1
|
Forbes LM, Bauer N, Bhadra A, Bogaard HJ, Choudhary G, Goss KN, Gräf S, Heresi GA, Hopper RK, Jose A, Kim Y, Klouda T, Lahm T, Lawrie A, Leary PJ, Leopold JA, Oliveira SD, Prisco SZ, Rafikov R, Rhodes CJ, Stewart DJ, Vanderpool RR, Yuan K, Zimmer A, Hemnes AR, de Jesus Perez VA, Wilkins MR. Precision Medicine for Pulmonary Vascular Disease: The Future Is Now (2023 Grover Conference Series). Pulm Circ 2025; 15:e70027. [PMID: 39749110 PMCID: PMC11693987 DOI: 10.1002/pul2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
Pulmonary vascular disease is not a single condition; rather it can accompany a variety of pathologies that impact the pulmonary vasculature. Applying precision medicine strategies to better phenotype, diagnose, monitor, and treat pulmonary vascular disease is increasingly possible with the growing accessibility of powerful clinical and research tools. Nevertheless, challenges exist in implementing these tools to optimal effect. The 2023 Grover Conference Series reviewed the research landscape to summarize the current state of the art and provide a better understanding of the application of precision medicine to managing pulmonary vascular disease. In particular, the following aspects were discussed: (1) Clinical phenotypes, (2) genetics, (3) epigenetics, (4) biomarker discovery, (5) application of precision biology to clinical trials, (6) the right ventricle (RV), and (7) integrating precision medicine to clinical care. The present review summarizes the content of these discussions and the prospects for the future.
Collapse
Affiliation(s)
- Lindsay M. Forbes
- Division of Pulmonary Sciences and Critical Care MedicineUniversity of ColoradoAuroraColoradoUSA
| | - Natalie Bauer
- Department of PharmacologyCollege of Medicine, University of South AlabamaMobileAlabamaUSA
- Department of Physiology and Cell BiologyUniversity of South AlabamaMobileAlabamaUSA
| | - Aritra Bhadra
- Department of PharmacologyCollege of Medicine, University of South AlabamaMobileAlabamaUSA
- Center for Lung BiologyCollege of Medicine, University of South AlabamaMobileAlabamaUSA
| | - Harm J. Bogaard
- Department of Pulmonary MedicineAmsterdam UMCAmsterdamNetherlands
| | - Gaurav Choudhary
- Division of CardiologyWarren Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
- Lifespan Cardiovascular InstituteRhode Island and Miriam HospitalsProvidenceRhode IslandUSA
- Department of CardiologyProvidence VA Medical CenterProvidenceRhode IslandUSA
| | - Kara N. Goss
- Department of Medicine and PediatricsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Stefan Gräf
- Division of Computational Genomics and Genomic Medicine, Department of MedicineUniversity of Cambridge, Victor Phillip Dahdaleh Heart & Lung Research InstituteCambridgeUK
| | | | - Rachel K. Hopper
- Department of PediatricsStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Arun Jose
- Division of Pulmonary, Critical Care, and Sleep MedicineUniversity of CincinnatiCincinnatiOhioUSA
| | - Yunhye Kim
- Division of Pulmonary MedicineBoston Children's HospitalBostonMAUSA
| | - Timothy Klouda
- Division of Pulmonary MedicineBoston Children's HospitalBostonMAUSA
| | - Tim Lahm
- Division of Pulmonary Sciences and Critical Care MedicineUniversity of ColoradoAuroraColoradoUSA
- Division of Pulmonary, Critical Care, and Sleep MedicineNational Jewish HealthDenverColoradoUSA
- Pulmonary and Critical Care SectionRocky Mountain Regional VA Medical CenterDenverColoradoUSA
| | - Allan Lawrie
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Peter J. Leary
- Departments of Medicine and EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Jane A. Leopold
- Division of Cardiovascular MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Suellen D. Oliveira
- Department of Anesthesiology, Department of Physiology and BiophysicsUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Sasha Z. Prisco
- Division of CardiovascularLillehei Heart Institute, University of MinnesotaMinneapolisMinnesotaUSA
| | - Ruslan Rafikov
- Department of MedicineIndiana UniversityIndianapolisIndianaUSA
| | | | - Duncan J. Stewart
- Ottawa Hospital Research InstituteFaculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | | | - Ke Yuan
- Division of Pulmonary MedicineBoston Children's HospitalBostonMAUSA
| | - Alexsandra Zimmer
- Department of MedicineBrown UniversityProvidenceRhode IslandUSA
- Lifespan Cardiovascular InstituteRhode Island HospitalProvidenceRhode IslandUSA
| | - Anna R. Hemnes
- Division of Allergy, Pulmonary and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Vinicio A. de Jesus Perez
- Division of Pulmonary and Critical Care MedicineStanford University Medical CenterStanfordCaliforniaUSA
| | | |
Collapse
|
2
|
Curry-Koski T, Gusek B, Potter RM, Jones TB, Dickman R, Johnson N, Stallone JN, Rahimian R, Vallejo-Elias J, Esfandiarei M. Genetic Manipulation of Caveolin-1 in a Transgenic Mouse Model of Aortic Root Aneurysm: Sex-Dependent Effects on Endothelial and Smooth Muscle Function. Int J Mol Sci 2024; 25:12702. [PMID: 39684412 DOI: 10.3390/ijms252312702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024] Open
Abstract
Marfan syndrome (MFS) is a systemic connective tissue disorder stemming from mutations in the gene encoding Fibrillin-1 (Fbn1), a key extracellular matrix glycoprotein. This condition manifests with various clinical features, the most critical of which is the formation of aortic root aneurysms. Reduced nitric oxide (NO) production due to diminished endothelial nitric oxide synthase (eNOS) activity has been linked to MFS aortic aneurysm pathology. Caveolin-1 (Cav1), a structural protein of plasma membrane caveolae, is known to inhibit eNOS activity, suggesting its involvement in MFS aneurysm progression by modulating NO levels. In this study, we examined the role of Cav1 in aortic smooth muscle and endothelial function, aortic wall elasticity, and wall strength in male and female MFS mice (FBN1+/Cys1041Gly) by generating developing Cav1-deficient MFS mice (MFS/Cav1KO). Our findings reveal that Cav1 ablation leads to a pronounced reduction in aortic smooth muscle contraction in response to phenylephrine, attributable to an increase in NO production in the aortic wall. Furthermore, we observed enhanced aortic relaxation responses to acetylcholine in MFS/Cav1KO mice, further underscoring Cav1's inhibitory impact on NO synthesis within the aorta. Notably, van Gieson staining and chamber myography analyses showed improved elastin fiber structure and wall strength in male MFS/Cav1KO mice, whereas these effects were absent in female counterparts. Cav1's regulatory influence on aortic root aneurysm development in MFS through NO-mediated modulation of smooth muscle and endothelial function, with notable sex-dependent variations.
Collapse
Affiliation(s)
- Tala Curry-Koski
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Brikena Gusek
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Ross M Potter
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - T Bucky Jones
- Department of Anatomy, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Raechel Dickman
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Nathan Johnson
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - John N Stallone
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Roshanak Rahimian
- Department of Pharmaceutical Sciences, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA
| | - Johana Vallejo-Elias
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Mitra Esfandiarei
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, BC V6T 2A1, Canada
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, AZ 85004, USA
| |
Collapse
|
3
|
Fan J, Zheng S, Wang M, Yuan X. The critical roles of caveolin-1 in lung diseases. Front Pharmacol 2024; 15:1417834. [PMID: 39380904 PMCID: PMC11458383 DOI: 10.3389/fphar.2024.1417834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Caveolin-1 (Cav-1), a structural and functional component in the caveolae, plays a critical role in transcytosis, endocytosis, and signal transduction. Cav-1 has been implicated in the mediation of cellular processes by interacting with a variety of signaling molecules. Cav-1 is widely expressed in the endothelial cells, smooth muscle cells, and fibroblasts in the various organs, including the lungs. The Cav-1-mediated internalization and regulation of signaling molecules participate in the physiological and pathological processes. Particularly, the MAPK, NF-κB, TGFβ/Smad, and eNOS/NO signaling pathways have been involved in the regulatory effects of Cav-1 in lung diseases. The important effects of Cav-1 on the lungs indicate that Cav-1 can be a potential target for the treatment of lung diseases. A Cav-1 scaffolding domain peptide CSP7 targeting Cav-1 has been developed. In this article, we mainly discuss the structure of Cav-1 and its critical roles in lung diseases, such as pneumonia, acute lung injury (ALI), asthma, chronic obstructive pulmonary disease (COPD), pulmonary hypertension, pulmonary fibrosis, and lung cancer.
Collapse
Affiliation(s)
| | | | | | - Xiaoliang Yuan
- Department of Respiratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
4
|
Bhattarai P, Lu W, Hardikar A, Gaikwad AV, Dey S, Shahzad AM, Myers S, Williams A, Sutherland D, Singhera GK, Hackett TL, Eapen MS, Sohal SS. TGFβ1, SMAD and β-catenin in pulmonary arteries of smokers, patients with small airway disease and COPD: potential drivers of EndMT. Clin Sci (Lond) 2024; 138:1055-1070. [PMID: 39136529 DOI: 10.1042/cs20240721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
We previously reported pulmonary arterial remodelling and active endothelial-to-mesenchymal transition (EndMT) in smokers and patients with early chronic obstructive pulmonary disease (COPD). In the present study, we aimed to evaluate the role of different drivers of EndMT. Immunohistochemical staining for EndMT drivers, TGF-β1, pSMAD-2/3, SMAD-7, and β-catenin, was performed on lung resections from 46 subjects. Twelve were non-smoker-controls (NC), six normal lung function smokers (NLFS), nine patients with small-airway diseases (SAD), nine mild-moderate COPD-current smokers (COPD-CS) and ten COPD-ex-smokers (COPD-ES). Histopathological measurements were done using Image ProPlus softwarev7.0. We observed lower levels of total TGF-β1 (P<0.05) in all smoking groups than in the non-smoking control (NC). Across arterial sizes, smoking groups exhibited significantly higher (P<0.05) total and individual layer pSMAD-2/3 and SMAD-7 than in the NC group. The ratio of SAMD-7 to pSMAD-2/3 was higher in COPD patients compared with NC. Total β-catenin expression was significantly higher in smoking groups across arterial sizes (P<0.05), except for COPD-ES and NLFS groups in small and medium arteries, respectively. Increased total β-catenin was positively correlated with total S100A4 in small and medium arteries (r = 0.35, 0.50; P=0.02, 0.01, respectively), with Vimentin in medium arteries (r = 0.42, P=0.07), and with arterial thickness of medium and large arteries (r = 0.34, 0.41, P=0.02, 0.01, respectively). This is the first study uncovering active endothelial SMAD pathway independent of TGF-β1 in smokers, SAD, and COPD patients. Increased expression of β-catenin indicates its potential interaction with SMAD pathway, warranting further research to identify the deviation of this classical pathway.
Collapse
Affiliation(s)
- Prem Bhattarai
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Wenying Lu
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Ashutosh Hardikar
- Department of Cardiothoracic Surgery, Royal Hobart Hospital, Hobart, Tasmania 7000, Australia
- Department of Cardiothoracic Surgery, The Royal Adelaide Hospital, Adelaide South Australia, 5000 Australia
| | - Archana Vijay Gaikwad
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Surajit Dey
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Affan Mahmood Shahzad
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Stephen Myers
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Andrew Williams
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Darren Sutherland
- Department of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Gurpreet Kaur Singhera
- Department of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Tillie-Louise Hackett
- Department of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Mathew S Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia
| |
Collapse
|
5
|
He C, Wu Y, Nan X, Zhang W, Luo Y, Wang H, Li M, Liu C, Liu J, Mou X, Liu Y. Induction of CX3CL1 expression by LPS and its impact on invasion and migration in oral squamous cell carcinoma. Front Cell Dev Biol 2024; 12:1371323. [PMID: 38915444 PMCID: PMC11195639 DOI: 10.3389/fcell.2024.1371323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/15/2024] [Indexed: 06/26/2024] Open
Abstract
Purpose: This study aimed to explore the expression of CX3CL1 induced by lipopolysaccharide (LPS) in oral squamous cell carcinoma (OSCC) and its impact on biological characteristics such as invasion and migration, taking the foundation for new targets for the treatment and prognosis of OSCC. Methods: This study utilized a variety of techniques, including bioinformatics, molecular biology, and cell experiments, to investigate the expression of CX3CL1 and its receptor CX3CR1 in OSCC patients' cancer tissues or OSCC cell lines. Extracting, organizing, and analyzing the TCGA database on the expression of CX3CL1 and its receptor CX3CR1 in cancer tissues and corresponding paracancerous normal tissues of OSCC patients by bioinformatics methods. The expression of CX3CL1 in cancerous and normal tissues of OSCC patients was verified by IHC, and the changes in mRNA and protein expression of CX3CL1 and its receptor CX3CR1 in OSCC cell lines were detected before and after lipopolysaccharide LPS stimulation by RT-PCR, ELISA, and WB. Changes in cell biological behavior by overexpression of CX3CL1 in OSCC cell lines were detected by CCK-8, Transwell, scratch healing assay, and cloning assay. The effects of overexpressing cell lines on the AKT pathway and Epithelial-mesenchymal Transition (EMT)-related protein expression before and after LPS stimulation were detected by Western Blot. Results: (1) CX3CL1 and its receptor CX3CR1 were found to be downregulated in OSCC tissues of patients or OSCC cell lines. (2) After LPS stimulation, CX3CL1 gene expression increased in both OSCC cell lines, while CX3CR1 expression remained unchanged. (3) OSCC cell lines overexpressing CX3CL1 showed changes in cell biological characteristics, including decreased proliferation, invasion, migration, and stemness, which were more pronounced after LPS stimulation. (4) Overexpression of CX3CL1 in OSCC cell lines decreased EMT-related protein expression and AKT phosphorylation. On the contrary were promoted by LPS stimulation. Conclusion: CX3CL1 and CX3CR1 are downregulated in OSCC cancer tissues and cell lines compared to adjacent normal tissues and cells. LPS stimulation increases CX3CL1 expression in OSCC cell lines, suggesting that inflammation may induce CX3CL1 expression and that the CX3CL1 gene may play an important role in OSCC progression. Overexpression of CX3CL1 inhibits OSCC cell proliferation, migration, invasion, and stemness, suggesting that CX3CL1 plays a critical role in suppressing OSCC development. CX3CL1 suppresses OSCC invasion and migration by affecting EMT progression and AKT phosphorylation, and partially reverse the process that LPS causes and affects the development of OSCC.
