, alveolar-capillary barrier dysfunction, impaired alveolar fluid clearance and oxidative stress. Next, we summarize the molecular mechanisms and signaling pathways related to the above four aspects of ARDS pathophysiology, along with the latest research progress. Finally, we discuss the emerging therapeutic strategies that show exciting promise in ARDS, including several pharmacologic therapies, microRNA-based therapies and mesenchymal stromal cell therapies, highlighting the pathophysiological basis and the influences on signal transduction pathways for their use.
Collapse
Affiliation(s)
- Qianrui Huang
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jie Fang Avenue, Wuhan, 430030, China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China
| | - Yue Le
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Shusheng Li
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jie Fang Avenue, Wuhan, 430030, China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China.
| | - Yi Bian
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jie Fang Avenue, Wuhan, 430030, China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China.
| |
Collapse
|
24
|
Shajahan SR, Kumar S, Ramli MDC. Unravelling the connection between COVID-19 and Alzheimer's disease: a comprehensive review. Front Aging Neurosci 2024; 15:1274452. [PMID: 38259635 PMCID: PMC10800459 DOI: 10.3389/fnagi.2023.1274452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Currently, there exists a limited comprehension regarding the correlation between COVID-19 and Alzheimer's disease (AD). To elucidate the interrelationship and its impact on outcomes, a comprehensive investigation was carried out utilising time-unrestricted searches of reputable databases such as Scopus, PubMed, Web of Science, and Google Scholar. Our objective was to evaluate the impact of various medical conditions on severe COVID-19-related events. We focused on identifying and analysing articles that discussed the clinical characteristics of COVID-19 patients, particularly those pertaining to severe events such as ICU admission, mechanical ventilation, pneumonia, mortality and acute respiratory distress syndrome (ARDS) a serious lung condition that causes low blood oxygen. Through careful data analysis and information gathering, we tried to figure out how likely it was that people with conditions, like AD, would have serious events. Our research investigated potential mechanisms that link AD and COVID-19. The ability of the virus to directly invade the central nervous system and the role of ACE-2 receptors were investigated. Furthermore, the OAS1 gene served as the genetic link between AD and COVID-19. In the context of COVID-19, our findings suggest that individuals with AD may be more susceptible to experiencing severe outcomes. Consequently, it is crucial to provide personalised care and management for this demographic. Further investigation is required to attain a comprehensive comprehension of the intricate correlation between Alzheimer's disease and COVID-19, as well as its ramifications for patient outcomes.
Collapse
Affiliation(s)
- Shah Rezlan Shajahan
- School of Graduate Studies, Management and Science University, Shah Alam, Selangor, Malaysia
| | - Suresh Kumar
- Faculty of Health and Life Sciences, Management and Science University, Shah Alam, Selangor, Malaysia
| | - Muhammad Danial Che Ramli
- Faculty of Health and Life Sciences, Management and Science University, Shah Alam, Selangor, Malaysia
| |
Collapse
|
25
|
Lian S, Zhang X, Shen Y, He S, Chen Z, Zhou L, Jiang W. Protective effect of apelin-13 on ventilator-induced acute lung injury. Mol Biol Rep 2024; 51:74. [PMID: 38175266 DOI: 10.1007/s11033-023-08911-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/26/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Mechanical Ventilation (MV) is an essential mechanism of life support in the clinic. It may also lead to ventilator-induced acute lung injury (VILI) due to local alveolar overstretching and/or repeated alveolar collapse. However, the pathogenesis of VILI is not completely understood, and its occurrence and development may be related to physiological processes such as the inflammatory response, oxidative stress, and apoptosis. Some studies have found that the the apelin/APJ axis is an endogenous antagonistic mechanism activated during acute respiratory distress syndrome(ARDS), that can counteract the injury response and prevent uncontrolled lung injury. To indicate that apelin-13 plays a protective role in VILI, an animal model of VILI was established in this study to explore whether apelin-13 can alleviate VILI in rats by inhibiting inflammation, apoptosis and oxidative stress. METHODS SD rats were divided into four groups: control, high tidal volume, high tidal volume + normal saline and high tidal volume + apelin-13. After tracheotomy, the rats in control maintained spontaneous breathing, and the other rats were connected to the small animal ventilator for 4 h to establish the rat VILI model. The mRNA expression of apelin was measured by real-time quantitative polymerase chain reaction(qRT-PCR), immunofluorescence and Western blotting(WB) were used to detect the expression level of APJ, and WB was used to detect the expression of the apoptotic proteins Bax and bcl-2. The degree of lung injury was evaluated by pathological staining of lung tissue,W/D ratio, and BALF total protein concentration. The expression of inflammatory factors(IL-1β, IL-6, TNF-α) in alveolar lavage fluid was measured using ELISA. The activities of MPO and cat and the content of MDA, an oxidative product, in lung tissue were measured to evaluate the degree of oxidative stress in the lung. RESULTS After treatment with apelin-13, the apelin/APJ axis in the lung tissue of VILI model rats was activated, and the effect was further enhanced. The pathological damage of lung tissue was alleviated, the expression of the antiapoptotic protein Bcl-2 and the proapoptotic protein Bax was reversed, and the levels of the inflammatory cytokines IL-1β, IL-6, TNF-α levels were all decreased. MPO activity and MDA content decreased, while CAT activity increased. CONCLUSION The apelin/apj axis is activated in VILI. Overexpression of apelin-13 further plays a protective role in VILI, mainly by including reducing pathological damage, the inflammatory response, apoptosis and antioxidant stress in lung tissue, thus delaying the occurrence and development of VILI.
Collapse
Affiliation(s)
- Siyu Lian
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Xianming Zhang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Yi Shen
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Shuang He
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Zongyu Chen
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Leilei Zhou
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Wenqing Jiang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| |
Collapse
|
26
|
Chen H, Bai L, Shi Y, Zhang X, Wang X, Wang Y, Hu J, Zhou P. Investigation of the Molecular Mechanisms Underlying the Therapeutic Effect of Perilla frutescens L. Essential Oil on Acute Lung Injury Using Gas Chromatography-Mass Spectrometry and Network Pharmacology. Comb Chem High Throughput Screen 2024; 27:1480-1494. [PMID: 37818572 DOI: 10.2174/0113862073244521231003071900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/21/2023] [Accepted: 08/30/2023] [Indexed: 10/12/2023]
Abstract
OBJECTIVE The present study aimed to investigate the molecular mechanism through which Perilla essential oil treats acute lung injury (ALI) through network pharmacology, molecular docking, and in vitro assays. METHODS Relevant ALI targets of the active ingredients of Perilla essential oil were predicted using the SwissTargetPrediction database and meta TarFisher database. These ALI targets were then screened using GeneCards and DisGeNET, and differentially expressed ALI target genes were identified using the Gene Expression Omnibus (GEO) database. Next, key targets were enriched using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Protein-protein interaction network analysis was performed to obtain targets with the highest degree values for molecular docking with Perilla essential oil active ingredients. For in vitro experiments, lipopolysaccharide (LPS) was used to induce an ALI inflammation model using RAW264.7 cells. The model cells were then treated with Perilla essential oil to detect the protein expression levels of vascular endothelial factor (NO), tumor necrosis factor (TNF-α), and p65 nuclear transcription factor in them. RESULTS Sixty-eight key targets of Perilla oil were identified for the treatment of ALI. These targets were found to be involved in biological processes related to peptides, response to lipopolysaccharides, the positive regulation of cytokine production, etc., using GO. The signaling pathways found to be associated with the targets included the AGE-RAGE signaling pathway in diabetic complications, the NF-kappa B signaling pathway, and small cell lung cancer and other inflammatory signaling pathways. The five key targets that showed good binding activity with Perilla oil active ingredients included TNF, RELA, PARP1, PTGS2, and IRAK4. In vitro assays showed that Perilla essential oil could significantly reduce NO and TNF-α levels and inhibit the phosphorylation of nuclear transcription factor P65, thus inhibiting the activation of NF-κB signaling pathway. Conclusion Perilla essential oil can play a role in the treatment of ALI by inhibiting the activation of the NF-κB signaling pathway and preventing an excessive inflammatory response. This study thus provides a reference for the in-depth study of the mechanisms through which Perilla essential oil treats ALI.
