1
|
Chen H, Jiang X, Li Y, Guo H, Wu J, Li S, Hu F, Xu G. A Gallbladder-Specific Hydrophobic Bile Acid-FXR-MUC1 Signaling Axis Mediates Cholesterol Gallstone Formation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2401956. [PMID: 39932450 PMCID: PMC11967835 DOI: 10.1002/advs.202401956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 12/21/2024] [Indexed: 04/05/2025]
Abstract
Differences in the distribution of hydrophilic and hydrophobic bile acids (BA) are observed in mouse models of non-alcoholic fatty liver disease (NAFLD) induced by a high-fat-cholesterol "Western-style" diet (WD), and cholesterol gallstone disease (CGD) induced by a lithogenic diet. Despite sharing common pathological processes, these models exhibit distinct characteristics in their BA pools. The study investigates the impact of hydrophobic BA (HphoBA) and hydrophilic BA (HphilBA) on CGD development using cytochrome-P450-2c70 knockout (C70-KO) mice (miceC70-KO), genetically modified to resemble humans with a hydrophobic BA pool. All miceC70-KO fed the WD develop CGD, resembling human cholelithiasis patients, while WD-fed wild-type (WT) mice (miceWT) show cholesterol-saturated bile but rarely form gallstones. Compared to miceWT, WD-fed miceC70-KO display caveolae microdomain redistribution in the gallbladder mediated by the HphoBA, FXR, and miR30c/e axis, which enhances the Sp1 transcriptional activity of mucin-1 (MUC1) genes through nuclear translocation of protein kinase Cζ (PKCζ). These changes contribute to increased production of pronucleating agents (MUC1 and MUC5ac) and accelerate crystallization of gallbladder cholesterol. The data also suggest that WD-fed miceC70-KO appropriately model human CGD since lithogenic diet-fed miceWT have a larger BA pool that masks the negative effects of gallbladder FXR on CGD development.
Collapse
Affiliation(s)
- Hongtan Chen
- Division of Gastroenterologythe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310002China
| | - Xin Jiang
- Division of Gastroenterologythe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310002China
| | - Yiqiao Li
- Division of NephrologyZhejiang Provincial People's HospitalHangzhou Medical College Affiliated HospitalHangzhouZhejiang310014China
| | - Honggang Guo
- Laboratory of Experimental Animal and Safety EvaluationZhejiang Academy of Medical SciencesMedical CollegeHangzhouZhejiang310063China
| | - Jianguo Wu
- Clinical laboratoryZhejiang Provincial People's HospitalHangzhou Medical College Affiliated HospitalHangzhouZhejiang310014China
| | - Sha Li
- Division of Gastroenterologythe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310002China
| | - Fengling Hu
- Division of Gastroenterologythe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310002China
| | - Guoqiang Xu
- Division of Gastroenterologythe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310002China
| |
Collapse
|
2
|
Minucci SB, Heise RL, Reynolds AM. Agent-based vs. equation-based multi-scale modeling for macrophage polarization. PLoS One 2024; 19:e0270779. [PMID: 38271449 PMCID: PMC10810539 DOI: 10.1371/journal.pone.0270779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/29/2023] [Indexed: 01/27/2024] Open
Abstract
Macrophages show high plasticity and result in heterogenic subpopulations or polarized states identified by specific cellular markers. These immune cells are typically characterized as pro-inflammatory, or classically activated M1, and anti-inflammatory, or alternatively activated M2. However, a more precise definition places them along a spectrum of activation where they may exhibit a number of pro- or anti-inflammatory roles. To understand M1-M2 dynamics in the context of a localized response and explore the results of different mathematical modeling approaches based on the same biology, we utilized two different modeling techniques, ordinary differential equation (ODE) modeling and agent-based modeling (ABM), to simulate the spectrum of macrophage activation to general pro- and anti-inflammatory stimuli on an individual and multi-cell level. The ODE model includes two hallmark pro- and anti-inflammatory signaling pathways and the ABM incorporates similar M1-M2 dynamics but in a spatio-temporal platform. Both models link molecular signaling with cellular-level dynamics. We then performed simulations with various initial conditions to replicate different experimental setups. Similar results were observed in both models after tuning to a common calibrating experiment. Comparing the two models' results sheds light on the important features of each modeling approach. When more data is available these features can be considered when choosing techniques to best fit the needs of the modeler and application.
Collapse
Affiliation(s)
- Sarah B. Minucci
- Department of Mathematics & Applied Mathematics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Rebecca L. Heise
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Angela M. Reynolds
- Department of Mathematics & Applied Mathematics, Virginia Commonwealth University, Richmond, VA, United States of America
| |
Collapse
|
3
|
Zhai Z, Shao L, Lu Z, Yang Y, Wang J, Liu Z, Wang H, Zheng Y, Lu H, Song X, Zhang Y. Characteristics of mucin hypersecretion in different inflammatory patterns based on endotypes of chronic rhinosinusitis. Clin Transl Allergy 2024; 14:e12334. [PMID: 38282195 PMCID: PMC10802810 DOI: 10.1002/clt2.12334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is usually accompanied by mucin hypersecretion that can lead to mucus accumulation and impair nasal mucociliary clearance, thus exacerbating airway inflammation. Abnormal mucin hypersecretion is regulated by different T helper (Th) cytokines, which are associated with different endotype-driven inflammatory responses. Therefore, it is of great significance to understand how these factors regulate mucin hypersecretion to provide precise treatment strategies for different endotypes of CRS. BODY: Thus far, the most common endotypes of CRS are classified as type 1, type 2, or type 3 immune responses based on innate and adaptive cell-mediated effector immunity, and the representative Th cytokines in these immune responses, such as IFN-γ, TNF-α, IL-4, IL-5, IL-13, IL-10, IL-17, and IL-22, play an important regulatory role in mucin secretion. We reviewed all the related literature in the PubMed database to determine the expression of these Th cytokines in CRS and the role they play in the regulation of mucin secretion. CONCLUSION We believe that the main Th cytokines involved in specific endotypes of CRS play a key role in regulating abnormal mucin secretion, which contributes to better understanding of the pathogenesis of CRS and provides therapeutic targets for airway inflammatory diseases associated with mucin hypersecretion.
Collapse
Affiliation(s)
- Zhaoxue Zhai
- Second Clinical Medicine CollegeBinzhou Medical UniversityYantaiChina
- Department of OtolaryngologyHead and Neck Surgery, Yantai Yuhuangding HospitalQingdao UniversityYantaiChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiChina
| | - Liting Shao
- Department of OtolaryngologyHead and Neck Surgery, Yantai Yuhuangding HospitalQingdao UniversityYantaiChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiChina
| | - Zhaoyang Lu
- Second Clinical Medicine CollegeBinzhou Medical UniversityYantaiChina
- Department of OtolaryngologyHead and Neck Surgery, Yantai Yuhuangding HospitalQingdao UniversityYantaiChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiChina
| | - Yujuan Yang
- Department of OtolaryngologyHead and Neck Surgery, Yantai Yuhuangding HospitalQingdao UniversityYantaiChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiChina
- Yantai Key Laboratory of Otorhinolaryngologic DiseasesYantaiChina
| | - Jianwei Wang
- Department of OtolaryngologyHead and Neck Surgery, Yantai Yuhuangding HospitalQingdao UniversityYantaiChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiChina
- Yantai Key Laboratory of Otorhinolaryngologic DiseasesYantaiChina
| | - Zhen Liu
- Department of OtolaryngologyHead and Neck Surgery, Yantai Yuhuangding HospitalQingdao UniversityYantaiChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiChina
| | - Huikang Wang
- Department of OtolaryngologyHead and Neck Surgery, Yantai Yuhuangding HospitalQingdao UniversityYantaiChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiChina
| | - Yang Zheng
- Department of OtolaryngologyHead and Neck Surgery, Yantai Yuhuangding HospitalQingdao UniversityYantaiChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiChina
| | - Haoran Lu
- Department of OtolaryngologyHead and Neck Surgery, Yantai Yuhuangding HospitalQingdao UniversityYantaiChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiChina
| | - Xicheng Song
- Department of OtolaryngologyHead and Neck Surgery, Yantai Yuhuangding HospitalQingdao UniversityYantaiChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiChina
- Yantai Key Laboratory of Otorhinolaryngologic DiseasesYantaiChina
| | - Yu Zhang
- Department of OtolaryngologyHead and Neck Surgery, Yantai Yuhuangding HospitalQingdao UniversityYantaiChina
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic DiseasesYantaiChina
- Yantai Key Laboratory of Otorhinolaryngologic DiseasesYantaiChina
| |
Collapse
|
4
|
Jin Y, Zhang D, Deng K, Wu P, Yang D, Xie Z, Qiu W, Yu G. Role of the cAMP-PKA-NF-κB pathway in Mucin1 over-expression in A549 cells during Respiratory syncytial virus infection. BMC Infect Dis 2023; 23:845. [PMID: 38036963 PMCID: PMC10687811 DOI: 10.1186/s12879-023-08837-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the most common pathogen associated with acute lower respiratory tract infections in infants and young children worldwide. RSV commonly presents as bronchiolitis in young children; however, it can sometimes progress to pneumonia, respiratory failure, apnoea and even death. Although mucin1 (MUC1), a type of transmembrane glycoprotein present on airway epithelial surfaces, plays a crucial anti-inflammatory role in airway infections; however, its roles in RSV-associated acute lower respiratory tract infections have rarely been explored. In this study, we first revealed very high MUC1 protein levels in the exacerbation phase in sputum samples from children with RSV bronchiolitis. Because MUC1 is the downstream target of tumour necrosis factor-alpha (TNF-α) in RSV-infected A549 cells, we observed the inhibition of NF-κB activity, main downstream signalling of TNF-α and remarkably reduced levels of MUC1 in RSV-infected and TNF-α treated A549 cells. Furthermore, the cyclic adenosine monophosphate (cAMP) analogue (dbcAMP) downregulated the protein levels of p-IκBα and MUC1 in TNF-α-treated A549 cells. By contrast, a protein kinase A inhibitor (KT5720) up-regulated the levels of those proteins. dbcAMP and KT5720 had the same effects on MUC1 protein levels in RSV-infected A549 cells. In conclusion, we found that the cAMP-PKA-NF-κB pathway may play a role in the regulation of MUC-1 over-expression during RSV infection.
Collapse
Affiliation(s)
- Yingkang Jin
- Department of Respiratory Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Dongwei Zhang
- Department of Respiratory Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Kuimiao Deng
- Department of Respiratory Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Peiqiong Wu
- Department of Respiratory Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Diyuan Yang
- Department of Respiratory Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Zhiwei Xie
- Department of Respiratory Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Wenjun Qiu
- Department of Respiratory Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Guangyuan Yu
- Department of Respiratory Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
5
|
Sarawi WS, Alhusaini AM, Alghibiwi HK, Alsaab JS, Hasan IH. Roles of Nrf2/HO-1 and ICAM-1 in the Protective Effect of Nano-Curcumin against Copper-Induced Lung Injury. Int J Mol Sci 2023; 24:13975. [PMID: 37762280 PMCID: PMC10531221 DOI: 10.3390/ijms241813975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Copper (Cu) is an essential trace element for maintaining normal homeostasis in living organisms. Yet, an elevated level of Cu beyond homeostatic capacity may lead to oxidative damage of cellular components in several organs, including the lungs. This work investigated the effects of curcumin (Curc) and nano-curcumin (nCurc) against Cu-induced lung injury, accenting the roles of oxidative stress, inflammation, and the nuclear factor erythroid 2-related factor/heme oxygenase-1 Nrf2/HO-1 pathway. Rats were challenged with 100 mg/kg of copper sulfate (CuSO4) while being treated with Curc or nCurc for 7 days. Cu-triggered lung oxidative stress detected as dysregulation of oxidative/antioxidant markers, a downregulation of Nrf-2/HO-1 signaling, and an increase in the inflammatory markers interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and intracellular adhesion molecule-1 (ICAM-1). Additionally, it decreased the expression of lung-specific proteins, surfactant protein-C (SP-C), and mucin-1 (MUC-1), induced apoptosis, and caused changes in lung histology. Curc and nCurc alleviated CuSO4-induced lung injury by suppressing oxidative damage and inflammation and activating Nrf-2/HO-1. They also prevented apoptosis and restored the normal expression of SP-C and MUC-1. We concluded that nCurc exhibited superior efficacy compared with Curc in mitigating CuSO4-induced lung injury. This was associated with reduced oxidative stress, inflammation, and apoptotic responses and increased Nrf2/HO-1 signaling and expression of SP-C and MUC-1.