Collapse
Affiliation(s)
- Chanjuan He
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Changsha Stomatological Hospital, Changsha, China
| | - Yuehan Wu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Xiaoxu Nan
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Weifang Zhang
- Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha, China
| | - Yu Luo
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Honglan Wang
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Mengqi Li
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Changyue Liu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Jiaming Liu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Xuelin Mou
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Ying Liu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
6
|
Guo S, Wang D. Novel insights into the potential applications of stem cells in pulmonary hypertension therapy. Respir Res 2024; 25:237. [PMID: 38849894 PMCID: PMC11162078 DOI: 10.1186/s12931-024-02865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
Pulmonary hypertension (PH) refers to a group of deadly lung diseases characterized by vascular lesions in the microvasculature and a progressive increase in pulmonary vascular resistance. The prevalence of PH has increased over time. Currently, the treatment options available for PH patients have limited efficacy, and none of them can fundamentally reverse pulmonary vascular remodeling. Stem cells represent an ideal seed with proven efficacy in clinical studies focusing on liver, cardiovascular, and nerve diseases. Since the potential therapeutic effect of mesenchymal stem cells (MSCs) on PH was first reported in 2006, many studies have demonstrated the efficacy of stem cells in PH animal models and suggested that stem cells can help slow the deterioration of lung tissue. Existing PH treatment studies basically focus on the paracrine action of stem cells, including protein regulation, exosome pathway, and cell signaling; however, the specific mechanisms have not yet been clarified. Apoptotic and afunctional pulmonary microvascular endothelial cells (PMVECs) and alveolar epithelial cells (AECs) are two fundamental promoters of PH although they have not been extensively studied by researchers. This review mainly focuses on the supportive communication and interaction between PMVECs and AECs as well as the potential restorative effect of stem cells on their injury. In the future, more studies are needed to prove these effects and explore more radical cures for PH.
Collapse
Affiliation(s)
- Sijia Guo
- Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
| | - Dachun Wang
- Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- The Brown Foundation Institute of Molecular Medicine for the prevention of Human Diseases, University of Texas Medical School at Houston, Houston, TX, USA
| |
Collapse
|
7
|
Gaikwad AV, Eapen MS, Dey S, Bhattarai P, Shahzad AM, Chia C, Jaffar J, Westall G, Sutherland D, Singhera GK, Hackett TL, Lu W, Sohal SS. TGF-β1, pSmad-2/3, Smad-7, and β-Catenin Are Augmented in the Pulmonary Arteries from Patients with Idiopathic Pulmonary Fibrosis (IPF): Role in Driving Endothelial-to-Mesenchymal Transition (EndMT). J Clin Med 2024; 13:1160. [PMID: 38398472 PMCID: PMC10888973 DOI: 10.3390/jcm13041160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Background: We have previously reported that endothelial-to-mesenchymal transition (EndMT) is an active process in patients with idiopathic pulmonary fibrosis (IPF) contributing to arterial remodelling. Here, we aim to quantify drivers of EndMT in IPF patients compared to normal controls (NCs). Methods: Lung resections from thirteen IPF patients and eleven NCs were immunohistochemically stained for EndMT drivers, including TGF-β1, pSmad-2/3, Smad-7, and β-catenin. Intima, media, and adventitia were analysed for expression of each EndMT driver in pulmonary arteries. Computer- and microscope-assisted Image ProPlus7.0 image analysis software was used for quantifications. Results: Significant TGF-β1, pSmad-2/3, Smad-7, and β-catenin expression was apparent across all arterial sizes in IPF (p < 0.05). Intimal TGF-β1, pSmad-2/3, Smad-7, and β-catenin were augmented in the arterial range of 100-1000 μm (p < 0.001) compared to NC. Intimal TGF-β1 and β-catenin percentage expression showed a strong correlation with the percentage expression of intimal vimentin (r' = 0.54, p = 0.05 and r' = 0.61, p = 0.02, respectively) and intimal N-cadherin (r' = 0.62, p = 0.03 and r' = 0.70, p = 0.001, respectively). Intimal TGF-β1 and β-catenin expression were significantly correlated with increased intimal thickness as well (r' = 0.52, p = 0.04; r' = 0.052, p = 0.04, respectively). Moreover, intimal TGF-β1 expression was also significantly associated with increased intimal elastin deposition (r' = 0.79, p = 0.002). Furthermore, total TGF-β1 expression significantly impacted the percentage of DLCO (r' = -0.61, p = 0.03). Conclusions: This is the first study to illustrate the involvement of active TGF-β/Smad-2/3-dependent and β-catenin-dependent Wnt signalling pathways in driving EndMT and resultant pulmonary arterial remodelling in patients with IPF. EndMT is a potential therapeutic target for vascular remodelling and fibrosis in general in patients with IPF.
Collapse
Affiliation(s)
- Archana Vijay Gaikwad
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
- National Health and Medical Research Council (NHMRC) Centre of Research Excellence (CRE) in Pulmonary Fibrosis, Respiratory Medicine and Sleep Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
- National Health and Medical Research Council (NHMRC) Centre of Research Excellence (CRE) in Pulmonary Fibrosis, Respiratory Medicine and Sleep Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Surajit Dey
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
| | - Prem Bhattarai
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
| | - Affan Mahmood Shahzad
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
| | - Collin Chia
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
- Launceston Respiratory and Sleep Centre, Launceston, TAS 7250, Australia
- Department of Respiratory Medicine, Launceston General Hospital, Launceston, TAS 7250, Australia
| | - Jade Jaffar
- Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC 3004, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC 3004, Australia
| | - Glen Westall
- Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC 3004, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC 3004, Australia
| | - Darren Sutherland
- Department of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Gurpreet Kaur Singhera
- Department of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Tillie-Louise Hackett
- Department of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Wenying Lu
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
- National Health and Medical Research Council (NHMRC) Centre of Research Excellence (CRE) in Pulmonary Fibrosis, Respiratory Medicine and Sleep Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- Launceston Respiratory and Sleep Centre, Launceston, TAS 7250, Australia
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
- National Health and Medical Research Council (NHMRC) Centre of Research Excellence (CRE) in Pulmonary Fibrosis, Respiratory Medicine and Sleep Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- Launceston Respiratory and Sleep Centre, Launceston, TAS 7250, Australia
| |
Collapse
|
8
|
Liu H, Lai W, Nie H, Shi Y, Zhu L, Yang L, Tian L, Li K, Bian L, Xi Z, Lin B. PM 2.5 triggers autophagic degradation of Caveolin-1 via endoplasmic reticulum stress (ERS) to enhance the TGF-β1/Smad3 axis promoting pulmonary fibrosis. ENVIRONMENT INTERNATIONAL 2023; 181:108290. [PMID: 37924604 DOI: 10.1016/j.envint.2023.108290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023]
Abstract
Air pollution is highly associated with respiratory diseases. However, the influence and mechanism of particulate matter with aerodynamic equal to or less than 2.5 μm (PM2.5) in lung homeostasis remain unclear. Herein, we demonstrated the induction of pulmonary fibrosis (PF) by PM2.5 exposure. The animal model showed that PM2.5 exposure could activate the oxidative stress and inflammation response, promoting epithelial-mesenchymal transition and accumulation of collagen, high expression of pro-fibrotic factors, and pathological characteristics of fibrosis. The proteomic analysis indicated that PM2.5 exposure decreased the expression of caveolin-1 (Cav-1), and many differential proteins were enriched in the TGF-β1/Smad, endoplasmic reticulum stress (ERS) and autophagy pathways. Combining in vivo and in vitro experiments, it was found that PM2.5 exposure could reduce Cav-1 protein levels and activate TGF-β1/Smad3 signaling pathways through ERS and autophagy pathways, thereby inducing cell apoptosis and promoting pulmonary fibrosis. However, inhibiting ERS could alleviate the occurrence of autophagy, and blocking the autophagy system could increase the level of Cav-1 protein and inhibit TGF- β 1/Smad3 signaling pathway to improve pulmonary fibrosis. Therefore, we demonstrated that the exposure of PM2.5 could enhance the ERS induced-autophagy-mediated Cav-1 degradation, thus activating the TGF-β1/Smad3 axis to promote pneumonocytes apoptosis and overproduction of extracellular matrix (ECM), finally aggravating PF. Moreover, our findings revealed that intermittent exposure to high doses of PM2.5 was more toxic than continuous exposure to low dose.
Collapse
Affiliation(s)
- Huanliang Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Wenqing Lai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Huipeng Nie
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Yue Shi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Lina Zhu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Linhui Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Liping Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China.
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China.
| |
Collapse
|
9
|
Marinho Y, Villarreal ES, Aboagye SY, Williams DL, Sun J, Silva CLM, Lutz SE, Oliveira SD. Schistosomiasis-associated pulmonary hypertension unveils disrupted murine gut-lung microbiome and reduced endoprotective Caveolin-1/BMPR2 expression. Front Immunol 2023; 14:1254762. [PMID: 37908354 PMCID: PMC10613683 DOI: 10.3389/fimmu.2023.1254762] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/22/2023] [Indexed: 11/02/2023] Open
Abstract
Schistosomiasis-associated Pulmonary Arterial Hypertension (Sch-PAH) is a life-threatening complication of chronic S. mansoni infection that can lead to heart failure and death. During PAH, the expansion of apoptosis-resistant endothelial cells (ECs) has been extensively reported; however, therapeutic approaches to prevent the progression or reversal of this pathological phenotype remain clinically challenging. Previously, we showed that depletion of the anti-apoptotic protein Caveolin-1 (Cav-1) by shedding extracellular vesicles contributes to shifting endoprotective bone morphogenetic protein receptor 2 (BMPR2) towards transforming growth factor beta (TGF-β)-mediated survival of an abnormal EC phenotype. However, the mechanism underlying the reduced endoprotection in PAH remains unclear. Interestingly, recent findings indicate that, similar to the gut, healthy human lungs are populated by diverse microbiota, and their composition depends significantly on intrinsic and extrinsic host factors, including infection. Despite the current knowledge that the disruption of the gut microbiome contributes to the development of PAH, the role of the lung microbiome remains unclear. Thus, using a preclinical animal model of Sch-PAH, we tested whether S. mansoni infection alters the gut-lung microbiome composition and causes EC injury, initiating the expansion of an abnormal EC phenotype observed in PAH. Indeed, in vivo stimulation with S. mansoni eggs significantly altered the gut-lung microbiome profile, in addition to promoting injury to the lung vasculature, characterized by increased apoptotic markers and loss of endoprotective expression of lung Cav-1 and BMPR2. Moreover, S. mansoni egg stimulus induced severe pulmonary vascular remodeling, leading to elevated right ventricular systolic pressure and hypertrophy, characteristic of PAH. In vitro, exposure to the immunodominant S. mansoni egg antigen p40 activated TLR4/CD14-mediated transient phosphorylation of Cav-1 at Tyr14 in human lung microvascular EC (HMVEC-L), culminating in a mild reduction of Cav-1 expression, but failed to promote death and shedding of extracellular vesicles observed in vivo. Altogether, these data suggest that disruption of the host-associated gut-lung microbiota may be essential for the emergence and expansion of the abnormal lung endothelial phenotype observed in PAH, in addition to S. mansoni eggs and antigens.
