1
|
Muthumalage T, Sarles E, Wang Q, Hensel E, Hill T, Rahman I, Robinson R, Stroup AM, Thongphanh K, Miller LA. In Vitro assessments of ENDS toxicity in the respiratory tract: Are we there yet? NAM JOURNAL 2025; 1:100016. [PMID: 40264558 PMCID: PMC12013380 DOI: 10.1016/j.namjnl.2025.100016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Approximately 4.6 % of U.S. adults over the age of 18 use e-cigarettes, which are a type of electronic nicotine delivery system (ENDS). Over 2.5 million U.S. middle and high school students also use both disposable and/or flavored ENDS products. The health impacts of ENDS use by adults and adolescents are considered a controversial topic in the social media partially due to misperceptions surrounding ENDS toxicity compared to that of combustible cigarettes. There is growing evidence that ENDS, particularly their product composition and design, individual and combined ingredients, and produced aerosols, are toxic to human health. Animal studies have been critical for defining the pathophysiologic outcomes resulting from ENDS use. However, in vitro approaches using human cells can measure the potential toxicity of ENDS e-liquids and aerosols on a shorter timeline and are in keeping with recent statements to replace, reduce and refine the use of animals in biomedical research and regulatory decision making. This review examines current research related to cell culture models of the respiratory tract and exposure methodologies for ENDS use and compares known in vivo parameters of injury and inflammation associated with ENDS to different in vitro systems developed to replicate the inhaled toxicant outcomes. The design and interpretation of exposure methodologies and technological gaps in the evaluation of ENDS aerosols are also discussed. Given the ongoing evolution and popularity of ENDS products, in vitro assessments for measuring respiratory tract injury and inflammation resulting from ENDS use provide a critical scientific platform for rapid evaluation of potential inhalation toxicity in tobacco regulatory science.
Collapse
Affiliation(s)
| | - Emma Sarles
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Qixin Wang
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Edward Hensel
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Thomas Hill
- Office of Science, Center for Tobacco Products, US Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Risa Robinson
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Andrea M. Stroup
- Behavioral Health and Health Policy Practice, Westat, Rockville, MD, 20850, USA
| | - Krista Thongphanh
- California National Primate Research Center, Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis 95616, USA
| | - Lisa A. Miller
- California National Primate Research Center, Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis 95616, USA
| |
Collapse
|
2
|
Beaumont AL, Raduka A, Gao N, Lee CE, Chatburn RL, Rezaee F. The impact of electronic cigarettes on airway epithelial barrier integrity in preclinical mouse model. Am J Physiol Lung Cell Mol Physiol 2025; 328:L564-L570. [PMID: 40059636 DOI: 10.1152/ajplung.00408.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/15/2025] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
The increasing use of electronic cigarettes (e-cigs) among adolescents poses significant public health risks. This study investigates the impact of e-cigs on the airway epithelial barrier, focusing on apical junctional complexes (AJCs), including tight junctions (TJs) and adherens junctions (AJs). We hypothesized that e-cigs disrupt AJCs in a mouse model, leading to increased airway barrier permeability. C57BL/6 mice were exposed to 36 mg/mL e-cig aerosols (3 puffs/min) for 1 h daily over 4 days. Bronchoalveolar lavage (BAL) fluid analysis, lung inflammation assessment, immunohistochemistry (IHC) staining, Western blotting (WB), and permeability assays were performed to evaluate the structure and function of the airway barrier. E-cig-exposed mice showed weight loss and elevated serum cotinine levels. BAL fluid analysis revealed elevated white blood cells. Histological analysis confirmed lung inflammation, whereas IHC and WB showed significant AJC disruption. Notably, claudin-2 levels were elevated in e-cig-exposed mice compared with controls. Claudin-2, known for its role in promoting permeability in "leaky" epithelia, increased alongside decreases in other TJ components, signifying structural barrier impairment. After e-cig exposure, instilling fluorescein isothiocyanate (FITC)-dextran into the airway increased serum FITC-dextran levels, indicating enhanced barrier permeability. E-cig aerosol exposure disrupts airway epithelial barrier structure and function, primarily through the disassembly of TJs and AJs. These findings suggest potential pathways for further clinical investigation into the health risks of e-cig use.NEW & NOTEWORTHY The rising use of e-cigs among youth has become a significant public health concern. This study, using a mouse model, demonstrates that exposure to e-cig aerosol leads to airway inflammation, structural damage to the airway epithelial barrier, and increased epithelial barrier permeability.
Collapse
Affiliation(s)
- Amelia L Beaumont
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Andjela Raduka
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Nannan Gao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Claire E Lee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Robert L Chatburn
- Enterprise Respiratory Care Research Cleveland Clinic, Cleveland, Ohio, United States
| | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
- Center for Pediatric Pulmonary Medicine, Cleveland Clinic Children's, Cleveland, Ohio, United States
| |
Collapse
|
3
|
Shaw VR, Byun J, Han Y, Amos CI. Effects of smoking behavior on lung metastasis in the All of Us Research Program. Sci Rep 2025; 15:11114. [PMID: 40169705 PMCID: PMC11962059 DOI: 10.1038/s41598-025-89209-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 02/04/2025] [Indexed: 04/03/2025] Open
Abstract
Smoking may be associated with an increased risk of lung metastasis in cancers of non-lung origin. We leverage survey and electronic health record data from the diverse All of Us Research Program (AoURP) database to investigate whether smoking and smoking-related behaviors increase the risk of lung metastasis in non-lung primary cancers. The results suggest that cigarette use, measured by four continuous variables, does not increase the risk of lung metastasis in seven common cancer types but demonstrates a small significant effect in a cohort including all types of cancer in the database in both univariable and multivariable analyses. An increased odds ratio of electronic smoke use in patients with lung metastasis was seen in multivariable analyses of the all cancer (OR = 1.29, 95% CI = 1.04-1.59, P = 0.02) and liver cancer (OR = 1.57, 95% CI = 1.06-2.28, P = 0.02) groups. After adjusting for estimated cigarette pack years in the multivariable model, the result remained significant for liver cancer (OR = 1.60, 95% CI = 1.02-2.47, P = 0.04) but not the all cancer cohort. These results warrant further inquiry and suggest that smoking and e-cigarettes may be associated with lung metastasis risk in patients with non-lung tumors.
Collapse
Affiliation(s)
- Vikram R Shaw
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Jinyoung Byun
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, 87131, USA
| | - Younghun Han
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, 87131, USA
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA.
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, 87131, USA.
| |
Collapse
|
4
|
Ding C, Yuan M, Cheng J, Wen J. Cross-sectional study on smoking types and stroke risk: development of a predictive model for identifying stroke risk. Front Physiol 2025; 16:1528910. [PMID: 40196720 PMCID: PMC11973365 DOI: 10.3389/fphys.2025.1528910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/13/2025] [Indexed: 04/09/2025] Open
Abstract
Background Stroke, a major global health concern, is responsible for high mortality and long-term disabilities. With the aging population and increasing prevalence of risk factors, its incidence is on the rise. Existing risk assessment tools have limitations, and there is a pressing need for more accurate and personalized stroke risk prediction models. Smoking, a significant modifiable risk factor, has not been comprehensively examined in current models regarding different smoking types. Methods Data were sourced from the 2015-2018 National Health and Nutrition Examination Survey (NHANES) and the 2020-2021 Behavioral Risk Factor Surveillance System (BRFSS). Tobacco use (including combustible cigarettes and e-cigarettes) and stroke history were obtained through questionnaires. Participants were divided into four subgroups: non-smokers, exclusive combustible cigarette users, exclusive e-cigarette users, and dual users. Covariates such as age, sex, race, education, and health conditions were also collected. Multivariate logistic regression was used to analyze the relationship between smoking and stroke. Four machine-learning models (XGBoost, logistic regression, Random Forest, and Gaussian Naive Bayes) were evaluated using the area under the receiver-operating characteristic curve (AUC), and Shapley's additive interpretation method was applied for feature importance ranking and model interpretation. Results A total of 273,028 individuals were included in the study. Exclusive combustible cigarette users had an elevated stroke risk (β: 1.36, 95% CI: 1.26-1.47, P < 0.0001). Among the four machine-learning models, the XGBoost model showed the best discriminative ability with an AUC of 0.794 (95% CI = 0.787-0.802). Conclusion This study reveals a significant association between smoking types and stroke risk. An XGBoost-based stroke prediction model was established, which has the potential to improve the accuracy of stroke risk assessment and contribute to personalized interventions for stroke prevention, thus alleviating the healthcare burden related to stroke.
Collapse
Affiliation(s)
- Chao Ding
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Minjia Yuan
- Aviation Health Department, Spring Airlines Co.,Ltd, Shanghai, China
| | - Jiwei Cheng
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junkai Wen
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Niu Y, Yip CY, Pan KW, Mak JCW, Ko WH. Effect of Electronic Cigarette Vapour Exposure on Ca 2+- and cAMP-Dependent Ion Transport in Human Airway Epithelial Cells. Lung 2025; 203:48. [PMID: 40100414 PMCID: PMC11920333 DOI: 10.1007/s00408-025-00805-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/12/2025] [Indexed: 03/20/2025]
Abstract
PURPOSE The popularity of electronic cigarettes (e-cigarettes) has grown exponentially over the past few years, and teenagers now prefer them to tobacco cigarettes. We determined whether exposure to e-cigarette vapour (e-vapour) adversely affects ion transport using human airway epithelial cell lines 16HBE14o- and Calu-3 and well-differentiated primary human bronchial epithelial cells (HBEs). METHODS We concurrently measured fluorescent signals and short-circuit current (ISC), an indicator of electrogenic ion transport, in polarised epithelia. The P2Y receptor-mediated signalling pathway was used to induce an increase in intracellular calcium concentration ([Ca2+]i) and ISC. We used a single-polypeptide fluorescence resonance energy transfer reporter based on exchange proteins directly activated by cAMP (Epac) to measure forskolin-induced changes in cAMP and ISC. RESULTS We compared the effects of e-vapour to those of traditional cigarette smoke (CS) on the human airway cell models. In all three cell types, e-vapour, similar to CS, significantly reduced agonist-induced increases in Ca2+ or cAMP signalling and ISC. However, reductions in the epithelial electrolyte transport activities did not correlate with any changes in the protein levels of various ion channels and transporters. CONCLUSION Our data suggest that e-vapour is not harmless and causes ion transport dysfunction similar to CS, thereby predisposing e-cigarette users to vaping-induced lung injury.
Collapse
Affiliation(s)
- Ya Niu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chung-Yin Yip
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ke-Wu Pan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Judith Choi-Wo Mak
- Department of Pharmacology & Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Wing-Hung Ko
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.
- The Chinese University of Hong Kong, Rm. 607A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
6
|
Rojas DE, McCartney MM, Borras E, Hicks TL, Lam TT, Kenyon NJ, Davis CE. Impacts of vaping and marijuana use on airway health as determined by exhaled breath condensate (EBC). Respir Res 2025; 26:63. [PMID: 39984952 PMCID: PMC11846476 DOI: 10.1186/s12931-025-03147-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 02/09/2025] [Indexed: 02/23/2025] Open
Abstract
Across the United States, there is increased use of cannabis products and electronic delivery systems for cannabis products and nicotine, yet little is known about their impacts on lung health. We analyzed exhaled breath condensate of 254 participants who were non-users and users who used cannabis and tobacco products. The 132 participants reported using a product ("users") were distributed into cohorts of tobacco products and cannabis products, with some participants following into multiple cohorts. Targeted analysis of inflammatory oxylipins found up-regulation among persons using tobacco products, while cannabis users had concentrations closer to nonusers, and often down-regulated. Untargeted screening of 403 significant metabolites found tobacco users had similar breath profiles, and that cannabis users had a similar profile that was closer to the profile of nonusers. Metabolites were significantly higher in breath of people using combustion products (tobacco and cannabis) relative to nonusers, and significantly lower in e-device users (nicotine and THC). Our work demonstrates the relative impact of e-delivery systems and cannabis products compared to traditional cigarette smoking on lung metabolic profiles.
Collapse
Affiliation(s)
- Dante E Rojas
- Mechanical and Aerospace Engineering, University of California, Davis, Davis, CA, USA
- UC Davis Lung Center, University of California, Davis, CA, USA
| | - Mitchell M McCartney
- Mechanical and Aerospace Engineering, University of California, Davis, Davis, CA, USA
- UC Davis Lung Center, University of California, Davis, CA, USA
- VA Northern California Health Care System, Mather, CA, USA
| | - Eva Borras
- Mechanical and Aerospace Engineering, University of California, Davis, Davis, CA, USA
- UC Davis Lung Center, University of California, Davis, CA, USA
| | - Tristan L Hicks
- Mechanical and Aerospace Engineering, University of California, Davis, Davis, CA, USA
- UC Davis Lung Center, University of California, Davis, CA, USA
| | - Tiffany T Lam
- Mechanical and Aerospace Engineering, University of California, Davis, Davis, CA, USA
- UC Davis Lung Center, University of California, Davis, CA, USA
| | - Nicholas J Kenyon
- UC Davis Lung Center, University of California, Davis, CA, USA
- VA Northern California Health Care System, Mather, CA, USA
- Department of Internal Medicine, University of California, Sacramento, CA, USA
| | - Cristina E Davis
- Mechanical and Aerospace Engineering, University of California, Davis, Davis, CA, USA.
- UC Davis Lung Center, University of California, Davis, CA, USA.
- VA Northern California Health Care System, Mather, CA, USA.
| |
Collapse
|
7
|
Lupo G, Anfuso CD, Smecca G, Cosentino A, Agafonova A, Prinzi C, Ferrauto RJ, Turzo S, Rapisarda V, Ledda C. Assessing the impact of e-cigarettes on human barrier systems: A systematic review. Transl Res 2025; 277:39-63. [PMID: 39818315 DOI: 10.1016/j.trsl.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
The use of e-cigarettes has grown rapidly in recent years, raising concerns about their impact on human health, particularly on critical physiological barriers such as the blood-brain barrier (BBB), alveolar-capillary barrier, and vascular systems. This systematic review evaluates the current literature on the effects of e-cigarette exposure on these barrier systems. E-cigarettes, regardless of nicotine content, have been shown to induce oxidative stress, inflammation, and disruption of tight junction proteins, leading to impaired barrier function. Key findings include compromised pulmonary function, increased vascular stiffness, and neuroinflammation. The review highlights potential long-term health risks associated with e-cigarette use, such as cardiovascular disease, neurodevelopmental disorders, and multi-organ fibrosis, and emphasizes the need for public health interventions to regulate e-cigarette use, especially in vulnerable populations like pregnant women and adolescents.