Collapse
Affiliation(s)
- Wedad S. Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (A.M.A.); (H.K.A.); (J.S.A.); (I.H.H.)
| | | | | | | | | |
Collapse
|
6
|
Membrane-Tethered Mucin 1 Is Stimulated by Interferon and Virus Infection in Multiple Cell Types and Inhibits Influenza A Virus Infection in Human Airway Epithelium. mBio 2022; 13:e0105522. [PMID: 35699372 PMCID: PMC9426523 DOI: 10.1128/mbio.01055-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza A virus (IAV) causes significant morbidity and mortality in the human population. Tethered mucin 1 (MUC1) is highly expressed in airway epithelium, the primary site of IAV replication, and also by other cell types that influence IAV infection, including macrophages. MUC1 has the potential to influence infection dynamics through physical interactions and/or signaling activity, yet MUC1 modulation and its impact during viral pathogenesis remain unclear. Thus, we investigated MUC1-IAV interactions in an in vitro model of human airway epithelium (HAE). Our data indicate that a recombinant IAV hemagglutinin (H3) and H3N2 virus can bind endogenous HAE MUC1. Notably, infection of HAE with H1N1 or H3N2 IAV strains does not trigger MUC1 shedding but instead stimulates an increase in cell-associated MUC1 protein. We observed a similar increase after type I or III interferon (IFN) stimulation; however, inhibition of IFN signaling during H1N1 infection only partially abrogated this increase, indicating that multiple soluble factors contribute to MUC1 upregulation during the antiviral response. In addition to HAE, primary human monocyte-derived macrophages also upregulated MUC1 protein in response to IFN treatment and conditioned media from IAV-infected HAE. Then, to determine the impact of MUC1 on IAV pathogenesis, we developed HAE genetically depleted of MUC1 and found that MUC1 knockout cultures exhibited enhanced viral growth compared to control cultures for several IAV strains. Together, our data support a model whereby MUC1 inhibits productive uptake of IAV in HAE. Infection then stimulates MUC1 expression on multiple cell types through IFN-dependent and -independent mechanisms that further impact infection dynamics.
Collapse
|
7
|
Shamloo K, Mistry P, Barbarino A, Ross C, Jhanji V, Sharma A. Differential Effect of Proinflammatory Cytokines on Corneal and Conjunctival Epithelial Cell Mucins and Glycocalyx. Transl Vis Sci Technol 2021; 10:17. [PMID: 34128966 PMCID: PMC8212448 DOI: 10.1167/tvst.10.7.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Purpose Ocular surface mucins and glycocalyx are critical for providing ocular hydration as well lubrication and repelling pathogens or allergens. Elevated levels of tear proinflammatory cytokines in dry eye may have detrimental effect on mucins and glycocalyx. The present study tested the effect of proinflammatory cytokines IL-6, TNF-α, and IFN-γ on membrane-tethered mucins expression, glycocalyx, and viability of ocular surface epithelial cells. Methods Stratified cultures of human corneal and conjunctival epithelial cells were exposed to different concentrations of IL-6, TNF-α, and IFN-γ for 24 hours. The mucins gene and protein expressions were quantified by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). The glycocalyx was imaged using confocal microscopy after staining with Alexa 488-conjugated wheat germ agglutinin lectin. Apoptotic and necrotic cell death was quantified using flow cytometry. Results IL-6, TNF-α, and IFN-γ treatment resulted in a significant increase in mucins (MUC)1 and MUC4 gene and protein expression in human corneal epithelial cells but caused no significant changes in the levels of these mucins in conjunctival epithelial cells. Further, these cytokines decreased MUC16 expression in both corneal and conjunctival epithelial cells. Moreover, no notable change in glycocalyx or apoptotic cell death in corneal and conjunctival epithelial cells was noted with any of the tested cytokines, but IL-6 and TNF-α exposure increased necrotic cell death in corneal and conjunctival epithelial cells, respectively. Conclusions Our results demonstrate that proinflammatory cytokines have differential effects on human corneal and conjunctival epithelial cell mucins expression, but do not cause any damage to ocular surface epithelial cell glycocalyx.
Collapse
Affiliation(s)
- Kiumars Shamloo
- Chapman University School of Pharmacy, Chapman University, Irvine, CA, USA
| | - Priya Mistry
- Chapman University School of Pharmacy, Chapman University, Irvine, CA, USA
| | - Ashley Barbarino
- Chapman University School of Pharmacy, Chapman University, Irvine, CA, USA
| | - Christopher Ross
- Chapman University School of Pharmacy, Chapman University, Irvine, CA, USA
| | - Vishal Jhanji
- Department of Ophthalmology, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ajay Sharma
- Chapman University School of Pharmacy, Chapman University, Irvine, CA, USA
| |
Collapse
|
8
|
Mahmoudian RA, Gharaie ML, Abbaszadegan MR, Alasti A, Forghanifard MM, Mansouri A, Gholamin M. Crosstalk between MMP-13, CD44, and TWIST1 and its role in regulation of EMT in patients with esophageal squamous cell carcinoma. Mol Cell Biochem 2021; 476:2465-2478. [PMID: 33604811 DOI: 10.1007/s11010-021-04089-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/29/2021] [Indexed: 12/20/2022]
Abstract
Matrix metalloproteinases (MMPs) play key roles in epithelial-mesenchymal transition (EMT) for the development of cancer cell invasion and metastasis. MMP-13 is an extracellular matrix (ECM)-degrading enzyme that plays crucial roles in angiogenesis, cell cycle regulation, niche maintenance, and transforming squamous epithelial cells in various tissues. CD44, a transmembrane glycoprotein expressed on esophageal tumor cells, is required for EMT induction and invasion in esophageal squamous cell carcinoma (ESCC). The transcription factor TWIST1, as EMT and stemness marker, regulates MMPs expression and is identified as the downstream target of CD44. In this study, we aimed to investigate the probable interplay between the expression of key genes contributing to ESCC development, including MMP-13, TWIST1, and CD44 with clinical features for introducing novel diagnostic and therapeutic targets in the disease. The gene expression profiling of MMP-13, TWIST1, and CD44 was performed using quantitative real-time PCR in tumor tissues from 50 ESCC patients compared to corresponding margin non-tumoral tissues. Significant overexpression of MMP-13, CD44S, CD44V3, CD44V6, and TWIST1 were observed in 74%, 36%, 44%, 44%, and 52% of ESCC tumor samples, respectively. Overexpression of MMP-13 was associated with stage of tumor progression, metastasis, and tumor location (P < 0.05). There was a significant correlation between TWIST1 overexpression and grade (P < 0.05). Furthermore, overexpression of CD44 variants was associated with stage of tumor progression, grade, tumor invasion, and location (P < 0.05). The results indicated the significant correlation between concomitant expression of MMP-13/TWIST1, TWIST1/CD44, and CD44/MMP-13 with each other in a variety of clinicopathological traits, including depth of tumor invasion, tumor location, stage of tumor, and lymph node involvement in ESCC tissue samples (P < 0.05). Collectively, our results indicate that the TWIST1-CD44-MMP-13 axis is involved in tumor aggressiveness, proposing these genes as regulators of EMT, diagnostic markers, and therapeutic targets in ESCC.
Collapse
Affiliation(s)
| | - Maryam Lotfi Gharaie
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Division of Physiology, Department of Basic Science, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Ali Alasti
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Atena Mansouri
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Innovated Medical Research Center and Department of Immunology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mehran Gholamin
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, P.O.Box 345-91357, Mashhad, Iran.
| |
Collapse
|
9
|
Ballester B, Milara J, Cortijo J. The role of mucin 1 in respiratory diseases. Eur Respir Rev 2021; 30:30/159/200149. [PMID: 33536260 DOI: 10.1183/16000617.0149-2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/04/2020] [Indexed: 01/21/2023] Open
Abstract
Recent evidence has demonstrated that mucin 1 (MUC1) is involved in many pathological processes that occur in the lung. MUC1 is a transmembrane protein mainly expressed by epithelial and hematopoietic cells. It has a receptor-like structure, which can sense the external environment and activate intracellular signal transduction pathways through its cytoplasmic domain. The extracellular domain of MUC1 can be released to the external environment, thus acting as a decoy barrier to mucosal pathogens, as well as serving as a serum biomarker for the diagnosis and prognosis of several respiratory diseases such as lung cancer and interstitial lung diseases. Furthermore, bioactivated MUC1-cytoplasmic tail (CT) has been shown to act as an anti-inflammatory molecule in several airway infections and mediates the expression of anti-inflammatory genes in lung diseases such as chronic rhinosinusitis, chronic obstructive pulmonary disease and severe asthma. Bioactivated MUC1-CT has also been reported to interact with several effectors linked to cellular transformation, contributing to the progression of respiratory diseases such as lung cancer and pulmonary fibrosis. In this review, we summarise the current knowledge of MUC1 as a promising biomarker and drug target for lung disease.
Collapse
Affiliation(s)
- Beatriz Ballester
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, CO, USA .,CIBERES, Health Institute Carlos III, Valencia, Spain.,Both authors contributed equally to this work
| | - Javier Milara
- CIBERES, Health Institute Carlos III, Valencia, Spain.,Pharmacy Unit, Consorcio Hospital General de Valencia, Valencia, Spain.,Pharmacology Dept, University Jaume I, Castellon, Spain.,Both authors contributed equally to this work
| | - Julio Cortijo
- CIBERES, Health Institute Carlos III, Valencia, Spain.,Research and teaching Unit, Consorcio Hospital General de Valencia, Valencia, Spain.,Dept of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
10
|
The human transmembrane mucin MUC17 responds to TNFα by increased presentation at the plasma membrane. Biochem J 2019; 476:2281-2295. [PMID: 31387973 PMCID: PMC6705488 DOI: 10.1042/bcj20190180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/27/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
Abstract
Transmembrane mucin MUC17 is an integral part of the glycocalyx as it covers the brush border membrane of small intestinal enterocytes and presents an extended O-glycosylated mucin domain to the intestinal lumen. Here, we identified two unknown phosphorylated serine residues, S4428 and S4492, in the cytoplasmic tail of human MUC17. We have previously demonstrated that MUC17 is anchored to the apical membrane domain via an interaction with the scaffolding protein PDZK1. S4492, localized in the C-terminal PDZ binding motif of MUC17, was mutated to generate phosphomimetic and phosphodeficient variants of MUC17. Using Caco-2 cells as a model system, we found that induction of an inflammatory state by long-term stimulation with the proinflammatory cytokine TNFα resulted in an increase of MUC17 protein levels and enhanced insertion of MUC17 and its two phospho-variants into apical membranes. Up-regulation and apical insertion of MUC17 was followed by shedding of MUC17-containing vesicles. Transmembrane mucins have previously been shown to play a role in the prevention of bacterial colonization by acting as sheddable decoys for encroaching bacteria. Overexpression and increased presentation at the plasma membrane of wild-type MUC17 and its phosphodeficient variant MUC17 S-4492A protected Caco-2 cells against adhesion of enteropathogenic Escherichia coli, indicating that C-terminal phosphorylation of MUC17 may play a functional role in epithelial cell protection. We propose a new function for MUC17 in inflammation, where MUC17 acts as a second line of defense by preventing attachment of bacteria to the epithelial cell glycocalyx in the small intestine.