Collapse
Affiliation(s)
- Hou Chen
- School of Pharmaceutical and Chemical Engineering, Yangling Vocational and Technical College, Yangling, 712100, China
| | - Lu Bai
- Xi'an No.1 Hospital, Xi'an, 710002, China
| | - Yanqiong Shi
- Shanghai Xuhui District Central Hospital, Shanghai, 200031, China
| | - Xiaofei Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Xuan Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yujiao Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Jiadong Hu
- School of Pharmaceutical and Chemical Engineering, Yangling Vocational and Technical College, Yangling, 712100, China
| | - Peijie Zhou
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| |
Collapse
|
27
|
Qiao X, Wang H, He Y, Song D, Altawil A, Wang Q, Yin Y. Grape Seed Proanthocyanidin Ameliorates LPS-induced Acute Lung Injury By Modulating M2a Macrophage Polarization Via the TREM2/PI3K/Akt Pathway. Inflammation 2023; 46:2147-2164. [PMID: 37566293 PMCID: PMC10673742 DOI: 10.1007/s10753-023-01868-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/30/2023] [Accepted: 06/29/2023] [Indexed: 08/12/2023]
Abstract
Acute lung injury (ALI) is an acute and progressive pulmonary inflammatory disease that is difficult to cure and has a poor prognosis. Macrophages, which have various phenotypes and diverse functions, play an essential role in the pathogenesis of ALI. Grape seed proanthocyanidin (GSP) has received much attention over several decades, and many biological activities such as anti-apoptotic, antioxidant, and anti-inflammatory have been identified. This study aimed to determine the effect of GSP on lipopolysaccharide (LPS)-induced ALI. In this study, we established an ALI mouse model by tracheal instillation of LPS, and by pre-injection of GSP into mice to examine the effect of GSP on the ALI mouse model. Using H&E staining, flow cytometry, and ELISA, we found that GSP attenuated LPS-induced lung pathological changes and decreased inflammatory cytokine expression in ALI mice. In addition, GSP reduced the recruitment of monocyte-derived macrophages to the lung and significantly promoted the polarization of primary mouse lung macrophages from M1 to M2a induced by LPS. In vitro, GSP also decreased the expression levels of inflammatory cytokines such as TNF-α, IL-6, IL-1β, and M1 macrophage marker iNOS induced by LPS in MH-S cells, while increasing the expression levels of M2a macrophage marker CD206. Bioinformatics analysis identified TREM2 and the PI3K/Akt pathway as candidate targets and signaling pathways that regulate M1/M2a macrophage polarization in ALI, respectively. Furthermore, GSP activated PI3K/Akt and increased TREM2 expression in vivo and in vitro. Meanwhile, GSP's impact on M2a polarization and inflammation suppression was attenuated by the PI3K inhibitor LY294002 or siRNA knockdown TREM2. In addition, GSP-enhanced PI3K/Akt activity was prevented by TREM2 siRNA. In conclusion, this study demonstrated that GSP could ameliorate LPS-induced ALI by modulating macrophage polarization from M1 to M2a via the TREM2/PI3K/Akt pathway.
Collapse
Affiliation(s)
- Xin Qiao
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Hua Wang
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Yulin He
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Dongfang Song
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Abdullah Altawil
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Qiuyue Wang
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Yan Yin
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
28
|
Liu Z, Huang X, Guo HY, Zhang LW, Quan YS, Chen FE, Shen QK, Quan ZS. Design, synthesis fusidic acid derivatives alleviate acute lung injury via inhibiting MAPK/NF-κB/NLRP3 pathway. Eur J Med Chem 2023; 259:115697. [PMID: 37544187 DOI: 10.1016/j.ejmech.2023.115697] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
Acute lung injury (ALI) refers to a series of lung lesions resulting from multiple lung injuries, even leading to morbidity and death, abundant previous reports have showed that anti-inflammatory as a key to treatment of ALI. Fusidic acid (FA) as an antibiotic has significant anti-bacterial activity and anti-inflammatory effects. In this study, we designed and synthesized 34 FA derivatives to identify new anti-inflammatory drugs. The anti-inflammatory activities of the derivatives were screened using lipopolysaccharide (LPS)-induced RAW264.7 cells to evaluate the anti-inflammatory activity of the compounds, we measured nitric oxide (NO) and interleukin-6 (IL-6). Most of compounds showed inhibitory effects on inflammatory NO and IL-6 in LPS-induced RAW264.7 cells. Based on the screening results, compound a1 showed the strongest anti-inflammatory activity. Compared with FA, the inhibition rate NO and IL-6 of compound a1 increased 3.08 and 2.09 times at 10 μM, respectively. We further measured a1 inhibited inflammatory factor NO (IC50 = 3.26 ± 0.42 μM), IL-6 (IC50 = 1.85 ± 0.21 μM) and TNF-α (IC50 = 3.88 ± 0.55 μM). We also demonstrated that a1 markedly inhibits the expression of certain immune-related cytotoxic factors, including cyclooxygenase-2 (COX-2) and inducible nitric-oxide synthase (iNOS). In vivo results indicate that a1 can reduce lung inflammation and NO, IL-6, TNF-α, COX-2 and iNOS in LPS-induced ALI mice. On the one hand, we demonstrated a1 inhibits the mitogen-activated protein kinase (MAPK) signaling pathway by down-regulating the phosphorylation of p38 MAPK, c-Jun N-terminal kinase (c-JNK) and extracellular signal-regulated kinase (ERK). Moreover, a1 also suppressing the phosphorylation of inhibitory NF-κB inhibitor α (IκBα) inhibits the activation of the nuclear factor-κB (NF-κB) signaling pathway. On the other hand, we demonstrated a1 also role in anti-inflammatory by inhibits nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome and further inhibits Caspase-1 and inflammatory factor interleukin-1β (IL-1β). In conclusion, our study demonstrates that a1 has an anti-inflammatory effect and alleviates ALI by regulating inflammatory mediators and suppressing the MAPK, NF-κB and NLRP3 inflammasome signaling pathways.
Collapse
Affiliation(s)
- Zheng Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Lu-Wen Zhang
- Department of Functional Science, College of Medicine, Yanbian University, Yanji, Jilin, 133002, China
| | - Yin-Sheng Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Fen-Er Chen
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China.
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China.
| |
Collapse
|
29
|
Chen T, Du H, Zhou H, He Y, Yang J, Li C, Wei C, Yu D, Wan H. Yinhuapinggan granule ameliorates lung injury caused by multidrug-resistant Acinetobacter baumannii via inhibiting NF-κB/NLRP3 pathway. Heliyon 2023; 9:e21871. [PMID: 38027639 PMCID: PMC10661428 DOI: 10.1016/j.heliyon.2023.e21871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/13/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Yinhuapinggan granule (YHPG) is a traditional Chinese medicine prescription with rich clinical experience for the treatment of colds and coughs. The aim of this study is to investigate the protective effect of YHPG on multidrug-resistant (MDR) Acinetobacter baumannii (A. baumannii) infection in vivo and its potential anti-inflammatory mechanism. BALB/c mice were intranasally inoculated with MDR A. baumannii strain to establish the pneumonia infection model, and received intraperitoneally cyclophosphamide to form immunosuppression before attack. YHPG (6, 12 and 18 g/kg) was administered by gavage once a day for 3 consecutive days after infection. The protective effect of YHPG was evaluated by lung index, spleen index, thymus index, pathological changes of lung tissue and inflammatory factors (IL-1β, IL-6 and TNF-α) in serum. The expression of key targets of NF-κB/NLRP3 signaling pathway in vivo was analyzed by immunohistochemistry, immunofluorescence, reverse transcription quantitative PCR (RT-qPCR) and Western blot. The results showed that YHPG improved the lung index and its inhibition rate, immune organ indexes and lung pathological changes in infected mice, and significantly reduced IL-1β, IL-6 and TNF-α levels in serum. In addition, YHPG significantly down-regulated the mRNA and protein expression of NF-κB p65, NLRP3, ASC, Caspase-1, TNF-α, IL-6 and IL-1β in mice lung tissue. The results of the current study demonstrated that YHPG has significant protective effects on mice infected with MDR A.baumannii, which may be related to the regulation of inflammatory factors and NF-κB/NLRP3 signaling pathway, indicating that YHPG has a wide range of clinical application value and provides a theoretical basis for its treatment of MDR A.baumannii infection.