Collapse
Affiliation(s)
- Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Giuseppe Smecca
- Prevention and Protection Unit, Provincial Health Agency of Ragusa, 97100 Ragusa, Italy
| | - Alessia Cosentino
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Aleksandra Agafonova
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Chiara Prinzi
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Rosario Junior Ferrauto
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy
| | - Stefano Turzo
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy
| | - Venerando Rapisarda
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy
| | - Caterina Ledda
- Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.
| |
Collapse
|
8
|
Savko C, Esquer C, Molinaro C, Rokaw S, Shain AG, Jaafar F, Wright MK, Phillips JA, Hopkins T, Mikhail S, Rieder A, Mardani A, Bailey B, Sussman MA. Myocardial Infarction Injury Is Exacerbated by Nicotine in Vape Aerosol Exposure. J Am Heart Assoc 2025; 14:e038012. [PMID: 39704237 DOI: 10.1161/jaha.124.038012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Vaping is touted as a safer alternative to traditional cigarette smoking, but the full spectrum of harm reduction versus comparable risk remains unresolved. Elevated bioavailability of nicotine in vape aerosol together with known risks of nicotine exposure may result in previously uncharacterized cardiovascular consequences of vaping. The objective of this study is to assess the impact of nicotine exposure via vape aerosol inhalation upon myocardial response to infarction injury. METHODS AND RESULTS Flavored vape juice containing nicotine (5 mg/mL) or vehicle alone (0 mg) was delivered using identical 4-week treatment protocols. Mice were subjected to acute myocardial infarction injury and evaluated for outcomes of cardiac structure and function. Findings reveal that nicotine exposure leads to worse outcomes with respect to contractile performance regardless of sex. Nonmyocyte interstitial cell accumulation following infarction significantly increased with exposure to vape aerosol alone, but a comparable increase was not present when nicotine was included. CONCLUSIONS Myocardial function after infarction is significantly decreased after exposure to nicotine vape aerosol irrespective of sex. Comparable loss of contractile function was not observed in mice exposed to vape aerosol alone, highlighting the essential role of nicotine in loss of contractile function. Increased vimentin immunoreactivity was observed in the vape alone group compared with control and vape nicotine. The correlation between vaping, interstitial cell responses, and cardiac remodeling leading to impaired contractility warrants further investigation. Public health experts seeking to reduce vaping-related health risks should consider messaging that highlights the increased cardiovascular risk especially with nicotine-containing aerosols.
Collapse
Affiliation(s)
- Clarissa Savko
- SDSU Integrated Regenerative Research Institute and Biology Department San Diego State University San Diego CA
| | - Carolina Esquer
- SDSU Integrated Regenerative Research Institute and Biology Department San Diego State University San Diego CA
| | - Claudia Molinaro
- SDSU Integrated Regenerative Research Institute and Biology Department San Diego State University San Diego CA
| | - Sophie Rokaw
- SDSU Integrated Regenerative Research Institute and Biology Department San Diego State University San Diego CA
| | - Abraham G Shain
- SDSU Integrated Regenerative Research Institute and Biology Department San Diego State University San Diego CA
| | - Faid Jaafar
- SDSU Integrated Regenerative Research Institute and Biology Department San Diego State University San Diego CA
| | - Morgan K Wright
- SDSU Integrated Regenerative Research Institute and Biology Department San Diego State University San Diego CA
| | - Joy A Phillips
- SDSU Integrated Regenerative Research Institute and Biology Department San Diego State University San Diego CA
| | - Tyler Hopkins
- SDSU Integrated Regenerative Research Institute and Biology Department San Diego State University San Diego CA
| | - Sama Mikhail
- SDSU Integrated Regenerative Research Institute and Biology Department San Diego State University San Diego CA
| | - Abigail Rieder
- SDSU Integrated Regenerative Research Institute and Biology Department San Diego State University San Diego CA
| | - Ariana Mardani
- SDSU Integrated Regenerative Research Institute and Biology Department San Diego State University San Diego CA
| | - Barbara Bailey
- SDSU Department of Mathematics San Diego State University San Diego CA
| | - Mark A Sussman
- SDSU Integrated Regenerative Research Institute and Biology Department San Diego State University San Diego CA
| |
Collapse
|
9
|
Liu C, Zhang Y, Zhao J, Zhang J, Meng Z, Yang Y, Xie Y, Jiao X, Liang B, Cao J, Wang Y. Vaping/e-cigarette-induced pulmonary extracellular vesicles contribute to exacerbated cardiomyocyte impairment through the translocation of ERK5. Life Sci 2024; 358:123195. [PMID: 39481834 DOI: 10.1016/j.lfs.2024.123195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
AIMS The impact of e-cigarettes/vaping on cardiac function remains contradictory owing to insufficient direct evidence of interorgan communication. Extracellular vesicles (EVs) have protective or detrimental effects depending on pathological conditions, making it crucial to understand their role in lung-cardiac cell interactions mediated by vaping inhalation. METHODS AND KEY FINDINGS Pulmonary EVs were characterized from animals that underwent 12 weeks of nicotine inhalation (vaping component) (EVsNicotine) or vehicle control (EVsVehicle). EVsNicotine significantly increased in size and abundance compared with EVsVehicle. The direct effect of EVs Nicotine and EVs Vehicle on cardiomyocytes was then assessed in vitro and in vivo. EVs Nicotine led to a decrease in cardiac function as manifested by reduced cardiac contractility and impaired relaxation. EVs Nicotine induced increased levels of cleaved caspase-1 and cleaved caspase-11 in cardiomyocytes, indicating the promotion of pyroptosis. Meanwhile, EVsNicotine stimulated the secretion of fibrotic factors. Further analysis revealed that nicotine inhalation stimulated EVs Nicotine enriched with high levels of ERK5 (EVs Nicotine-ERK5). It was discovered that these EVs derived from pulmonary epithelial cells. Furthermore, inhibiting cardiac ERK5 blunted the EVs Nicotine-induced pyroptosis and fibrotic factor secretion. We further identified GATA4, a pro-pyroptosis transcription factor, as being activated through ERK5-dependent phosphorylation. SIGNIFICANCE Our research demonstrates that nicotine inhalation exacerbates cardiac injury through the activation of EVs derived from the lungs during e-cigarettes/vaping. Specifically, the EVs containing ERK5 play a crucial role in mediating the detrimental effects on cardiac function. This research provides new insights into the cardiac toxicity of vaping and highlights the role of EVs Nicotine-ERK5 in this process.
Collapse
Affiliation(s)
- Caihong Liu
- Department of Physiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yanwei Zhang
- Department of Cardiology, The First Affiliated Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Jianli Zhao
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Zhijun Meng
- Clinical Laboratory, Shanxi Provincial People's Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yuhui Yang
- Department of Anesthesiology, Guangdong Medical University, Guangzhou 510182, Guangdong, China
| | - Yaoli Xie
- Department of Physiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Xiangying Jiao
- Department of Physiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Bin Liang
- Department of Physiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, China; Department of Cardiology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Jimin Cao
- Department of Physiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Yajing Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
10
|
Li B, Huang N, Wei S, Meng Q, Wu S, Aschner M, Li X, Chen R. Metallothionein ameliorates airway epithelial apoptosis upon particulate matter exposure: role of oxidative stress and ion homeostasis. CURRENT MEDICINE (CHAM, SWITZERLAND) 2024; 3:9. [PMID: 39989709 PMCID: PMC11845221 DOI: 10.1007/s44194-024-00036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 08/27/2024] [Indexed: 02/25/2025]
Abstract
Purpose To investigate the mechanism underlying particulate matter (PM) exposure-induced oxidative stress and potential rescue strategies against pulmonary damage in this context. Methods A combination of omics technology and bioinformatic analysis were used to uncover mechanisms underlying cellular responses to PM exposure in human bronchial epithelia (HBE) cells and imply the potential rescue. Results Our results implicated that oxidative stress, metal ion homeostasis, and apoptosis were the major cellular responses to PM exposure in HBE cells. PM exposure disrupted oxidative phosphorylation (OXPHOS)-related gene expressions in HBE cells. Rescuing the expression of these genes with supplemental coenzyme Q10 (Co Q10) inhibited reactive oxygen species (ROS) generation; however, it only partially protected HBEs against PM exposure-induced apoptosis. Further, metallothionein (MT)-encoding genes associated with metal ion homeostasis were significantly induced in HBE cells, which was transcriptionally regulated by specificity protein 1 (SP1). SP1 knock-down (KD) aggravated PM-induced apoptosis in HBE cells, suggesting it plays a role in MT induction. Subsequent studies corroborated the protective role of MT by showing that exogenous MT supplement demonstrated effective protection against PM-induced oxidative stress and apoptosis in HBE cells. Importantly, exogenous MT supplement was shown to reduce ROS generation and apoptosis in airway epithelia in both HBE cells and a PM-inhaled murine model. Conclusion This study demonstrates that the impact of MT on airway epithelia by suppressing oxidative stress and maintaining metal ion homeostasis is beneficial in attenuating damage to pulmonary cells undergoing PM exposure.
Collapse
Affiliation(s)
- Bin Li
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Nannan Huang
- School of Public Health, Capital Medical University, Beijing 100069, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Shengnan Wei
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Qingtao Meng
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Shenshen Wu
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Xiaobo Li
- School of Public Health, Capital Medical University, Beijing 100069, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- School of Public Health, Southeast University, Nanjing 210009, China
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing 100069, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
11
|
Li X, Yuan L, Wang F. Health outcomes of electronic cigarettes. Chin Med J (Engl) 2024; 137:1903-1911. [PMID: 38973260 PMCID: PMC11332784 DOI: 10.1097/cm9.0000000000003098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Indexed: 07/09/2024] Open
Abstract
ABSTRACT The usage of electronic cigarettes (e-cigarettes) sparked an outbreak of unidentified vaping-related lung disease in the US during late 2019. With e-cigarettes becoming more and more popular, smokers have more options other than conventional cigarettes. Under these circumstances, a comprehensive evaluation of the general safety of new tobacco and tobacco-related products, represented by e-cigarettes, to human health is necessary. In this review, we summarize the current research on potential negative impacts of e-cigarette exposure on human health. In particular, studies detailing the relationship between e-cigarettes and the digestive system are summarized, with mechanisms mainly including hepatic metabolic dysfunction, impaired gut barrier, and worsened outcomes of inflammatory bowel disease (IBD). Although believed to be safer than traditional cigarettes, e-cigarettes exert adverse effects on systemic health and induce the development of multiple diseases including asthma, cardiovascular disease, and IBD. Moreover, nicotine-containing e-cigarettes have a negative impact on the childhood development and increase the risk of arterial stiffness compared to the non-nicotine e-cigarettes. However, non-nicotine e-cigarette components have detrimental effects including promoting liver damage and metabolic disorders.
Collapse
Affiliation(s)
- Xinmeng Li
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Hunan Key Laboratory of Non-resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Lingzhi Yuan
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Fen Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Hunan Key Laboratory of Non-resolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
12
|
Wills TA, Maziak W, Asfar T, Roy S. Current perspective on e-cigarette use and respiratory outcomes: mechanisms and messaging. Expert Rev Respir Med 2024; 18:597-609. [PMID: 39101843 PMCID: PMC11405137 DOI: 10.1080/17476348.2024.2387090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/20/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
INTRODUCTION There has been an increasing amount of research on the consequences of e-cigarette use for respiratory outcomes, which is significant for public health and respiratory medicine. We discuss recent findings and lay out implications for prevention and treatment. AREAS COVERED Based on literature searches using several databases (PubMed, Web of Science, Google Scholar) for keywords, including synonyms, 'e-cigarettes,' with 'pulmonary function,' 'oxidative stress,' and 'inflammation,' we review studies on acute effects of e-cigarette use for measures of pulmonary function and discuss selected laboratory studies on mechanisms of effect, focusing on processes with known relation to respiratory disease; oxidative stress and inflammation. We discuss available studies that have tested the effectiveness of communication strategies for prevention of e-cigarette use oriented to different audiences, including nonsmoking adolescents and adult smokers. EXPERT OPINION We conclude that the evidence presents a mixed picture. Evidence is found for adverse consequences of e-cigarette use on measures of lung function and two disease-related biological processes, sometimes but not always less than for cigarette smoking. How to best communicate these results to a complex audience of users, from younger susceptible adolescents to long-term adult smokers interested in quitting, is a question of significant interest and empirically validated communication strategies are greatly needed.
Collapse
Affiliation(s)
- Thomas A. Wills
- Cancer Prevention in the Pacific Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI 96813, United States
| | - Wasim Maziak
- Department of Epidemiology, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, United States
| | - Taghrid Asfar
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Simanta Roy
- Department of Epidemiology, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, United States
| |
Collapse
|
13
|
Yammine L, Tovar M, Yammine NA, Becker C, Weaver MF. E-cigarettes and Youth: The Known, the Unknown, and Implications for Stakeholders. J Addict Med 2024; 18:360-365. [PMID: 38498621 DOI: 10.1097/adm.0000000000001304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
ABSTRACT Despite the decline in the prevalence of e-cigarette use among youth during the coronavirus disease 2019 pandemic, more than 2.5 million of US high and middle schoolers are still using e-cigarettes. Furthermore, those who use e-cigarettes are starting at a younger age and are using them more intensely, reflecting, at least in part, a high addiction liability of modern e-cigarettes. Beyond addiction, accumulating evidence suggests that, in the short-term, e-cigarettes are associated with cardiovascular and pulmonary effects, whereas the long-term effects of e-cigarette use are yet to be established. The aim of this review is to synthesize current knowledge on e-cigarette use among youth, including established and potential risks and efforts to date to curb youth exposure to e-cigarettes. In addition, we provide recommendations for health care providers, researchers, and other stakeholders to address this significant public health issue.