Collapse
Affiliation(s)
- Ygor Marinho
- Vascular Immunobiology Lab, Department of Anesthesiology, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Elizabeth S. Villarreal
- Vascular Immunobiology Lab, Department of Anesthesiology, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Sammy Y. Aboagye
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| | - David L. Williams
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| | - Jun Sun
- Department of Medicine, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Claudia L. M. Silva
- Molecular and Biochemical Pharmacology Lab, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Sarah E. Lutz
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Suellen D. Oliveira
- Vascular Immunobiology Lab, Department of Anesthesiology, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
- Vascular Immunobiology Lab, Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
10
|
Luse MA, Jackson MG, Juśkiewicz ZJ, Isakson BE. Physiological functions of caveolae in endothelium. CURRENT OPINION IN PHYSIOLOGY 2023; 35:100701. [PMID: 37873030 PMCID: PMC10588508 DOI: 10.1016/j.cophys.2023.100701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Endothelial caveolae are essential for a wide range of physiological processes and have emerged as key players in vascular biology. Our understanding of caveolar biology in endothelial cells has expanded dramatically since their discovery revealing critical roles in mechanosensation, signal transduction, eNOS regulation, lymphatic transport, and metabolic disease progression. Furthermore, caveolae are involved in the organization of membrane domains, regulation of membrane fluidity, and endocytosis which contribute to endothelial function and integrity. Additionally, recent advances highlight the impact of caveolae-mediated signaling pathways on vascular homeostasis and pathology. Together, the diverse roles of caveolae discussed here represent a breadth of cellular functions presenting caveolae as a defining feature of endothelial form and function. In light of these new insights, targeting caveolae may hold potential for the development of novel therapeutic strategies to treat a range of vascular diseases.
Collapse
Affiliation(s)
- Melissa A. Luse
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine
| | - Madeline G. Jackson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Zuzanna J. Juśkiewicz
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine
| | - Brant E. Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine
| |
Collapse
|
11
|
Stephen TKL, Cofresi LA, Quiroz E, Owusu-Ansah K, Ibrahim Y, Qualls E, Marshall J, Li W, Shetti A, Bonds JA, Minshall RD, Cologna SM, Lazarov O. Caveolin-1 Autonomously Regulates Hippocampal Neurogenesis Via Mitochondrial Dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.558792. [PMID: 37790360 PMCID: PMC10542167 DOI: 10.1101/2023.09.23.558792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The mechanisms underlying adult hippocampal neurogenesis (AHN) are not fully understood. AHN plays instrumental roles in learning and memory. Understanding the signals that regulate AHN has implications for brain function and therapy. Here we show that Caveolin-1 (Cav-1), a protein that is highly enriched in endothelial cells and the principal component of caveolae, autonomously regulates AHN. Conditional deletion of Cav-1 in adult neural progenitor cells (nestin +) led to increased neurogenesis and enhanced performance of mice in contextual discrimination. Proteomic analysis revealed that Cav-1 plays a role in mitochondrial pathways in neural progenitor cells. Importantly, Cav-1 was localized to the mitochondria in neural progenitor cells and modulated mitochondrial fission-fusion, a critical process in neurogenesis. These results suggest that Cav-1 is a novel regulator of AHN and underscore the impact of AHN on cognition.
Collapse
Affiliation(s)
- Terilyn K. L. Stephen
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Luis Aponte Cofresi
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Elvis Quiroz
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Kofi Owusu-Ansah
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Yomna Ibrahim
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Ellis Qualls
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Jeffery Marshall
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Wenping Li
- Department of Chemistry, University of Illinois at Chicago, IL, USA
| | - Aashutosh Shetti
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Jacqueline A Bonds
- Departmet of Anesthesiology, University of California San Diego, CA, USA
| | - Richard D. Minshall
- Deparment of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, IL,USA
- Department of Anesthesiology, University of Illinois at Chicago, IL USA
| | | | - Orly Lazarov
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
- Lead Contact
| |
Collapse
|
12
|
Borek I, Birnhuber A, Voelkel NF, Marsh LM, Kwapiszewska G. The vascular perspective on acute and chronic lung disease. J Clin Invest 2023; 133:e170502. [PMID: 37581311 PMCID: PMC10425217 DOI: 10.1172/jci170502] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
The pulmonary vasculature has been frequently overlooked in acute and chronic lung diseases, such as acute respiratory distress syndrome (ARDS), pulmonary fibrosis (PF), and chronic obstructive pulmonary disease (COPD). The primary emphasis in the management of these parenchymal disorders has largely revolved around the injury and aberrant repair of epithelial cells. However, there is increasing evidence that the vascular endothelium plays an active role in the development of acute and chronic lung diseases. The endothelial cell network in the capillary bed and the arterial and venous vessels provides a metabolically highly active barrier that controls the migration of immune cells, regulates vascular tone and permeability, and participates in the remodeling processes. Phenotypically and functionally altered endothelial cells, and remodeled vessels, can be found in acute and chronic lung diseases, although to different degrees, likely because of disease-specific mechanisms. Since vascular remodeling is associated with pulmonary hypertension, which worsens patient outcomes and survival, it is crucial to understand the underlying vascular alterations. In this Review, we describe the current knowledge regarding the role of the pulmonary vasculature in the development and progression of ARDS, PF, and COPD; we also outline future research directions with the hope of facilitating the development of mechanism-based therapies.
Collapse
Affiliation(s)
- Izabela Borek
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Anna Birnhuber
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Norbert F. Voelkel
- Pulmonary Medicine Department, University of Amsterdam Medical Centers, Amsterdam, Netherlands
- Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Leigh M. Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
- Institute for Lung Health, German Lung Center (DZL), Cardiopulmonary Institute, Giessen, Germany
| |
Collapse
|
13
|
Shetti AU, Ramakrishnan A, Romanova L, Li W, Vo K, Volety I, Ratnayake I, Stephen T, Minshall RD, Cologna SM, Lazarov O. Reduced endothelial caveolin-1 underlies deficits in brain insulin signalling in type 2 diabetes. Brain 2023; 146:3014-3028. [PMID: 36731883 PMCID: PMC10316766 DOI: 10.1093/brain/awad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Patients with type 2 diabetes exhibit severe impairments in insulin signalling in the brain and are five times more likely to develop Alzheimer's disease. However, what leads to these impairments is not fully understood. Here, we show reduced expression of endothelial cell caveolin-1 (Cav-1) in the db/db (Leprdb) mouse model of type 2 diabetes. This reduction correlated with alterations in insulin receptor expression and signalling in brain microvessels as well as brain parenchyma. These findings were recapitulated in the brains of endothelial cell-specific Cav-1 knock-out (Tie2Cre; Cav-1fl/fl) mice. Lack of Cav-1 in endothelial cells led to reduced response to insulin as well as reduced insulin uptake. Furthermore, we observed that Cav-1 was necessary for the stabilization of insulin receptors in lipid rafts. Interactome analysis revealed that insulin receptor interacts with Cav-1 and caveolae-associated proteins, insulin-degrading enzyme and the tight junction protein Zonula Occludence-1 in brain endothelial cells. Restoration of Cav-1 in Cav-1 knock-out brain endothelial cells rescued insulin receptor expression and localization. Overall, these results suggest that Cav-1 regulates insulin signalling and uptake by brain endothelial cells by modulating IR-α and IR-β localization and function in lipid rafts. Furthermore, depletion of endothelial cell-specific Cav-1 and the resulting impairment in insulin transport leads to alteration in insulin signalling in the brain parenchyma of type 2 diabetics.
Collapse
Affiliation(s)
- Aashutosh U Shetti
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois Chicago, Chicago, IL 60612, USA
| | - Abhirami Ramakrishnan
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois Chicago, Chicago, IL 60612, USA
| | - Liudmila Romanova
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Wenping Li
- Department of Chemistry, College of Liberal Arts and Sciences, The University of Illinois Chicago, Chicago, IL 60612, USA
| | - Khanh Vo
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois Chicago, Chicago, IL 60612, USA
| | - Ipsita Volety
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois Chicago, Chicago, IL 60612, USA
| | - Ishara Ratnayake
- Electron Microscopy Core, Research Resource Center, The University of Illinois Chicago, Chicago, IL 60612, USA
| | - Terilyn Stephen
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois Chicago, Chicago, IL 60612, USA
| | - Richard D Minshall
- Department of Pharmacology and Regenerative Medicine, College of Medicine, The University of Illinois Chicago, Chicago, IL 60612, USA
- Department of Anesthesiology, College of Medicine, The University of Illinois Chicago, Chicago, IL 60612, USA
| | - Stephanie M Cologna
- Department of Chemistry, College of Liberal Arts and Sciences, The University of Illinois Chicago, Chicago, IL 60612, USA
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
14
|
Zhang MQ, Wang CC, Pang XB, Shi JZ, Li HR, Xie XM, Wang Z, Zhang HD, Zhou YF, Chen JW, Han ZY, Zhao LL, He YY. Role of macrophages in pulmonary arterial hypertension. Front Immunol 2023; 14:1152881. [PMID: 37153557 PMCID: PMC10154553 DOI: 10.3389/fimmu.2023.1152881] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe cardiopulmonary vascular disease characterized by progressive pulmonary artery pressure elevation, increased pulmonary vascular resistance and ultimately right heart failure. Studies have demonstrated the involvement of multiple immune cells in the development of PAH in patients with PAH and in experimental PAH. Among them, macrophages, as the predominant inflammatory cells infiltrating around PAH lesions, play a crucial role in exacerbating pulmonary vascular remodeling in PAH. Macrophages are generally polarized into (classic) M1 and (alternative) M2 phenotypes, they accelerate the process of PAH by secreting various chemokines and growth factors (CX3CR1, PDGF). In this review we summarize the mechanisms of immune cell action in PAH, as well as the key factors that regulate the polarization of macrophages in different directions and their functional changes after polarization. We also summarize the effects of different microenvironments on macrophages in PAH. The insight into the interactions between macrophages and other cells, chemokines and growth factors may provide important clues for the development of new, safe and effective immune-targeted therapies for PAH.
Collapse
Affiliation(s)
- Meng-Qi Zhang
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Chen-Chen Wang
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Xiao-Bin Pang
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Jun-Zhuo Shi
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Hao-Ran Li
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Xin-Mei Xie
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Zhe Wang
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Hong-Da Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun-Feng Zhou
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Ji-Wang Chen
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Zhi-Yan Han
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yang-Yang He, ; Lu-Ling Zhao, ; Zhi-Yan Han,
| | - Lu-Ling Zhao
- School of Pharmacy, Henan University, Kaifeng, Henan, China
- *Correspondence: Yang-Yang He, ; Lu-Ling Zhao, ; Zhi-Yan Han,
| | - Yang-Yang He
- School of Pharmacy, Henan University, Kaifeng, Henan, China
- *Correspondence: Yang-Yang He, ; Lu-Ling Zhao, ; Zhi-Yan Han,
| |
Collapse
|
15
|
Enyong EN, Gurley JM, De Ieso ML, Stamer WD, Elliott MH. Caveolar and non-Caveolar Caveolin-1 in ocular homeostasis and disease. Prog Retin Eye Res 2022; 91:101094. [PMID: 35729002 PMCID: PMC9669151 DOI: 10.1016/j.preteyeres.2022.101094] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Caveolae, specialized plasma membrane invaginations present in most cell types, play important roles in multiple cellular processes including cell signaling, lipid uptake and metabolism, endocytosis and mechanotransduction. They are found in almost all cell types but most abundant in endothelial cells, adipocytes and fibroblasts. Caveolin-1 (Cav1), the signature structural protein of caveolae was the first protein associated with caveolae, and in association with Cavin1/PTRF is required for caveolae formation. Genetic ablation of either Cav1 or Cavin1/PTRF downregulates expression of the other resulting in loss of caveolae. Studies using Cav1-deficient mouse models have implicated caveolae with human diseases such as cardiomyopathies, lipodystrophies, diabetes and muscular dystrophies. While caveolins and caveolae are extensively studied in extra-ocular settings, their contributions to ocular function and disease pathogenesis are just beginning to be appreciated. Several putative caveolin/caveolae functions are relevant to the eye and Cav1 is highly expressed in retinal vascular and choroidal endothelium, Müller glia, the retinal pigment epithelium (RPE), and the Schlemm's canal endothelium and trabecular meshwork cells. Variants at the CAV1/2 gene locus are associated with risk of primary open angle glaucoma and the high risk HTRA1 variant for age-related macular degeneration is thought to exert its effect through regulation of Cav1 expression. Caveolins also play important roles in modulating retinal neuroinflammation and blood retinal barrier permeability. In this article, we describe the current state of caveolin/caveolae research in the context of ocular function and pathophysiology. Finally, we discuss new evidence showing that retinal Cav1 exists and functions outside caveolae.