Collapse
|
11
|
Yohannes E, Kazanjian AA, Lindsay ME, Fujii DT, Ieronimakis N, Chow GE, Beesley RD, Heitmann RJ, Burney RO. The human tubal lavage proteome reveals biological processes that may govern the pathology of hydrosalpinx. Sci Rep 2019; 9:8980. [PMID: 31222072 PMCID: PMC6586608 DOI: 10.1038/s41598-019-44962-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
Hydrosalpinx, the blockage of fallopian tubes, can result from pelvic inflammatory disease. Hydrosalpinx is a cause of infertility and negatively impacts in vitro fertilization. To better understand the pathobiology of hydrosalpinx, we compared the proteome of lavages from disease vs. healthy fallopian tubes. Results indicate a disruption of redox homeostasis and activation of the complement system, immune cell infiltration, and phagocytosis; pathways that may drive tubal injury. To our surprise among the most prominent proteins with hydrosalpinx was mesothelin (MSLN), which until now has only been associated with epithelial malignancies. Analogous to mesothelioma and ovarian carcinoma, a significant increase of MSLN was detected in plasma from patients with hydrosalpinx. This finding suggests MSLN may provide clinical diagnosis in lieu of the current approaches that require invasive imaging. Importantly, these findings implicate MSLN in a benign disease, indicating that the activation and role of MSLN is not restricted to cancer.
Collapse
Affiliation(s)
- Elizabeth Yohannes
- Department of Clinical Investigation, Division of Graduate Medical Education, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA, 98431, USA.
| | - Avedis A Kazanjian
- Department of Clinical Investigation, Division of Graduate Medical Education, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA, 98431, USA
| | - Morgan E Lindsay
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA, 98431, USA
| | - Dennis T Fujii
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA, 98431, USA
| | - Nicholas Ieronimakis
- Department of Clinical Investigation, Division of Graduate Medical Education, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA, 98431, USA
| | - Gregory E Chow
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA, 98431, USA
| | - Ronald D Beesley
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA, 98431, USA
| | - Ryan J Heitmann
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA, 98431, USA
| | - Richard O Burney
- Department of Clinical Investigation, Division of Graduate Medical Education, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA, 98431, USA.,Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA, 98431, USA
| |
Collapse
|
12
|
Erickson-DiRenzo E, Leydon C, Thibeault SL. Methodology for the establishment of primary porcine vocal fold epithelial cell cultures. Laryngoscope 2019; 129:E355-E364. [PMID: 30848488 DOI: 10.1002/lary.27909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/04/2019] [Accepted: 02/12/2019] [Indexed: 01/10/2023]
Abstract
OBJECTIVE A current lack of methods for epithelial cell culture significantly hinders our understanding of the role of the epithelial and mucus barriers in vocal fold health and disease. Our first objective was to establish reproducible techniques for the isolation and culture of primary porcine vocal fold epithelial cells. Our second objective was to evaluate the functional significance of cell cultures using an in vitro exposure to an inflammatory cytokine. METHODS Epithelial cells were isolated from porcine vocal folds and expanded in culture. Characterization of cultures was completed by immunostaining with markers for pan-cytokeratin (epithelial cells), vimentin (stromal cells), von Willebrand factor (endothelial cell), and MUC1 and MUC4 (mucin) glycoproteins. Established epithelial cell cultures were then exposed to the inflammatory cytokine tumor necrosis factor alpha (TNF-α) for 24-hours, and transcript expression of MUC1 and MUC4 was evaluated. RESULTS Reproducible, porcine vocal fold epithelial cell cultures, demonstrating cobblestone appearance characteristic of the typical morphology of epithelial cell cultures were created. Cells showed positive staining for pan-cytokeratin with limited expression of vimentin and von Willebrand factor. Epithelial cells also expressed MUC1 and MUC4. TNF-α significantly increased transcript expression of MUC4. CONCLUSION Here, we present the first report of successful culture of primary porcine vocal fold epithelial cells. Cultures will provide researchers with a valuable new in vitro tool to investigate vocal fold epithelium and mucus as well as the effects of common challenges, including inflammatory cytokines, on these barriers. LEVEL OF EVIDENCE NA Laryngoscope, 129:E355-E364, 2019.
Collapse
Affiliation(s)
- Elizabeth Erickson-DiRenzo
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin-Madison, Madison, Wisconsin, U.S.A
| | - Ciara Leydon
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin-Madison, Madison, Wisconsin, U.S.A
| | - Susan L Thibeault
- Department of Surgery, Division of Otolaryngology-Head & Neck Surgery, University of Wisconsin-Madison, Madison, Wisconsin, U.S.A
| |
Collapse
|
13
|
Hasan B, Abudulimu H, Tian L, Ablimit A. Changes in mucin 1 expression in a rat model of allergic airway inflammation. Exp Lung Res 2018; 44:137-142. [PMID: 29847197 DOI: 10.1080/01902148.2018.1439127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
PURPOSE To explore the distribution and expressional changes of mucin 1 (Muc1) in airway of rats with allergic airway inflammation. MATERIALS AND METHODS Ovalbumin (OVA) was used to induce acute allergic inflammation in male Wistar rats. The distributions and expressions of Muc1 in lungs of normal and model rats were assessed by immunohistochemical staining and western blotting, respectively. RESULTS Immunohistochemical staining showed that Muc1 distributed in airway epithelial cells with ciliates, but not those nonciliated cells. Mucin 1 protein expression in the lung was increased during the development of allergic airway inflammation when compared with the normal rats. CONCLUSION Mucin 1 distributes in the airway epithelial cells with ciliates and the expressional increase of Muc1 in lung may imply its functions on allergic inflammatory episodes.
Collapse
Affiliation(s)
- Bilal Hasan
- a Xinjiang Medical University Affiliated Traditional Chinese Hospital, Department of Cardiology , Laboratory of Pulmonary Hypertension , Urumqi , China
| | - Haimiti Abudulimu
- b Xinjiang Medical University, Basic Medical College , Histology and Embryology , Urumqi , China
| | - Li Tian
- b Xinjiang Medical University, Basic Medical College , Histology and Embryology , Urumqi , China
| | - Abduxukur Ablimit
- b Xinjiang Medical University, Basic Medical College , Histology and Embryology , Urumqi , China
| |
Collapse
|
14
|
Li Q, Jin WX, Jin YX, Zheng ZC, Zhou XF, Wang QX, Ye DR, Sun YH, Zhang XH, Wang OC, Chen ED, Cai YF. Clinical effect of MUC1 and its relevance to BRAF V600E mutation in papillary thyroid carcinoma: a case-control study. Cancer Manag Res 2018; 10:1351-1358. [PMID: 29881305 PMCID: PMC5985787 DOI: 10.2147/cmar.s161501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AIM To investigate the clinical effects of MUC1 on papillary thyroid cancer (PTC) and explore the relationship between MUC1 expression and BRAF mutation. METHODS The data of 69 patients subjected to fine-needle aspiration biopsy in our hospital and 486 patient data downloaded from The Cancer Genome Atlas (TCGA) database were used. Univariate and multivariate analyses were performed. RESULTS The results on the 486 patients recorded in the TCGA indicated that high MUC1 expression was independently related to BRAF mutation, lymph node metastasis (LNM), and unifocal type. In the 69 fine-needle aspiration biopsy patients with PTC, high MUC1 expression was significantly related to LNM and extrathyroid extension (ETE). The result of Pearson's correlation coefficient showed that BRAF mutation and MUC1 expression were moderately correlated. Moreover, in the subgroup with low MUC1 expression, the patients with BRAF mutation had higher ETE frequency and LNM than those without BRAF mutation. In the subgroup with BRAF mutation, patients with high MUC1 expression exhibited higher ETE frequency than those with low MUC1 expression, and high MUC1 expression occurred in older patients. In the subgroup with BRAF wild-type mutation, patients with high MUC1 expression had a higher incidence of ETE and LNM than those with low expression. CONCLUSION We demonstrated that the MUC1 is an important oncogene in PTC and may have great significance on therapeutic cancer vaccine development.
Collapse
Affiliation(s)
- Quan Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wen-Xu Jin
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi-Xiang Jin
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhou-Ci Zheng
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao-Fen Zhou
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qing-Xuan Wang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dan-Rong Ye
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi-Han Sun
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao-Hua Zhang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ou-Chen Wang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - En-Dong Chen
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ye-Feng Cai
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
15
|
Leiva-Juárez MM, Kolls JK, Evans SE. Lung epithelial cells: therapeutically inducible effectors of antimicrobial defense. Mucosal Immunol 2018; 11:21-34. [PMID: 28812547 PMCID: PMC5738267 DOI: 10.1038/mi.2017.71] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 07/14/2017] [Indexed: 02/06/2023]
Abstract
Lung epithelial cells are increasingly recognized to be active effectors of microbial defense, contributing to both innate and adaptive immune function in the lower respiratory tract. As immune sentinels, lung epithelial cells detect diverse pathogens through an ample repertoire of membrane-bound, endosomal, and cytosolic pattern-recognition receptors (PRRs). The highly plastic epithelial barrier responds to detected threats via modulation of paracellular flux, intercellular communications, mucin production, and periciliary fluid composition. Epithelial PRR stimulation also induces production of cytokines that recruit and sculpt leukocyte-mediated responses, and promotes epithelial generation of antimicrobial effector molecules that are directly microbicidal. The epithelium can alternately enhance tolerance to pathogens, preventing tissue damage through PRR-induced inhibitory signals, opsonization of pathogen-associated molecular patterns, and attenuation of injurious leukocyte responses. The inducibility of these protective responses has prompted attempts to therapeutically harness epithelial defense mechanisms to protect against pneumonias. Recent reports describe successful strategies for manipulation of epithelial defenses to protect against a wide range of respiratory pathogens. The lung epithelium is capable of both significant antimicrobial responses that reduce pathogen burdens and tolerance mechanisms that attenuate immunopathology. This manuscript reviews inducible lung epithelial defense mechanisms that offer opportunities for therapeutic manipulation to protect vulnerable populations against pneumonia.
Collapse
Affiliation(s)
- Miguel M. Leiva-Juárez
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jay K. Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | - Scott E. Evans
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
16
|
MUC1: The First Respiratory Mucin with an Anti-Inflammatory Function. J Clin Med 2017; 6:jcm6120110. [PMID: 29186029 PMCID: PMC5742799 DOI: 10.3390/jcm6120110] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 02/07/2023] Open
Abstract
MUC1 is a membrane-bound mucin expressed on the apical surfaces of most mucosal epithelial cells. In normal lung epithelia, MUC1 is a binding site for Pseudomonas aeruginosa, an opportunistic human pathogen of great clinical importance. It has now been established that MUC1 also serves an anti-inflammatory role in the airways that is initiated late in the course of a bacterial infection and is mediated through inhibition of Toll-like receptor (TLR) signaling. MUC1 expression was initially shown to interfere with TLR5 signaling in response to P. aeruginosa flagellin, but has since been extended to other TLRs. These new findings point to an immunomodulatory role for MUC1 during P. aeruginosa lung infection, particularly during the resolution phase of inflammation. This review briefly summarizes the recent characterization of MUC1’s anti-inflammatory properties in both the respiratory tract and extrapulmonary tissues.
Collapse
|
17
|
Yuste J. Mucin 1 is a novel glycoprotein involved in host defense against invasive pneumococcal disease. Virulence 2017; 8:1475-1477. [DOI: 10.1080/21505594.2017.1356971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Jose Yuste
- Spanish Pneumococcal Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
18
|
Pseudomonas aeruginosa increases MUC1 expression in macrophages through the TLR4-p38 pathway. Biochem Biophys Res Commun 2017; 492:231-235. [PMID: 28822766 DOI: 10.1016/j.bbrc.2017.08.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/15/2017] [Indexed: 01/05/2023]
Abstract
Alveolar macrophages (AMs) play a critical role in the clearance of Pseudomonas aeruginosa (Pa) from the airways. However, hyper-activation of macrophages can impair bacterial clearance and contribute to morbidity and mortality. MUC1 mucin is a membrane-tethered, high molecular mass glycoprotein expressed on the apical surface of mucosal epithelial cells and some hematopoietic cells, including macrophages, where it counter-regulates inflammation. We recently reported that Pa up-regulates the expression of MUC1 in primary human AMs and THP-1 macrophages, and that increased MUC1 expression in these cells prevents hyper-activation of macrophages that appears to be important for host defense against severe pathology of Pa lung infection. The aims of this study were to elucidate the mechanism by which Pa increases MUC1 expression in macrophages. The results showed that: (a) Pa stimulation of THP-1 macrophages increased MUC1 expression both at transcriptional and protein levels in a dose-dependent manner; (b) Both Pa- and LPS-induced MUC1 expression in THP-1 cells were significantly diminished by an inhibitory peptide of TLR4; and (c) LPS-stimulated MUC1 expression was diminished at both the mRNA and protein levels by an inhibitor of the p38 mitogen-activated protein kinase, but not by inhibitors of ERK1/2, JNK, or IKK. We conclude that Pa-stimulated MUC1 expression in THP-1 macrophages is regulated mainly through the TLR4-p38 signaling pathway.