Collapse
Affiliation(s)
- Luba Yammine
- From the Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, UTHealth McGovern Medical School, Houston, TX (LY, MFW); University of Texas Health Science Center at Houston, Houston, TX (MT, CB); and University of Texas Health Science Center at San Antonio, San Antonio, TX (NAY)
| | | | | | | | | |
Collapse
|
14
|
Walker-Franklin I, Onyenwoke RU, Leung T, Huang X, Shipman JG, Kovach A, Sivaraman V. GC/HRMS Analysis of E-Liquids Complements In Vivo Modeling Methods and can Help to Predict Toxicity. ACS OMEGA 2024; 9:26641-26650. [PMID: 38911720 PMCID: PMC11191570 DOI: 10.1021/acsomega.4c03416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024]
Abstract
Tobacco smoking is a major risk factor for disease development, with the user inhaling various chemicals known to be toxic. However, many of these chemicals are absent before tobacco is "burned". Similar, detailed data have only more recently being reported for the e-cigarette with regards to chemicals present before and after the e-liquid is "vaped." Here, zebrafish were dosed with vaped e-liquids, while C57-BL/6J mice were vaped using nose-cone only administration. Preliminary assessments were made using e-liquids and GC/HRMS to identify chemical signatures that differ between unvaped/vaped and flavored/unflavored samples. Oxidative stress and inflammatory immune cell response assays were then performed using our in vivo models. Chemical signatures differed, e.g., between unvaped/vaped samples and also between unflavored/flavored e-liquids, with known chemical irritants upregulated in vaped and unvaped flavored e-liquids compared with unflavored e-liquids. However, when possible respiratory irritants were evaluated, these agents were predominantly present in only the vaped e-liquid. Both oxidative stress and inflammatory responses were induced by a menthol-flavored but not a tobacco-flavored e-liquid. Thus, chemical signatures differ between unvaped versus vaped e-liquid samples and also between unflavored versus flavored e-liquids. These flavors also likely play a significant role in the variability of e-liquid characteristics, e.g., pro-inflammatory and/or cytotoxic responses.
Collapse
Affiliation(s)
| | - Rob U. Onyenwoke
- Department
of Biological & Biomedical Sciences, North Carolina Central University, Durham, North Carolina 27707, United States
- Biomanufacturing
Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, North Carolina 27707, United States
| | - TinChung Leung
- Department
of Biological & Biomedical Sciences, North Carolina Central University, Durham, North Carolina 27707, United States
- The
Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina
Research Campus, Kannapolis, North Carolina 28081, United States
| | - Xiaoyan Huang
- The
Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina
Research Campus, Kannapolis, North Carolina 28081, United States
| | - Jeffrey G. Shipman
- Department
of Biological & Biomedical Sciences, North Carolina Central University, Durham, North Carolina 27707, United States
| | - Alex Kovach
- RTI
International, Research
Triangle Park, North Carolina 27704, United States
| | - Vijay Sivaraman
- Department
of Biological & Biomedical Sciences, North Carolina Central University, Durham, North Carolina 27707, United States
| |
Collapse
|
15
|
Allbright K, Villandre J, Crotty Alexander LE, Zhang M, Benam KH, Evankovich J, Königshoff M, Chandra D. The paradox of the safer cigarette: understanding the pulmonary effects of electronic cigarettes. Eur Respir J 2024; 63:2301494. [PMID: 38609098 DOI: 10.1183/13993003.01494-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 03/16/2024] [Indexed: 04/14/2024]
Abstract
Electronic cigarette (e-cigarette) use continues to rise globally. E-cigarettes have been presented as safer alternatives to combustion cigarettes that can mitigate the harm associated with tobacco products; however, the degree to which e-cigarette use itself can lead to morbidity and mortality is not fully defined. Herein we describe how e-cigarettes function; discuss the current knowledge of the effects of e-cigarette aerosol on lung cell cytotoxicity, inflammation, antipathogen immune response, mucociliary clearance, oxidative stress, DNA damage, carcinogenesis, matrix remodelling and airway hyperresponsiveness; and summarise the impact on lung diseases, including COPD, respiratory infection, lung cancer and asthma. We highlight how the inclusion of nicotine or flavouring compounds in e-liquids can impact lung toxicity. Finally, we consider the paradox of the safer cigarette: the toxicities of e-cigarettes that can mitigate their potential to serve as a harm reduction tool in the fight against traditional cigarettes, and we summarise the research needed in this underinvestigated area.
Collapse
Affiliation(s)
- Kassandra Allbright
- Department of Medicine and the Electronic Cigarette Research Initiative, University of Pittsburgh, Pittsburgh, PA, USA
| | - John Villandre
- Department of Medicine and the Electronic Cigarette Research Initiative, University of Pittsburgh, Pittsburgh, PA, USA
| | - Laura E Crotty Alexander
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Michael Zhang
- Department of Medicine and the Electronic Cigarette Research Initiative, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kambez H Benam
- Department of Medicine and the Electronic Cigarette Research Initiative, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - John Evankovich
- Department of Medicine and the Electronic Cigarette Research Initiative, University of Pittsburgh, Pittsburgh, PA, USA
| | - Melanie Königshoff
- Department of Medicine and the Electronic Cigarette Research Initiative, University of Pittsburgh, Pittsburgh, PA, USA
| | - Divay Chandra
- Department of Medicine and the Electronic Cigarette Research Initiative, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Sanchez JC, Sanchez J, Farah FR. Spontaneous Pneumomediastinum Induced by a Combination of Flu-A Infection and E-cigarettes: A Case Report. Cureus 2024; 16:e61689. [PMID: 38975450 PMCID: PMC11226214 DOI: 10.7759/cureus.61689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024] Open
Abstract
Pneumomediastinum (PM) and subcutaneous emphysema are characterized by extra-alveolar air within the mediastinum and subcutaneous tissue. PM may occur spontaneously or due to trauma or an underlying airway disease. Spontaneous pneumomediastinum (SPM) may be caused by intractable vomiting, forceful coughing, child birthing, or performing a Valsalva maneuver. However, there are limited studies or case reports that present a combination of influenza A infection and electronic cigarette (e-cigarette)-induced SPM. This case report presents SPM in a previously healthy 20-year-old female with untreated influenza A infection and a history of e-cigarette use who presented to the emergency department with fever, cough, chest pain, dyspnea, and vomiting. Her physical examination was significant for neck tenderness, subcutaneous neck crepitus, and increased respiratory effort. Diagnostic evaluation included a chest X-ray and chest computed tomography that revealed PM with subcutaneous emphysema extending into the neck, as well as a negative Gastrografin study. She was treated conservatively and discharged after two days, with a follow-up scheduled at a pulmonary clinic. This case report highlights the need for a detailed substance use history, particularly e-cigarette use, when determining the etiology of SPM in a previously healthy patient. Management for SPM is conservative and should include addressing underlying etiologies with special attention to cessation and education of e-cigarettes and illicit substances.
Collapse
Affiliation(s)
- Jason C Sanchez
- Hospital Medicine, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, USA
| | - Jaron Sanchez
- Hospital Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Clearwater, USA
| | - Farah R Farah
- Hospital Medicine, Methodist Health System, San Antonio, USA
| |
Collapse
|
17
|
Hamon R, Thredgold L, Wijenayaka A, Bastian NA, Ween MP. Dual Exposure to E-Cigarette Vapour and Cigarette Smoke Results in Poorer Airway Cell, Monocyte, and Macrophage Function Than Single Exposure. Int J Mol Sci 2024; 25:6071. [PMID: 38892256 PMCID: PMC11173218 DOI: 10.3390/ijms25116071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
E-cigarette users predominantly also continue to smoke cigarettes. These Dual Users either consume e-cigarettes in locations where smoking is not allowed, but vaping is, or to reduce their consumption of cigarettes, believing it will lead to harm reduction. Whilst it is known that e-cigarette vapour is chemically less complex than cigarette smoke, it has a distinct chemical profile, and very little is known about the health impacts of exposure to both chemical profiles vs. either alone. We simultaneously exposed cells in vitro to non-toxic levels of e-cigarette vapour extract (EVE) and cigarette smoke extract (CSE) to determine their effects on 16HBE14o- airway epithelial cell metabolism and inflammatory response, as well as immune cell (THP-1 cells and monocyte-derived macrophages (MDM) from healthy volunteers) migration, phagocytosis, and inflammatory response. We observed increased toxicity, reduced metabolism (a marker of proliferation) in airway epithelial cells, and reduced monocyte migration, macrophage phagocytosis, and altered chemokine production after exposure to either CSE or EVE. These cellular responses were greater after dual exposure to CSE and EVE. The airway epithelial cells from smokers showed reduced metabolism after EVE (the Switcher model) and dual CSE and EVE exposure. When EVE and CSE were allowed to interact, the chemicals were found to be altered, and new chemicals were also found compared to the CSE and EVE profiles. Dual exposure to e-cigarette vapour and cigarette smoke led to worse functional outcomes in cells compared to either single exposure alone, adding to limited data that dual use may be more dangerous than smoking only.
Collapse
Affiliation(s)
- Rhys Hamon
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, SA 5000, Australia
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Leigh Thredgold
- Department of Occupational and Environmental Health, School of Public Health, University of Adelaide, Adelaide, SA 5005, Australia
| | - Asiri Wijenayaka
- School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Nicole Anne Bastian
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Miranda P. Ween
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
18
|
Tao X, Zhang J, Meng Q, Chu J, Zhao R, Liu Y, Dong Y, Xu H, Tian T, Cui J, Zhang L, Chu M. The potential health effects associated with electronic-cigarette. ENVIRONMENTAL RESEARCH 2024; 245:118056. [PMID: 38157958 DOI: 10.1016/j.envres.2023.118056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/17/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
A good old gateway theory that electronic-cigarettes (e-cigarettes) are widely recognized as safer tobacco substitutes. In actuality, demographics also show that vaping cannibalizes smoking, the best explanation of the data is the "common liability". However, the utilization of e-cigarette products remains a controversial topic at present. Currently, there has been a widespread and substantial growth in e-cigarette use worldwide owing to their endless new flavors and customizable characteristics. Furthermore, e-cigarette has grown widespread among smokers as well as non-smokers, including adolescents and young adults. And some studies have shown that e-cigarette users are at greater risk to start using combustible cigarettes while e-cigarettes use was also observed the potential benefits to people who want to quit smoking or not. Although it is true that e-cigarettes generally contain fewer toxic substances than combustible cigarettes, this does not mean that the chemical composition in e-cigarettes aerosols poses absolutely no risks. While concerns about toxic substances in e-cigarettes and their widespread use in the population are reasonable, it is also crucial to consider that e-cigarettes have been associated with the potential for promoting smoking cessation and the clinically relevant improvements in users with smoking-related pathologies. Meanwhile, there is still short of understanding of the health impacts associated with e-cigarette use. Therefore, in this review, we discussed the health impacts of e-cigarette exposure on oral, nasal, pulmonary, cardiovascular systems and brain. We aspire for this review to change people's previous perceptions of e-cigarettes and provide them with a more balanced perspective. Additionally, we suggest appropriate adjustments on regulation and policy for e-cigarette to gain greater public health benefits.
Collapse
Affiliation(s)
- Xiaobo Tao
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Jiale Zhang
- The Second People's Hospital of Nantong, Nantong, Jiangsu, China
| | - Qianyao Meng
- Department of Global Health and Population, School of Public Health, Harvard University, Boston, USA
| | - Junfeng Chu
- Department of Oncology, Jiangdu People's Hospital of Yangzhou, Yangzhou, Jiangsu, China
| | - Rongrong Zhao
- Department of Oncology, Jiangdu People's Hospital of Yangzhou, Yangzhou, Jiangsu, China
| | - Yiran Liu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yang Dong
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Huiwen Xu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Tian Tian
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Jiahua Cui
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Lei Zhang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China.
| | - Minjie Chu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
19
|
Dai Y, Yang W, Song H, He X, Guan R, Wu Z, Jiang X, Li M, Liu P, Chen J. Long-term effects of chronic exposure to electronic cigarette aerosol on the cardiovascular and pulmonary system in mice: A comparative study to cigarette smoke. ENVIRONMENT INTERNATIONAL 2024; 185:108521. [PMID: 38508052 DOI: 10.1016/j.envint.2024.108521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/03/2024] [Accepted: 02/19/2024] [Indexed: 03/22/2024]
Abstract
Electronic cigarettes (e-cigarettes) have rapidly gained popularity as alternatives to traditional combustible cigarettes. However, their long-term health impact remains uncertain. This study aimed to investigate the effects of chronic exposure to e-cigarette aerosol (ECA) in mice compared to conventional cigarette smoke (CS) exposure. The mice were exposed to air (control), low, medium, or high doses of ECA, or a reference CS dose orally and nasally for eight months. Various cardiovascular and pulmonary assessments have been conducted to determine the biological and prosthetic effects. Histopathological analysis was used to determine structural changes in the heart and lungs. Biological markers associated with fibrosis, inflammation, and oxidative stress were investigated. Cardiac proteomic analysis was applied to reveal the shared and unique protein expression changes in ECA and CS groups, which related to processes such as immune activation, lipid metabolism, and intracellular transport. Overall, chronic exposure to ECA led to adverse cardiovascular and pulmonary effects in mice, although they were less pronounced than those of CS exposure. This study provides evidence that e-cigarettes may be less harmful than combustible cigarettes for the long-term health of the cardiovascular and respiratory systems in mice. However, further human studies are needed to clarify the long-term health risks associated with e-cigarette use.