Collapse
Affiliation(s)
- Eric N Enyong
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jami M Gurley
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael L De Ieso
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| | - W Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| | - Michael H Elliott
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
16
|
Erewele EO, Castellon M, Loya O, Marshboom G, Schwartz A, Yerlioglu K, Callahan C, Chen J, Minshall RD, Oliveira SD. Hypoxia-induced pulmonary hypertension upregulates eNOS and TGF-β contributing to sex-linked differences in BMPR2 +/R899X mutant mice. Pulm Circ 2022; 12:e12163. [PMID: 36484056 PMCID: PMC9722973 DOI: 10.1002/pul2.12163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/28/2022] Open
Abstract
Dysfunctional bone morphogenetic protein receptor 2 (BMPR2) and endothelial nitric oxide synthase (eNOS) have been largely implicated in the pathogenesis of pulmonary arterial hypertension (PAH); a life-threatening cardiopulmonary disease. Although the incident of PAH is about three times higher in females, males with PAH usually have a worse prognosis, which seems to be dependent on estrogen-associated cardiac and vascular protection. Here, we evaluated whether hypoxia-induced pulmonary hypertension (PH) in humanized BMPR2+/R899X loss-of-function mutant mice contributes to sex-associated differences observed in PAH by altering eNOS expression and inducing expansion of hyperactivated TGF-β-producing pulmonary myofibroblasts. To test this hypothesis, male and female wild-type (WT) and BMPR2+/R899X mutant mice were kept under hypoxic or normoxic conditions for 4 weeks, and then right ventricular systolic pressure (RVSP) and right ventricular hypertrophy (RVH) were measured. Chronic hypoxia exposure elevated RVSP, inducing RVH in both groups, with a greater effect in BMPR2+/R899X female mice. Lung histology revealed no differences in vessel thickness/area between sexes, suggesting RVSP differences in this model are unlikely to be in response to sex-dependent vascular narrowing. On the other hand, hypoxia exposure increased vascular collagen deposition, the number of TGF-β-associated α-SMA-positive microvessels, and eNOS expression, whereas it also reduced caveolin-1 expression in the lungs of BMPR2+/R899X females compared to males. Taken together, this brief report reveals elevated myofibroblast-derived TGF-β and eNOS-derived oxidants contribute to pulmonary microvascular muscularization and sex-linked differences in incidence, severity, and outcome of PAH.
Collapse
Affiliation(s)
- Ejehi O Erewele
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Maricela Castellon
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
- Cardiovascular Research Center, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Omar Loya
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Glenn Marshboom
- Department of Pharmacology and Regenerative Medicine, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Andrew Schwartz
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Kayla Yerlioglu
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Christopher Callahan
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Jiwang Chen
- Cardiovascular Research Center, College of Medicine University of Illinois at Chicago Chicago Illinois USA
- Department of Medicine, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Richard D Minshall
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
- Department of Pharmacology and Regenerative Medicine, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Suellen D Oliveira
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
- Department of Physiology & Biophysics, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| |
Collapse
|
17
|
Oliveira SD. Insights on the Gut-Mesentery-Lung Axis in Pulmonary Arterial Hypertension: A Poorly Investigated Crossroad. Arterioscler Thromb Vasc Biol 2022; 42:516-526. [PMID: 35296152 PMCID: PMC9050827 DOI: 10.1161/atvbaha.121.316236] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/28/2022] [Indexed: 11/16/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by the hyperproliferation of vascular cells, including smooth muscle and endothelial cells. Hyperproliferative cells eventually obstruct the lung vasculature, leading to irreversible lesions that collectively drive pulmonary pressure to life-threatening levels. Although the primary cause of PAH is not fully understood, several studies have indicated it results from chronic pulmonary inflammation, such as observed in response to pathogens' infection. Curiously, infection by the intravascular parasite Schistosoma mansoni recapitulates several aspects of the widespread pulmonary inflammation that leads to development of chronic PAH. Globally, >200 million people are currently infected by Schistosoma spp., with about 5% developing PAH (Sch-PAH) in response to the parasite egg-induced obliteration and remodeling of the lung vasculature. Before their settling into the lungs, Schistosoma eggs are released inside the mesenteric veins, where they either cross the intestinal wall and disturb the gut microbiome or migrate to other organs, including the lungs and liver, increasing pressure. Spontaneous or surgical liver bypass via collateral circulation alleviates the pressure in the portal system; however, it also allows the translocation of pathogens, toxins, and antigens into the lungs, ultimately causing PAH. This brief review provides an overview of the gut-mesentery-lung axis during PAH, with a particular focus on Sch-PAH, and attempts to delineate the mechanism by which pathogen translocation might contribute to the onset of chronic pulmonary vascular diseases.
Collapse
Affiliation(s)
- Suellen Darc Oliveira
- Department of Anesthesiology, College of Medicine, University of Illinois at Chicago
| |
Collapse
|
18
|
Jones JH, Minshall RD. Endothelial Transcytosis in Acute Lung Injury: Emerging Mechanisms and Therapeutic Approaches. Front Physiol 2022; 13:828093. [PMID: 35431977 PMCID: PMC9008570 DOI: 10.3389/fphys.2022.828093] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/28/2022] [Indexed: 01/08/2023] Open
Abstract
Acute Lung Injury (ALI) is characterized by widespread inflammation which in its severe form, Acute Respiratory Distress Syndrome (ARDS), leads to compromise in respiration causing hypoxemia and death in a substantial number of affected individuals. Loss of endothelial barrier integrity, pneumocyte necrosis, and circulating leukocyte recruitment into the injured lung are recognized mechanisms that contribute to the progression of ALI/ARDS. Additionally, damage to the pulmonary microvasculature by Gram-negative and positive bacteria or viruses (e.g., Escherichia coli, SARS-Cov-2) leads to increased protein and fluid permeability and interstitial edema, further impairing lung function. While most of the vascular leakage is attributed to loss of inter-endothelial junctional integrity, studies in animal models suggest that transendothelial transport of protein through caveolar vesicles, known as transcytosis, occurs in the early phase of ALI/ARDS. Here, we discuss the role of transcytosis in healthy and injured endothelium and highlight recent studies that have contributed to our understanding of the process during ALI/ARDS. We also cover potential approaches that utilize caveolar transport to deliver therapeutics to the lungs which may prevent further injury or improve recovery.
Collapse
Affiliation(s)
- Joshua H. Jones
- Department of Pharmacology, University of Illinois College of Medicine at Chicago, Chicago, IL, United States
| | - Richard D. Minshall
- Department of Pharmacology, University of Illinois College of Medicine at Chicago, Chicago, IL, United States,Department of Anesthesiology, University of Illinois College of Medicine at Chicago, Chicago, IL, United States,*Correspondence: Richard D. Minshall,
| |
Collapse
|
19
|
Cell-to-Cell Crosstalk: A New Insight into Pulmonary Hypertension. Rev Physiol Biochem Pharmacol 2022; 184:159-179. [PMID: 35380274 DOI: 10.1007/112_2022_70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Pulmonary hypertension (PH) is a disease with high pulmonary arterial pressure, pulmonary vasoconstriction, pulmonary vascular remodeling, and microthrombosis in complex plexiform lesions, but it has been unclear of the exact mechanism of PH. A new understanding of the pathogenesis of PH is occurred and focused on the role of crosstalk between the cells on pulmonary vessels and pulmonary alveoli. It was found that the crosstalks among the endothelial cells, smooth muscle cells, fibroblasts, pericytes, alveolar epithelial cells, and macrophages play important roles in cell proliferation, migration, inflammation, and so on. Therefore, the heterogeneity of multiple pulmonary blood vessels and alveolar cells and tracking the transmitters of cell communication could be conducive to the further insights into the pathogenesis of PH to discover the potential therapeutic targets for PH.
Collapse
|
20
|
Luo S, Yang M, Zhao H, Han Y, Jiang N, Yang J, Chen W, Li C, Liu Y, Zhao C, Sun L. Caveolin-1 Regulates Cellular Metabolism: A Potential Therapeutic Target in Kidney Disease. Front Pharmacol 2021; 12:768100. [PMID: 34955837 PMCID: PMC8703113 DOI: 10.3389/fphar.2021.768100] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/08/2021] [Indexed: 01/09/2023] Open
Abstract
The kidney is an energy-consuming organ, and cellular metabolism plays an indispensable role in kidney-related diseases. Caveolin-1 (Cav-1), a multifunctional membrane protein, is the main component of caveolae on the plasma membrane. Caveolae are represented by tiny invaginations that are abundant on the plasma membrane and that serve as a platform to regulate cellular endocytosis, stress responses, and signal transduction. However, caveolae have received increasing attention as a metabolic platform that mediates the endocytosis of albumin, cholesterol, and glucose, participates in cellular metabolic reprogramming and is involved in the progression of kidney disease. It is worth noting that caveolae mainly depend on Cav-1 to perform the abovementioned cellular functions. Furthermore, the mechanism by which Cav-1 regulates cellular metabolism and participates in the pathophysiology of kidney diseases has not been completely elucidated. In this review, we introduce the structure and function of Cav-1 and its functions in regulating cellular metabolism, autophagy, and oxidative stress, focusing on the relationship between Cav-1 in cellular metabolism and kidney disease; in addition, Cav-1 that serves as a potential therapeutic target for treatment of kidney disease is also described.
Collapse
Affiliation(s)
- Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Hao Zhao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Jinfei Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Chanyue Zhao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| |
Collapse
|
21
|
Endothelial Adenosine Monophosphate-Activated Protein Kinase-Alpha1 Deficiency Potentiates Hyperoxia-Induced Experimental Bronchopulmonary Dysplasia and Pulmonary Hypertension. Antioxidants (Basel) 2021; 10:antiox10121913. [PMID: 34943016 PMCID: PMC8750184 DOI: 10.3390/antiox10121913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Bronchopulmonary dysplasia and pulmonary hypertension, or BPD-PH, are serious chronic lung disorders of prematurity, without curative therapies. Hyperoxia, a known causative factor of BPD-PH, activates adenosine monophosphate-activated protein kinase (AMPK) α1 in neonatal murine lungs; however, whether this phenomenon potentiates or mitigates lung injury is unclear. Thus, we hypothesized that (1) endothelial AMPKα1 is necessary to protect neonatal mice against hyperoxia-induced BPD-PH, and (2) AMPKα1 knockdown decreases angiogenesis in hyperoxia-exposed neonatal human pulmonary microvascular endothelial cells (HPMECs). We performed lung morphometric and echocardiographic studies on postnatal day (P) 28 on endothelial AMPKα1-sufficient and -deficient mice exposed to 21% O2 (normoxia) or 70% O2 (hyperoxia) from P1–P14. We also performed tubule formation assays on control- or AMPKα1-siRNA transfected HPMECs, exposed to 21% O2 or 70% O2 for 48 h. Hyperoxia-mediated alveolar and pulmonary vascular simplification, pulmonary vascular remodeling, and PH were significantly amplified in endothelial AMPKα1-deficient mice. AMPKα1 siRNA knocked down AMPKα1 expression in HPMECs, and decreased their ability to form tubules in normoxia and hyperoxia. Furthermore, AMPKα1 knockdown decreased proliferating cell nuclear antigen expression in hyperoxic conditions. Our results indicate that AMPKα1 is required to reduce hyperoxia-induced BPD-PH burden in neonatal mice, and promotes angiogenesis in HPMECs to limit lung injury.
Collapse
|
22
|
Wu C, Ha Y, Zou Y, Liao X, Zhang S, Zhang X, Li R, Xing J, Jie W, Guo J, Li J, Shen Z. Pathologic role of peptidyl-prolyl isomerase Pin1 in pulmonary artery remodeling. Am J Transl Res 2021; 13:11162-11177. [PMID: 34786049 PMCID: PMC8581927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Peptidyl-prolyl isomerase Pin1 is crucial for cell proliferation, but its role in pulmonary artery remodeling (PAR) is unclear. In the present study, we aimed to evaluate the expression and contribution of Pin1 in PAR. Treatment with Pin1 inhibitor Juglone or Pin1-specific siRNAs ameliorated the expression of Pin1 and proliferating cell nuclear antigen (PCNA) in human pulmonary artery smooth muscle cells (PASMCs) in vitro, and Juglone treatment arrested the cell cycle at the G1 phase. Treatment with transforming growth factor β1 (TGF-β1) also enhanced Pin1 expression and PASMC proliferation. Immunohistochemical staining revealed that Pin1 and PCNA expression levels were increased and positively correlated with each other in PAR samples from humans and monocrotaline-treated Sprague-Dawley rats; these proteins were mainly localized in arteries undergoing remodeling, as well as inflammatory cells, and hyperplastic bronchial epithelial cells. Intraperitoneal injection of Juglone also led to morphologic and hemodynamic changes in PAR rats. Additionally, PAR rats displayed higher serum and lung TGF-β1 levels compared with controls, while administration of Juglone to PAR rats suppressed serum and lung TGF-β1 levels. The findings in this study suggest that TGF-β1 and Pin1 constitute a positive feedback loop, which plays an important role in the pathophysiology of PAR.