Collapse
Affiliation(s)
- Tianhang Chen
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Haixia Du
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Huifen Zhou
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yu He
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiehong Yang
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chang Li
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chenxing Wei
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Daojun Yu
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
30
|
Fu H, Liang X, Tan W, Hu X. Unraveling the protective mechanisms of Chuanfangyihao against acute lung injury: Insights from experimental validation. Exp Ther Med 2023; 26:535. [PMID: 37869635 PMCID: PMC10587870 DOI: 10.3892/etm.2023.12234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/21/2023] [Indexed: 10/24/2023] Open
Abstract
Chuanfangyihao (CFYH) is an effective treatment for acute lung injury (ALI) in clinical practice; however, its underlying mechanism of action remains unclear. Therefore, the aim of the present study was to elucidate the pharmacological mechanism of action of CFYH in ALI through experimental validation. First, a rat model of ALI was established using lipopolysaccharide (LPS). Next, the pathological changes in the lungs of the rats and the pathological damage were scored. The wet/dry weight ratios were measured, and ROS content was detected using flow cytometry. ELISA was used to examine IL-6, TNF-α, IL-1β, IL-18, and LDH levels. Immunohistochemistry was used to detect Beclin-1 and NLRP3 expression. Western blotting was performed to analyze the expression of HMGB1, RAGE, TLR4, NF-κB p65, AMPK, p-AMPK, mTOR, p-mTOR, Beclin-1, LC3-II/I, p62, Bcl-2, Bax, Caspase-3, Caspase-1, and GSDMD-NT. The mRNA levels of HMGB1, RAGE, AMPK, mTOR, and HIF-1α were determined using reverse transcription quantitative PCR. CFYH alleviated pulmonary edema and decreased the expression of IL-6, TNF-α, TLR4, NF-κB p65, HMGB1/RAGE, ROS, and HIF-1α. In addition, pretreatment with CFYH reversed ALI-induced programmed cell death. In conclusion, CFYH alleviates LPS-induced ALI, and these findings provide a preliminary clarification of the predominant mechanism of action of CFYH in ALI.
Collapse
Affiliation(s)
- Hongfang Fu
- Infectious Disease Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Xiao Liang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Wanying Tan
- Infectious Disease Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Xiaoyu Hu
- Infectious Disease Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
31
|
Cheng Y, Yang X, Wang Y, Ding Q, Huang Y, Zhang C. The role of the Gas6/TAM signal pathway in the LPS-induced pulmonary epithelial cells injury. Mol Immunol 2023; 163:181-187. [PMID: 37820442 DOI: 10.1016/j.molimm.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/23/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Acute lung injury (ALI) is an acute inflammatory respiratory disease. The interaction between growth arrest-specific 6 (Gas6) and tyrosine kinases of the Tyro3, Axl, Mer (TAM) family plays an important role in a variety of physiological and pathological processes, including inflammation. In this study, we mainly clarified the mechanism of the Gas6/TAM signal pathway in lipopolysaccharide (LPS)-induced pulmonary epithelial cells (BEAS-2B cells) injury. METHODS We cultured BEAS-2B cells in vitro and established a LPS-induced BEAS-2B cells injury model. Then, the siRNA sequence (siGas6-2) was transfected into cells. The expression of Gas6/TAM was measured based on quantitative reverse transcription polymerase chain reaction (qRT-RCR) and western blot (WB). Cell proliferation and apoptosis were measured by cell counting Kit-8 (CCK-8) and flow cytometry. The expression of pro-inflammatory factors was measured by qRT-RCR and WB. RESULTS Our study showed that when the 40 μg/mL LPS-induced BEAS-2B cells injury model was established, cell viability was significantly reduced, but the Gas6/TAM signal pathway was activated. When transfection with siGas6-2, low expression of Gas6 directly reduced the expression of downstream TAM receptors. Furthermore, the inhibition of the Gas6/TAM signal pathway significantly reduced the occurrence of cell apoptosis and the expression of inflammatory factors, and promoted cell proliferation. CONCLUSION Our research indicated that Gas6/TAM played an important role in cell proliferation, apoptosis, and inflammatory response in the LPS-induced BEAS-2B cells injury, and Gas6/TAM may be a new target in the treatment of ALI in the future.
Collapse
Affiliation(s)
- Yujing Cheng
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 650032 Kunming, Yunnan, China
| | - Xin Yang
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 650032 Kunming, Yunnan, China
| | - Ying Wang
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 650032 Kunming, Yunnan, China
| | - Quan Ding
- Blood Center of Hani-Yi Autonomous Prefecture of Honghe, 661000 Mengzi, Yunnan, China
| | - Yu Huang
- Blood Center of Hani-Yi Autonomous Prefecture of Honghe, 661000 Mengzi, Yunnan, China
| | - Chan Zhang
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 650032 Kunming, Yunnan, China.
| |
Collapse
|
32
|
Weng J, Liu D, Shi B, Chen M, Weng S, Guo R, Zhou X. Sivelestat sodium alleviated lipopolysaccharide-induced acute lung injury by improving endoplasmic reticulum stress. Gene 2023; 884:147702. [PMID: 37567453 DOI: 10.1016/j.gene.2023.147702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Acute lung injury (ALI) is a common inflammatory respiratory disorder characterized by a high incidence and mortality rate. This study aimed to investigate the potential therapeutic effects of the neutrophil elastase inhibitor Sivelestat sodium (SIV) in improving endoplasmic reticulum stress (ERS) while treating lipopolysaccharide (LPS)-induced ALI. An ALI model was established using LPS induction. The effects of SIV on ALI were observed both in vivo and in vitro, along with its impact on ERS. Lung tissue damage was assessed using Hematoxylin-eosin (H&E) staining. Lung edema was measured by the lung wet/dry weight ratio. The expression levels of protein kinase R-like ER kinase (PERK), Phospho-protein kinase R-like ER kinase (p-PERK), activating transcription factor 4 (ATF4), eukaryotic translation initiation factor 2α (EIF2a), phosphorylated α subunit of eukaryotic initiation factor 2α (P-EIF2a), and C/EBP homologous protein (CHOP) were analyzed by Western blotting in vivo and in vitro. The levels of tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in Lung tissue samples supernatants were measured by ELISA. Oxidative stress markers were measured by ELISA. Apoptosis was measured using the TUNEL assay. Apoptosis-associated proteins B-cell lymphoma-2 (Bcl-2)、Bcl2-associated × (Bax)、caspase-3 were evaluated through Western blotting in vivo and in vitro. The expression levels of ERS-related proteins, including p-PERK, ATF4, P-EIF2a, and CHOP, were significantly increased in the LPS-induced ALI model. However, SIV markedly reduced the expression levels of these proteins, suppressing the LPS-induced ERS response. Further investigations revealed that SIV exerted a protective effect on ALI by alleviating lung tissue damage and apoptosis, improving lung function, and reducing inflammation and oxidative stress levels. However, when SIV was co-administered with Tunicamycin (TUN), TUN blocked the beneficial effects of SIV on ERS and reversed the protective effects of SIV on ALI. In conclusion, SIV alleviated lung tissue damage and apoptosis, improving lung function, and reducing inflammation and oxidative stress in LPS-induced ALI by improving ERS.
Collapse
Affiliation(s)
- Junting Weng
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, Putian 351100, China.
| | - Danjuan Liu
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, Putian 351100, China.
| | - Bingbing Shi
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, Putian 351100, China.
| | - Min Chen
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, Putian 351100, China.
| | - Shuoyun Weng
- Wenzhou Medical University School of Optometry and Ophthalmology, China.
| | - Rongjie Guo
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, Putian 351100, China.
| | - Xiaoping Zhou
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, Putian 351100, China.
| |
Collapse
|
33
|
Wang H, Chen L, Li R, Lv C, Xu Y, Xiong Y. Polydopamine-coated mesoporous silica nanoparticles co-loaded with Ziyuglycoside I and Oseltamivir for synergistic treatment of viral pneumonia. Int J Pharm 2023; 645:123412. [PMID: 37703956 DOI: 10.1016/j.ijpharm.2023.123412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/18/2023] [Accepted: 09/11/2023] [Indexed: 09/15/2023]
Abstract
Viral pneumonia (VP) is a serious health risk to humans, however, there is still a lack of specific treatments for VP. The spread of the virus in the body induces an excessive inflammatory response that can cause chronic or irreversible damage to lungs. Hence, VP treatment requires rapid clearance of the virus and sustained inflammation control. In this study, an innovative mesoporous silica medication delivery system co-loaded with Ziyuglycoside I(ZgI) and Oseltamivirv(OST) in fast and slow monomeric forms ZgI@MSNs-OST@ Polydopamine (PDA) was prepared for targeted treatment of VP. The prepared ZgI@MSNs-OST@PDA nanoparticles had a homogeneous and membrane-encapsulated spherical structure, with an average particle size of approximately 760 nm. in vitro release and in vivo pharmacokinetic studies demonstrated that ZgI@MSNs-OST@PDA achieved immediate release of OST and sustained release of ZgI, which was readily taken up by the cells. In vitro anti-H1N1 virus experiments showed that nanoparticles rapidly killed the virus in host cells, and the anti-inflammatory effect was sustained and long-lasting, providing excellent protection to host cells. In vivo antiviral pneumonia experiments confirmed the rapid clearance of influenza viruses from mouse lungs and the effective control of overactivated immune responses by ZgI@MSNs-OST@PDA nanoparticles. Through a mechanistic study, we found that the treatment of viral pneumonia with nanoparticles was associated with inhibition of the NLRP3 inflammasome pathway. In conclusion, the constructed nanoparticles achieved synergistic therapeutic effects of ZgI and OST on VP, that is, rapid killing of influenza viruses by OST and effective control of the virus-induced hyperinflammatory response by ZgI.