Collapse
Affiliation(s)
- Yuxing Dai
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wanchun Yang
- Jieyang Medical Research Center, Jieyang People's Hospital, Jieyang, Guangdong, China
| | - Hongjia Song
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiangjun He
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ruoqing Guan
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zehong Wu
- RELX Science Center, Shenzhen RELX Tech. Co. Ltd., Shenzhen 518101, China
| | - Xingtao Jiang
- RELX Science Center, Shenzhen RELX Tech. Co. Ltd., Shenzhen 518101, China
| | - Min Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Jianwen Chen
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
20
|
Shipman JG, Onyenwoke RU, Sivaraman V. Vaping-Dependent Pulmonary Inflammation Is Ca 2+ Mediated and Potentially Sex Specific. Int J Mol Sci 2024; 25:1785. [PMID: 38339063 PMCID: PMC10855597 DOI: 10.3390/ijms25031785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Here we use the SCIREQ InExpose system to simulate a biologically relevant vaping model in mice to investigate the role of calcium signaling in vape-dependent pulmonary disease as well as to investigate if there is a gender-based difference of disease. Male and female mice were vaped with JUUL Menthol (3% nicotine) using the SCIREQ InExpose system for 2 weeks. Additionally, 2-APB, a known calcium signaling inhibitor, was administered as a prophylactic for lung disease and damage caused by vaping. After 2 weeks, mice were exposed to lipopolysaccharide (LPS) to mimic a bacterial infection. Post-infection (24 h), mice were sacrificed, and bronchoalveolar lavage fluid (BALF) and lungs were taken. Vaping primed the lungs for worsened disease burden after microbial challenge (LPS) for both males and females, though females presented increased neutrophilia and inflammatory cytokines post-vape compared to males, which was assessed by flow cytometry, and cytokine and histopathological analysis. This increased inflammatory burden was controlled by calcium signaling inhibition, suggesting that calcium dysregulation may play a role in lung injury caused by vaping in a gender-dependent manner.
Collapse
Affiliation(s)
- Jeffrey G. Shipman
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA; (J.G.S.); (R.U.O.)
| | - Rob U. Onyenwoke
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA; (J.G.S.); (R.U.O.)
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA
| | - Vijay Sivaraman
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA; (J.G.S.); (R.U.O.)
- The Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
21
|
Petpiroon N, Netkueakul W, Sukrak K, Wang C, Liang Y, Wang M, Liu Y, Li Q, Kamran R, Naruse K, Aueviriyavit S, Takahashi K. Development of lung tissue models and their applications. Life Sci 2023; 334:122208. [PMID: 37884207 DOI: 10.1016/j.lfs.2023.122208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
The lungs are important organs that play a critical role in the development of specific diseases, as well as responding to the effects of drugs, chemicals, and environmental pollutants. Due to the ethical concerns around animal testing, alternative methods have been sought which are more time-effective, do not pose ethical issues for animals, do not involve species differences, and provide easy investigation of the pathobiology of lung diseases. Several national and international organizations are working to accelerate the development and implementation of structurally and functionally complex tissue models as alternatives to animal testing, particularly for the lung. Unfortunately, to date, there is no lung tissue model that has been accepted by regulatory agencies for use in inhalation toxicology. This review discusses the challenges involved in developing a relevant lung tissue model derived from human cells such as cell lines, primary cells, and pluripotent stem cells. It also introduces examples of two-dimensional (2D) air-liquid interface and monocultured and co-cultured three-dimensional (3D) culture techniques, particularly organoid culture and 3D bioprinting. Furthermore, it reviews development of the lung-on-a-chip model to mimic the microenvironment and physiological performance. The applications of lung tissue models in various studies, especially disease modeling, viral respiratory infection, and environmental toxicology will be also introduced. The development of a relevant lung tissue model is extremely important for standardizing and validation the in vitro models for inhalation toxicity and other studies in the future.
Collapse
Affiliation(s)
- Nalinrat Petpiroon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Woranan Netkueakul
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Kanokwan Sukrak
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Thailand Network Center on Air Quality Management: TAQM, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chen Wang
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Yin Liang
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Mengxue Wang
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Yun Liu
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Qiang Li
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Rumaisa Kamran
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Keiji Naruse
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Sasitorn Aueviriyavit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Ken Takahashi
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan.
| |
Collapse
|
22
|
Raduka A, Gao N, Chatburn RL, Rezaee F. Electronic cigarette exposure disrupts airway epithelial barrier function and exacerbates viral infection. Am J Physiol Lung Cell Mol Physiol 2023; 325:L580-L593. [PMID: 37698113 PMCID: PMC11068398 DOI: 10.1152/ajplung.00135.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/07/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023] Open
Abstract
The use of electronic cigarettes (e-cigs), especially among teenagers, has reached alarming and epidemic levels, posing a significant threat to public health. However, the short- and long-term effects of vaping on the airway epithelial barrier are unclear. Airway epithelial cells are the forefront protectors from viruses and pathogens. They contain apical junctional complexes (AJCs), which include tight junctions (TJs) and adherens junctions (AJs) formed between adjacent cells. Previously, we reported respiratory syncytial virus (RSV) infection, the leading cause of acute lower respiratory infection-related hospitalization in children and high-risk adults, induces a "leaky airway" by disrupting the epithelial AJC structure and function. We hypothesized chemical components of e-cigs disrupt airway epithelial barrier and exacerbate RSV-induced airway barrier dysfunction. Using confluent human bronchial epithelial (16HBE) cells and well-differentiated normal human bronchial epithelial (NHBE) cells, we found that exposure to extract and aerosol e-cig nicotine caused a significant decrease in transepithelial electrical resistance (TEER) and the structure of the AJC even at noncytotoxic concentrations. Western blot analysis of 16HBE cells exposed to e-cig nicotine extract did not reveal significant changes in AJC proteins. Exposure to aerosolized e-cig cinnamon or menthol flavors also induced barrier disruption and aggravated nicotine-induced airway barrier dysfunction. Moreover, preexposure to nicotine aerosol increased RSV infection and the severity of RSV-induced airway barrier disruption. Our findings demonstrate that e-cig exposure disrupts the airway epithelial barrier and exacerbates RSV-induced damage. Knowledge gained from this study will provide awareness of adverse e-cig respiratory effects and positively impact the mitigation of e-cig epidemic.NEW & NOTEWORTHY Electronic cigarette (e-cig) use, especially in teens, is alarming and at epidemic proportions, threatening public health. Our study shows that e-cig nicotine exposure disrupts airway epithelial tight junctions and increases RSV-induced barrier dysfunction. Furthermore, exposure to aerosolized flavors exaggerates e-cig nicotine-induced airway barrier dysfunction. Our study confirms that individual and combined components of e-cigs deleteriously impact the airway barrier and that e-cig exposure increases susceptibility to viral infection.
Collapse
Affiliation(s)
- Andjela Raduka
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Nannan Gao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Robert L Chatburn
- Enterprise Respiratory Care Research Cleveland Clinic, Cleveland Clinic Children's, Cleveland, Ohio, United States
| | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
- Center for Pediatric Pulmonary Medicine, Cleveland Clinic Children's, Cleveland, Ohio, United States
| |
Collapse
|
23
|
Pat Y, Ogulur I, Yazici D, Mitamura Y, Cevhertas L, Küçükkase OC, Mesisser SS, Akdis M, Nadeau K, Akdis CA. Effect of altered human exposome on the skin and mucosal epithelial barrier integrity. Tissue Barriers 2023; 11:2133877. [PMID: 36262078 PMCID: PMC10606824 DOI: 10.1080/21688370.2022.2133877] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/23/2022] [Accepted: 08/27/2022] [Indexed: 10/24/2022] Open
Abstract
Pollution in the world and exposure of humans and nature to toxic substances is continuously worsening at a rapid pace. In the last 60 years, human and domestic animal health has been challenged by continuous exposure to toxic substances and pollutants because of uncontrolled growth, modernization, and industrialization. More than 350,000 new chemicals have been introduced to our lives, mostly without any reasonable control of their health effects and toxicity. A plethora of studies show exposure to these harmful substances during this period with their implications on the skin and mucosal epithelial barrier and increasing prevalence of allergic and autoimmune diseases in the context of the "epithelial barrier hypothesis". Exposure to these substances causes an epithelial injury with peri-epithelial inflammation, microbial dysbiosis and bacterial translocation to sub-epithelial areas, and immune response to dysbiotic bacteria. Here, we provide scientific evidence on the altered human exposome and its impact on epithelial barriers.
Collapse
Affiliation(s)
- Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Medical Microbiology, Faculty of Medicine, Aydin Menderes University, Turkey
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Lacin Cevhertas
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Medical Immunology, Institute of Health Sciences, Bursa Uludag University, Turkey
| | - Ozan C Küçükkase
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sanne S Mesisser
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Kari Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University and Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, CA, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| |
Collapse
|
24
|
Rose JJ, Krishnan-Sarin S, Exil VJ, Hamburg NM, Fetterman JL, Ichinose F, Perez-Pinzon MA, Rezk-Hanna M, Williamson E. Cardiopulmonary Impact of Electronic Cigarettes and Vaping Products: A Scientific Statement From the American Heart Association. Circulation 2023; 148:703-728. [PMID: 37458106 DOI: 10.1161/cir.0000000000001160] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Vaping and electronic cigarette (e-cigarette) use have grown exponentially in the past decade, particularly among youth and young adults. Cigarette smoking is a risk factor for both cardiovascular and pulmonary disease. Because of their more limited ingredients and the absence of combustion, e-cigarettes and vaping products are often touted as safer alternative and potential tobacco-cessation products. The outbreak of e-cigarette or vaping product use-associated lung injury in the United States in 2019, which led to >2800 hospitalizations, highlighted the risks of e-cigarettes and vaping products. Currently, all e-cigarettes are regulated as tobacco products and thus do not undergo the premarket animal and human safety studies required of a drug product or medical device. Because youth prevalence of e-cigarette and vaping product use was as high as 27.5% in high school students in 2019 in the United States, it is critical to assess the short-term and long-term health effects of these products, as well as the development of interventional and public health efforts to reduce youth use. The objectives of this scientific statement are (1) to describe and discuss e-cigarettes and vaping products use patterns among youth and adults; (2) to identify harmful and potentially harmful constituents in vaping aerosols; (3) to critically assess the molecular, animal, and clinical evidence on the acute and chronic cardiovascular and pulmonary risks of e-cigarette and vaping products use; (4) to describe the current evidence of e-cigarettes and vaping products as potential tobacco-cessation products; and (5) to summarize current public health and regulatory efforts of e-cigarettes and vaping products. It is timely, therefore, to review the short-term and especially the long-term implications of e-cigarettes and vaping products on cardiopulmonary health. Early molecular and clinical evidence suggests various acute physiological effects from electronic nicotine delivery systems, particularly those containing nicotine. Additional clinical and animal-exposure model research is critically needed as the use of these products continues to grow.
Collapse
|
25
|
Feng M, Bai X, Thorpe AE, Nguyen LT, Wang M, Oliver BG, Chou ASY, Pollock CA, Saad S, Chen H. Effect of E-Vaping on Kidney Health in Mice Consuming a High-Fat Diet. Nutrients 2023; 15:3140. [PMID: 37513558 PMCID: PMC10384319 DOI: 10.3390/nu15143140] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
High-fat diet (HFD) consumption and tobacco smoking are risk factors for chronic kidney disease. E-cigarettes have gained significant popularity among younger populations worldwide, especially among overweight individuals. It is unclear whether vaping interacts with HFD consumption to impact renal health. In this study, Balb/c mice (male, 7 weeks old) were fed a pellet HFD (43% fat, 20 kJ/g) for 16 weeks when exposed to nicotine or nicotine-free e-vapour from weeks 11 to 16. While HFD alone increased collagen Ia and IV depositions, it did not cause significant oxidative stress and inflammatory responses in the kidney itself. On the other hand, e-vapour exposure alone increased oxidative stress and damaged DNA and mitochondrial oxidative phosphorylation complexes without significant impact on fibrotic markers. However, the combination of nicotine e-vapour and HFD increased inflammatory responses, oxidative stress-induced DNA injury, and pro-fibrotic markers, suggesting accelerated development of renal pathology. Nicotine-free e-vapour exposure and HFD consumption suppressed the production of mitochondrial OXPHOS complexes and extracellular matrix protein deposition, which may cause structural instability that can interrupt normal kidney function in the future. In conclusion, our study demonstrated that a HFD combined with e-cigarette vapour exposure, especially when containing nicotine, can increase susceptibility to kidney disease.
Collapse
Affiliation(s)
- Min Feng
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Macquarie University, Glebe, NSW 2037, Australia
| | - Xu Bai
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Macquarie University, Glebe, NSW 2037, Australia
| | - Andrew E Thorpe
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Macquarie University, Glebe, NSW 2037, Australia
| | - Long The Nguyen
- Renal Group, Kolling Institute of Medical Research, The University of Sydney, St Leonards, NSW 2064, Australia
| | - Meng Wang
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Macquarie University, Glebe, NSW 2037, Australia
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Macquarie University, Glebe, NSW 2037, Australia
| | - Angela S Y Chou
- NSW Health Pathology, Royal North Shore Hospital, The University of Sydney, St Leonards, NSW 2064, Australia
| | - Carol A Pollock
- Renal Group, Kolling Institute of Medical Research, The University of Sydney, St Leonards, NSW 2064, Australia
| | - Sonia Saad
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Renal Group, Kolling Institute of Medical Research, The University of Sydney, St Leonards, NSW 2064, Australia
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
26
|
Warren KJ, Beck EM, Callahan SJ, Helms MN, Middleton E, Maddock S, Carr JR, Harris D, Blagev DP, Lanspa MJ, Brown SM, Paine R. Alveolar macrophages from EVALI patients and e-cigarette users: a story of shifting phenotype. Respir Res 2023; 24:162. [PMID: 37330506 PMCID: PMC10276465 DOI: 10.1186/s12931-023-02455-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/19/2023] [Indexed: 06/19/2023] Open
Abstract
Exposure to e-cigarette vapors alters important biologic processes including phagocytosis, lipid metabolism, and cytokine activity in the airways and alveolar spaces. Little is known about the biologic mechanisms underpinning the conversion to e-cigarette, or vaping, product use-associated lung injury (EVALI) from normal e-cigarette use in otherwise healthy individuals. We compared cell populations and inflammatory immune populations from bronchoalveolar lavage fluid in individuals with EVALI to e-cigarette users without respiratory disease and healthy controls and found that e-cigarette users with EVALI demonstrate a neutrophilic inflammation with alveolar macrophages skewed towards inflammatory (M1) phenotype and cytokine profile. Comparatively, e-cigarette users without EVALI demonstrate lower inflammatory cytokine production and express features associated with a reparative (M2) phenotype. These data indicate macrophage-specific changes are occurring in e-cigarette users who develop EVALI.
Collapse
Affiliation(s)
- Kristi J Warren
- Department of Internal Medicine, Division of Pulmonary & Critical Care Medicine, University of Utah, Salt Lake City, UT, 84132, USA.