Collapse
|
19
|
Schrumpf JA, Amatngalim GD, Veldkamp JB, Verhoosel RM, Ninaber DK, Ordonez SR, van der Does AM, Haagsman HP, Hiemstra PS. Proinflammatory Cytokines Impair Vitamin D-Induced Host Defense in Cultured Airway Epithelial Cells. Am J Respir Cell Mol Biol 2017; 56:749-761. [PMID: 28231019 DOI: 10.1165/rcmb.2016-0289oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vitamin D is a regulator of host defense against infections and induces expression of the antimicrobial peptide hCAP18/LL-37. Vitamin D deficiency is associated with chronic inflammatory lung diseases and respiratory infections. However, it is incompletely understood if and how (chronic) airway inflammation affects vitamin D metabolism and action. We hypothesized that long-term exposure of primary bronchial epithelial cells to proinflammatory cytokines alters their vitamin D metabolism, antibacterial activity, and expression of hCAP18/LL-37. To investigate this, primary bronchial epithelial cells were differentiated at the air-liquid interface for 14 days in the presence of the proinflammatory cytokines, TNF-α and IL-1β (TNF-α/IL-1β), and subsequently exposed to vitamin D (inactive 25(OH)D3 and active 1,25(OH)2D3). Expression of hCAP18/LL-37, vitamin D receptor, and enzymes involved in vitamin D metabolism (CYP24A1 and CYP27B1) was determined using quantitative PCR, Western blot, and immunofluorescence staining. Furthermore, vitamin D-mediated antibacterial activity was assessed using nontypeable Haemophilus influenzae. We found that TNF-α/IL-1β treatment reduced vitamin D-induced expression of hCAP18/LL-37 and killing of nontypeable H. influenzae. In addition, CYP24A1 (a vitamin D-degrading enzyme) was increased by TNF-α/IL-1β, whereas CYP27B1 (that converts 25(OH)D3 to its active form) and vitamin D receptor expression remained unaffected. Furthermore, we have demonstrated that the TNF-α/IL-1β-mediated induction of CYP24A1 was, at least in part, mediated by the transcription factor specific protein 1, and the epidermal growth factor receptor-mitogen-activated protein kinase pathway. These findings indicate that TNF-α/IL-1β decreases vitamin D-mediated antibacterial activity and hCAP18/LL-37 expression via induction of CYP24A1 and suggest that chronic inflammation impairs protective responses induced by vitamin D.
Collapse
Affiliation(s)
- Jasmijn A Schrumpf
- 1 Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands; and
| | - Gimano D Amatngalim
- 1 Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands; and
| | - Joris B Veldkamp
- 1 Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands; and
| | - Renate M Verhoosel
- 1 Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands; and
| | - Dennis K Ninaber
- 1 Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands; and
| | - Soledad R Ordonez
- 2 Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
| | - Anne M van der Does
- 1 Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands; and
| | - Henk P Haagsman
- 2 Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
| | - Pieter S Hiemstra
- 1 Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands; and
| |
Collapse
|
20
|
Zheng Z, Qi Y, Xu X, Jiang H, Li Z, Yang Q, Zhang C, Zhang K, Chen R, Wang J, Lu W. Sputum mucin 1 is increased during the acute phase of chronic obstructive pulmonary disease exacerbation. J Thorac Dis 2017; 9:1873-1882. [PMID: 28839985 DOI: 10.21037/jtd.2017.06.63] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Mucin 1 (MUC1) is a membrane tethered protein on airway epithelial cells. This protein is upregulated and plays an important anti-inflammatory role during acute lung inflammation. However, the relationship between sputum MUC1 level and acute exacerbation of chronic obstructive pulmonary disease (AECOPD) is unknown. METHODS The levels of MUC1, IL-8, and TNF-α in induced sputum from 78 COPD patients were assessed by ELISA. The association between COPD exacerbation and MUC1 fragment levels was analyzed. An acute airway inflammation mouse model was established by intranasal LPS inhalation. The expression of Muc1 in lung and the levels of Muc1, TNF-α and KC in BAL fluid from mice were determined with western blotting and ELISA, respectively. RESULTS Higher levels of MUC1 membrane-tethered (CT) and extracellular (EC) fragments, cytokines TNF-α and IL-8, more leucocyte and neutrophil counts were found in sputum from COPD patients in acute than in remission phase. Linear regression analysis confirmed that the level of sputum MUC1 CT fragment is positively correlated with sputum neutrophil number and patients' age; whereas the sputum EC fragment level is correlated inversely with FEV1/FVC value and positively with patients' age. Inhalation of lipopolysaccharide (LPS) induced acute lung inflammation in mice which exhibited increased levels of Muc1 CT fragment in lung and only Muc1 EC fragment increase in BAL fluid. CONCLUSIONS Unlike pure bacterial induced lung inflammation, both sputum MUC1 CT and EC fragments are increased during acute exacerbation of COPD. The clinical benefits from measuring the changes of various sputum MUC1 fragments in AECOPD need to be elucidated in future studies.
Collapse
Affiliation(s)
- Zeguang Zheng
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China
| | - Yafei Qi
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China.,Central Hospital of Panyu District, Guangzhou 511470, China
| | - Xiaoming Xu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China
| | - Hua Jiang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China
| | - Zhengtu Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China
| | - Quan Yang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China
| | - Chenting Zhang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China
| | - Kedong Zhang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China
| | - Rongchang Chen
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China.,Department of Laboratory Medicine, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
21
|
Critical roles of mucin-1 in sensitivity of lung cancer cells to tumor necrosis factor-alpha and dexamethasone. Cell Biol Toxicol 2017; 33:361-371. [DOI: 10.1007/s10565-017-9393-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 04/18/2017] [Indexed: 12/16/2022]
|
22
|
Chalick M, Jacobi O, Pichinuk E, Garbar C, Bensussan A, Meeker A, Ziv R, Zehavi T, Smorodinsky NI, Hilkens J, Hanisch FG, Rubinstein DB, Wreschner DH. MUC1-ARF-A Novel MUC1 Protein That Resides in the Nucleus and Is Expressed by Alternate Reading Frame Translation of MUC1 mRNA. PLoS One 2016; 11:e0165031. [PMID: 27768738 PMCID: PMC5074479 DOI: 10.1371/journal.pone.0165031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 10/05/2016] [Indexed: 01/26/2023] Open
Abstract
Translation of mRNA in alternate reading frames (ARF) is a naturally occurring process heretofore underappreciated as a generator of protein diversity. The MUC1 gene encodes MUC1-TM, a signal-transducing trans-membrane protein highly expressed in human malignancies. Here we show that an AUG codon downstream to the MUC1-TM initiation codon initiates an alternate reading frame thereby generating a novel protein, MUC1-ARF. MUC1-ARF, like its MUC1-TM 'parent’ protein, contains a tandem repeat (VNTR) domain. However, the amino acid sequence of the MUC1-ARF tandem repeat as well as N- and C- sequences flanking it differ entirely from those of MUC1-TM. In vitro protein synthesis assays and extensive immunohistochemical as well as western blot analyses with MUC1-ARF specific monoclonal antibodies confirmed MUC1-ARF expression. Rather than being expressed at the cell membrane like MUC1-TM, immunostaining showed that MUC1-ARF protein localizes mainly in the nucleus: Immunohistochemical analyses of MUC1-expressing tissues demonstrated MUC1-ARF expression in the nuclei of secretory luminal epithelial cells. MUC1-ARF expression varies in different malignancies. While the malignant epithelial cells of pancreatic cancer show limited expression, in breast cancer tissue MUC1-ARF demonstrates strong nuclear expression. Proinflammatory cytokines upregulate expression of MUC1-ARF protein and co-immunoprecipitation analyses demonstrate association of MUC1-ARF with SH3 domain-containing proteins. Mass spectrometry performed on proteins coprecipitating with MUC1-ARF demonstrated Glucose-6-phosphate 1-dehydrogenase (G6PD) and Dynamin 2 (DNM2). These studies not only reveal that the MUC1 gene generates a previously unidentified MUC1-ARF protein, they also show that just like its ‘parent’ MUC1-TM protein, MUC1-ARF is apparently linked to signaling and malignancy, yet a definitive link to these processes and the roles it plays awaits a precise identification of its molecular functions. Comprising at least 524 amino acids, MUC1-ARF is, furthermore, the longest ARF protein heretofore described.
Collapse
Affiliation(s)
- Michael Chalick
- Department of Cell Research and Immunology, Tel Aviv University, Ramat Aviv, Israel
| | - Oded Jacobi
- Department of Cell Research and Immunology, Tel Aviv University, Ramat Aviv, Israel
| | - Edward Pichinuk
- Department of Cell Research and Immunology, Tel Aviv University, Ramat Aviv, Israel
| | - Christian Garbar
- Department of Biopathology, Institut Jean-Godinot, Reims Cedex, France
| | | | - Alan Meeker
- The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ravit Ziv
- Department of Cell Research and Immunology, Tel Aviv University, Ramat Aviv, Israel
| | - Tania Zehavi
- Department of Pathology, Meir Medical Center, Kfar Saba, Israel
| | | | - John Hilkens
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Franz-Georg Hanisch
- Institute of Biochemistry II, Medical Faculty, University of Cologne, Köln, Germany
| | | | - Daniel H. Wreschner
- Department of Cell Research and Immunology, Tel Aviv University, Ramat Aviv, Israel
- * E-mail:
| |
Collapse
|
23
|
Kato K, Uchino R, Lillehoj EP, Knox K, Lin Y, Kim KC. Membrane-Tethered MUC1 Mucin Counter-Regulates the Phagocytic Activity of Macrophages. Am J Respir Cell Mol Biol 2016; 54:515-23. [PMID: 26393683 DOI: 10.1165/rcmb.2015-0177oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
MUC1 (MUC in human; Muc in animals) is a transmembrane mucin glycoprotein expressed in mucosal epithelial cells and hematopoietic cells. MUC1 is involved in the resolution of inflammation during airway Pseudomonas aeruginosa (Pa) infection by suppressing Toll-like receptor signaling in airway epithelial cells. Although alveolar macrophages are recognized as critical mediators of cell-mediated immunity against microorganisms inhaled into the airways, the role of MUC1 in regulating their response is unknown. The aims of this study were to determine whether macrophages express MUC1, and, if so, whether MUC1 expression might be associated with macrophage M0/M1/M2 differentiation or phagocytic activity. Human and mouse MUC1/Muc1 expression was drastically up-regulated in classically activated (M1) macrophages compared with nonactivated (M0) and alternatively activated (M2) macrophages. M1 polarization and Pa stimulation each increased MUC1 ectodomain shedding from the macrophage surface in a TNF-α-converting enzyme-dependent manner. MUC1/Muc1 deficiency in M0 macrophages increased adhesion and phagocytosis of Pa and Escherichia coli compared with MUC1/Muc1-expressing cells, and attenuation of phagocytosis by MUC1 was augmented after polarization into M1 macrophages compared with M0 macrophages. Finally, MUC1/Muc1 deficiency in macrophages increased reactive oxygen species production and TNF-α release in response to Pa compared with MUC1/Muc1-sufficient cells. These results indicate that MUC1/Muc1 expression by macrophages is predominantly in the M1 subtype, and that MUC1/Muc1 expression in these cells decreases their phagocytic activity in an antiinflammatory manner.