Collapse
Affiliation(s)
- Hong Wang
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Lei Chen
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Ruidong Li
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Chunmei Lv
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yingshu Xu
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Yongai Xiong
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
34
|
Kuebler WM, William N, Post M, Acker JP, McVey MJ. Extracellular vesicles: effectors of transfusion-related acute lung injury. Am J Physiol Lung Cell Mol Physiol 2023; 325:L327-L341. [PMID: 37310760 DOI: 10.1152/ajplung.00040.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/27/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
Respiratory transfusion reactions represent some of the most severe adverse reactions related to receiving blood products. Of those, transfusion-related acute lung injury (TRALI) is associated with elevated morbidity and mortality. TRALI is characterized by severe lung injury associated with inflammation, pulmonary neutrophil infiltration, lung barrier leak, and increased interstitial and airspace edema that cause respiratory failure. Presently, there are few means of detecting TRALI beyond clinical definitions based on physical examination and vital signs or preventing/treating TRALI beyond supportive care with oxygen and positive pressure ventilation. Mechanistically, TRALI is thought to be mediated by the culmination of two successive proinflammatory hits, which typically comprise a recipient factor (1st hit-e.g., systemic inflammatory conditions) and a donor factor (2nd hit-e.g., blood products containing pathogenic antibodies or bioactive lipids). An emerging concept in TRALI research is the contribution of extracellular vesicles (EVs) in mediating the first and/or second hit in TRALI. EVs are small, subcellular, membrane-bound vesicles that circulate in donor and recipient blood. Injurious EVs may be released by immune or vascular cells during inflammation, by infectious bacteria, or in blood products during storage, and can target the lung upon systemic dissemination. This review assesses emerging concepts such as how EVs: 1) mediate TRALI, 2) represent targets for therapeutic intervention to prevent or treat TRALI, and 3) serve as biochemical biomarkers facilitating TRALI diagnosis and detection in at-risk patients.
Collapse
Affiliation(s)
- Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin, Berlin, Germany
- Keenan Research Centre, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Nishaka William
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Martin Post
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Jason P Acker
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada
| | - Mark J McVey
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Yan J, Li Y, Ding L, Hou R, Xing C, Jiang C, Miao Z, Zhuang C. Fragment-Based Discovery of Azocyclic Alkyl Naphthalenesulfonamides as Keap1-Nrf2 Inhibitors for Acute Lung Injury Treatment. J Med Chem 2023. [PMID: 37257073 DOI: 10.1021/acs.jmedchem.3c00686] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Blocking the Kelch-like epichlorohydrin-related protein 1 (Keap1)-nuclear factor-erythroid 2 related factor 2 (Nrf2) pathway is a promising strategy to alleviate acute lung injury (ALI). A naphthalensulfonamide NXPZ-2, targeting Keap1-Nrf2 interaction to release Nrf2, was confirmed to exhibit significant anti-inflammatory activities, however, accompanying nonideal solubility and PK profiles. To further improve the properties, twenty-nine novel naphthalenesulfonamide derivatives were designed by a fragment-based strategy. Among them, compound 10u with a (R)-azetidine group displayed the highest PPI inhibitory activity (KD2 = 0.22 μM). The hydrochloric acid form of 10u exhibited a 9-fold improvement on water solubility (S = 484 μg/mL, pH = 7.0) compared to NXPZ-2 (S = 55 μg/mL, pH = 7.0). It could significantly reduce LPS-induced lung oxidative damages and inflammations in vitro and in vivo. Furthermore, a satisfactory pharmacokinetic property was revealed. In conclusion, the novel azetidine-containing naphthalenesulfonamide represents a promising drug candidate for Keap1-targeting ALI treatment.
Collapse
Affiliation(s)
- Jianyu Yan
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yue Li
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Li Ding
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Ruilin Hou
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Chengshi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Zhenyuan Miao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunlin Zhuang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
36
|
Peukert K, Sauer A, Seeliger B, Feuerborn C, Fox M, Schulz S, Wild L, Borger V, Schuss P, Schneider M, Güresir E, Coburn M, Putensen C, Wilhelm C, Bode C. Increased Alveolar Epithelial Damage Markers and Inflammasome-Regulated Cytokines Are Associated with Pulmonary Superinfection in ARDS. J Clin Med 2023; 12:jcm12113649. [PMID: 37297845 DOI: 10.3390/jcm12113649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/09/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening form of respiratory failure defined by dysregulated immune homeostasis and alveolar epithelial and endothelial damage. Up to 40% of ARDS patients develop pulmonary superinfections, contributing to poor prognosis and increasing mortality. Understanding what renders ARDS patients highly susceptible to pulmonary superinfections is therefore essential. We hypothesized that ARDS patients who develop pulmonary superinfections display a distinct pulmonary injury and pro-inflammatory response pattern. Serum and BALF samples from 52 patients were collected simultaneously within 24 h of ARDS onset. The incidence of pulmonary superinfections was determined retrospectively, and the patients were classified accordingly. Serum concentrations of the epithelial markers soluble receptor for advanced glycation end-products (sRAGE) and surfactant protein D (SP-D) and the endothelial markers vascular endothelial growth factor (VEGF) and angiopoetin-2 (Ang-2) as well as bronchoalveolar lavage fluid concentrations of the pro-inflammatory cytokines interleukin 1ß (IL-1ß), interleukin 18 (IL-18), interleukin 6 (IL-6), and tumor necrosis factor-alpha (TNF-a) were analyzed via multiplex immunoassay. Inflammasome-regulated cytokine IL-18 and the epithelial damage markers SP-D and sRAGE were significantly increased in ARDS patients who developed pulmonary superinfections. In contrast, endothelial markers and inflammasome-independent cytokines did not differ between the groups. The current findings reveal a distinct biomarker pattern that indicates inflammasome activation and alveolar epithelial injury. This pattern may potentially be used in future studies to identify high-risk patients, enabling targeted preventive strategies and personalized treatment approaches.
Collapse
Affiliation(s)
- Konrad Peukert
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Andrea Sauer
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Benjamin Seeliger
- Department of Respiratory Medicine and German Centre of Lung Research (DZL), Hannover Medical School, Carl-Neuberg-Str. 1, 30635 Hannover, Germany
| | - Caroline Feuerborn
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Mario Fox
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Susanne Schulz
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Lennart Wild
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Valeri Borger
- Department of Neurosurgery, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Patrick Schuss
- Department of Neurosurgery, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Department of Neurosurgery, BG Klinikum Unfallkrankenhaus Berlin gGmbH, Warener Str. 7, 12683 Berlin, Germany
| | - Matthias Schneider
- Department of Neurosurgery, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Erdem Güresir
- Department of Neurosurgery, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Department of Neurosurgery, University Hospital Leipzig, Liebig Str. 20, Haus 4, 04103 Leipzig, Germany
| | - Mark Coburn
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Christian Putensen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Christoph Wilhelm
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
37
|
Hamza FN, Daher S, Fakhoury HMA, Grant WB, Kvietys PR, Al-Kattan K. Immunomodulatory Properties of Vitamin D in the Intestinal and Respiratory Systems. Nutrients 2023; 15:nu15071696. [PMID: 37049536 PMCID: PMC10097244 DOI: 10.3390/nu15071696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Vitamin D plays a crucial role in modulating the innate immune response by interacting with its intracellular receptor, VDR. In this review, we address vitamin D/VDR signaling and how it contributes to the regulation of intestinal and respiratory microbiota. We additionally review some components of the innate immune system, such as the barrier function of the pulmonary and intestinal epithelial membranes and secretion of mucus, with their respective modulation by vitamin D. We also explore the mechanisms by which this vitamin D/VDR signaling mounts an antimicrobial response through the transduction of microbial signals and the production of antimicrobial peptides that constitute one of the body’s first lines of defense against pathogens. Additionally, we highlight the role of vitamin D in clinical diseases, namely inflammatory bowel disease and acute respiratory distress syndrome, where excessive inflammatory responses and dysbiosis are hallmarks. Increasing evidence suggests that vitamin D supplementation may have potentially beneficial effects on those diseases.