- George E. Wahlen VA Medical Center, 500 Foothill Dr, Salt Lake City, UT, 84148, USA.
| | - Emily M Beck
- Department of Internal Medicine, Division of Pulmonary & Critical Care Medicine, University of Utah, Salt Lake City, UT, 84132, USA
- George E. Wahlen VA Medical Center, 500 Foothill Dr, Salt Lake City, UT, 84148, USA
| | - Sean J Callahan
- Department of Internal Medicine, Division of Pulmonary & Critical Care Medicine, University of Utah, Salt Lake City, UT, 84132, USA
- George E. Wahlen VA Medical Center, 500 Foothill Dr, Salt Lake City, UT, 84148, USA
| | - My N Helms
- Department of Internal Medicine, Division of Pulmonary & Critical Care Medicine, University of Utah, Salt Lake City, UT, 84132, USA
| | - Elizabeth Middleton
- Department of Internal Medicine, Division of Pulmonary & Critical Care Medicine, University of Utah, Salt Lake City, UT, 84132, USA
| | - Sean Maddock
- George E. Wahlen VA Medical Center, 500 Foothill Dr, Salt Lake City, UT, 84148, USA
- Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Jason R Carr
- Department of Internal Medicine, Division of Pulmonary & Critical Care Medicine, University of Utah, Salt Lake City, UT, 84132, USA
- Intermountain Healthcare, Department of Pulmonary & Critical Care Medicine, Murray, UT, 84107, USA
| | - Dixie Harris
- Intermountain Healthcare, Department of Pulmonary & Critical Care Medicine, Murray, UT, 84107, USA
| | - Denitza P Blagev
- Intermountain Healthcare, Department of Pulmonary & Critical Care Medicine, Murray, UT, 84107, USA
| | - Michael J Lanspa
- Intermountain Healthcare, Department of Pulmonary & Critical Care Medicine, Murray, UT, 84107, USA
| | - Samuel M Brown
- Intermountain Healthcare, Department of Pulmonary & Critical Care Medicine, Murray, UT, 84107, USA
| | - Robert Paine
- Department of Internal Medicine, Division of Pulmonary & Critical Care Medicine, University of Utah, Salt Lake City, UT, 84132, USA
- George E. Wahlen VA Medical Center, 500 Foothill Dr, Salt Lake City, UT, 84148, USA
| |
Collapse
|
27
|
Ali N, Xavier J, Engur M, Pv M, Bernardino de la Serna J. The impact of e-cigarette exposure on different organ systems: A review of recent evidence and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131828. [PMID: 37320902 DOI: 10.1016/j.jhazmat.2023.131828] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/22/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
The use of electronic cigarettes (e-cigs) is rapidly increasing worldwide and is promoted as a smoking cessation tool. The impact of traditional cigs on human health has been well-defined in both animal and human studies. In contrast, little is known about the adverse effects of e-cigs exposure on human health. This review summarizes the impact of e-cigs exposure on different organ systems based on the rapidly expanding recent evidence from experimental and human studies. A number of growing studies have shown the adverse effects of e-cigs exposure on various organ systems. The summarized data in this review indicate that while e-cigs use causes less adverse effects on different organs compared to traditional cigs, its long-term exposure may lead to serious health effects. Data on short-term organ effects are limited and there is no sufficient evidence on long-term organ effects. Moreover, the adverse effects of secondhand and third hand e-cigs vapour exposure have not been thoroughly investigated in previous studies. Although some studies demonstrated e-cigs used as a smoking cessation tool, there is a lack of strong evidence to support it. While some researchers suggested e-cigs as a safer alternative to tobacco smoking, their long-term exposure health effects remain largely unknown. Therefore, more epidemiological and prospective studies including mechanistic studies are needed to address the potential adverse health effects of e-cigs to draw a firm conclusion about their safe use. A wide variation in e-cigs products and the lack of standardized testing methods are the major barriers to evaluating the existing data. Specific regulatory guidelines for both e-cigs components and the manufacturing process may be effective to protect consumer health.
Collapse
Affiliation(s)
- Nurshad Ali
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK; Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
| | - Joseph Xavier
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK; Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695012, Kerala, India.
| | - Melih Engur
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Mohanan Pv
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695012, Kerala, India.
| | | |
Collapse
|
28
|
Salehi Z, Motlagh Ghoochani BFN, Hasani Nourian Y, Jamalkandi SA, Ghanei M. The controversial effect of smoking and nicotine in SARS-CoV-2 infection. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:49. [PMID: 37264452 PMCID: PMC10234254 DOI: 10.1186/s13223-023-00797-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 04/18/2023] [Indexed: 06/03/2023]
Abstract
The effects of nicotine and cigarette smoke in many diseases, notably COVID-19 infection, are being debated more frequently. The current basic data for COVID-19 is increasing and indicating the higher risk of COVID-19 infections in smokers due to the overexpression of corresponding host receptors to viral entry. However, current multi-national epidemiological reports indicate a lower incidence of COVID-19 disease in smokers. Current data indicates that smokers are more susceptible to some diseases and more protective of some other. Interestingly, nicotine is also reported to play a dual role, being both inflammatory and anti-inflammatory. In the present study, we tried to investigate the effect of pure nicotine on various cells involved in COVID-19 infection. We followed an organ-based systematic approach to decipher the effect of nicotine in damaged organs corresponding to COVID-19 pathogenesis (12 related diseases). Considering that the effects of nicotine and cigarette smoke are different from each other, it is necessary to be careful in generalizing the effects of nicotine and cigarette to each other in the conducted researches. The generalization and the undifferentiation of nicotine from smoke is a significant bias. Moreover, different doses of nicotine stimulate different effects (dose-dependent response). In addition to further assessing the role of nicotine in COVID-19 infection and any other cases, a clever assessment of underlying diseases should also be considered to achieve a guideline for health providers and a personalized approach to treatment.
Collapse
Affiliation(s)
- Zahra Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Yazdan Hasani Nourian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Ding R, Ren X, Sun Q, Sun Z, Duan J. An integral perspective of canonical cigarette and e-cigarette-related cardiovascular toxicity based on the adverse outcome pathway framework. J Adv Res 2023; 48:227-257. [PMID: 35998874 PMCID: PMC10248804 DOI: 10.1016/j.jare.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Nowadays, cigarette smoking remains the leading cause of chronic disease and premature death, especially cardiovascular disease. As an emerging tobacco product, e-cigarettes have been advocated as alternatives to canonical cigarettes, and thus may be an aid to promote smoking cessation. However, recent studies indicated that e-cigarettes should not be completely harmless to the cardiovascular system. AIM OF REVIEW This review aimed to build up an integral perspective of cigarettes and e-cigarettes-related cardiovascular toxicity. KEY SCIENTIFIC CONCEPTS OF REVIEW This review adopted the adverse outcome pathway (AOP) framework as a pivotal tool and aimed to elucidate the association between the molecular initiating events (MIEs) induced by cigarette and e-cigarette exposure to the cardiovascular adverse outcome. Since the excessive generation of reactive oxygen species (ROS) has been widely approved to play a critical role in cigarette smoke-related CVD and may also be involved in e-cigarette-induced toxic effects, the ROS overproduction and subsequent oxidative stress are regarded as essential parts of this framework. As far as we know, this should be the first AOP framework focusing on cigarette and e-cigarette-related cardiovascular toxicity, and we hope our work to be a guide in exploring the biomarkers and novel therapies for cardiovascular injury.
Collapse
Affiliation(s)
- Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
30
|
Muthumalage T, Rahman I. Pulmonary immune response regulation, genotoxicity, and metabolic reprogramming by menthol- and tobacco-flavored e-cigarette exposures in mice. Toxicol Sci 2023; 193:146-165. [PMID: 37052522 PMCID: PMC10230290 DOI: 10.1093/toxsci/kfad033] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Menthol and tobacco flavors are available for almost all tobacco products, including electronic cigarettes (e-cigs). These flavors are a mixture of chemicals with overlapping constituents. There are no comparative toxicity studies of these flavors produced by different manufacturers. We hypothesized that acute exposure to menthol and tobacco-flavored e-cig aerosols induces inflammatory, genotoxicity, and metabolic responses in mouse lungs. We compared two brands, A and B, of e-cig flavors (PG/VG, menthol, and tobacco) with and without nicotine for their inflammatory response, genotoxic markers, and altered genes and proteins in the context of metabolism by exposing mouse strains, C57BL/6J (Th1-mediated) and BALB/cJ (Th2-mediated). Brand A nicotine-free menthol exposure caused increased neutrophils and differential T-lymphocyte influx in bronchoalveolar lavage fluid and induced significant immunosuppression, while brand A tobacco with nicotine elicited an allergic inflammatory response with increased Eotaxin, IL-6, and RANTES levels. Brand B elicited a similar inflammatory response in menthol flavor exposure. Upon e-cig exposure, genotoxicity markers significantly increased in lung tissue. These inflammatory and genotoxicity responses were associated with altered NLRP3 inflammasome and TRPA1 induction by menthol flavor. Nicotine decreased surfactant protein D and increased PAI-1 by menthol and tobacco flavors, respectively. Integration of inflammatory and metabolic pathway gene expression analysis showed immunometabolic regulation in T cells via PI3K/Akt/p70S6k-mTOR axis associated with suppressed immunity/allergic immune response. Overall, this study showed the comparative toxicity of flavored e-cig aerosols, unraveling potential signaling pathways of nicotine and flavor-mediated pulmonary toxicological responses, and emphasized the need for standardized toxicity testing for appropriate premarket authorization of e-cigarette products.
Collapse
Affiliation(s)
- Thivanka Muthumalage
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Irfan Rahman
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York 14642, USA
| |
Collapse
|
31
|
Mulorz J, Spin JM, Mulorz P, Wagenhäuser MU, Deng A, Mattern K, Rhee YH, Toyama K, Adam M, Schelzig H, Maegdefessel L, Tsao PS. E-cigarette exposure augments murine abdominal aortic aneurysm development: role of Chil1. Cardiovasc Res 2023; 119:867-878. [PMID: 36413508 PMCID: PMC10409905 DOI: 10.1093/cvr/cvac173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/23/2022] Open
Abstract
AIMS Abdominal aortic aneurysm (AAA) is a common cardiovascular disease with a strong correlation to smoking, although underlying mechanisms have been minimally explored. Electronic cigarettes (e-cigs) have gained recent broad popularity and can deliver nicotine at comparable levels to tobacco cigarettes, but effects on AAA development are unknown. METHODS AND RESULTS We evaluated the impact of daily e-cig vaping with nicotine on AAA using two complementary murine models and found that exposure enhanced aneurysm development in both models and genders. E-cigs induced changes in key mediators of AAA development including cytokine chitinase-3-like protein 1 (CHI3L1/Chil1) and its targeting microRNA-24 (miR-24). We show that nicotine triggers inflammatory signalling and reactive oxygen species while modulating miR-24 and CHI3L1/Chil1 in vitro and that Chil1 is crucial to e-cig-augmented aneurysm formation using a knockout model. CONCLUSIONS In conclusion our work shows increased aneurysm formation along with augmented vascular inflammation in response to e-cig exposure with nicotine. Further, we identify Chil1 as a key mediator in this context. Our data raise concerns regarding the potentially harmful long-term effects of e-cig nicotine vaping.
Collapse
Affiliation(s)
- Joscha Mulorz
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Medicine, Stanford University, 300 Pasteur Drive, Standford, CA 94305, USA
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
- Department of Medicine, Stanford Cardiovascular Institute, 300 Pasteur Drive, Standford, CA 94305, USA
| | - Joshua M Spin
- Department of Medicine, Stanford University, 300 Pasteur Drive, Standford, CA 94305, USA
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
- Department of Medicine, Stanford Cardiovascular Institute, 300 Pasteur Drive, Standford, CA 94305, USA
| | - Pireyatharsheny Mulorz
- Department of Medicine, Stanford University, 300 Pasteur Drive, Standford, CA 94305, USA
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
- Department of Medicine, Stanford Cardiovascular Institute, 300 Pasteur Drive, Standford, CA 94305, USA
| | - Markus Udo Wagenhäuser
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Alicia Deng
- Department of Medicine, Stanford University, 300 Pasteur Drive, Standford, CA 94305, USA
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
- Department of Medicine, Stanford Cardiovascular Institute, 300 Pasteur Drive, Standford, CA 94305, USA
| | - Karin Mattern
- Department of Anesthesiology, Intensive Care and Emergency Medicine, Medical University of Göttingen, Göttingen, Germany
| | - Yae H Rhee
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Medicine, Stanford University, 300 Pasteur Drive, Standford, CA 94305, USA
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
- Department of Medicine, Stanford Cardiovascular Institute, 300 Pasteur Drive, Standford, CA 94305, USA
| | - Kensuke Toyama
- Department of Pharmacology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Matti Adam
- Department of Cardiology, Heart Center, University of Cologne, Cologne, Germany
| | - Hubert Schelzig
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
- German Center for Cardiovascular Research (DZHK), Berlin, Germany (partner site: Munich)
| | - Philip S Tsao
- Department of Medicine, Stanford University, 300 Pasteur Drive, Standford, CA 94305, USA
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
- Department of Medicine, Stanford Cardiovascular Institute, 300 Pasteur Drive, Standford, CA 94305, USA
| |
Collapse
|
32
|
Kim MD, Chung S, Baumlin N, Sun L, Silswal N, Dennis JS, Yoshida M, Sabater J, Horrigan FT, Salathe M. E-cigarette aerosols of propylene glycol impair BK channel activity and parameters of mucociliary function. Am J Physiol Lung Cell Mol Physiol 2023; 324:L468-L479. [PMID: 36809074 PMCID: PMC10042605 DOI: 10.1152/ajplung.00157.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 01/26/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
Propylene glycol (PG) is a common delivery vehicle for nicotine and flavorings in e-cigarette (e-cig) liquids and is largely considered safe for ingestion. However, little is known about its effects as an e-cig aerosol on the airway. Here, we investigated whether pure PG e-cig aerosols in realistic daily amounts impact parameters of mucociliary function and airway inflammation in a large animal model (sheep) in vivo and primary human bronchial epithelial cells (HBECs) in vitro. Five-day exposure of sheep to e-cig aerosols of 100% PG increased mucus concentrations (% mucus solids) of tracheal secretions. PG e-cig aerosols further increased the activity of matrix metalloproteinase-9 (MMP-9) in tracheal secretions. In vitro exposure of HBECs to e-cig aerosols of 100% PG decreased ciliary beating and increased mucus concentrations. PG e-cig aerosols further reduced the activity of large conductance, Ca2+-activated, and voltage-dependent K+ (BK) channels. We show here for the first time that PG can be metabolized to methylglyoxal (MGO) in airway epithelia. PG e-cig aerosols increased levels of MGO and MGO alone reduced BK activity. Patch-clamp experiments suggest that MGO can disrupt the interaction between the major pore-forming BK subunit human Slo1 (hSlo1) and the gamma regulatory subunit LRRC26. PG exposures also caused a significant increase in mRNA expression levels of MMP9 and interleukin 1 beta (IL1B). Taken together, these data show that PG e-cig aerosols cause mucus hyperconcentration in sheep in vivo and HBECs in vitro, likely by disrupting the function of BK channels important for airway hydration.