Collapse
Affiliation(s)
- Kosuke Kato
- 1 Department of Otolaryngology, University of Arizona College of Medicine, Tucson, Arizona.,2 Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Reina Uchino
- 2 Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Erik P Lillehoj
- 3 Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kenneth Knox
- 4 Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona; and
| | - Yong Lin
- 5 Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico(Received in original form May 28, 2015 and in final form September 15, 2015)
| | - K Chul Kim
- 1 Department of Otolaryngology, University of Arizona College of Medicine, Tucson, Arizona.,2 Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
Shi M, Chen D, Yang D, Liu XY. CCL21-CCR7 promotes the lymph node metastasis of esophageal squamous cell carcinoma by up-regulating MUC1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:149. [PMID: 26667143 PMCID: PMC4678529 DOI: 10.1186/s13046-015-0268-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/09/2015] [Indexed: 12/20/2022]
Abstract
Background CCR7 and MUC1 are correlated with lymph node metastasis in ESCC, but the role of MUC1 in the CCR7-induced lymphatic metastasis and the underlying molecular mechanism is still unclear. Methods The expression of CCR7 and MUC1 was detected in the ESCC samples by IHC, and the clinical significance of CCR7 and MUC1 in ESCC was analyzed. The expression of CCR7 and MUC1 in ESCC cell lines was detected by qRT-PCR and western blot. The effect of CCL21 on the migration and invasion of ESCC cells was determined by transwell assay. The activity of MUC1 promoter was determined by luciferase reporter assay. The activation of Erk, Akt and Sp1 was detected by western blot and the binding of Sp1 to the MUC1 promoter was determined by ChIP. Results The co-expression of CCR7 and MUC1 was detected in 153 ESCC samples by IHC, and both were correlated with lymph node metastasis, regional lymphatic recurrence and poor prognosis. Correspondingly, increasing levels of MUC1 mRNA and protein were detected in the ESCC cell lines KYSE410 and Eca9706 after treatment with CCL21 in a time- and dose-dependent manner. Furthermore, silencing MUC1 could remarkably suppress the invasion and migration of ESCC cells induced by CCL21. Moreover, heterologous CCR7 promoted the invasion and migration of KYSE150 and up-regulated MUC1 expression. Increasing levels of activated ERK1/2 and Akt were detected in KYSE410 after treating the cells with CCL21, and inhibiting the activation of ERK1/2 but not Akt caused the increased transcription of MUC1. Finally, the phosphorylation of Sp1 induced by ERK1/2 and subsequent increases in the binding of Sp1 to the muc1 promoter at −99/−90 were confirmed to cause the up-regulation of MUC1 induced by CCL21-CCR7. Conclusions Our findings suggested that MUC1 plays an important role in CCL21-CCR7-induced lymphatic metastasis and may serve as a therapeutic target in ESCC.
Collapse
Affiliation(s)
- Mo Shi
- Department of Thoracic Surgery of Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China.
| | - Dong Chen
- Department of Thoracic Surgery of Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China.
| | - Dong Yang
- Department of Oncology of Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013, China.
| | - Xiang-Yan Liu
- Department of Thoracic Surgery of Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China.
| |
Collapse
|
25
|
Kato K, Lillehoj EP, Kim KC. Pseudomonas aeruginosa stimulates tyrosine phosphorylation of and TLR5 association with the MUC1 cytoplasmic tail through EGFR activation. Inflamm Res 2015; 65:225-33. [PMID: 26645913 DOI: 10.1007/s00011-015-0908-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 11/06/2015] [Accepted: 11/16/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND MUC1 is a membrane-tethered mucin expressed on the surface of epithelial and hematopoietic cells. Previous studies have established that MUC1 attenuates airway inflammation in response to Pseudomonas aeruginosa (Pa) through suppression of Toll-like receptor (TLR) signaling. Here, we elucidate the mechanism through which the MUC1 cytoplasmic tail (CT) inhibits TLR5 signaling in response to Pa and its flagellin in primary normal human bronchial epithelial (NHBE) cells. METHODS NHBE and human and mouse macrophages were stimulated with Pa or flagellin and transforming growth factor-α (TGF-α) and tumor necrosis factor-α (TNF-α) levels in cell culture supernatants were measured by ELISA. NHBE cells were stimulated with Pa, flagellin, or TNF-α and MUC1-CT, and epidermal growth factor receptor (EGFR) levels were measured by immunoblotting. NHBE cells were stimulated with Pa and MUC1-CT/TLR5 and MUC1-CT/EGFR association were detected by co-immunoprecipitation. RESULTS Stimulation of NHBE cells with Pa and flagellin each increased release of the EGFR ligand, TGF-α, from NHBE cells. Both stimuli also activated EGFR tyrosine phosphorylation in these same cells. By contrast, stimulation of NHBE cells with Pa failed to induce TNF-α release, whereas stimulation of human or mouse macrophages with Pa promoted TNF-α release. Stimulation of NHBE cells with recombinant TNF-α increased both MUC1 and EGFR protein levels, and stimulation of these cells with Pa enhanced MUC1-CT tyrosine phosphorylation and increased MUC1-CT/TLR5 and MUC1-CT/EGFR protein association, in an EGFR-dependent manner. CONCLUSIONS These results indicate that in response to Pa or flagellin, EGFR associates with and tyrosine phosphorylates MUC1-CT in primary NHBE cells, leading to increased MUC1-CT association with TLR5. Based on prior studies in tumor cells, increased MUC1-CT/TLR5 association in NHBE cells is predicted to competitively inhibit Pa/flagellin-stimulated TLR5 activation, reduce TLR5-dependent cell signaling, and down-regulate airway inflammation. Given that MUC1 is a universal suppressor of TLR signaling, the results from this study suggest that abnormal interactions between MUC1 and EGFR or TLRs may lead to the development of chronic inflammatory diseases. Thus, this is an important finding from the clinical point of view.
Collapse
Affiliation(s)
- Kosuke Kato
- Department of Otolaryngology, University of Arizona College of Medicine, 1656 E Mabel St, MRB-419, Tucson, AZ, 85724, USA. .,Department of Physiology and Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Erik P Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Kwang Chul Kim
- Department of Otolaryngology, University of Arizona College of Medicine, 1656 E Mabel St, MRB-419, Tucson, AZ, 85724, USA. .,Department of Physiology and Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
26
|
Apostolopoulos V, Stojanovska L, Gargosky SE. MUC1 (CD227): a multi-tasked molecule. Cell Mol Life Sci 2015; 72:4475-500. [PMID: 26294353 PMCID: PMC11113675 DOI: 10.1007/s00018-015-2014-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/23/2015] [Accepted: 08/06/2015] [Indexed: 12/16/2022]
Abstract
Mucin 1 (MUC1 [CD227]) is a high-molecular weight (>400 kDa), type I membrane-tethered glycoprotein that is expressed on epithelial cells and extends far above the glycocalyx. MUC1 is overexpressed and aberrantly glycosylated in adenocarcinomas and in hematological malignancies. As a result, MUC1 has been a target for tumor immunotherapeutic studies in mice and in humans. MUC1 has been shown to have anti-adhesive and immunosuppressive properties, protects against infections, and is involved in the oncogenic process as well as in cell signaling. In addition, MUC1 plays a key role in the reproductive tract, in the immune system (affecting dendritic cells, monocytes, T cells, and B cells), and in chronic inflammatory diseases. Evidence for all of these roles for MUC1 is discussed herein and demonstrates that MUC1 is truly a multitasked molecule.
Collapse
Affiliation(s)
- Vasso Apostolopoulos
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.
| | - Lily Stojanovska
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | | |
Collapse
|
27
|
Gupta V, Khan AA, Sasi BK, Mahapatra NR. Molecular mechanism of monoamine oxidase A gene regulation under inflammation and ischemia-like conditions: key roles of the transcription factors GATA2, Sp1 and TBP. J Neurochem 2015; 134:21-38. [PMID: 25810277 DOI: 10.1111/jnc.13099] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
Abstract
Monoamine oxidase A (MAOA) plays important roles in the pathogenesis of several neurological and cardiovascular disorders. The mechanism of transcriptional regulation of MAOA under basal and pathological conditions, however, remains incompletely understood. Here, we report systematic identification and characterization of cis elements and transcription factors that govern the expression of MAOA gene. Extensive computational analysis of MAOA promoter, followed by 5'-promoter deletion/reporter assays, revealed that the -71/-40 bp domain was sufficient for its basal transcription. Gel-shift and chromatin immunoprecipitation assays provided evidence of interactions of the transcription factors GATA-binding protein 2 (GATA2), Sp1 and TATA-binding protein (TBP) with this proximal promoter region. Consistently, over-expression of GATA2, Sp1 and TBP augmented MAOA promoter activity in a coordinated manner. In corroboration, siRNA-mediated down-regulation of GATA2/Sp1/TBP repressed the endogenous MAOA expression as well as transfected MAOA promoter activity. Tumor necrosis factor-α and forskolin activated MAOA transcription that was reversed by Sp1 siRNA; in support, tumor necrosis factor-α- and forskolin-induced activities were enhanced by ectopic over-expression of Sp1. On the other hand, MAOA transcription was diminished upon exposure of neuroblasts or cardiac myoblasts to ischemia-like conditions because of reduced binding of GATA2/Sp1/TBP with MAOA promoter. In conclusion, this study revealed previously unknown roles of GATA2, Sp1 and TBP in modulating MAOA expression under basal as well as pathophysiological conditions such as inflammation and ischemia, thus providing new insights into the molecular basis of aberrant MAOA expression in neuronal/cardiovascular disease states. Dysregulation of monoamine oxidase A (MAOA) have been implicated in several behavioral and neuronal disease states. Here, we identified three crucial transcription factors (GATA2, Sp1 and TBP) that regulate MAOA gene expression in a coordinated manner. Aberrant MAOA expression under pathophysiological conditions including inflammation and ischemia is mediated by altered binding of GATA2/Sp1/TBP with MAOA proximal promoter. Thus, these findings provide new insights into pathogenesis of several common diseases. GATA2, GATA-binding protein 2; Sp1, specificity protein 1; TBP, TATA-binding protein.
Collapse
Affiliation(s)
- Vinayak Gupta
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Abrar A Khan
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Binu K Sasi
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Nitish R Mahapatra
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
28
|
Macha MA, Krishn SR, Jahan R, Banerjee K, Batra SK, Jain M. Emerging potential of natural products for targeting mucins for therapy against inflammation and cancer. Cancer Treat Rev 2015; 41:277-88. [PMID: 25624117 DOI: 10.1016/j.ctrv.2015.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 12/31/2014] [Accepted: 01/07/2015] [Indexed: 02/07/2023]
Abstract
Deregulated mucin expression is a hallmark of several inflammatory and malignant pathologies. Emerging evidence suggests that, apart from biomarkers, these deregulated mucins are functional contributors to the pathogenesis in inflammation and cancer. Both overexpression and downregulation of mucins in various organ systems is associated with pathobiology of inflammation and cancer. Restoration of mucin homeostasis has become an important goal for therapy and management of such disorders has fueled the quest for selective mucomodulators. With improved understanding of mucin regulation and mechanistic insights into their pathobiological roles, there is optimism to find selective non-toxic agents capable of modulating mucin expression and function. Recently, natural compounds derived from dietary sources have drawn attention due to their anti-inflammatory and anti-oxidant properties and low toxicity. Considerable efforts have been directed towards evaluating dietary natural products as chemopreventive and therapeutic agents; identification, characterization and synthesis of their active compounds; and improving their delivery and bioavailability. We describe the current understanding of mucin regulation, rationale for targeting mucins with natural products and discuss some natural products that modulate mucin expression and functions. We further discuss the approaches and parameters that should guide future research to identify and evaluate selective natural mucomodulators for therapy.