Collapse
Affiliation(s)
- Fatheia N. Hamza
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Sarah Daher
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Hana M. A. Fakhoury
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
- Correspondence:
| | - William B. Grant
- Sunlight, Nutrition, and Health Research Center, P.O. Box 641603, San Francisco, CA 94164-1603, USA
| | - Peter R. Kvietys
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Khaled Al-Kattan
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| |
Collapse
|
38
|
Jiang L, Guo P, Ju J, Zhu X, Wu S, Dai J. Inhalation of L-arginine-modified liposomes targeting M1 macrophages to enhance curcumin therapeutic efficacy in ALI. Eur J Pharm Biopharm 2023; 182:21-31. [PMID: 36442537 DOI: 10.1016/j.ejpb.2022.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/30/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS), characterized by uncontrolled lung inflammation, is one of the most devastating diseases with high morbidity and mortality. As the first line of defense system, macrophages play a crucial role in the pathogenesis of ALI/ARDS. Therefore, it has great potential to selectively target M1 macrophages to improve the therapeutic effect of anti-inflammatory drugs. l-arginine plays a key role in regulating the immune function of macrophages. The receptors mediating l-arginine uptake are highly expressed on the surface of M1-type macrophages. In this study, we designed an l-arginine-modified liposome for aerosol inhalation to target M1 macrophages in the lung, and the anti-inflammatory drug curcumin was encapsulated in liposomes as model drug. Compared with unmodified curcumin liposome (Cur-Lip), l-arginine functionalized Cur-Lip (Arg-Cur-Lip) exhibited higher uptake by M1 macrophages in vitro and higher accumulation in inflamed lungs in vivo. Furthermore, Arg-Cur-Lip showed more potent therapeutic effects in LPS-induced RAW 264.7 cells and the rat model of ALI. Overall, these findings indicate that l-arginine-modified liposomes have great potential to enhance curcumin treatment of ALI/ARDS by targeting M1 macrophages, which may provide an option for the treatment of acute lung inflammatory diseases such as coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome and middle east respiratory syndrome.
Collapse
Affiliation(s)
- Linxia Jiang
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China
| | - Pengchuan Guo
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China
| | - Jiarui Ju
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China
| | - Xiaoyan Zhu
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China
| | - Shiyue Wu
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China
| | - Jundong Dai
- Department of Chinese Medicinal Pharmaceutics, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yang Guang South Street, Fangshan District, Beijing 102488, China.
| |
Collapse
|
39
|
Chang J, Zhang W. Remifentanil modulates the TLR4‑mediated MMP‑9/TIMP1 balance and NF‑κB/STAT3 signaling in LPS‑induced A549 cells. Exp Ther Med 2022; 25:79. [PMID: 36684659 PMCID: PMC9842940 DOI: 10.3892/etm.2022.11778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/28/2022] [Indexed: 01/01/2023] Open
Abstract
Remifentanil is a widely used in general anesthetic that has been found to suppress the inflammatory response in aortic endothelial cells. Therefore, it was hypothesized that remifentanil can inhibit inflammatory dysfunction in lung epithelial cells to alleviate acute lung injury (ALI). The present study aimed to examine the effects of remifentanil on inflammatory injury, MMP-9/tissue inhibitor of metalloproteinase 1 (TIMP1) balance and the potential associated regulatory pathways in A549 cells. Lipopolysaccharide (LPS) was used to treat A549 cells to establish ALI models. The possible roles of different concentrations of remifentanil in cell viability was then determined by CCK-8 and Lactate dehydrogenase release assay. Apoptosis was assessed by flow cytometry analysis and western blotting. Inflammation and oxidative stress were measured by ELISA and corresponding kits respectively. Subsequently, the effects of remifentanil on Toll-like receptor 4 (TLR4) expression and the MMP-9/TIMP1 balance were assessed by western blotting and ELISA. In addition, the effects of remifentanil on NF-κB/STAT3 signaling were evaluated by measuring the protein expression levels of associated pathway components and the degree of NF-κB nuclear translocation using western blotting and immunofluorescence respectively. Remifentanil was found to increase cell viability whilst reducing apoptosis, inflammation and oxidative stress in the LPS-treated cells. In addition, TLR4 inhibitor CLI-095 suppressed MMP-9 expression and secretion while potentiating TIMP1 expression and secretion in LPS-challenged cells. Remifentanil treatment was able to modulate TLR4 to mediate LPS-induced MMP-9/TIMP1 imbalance and suppress the phosphorylation of NF-κB/STAT3 signaling components, in addition to inhibiting NF-κB nuclear translocation. Taken together, remifentanil downregulated TLR4 to reduce MMP-9/TIMP1 imbalance to inhibit inflammatory dysfunction in LPS-treated A549 cells, by regulating NF-κB/STAT3 signaling.
Collapse
Affiliation(s)
- Jun Chang
- Department of Anesthesiology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, Shanxi 030029, P.R. China
| | - Wei Zhang
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, Shanxi 030029, P.R. China,Correspondence to: Dr Wei Zhang, Department of Thoracic Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, 3 Zhigongxin Street, Taiyuan, Shanxi 030029, P.R. China
| |
Collapse
|
40
|
Ma L, Chen YQ, You ZJ, Jiang ZS, Fang Y, Dong L. Intermittent fasting attenuates lipopolysaccharide-induced acute lung injury in mice by modulating macrophage polarization. J Nutr Biochem 2022; 110:109133. [PMID: 36028098 DOI: 10.1016/j.jnutbio.2022.109133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/14/2022] [Accepted: 08/02/2022] [Indexed: 01/13/2023]
Abstract
Acute lung injury (ALI) is a spectrum of acute and life-threatening pulmonary inflammatory conditions. Treatment of ALI remains a clinical challenge. Recently, intermittent fasting (IF) has been shown to improve health and alleviate many diseases. In this study, we tested whether IF attenuated ALI and investigated the mechanism underlying this process. In vivo, the effects of IF on ALI were evaluated in a lipopolysaccharide (LPS)-induced murine ALI model. We found that two times of 24-h fasting in a week before ALI efficiently ameliorated LPS-induced lung injury in mice, characterized by alleviated lung lesions, wet-to-dry weight ratio, myeloperoxidase activity, malondialdehyde content, and lower levels of tumor necrosis factor-α, interleukin-6, and interleukin-1β. In vitro, functional assays were conducted to assess IF on the inflammatory response and macrophage polarization of bone marrow-derived macrophages (BMDMs) treated with LPS or IL-4. And PPARγ antagonist GW9662 and AMPK siRNA were used to test the role of PPARγ and AMPK in the IF-mediated improvement of ALI. The results showed that IF (serum deprivation) suppressed macrophage M1 activation and promoted M2 activation in LPS-treated BMDMs. While, IF also augmented macrophage M2 polarization in IL-4-treated BMDMs. Further mechanistic studies showed that the promotive effect of IF on M2 polarization was related to the activation of the PPARγ and AMPK pathways. In conclusion, this study suggests that IF enhances M2 polarization by activating the AMPK and PPARγ pathways, thus facilitating anti-inflammatory response and ameliorating ALI.
Collapse
Affiliation(s)
- Li Ma
- Department of Anesthesiology, Liuzhou People's Hospital, Liuzhou, Guangxi, 545006, China
| | - Yan-Qing Chen
- Department of Anesthesiology, Liuzhou People's Hospital, Liuzhou, Guangxi, 545006, China
| | - Zhi-Jian You
- Department of Anesthesiology, Liuzhou People's Hospital, Liuzhou, Guangxi, 545006, China
| | - Zhong-Sheng Jiang
- Department of Infection, Liuzhou People's Hospital, Liuzhou, Guangxi, 545001, China
| | - Yu Fang
- Medical laboratory and Pathology Center, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, China.
| | - Liang Dong
- Department of Anesthesiology, Liuzhou People's Hospital, Liuzhou, Guangxi, 545006, China.
| |
Collapse
|
41
|
Xu H, Xu S, Li L, Wu Y, Mai S, Xie Y, Tan Y, Li A, Xue F, He X, Li Y. Integrated metabolomics, network pharmacology and biological verification to reveal the mechanisms of Nauclea officinalis treatment of LPS-induced acute lung injury. Chin Med 2022; 17:131. [PMID: 36434729 PMCID: PMC9700915 DOI: 10.1186/s13020-022-00685-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Acute lung injury (ALI) is a severe inflammatory disease, underscoring the urgent need for novel treatments. Nauclea officinalis Pierre ex Pitard (Danmu in Chinese, DM) is effective in treating inflammatory respiratory diseases. However, there is still no evidence of its protective effect against ALI. METHODS Metabolomics was applied to identify the potential biomarkers and pathways in ALI treated with DM. Further, network pharmacology was introduced to predict the key targets of DM against ALI. Then, the potential pathways and key targets were further verified by immunohistochemistry and western blot assays. RESULTS DM significantly improved lung histopathological characteristics and inflammatory response in LPS-induced ALI. Metabolomics analysis showed that 16 and 19 differential metabolites were identified in plasma and lung tissue, respectively, and most of these metabolites tended to recover after DM treatment. Network pharmacology analysis revealed that the PI3K/Akt pathway may be the main signaling pathway of DM against ALI. The integrated analysis of metabolomics and network pharmacology identified 10 key genes. These genes are closely related to inflammatory response and cell apoptosis of lipopolysaccharide (LPS)-induced ALI in mice. Furthermore, immunohistochemistry and western blot verified that DM could regulate inflammatory response and cell apoptosis by affecting the PI3K/Akt pathway, and expression changes in Bax and Bcl-2 were also triggered. CONCLUSION This study first integrated metabolomics, network pharmacology and biological verification to investigate the potential mechanism of DM in treating ALI, which is related to the regulation of inflammatory response and cell apoptosis. And the integrated analysis can provide new strategies and ideas for the study of traditional Chinese medicines in the treatment of ALI.