Collapse
Affiliation(s)
- Michael D Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Samuel Chung
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Nathalie Baumlin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Liang Sun
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States
| | - Neerupma Silswal
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - John S Dennis
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Makoto Yoshida
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Juan Sabater
- Department of Research, Mount Sinai Medical Center, Miami Beach, Florida, United States
| | - Frank T Horrigan
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, United States
| | - Matthias Salathe
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| |
Collapse
|
33
|
Herbert J, Kelty JS, Laskin JD, Laskin DL, Gow AJ. Menthol flavoring in e-cigarette condensate causes pulmonary dysfunction and cytotoxicity in precision cut lung slices. Am J Physiol Lung Cell Mol Physiol 2023; 324:L345-L357. [PMID: 36692165 PMCID: PMC10026991 DOI: 10.1152/ajplung.00222.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/05/2023] [Accepted: 01/14/2023] [Indexed: 01/25/2023] Open
Abstract
E-cigarette consumption is under scrutiny by regulatory authorities due to concerns about product toxicity, lack of manufacturing standards, and increasing reports of e-cigarette- or vaping-associated acute lung injury. In vitro studies have demonstrated cytotoxicity, mitochondrial dysfunction, and oxidative stress induced by unflavored e-cigarette aerosols and flavoring additives. However, e-cigarette effects on the complex lung parenchyma remain unclear. Herein, the impact of e-cigarette condensates with or without menthol flavoring on functional, structural, and cellular responses was investigated using mouse precision cut lung slices (PCLS). PCLS were exposed to e-cigarette condensates prepared from aerosolized vehicle, nicotine, nicotine + menthol, and menthol e-fluids at doses from 50 to 500 mM. Doses were normalized to the glycerin content of vehicle. Video-microscopy of PCLS revealed impaired contractile responsiveness of airways to methacholine and dampened ciliary beating following exposure to menthol-containing condensates at concentrations greater than 300 mM. Following 500 mM menthol-containing condensate exposure, epithelial exfoliation in intrabronchial airways was identified in histological sections of PCLS. Measurement of lactate dehydrogenase release, mitochondrial water-soluble-tetrazolium salt-1 conversion, and glutathione content supported earlier findings of nicotine or nicotine + menthol e-cigarette-induced dose-dependent cytotoxicity and oxidative stress responses. Evaluation of PCLS metabolic activity revealed dose-related impairment of mitochondrial oxidative phosphorylation and glycolysis after exposure to menthol-containing condensates. Taken together, these data demonstrate prominent menthol-induced pulmonary toxicity and impairment of essential physiological functions in the lung, which warrants concerns about e-cigarette consumer safety and emphasizes the need for further investigations of molecular mechanisms of toxicity and menthol effects in an experimental model of disease.
Collapse
Affiliation(s)
- Julia Herbert
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, United States
| | - Jacklyn S Kelty
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, United States
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health and Justice, School of Public Health, Rutgers University, Piscataway, New Jersey, United States
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, United States
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, United States
| |
Collapse
|
34
|
Cozzolino C, Picchio V, Floris E, Pagano F, Saade W, Peruzzi M, Frati G, Chimenti I. Modified Risk Tobacco Products and Cardiovascular Repair: Still Very "Smoky". Curr Stem Cell Res Ther 2023; 18:440-444. [PMID: 35927909 DOI: 10.2174/1574888x17666220802142532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022]
Abstract
Smoking habits represent a cardiovascular risk factor with a tremendous impact on health. Other than damaging differentiated and functional cells of the cardiovascular system, they also negatively affect reparative mechanisms, such as those involved in cardiac fibrosis and in endothelial progenitor cell (EPC) activation. In recent years, alternative smoking devices, dubbed modified tobacco risk products (MRPs), have been introduced, but their precise impact on human health is still under evaluation. Also, they have not been characterized yet about the possible negative effects on cardiovascular reparative and regenerative cells, such as EPCs or pluripotent stem cells. In this perspective, we critically review the still scarce available data on the effects of MRPs on molecular and cellular mechanisms of cardiovascular repair and regeneration.
Collapse
Affiliation(s)
- Claudia Cozzolino
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Vittorio Picchio
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Erica Floris
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Francesca Pagano
- Institute of Biochemistry and Cell Biology, National Council of Research (IBBC-CNR), Monterotondo (RM), Italy
| | - Wael Saade
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Mariangela Peruzzi
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
- Mediterranea Cardiocentro, 80133 Napoli, Italy
| | - Giacomo Frati
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
- IRCCS NeuroMed, Pozzilli (IS), Italy
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
- Mediterranea Cardiocentro, 80133 Napoli, Italy
| |
Collapse
|
35
|
Soo J, Easwaran M, Erickson‐DiRenzo E. Impact of Electronic Cigarettes on the Upper Aerodigestive Tract: A Comprehensive Review for Otolaryngology Providers. OTO Open 2023; 7:e25. [PMID: 36998560 PMCID: PMC10046796 DOI: 10.1002/oto2.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 02/19/2023] Open
Abstract
Objective The use and effects of electronic (e)-cigarettes (e-cigs) are particularly relevant for otolaryngology providers as tobacco plays a major role in benign and malignant diseases of the upper aerodigestive tract. This review aims to (1) summarize the recent policies regarding e-cigs and important patterns of use and (2) serve as a comprehensive resource for clinical providers on the known biologic and clinical effects of e-cigs on the upper aerodigestive tract. Data Sources PubMed/MEDLINE. Review Methods We conducted a narrative review on (1) general information on e-cig use and informative findings in the lower respiratory system and a comprehensive review on (2) the effects of e-cigs on cell and animal models and the clinical implications of these products on human health as is relevant to otolaryngology. Conclusions Although e-cigs are likely less harmful than conventional cigarettes, preliminary research on e-cigs suggest several deleterious effects including in the upper aerodigestive tract. Due to this, there has been increased interest in restricting e-cig usage, particularly among the adolescent population, and caution in recommending e-cigs to current smokers. Implications for Practice Chronic e-cig use is likely to have clinical implications. It is critical for otolaryngology providers to be aware of the rapidly changing regulations and use patterns regarding e-cigs and how e-cigs influence human health, particularly with regards to the upper aerodigestive tract, to accurately council patients regarding potential risks and benefits of use.
Collapse
Affiliation(s)
- Joanne Soo
- Department of Otolaryngology–Head & Neck Surgery Stanford University School of Medicine Stanford California USA
| | - Meena Easwaran
- Department of Otolaryngology–Head & Neck Surgery Stanford University School of Medicine Stanford California USA
| | - Elizabeth Erickson‐DiRenzo
- Department of Otolaryngology–Head & Neck Surgery Stanford University School of Medicine Stanford California USA
| |
Collapse
|
36
|
Esther CR, O'Neal WK, Alexis NE, Koch AL, Cooper CB, Barjaktarevic I, Raffield LM, Bowler RP, Comellas AP, Peters SP, Hastie AT, Curtis JL, Ronish B, Ortega VE, Wells JM, Halper-Stromberg E, Rennard SI, Boucher RC. Prolonged, physiologically relevant nicotine concentrations in the airways of smokers. Am J Physiol Lung Cell Mol Physiol 2023; 324:L32-L37. [PMID: 36342131 PMCID: PMC9829458 DOI: 10.1152/ajplung.00038.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022] Open
Abstract
Nicotine from cigarette smoke is a biologically active molecule that has pleiotropic effects in the airway, which could play a role in smoking-induced lung disease. However, whether nicotine and its metabolites reach sustained, physiologically relevant concentrations on airway surfaces of smokers is not well defined. To address these issues, concentrations of nicotine, cotinine, and hydroxycotinine were measured by mass spectrometry (MS) in supernatants of induced sputum obtained from participants in the subpopulations and intermediate outcome measures in COPD study (SPIROMICS), an ongoing observational study that included never smokers, former smokers, and current smokers with and without chronic obstructive pulmonary disease (COPD). A total of 980 sputum supernatants were analyzed from 77 healthy never smokers, 494 former smokers (233 with COPD), and 396 active smokers (151 with COPD). Sputum nicotine, cotinine, and hydroxycotinine concentrations corresponded to self-reported smoking status and were strongly correlated to urine measures. A cutoff of ∼8-10 ng/mL of sputum cotinine distinguished never smokers from active smokers. Accounting for sample dilution during processing, active smokers had airway nicotine concentrations in the 70-850 ng/mL (∼0.5-5 µM) range, and concentrations remained elevated even in current smokers who had not smoked within 24 h. This study demonstrates that airway nicotine and its metabolites are readily measured in sputum supernatants and can serve as biological markers of smoke exposure. In current smokers, nicotine is present at physiologically relevant concentrations for prolonged periods, supporting a contribution to cigarette-induced airway disease.
Collapse
Affiliation(s)
- Charles R Esther
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Wanda K O'Neal
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Neil E Alexis
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Abigail L Koch
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Christopher B Cooper
- Department of Medicine and Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Igor Barjaktarevic
- Department of Medicine and Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Laura M Raffield
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Russel P Bowler
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Alejandro P Comellas
- Division of Pulmonary, Critical Care and Occupational Medicine, University of Iowa, Iowa City, Iowa
| | - Stephen P Peters
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston-Salem, North Carolina
| | - Annette T Hastie
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston-Salem, North Carolina
| | - Jeffrey L Curtis
- Division of Pulmonary and Critical Care Medicine, University of Michigan Ann Arbor, Ann Arbor, Michigan
- Medical Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Bonnie Ronish
- Occupational and Environmental Medicine, University of Washington, Seattle, Washington
| | - Victor E Ortega
- Division of Respiratory Medicine, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona
| | - J Michael Wells
- Division of Pulmonary Allergy and Critical Care, Lung Health Center, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Stephen I Rennard
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
37
|
Alhadyan SK, Sivaraman V, Onyenwoke RU. E-cigarette Flavors, Sensory Perception, and Evoked Responses. Chem Res Toxicol 2022; 35:2194-2209. [PMID: 36480683 DOI: 10.1021/acs.chemrestox.2c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The chemosensory experiences evoked by flavors encompass a number of unique sensations that include olfactory stimuli (smell), gustatory stimuli (taste, i.e., salty, sweet, sour, bitter, and umami (also known as "savoriness")), and chemesthesis (touch). As such, the responses evoked by flavors are complex and, as briefly stated above, involve multiple perceptive mechanisms. The practice of adding flavorings to tobacco products dates back to the 17th century but is likely much older. More recently, the electronic cigarette or "e-cigarette" and its accompanying flavored e-liquids emerged on to the global market. These new products contain no combustible tobacco but often contain large concentrations (reported from 0 to more than 50 mg/mL) of nicotine as well as numerous flavorings and/or flavor chemicals. At present, there are more than 400 e-cigarette brands available along with potentially >15,000 different/unique flavored products. However, surprisingly little is known about the flavors/flavor chemicals added to these products, which can account for >1% by weight of some e-liquids, and their resultant chemosensory experiences, and the US FDA has done relatively little, until recently, to regulate these products. This article will discuss e-cigarette flavors and flavor chemicals, their elicited responses, and their sensory effects in some detail.
Collapse
Affiliation(s)
- Shatha K Alhadyan
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina 27707, United States
| | - Vijay Sivaraman
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, North Carolina 27707, United States
| | - Rob U Onyenwoke
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina 27707, United States
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, North Carolina 27707, United States
| |
Collapse
|
38
|
Herbst RS, Hatsukami D, Acton D, Giuliani M, Moushey A, Phillips J, Sherwood S, Toll BA, Viswanath K, Warren NJH, Warren GW, Alberg AJ. Electronic Nicotine Delivery Systems: An Updated Policy Statement From the American Association for Cancer Research and the American Society of Clinical Oncology. J Clin Oncol 2022; 40:4144-4155. [PMID: 36287017 DOI: 10.1200/jco.22.01749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Combustible tobacco use has reached historic lows, demonstrating the importance of proven strategies to reduce smoking since publication of the 1964 Surgeon General's report. In contrast, the use of electronic nicotine delivery systems (ENDS), specifically e-cigarettes, has grown to alarming rates and threatens to hinder progress against tobacco use. A major concern is ENDS use by youth and adults who never previously used tobacco. While ENDS emit fewer carcinogens than combustible tobacco, preliminary evidence links ENDS use to DNA damage and inflammation, key steps in cancer development. Furthermore, high levels of nicotine can also increase addiction, raise blood pressure, interfere with brain development, and suppress the immune system. The magnitude of long-term health risks will remain unknown until longitudinal studies are completed. ENDS have been billed as a promising tool for combustible tobacco cessation, but further evidence is needed to assess their potential efficacy for adults who smoke. Of concern, epidemiological studies estimate that approximately 15%-42% of adults who use ENDS have never used another tobacco product, and another 36%-54% dual use both ENDS and combustible tobacco. This policy statement details advances in science related to ENDS and calls for urgent action to end predatory practices of the tobacco industry and protect public health. Importantly, we call for an immediate ban on all non-tobacco-flavored ENDS products that contain natural or synthetic nicotine to reduce ENDS use by youth and adults who never previously used tobacco. Concurrently, evidence-based treatments to promote smoking cessation and prevent smoking relapse to reduce cancer incidence and improve public health remain top priorities for our organizations. We also recognize there is an urgent need for research to understand the relationship between ENDS and tobacco-related disparities.