Collapse
Affiliation(s)
- Caixia Wu
- Department of Pathology & Pathophysiology, School of Basic Medicine Sciences, Guangdong Medical UniversityZhanjiang 524023, Guangdong, China
| | - Yanping Ha
- Department of Pathology & Pathophysiology, School of Basic Medicine Sciences, Guangdong Medical UniversityZhanjiang 524023, Guangdong, China
| | - Yuan Zou
- Department of Pathology & Pathophysiology, School of Basic Medicine Sciences, Guangdong Medical UniversityZhanjiang 524023, Guangdong, China
| | - Xiaomin Liao
- Department of Pathology & Pathophysiology, School of Basic Medicine Sciences, Guangdong Medical UniversityZhanjiang 524023, Guangdong, China
| | - Shuya Zhang
- Key Laboratory for Tropical Cardiovascular Diseases Research of Hainan Province, The First Affiliated Hospital of Hainan Medical UniversityHaikou 571199, Hainan, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical UniveraityHaikou 571199, Hainan, China
| | - Xiaodian Zhang
- Key Laboratory for Tropical Cardiovascular Diseases Research of Hainan Province, The First Affiliated Hospital of Hainan Medical UniversityHaikou 571199, Hainan, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical UniveraityHaikou 571199, Hainan, China
| | - Rujia Li
- Department of Pathology & Pathophysiology, School of Basic Medicine Sciences, Guangdong Medical UniversityZhanjiang 524023, Guangdong, China
| | - Jingci Xing
- Department of Pathology & Pathophysiology, School of Basic Medicine Sciences, Guangdong Medical UniversityZhanjiang 524023, Guangdong, China
| | - Wei Jie
- Department of Pathology & Pathophysiology, School of Basic Medicine Sciences, Guangdong Medical UniversityZhanjiang 524023, Guangdong, China
- Key Laboratory for Tropical Cardiovascular Diseases Research of Hainan Province, The First Affiliated Hospital of Hainan Medical UniversityHaikou 571199, Hainan, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical UniveraityHaikou 571199, Hainan, China
| | - Junli Guo
- Key Laboratory for Tropical Cardiovascular Diseases Research of Hainan Province, The First Affiliated Hospital of Hainan Medical UniversityHaikou 571199, Hainan, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical UniveraityHaikou 571199, Hainan, China
| | - Jingquan Li
- Department of Oncology, The First Affiliated Hospital of Hainan Medical UniversityHaikou 570102, Hainan, China
| | - Zhihua Shen
- Department of Pathology & Pathophysiology, School of Basic Medicine Sciences, Guangdong Medical UniversityZhanjiang 524023, Guangdong, China
| |
Collapse
|
23
|
Sussman MA. VAPIng into ARDS: Acute Respiratory Distress Syndrome and Cardiopulmonary Failure. Pharmacol Ther 2021; 232:108006. [PMID: 34582836 DOI: 10.1016/j.pharmthera.2021.108006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022]
Abstract
"Modern" vaping involving battery-operated electronic devices began approximately one dozen years and has quickly evolved into a multibillion dollar industry providing products to an estimated 50 million users worldwide. Originally developed as an alternative to traditional cigarette smoking, vaping now appeals to a diverse demographic including substantial involvement of young people who often have never used cigarettes. The rapid rise of vaping fueled by multiple factors has understandably outpaced understanding of biological effects, made even more challenging due to wide ranging individual user habits and preferences. Consequently while vaping-related research gathers momentum, vaping-associated pathological injury (VAPI) has been established by clinical case reports with severe cases manifesting as acute respiratory distress syndrome (ARDS) with examples of right ventricular cardiac failure. Therefore, basic scientific studies are desperately needed to understand the impact of vaping upon the lungs as well as cardiopulmonary structure and function. Experimental models that capture fundamental characteristics of vaping-induced ARDS are essential to study pathogenesis and formulate recommendations to mitigate harmful effects attributable to ingredients or equipment. So too, treatment strategies to promote recovery from vaping-associated damage require development and testing at the preclinical level. This review summarizes the back story of vaping leading to present day conundrums with particular emphasis upon VAPI-associated ARDS and prioritization of research goals.
Collapse
Affiliation(s)
- Mark A Sussman
- SDSU Integrated Regenerative Research Institute and Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA.
| |
Collapse
|
24
|
Mathew R. Critical Role of Caveolin-1 Loss/Dysfunction in Pulmonary Hypertension. Med Sci (Basel) 2021; 9:medsci9040058. [PMID: 34698188 PMCID: PMC8544475 DOI: 10.3390/medsci9040058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/17/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023] Open
Abstract
Pulmonary hypertension (PH) is a rare disease with a high morbidity and mortality rate. A number of systemic diseases and genetic mutations are known to lead to PH. The main features of PH are altered vascular relaxation responses and the activation of proliferative and anti-apoptotic pathways, resulting in pulmonary vascular remodeling, elevated pulmonary artery pressure, and right ventricular hypertrophy, ultimately leading to right heart failure and premature death. Important advances have been made in the field of pulmonary pathobiology, and several deregulated signaling pathways have been shown to be associated with PH. Clinical and experimental studies suggest that, irrespective of the underlying disease, endothelial cell disruption and/or dysfunction play a key role in the pathogenesis of PH. Endothelial caveolin-1, a cell membrane protein, interacts with and regulates several transcription factors and maintains homeostasis. Disruption of endothelial cells leads to the loss or dysfunction of endothelial caveolin-1, resulting in reciprocal activation of proliferative and inflammatory pathways, leading to cell proliferation, medial hypertrophy, and PH, which initiates PH and facilitates its progression. The disruption of endothelial cells, accompanied by the loss of endothelial caveolin-1, is accompanied by enhanced expression of caveolin-1 in smooth muscle cells (SMCs) that leads to pro-proliferative and pro-migratory responses, subsequently leading to neointima formation. The neointimal cells have low caveolin-1 and normal eNOS expression that may be responsible for promoting nitrosative and oxidative stress, furthering cell proliferation and metabolic alterations. These changes have been observed in human PH lungs and in experimental models of PH. In hypoxia-induced PH, there is no endothelial disruption, loss of endothelial caveolin-1, or enhanced expression of caveolin-1 in SMCs. Hypoxia induces alterations in membrane composition without caveolin-1 or any other membrane protein loss. However, caveolin-1 is dysfunctional, resulting in cell proliferation, medial hypertrophy, and PH. These alterations are reversible upon removal of hypoxia, provided there is no associated EC disruption. This review examined the role of caveolin-1 disruption and dysfunction in PH.
Collapse
Affiliation(s)
- Rajamma Mathew
- Section of Pediatric Cardiology, Departments of Pediatrics and Physiology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
25
|
Gurley JM, Gmyrek GB, McClellan ME, Hargis EA, Hauck SM, Dozmorov MG, Wren JD, Carr DJJ, Elliott MH. Neuroretinal-Derived Caveolin-1 Promotes Endotoxin-Induced Inflammation in the Murine Retina. Invest Ophthalmol Vis Sci 2021; 61:19. [PMID: 33079993 PMCID: PMC7585394 DOI: 10.1167/iovs.61.12.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose The immune-privileged environment and complex organization of retinal tissue support the retina's essential role in visual function, yet confound inquiries into cell-specific inflammatory effects that lead to dysfunction and degeneration. Caveolin-1 (Cav1) is an integral membrane protein expressed in several retinal cell types and is implicated in immune regulation. However, whether Cav1 promotes or inhibits inflammatory processes in the retina (as well as in other tissues) remains unclear. Previously, we showed that global-Cav1 depletion resulted in reduced retinal inflammatory cytokine production but paradoxically elevated retinal immune cell infiltration. We hypothesized that these disparate responses are the result of differential cell-specific Cav1 functions in the retina. Methods We used Cre/lox technology to deplete Cav1 specifically in the neural retinal (NR) compartment to clarify the role NR-specific Cav1 (NR-Cav1) in the retinal immune response to intravitreal inflammatory challenge induced by activation of Toll-like receptor-4 (TLR4). We used multiplex protein suspension array and flow cytometry to evaluate innate immune activation. Additionally, we used bioinformatics assessment of differentially expressed membrane-associated proteins to infer relationships between NR-Cav1 and immune response pathways. Results NR-Cav1 depletion, which primarily affects Müller glia Cav1 expression, significantly altered immune response pathway regulators, decreased retinal inflammatory cytokine production, and reduced retinal immune cell infiltration in response to LPS-stimulated inflammatory induction. Conclusions Cav1 expression in the NR compartment promotes the innate TLR4-mediated retinal tissue immune response. Additionally, we have identified novel potential immune modulators differentially expressed with NR-Cav1 depletion. This study further clarifies the role of NR-Cav1 in retinal inflammation.
Collapse
Affiliation(s)
- Jami M Gurley
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, United States
| | - Grzegorz B Gmyrek
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, United States
| | - Mark E McClellan
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, United States
| | - Elizabeth A Hargis
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, United States
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Mikhail G Dozmorov
- Department of Biostatistics, Virginia Commonwealth University (VCU), Richmond, Virginia, United States
| | - Jonathan D Wren
- Arthritis and Clinical Immunology Research Program, Division of Genomics and Data Sciences, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, United States
| | - Daniel J J Carr
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, United States.,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, United States
| | - Michael H Elliott
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, United States
| |
Collapse
|
26
|
Daneva Z, Marziano C, Ottolini M, Chen YL, Baker TM, Kuppusamy M, Zhang A, Ta HQ, Reagan CE, Mihalek AD, Kasetti RB, Shen Y, Isakson BE, Minshall RD, Zode GS, Goncharova EA, Laubach VE, Sonkusare SK. Caveolar peroxynitrite formation impairs endothelial TRPV4 channels and elevates pulmonary arterial pressure in pulmonary hypertension. Proc Natl Acad Sci U S A 2021; 118:e2023130118. [PMID: 33879616 PMCID: PMC8092599 DOI: 10.1073/pnas.2023130118] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent studies have focused on the contribution of capillary endothelial TRPV4 channels to pulmonary pathologies, including lung edema and lung injury. However, in pulmonary hypertension (PH), small pulmonary arteries are the focus of the pathology, and endothelial TRPV4 channels in this crucial anatomy remain unexplored in PH. Here, we provide evidence that TRPV4 channels in endothelial cell caveolae maintain a low pulmonary arterial pressure under normal conditions. Moreover, the activity of caveolar TRPV4 channels is impaired in pulmonary arteries from mouse models of PH and PH patients. In PH, up-regulation of iNOS and NOX1 enzymes at endothelial cell caveolae results in the formation of the oxidant molecule peroxynitrite. Peroxynitrite, in turn, targets the structural protein caveolin-1 to reduce the activity of TRPV4 channels. These results suggest that endothelial caveolin-1-TRPV4 channel signaling lowers pulmonary arterial pressure, and impairment of endothelial caveolin-1-TRPV4 channel signaling contributes to elevated pulmonary arterial pressure in PH. Thus, inhibiting NOX1 or iNOS activity, or lowering endothelial peroxynitrite levels, may represent strategies for restoring vasodilation and pulmonary arterial pressure in PH.
Collapse
Affiliation(s)
- Zdravka Daneva
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
| | - Corina Marziano
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
| | - Matteo Ottolini
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
| | - Yen-Lin Chen
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
| | - Thomas M Baker
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
| | - Maniselvan Kuppusamy
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
| | - Aimee Zhang
- Department of Surgery, University of Virginia, Charlottesville, VA 22908
| | - Huy Q Ta
- Department of Surgery, University of Virginia, Charlottesville, VA 22908
| | - Claire E Reagan
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
| | - Andrew D Mihalek
- Department of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA 22908
| | - Ramesh B Kasetti
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Yuanjun Shen
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908
| | - Richard D Minshall
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | - Gulab S Zode
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Elena A Goncharova
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213
| | - Victor E Laubach
- Department of Surgery, University of Virginia, Charlottesville, VA 22908
| | - Swapnil K Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908;
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
27
|
Implications of SARS-Cov-2 infection on eNOS and iNOS activity: Consequences for the respiratory and vascular systems. Nitric Oxide 2021; 111-112:64-71. [PMID: 33831567 PMCID: PMC8021449 DOI: 10.1016/j.niox.2021.04.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/18/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023]
Abstract
Symptoms of COVID-19 range from asymptomatic/mild symptoms to severe illness and death, consequence of an excessive inflammatory process triggered by SARS-CoV-2 infection. The diffuse inflammation leads to endothelium dysfunction in pulmonary blood vessels, uncoupling eNOS activity, lowering NO production, causing pulmonary physiological alterations and coagulopathy. On the other hand, iNOS activity is increased, which may be advantageous for host defense, once NO plays antiviral effects. However, overproduction of NO may be deleterious, generating a pro-inflammatory effect. In this review, we discussed the role of endogenous NO as a protective or deleterious agent of the respiratory and vascular systems, the most affected in COVID-19 patients, focusing on eNOS and iNOS roles. We also reviewed the currently available NO therapies and pointed out possible alternative treatments targeting NO metabolism, which could help mitigate health crises in the present and future CoV's spillovers.
Collapse
|
28
|
Thai T, Zhong F, Dang L, Chan E, Ku J, Malle E, Geczy CL, Keaney JF, Thomas SR. Endothelial-transcytosed myeloperoxidase activates endothelial nitric oxide synthase via a phospholipase C-dependent calcium signaling pathway. Free Radic Biol Med 2021; 166:255-264. [PMID: 33539947 PMCID: PMC10686581 DOI: 10.1016/j.freeradbiomed.2020.12.448] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022]
Abstract
During vascular inflammation, the leukocyte-derived enzyme myeloperoxidase (MPO) is transcytosed across the endothelium and into the sub-endothelial extracellular matrix, where it promotes endothelial dysfunction by catalytically consuming nitric oxide (NO) produced by endothelial NO synthase (eNOS). In the presence of chloride ions and hydrogen peroxide (H2O2), MPO forms the oxidant hypochlorous acid (HOCl). Here we examined the short-term implications of HOCl produced by endothelial-transcytosed MPO for eNOS activity. Incubation of MPO with cultured aortic endothelial cells (ECs) resulted in its transport into the sub-endothelium. Exposure of MPO-containing ECs to low micromolar concentrations of H2O2 yielded enhanced rates of H2O2 consumption that correlated with HOCl formation and increased eNOS enzyme activity. The MPO-dependent activation of eNOS occurred despite reduced cellular uptake of the eNOS substrate l-arginine, which involved a decrease in the maximal activity (Vmax), but not substrate affinity (Km), of the major endothelial l-arginine transporter, cationic amino acid transporter-1. Activation of eNOS in MPO-containing ECs exposed to H2O2 involved a rapid elevation in cytosolic calcium and increased eNOS phosphorylation at Ser-1179 and de-phosphorylation at Thr-497. These signaling events were attenuated by intracellular calcium chelation, removal of extracellular calcium and inhibition of phospholipase C. This study shows that stimulation of endothelial-transcytosed MPO activates eNOS by promoting phospholipase C-dependent calcium signaling and altered eNOS phosphorylation at Ser-1179 and Thr-497. This may constitute a compensatory signaling response of ECs aimed at maintaining eNOS activity and NO production in the face of MPO-catalyzed oxidative stress.