Collapse
Affiliation(s)
- Han Xu
- grid.443397.e0000 0004 0368 7493Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Lab of R&D on Tropic Herbs, College of Pharmacy, Hainan Medical University, No. 3 Xueyuan Road, Hainan 571199 Haikou, People’s Republic of China
| | - Sicong Xu
- grid.443397.e0000 0004 0368 7493College of Biomedical Information and Engineering, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, No. 3 Xueyuan Road, Haikou, 571199 Hainan People’s Republic of China
| | - Liyan Li
- grid.443397.e0000 0004 0368 7493Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Lab of R&D on Tropic Herbs, College of Pharmacy, Hainan Medical University, No. 3 Xueyuan Road, Hainan 571199 Haikou, People’s Republic of China
| | - Yuhuang Wu
- grid.443397.e0000 0004 0368 7493Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Lab of R&D on Tropic Herbs, College of Pharmacy, Hainan Medical University, No. 3 Xueyuan Road, Hainan 571199 Haikou, People’s Republic of China
| | - Shiying Mai
- grid.443397.e0000 0004 0368 7493Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Lab of R&D on Tropic Herbs, College of Pharmacy, Hainan Medical University, No. 3 Xueyuan Road, Hainan 571199 Haikou, People’s Republic of China
| | - Yiqiang Xie
- grid.443397.e0000 0004 0368 7493College of Chinese Medicine, Hainan Medical University, No. 3 Xueyuan Road, Haikou, 571199 Hainan People’s Republic of China
| | - Yinfeng Tan
- grid.443397.e0000 0004 0368 7493Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Lab of R&D on Tropic Herbs, College of Pharmacy, Hainan Medical University, No. 3 Xueyuan Road, Hainan 571199 Haikou, People’s Republic of China
| | - Ailing Li
- grid.443397.e0000 0004 0368 7493The Second Affiliated Hospital of Hainan Medical University, 368 Yehai Av., Haikou, 571199 Hainan People’s Republic of China
| | - Fengming Xue
- grid.443397.e0000 0004 0368 7493The Second Affiliated Hospital of Hainan Medical University, 368 Yehai Av., Haikou, 571199 Hainan People’s Republic of China
| | - Xiaoning He
- grid.443397.e0000 0004 0368 7493The Second Affiliated Hospital of Hainan Medical University, 368 Yehai Av., Haikou, 571199 Hainan People’s Republic of China
| | - Yonghui Li
- grid.443397.e0000 0004 0368 7493Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Lab of R&D on Tropic Herbs, College of Pharmacy, Hainan Medical University, No. 3 Xueyuan Road, Hainan 571199 Haikou, People’s Republic of China ,grid.443397.e0000 0004 0368 7493The Second Affiliated Hospital of Hainan Medical University, 368 Yehai Av., Haikou, 571199 Hainan People’s Republic of China
| |
Collapse
|
42
|
Zhen D, Liu C, Huang T, Fu D, Bai X, Ma Q, Jiang M, Gong G. Ethanol extracts of Rhaponticum uniflorum (L.) DC inflorescence ameliorate LPS-mediated acute lung injury by alleviating inflammatory responses via the Nrf2/HO-1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115497. [PMID: 35738472 DOI: 10.1016/j.jep.2022.115497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhaponticum uniflorum (L.) DC is a member of the Compositae family. Loulu flowers (LLF) is the inflorescence of this plant, which is a commonly used Mongolian medicine for the treatment of inflammatory diseases due to its heat-clearing and detoxifying properties. It is used caused by. However, its anti-inflammatory mechanisms are not clear. AIM OF THIS STUDY We investigated whether ethanol extracts of LLF can alleviate LPS-induced acute lung injury and explored the mechanism involved. MATERIAL AND METHODS BALB/C mice were intragastrically administered with sodium carboxymethyl cellulose (0.5%, 1 mL/100 g) or ethanol extracts of LLF at a dose of 100, 200, and 400 mg/kg, once daily, for 3 days. Subsequently, mice models of acute lung injury were established by LPS and used for the determination of anti-inflammatory effects of LLF. After 6 h of treatment, mice were sacrificed to collect lung tissues and bronchoalveolar lavage fluid (BALF). H&E staining assay was performed on the tissues for pathological analysis. The ELISA test was conducted to measure NO, IL-6, TNF-α, MPO, SOD, CAT, MDA and GSH-PX levels. The expression level of proteins associated with the Nrf2/HO-1 and MAPK/NF-κB signaling pathways were determined using Western blot analysis. Levels of F4/80 and Nrf2 in lungs were quantified using immunohistochemistry. RESULTS Oral administration of LLF extracts alleviated LPS-induced pathological alterations, reduced lung W/D weight ratio, decreased levels of TP, pro-inflammatory factors (TNF-α and IL-6), and NO in BALF. Pretreatment with LLF extract downregulated F4/80 expression in lung tissue and suppressed LPS-induced elevations in BALF and lung tissue levels of MPO. Moreover, treatment with LLF extract reduced the expression level of proteins associated with the MAPK signaling pathway (p-p38, p-JNK, p-ERK) and TLR4/NF-κB signaling pathways (TLR4, Myd88, p-IκB, p-p65). Moreover, LLF extract upregulated Nrf2, HO-1 and NQO1 protein levels, downregulated Keap1 protein level. Immunohistochemical analysis revealed that LLF reduced the LPS-induced increase in Nfr2 expression in lung tissues. CONCLUSION Ethanol extracts of LLF ameliorated LPS-induced acute lung injury by suppressing inflammatory response and enhancing antioxidation capacity, which correlated with the MAPK/NF-κB and Nfr2/HO-1 signaling pathways.
Collapse
Affiliation(s)
- Dong Zhen
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Chunyan Liu
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Tianpeng Huang
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Danni Fu
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Xue Bai
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Qianqian Ma
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Mingyang Jiang
- Collage of Computer Science and Technology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Guohua Gong
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| |
Collapse
|
43
|
Whole Transcriptomic Analysis of Key Genes and Signaling Pathways in Endogenous ARDS. DISEASE MARKERS 2022; 2022:1614208. [PMID: 36246560 PMCID: PMC9553538 DOI: 10.1155/2022/1614208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/04/2022] [Accepted: 09/17/2022] [Indexed: 12/25/2022]
Abstract
Objective To analyze the differentially expressed genes (DEGs) in rats with endogenous acute respiratory distress syndrome (ARDS) lung injury and explore the pathogenesis and early diagnostic molecular markers using whole transcriptomic data. Methods Twelve 8-week-old male Sprague Dawley rats were selected and randomly and equally divided into ARDS lung injury group and normal control group. RNA was extracted from the left lung tissues of both the groups and sequenced using the paired-end sequencing mode of the Illumina Hiseq sequencing platform. The DEGs of miRNA, cirRNA, lncRNA, and mRNA were screened using DESeq2 software, and the ceRNA regulatory network was constructed using Cytoscape. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed using the mRNA DEGs. STRING and Cytoscape software were used to construct the protein interaction network and identify the 15 key genes, which were verified using quantitative real-time polymerase chain reaction (qRT-PCR). Results Based on different screening conditions, and compared with the control group, the ARDS lung injury group showed 836 mRNA DEGs (386 upregulated and 450 downregulated), 110 lncRNA DEGs (53 upregulated and 57 downregulated), 19 circRNA DEGs (3 upregulated and 16 downregulated), and 6 miRNA DEGs (5 upregulated and 1 downregulated gene). GO showed that the DEGs of mRNA were mainly involved in biological processes, such as defense response to lipopolysaccharide and other organisms, leukocyte chemotaxis, neutrophil chemotaxis, and cytokine-mediated signaling. KEGG enrichment analysis showed that the DEGs played their biological roles mainly by participating in IL-17, TNF, and chemokine signaling pathways. The PPI analysis showed a total of 281 node proteins and 634 interaction edges. The top 15 key genes, which were screened, included Cxcl10, Mx1, Irf7, Isg15, Ifit3, Ifit2, Rsad2, Ifi47, Oasl, Dhx58, Usp18, Cmpk2, Herc6, Ifit1, and Gbp4. The ceRNA network analysis showed 69 nodes and 73 correlation pairs, where the key gene nodes were miR-21-3p, Camk2g, and Stx2. Conclusions The chemotaxis, migration, and degranulation of inflammatory cells, cytokine immune response, autophagy, and apoptosis have significant biological functions in the occurrence and development of endogenous acute lung injury during ARDS. Thus, the camk2g/miR-21-3p/lncRNA/circRNA network, CXCL10/CXCR3, and IL-17 signaling pathways might provide novel insights and targets for further studying the lung injury mechanism and clinical treatment.