Collapse
Affiliation(s)
- Roy S Herbst
- Yale Comprehensive Cancer Center, Yale School of Medicine, New Haven, CT
| | | | - Dana Acton
- American Association for Cancer Research, Washington, DC
| | | | - Allyn Moushey
- American Society of Clinical Oncology, Alexandria, VA
| | | | | | | | | | | | | | - Anthony J Alberg
- Arnold School of Public Health, University of South Carolina, Columbia, SC
| |
Collapse
|
39
|
Nogueira L, Zemljic-Harpf AE, Yusufi R, Ranjbar M, Susanto C, Tang K, Mahata SK, Jennings PA, Breen EC. E-cigarette aerosol impairs male mouse skeletal muscle force development and prevents recovery from injury. Am J Physiol Regul Integr Comp Physiol 2022; 323:R849-R860. [PMID: 36250633 PMCID: PMC9678407 DOI: 10.1152/ajpregu.00314.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022]
Abstract
To date, there has been a lag between the rise in E-cigarette use and an understanding of the long-term health effects. Inhalation of E-cigarette aerosol delivers high doses of nicotine, raises systemic cytokine levels, and compromises cardiopulmonary function. The consequences for muscle function have not been thoroughly investigated. The present study tests the hypothesis that exposure to nicotine-containing aerosol impairs locomotor muscle function, limits exercise tolerance, and interferes with muscle repair in male mice. Nicotine-containing aerosol reduced the maximal force produced by the extensor digitorum longus (EDL) by 30%-40% and, the speed achieved in treadmill running by 8%. Nicotine aerosol exposure also decreased adrenal and increased plasma epinephrine and norepinephrine levels, and these changes in catecholamines manifested as increased muscle and liver glycogen stores. In nicotine aerosol exposed mice, muscle regenerating from overuse injury only recovered force to 80% of noninjured levels. However, the structure of neuromuscular junctions (NMJs) was not affected by e-cigarette aerosols. Interestingly, the vehicle used to dissolve nicotine in these vaping devices, polyethylene glycol (PG) and vegetable glycerin (VG), decreased running speed by 11% and prevented full recovery from a lengthening contraction protocol (LCP) injury. In both types of aerosol exposures, cardiac left ventricular systolic function was preserved, but left ventricular myocardial relaxation was altered. These data suggest that E-cigarette use may have a negative impact on muscle force and regeneration due to compromised glucose metabolism and contractile function in male mice.NEW & NOTEWORTHY In male mice, nicotine-containing E-cigarette aerosol compromises muscle contractile function, regeneration from injury, and whole body running speeds. The vehicle used to deliver nicotine, propylene glycol, and vegetable glycerin, also reduces running speed and impairs the restoration of muscle function in injured muscle. However, the predominant effects of nicotine in this inhaled aerosol are evident in altered catecholamine levels, increased glycogen content, decreased running capacity, and impaired recovery of force following an overuse injury.
Collapse
Affiliation(s)
- Leonardo Nogueira
- Department of Medicine, University of California, San Diego, La Jolla, California
- School of Exercise and Nutritional Sciences, College of Health and Human Services, San Diego State University, San Diego, California
| | - Alice E Zemljic-Harpf
- Department of Anesthesiology, University of California, San Diego, La Jolla, California
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Raihana Yusufi
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Maryam Ranjbar
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Christopher Susanto
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Kechun Tang
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Sushil K Mahata
- Department of Medicine, University of California, San Diego, La Jolla, California
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Patricia A Jennings
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Ellen C Breen
- Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
40
|
Liu Q, Qin C, Du M, Wang Y, Yan W, Liu M, Liu J. Incidence and Mortality Trends of Upper Respiratory Infections in China and Other Asian Countries from 1990 to 2019. Viruses 2022; 14:v14112550. [PMID: 36423159 PMCID: PMC9697955 DOI: 10.3390/v14112550] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Respiratory infections remain a major public health problem, affecting people of all age groups, but there is still a lack of studies analyzing the burden of upper respiratory infections (URIs) in Asian countries. We used the data from the Global Burden of Diseases Study 2019 results to assess the current status and trends of URI burden from 1990 to 2019 in Asian countries. We found that Thailand had the highest age-standardized incidence rate (ASIR) of URI both in 1990 (354,857.14 per 100,000) and in 2019 (344,287.93 per 100,000); and the highest age-standardized mortality rate (ASMR) was in China in 1990 (2.377 per 100,000), and in Uzbekistan in 2019 (0.418 per 100,000). From 1990 to 2019, ASIRs of URI slightly increased in several countries, with the speediest in Pakistan (estimated annual percentage change [EAPC] = 0.404%, 95% CI, 0.322% to 0.486%); and Kuwait and Singapore had uptrends of ASMRs, at a speed of an average 3.332% (95% CI, 2.605% to 4.065%) and 3.160% (95% CI, 1.971% to 4.362%) per year, respectively. The age structure of URI was similar at national, Asian and Global levels. Children under the age of five had the highest incidence rate, and the elderly had the highest mortality rate of URI. Asian countries with a Socio-demographic Index between 0.5 and 0.7 had relatively lower ASIRs but higher ASMRs of URIs. The declined rate of URI ASMR in Asian countries was more pronounced in higher baseline (ASMR in 1990) countries. Our findings suggest that there was a huge burden of URI cases in Asia that affected vulnerable and impoverished people's livelihoods. Continuous and high-quality surveillance data across Asian countries are needed to improve the estimation of the disease burden attributable to URIs, and the best public health interventions are needed to curb this burden.
Collapse
Affiliation(s)
- Qiao Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Chenyuan Qin
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Min Du
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Yaping Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Wenxin Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Min Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Jue Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
- Institute for Global Health and Development, Peking University, Beijing 100871, China
- Global Center for Infectious Disease and Policy Research, Global Health and Infectious Diseases Group, Peking University, Beijing 100191, China
- Correspondence:
| |
Collapse
|
41
|
Herbst RS, Hatsukami D, Acton D, Giuliani M, Moushey A, Phillips J, Sherwood S, Toll BA, Viswanath K, Warren NJH, Warren GW, Alberg AJ. Electronic Nicotine Delivery Systems: An Updated Policy Statement from the American Association for Cancer Research and the American Society of Clinical Oncology. Clin Cancer Res 2022; 28:4861-4870. [PMID: 36287033 DOI: 10.1158/1078-0432.ccr-22-2429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/01/2022] [Indexed: 01/24/2023]
Abstract
Combustible tobacco use has reached historic lows, demonstrating the importance of proven strategies to reduce smoking since publication of the 1964 Surgeon General's report. In contrast, the use of electronic nicotine delivery systems (ENDS), specifically e-cigarettes, has grown to alarming rates and threatens to hinder progress against tobacco use. A major concern is ENDS use by youth and adults who never previously used tobacco. While ENDS emit fewer carcinogens than combustible tobacco, preliminary evidence links ENDS use to DNA damage and inflammation, key steps in cancer development. Furthermore, high levels of nicotine can also increase addiction, raise blood pressure, interfere with brain development, and suppress the immune system. The magnitude of long-term health risks will remain unknown until longitudinal studies are completed. ENDS have been billed as a promising tool for combustible tobacco cessation, but further evidence is needed to assess their potential efficacy for adults who smoke. Of concern, epidemiological studies estimate that approximately 15% to 42% of adults who use ENDS have never used another tobacco product, and another 36% to 54% "dual use" both ENDS and combustible tobacco. This policy statement details advances in science related to ENDS and calls for urgent action to end predatory practices of the tobacco industry and protect public health. Importantly, we call for an immediate ban on all non-tobacco-flavored ENDS products that contain natural or synthetic nicotine to reduce ENDS use by youth and adults who never previously used tobacco. Concurrently, evidence-based treatments to promote smoking cessation and prevent smoking relapse to reduce cancer incidence and improve public health remain top priorities for our organizations. We also recognize there is an urgent need for research to understand the relationship between ENDS and tobacco-related disparities.
Collapse
Affiliation(s)
- Roy S Herbst
- Yale Comprehensive Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | | | - Dana Acton
- American Association for Cancer Research, Washington, D.C
| | | | - Allyn Moushey
- American Society of Clinical Oncology, Alexandria, Virginia
| | | | | | - Benjamin A Toll
- Medical University of South Carolina, Charleston, South Carolina
| | | | | | - Graham W Warren
- Medical University of South Carolina, Charleston, South Carolina
| | - Anthony J Alberg
- Arnold School of Public Health, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
42
|
Giovacchini CX, Crotty Alexander LE, Que LG. Electronic Cigarettes: A Pro-Con Review of the Current Literature. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:2843-2851. [PMID: 35872217 DOI: 10.1016/j.jaip.2022.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/27/2022] [Accepted: 07/08/2022] [Indexed: 05/11/2023]
Abstract
Electronic cigarettes (e-cigarettes, e-cigs, or electronic nicotine delivery systems) are battery-operated devices typically containing glycerol and/or propylene glycol-based solutions with varying nicotine content, known as e-liquids. Although e-cigarettes were originally developed as a potentially less harmful alternative to traditional combustible tobacco cigarette smokers, several factors have driven their popularity among smokers and nonsmokers alike, including their sleek product designs, innumerable appealing flavors, lack of combustible smoke and odor, and high potential nicotine concentrations. Furthermore, many advocates have promoted the idea that e-cigarettes are safe to use, or at least safer than conventional tobacco, despite limited longitudinal data to support these claims. Here, we examine what is known about the impacts of e-cigarette use on traditional cigarette smoking cessation, lung health, and youth and young adult tobacco product exposure. Upon review of the currently available literature, the negative effects of e-cigarette use seem to outweigh any potential benefit, because the available evidence does not confirm the use of e-cigarettes as an effective strategy for supporting traditional combustible tobacco cigarette smoking cessation, particularly given the emerging adverse effects on lung health and the potential future public health effects of e-cigarette adoption among a burgeoning new generation of tobacco product users.
Collapse
Affiliation(s)
- Coral X Giovacchini
- Division of Pulmonary, Allergy, and Critical Care, Duke University Health System, Durham, NC
| | - Laura E Crotty Alexander
- Pulmonary Critical Care Section, VA San Diego Healthcare System, San Diego, Calif; Division of Pulmonary, Critical Care, Sleep, and Physiology, University of California San Diego, San Diego, Calif.
| | - Loretta G Que
- Division of Pulmonary, Allergy, and Critical Care, Duke University Health System, Durham, NC.
| |
Collapse
|
43
|
Sargent JD, Halenar MJ, Edwards KC, Woloshin S, Schwartz L, Emond J, Tanski S, Taylor KA, Pierce JP, Liu J, Goniewicz ML, Niaura R, Anic G, Chen Y, Callahan-Lyon P, Gardner LD, Thekkudan T, Borek N, Kimmel HL, Cummings KM, Hyland A, Brunette M. Tobacco Use and Respiratory Symptoms Among Adults: Findings From the Longitudinal Population Assessment of Tobacco and Health (PATH) Study 2014-2016. Nicotine Tob Res 2022; 24:1607-1618. [PMID: 35366322 PMCID: PMC9575972 DOI: 10.1093/ntr/ntac080] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/17/2022] [Accepted: 03/31/2022] [Indexed: 12/21/2022]
Abstract
INTRODUCTION We examined the relationship between current tobacco use and functionally important respiratory symptoms. METHODS Longitudinal cohort study of 16 295 US adults without COPD in Waves 2-3 (W2-3, 2014-2016) of the Population Assessment of Tobacco and Health Study. Exposure-Ten mutually exclusive categories of tobacco use including single product, multiple product, former, and never use (reference). Outcome-Seven questions assessing wheezing/cough were summed to create a respiratory symptom index; cutoffs of ≥2 and ≥3 were associated with functional limitations and poorer health. Multivariable regressions examined both cutoffs cross-sectionally and change over approximately 12 months, adjusting for confounders. RESULTS All tobacco use categories featuring cigarettes (>2/3's of users) were associated with higher risk (vs. never users) for functionally important respiratory symptoms at W2, for example, at symptom severity ≥ 3, risk ratio for exclusive cigarette use was 2.34 [95% CI, 1.92, 2.85] and for worsening symptoms at W3 was 2.80 [2.08, 3.76]. There was largely no increased symptom risk for exclusive use of cigars, smokeless tobacco, hookah, or e-cigarettes (adjustment for pack-years and marijuana attenuated the cross-sectional e-cigarette association from 1.53(95% CI 0.98, 2.40) to 1.05 (0.67, 1.63); RRs for these products were also significantly lower compared to exclusive use of cigarettes. The longitudinal e-cigarette-respiratory symptom association was sensitive to the respiratory index cutoff level; exclusive e-cigarette use was associated with worsening symptoms at an index cutoff ≥ 2 (RR = 1.63 [1.02, 2.59]) and with symptom improvement at an index cutoff of ≥ 3 (RR = 1.64 [1.04, 2.58]). CONCLUSIONS Past and current cigarette smoking drove functionally important respiratory symptoms, while exclusive use of other tobacco products was largely not associated. However, the relationship between e-cigarette use and symptoms was sensitive to adjustment for pack-years and symptom severity. IMPLICATIONS How noncigarette tobacco products affect respiratory symptoms is not clear; some studies implicate e-cigarettes. We examined functionally important respiratory symptoms (wheezing/nighttime cough) among US adults without COPD. The majority of adult tobacco users smoke cigarettes and have higher risk of respiratory symptoms and worsening of symptoms, regardless of other products used with them. Exclusive use of other tobacco products (e-cigarettes, cigars, smokeless, hookah) was largely not associated with functionally important respiratory symptoms and risks associated with their use was significantly lower than for cigarettes. The association for e-cigarettes was greatly attenuated by adjustment for cigarette pack-years and sensitive to how symptoms were defined.