Collapse
Affiliation(s)
- Muzafar A Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Shiv Ram Krishn
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rahat Jahan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kasturi Banerjee
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
29
|
Kato K, Lillehoj EP, Kim KC. MUC1 regulates epithelial inflammation and apoptosis by PolyI:C through inhibition of Toll/IL-1 receptor-domain-containing adapter-inducing IFN-β (TRIF) recruitment to Toll-like receptor 3. Am J Respir Cell Mol Biol 2014; 51:446-54. [PMID: 24693944 DOI: 10.1165/rcmb.2014-0018oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
MUC1/Muc1 (MUC1 in humans, Muc1 in animals) is a membrane-tethered mucin expressed by airway epithelial cells and plays an antiinflammatory role during airway bacterial infection. We previously demonstrated that MUC1/Muc1 is a negative regulator of Toll-like receptor (TLR) inflammatory signaling mediated through the myeloid differentiation primary response gene 88 (MyD88) adaptor protein. In the present study, we determined whether MUC1 regulates MyD88-independent TLR signaling mediated through the TLR3-Toll/IL-1 receptor-domain-containing adapter-inducing IFN-β (TRIF) pathway in response to poly(I:C). Compared with MUC1/Muc1-expressing controls, cells deficient in MUC1/Muc1 were more prone to poly(I:C)-induced apoptosis; had increased poly(I:C)-driven activation of caspase-3, caspase-8, IFN regulatory factor-3, and NF-κB; and displayed heightened IFN-β gene expression. MUC1 overexpression by these cells had the opposite effects. Reciprocal coimmunoprecipitation experiments established constitutive TLR3/MUC1-CT (cytoplasmic tail) protein interaction in human embryonic kidney (HEK)293T cells overexpressing the two proteins and in lung epithelial cells expressing the endogenous proteins, the latter of which was confirmed by immunofluorescence colocalization of TLR3 with MUC1-CT. Coimmunoprecipitation studies also revealed that MUC1 overexpression by HEK293T cells reduced poly(I:C)-induced TLR3/TRIF protein interaction. Finally, MUC1 overexpression had no effect on TRIF-dependent auto-activation of TLR3 signaling, suggesting that the site of action of the MUC1-CT in TLR3 signaling is not downstream of TRIF. These data indicate that MUC1-CT counter-regulates apoptotic and inflammatory responses of airway epithelial cell through constitutive association with TLR3, thereby inhibiting poly(I:C)-induced recruitment of TRIF to TLR3.
Collapse
Affiliation(s)
- Kosuke Kato
- 1 Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | | | | |
Collapse
|
30
|
Renaud F, Gnemmi V, Devos P, Aubert S, Crépin M, Coppin L, Ramdane N, Bouchindhomme B, d'Herbomez M, Van Seuningen I, Do Cao C, Pattou F, Carnaille B, Pigny P, Wémeau JL, Leteurtre E. MUC1 expression in papillary thyroid carcinoma is associated with BRAF mutation and lymph node metastasis; the latter is the most important risk factor of relapse. Thyroid 2014; 24:1375-84. [PMID: 25012490 DOI: 10.1089/thy.2013.0594] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND The incidence of papillary thyroid carcinoma (PTC) has increased over the past 30 years in Western countries. PTC is usually associated with a good prognosis, but there is a wide range of aggressiveness, and some patients develop distant metastasis and/or resistance to standard treatment. Early identification of these high-risk tumors is a current challenge for appropriate patient management. MUC1 expression has been studied previously in thyroid cancer, but its prognostic value remains controversial. Here, we correlated MUC1 expression in PTC with clinical and pathological features and with the presence of the BRAF(V600E) mutation. METHODS We performed a clinical and morphological analysis of 190 thyroid tumors (95 PTCs and 95 adenomas). MUC1 immunohistochemistry was carried out on a tissue microarray using different antibodies. The presence of the BRAF(V600E) mutation was investigated by pyrosequencing. MUC1 mRNA levels were assessed by quantitative reverse transcription polymerase chain reaction on a subset of PTC. RESULTS MUC1 expression was observed in 49% of PTCs and was found to correlate with the presence of papillary architecture, a stromal lymphoid infiltrate, aggressive histological subtypes, extrathyroidal extension, lymph node metastasis, nuclear pseudoinclusions, lymphovascular invasion, and the presence of the BRAF(V600E) mutation (p<0.0001). MUC1 was abundant in nuclear pseudoinclusions. Multivariate analysis showed a strong association of MUC1 expression with the presence of the BRAF(V600E) mutation and lymph node metastasis (p<0.0001). Lymph node metastasis was the most important risk factor of relapse. CONCLUSIONS Our study shows an association between MUC1 expression and the presence of the BRAF(V600E) mutation in PTC. Analysis of MUC1 expression could improve the risk stratification of PTCs.
Collapse
Affiliation(s)
- Florence Renaud
- 1 Institute of Pathology, Lille University Hospital , Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Xu X, Padilla MT, Li B, Wells A, Kato K, Tellez C, Belinsky SA, Kim KC, Lin Y. MUC1 in macrophage: contributions to cigarette smoke-induced lung cancer. Cancer Res 2014; 74:460-70. [PMID: 24282280 PMCID: PMC3947020 DOI: 10.1158/0008-5472.can-13-1713] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Expression of the pro-oncogenic mucin MUC1 is elevated by inflammation in airway epithelial cells, but the contributions of MUC1 to the development of lung cancer are uncertain. In this study, we developed our finding that cigarette smoke increases Muc1 expression in mouse lung macrophages, where we hypothesized MUC1 may contribute to cigarette smoke-induced transformation of bronchial epithelial cells. In human macrophages, cigarette smoke extract (CSE) strongly induced MUC1 expression through a mechanism involving the nuclear receptor PPAR-γ. CSE-induced extracellular signal-regulated kinase (ERK) activation was also required for MUC1 expression, but it had little effect on MUC1 transcription. RNA interference-mediated attenuation of MUC1 suppressed CSE-induced secretion of TNF-α from macrophages, by suppressing the activity of the TNF-α-converting enzyme (TACE), arguing that MUC1 is required for CSE-induced and TACE-mediated TNF-α secretion. Similarly, MUC1 blockade after CSE induction through suppression of PPAR-γ or ERK inhibited TACE activity and TNF-α secretion. Conditioned media from CSE-treated macrophages induced MUC1 expression and potentiated CSE-induced transformation of human bronchial epithelial cells in a TNF-α-dependent manner. Together, our results identify a signaling pathway involving PPAR-γ, ERK, and MUC1 for TNF-α secretion induced by CSE from macrophages. Furthermore, our results show how MUC1 contributes to smoking-induced lung cancers that are driven by inflammatory signals from macrophages.
Collapse
Affiliation(s)
- Xiuling Xu
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR. SE, Albuquerque, NM 87108, USA
| | - Mabel T. Padilla
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR. SE, Albuquerque, NM 87108, USA
| | - Bilan Li
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR. SE, Albuquerque, NM 87108, USA
| | - Alexandria Wells
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR. SE, Albuquerque, NM 87108, USA
| | - Kosuke Kato
- Department of Physiology & Lung Center, Temple University School of Medicine, 3420 N. Broad St., Philadelphia, PA 19140, USA
| | - Carmen Tellez
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR. SE, Albuquerque, NM 87108, USA
| | - Steven A. Belinsky
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR. SE, Albuquerque, NM 87108, USA
| | - Kwang Chul Kim
- Department of Physiology & Lung Center, Temple University School of Medicine, 3420 N. Broad St., Philadelphia, PA 19140, USA
| | - Yong Lin
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR. SE, Albuquerque, NM 87108, USA
| |
Collapse
|
32
|
Zhang K, Wang J, Jiang H, Xu X, Wang S, Zhang C, Li Z, Gong X, Lu W. Tanshinone IIA inhibits lipopolysaccharide-induced MUC1 overexpression in alveolar epithelial cells. Am J Physiol Cell Physiol 2013; 306:C59-65. [PMID: 24153432 DOI: 10.1152/ajpcell.00070.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The anti-inflammatory function of tanshinone IIA (TIIA), an active natural compound from Chinese herbal medicine Danshen, has been well recognized, and therefore TIIA has been widely used to treat various inflammatory conditions associated with cardiac and lung diseases. Mucin 1 (Muc1) plays important anti-inflammatory roles in resolution of acute lung inflammation. In this study, we investigated the effects of TIIA on LPS-induced acute lung inflammation, as well as its relationship to Muc1 expression in mouse lung and MUC1 in human alveolar epithelial cells. TIIA pretreatment significantly inhibited LPS-induced pulmonary inflammation in both Muc1 wild-type (Muc1(+/+)) and knockout (Muc1(-/-)) mice, as manifested by reduced neutrophil infiltration and reduced TNF-α and keratinocyte chemoattractant levels in bronchoalveolar lavage fluid. The inhibitory effects of TIIA on airway inflammation were associated with reduced expression of Muc1 in Muc1(+/+) mouse lung. Moreover, pretreatment with TIIA significantly inhibited LPS-induced MUC1 expression and TNF-α release in A549 alveolar epithelial cells. TNF-α upregulated MUC1 mRNA and protein expression in A549 cells, which was inhibited by pretreatment with TIIA. The LPS-induced MUC1 expression was blocked when A549 cells were transfected with siRNA targeting for TNF-α receptor 1. Furthermore, TIIA inhibited LPS-induced nuclear translocation of NF-κB and upregulation of Toll-like receptor 4 in A549 cells. Taken together, these results demonstrate that TIIA suppressed LPS-induced acute lung inflammation regardless of the presence of Muc1, and TIIA inhibited LPS- and TNF-α-induced MUC1/Muc1 expression in airway epithelial cells, suggesting that MUC1/Muc1 does not account for the mechanisms of the anti-inflammatory effects of TIIA in the airway.
Collapse
Affiliation(s)
- Kedong Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Yen JH, Xu S, Park YS, Ganea D, Kim KC. Higher susceptibility to experimental autoimmune encephalomyelitis in Muc1-deficient mice is associated with increased Th1/Th17 responses. Brain Behav Immun 2013; 29:70-81. [PMID: 23261777 PMCID: PMC3587144 DOI: 10.1016/j.bbi.2012.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/30/2012] [Accepted: 12/10/2012] [Indexed: 01/20/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system in which dendritic cells (DC) play an important role in the development of inflammatory responses. Recently it has been shown that Muc1, a membrane tethered glycoprotein, has an ability to suppress inflammatory responses in cultured DC. The objective of this study was to investigate the possible involvement of Muc1 in the development of MS using experimental autoimmune encephalomyelitis (EAE) in mice, a widely used animal model of MS. Our results showed that: (1) Muc1(-/-) mice developed greater EAE severity compared with wild type (wt) mice, which correlated with increased numbers of Th1 and Th17 cells infiltrating into the CNS; (2) upon stimulation, splenic DC from Muc1(-/-) mice produced greater amounts of IL-1β, IL-6, and IL-12 but less amounts of IL-10 compared with those from wt mice; and (3) the ability of splenic DC to differentiate antigen-specific CD4+ T cells into Th1 and Th17 cells was greater in Muc1(-/-) mice compared with wt mice. We conclude that Muc1 plays an anti-inflammatory role in EAE. This is the first report demonstrating the possible involvement of Muc1 in the development of MS and might provide a potential target for immunotherapy.
Collapse
Affiliation(s)
- Jui-Hung Yen
- Department of Microbiology & Immunology and Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Philadelphia, PA, United States
| | - Shuyun Xu
- Department of Microbiology & Immunology and Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Philadelphia, PA, United States
| | - Yong Sung Park
- Department of Microbiology & Immunology and Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Philadelphia, PA, United States
| | - Doina Ganea
- Department of Microbiology & Immunology and Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Philadelphia, PA, United States
| | - Kwang Chul Kim
- Department of Microbiology & Immunology and Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
35
|
Kim V, Kato K, Kim KC, Lillehoj EP. Role of Epithelial Cells in Chronic Inflammatory Lung Disease. SMOKING AND LUNG INFLAMMATION 2013. [PMCID: PMC7121463 DOI: 10.1007/978-1-4614-7351-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Airborne pathogens entering the lungs first encounter the mucus layer overlaying epithelial cells as a first line of host defense [1, 2]. In addition to serving as the physical barrier to these toxic agents, intact epithelia also are major sources of various macromolecules including antimicrobial agents, antioxidants and antiproteases [3, 4] as well as proinflammatory cytokines and chemokines that initiate and amplify host defensive responses to these toxic agents [5]. Airway epithelial cells can be categorized as either ciliated or secretory [6]. Secretory cells, such as goblet cells and Clara cells, are responsible for the production and secretion of mucus along the apical epithelial surface and, in conjunction with ciliated cells, for the regulation of airway surface liquid viscosity. In addition, submucosal mucus glands connect to the airway lumen through a ciliated duct that propels mucins outward. These glands are present in the larger airways between bands of smooth muscle and cartilage. See Fig. 1.