Collapse
Affiliation(s)
- Thuan Thai
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; School of Education, University of Notre Dame Australia, Sydney, NSW, Australia
| | - Fei Zhong
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Lei Dang
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Enoch Chan
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Jacqueline Ku
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Ernst Malle
- Gottfried Schatz Research Center, Division of Molecular Biology & Biochemistry, Medical University of Graz, Graz, Austria
| | - Carolyn L Geczy
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - John F Keaney
- Cardiovascular Medicine, Brigham and Women's Hospital, Harvard University, Boston, MA, USA
| | - Shane R Thomas
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
29
|
De Ieso ML, Gurley JM, McClellan ME, Gu X, Navarro I, Li G, Gomez-Caraballo M, Enyong E, Stamer WD, Elliott MH. Physiologic Consequences of Caveolin-1 Ablation in Conventional Outflow Endothelia. Invest Ophthalmol Vis Sci 2021; 61:32. [PMID: 32940661 PMCID: PMC7500130 DOI: 10.1167/iovs.61.11.32] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose Polymorphisms at the caveolin-1/2 locus are associated with glaucoma and IOP risk and deletion of caveolin-1 (Cav1) in mice elevates IOP and reduces outflow facility. However, the specific location/cell type responsible for Cav1-dependent regulation of IOP is unclear. We hypothesized that endothelial Cav1 in the conventional outflow (CO) pathway regulate IOP via endothelial nitric oxide synthase (eNOS) signaling. Methods We created a mouse with targeted deletion of Cav1 in endothelial cells (Cav1ΔEC) and evaluated IOP, outflow facility, outflow pathway distal vascular morphology, eNOS phosphorylation, and tyrosine nitration of iridocorneal angle tissues by Western blotting. Results Endothelial deletion of Cav1 resulted in significantly elevated IOP versus wild-type mice but not a concomitant decrease in outflow facility. Endothelial Cav1 deficiency did not alter the trabecular meshwork or Schlemm's canal morphology, suggesting that the effects observed were not due to developmental deformities. Endothelial Cav1 deletion resulted in eNOS hyperactivity, modestly increased protein nitration, and significant enlargement of the drainage vessels distal to Schlemm's canal. L-Nitro-arginine methyl ester treatment reduced outflow in Cav1ΔEC but not wild-type mice and had no effect on the size of drainage vessels. Endothelin-1 treatment decrease the outflow and drainage vessel size in both wild-type and Cav1ΔEC mice. Conclusions Our results suggest that hyperactive eNOS signaling in the CO pathway of both Cav1ΔEC and global Cav1 knockout mice results in chronic dilation of distal CO vessels and protein nitration, but that Cav1 expression in the trabecular meshwork is sufficient to rescue CO defects reported in global Cav1 knockout mice.
Collapse
Affiliation(s)
- Michael L De Ieso
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - Jami M Gurley
- Department of Ophthalmology, Dean McGee Eye Institute University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Mark E McClellan
- Department of Ophthalmology, Dean McGee Eye Institute University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Xiaowu Gu
- Department of Ophthalmology, Dean McGee Eye Institute University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Iris Navarro
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - Guorong Li
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - Maria Gomez-Caraballo
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - Eric Enyong
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - W Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - Michael H Elliott
- Department of Ophthalmology, Dean McGee Eye Institute University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
30
|
Type I interferon activation and endothelial dysfunction in caveolin-1 insufficiency-associated pulmonary arterial hypertension. Proc Natl Acad Sci U S A 2021; 118:2010206118. [PMID: 33836561 DOI: 10.1073/pnas.2010206118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interferonopathies, interferon (IFN)-α/β therapy, and caveolin-1 (CAV1) loss-of-function have all been associated with pulmonary arterial hypertension (PAH). Here, CAV1-silenced primary human pulmonary artery endothelial cells (PAECs) were proliferative and hypermigratory, with reduced cytoskeletal stress fibers. Signal transducers and activators of transcription (STAT) and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) were both constitutively activated in these cells, resulting in a type I IFN-biased inflammatory signature. Cav1 -/- mice that spontaneously develop pulmonary hypertension were found to have STAT1 and AKT activation in lung homogenates and increased circulating levels of CXCL10, a hallmark of IFN-mediated inflammation. PAH patients with CAV1 mutations also had elevated serum CXCL10 levels and their fibroblasts mirrored phenotypic and molecular features of CAV1-deficient PAECs. Moreover, immunofluorescence staining revealed endothelial CAV1 loss and STAT1 activation in the pulmonary arterioles of patients with idiopathic PAH, suggesting that this paradigm might not be limited to rare CAV1 frameshift mutations. While blocking JAK/STAT or AKT rescued aspects of CAV1 loss, only AKT inhibitors suppressed activation of both signaling pathways simultaneously. Silencing endothelial nitric oxide synthase (NOS3) prevented STAT1 and AKT activation induced by CAV1 loss, implicating CAV1/NOS3 uncoupling and NOS3 dysregulation in the inflammatory phenotype. Exogenous IFN reduced CAV1 expression, activated STAT1 and AKT, and altered the cytoskeleton of PAECs, implicating these mechanisms in PAH associated with autoimmune and autoinflammatory diseases, as well as IFN therapy. CAV1 insufficiency elicits an IFN inflammatory response that results in a dysfunctional endothelial cell phenotype and targeting this pathway may reduce pathologic vascular remodeling in PAH.
Collapse
|
31
|
Qingke β-glucan synergizes with a β-glucan-utilizing Lactobacillus strain to relieve capsaicin-induced gastrointestinal injury in mice. Int J Biol Macromol 2021; 174:289-299. [PMID: 33524482 DOI: 10.1016/j.ijbiomac.2021.01.164] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/09/2021] [Accepted: 01/25/2021] [Indexed: 01/20/2023]
Abstract
Capsaicin (CAP) is the main pungent component in capsicum fruits. Eating too much CAP leads to gastrointestinal injury. Previously, Qingke β-glucan combined with β-glucan-utilizing Lactobacillus plantarum S58 (LP.S58) ameliorated high fat-diet-induced obesity, but their effects on CAP-induced gastrointestinal injury have not been investigated. Our results showed that Qingke β-glucan reduced the CAP-induced gastrointestinal injury in Kunming mice. The serum levels of inflammatory cytokines and gastrointestinal hormones, and the localized inflammation and the expression of EGF, EGFR, VEGF, and ZO-1 in the gastrointestinal tissues in CAP-treated mice were partly restored by Qingke β-glucan. The CAP-induced increase in the abundances of proinflammatory intestinal bacteria was also reduced by Qingke β-glucan. More importantly, we found that these beneficial effects of Qingke β-glucan were markedly enhanced by β-glucan-utilizing LP.S58 supplementation. Our study indicated that Qingke β-glucan coupled with β-glucan-utilizing LP.S58 relieved CAP-induced gastrointestinal injury.
Collapse
|
32
|
Wu C, Li H, Zhang P, Tian C, Luo J, Zhang W, Bhandari S, Jin S, Hao Y. Lymphatic Flow: A Potential Target in Sepsis-Associated Acute Lung Injury. J Inflamm Res 2020; 13:961-968. [PMID: 33262632 PMCID: PMC7695606 DOI: 10.2147/jir.s284090] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022] Open
Abstract
Sepsis is life-threatening organ dysfunction caused by an imbalance in the body’s response to infection and acute lung injury (ALI) related to sepsis is a common complication. The rapid morbidity and high mortality associated with sepsis is a significant clinical problem facing critical care medicine. Inflammation plays a vital role in the occurrence of sepsis. Notably, the body produces different immune cells and pro-inflammatory factors to clear pathogens. However, excessive inflammation can damage multiple tissues and organs when it fails to resolve in time. Additionally, lymphatic vessels could effectively transfer inflammatory cells and factors away from tissues and into blood circulation, thereby reducing damage, and promoting the resolution of inflammation. Therefore, any dysfunction and/or destruction of the lymphatic system may result in lymphedema followed by inflammatory storms and eventual sepsis. Consequently, the present study aimed to review and highlight the role of lymphatic vessels in related body tissues and organs during sepsis and other associated diseases.
Collapse
Affiliation(s)
- Chenghua Wu
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Hui Li
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.,Key Laboratory of Anaesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Puhong Zhang
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Chao Tian
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Jun Luo
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Wenyan Zhang
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Suwas Bhandari
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Shengwei Jin
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yu Hao
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
33
|
Jones JH, Friedrich E, Hong Z, Minshall RD, Malik AB. PV1 in Caveolae Controls Lung Endothelial Permeability. Am J Respir Cell Mol Biol 2020; 63:531-539. [PMID: 32663411 DOI: 10.1165/rcmb.2020-0102oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Caveolae are prominent plasmalemmal invaginations in endothelial cells, especially in the lung vasculature, which comprises a vast surface area. PV1 (plasmalemmal vesicle-associated protein-1), a 60-kD glycoprotein expressed in endothelial cells, is essential for generating spoke-like diaphragmatic structures that span the neck region of endothelial caveolae. However, their role in caveolae-mediated uptake and endothelial-barrier function is unknown. Here, we generated mice with endothelial cell-specific deletion of PV1 through tamoxifen-induced Cdh5.Cre.ERT2 (endothelial-specific vascular cadherin.Cre.estrogen receptor 2)-mediated excision of the floxed PV1 allele. We observed that loss of PV1 specifically in endothelial cells increased lung vascular permeability of fluid and protein, indicating that PV1 is required for maintenance of lung vascular-barrier integrity. Endothelial-specific PV1 deletion also increased caveolae-mediated uptake of tracer albumin compared with controls, promoted Au-albumin accumulation in the bulb of caveolae, and induced caveolar swelling. In addition, we observed the progressive loss of plasma proteins from the circulation and reduced arterial pressure resulting from transudation of water and protein as well as edema formation in multiple tissues, including lungs. These changes seen after endothelial-specific PV1 deletion occurred in the absence of disruption of endothelial junctions. We demonstrated that exposure of wild-type mice to endotoxin, which is known to cause acute lung injury and increase protein permeability, also significantly reduced PV1 protein expression. We conclude that the key function of PV1 is to regulate lung endothelial permeability through its ability to restrict the entry of plasma proteins such as albumin into caveolae and their transport through the endothelial barrier.
Collapse
Affiliation(s)
- Joshua H Jones
- Department of Pharmacology.,Medical Scientist Training Program
| | | | | | - Richard D Minshall
- Department of Pharmacology.,Center for Lung and Vascular Biology, and.,Department of Anesthesiology, College of Medicine, University of Illinois, Chicago, Illinois
| | - Asrar B Malik
- Department of Pharmacology.,Center for Lung and Vascular Biology, and
| |
Collapse
|
34
|
Sudhahar V, Okur MN, O'Bryan JP, Minshall RD, Fulton D, Ushio-Fukai M, Fukai T. Caveolin-1 stabilizes ATP7A, a copper transporter for extracellular SOD, in vascular tissue to maintain endothelial function. Am J Physiol Cell Physiol 2020; 319:C933-C944. [PMID: 32936699 PMCID: PMC7789967 DOI: 10.1152/ajpcell.00151.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/31/2022]
Abstract
Caveolin-1 (Cav-1) is a scaffolding protein and a major component of caveolae/lipid rafts. Previous reports have shown that endothelial dysfunction in Cav-1-deficient (Cav-1-/-) mice is mediated by elevated oxidative stress through endothelial nitric oxide synthase (eNOS) uncoupling and increased NADPH oxidase. Oxidant stress is the net balance of oxidant generation and scavenging, and the role of Cav-1 as a regulator of antioxidant enzymes in vascular tissue is poorly understood. Extracellular SOD (SOD3) is a copper (Cu)-containing enzyme that is secreted from vascular smooth muscle cells/fibroblasts and subsequently binds to the endothelial cells surface, where it scavenges extracellular [Formula: see text] and preserves endothelial function. SOD3 activity is dependent on Cu, supplied by the Cu transporter ATP7A, but whether Cav-1 regulates the ATP7A-SOD3 axis and its role in oxidative stress-mediated vascular dysfunction has not been studied. Here we show that the activity of SOD3, but not SOD1, was significantly decreased in Cav-1-/- vessels, which was rescued by re-expression of Cav-1 or Cu supplementation. Loss of Cav-1 reduced ATP7A protein, but not mRNA, and this was mediated by ubiquitination of ATP7A and proteasomal degradation. ATP7A bound to Cav-1 and was colocalized with SOD3 in caveolae/lipid rafts or perinucleus in vascular tissues or cells. Impaired endothelium-dependent vasorelaxation in Cav-1-/- mice was rescued by gene transfer of SOD3 or by ATP7A-overexpressing transgenic mice. These data reveal an unexpected role of Cav-1 in stabilizing ATP7A protein expression by preventing its ubiquitination and proteasomal degradation, thereby increasing SOD3 activity, which in turn protects against vascular oxidative stress-mediated endothelial dysfunction.