Collapse
|
44
|
Xie Y, Hu W, Chen X, Ren P, Ye C, Wang Y, Luo J, Li X. Identification and validation of autophagy-related genes in exogenous sepsis-induced acute respiratory distress syndrome. Immun Inflamm Dis 2022; 10:e691. [PMID: 36169246 PMCID: PMC9500593 DOI: 10.1002/iid3.691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/19/2022] [Accepted: 08/05/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE To analyze the differential expression of autophagy-related genes of sepsis-induced acute respiratory distress syndrome (ARDS) as potential markers for early diagnosis. METHODS Male Sprague-Dawley rats (aged 8 weeks) were selected and randomly divided into sepsis-induced ARDS group (n = 6) and a normal control group (n = 6). Lung tissue samples were collected for high-throughput sequencing using Illumina HiSeq sequencing platform in the paired-end sequencing mode. Differentially expressed genes (DEGs) were screened by DESeq. 2 software [|log2FC | ≥1 and p < .05] and autophagy-related genes were identified using Mouse Genome Informatics. Co-expressed autophagy-related DEGs from these two datasets were filtered by construction of a Venn diagram. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on these autophagy-related DEGs and a protein interaction network was constructed using STRING and Cytoscape software to identify hub genes, which were verified by real-time quantitative polymerase chain reaction (qRT-PCR). RESULTS A total of 42 autophagy-related DEGs (26 upregulated genes and 16 downregulated genes) were identified. The GO and KEGG pathway analyses showed enrichment in 969 biological processes (BPs), three cellular components (CCs), eight molecular functions (MFs) and 27 signaling pathways. The protein interaction (PPI) network revealed 42 node proteins and 75 interacting edges, with an average node degree of 3.52, and an average local clustering coefficient of 0.509. Among the top 10 hub genes with the RNA-Seq, six hub genes (Stat3, Il10, Ifng, Hmox1, Hif1a, and Nod2) were validated by qRT-PCR (all p < .05). CONCLUSION 42 potential autophagy-related genes associated with sepsis-induced ARDS lung injury were identified and six hub genes (Stat3, Il10, Ifng, Hmox1, Hif1a, and Nod2) may affect the development of ARDS by regulating autophagy. These results expanded our understanding of ARDS and might be useful in treatment of exogenous sepsis-induced ARDS.
Collapse
Affiliation(s)
- Yongpeng Xie
- Department of Emergency and Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical UniversityThe First People's Hospital of LianyungangLianyungangJiangsuChina
- The Institute of Emergency Medicine of LianyungangLianyungangJiangsuChina
| | - Wenxia Hu
- Department of Emergency and Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical UniversityThe First People's Hospital of LianyungangLianyungangJiangsuChina
- The Institute of Emergency Medicine of LianyungangLianyungangJiangsuChina
| | - Xiaobin Chen
- Department of Emergency and Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical UniversityThe First People's Hospital of LianyungangLianyungangJiangsuChina
- The Institute of Emergency Medicine of LianyungangLianyungangJiangsuChina
| | - Panpan Ren
- Department of Emergency and Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical UniversityThe First People's Hospital of LianyungangLianyungangJiangsuChina
| | - Chongchong Ye
- Department of Emergency and Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical UniversityThe First People's Hospital of LianyungangLianyungangJiangsuChina
| | - Yanli Wang
- Department of Emergency and Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical UniversityThe First People's Hospital of LianyungangLianyungangJiangsuChina
| | - Jiye Luo
- Department of Emergency and Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical UniversityThe First People's Hospital of LianyungangLianyungangJiangsuChina
| | - Xiaomin Li
- Department of Emergency and Critical Care Medicine, Lianyungang Clinical College of Nanjing Medical UniversityThe First People's Hospital of LianyungangLianyungangJiangsuChina
- The Institute of Emergency Medicine of LianyungangLianyungangJiangsuChina
| |
Collapse
|
45
|
Xu D, Zhou X, Chen J, Li N, Ruan S, Zuo A, Lei S, Li L, Guo Y. C1q/tumour necrosis factor-related protein-9 aggravates lipopolysaccharide-induced inflammation via promoting NLRP3 inflammasome activation. Int Immunopharmacol 2022; 104:108513. [PMID: 35008006 DOI: 10.1016/j.intimp.2021.108513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023]
Abstract
The NLRP3 inflammasome plays a vital role in inflammation by increasing the maturation of interleukin-1β (IL-1β) and promoting pyroptosis. Given that C1q/tumour necrosis factor-related protein-9 (CTRP9) has been shown to be involved in diverse inflammatory diseases, we sought to assess the underlying impact of CTRP9 on NLRP3 inflammasome activation. In vitro, macrophages isolated from murine peritonea were stimulated with exogenous CTRP9, followed by lipopolysaccharide (LPS) and adenosine 5'-triphosphate (ATP). We demonstrated that CTRP9 markedly augmented the activation of the NLRP3 inflammasome, as shown by increased mature IL-1β secretion, triggering ASC speck formation and promoting pyroptosis. Mechanistically, CTRP9 increased the levels of NADPH oxidase 2 (NOX2)-derived reactive oxygen species (ROS). Suppressing ROS with N-acetylcysteine (NAC) or interfering with NOX2 by small interfering RNA weakened the promoting effect of CTRP9 on the NLRP3 inflammasome. Furthermore, NLRP3 inflammasome activation, pyroptosis and secretion of mature IL-1β were significantly decreased in macrophages from CTRP9-KO mice compared to those from WT mice with the same treatment. In vivo, we established a sepsis model by intraperitoneal injection of LPS into WT and CTRP9-KO mice. CTRP9 knockout improved the survival rates of the septic mice and attenuated NLRP3 inflammasome-mediated inflammation. In conclusion, our study indicates that CTRP9 aggravates LPS-induced inflammation by promoting NLRP3 inflammasome activation via the NOX2/ROS pathway. CTRP9 could be a promising target for NLRP3 inflammasome-driven inflammatory diseases.
Collapse
Affiliation(s)
- Dan Xu
- Department of General Practice, Qilu Hospital, Cheeloo college of medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Xin Zhou
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University&Shandong Provincial Qianfoshan Hospital, Shandong medicine and Health Key Laboratory of Emergency Medicine, Shandong Institute of Anesthesia and Respiratory Critical Medicine
| | - Jiying Chen
- Department of General Practice, Qilu Hospital, Cheeloo college of medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Na Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Shiyan Ruan
- Department of General Practice, Qilu Hospital, Cheeloo college of medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Anju Zuo
- Department of General Practice, Qilu Hospital, Cheeloo college of medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shengyun Lei
- Department of General Practice, Qilu Hospital, Cheeloo college of medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Linxi Li
- Department of General Practice, Qilu Hospital, Cheeloo college of medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Yuan Guo
- Department of General Practice, Qilu Hospital, Cheeloo college of medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
46
|
Churchill MJ, Mitchell PS, Rauch I. Epithelial Pyroptosis in Host Defense. J Mol Biol 2022; 434:167278. [PMID: 34627788 PMCID: PMC10010195 DOI: 10.1016/j.jmb.2021.167278] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/17/2021] [Accepted: 09/25/2021] [Indexed: 12/28/2022]
Abstract
Pyroptosis is a lytic form of cell death that is executed by a family of pore-forming proteins called gasdermins (GSDMs). GSDMs are activated upon proteolysis by host proteases including the proinflammatory caspases downstream of inflammasome activation. In myeloid cells, GSDM pore formation serves two primary functions in host defense: the selective release of processed cytokines to initiate inflammatory responses, and cell death, which eliminates a replicative niche of the pathogen. Barrier epithelia also undergo pyroptosis. However, unique mechanisms are required for the removal of pyroptotic epithelial cells to maintain epithelial barrier integrity. In the following review, we discuss the role of epithelial inflammasomes and pyroptosis in host defense against pathogens. We use the well-established role of inflammasomes in intestinal epithelia to highlight principles of epithelial pyroptosis in host defense of barrier tissues, and discuss how these principles might be shared or distinctive across other epithelial sites.