Collapse
|
36
|
Lillehoj EP, Kato K, Lu W, Kim KC. Cellular and molecular biology of airway mucins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 303:139-202. [PMID: 23445810 PMCID: PMC5593132 DOI: 10.1016/b978-0-12-407697-6.00004-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Airway mucus constitutes a thin layer of airway surface liquid with component macromolecules that covers the luminal surface of the respiratory tract. The major function of mucus is to protect the lungs through mucociliary clearance of inhaled foreign particles and noxious chemicals. Mucus is comprised of water, ions, mucin glycoproteins, and a variety of other macromolecules, some of which possess anti-microbial, anti-protease, and anti-oxidant activities. Mucins comprise the major protein component of mucus and exist as secreted and cell-associated glycoproteins. Secreted, gel-forming mucins are mainly responsible for the viscoelastic property of mucus, which is crucial for effective mucociliary clearance. Cell-associated mucins shield the epithelial surface from pathogens through their extracellular domains and regulate intracellular signaling through their cytoplasmic regions. However, neither the exact structures of mucin glycoproteins, nor the manner through which their expression is regulated, are completely understood. This chapter reviews what is currently known about the cellular and molecular properties of airway mucins.
Collapse
Affiliation(s)
- Erik P. Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kosuke Kato
- Center for Inflammation, Translational and Clinical Lung Research and Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Wenju Lu
- Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Kwang C. Kim
- Center for Inflammation, Translational and Clinical Lung Research and Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
37
|
Park YS, Guang W, Blanchard TG, Chul Kim K, Lillehoj EP. Suppression of IL-8 production in gastric epithelial cells by MUC1 mucin and peroxisome proliferator-associated receptor-γ. Am J Physiol Gastrointest Liver Physiol 2012; 303:G765-74. [PMID: 22766852 PMCID: PMC3468531 DOI: 10.1152/ajpgi.00023.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
MUC1 is a membrane-tethered mucin expressed on the apical surface of epithelial cells. Our previous report (Guang W, Ding H, Czinn SJ, Kim KC, Blanchard TG, Lillehoj EP. J Biol Chem 285: 20547-20557, 2010) demonstrated that expression of MUC1 in AGS gastric epithelial cells limits Helicobacter pylori infection and reduces bacterial-driven IL-8 production. In this study, we identified the peroxisome proliferator-associated receptor-γ (PPARγ) upstream of MUC1 in the anti-inflammatory pathway suppressing H. pylori- and phorbol 12-myristate 13-acetate (PMA)-stimulated IL-8 production. Treatment of AGS cells with H. pylori or PMA increased IL-8 levels in cell culture supernatants compared with cells treated with the respective vehicle controls. Prior small interfering (si)RNA-induced MUC1 silencing further increased H. pylori- and PMA-stimulated IL-8 levels compared with a negative control siRNA. MUC1-expressing AGS cells pretreated with the PPARγ agonist troglitazone (TGN) had reduced H. pylori- and PMA-stimulated IL-8 levels compared with cells treated with H. pylori or PMA alone. However, following MUC1 siRNA knockdown, no differences in IL-8 levels were seen between TGN/H. pylori and H. pylori-only cells or between TGN/PMA and PMA-only cells. Finally, TGN-treated AGS cells had increased Muc1 promoter activity, as measured using a Muc1-luciferase reporter gene, and greater MUC1 protein levels by Western blot analysis, compared with vehicle controls. These results support the hypothesis that PPARγ stimulates MUC1 expression by AGS cells, thereby attenuating H. pylori- and PMA-induced IL-8 production.
Collapse
Affiliation(s)
- Yong Sung Park
- 1Department of Physiology and Lung Center, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Wei Guang
- 2Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Thomas G. Blanchard
- 2Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| | - K. Chul Kim
- 1Department of Physiology and Lung Center, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - Erik P. Lillehoj
- 2Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
38
|
|
39
|
Umehara T, Kato K, Park YS, Lillehoj EP, Kawauchi H, Kim KC. Prevention of lung injury by Muc1 mucin in a mouse model of repetitive Pseudomonas aeruginosa infection. Inflamm Res 2012; 61:1013-20. [PMID: 22643830 DOI: 10.1007/s00011-012-0494-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 05/10/2012] [Accepted: 05/14/2012] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE AND DESIGN To determine whether repetitive airway Pseudomonas aeruginosa (Pa) infection results in lung inflammation and injury and, if so, whether these responses are affected by Muc1 mucin. Muc1 wild type (WT) and knockout (KO) mice were compared for body weights, lung inflammatory responses, and airspace enlargement using a chronic lung infection model system. MATERIALS Mice were treated intranasally with Pa (10(7) CFU) on days 0, 4, 7 and 10. On day 14, body weights, inflammatory cell numbers in bronchoalveolar lavage fluid (BALF), and airspace enlargement were measured. Differences in inflammatory responses between groups were statistically analyzed by the Student's t test and ANOVA. RESULTS Muc1 WT mice exhibited mild degrees of both inflammation and airspace enlargement following repetitive airway Pa infection. However, Muc1 KO mice exhibited significantly decreased body weights, greater macrophage numbers in the BALF, and increased airspace enlargement compared with Muc1 WT mice. CONCLUSIONS This is the first report demonstrating that Muc1 deficiency can lead to lung injury during chronic Pa infection in mice. These results suggest that MUC1 may play a crucial role in the resolution of inflammation during chronic respiratory infections and that MUC1 dysfunction likely contributes to the pathogenesis of chronic inflammatory respiratory disease.
Collapse
Affiliation(s)
- Tsuyoshi Umehara
- Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Philadelphia, PA 19140,, USA
| | | | | | | | | | | |
Collapse
|
40
|
Kyo Y, Kato K, Park YS, Gajghate S, Gajhate S, Umehara T, Lillehoj EP, Suzaki H, Kim KC. Antiinflammatory role of MUC1 mucin during infection with nontypeable Haemophilus influenzae. Am J Respir Cell Mol Biol 2012; 46:149-56. [PMID: 22298528 DOI: 10.1165/rcmb.2011-0142oc] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
MUC1 (or Muc1 in nonhuman species) is a membrane-tethered mucin expressed on the apical surface of mucosal epithelia (including those of the airways) that suppresses Toll-like receptor (TLR) signaling. We sought to determine whether the anti-inflammatory effect of MUC1 is operative during infection with nontypeable Haemophilus influenzae (NTHi), and if so, which TLR pathway was affected. Our results showed that: (1) a lysate of NTHi increased the early release of IL-8 and later production of MUC1 protein by A549 cells in dose-dependent and time-dependent manners, compared with vehicle control; (2) both effects were attenuated after transfection of the cells with a TLR2-targeting small interfering (si) RNA, compared with a control siRNA; (3) the NTHi-induced release of IL-8 was suppressed by an overexpression of MUC1, and was enhanced by the knockdown of MUC1; (4) the TNF-α released after treatment with NTHi was sufficient to up-regulate MUC1, which was completely inhibited by pretreatment with a soluble TNF-α receptor; and (5) primary murine tracheal surface epithelial (MTSE) cells from Muc1 knockout mice exhibited an increased in vitro production of NTHi-stimulated keratinocyte chemoattractant compared with MTSE cells from Muc1-expressing animals. These results suggest a hypothetical feedback loop model whereby NTHi activates TLRs (mainly TLR2) in airway epithelial cells, leading to the increased production of TNF-α and IL-8, which subsequently up-regulate the expression of MUC1, resulting in suppressed TLR signaling and decreased production of IL-8. This report is the first, to the best of our knowledge, demonstrating that the inflammatory response in airway epithelial cells during infection with NTHi is controlled by MUC1 mucin, mainly through the suppression of TLR2 signaling.
Collapse
Affiliation(s)
- Yoshiyuki Kyo
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Xu X, Bai L, Chen W, Padilla MT, Liu Y, Kim KC, Belinsky SA, Lin Y. MUC1 contributes to BPDE-induced human bronchial epithelial cell transformation through facilitating EGFR activation. PLoS One 2012; 7:e33846. [PMID: 22457794 PMCID: PMC3310874 DOI: 10.1371/journal.pone.0033846] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/18/2012] [Indexed: 11/18/2022] Open
Abstract
Although it is well known that epidermal growth factor receptor (EGFR) is involved in lung cancer progression, whether EGFR contributes to lung epithelial cell transformation is less clear. Mucin 1 (MUC1 in human and Muc1 in animals), a glycoprotein component of airway mucus, is overexpressed in lung tumors; however, its role and underlying mechanisms in early stage lung carcinogenesis is still elusive. This study provides strong evidence demonstrating that EGFR and MUC1 are involved in bronchial epithelial cell transformation. Knockdown of MUC1 expression significantly reduced transformation of immortalized human bronchial epithelial cells induced by benzo[a]pyrene diol epoxide (BPDE), the active form of the cigarette smoke (CS) carcinogen benzo(a)pyrene (BaP)s. BPDE exposure robustly activated a pathway consisting of EGFR, Akt and ERK, and blocking this pathway significantly increased BPDE-induced cell death and inhibited cell transformation. Suppression of MUC1 expression resulted in EGFR destabilization and inhibition of the BPDE-induced activation of Akt and ERK and increase of cytotoxicity. These results strongly suggest an important role for EGFR in BPDE-induced transformation, and substantiate that MUC1 is involved in lung cancer development, at least partly through mediating carcinogen-induced activation of the EGFR-mediated cell survival pathway that facilitates cell transformation.
Collapse
Affiliation(s)
- Xiuling Xu
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Raja SB, Murali MR, Devaraj H, Devaraj SN. Differential expression of gastric MUC5AC in colonic epithelial cells: TFF3-wired IL1 β/Akt crosstalk-induced mucosal immune response against Shigella dysenteriae infection. J Cell Sci 2012; 125:703-13. [DOI: 10.1242/jcs.092148] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
An understanding of the signaling mechanism(s) that regulate the differential expression of gastric mucin MUC5AC in colonic epithelial cells would contribute significantly to investigations of its role in colonic mucosa infected with the bacterial pathogen Shigella dysenteriae. Here we show that S. dysenteriae-Sinduced expression of interleukin-1β upregulates MUC2 expression and the differential expression of MUC5AC. Differential expression of MUC5AC involves crosstalk between interleukin-1β and Akt, whereby the trefoil factor family peptide TFF3 activates Akt by phosphorylation of EGFR. TFF3 also downregulates E-cadherin expression, causing accumulation of β-catenin in the cytosol. Phosphorylation of GSK-3β (inactivated) by activated Akt inhibits ubiquitylation of β-catenin, leading to its nuclear translocation, which then induces the expression of MUC5AC and cyclin D1. Accumulation of cyclin D1 alters the cell cycle, promoting cell survival and proliferation. Human colon HT29MTX cells, which overexpress MUC5AC, were resistant to adherence and invasion of S. dysenteriae when compared with other mucin-secreting HT29 cell types. Thus, during infection with S. dysenteriae, crosstalk between interleukin-1β and Akt wired by TFF3 induces expression of MUC5AC in colonic epithelial cells. Differentially expressed gastric MUC5AC aids in mucosal clearance of S. dysenteriae, inhibiting adherence and invasion of the pathogen to colonic epithelial cells, which protects the host.