Collapse
Affiliation(s)
- Varadarajan Sudhahar
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia
- Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Mustafa Nazir Okur
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - Richard D Minshall
- Departments of Anesthesiology and Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - David Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Masuko Ushio-Fukai
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
- Department of Medicine (Cardiology), Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Tohru Fukai
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia
- Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| |
Collapse
|
35
|
Li Y, Wang S, Liu J, Li X, Lu M, Wang X, Ren Y, Li X, Xiang M. Induced Pluripotent Stem Cells Attenuate Acute Lung Injury Induced by Ischemia Reperfusion via Suppressing the High Mobility Group Box-1. Dose Response 2020; 18:1559325820969340. [PMID: 33192202 PMCID: PMC7607776 DOI: 10.1177/1559325820969340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 11/24/2022] Open
Abstract
Pulmonary endothelial cell injury is a hallmark of acute lung injury. High-mobility group box 1 (HMGB1) can modulate the inflammatory response via endothelial cell activation and release of inflammatory molecules. Thus, we tested whether induced pluripotent stem cells (iPSCs) can alleviate ischemia/reperfusion (I/R) induced lung injury, and, if so, whether HMGB1 mediates the effect in a male C57BL/6 mouse model. Intravenously injected iPSCs into mice 2 h after I/R showed a significant attenuation of lung injury (assessed by lung mechanics, edema, and histology) 24 h after reperfusion (compared with controls), along with decreases in HMGB1, phosphorylated nuclear factor-κB, inflammatory cytokines [interleukin (IL)1β, IL6 and tumor necrosis factor-α], and the activation of endothelial cells. Furthermore, these effects of iPSCs can be mimicked by blocking HMGB1 with an inhibitor in vivo and in vitro. We conclude that iPSCs can be a potential therapy for I/R-induced lung injury. These cells may exert therapeutic effects through blocking HMGB1 and inflammatory cytokines.
Collapse
Affiliation(s)
- Yijun Li
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Shun Wang
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Jinbo Liu
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Xingyu Li
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Meng Lu
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Xiaokai Wang
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Yansong Ren
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Xiaoming Li
- Department of Pathology, People's Hospital of Bao'an District, Affiliated Bao'an Hospital of Shenzhen, Southern Medical University, The Second Affiliated Hospital of Shenzhen University, Shenzhen, People's Republic of China
| | - Meng Xiang
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
36
|
Zhang H, Huang W, Liu H, Zheng Y, Liao L. Mechanical stretching of pulmonary vein stimulates matrix metalloproteinase-9 and transforming growth factor-β1 through stretch-activated channel/MAPK pathways in pulmonary hypertension due to left heart disease model rats. PLoS One 2020; 15:e0235824. [PMID: 32881898 PMCID: PMC7470280 DOI: 10.1371/journal.pone.0235824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 06/23/2020] [Indexed: 12/23/2022] Open
Abstract
Pulmonary hypertension due to left heart disease (PH-LHD) is a momentous pulmonary hypertension disease, and left heart disease is the most familiar cause. Mechanical stretching may be a crucial cause of vascular remodeling. While, the underlining mechanism of mechanical stretching-induced in remodeling of pulmonary vein in the early stage of PH-LHD has not been completely elucidated. In our study, the PH-LHD model rats were successfully constructed. After 25 days, doppler echocardiography and hemodynamic examination were performed. In addition, after treatment, the levels of matrix metalloproteinase-9 (MMP-9) and transforming growth factor-β1 (TGF-β1) were determined by ELISA, immunohistochemistry and western blot assays in the pulmonary veins. Moreover, the pathological change of pulmonary tissues was evaluated by H&E staining. Our results uncovered that left ventricular insufficiency and interventricular septal shift could be observed in PH-LHD model rats, and the right ventricular systolic pressure (RVSP) and mean left atrial pressure (mLAP) were also elevated in PH-LHD model rats. Meanwhile, we found that MMP-9 and TGF-β1 could be highly expressed in PH-LHD model rats. Besides, we revealed that stretch-activated channel (SAC)/mitogen-activated protein kinases (MAPKs) signaling pathway could be involved in the upregulations of MMP-9 and TGF-β1 mediated by mechanical stretching in pulmonary vein. Therefore, current research revealed that mechanical stretching induced the increasing expressions of MMP-9 and TGF-β1 in pulmonary vein, which could be mediated by activation of SAC/MAPKs signaling pathway in the early stage of PH-LHD.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Cardiac Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, P.R. China
| | - Wenhui Huang
- Department of Cardiac Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, P.R. China
| | - Hongjin Liu
- Department of Cardiac Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, P.R. China
| | - Yihan Zheng
- Department of Cardiac Surgery, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, P.R. China
| | - Lianming Liao
- Department of Medical Laboratory, Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, P.R. China
| |
Collapse
|
37
|
Menon RT, Shrestha AK, Barrios R, Reynolds C, Shivanna B. Tie-2 Cre-Mediated Deficiency of Extracellular Signal-Regulated Kinase 2 Potentiates Experimental Bronchopulmonary Dysplasia-Associated Pulmonary Hypertension in Neonatal Mice. Int J Mol Sci 2020; 21:ijms21072408. [PMID: 32244398 PMCID: PMC7177249 DOI: 10.3390/ijms21072408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 01/09/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD)-associated pulmonary hypertension (PH) is a significant lung morbidity of infants, and disrupted lung angiogenesis is a hallmark of this disease. We observed that extracellular signal-regulated kinases (ERK) 1/2 support angiogenesis in vitro, and hyperoxia activates ERK1/2 in fetal human pulmonary microvascular endothelial cells (HPMECs) and in neonatal murine lungs; however, their role in experimental BPD and PH is unknown. Therefore, we hypothesized that Tie2 Cre-mediated deficiency of ERK2 in the endothelial cells of neonatal murine lungs would potentiate hyperoxia-induced BPD and PH. We initially determined the role of ERK2 in in vitro angiogenesis using fetal HPMECs. To disrupt endothelial ERK2 signaling in the lungs, we decreased ERK2 expression by breeding ERK2flox/flox mice with Tie-Cre mice. One-day-old endothelial ERK2-sufficient (eERK2+/+) or –deficient (eERK2+/−) mice were exposed to normoxia or hyperoxia (FiO2 70%) for 14 d. We then performed lung morphometry, gene and protein expression studies, and echocardiography to determine the extent of inflammation, oxidative stress, and development of lungs and PH. The knockdown of ERK2 in HPMECs decreased in vitro angiogenesis. Hyperoxia increased lung inflammation and oxidative stress, decreased lung angiogenesis and alveolarization, and induced PH in neonatal mice; however, these effects were augmented in the presence of Tie2-Cre mediated endothelial ERK2 deficiency. Therefore, we conclude that endothelial ERK2 signaling is necessary to mitigate hyperoxia-induced experimental BPD and PH in neonatal mice. Our results indicate that endothelial ERK2 is a potential therapeutic target for the management of BPD and PH in infants.
Collapse
Affiliation(s)
- Renuka T. Menon
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; (R.T.M.); (A.K.S.)
| | - Amrit Kumar Shrestha
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; (R.T.M.); (A.K.S.)
| | - Roberto Barrios
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA;
| | - Corey Reynolds
- Mouse Phenotyping Core, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Binoy Shivanna
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; (R.T.M.); (A.K.S.)
- Correspondence: ; Tel.: +1-832-824-6474; Fax: +1-832-825-3204
| |
Collapse
|
38
|
Tian J, Popal MS, Huang R, Zhang M, Zhao X, Zhang M, Song X. Caveolin as a Novel Potential Therapeutic Target in Cardiac and Vascular Diseases: A Mini Review. Aging Dis 2020; 11:378-389. [PMID: 32257548 PMCID: PMC7069461 DOI: 10.14336/ad.2019.09603] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/03/2019] [Indexed: 12/27/2022] Open
Abstract
Caveolin, a structural protein of caveolae, play roles in the regulation of endothelial function, cellular lipid homeostasis, and cardiac function by affecting the activity and biogenesis of nitric oxide, and by modulating signal transduction pathways that mediate inflammatory responses and oxidative stress. In this review, we present the role of caveolin in cardiac and vascular diseases and the relevant signaling pathways involved. Furthermore, we discuss a novel therapeutic perspective comprising crosstalk between caveolin and autophagy.
Collapse
Affiliation(s)
- Jinfan Tian
- 1 Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Mohammad Sharif Popal
- 2 Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - RongChong Huang
- 3 Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100010, China
| | - Min Zhang
- 1 Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Xin Zhao
- 1 Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Mingduo Zhang
- 1 Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Xiantao Song
- 1 Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| |
Collapse
|
39
|
Zhang Y, Wu M, Cao Y, Guo F, Li Y. Linking lncRNAs to regulation, pathogenesis, and diagnosis of pulmonary hypertension. Crit Rev Clin Lab Sci 2019:1-15. [PMID: 31738606 DOI: 10.1080/10408363.2019.1688760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pulmonary hypertension (PH) is a syndrome characterized by a persistent increase in pulmonary vascular resistance. Due to the lack of specificity in clinical manifestations, patients are usually diagnosed at the late stage of PH, which is hard to treat and often causes right heart failure and death. Furthermore, the regulation and pathogenesis of PH remain obscure. Recently, long noncoding RNAs (lncRNAs), a type of transcript longer than 200 nt that lacks protein-coding ability, have been found to substantially influence the incidence and progression of various diseases through regulating gene expression at the chromatin, transcriptional, post-transcriptional, translational, and even post-translational levels. The crucial roles of lncRNAs in PH have started to draw widespread attention. This review summarizes the regulatory, pathogenic, and diagnostic roles of lncRNAs in PH, in the hope to facilitate the search for early diagnostic markers of and effective therapeutic targets for this devastating disease.
Collapse
Affiliation(s)
- Yan Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Medical University Eye Hospital, School of Optometry and Ophthalmology & Eye Institute, Tianjin, China
| | - Mianmian Wu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Medical University Eye Hospital, School of Optometry and Ophthalmology & Eye Institute, Tianjin, China
| | - Yunshan Cao
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou University, Lanzhou, China
| | - Fang Guo
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Medical University Eye Hospital, School of Optometry and Ophthalmology & Eye Institute, Tianjin, China
| | - Yahong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Medical University Eye Hospital, School of Optometry and Ophthalmology & Eye Institute, Tianjin, China
| |
Collapse
|
40
|
Oliveira SDS, Chen J, Castellon M, Mao M, Raj JU, Comhair S, Erzurum S, Silva CLM, Machado RF, Bonini MG, Minshall RD. Injury-Induced Shedding of Extracellular Vesicles Depletes Endothelial Cells of Cav-1 (Caveolin-1) and Enables TGF-β (Transforming Growth Factor-β)-Dependent Pulmonary Arterial Hypertension. Arterioscler Thromb Vasc Biol 2019; 39:1191-1202. [PMID: 30943774 PMCID: PMC7297129 DOI: 10.1161/atvbaha.118.312038] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective- To determine whether pulmonary arterial hypertension is associated with endothelial cell (EC)-Cav-1 (caveolin-1) depletion, EC-derived extracellular vesicle cross talk with macrophages, and proliferation of Cav-1 depleted ECs via TGF-β (transforming growth factor-β) signaling. Approach and Results- Pulmonary vascular disease was induced in Sprague-Dawley rats by exposure to a single injection of VEGFRII (vascular endothelial growth factor receptor II) antagonist SU5416 (Su) followed by hypoxia (Hx) plus normoxia (4 weeks each-HxSu model) and in WT (wild type; Tie2.Cre-; Cav1 lox/lox) and EC- Cav1-/- (Tie2.Cre+; Cav1 fl/fl) mice (Hx: 4 weeks). We observed reduced lung Cav-1 expression in the HxSu rat model in association with increased Cav-1+ extracellular vesicle shedding into the circulation. Whereas WT mice exposed to hypoxia exhibited increased right ventricular systolic pressure and pulmonary microvascular thickening compared with the group maintained in normoxia, the remodeling was further increased in EC- Cav1-/- mice indicating EC Cav-1 expression protects against hypoxia-induced pulmonary hypertension. Depletion of EC Cav-1 was associated with reduced BMPRII (bone morphogenetic protein receptor II) expression, increased macrophage-dependent TGF-β production, and activation of pSMAD2/3 signaling in the lung. In vitro, in the absence of Cav-1, eNOS (endothelial NO synthase) dysfunction was implicated in the mechanism of EC phenotype switching. Finally, reduced expression of EC Cav-1 in lung histological sections from human pulmonary arterial hypertension donors was associated with increased plasma concentration of Cav-1, extracellular vesicles, and TGF-β, indicating Cav-1 may be a plasma biomarker of vascular injury and key determinant of TGF-β-induced pulmonary vascular remodeling. Conclusions- EC Cav-1 depletion occurs, in part, via Cav-1+ extracellular vesicle shedding into the circulation, which contributes to increased TGF-β signaling, EC proliferation, vascular remodeling, and pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Suellen D S Oliveira
- From the Department of Anesthesiology (S.D.S.O., M.C., R.D.M.), University of Illinois at Chicago
| | - Jiwang Chen
- Department of Medicine (J.C., M.M., R.F.M., M.G.B.), University of Illinois at Chicago
- Research Resources Center Cardiovascular Research Core (J.C., M.C.), University of Illinois at Chicago
| | - Maricela Castellon
- From the Department of Anesthesiology (S.D.S.O., M.C., R.D.M.), University of Illinois at Chicago
- Research Resources Center Cardiovascular Research Core (J.C., M.C.), University of Illinois at Chicago
| | - Mao Mao
- Department of Medicine (J.C., M.M., R.F.M., M.G.B.), University of Illinois at Chicago
| | - J Usha Raj
- Department of Pediatrics (J.U.R.), University of Illinois at Chicago
| | - Suzy Comhair
- Lerner Research Institute (S.C., S.E.), Cleveland Clinic Foundation, OH
| | - Serpil Erzurum
- Lerner Research Institute (S.C., S.E.), Cleveland Clinic Foundation, OH
| | - Claudia L M Silva
- Institute of Biomedical Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil (C.L.M.S.)