Collapse
Affiliation(s)
- Madeline J Churchill
- Department of Molecular Microbiology & Immunology, Oregon Health and Science University, Portland, OR, USA
| | | | - Isabella Rauch
- Department of Molecular Microbiology & Immunology, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
47
|
McVey MJ, Maishan M, Foley A, Turki R, Roach EJ, Deschler R, Weidenfeld S, Goldenberg NM, Khursigara CM, Kuebler WM. Pseudomonas aeruginosa membrane vesicles cause endothelial barrier failure and lung injury. Eur Respir J 2022; 59:13993003.01500-2021. [PMID: 35169027 DOI: 10.1183/13993003.01500-2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 02/04/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Mark J McVey
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Departments of Anesthesiology and Pain Medicine and Physiology, University of Toronto, Toronto, ON, Canada.,Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, ON, Canada.,Department of Physics, Ryerson University, Toronto, ON, Canada
| | - Mazharul Maishan
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Anna Foley
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Razan Turki
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Elyse J Roach
- Department of Molecular and Cellular Biology, Guelph University, Guelph, ON, Canada
| | - Rose Deschler
- Institute of Physiology, Charité-Universitätsmedizin, Berlin, Germany
| | - Sarah Weidenfeld
- Institute of Physiology, Charité-Universitätsmedizin, Berlin, Germany
| | - Neil M Goldenberg
- Departments of Anesthesiology and Pain Medicine and Physiology, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, Guelph University, Guelph, ON, Canada
| | - Wolfgang M Kuebler
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada .,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Institute of Physiology, Charité-Universitätsmedizin, Berlin, Germany.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
48
|
Foley A, Steinberg BE, Goldenberg NM. Inflammasome Activation in Pulmonary Arterial Hypertension. Front Med (Lausanne) 2022; 8:826557. [PMID: 35096915 PMCID: PMC8792742 DOI: 10.3389/fmed.2021.826557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/20/2021] [Indexed: 01/01/2023] Open
Abstract
Inflammasomes are multi-protein complexes that sense both infectious and sterile inflammatory stimuli, launching a cascade of responses to propagate danger signaling throughout an affected tissue. Recent studies have implicated inflammasome activation in a variety of pulmonary diseases, including pulmonary arterial hypertension (PAH). Indeed, the end-products of inflammasome activation, including interleukin (IL)-1β, IL-18, and lytic cell death (“pyroptosis”) are all key biomarkers of PAH, and are potentially therapeutic targets for human disease. This review summarizes current knowledge of inflammasome activation in immune and vascular cells of the lung, with a focus on the role of these pathways in the pathogenesis of PAH. Special emphasis is placed on areas of potential drug development focused on inhibition of inflammasomes and their downstream effectors.
Collapse
Affiliation(s)
- Anna Foley
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Benjamin E Steinberg
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, The University of Toronto, Toronto, ON, Canada
| | - Neil M Goldenberg
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, The University of Toronto, Toronto, ON, Canada
| |
Collapse
|
49
|
Abd El-Fattah EE, Saber S, Mourad AAE, El-Ahwany E, Amin NA, Cavalu S, Yahya G, Saad AS, Alsharidah M, Shata A, Sami HM, Kaddah MMY, Ghanim AMH. The dynamic interplay between AMPK/NFκB signaling and NLRP3 is a new therapeutic target in inflammation: Emerging role of dapagliflozin in overcoming lipopolysaccharide-mediated lung injury. Pharmacotherapy 2022; 147:112628. [PMID: 35032769 DOI: 10.1016/j.biopha.2022.112628] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 02/07/2023]
Abstract
Acute lung injury (ALI) is one the most common causes of morbidity and mortality in critically ill patients. In this study, we examined for first time the role of dapagliflozin (DPGZ) in lipopolysaccharide (LPS)-induced ALI in rats and determined the underlying molecular mechanisms by evaluating the effects of DPGZ on adenosine monophosphate kinase (AMPK), nuclear transcription factor kappa B, nucleotide-binding and oligomerization domain-like receptor 3 inflammasome activation. Treatment of acute lung injured rats with either low dose (5 mg/kg) or high dose (10 mg/kg) DPGZ significantly decreased oxidative stress by decreasing malondialdehyde and nitric oxide tissue levels with a significant increase in spectrophotometric measurements of superoxide dismutase, catalase, and reduced glutathione levels. DPGZ treatment resulted in a significant anti-inflammatory effect as indicated by suppression in myeloperoxidase activity, MCP-1, IL-1β, IL-18, and TNF-α levels. DPGZ treatment also increased p-AMPK/t-AMPK with a significant reduction in NF-kB P65 binding activity and NFĸB p65 (pSer536) levels. These effects of DPGZ were accompanied by a significant reduction in NLRP3 levels and NLRP3 gene expression and a significant decrease in caspase-1 activity, which were also confirmed by histopathological examinations. We conclude that DPGZ antioxidant and anti-inflammatory activity may occur through regulation of AMPK/NFĸB pathway and inhibition of NLRP3 activation. These results suggest that DPGZ represents a promising intervention for the treatment of ALI, particularly in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Eslam E Abd El-Fattah
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | - Ahmed A E Mourad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Port Said University, Port Said 42511, Egypt.
| | - Eman El-Ahwany
- Department of Immunology, Theodor Bilharz Research Institute, Giza, Egypt.
| | - Noha A Amin
- Department of Hematology, Theodor Bilharz Research Institute, Giza, Egypt.
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania.
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Al Sharqia, Egypt.
| | - Ahmed S Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Port Said University, Port Said 42511, Egypt.
| | - Mansour Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Qassim 51452, Kingdom of Saudi Arabia.
| | - Ahmed Shata
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt.
| | - Haidy M Sami
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt.
| | - Mohamed M Y Kaddah
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications, New Borg El-Arab, 21934 Alexandria, Egypt.
| | - Amal M H Ghanim
- Department of Biochemistry, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt.
| |
Collapse
|
50
|
Zhang C, Wang X, Wang C, He C, Ma Q, Li J, Wang W, Xu YT, Wang T. Qingwenzhike Prescription Alleviates Acute Lung Injury Induced by LPS via Inhibiting TLR4/NF-kB Pathway and NLRP3 Inflammasome Activation. Front Pharmacol 2022; 12:790072. [PMID: 35002723 PMCID: PMC8733650 DOI: 10.3389/fphar.2021.790072] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/12/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Acute lung injury (ALI) is characterized by dysfunction of the alveolar epithelial membrane caused by acute inflammation and tissue injury. Qingwenzhike (QWZK) prescription has been demonstrated to be effective against respiratory viral infections in clinical practices, including coronavirus disease 2019 (COVID-19) infection. So far, the chemical compositions, protective effects on ALI, and possible anti-inflammatory mechanisms remain unknown. Methods: In this study, the compositions of QWZK were determined via the linear ion trap/electrostatic field orbital trap tandem high-resolution mass spectrometry (UHPLC-LTQ-Orbitrap MS). To test the protective effects of QWZK on ALI, an ALI model induced by lipopolysaccharide (LPS) in rats was used. The effects of QWZK on the LPS-induced ALI were evaluated by pathological changes and the number and classification of white blood cell (WBC) in bronchoalveolar lavage fluid (BALF). To investigate the possible underlying mechanisms, the contents of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein (MCP-1), interleukin-1β (IL-1β), interleukin-18 (IL-18), and immunoregulatory-related factors interferon-γ (IFN-γ) were detected by ELISA. Furthermore, the expression of Toll-like receptor 4 (TLR4), p-IKKα/β, IKKα, IKKβ, p-IκBα, IκBα, p-NF-κB, nuclear factor-κB (NF-κB), NOD-like receptor family pyrin domain containing 3 (NLRP3), cleaved caspase-1, pro-caspase-1, apoptosis-associated speck-like protein containing CARD (ASC), and β-actin were tested by Western blot. Results: A total of 99 compounds were identified in QWZK, including 33 flavonoids, 23 phenolic acids, 3 alkaloids, 3 coumarins, 20 triterpenoids, 5 anthraquinones, and 12 others. ALI rats induced by LPS exhibited significant increase in neutrophile, significant decrease in lymphocyte, and evidently thicker alveolar wall than control animals. QWZK reversed the changes in WBC count and alveolar wall to normal level on the model of ALI induced by LPS. ELISA results revealed that QWZK significantly reduced the overexpression of proinflammatory factors IL-6, TNF-α, MCP-1, IL-1β, IL-18, and IFN-γ induced by LPS. Western blot results demonstrated that QWZK significantly downregulated the overexpression of TLR4, p-IKKα/β, p-IκBα, p-NF-κB, NLRP3, cleaved caspase-1, and ASC induced by LPS, which suggested that QWZK inhibited TLR4/NF-κB signaling pathway and NLRP3 inflammasomes. Conclusions: The chemical compositions of QWZK were first identified. It was demonstrated that QWZK showed protective effects on ALI induced by LPS. The possible underlying mechanisms of QWZK on ALI induced by LPS was via inhibiting TLR4/NF-kB signaling pathway and NLRP3 inflammasome activation. This work suggested that QWZK is a potential therapeutic candidate for the treatments of ALI and pulmonary inflammation.
Collapse
Affiliation(s)
- Cai Zhang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xinran Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chunguo Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng He
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Quantao Ma
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jialin Li
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Weiling Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan-Tong Xu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|