Collapse
Affiliation(s)
- Subramaniya Bharathi Raja
- Department of Biochemistry, School of Life Sciences, University of Madras, Guindy Campus, Chennai-600025, Tamilnadu, India
| | - Malliga Raman Murali
- Department of Biochemistry, School of Life Sciences, University of Madras, Guindy Campus, Chennai-600025, Tamilnadu, India
| | - Halagowder Devaraj
- Department of Zoology, School of Life Sciences, University of Madras, Guindy Campus, Chennai-600025, Tamilnadu, x
| | | |
Collapse
|
43
|
Park YS, Lillehoj EP, Kato K, Park CS, Kim KC. PPARγ inhibits airway epithelial cell inflammatory response through a MUC1-dependent mechanism. Am J Physiol Lung Cell Mol Physiol 2012; 302:L679-87. [PMID: 22268120 DOI: 10.1152/ajplung.00360.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was conducted to examine the relationship between the peroxisome proliferator-associated receptor-γ (PPARγ) and MUC1 mucin, two anti-inflammatory molecules expressed in the airways. Treatment of A549 lung epithelial cells or primary mouse tracheal surface epithelial (MTSE) cells with phorbol 12-myristate 13-acetate (PMA) increased the levels of tumor necrosis factor (TNF)-α in cell culture media compared with cells treated with vehicle alone. Overexpression of MUC1 in A549 cells decreased PMA-stimulated TNF-α levels, whereas deficiency of Muc1 expression in MTSE cells from Muc1 null mice increased PMA-induced TNF-α levels. Treatment of A549 or MTSE cells with the PPARγ agonist troglitazone (TGN) blocked the ability of PMA to stimulate TNF-α levels. However, the effect of TGN required the presence of MUC1/Muc1, since no differences in TNF-α levels were seen between PMA and PMA plus TGN in MUC1/Muc1-deficient cells. Similarly, whereas TGN decreased interleukin-8 (IL-8) levels in culture media of MUC1-expressing A549 cells treated with Pseudomonas aeruginosa strain K (PAK), no differences in IL-8 levels were seen between PAK and PAK plus TGN in MUC1-nonexpressing cells. EMSA confirmed the presence of a PPARγ-binding element in the MUC1 gene promoter. Finally, TGN treatment of A549 cells increased MUC1 promoter activity measured using a MUC1-luciferase reporter gene, augmented MUC1 mRNA levels by quantitative RT-PCR, and enhanced MUC1 protein expression by Western blot analysis. These combined data are consistent with the hypothesis that PPARγ stimulates MUC1/Muc1 expression, thereby blocking PMA/PAK-induced TNF-α/IL-8 production by airway epithelial cells.
Collapse
Affiliation(s)
- Yong Sung Park
- Center for Inflammation, Translational and Clinical Lung Research, Temple Univ. School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | |
Collapse
|
44
|
Kato K, Lillehoj EP, Park YS, Umehara T, Hoffman NE, Madesh M, Kim KC. Membrane-tethered MUC1 mucin is phosphorylated by epidermal growth factor receptor in airway epithelial cells and associates with TLR5 to inhibit recruitment of MyD88. THE JOURNAL OF IMMUNOLOGY 2012; 188:2014-22. [PMID: 22250084 DOI: 10.4049/jimmunol.1102405] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
MUC1 is a membrane-tethered mucin glycoprotein expressed on the apical surface of mucosal epithelial cells. Previous in vivo and in vitro studies established that MUC1 counterregulates airway inflammation by suppressing TLR signaling. In this article, we elucidate the mechanism by which MUC1 inhibits TLR5 signaling. Overexpression of MUC1 in HEK293 cells dramatically reduced Pseudomonas aeruginosa-stimulated IL-8 expression and decreased the activation of NF-κB and MAPK compared with cells not expressing MUC1. However, overexpression of MUC1 in HEK293 cells did not affect NF-κB or MAPK activation in response to TNF-α. Overexpression of MyD88 abrogated the ability of MUC1 to inhibit NF-κB activation, and MUC1 overexpression inhibited flagellin-induced association of TLR5/MyD88 compared with controls. The MUC1 cytoplasmic tail associated with TLR5 in all cells tested, including HEK293T cells, human lung adenocarcinoma cell line A549 cells, and human and mouse primary airway epithelial cells. Activation of epidermal growth factor receptor tyrosine kinase with TGF-α induced phosphorylation of the MUC1 cytoplasmic tail at the Y46EKV sequence and increased association of MUC1/TLR5. Finally, in vivo experiments demonstrated increased immunofluorescence colocalization of Muc1/TLR5 and Muc1/phosphotyrosine staining patterns in mouse airway epithelium and increased Muc1 tyrosine phosphorylation in mouse lung homogenates following P. aeruginosa infection. In conclusion, epidermal growth factor receptor tyrosine phosphorylates MUC1, leading to an increase in its association with TLR5, thereby competitively and reversibly inhibiting recruitment of MyD88 to TLR5 and downstream signaling events. This unique ability of MUC1 to control TLR5 signaling suggests its potential role in the pathogenesis of chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Kosuke Kato
- Department of Physiology, Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Kim KC. Role of epithelial mucins during airway infection. Pulm Pharmacol Ther 2011; 25:415-9. [PMID: 22198062 DOI: 10.1016/j.pupt.2011.12.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 11/30/2011] [Accepted: 12/09/2011] [Indexed: 11/26/2022]
Abstract
Airway surface fluid contains two layers of mucins consisting mainly of 5 different mucin gene products. While the outer layer contains two gel-forming mucins (MUC5AC and MUC5B) that are tightly associated with various biologically active, defensive molecules, the inner layer contains three membrane-tethered mucins (MUC1, MUC4 and MUC16) shed from the apical cell surface. During airway infection, all of these mucins serve as a major protective barrier against pathogens. MUC1 mucin produced by virtually all the surface columnar epithelial cells in the respiratory tract as well as Type II pneumocytes in the alveoli plays an additional, perhaps more critical role during respiratory infection by controlling the resolution of inflammation that is essential to prevent the development of inflammatory lung disease.
Collapse
Affiliation(s)
- Kwang Chul Kim
- Lung Mucus Research Program, Center for Inflammation, Translational and Clinical Lung Research and Department of Physiology, Temple University School of Medicine, 3420 N. Broad Street, MRB-410, Philadelphia, PA 19140, USA.
| |
Collapse
|
46
|
Nguyen Y, Procario MC, Ashley SL, O'Neal WK, Pickles RJ, Weinberg JB. Limited effects of Muc1 deficiency on mouse adenovirus type 1 respiratory infection. Virus Res 2011; 160:351-9. [PMID: 21816184 DOI: 10.1016/j.virusres.2011.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/19/2011] [Accepted: 07/19/2011] [Indexed: 02/06/2023]
Abstract
Muc1 (MUC1 in humans) is a membrane-tethered mucin that exerts anti-inflammatory effects in the lung during bacterial infection. Muc1 and other mucins are also likely to form a protective barrier in the lung. We used mouse adenovirus type 1 (MAV-1, also known as MAdV-1) to determine the role of Muc1 in the pathogenesis of an adenovirus in its natural host. Following intranasal inoculation of wild type mice, we detected increased TNF-α, a cytokine linked to Muc1 production, but no consistent changes in the production of lung Muc1, Muc5ac or overall lung mucus production. Viral loads were modestly higher in the lungs of Muc1(-/-) mice compared to Muc1(+/+) mice at several early time points but decreased to similar levels by 14 days post infection in both groups. However, cellular inflammation and the expression of CXCL1, CCL5, and CCL2 did not significantly differ between Muc1(-/-) and Muc1(+/+) mice. Our data therefore suggest that Muc1 may contribute to a physical barrier that protects against MAV-1 respiratory infection. However, our data do not reveal an anti-inflammatory effect of Muc1 that contributes to MAV-1 pathogenesis.
Collapse
Affiliation(s)
- Y Nguyen
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States.
| | | | | | | | | | | |
Collapse
|
47
|
Xu J, Zhu D, He S, Spee C, Ryan SJ, Hinton DR. Transcriptional regulation of bone morphogenetic protein 4 by tumor necrosis factor and its relationship with age-related macular degeneration. FASEB J 2011; 25:2221-33. [PMID: 21411747 DOI: 10.1096/fj.10-178350] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bone morphogenetic protein-4 (BMP4) may be involved in the molecular switch that determines which late form of age-related macular degeneration (AMD) an individual develops. BMP4 expression is high in retinal pigment epithelium (RPE) cells in late, dry AMD patients, while BMP4 expression is low in the wet form of the disease, characterized by choroidal neovascularization (CNV). Here, we sought to determine the mechanism by which BMP4 is down-regulated in CNV. BMP4 expression was decreased within laser-induced CNV lesions in mice at a time when tumor necrosis factor (TNF) expression was high (7 d postlaser) and was reexpressed in RPE when TNF levels declined (14 d postlaser). We found that TNF, an important angiogenic stimulus, significantly down-regulates BMP4 expression in cultured human fetal RPE cells, ARPE-19 cells, and RPE cells in murine posterior eye cup explants. We identified two specificity protein 1 (Sp1) binding sites in the BMP4 promoter that are required for basal expression of BMP4 and its down-regulation by TNF. Through c-Jun NH(2)-terminal kinase (JNK) activation, TNF modulates Sp1 phosphorylation, thus decreasing its affinity to the BMP4 promoter. The down-regulation of BMP4 expression by TNF in CNV and mechanisms established might be useful for defining novel targets for AMD therapy.
Collapse
Affiliation(s)
- Jing Xu
- Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
The airway epithelium represents the first point of contact for inhaled foreign organisms. The protective arsenal of the airway epithelium is provided in the form of physical barriers and a vast array of receptors and antimicrobial compounds that constitute the innate immune system. Many of the known innate immune receptors, including the Toll-like receptors and nucleotide oligomerization domain-like receptors, are expressed by the airway epithelium, which leads to the production of proinflammatory cytokines and chemokines that affect microorganisms directly and recruit immune cells, such as neutrophils and T cells, to the site of infection. The airway epithelium also produces a number of resident antimicrobial proteins, such as lysozyme, lactoferrin, and mucins, as well as a swathe of cationic proteins. Dysregulation of the airway epithelial innate immune system is associated with a number of medical conditions that can result in compromised immunity and chronic inflammation of the lung. This review focuses on the innate immune capabilities of the airway epithelium and its role in protecting the lung from infection as well as the outcomes when its function is compromised.
Collapse
Affiliation(s)
- Dane Parker
- Department of Pediatrics, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
49
|
Expression of MUC1 mucin in human umbilical vein endothelial cells (HUVEC). Folia Histochem Cytobiol 2010; 48:417-24. [DOI: 10.2478/v10042-010-0027-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
50
|
Dharmaraj N, Wang P, Carson DD. Cytokine and progesterone receptor interplay in the regulation of MUC1 gene expression. Mol Endocrinol 2010; 24:2253-66. [PMID: 20962044 DOI: 10.1210/me.2009-0448] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mucin 1 (MUC1), a transmembrane mucin expressed at the apical surface of uterine epithelia, is a barrier to microbial infection and enzymatic attack. MUC1 loss at implantation sites appears to be required to permit embryo attachment and implantation in most species. MUC1 expression is regulated by progesterone (P) and proinflammatory cytokines, including TNFα and interferon γ (IFNγ). TNFα and IFNγ are highly expressed in uterine tissues under conditions where MUC1 expression is also high and activate MUC1 expression via their downstream transcription factors, nuclear factor (NF) κB and signal transducers and activators of transcription. P receptor (PR) regulates MUC1 gene expression in a PR isoform-specific fashion. Here we demonstrate that interactions among PR isoforms and cytokine-activated transcription factors cooperatively regulate MUC1 expression in a human uterine epithelial cell line, HES. Low doses of IFNγ and TNFα synergistically stimulate MUC1 promoter activity, enhance PRB stimulation of MUC1 promoter activity and cooperate with PRA to stimulate MUC1 promoter activity. Cooperative stimulation of MUC1 promoter activity requires the DNA-binding domain of the PR isoforms. MUC1 mRNA and protein expression is increased by cytokine and P treatment in HES cells stably expressing PRB. Using chromatin immunoprecipitation assays, we demonstrate efficient recruitment of NFκB, p300, SRC3 (steroid receptor coactivator 3), and PR to the MUC1 promoter. Collectively, our studies indicate a dynamic interplay among cytokine-activated transcription factors, PR isoforms and transcriptional coregulators in modulating MUC1 expression. This interplay may have important consequences in both normal and pathological contexts, e.g. implantation failure and recurrent miscarriages.
Collapse
Affiliation(s)
- Neeraja Dharmaraj
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, USA
| | | | | |
Collapse
|