| | - Roberto F Machado
- Department of Medicine (J.C., M.M., R.F.M., M.G.B.), University of Illinois at Chicago
| | - Marcelo G Bonini
- Department of Medicine (J.C., M.M., R.F.M., M.G.B.), University of Illinois at Chicago
| | - Richard D Minshall
- From the Department of Anesthesiology (S.D.S.O., M.C., R.D.M.), University of Illinois at Chicago
- Department of Pharmacology (R.D.M.), University of Illinois at Chicago
| |
Collapse
|
41
|
Glucagon-like peptide-1 receptor activation alleviates lipopolysaccharide-induced acute lung injury in mice via maintenance of endothelial barrier function. J Transl Med 2019; 99:577-587. [PMID: 30659271 DOI: 10.1038/s41374-018-0170-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/25/2018] [Accepted: 11/08/2018] [Indexed: 11/09/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1), which is well known for regulating glucose homeostasis, exhibits multiple actions in cardiovascular disorders and renal injury. However, little is known about the effect of GLP-1 receptor (GLP-1R) activation on acute lung injury (ALI). In this study, we investigated the effect of GLP-1R on ALI and the potential underlying mechanisms with the selective agonist liraglutide. Our results show that GLP-1 levels decreased in serum, though they increased in bronchoalveolar lavage fluid (BALF) and lung tissue in a mouse model of lipopolysaccharide (LPS)-induced ALI. Liraglutide prevented LPS-induced polymorphonuclear neutrophil (PMN) extravasation, lung injury, and alveolar-capillary barrier dysfunction. In cultured human pulmonary microvascular endothelial cells (HPMECs), liraglutide protected against LPS-induced endothelial barrier injury by restoring intercellular tight junctions and adherens junctions. Moreover, liraglutide prevented PMN-endothelial adhesion by inhibiting the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), and thereafter suppressed PMN transendothelial migration. Furthermore, liraglutide suppressed LPS-induced activation of Rho/NF-κB signaling in HPMECs. In conclusion, our results show that GLP-1R activation protects mice from LPS-induced ALI by maintaining functional endothelial barrier and inhibiting PMN extravasation. These results also suggest that GLP-1R may be a potential therapeutic target for the treatment of ALI.
Collapse
|
42
|
The Role of Caveolin-1 in Retinal Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1185:169-173. [PMID: 31884607 DOI: 10.1007/978-3-030-27378-1_28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although the retina resides within the immune-protected ocular environment, inflammatory processes mounted in the eye can lead to retinal damage. Unchecked chronic ocular inflammation leads to retinal damage. Thus, retinal degenerative diseases that result in chronic inflammation accelerate retinal tissue destruction and vision loss. Treatments for chronic retinal inflammation involve corticosteroid administration, which has been associated with glaucoma and cataract formation. Therefore, we must consider novel, alternative treatments. Here, we provide a brief review of our current understanding of chronic innate inflammatory processes in retinal degeneration and the complex role of a putative inflammatory regulator, Caveolin-1 (Cav1). Furthermore, we suggest that the complex role of Cav1 in retinal inflammatory modulation is likely dictated by cell type-specific subcellular localization.
Collapse
|
43
|
Abstract
Pulmonary vascular diseases are associated with several factors including infection, cigarette smoking, abuse of dietary suppressants and drugs, prolonged exposure to high altitude, and other causes which in part induce significant oxidative stress resulting in endothelial cell injury, apoptosis, hyperproliferation, and vaso-occlusive disease. Maintenance of normal endothelial cell function is a critical role of endothelial nitric oxide synthase (eNOS) activity and physiologic nitric oxide (NO) signaling in the vascular wall. eNOS expression and activity is regulated by the membrane-associated scaffolding protein caveolin-1 (Cav-1), the main protein constituent of caveolae. This chapter summarizes the literature and highlights unanswered questions related to how inflammation-associated oxidative stress affects Cav-1 expression and regulatory functions, and how dysregulated eNOS enzymatic activity promotes endothelial dysfunction. Focus is given to how the conversion of eNOS from a NO-producing enzyme to a transient oxidant-generating system is associated twith Cav-1 depletion, endothelial cell injury, and pulmonary vascular diseases. Importantly, the vascular defects observed in absence of Cav-1 that give rise to injured or hyperproliferative endothelial cells and promote remodeled vasculature can be rescued by "re-coupling," inhibiting, or genetically deleting eNOS, supporting the notion that strict control of Cav-1 expression and eNOS activity and signaling is critical for maintaining pulmonary vascular homeostasis.
Collapse
Affiliation(s)
- Suellen D S Oliveira
- Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Richard D Minshall
- Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
44
|
Chen Z, D. S. Oliveira S, Zimnicka AM, Jiang Y, Sharma T, Chen S, Lazarov O, Bonini MG, Haus JM, Minshall RD. Reciprocal regulation of eNOS and caveolin-1 functions in endothelial cells. Mol Biol Cell 2018; 29:1190-1202. [PMID: 29563255 PMCID: PMC5935069 DOI: 10.1091/mbc.e17-01-0049] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/12/2018] [Accepted: 03/12/2018] [Indexed: 12/21/2022] Open
Abstract
We hypothesized that the maintenance of vascular homeostasis is critically dependent on the expression and reciprocal regulation of caveolin-1 (Cav-1) and endothelial nitric oxide synthase (eNOS) in endothelial cells (ECs). Skeletal muscle biopsies from subjects with type 2 diabetes showed 50% less Cav-1 and eNOS than those from lean healthy controls. The Cav-1:eNOS expression ratio was 200:1 in primary culture human ECs. Cav-1 small interfering RNA (siRNA) reduced eNOS protein and gene expression in association with a twofold increase in eNOS phosphorylation and nitrate production per molecule of eNOS, which was reversed in cells overexpressing Adv-Cav-1-GFP. Upon addition of the Ca2+ ionophore A23187 to activate eNOS, we observed eNOS Ser1177 phosphorylation, its translocation to β-catenin-positive cell-cell junctions, and increased colocalization of eNOS and Cav-1 within 5 min. We also observed Cav-1 S-nitrosylation and destabilization of Cav-1 oligomers in cells treated with A23187 as well as insulin or albumin, and this could be blocked by L-NAME, PP2, or eNOS siRNA. Finally, caveola-mediated endocytosis of albumin or insulin was reduced by Cav-1 or eNOS siRNA, and the effect of Cav-1 siRNA was rescued by Adv-Cav-1-GFP. Thus, Cav-1 stabilizes eNOS expression and regulates its activity, whereas eNOS-derived NO promotes caveola-mediated endocytosis.
Collapse
Affiliation(s)
- Zhenlong Chen
- Departments of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612
| | | | | | - Ying Jiang
- Departments of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612
| | - Tiffany Sharma
- Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | - Stone Chen
- Whitney M. Young Magnet High School, Chicago, IL 60607
| | - Orly Lazarov
- Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612
| | | | - Jacob M. Haus
- Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612
| | - Richard D. Minshall
- Departments of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612
- Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| |
Collapse
|
45
|
Wang J, Xu J, Zhao X, Xie W, Wang H, Kong H. Fasudil inhibits neutrophil-endothelial cell interactions by regulating the expressions of GRP78 and BMPR2. Exp Cell Res 2018; 365:97-105. [PMID: 29481792 DOI: 10.1016/j.yexcr.2018.02.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/02/2018] [Accepted: 02/22/2018] [Indexed: 12/16/2022]
Abstract
Regulation of leukocyte-endothelial cell interactions and of vascular permeability plays a critical role in the maintenance of functional pulmonary microvascular barriers. Little is yet known about the effect of the Rho-associated protein kinase (ROCK) inhibitor fasudil on leukocyte-endothelial cell interactions or the underlying mechanism. In the present study, as evaluated using co-culture systems of neutrophils and human pulmonary microvascular endothelial cells (HPMECs), fasudil dose-dependently suppressed neutrophil chemotaxis by decreasing the production of chemotactic factors in lipopolysaccharide (LPS)-treated HPMECs. The inhibitory role of fasudil in neutrophil chemotaxis was mediated by down-regulation of the chaperone glucose-regulated protein 78 (GRP78), since the inhibition was abolished by 4-phenyl butyric acid (a chemical chaperone mimicking GRP78). In addition, fasudil inhibited LPS-induced neutrophil-endothelial adhesion by reducing the expression of intercellular adhesion molecule (ICAM)-1. By use of lentiviral transfection in HPMECs, bone morphogenic protein receptor 2 (BMPR2) overexpression suppressed the LPS-induced increase of both ICAM-1 expression and neutrophil-endothelial adhesion, whereas knocking down BMPR2 abolished the inhibitory role of fasudil in both ICAM-1 expression and neutrophil-endothelial adhesion. Moreover, fasudil alleviated LPS-induced hyperpermeability of HPMEC monolayers by leading to the recovery of intercellular junctions, thereafter reduced neutrophil transendothelial cell migration. Therefore, fasudil inhibited leukocyte-endothelial cell interactions and vascular hyperpermeability through modulation of GRP78 and BMPR2 expression, suggesting a potential role for ROCK as a switch for inhibiting leukocyte-endothelial cell interactions.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China; Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Jian Xu
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Xinyun Zhao
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Weiping Xie
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Hong Wang
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China.
| | - Hui Kong
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
46
|
Nie X, Tan J, Dai Y, Liu Y, Zou J, Sun J, Ye S, Shen C, Fan L, Chen J, Bian JS. CCL5 deficiency rescues pulmonary vascular dysfunction, and reverses pulmonary hypertension via caveolin-1-dependent BMPR2 activation. J Mol Cell Cardiol 2018; 116:41-56. [PMID: 29374556 DOI: 10.1016/j.yjmcc.2018.01.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 12/13/2017] [Accepted: 01/22/2018] [Indexed: 12/20/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating cardiopulmonary disorder characterized by pulmonary arterial remodeling mainly due to excess cellular proliferation and apoptosis resistance of pulmonary arterial smooth muscle cells (PASMCs). Reduced bone morphogenetic protein receptor 2 (BMPR2) expression in patients with PAH impairs pulmonary arterial endothelial cells (PAECs) function. This can adversely affect PAEC survival and promote PASMCs proliferation. We hypothesized that interventions to normalize the expression of genes that are targets of the BMPR2 signaling could restore PAECs function and prevent or reverse PAH. Here we characterized for the first time, in human PAECs, chemokine (C-C motif) ligand 5 (CCL5/RANTES) deficiency restore BMP-mediated PAECs function. In the cell culture experiments, we found that CCL5 deficiency increased apoptosis and tube formation of PAECs, but suppressed proliferation and migration of PASMCs. Silencing CCL5 expression in PAH PAECs restored bone morphogenetic protein (BMP) signaling responses and promoted phosphorylation of SMADs and transcription of ID genes. Moreover, CCL5 deficiency inhibited angiogenesis by increasing pSMAD-dependent and-independent BMPR2 signaling. This was linked mechanistically to enhanced interaction of BMPR2 with caveolin-1 via CCL5 deficiency-mediated stabilization of endothelial surface caveolin-1. Consistent with these functions, deletion of CCL5 significantly attenuated development of Sugen5416/hypoxia-induced PAH by restoring BMPR2 signaling in mice. Taken together, our findings suggest that CCL5 deficiency could reverse obliterative changes in pulmonary arteries via caveolin-1-dependent amplification of BMPR2 signaling. Our results shed light on better understanding of the disease pathobiology and provide a possible novel target for the treatment of PAH.
Collapse
Affiliation(s)
- Xiaowei Nie
- Center of Clincical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China; Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, PR China.
| | - Jianxin Tan
- Center of Clincical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Youai Dai
- Center of Clincical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Yun Liu
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222000, PR China
| | - Jian Zou
- Center of Clincical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Jie Sun
- Center of Clincical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Shugao Ye
- Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Chenyou Shen
- Center of Clincical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Li Fan
- Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Jingyu Chen
- Center of Clincical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China; Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|