Collapse
Affiliation(s)
- James D Sargent
- Geisel School of Medicine at Dartmouth, The C. Everett Koop Institute at Dartmouth, Lebanon, NH, USA
| | | | | | - Steven Woloshin
- Dartmouth Institute for Health Policy and Clinical Practice, The C. Everett Koop Institute at Dartmouth, The Lisa Schwartz Foundation, Lebanon, NH, USA
| | - Lisa Schwartz
- Dartmouth Institute for Health Policy and Clinical Practice, The C. Everett Koop Institute at Dartmouth, The Lisa Schwartz Foundation, Lebanon, NH, USA
| | - Jennifer Emond
- Geisel School of Medicine at Dartmouth, The C. Everett Koop Institute at Dartmouth, Lebanon, NH, USA
| | - Susanne Tanski
- Geisel School of Medicine at Dartmouth, The C. Everett Koop Institute at Dartmouth, Lebanon, NH, USA
| | | | - John P Pierce
- Moore’s Cancer Center, University of California at San Diego, San Diego, CA, USA
| | | | | | | | - Gabriella Anic
- U.S. Food and Drug Administration, Center for Tobacco Products, Bethesda, MD, USA
| | - Yanling Chen
- U.S. Food and Drug Administration, Center for Tobacco Products, Bethesda, MD, USA
| | | | - Lisa D Gardner
- U.S. Food and Drug Administration, Center for Tobacco Products, Bethesda, MD, USA
| | - Theresa Thekkudan
- U.S. Food and Drug Administration, Center for Tobacco Products, Bethesda, MD, USA
| | - Nicolette Borek
- U.S. Food and Drug Administration, Center for Tobacco Products, Bethesda, MD, USA
| | - Heather L Kimmel
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | | | - Andrew Hyland
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mary Brunette
- Geisel School of Medicine at Dartmouth, The C. Everett Koop Institute at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
44
|
Kim MD, Chung S, Dennis JS, Yoshida M, Aguiar C, Aller SP, Mendes ES, Schmid A, Sabater J, Baumlin N, Salathe M. Vegetable glycerin e-cigarette aerosols cause airway inflammation and ion channel dysfunction. Front Pharmacol 2022; 13:1012723. [PMID: 36225570 PMCID: PMC9549247 DOI: 10.3389/fphar.2022.1012723] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/08/2022] [Indexed: 02/02/2023] Open
Abstract
Vegetable glycerin (VG) and propylene glycol (PG) serve as delivery vehicles for nicotine and flavorings in most e-cigarette (e-cig) liquids. Here, we investigated whether VG e-cig aerosols, in the absence of nicotine and flavors, impact parameters of mucociliary function in human volunteers, a large animal model (sheep), and air-liquid interface (ALI) cultures of primary human bronchial epithelial cells (HBECs). We found that VG-containing (VG or PG/VG), but not sole PG-containing, e-cig aerosols reduced the activity of nasal cystic fibrosis transmembrane conductance regulator (CFTR) in human volunteers who vaped for seven days. Markers of inflammation, including interleukin-6 (IL6), interleukin-8 (IL8) and matrix metalloproteinase-9 (MMP9) mRNAs, as well as MMP-9 activity and mucin 5AC (MUC5AC) expression levels, were also elevated in nasal samples from volunteers who vaped VG-containing e-liquids. In sheep, exposures to VG e-cig aerosols for five days increased mucus concentrations and MMP-9 activity in tracheal secretions and plasma levels of transforming growth factor-beta 1 (TGF-β1). In vitro exposure of HBECs to VG e-cig aerosols for five days decreased ciliary beating and increased mucus concentrations. VG e-cig aerosols also reduced CFTR function in HBECs, mechanistically by reducing membrane fluidity. Although VG e-cig aerosols did not increase MMP9 mRNA expression, expression levels of IL6, IL8, TGFB1, and MUC5AC mRNAs were significantly increased in HBECs after seven days of exposure. Thus, VG e-cig aerosols can potentially cause harm in the airway by inducing inflammation and ion channel dysfunction with consequent mucus hyperconcentration.
Collapse
Affiliation(s)
- Michael D. Kim
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Samuel Chung
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - John S. Dennis
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Makoto Yoshida
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Carolina Aguiar
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Sheyla P. Aller
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Eliana S. Mendes
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Andreas Schmid
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Juan Sabater
- Department of Research, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Nathalie Baumlin
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Matthias Salathe
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, United States,*Correspondence: Matthias Salathe,
| |
Collapse
|
45
|
Nicotine is an independent potential fibrogenic mediator in non-betel quid associated oral submucous fibrosis. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Vivarelli F, Granata S, Rullo L, Mussoni M, Candeletti S, Romualdi P, Fimognari C, Cruz-Chamorro I, Carrillo-Vico A, Paolini M, Canistro D. On the toxicity of e-cigarettes consumption: Focus on pathological cellular mechanisms. Pharmacol Res 2022; 182:106315. [PMID: 35724819 DOI: 10.1016/j.phrs.2022.106315] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 10/18/2022]
Abstract
Tobacco smoking remains without a doubt one of the leading causes of premature death worldwide. In combination with conventional protocols for smoking cessation, e-cigarettes have been proposed as a useful tool to quit smoking. Advertised as almost free of toxic effects, e-cigarettes have rapidly increased their popularity, becoming a sought-after device, especially among young people. Recently some health concerns about e-cigarette consumption are being raised. It is well known that they can release several toxic compounds, some of which are carcinogenic to humans, and emerging results are now outlining the risks related to the onset of respiratory and cardiovascular diseases and even cancer. The present review shows the emerging evidence about the role of technical components of the devices, the e-liquid composition as well as customization by consumers. The primary topics we discuss are the main toxicological aspects associated with e-cigarette consumption, focusing on the molecular pathways involved. Here it will be shown how exposure to e-cigarette aerosol induces stress/mitochondrial toxicity, DNA breaks/fragmentation following the same pathological pathways triggered by tobacco smoke, including the deregulation of molecular signalling axis associated with cancer progression and cell migration. Risk to fertility and pregnancy, as well as cardiovascular risk associated with e-cigarette use, have also been reported.
Collapse
Affiliation(s)
- Fabio Vivarelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | - Silvia Granata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; Department of Medicine and Surgery - University of Milano - Bicocca
| | - Laura Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Matilde Mussoni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Ivan Cruz-Chamorro
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
| | - Moreno Paolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | - Donatella Canistro
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
47
|
Eden MJ, Farra YM, Matz J, Bellini C, Oakes JM. Pharmacological and physiological response in Apoe -/- mice exposed to cigarette smoke or e-cigarette aerosols. Inhal Toxicol 2022; 34:260-274. [PMID: 35793285 DOI: 10.1080/08958378.2022.2086948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Electronic cigarettes (e-cigs) are popular nicotine delivery devices, yet the health effects remain unclear. To determine equivalent biomarkers, we characterized the immediate response in Apoe-/- mice exposed to tank/box-mod e-cig (e-cigtank), pod e-cig (e-cigpod), or cig smoke. MATERIALS AND METHODS Reproducible puff profiles were generated for each aerosol and delivered to Apoe-/- mice via a nose-only exposure system. Serum cotinine levels were quantified at various time points through ELISA and utilized to model cotinine pharmacokinetics. In addition, particle size measurements and mouse respiratory function were characterized to calculate particle dosimetry. RESULTS AND DISCUSSION Cig and e-cigtank particles were lognormally distributed with similar count median diameters (cig: 178 ± 2, e-cigtank: 200 ± 34nm), while e-cigpod particles were bimodally distributed and smaller (116 ± 13 and 13.3 ± 0.4 nm). Minute volumes decreased with cig exposure (5.4 ± 2.7 mL/min) compared to baseline (90.8 ± 11.6 mL/min), and less so with e-cigtank (45.2 ± 9.2 mL/min) and e-cigpod exposures (58.6 ± 6.8 mL/min), due to periods of apnea in the cig exposed groups. Cotinine was absorbed and eliminated most rapidly in the e-cigpod group (tmax = 14.5; t1/2' = 51.9 min), whereas cotinine was absorbed (cig: 50.4, e-cigtank: 40.1 min) and eliminated (cig: 104.6, e-cigtank: 94.1 min) similarly in the cig and e-cigtank groups. For exposure times which equate the area under the cotinine-concentration curve, ∼6.4× (e-cigtank) and 4.6× (e-cigpod) more nicotine deposited in e-cig compared to cig exposed mice. CONCLUSIONS This study provides a basis for incorporating cotinine pharmacokinetics into preclinical exposure studies, allowing for longitudinal studies of structural and functional changes due to exposure.
Collapse
Affiliation(s)
- Matthew J Eden
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Yasmeen M Farra
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Jacqueline Matz
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Chiara Bellini
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Jessica M Oakes
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
48
|
Shi H, Leventhal AM, Wen Q, Ossip DJ, Li D. Sex Differences in the Association of E-cigarette and Cigarette Use and Dual Use With Self-Reported Hypertension Incidence in US Adults. Nicotine Tob Res 2022; 25:478-485. [PMID: 35863748 PMCID: PMC9910126 DOI: 10.1093/ntr/ntac170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/24/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND While there is some evidence and conceptual plausibility that tobacco product use is associated with hypertension incidence and that this association varies by sex, extant longitudinal research had been conducted prior to the emergence of e-cigarette and dual e-cigarette and cigarette use. AIMS AND METHODS Data were analyzed from the US Population Assessment of Tobacco and Health study for adults with no lifetime history of hypertension at wave 1 (2013-2014) who completed waves 2-4 follow-up surveys (2014-2018; n = 16 434). Sex-stratified weighted covariate-adjusted multivariable Cox regression models were used to examine the association between established current e-cigarette or cigarette exclusive or dual-use (as a time-varying and time-lagged regressor) and subsequent self-reported hypertension onset. RESULTS Weighted cumulative hypertension incidence by wave 4 varied by waves 1-3 e-cigarette, cigarette, and dual use status in females (nonuse [incidence: 9.9%], exclusive e-cigarette use [11.8%], exclusive cigarette use [14.8%], dual-use [12.4%]; p = .003 for omnibus differences among all groups) but not males (nonuse [12.6%], exclusive e-cigarette use [9.7%], exclusive cigarette use [13.7%], dual-use [9.3%]; p = .231). Among females, exclusive cigarette (vs. no) use (hazard ratio: 1.69, 95%CI 1.21 to 2.34; p = .002), but not exclusive e-cigarette or dual-use, was significantly associated with subsequent hypertension. Dose-response models were suggestive that consistent exclusive e-cigarette or dual-use versus nonuse across multiple may be associated with hypertension among females, but results were nonsignificant. CONCLUSIONS The association of e-cigarette, cigarette, and dual use with hypertension may differ by sex, whereby exclusive cigarette use could be a prospective risk factor for subsequent self-reported hypertension in US adult females. IMPLICATIONS This nationally representative cohort study provides the very first evidence of whether there are prospective associations of established e-cigarette and cigarette use and dual use with future hypertension onset among US adult females and males. We found that exclusive cigarette smoking was associated with an increased risk of incident hypertension among females, but not males. We observed a trend of a dose-response relationship between e-cigarette use and risk of incident hypertension among female exclusive e-cigarette users or dual e-cigarette and cigarette users. Our study will contribute to understanding the chronic health risks of vaping to prevent the potential long-term e-cigarette use-related health burden.
Collapse
Affiliation(s)
- Hangchuan Shi
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY, USA,Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Adam M Leventhal
- USC Institute for Addiction Science, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Qiang Wen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Deborah J Ossip
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Dongmei Li
- Corresponding Author: Dongmei Li, Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY 14642-0708, USA. Telephone: (585)2767285; Fax: (585)2761122; E-mail:
| |
Collapse
|
49
|
Alasmari F, Alasmari AF, Elzayat E, Alotaibi MM, Alotaibi FM, Attwa MW, Alanazi FK, Abdelgadir EH, Ahmad SR, Alqahtani F, AL-Rejaie SS, Alshammari MA. Nicotine and cotinine quantification after a 4-week inhalation of electronic cigarette vapors in male and female mice using UPLC-MS/MS. Saudi Med J 2022; 43:678-686. [PMID: 35830983 PMCID: PMC9749686 DOI: 10.15537/smj.2022.43.7.20220142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES To detect the cotinine and nicotine serum concentrations of female and male C57BL/6J mice after a 4-week exposure to electronic (e)-cigarette vapors using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). METHODS This experimental study was carried out at an animal facility and laboratories, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia, between January and August 2020. A 4-week exposure to e-cigarettes was carried out using male and female mice and serum samples were obtained for cotinine and nicotine quantification using UPLC-MS/MS. The chromatographic procedures involved the use of a BEH HSS T3 C18 column (100 mm x 2.1 mm, 1.7 μm) with acetonitrile as a mobile phase and 0.1% formic acid (2:98 v/v). RESULTS The applied methodology has highly efficient properties of detection, estimation, and extraction, where the limit of quantification (LOQ) for nicotine was 0.57 ng/mL and limit of detection (LOD) for nicotine was 0.19 ng/mL, while the LOQ for cotinine was 1.11 ng/mL and LOD for cotinine was 0.38 ng/mL. The correlation coefficient was r2>0.99 for both compounds. The average recovery rate was 101.6±1.33 for nicotine and 100.4±0.54 for cotinine, while the precision and accuracy for cotinine and nicotine were less than 6.1. The serum cotinine level was higher in males (433.7±19.55) than females (362.3±16.27). CONCLUSION This study showed that the gender factor might play a crucial role in nicotine metabolism.
Collapse
Affiliation(s)
- Fawaz Alasmari
- From the Department of Pharmacology and Toxicology (F. Alasmari, F. M. Alotaibi, A. F. Alasmari, Alqahtani, AL-Rejaie, Alshammari); from the Department of Pharmaceutics (Elzayat, Alanazi); from the Department of Pharmaceutical Chemistry (Attwa, Ahmad), College of Pharmacy, King Saud University, and from the Department of Forensic Sciences (M. M. Alotaibi, Abdelgadir), College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh, Kingdom of Saudi Arabia.
- Address correspondence and reprint request to: Dr. Fawaz Alasmari, Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia. E-mail: ORCID ID: https://orcid.org/0000-0003-2382-5892
| | - Abdullah F. Alasmari
- From the Department of Pharmacology and Toxicology (F. Alasmari, F. M. Alotaibi, A. F. Alasmari, Alqahtani, AL-Rejaie, Alshammari); from the Department of Pharmaceutics (Elzayat, Alanazi); from the Department of Pharmaceutical Chemistry (Attwa, Ahmad), College of Pharmacy, King Saud University, and from the Department of Forensic Sciences (M. M. Alotaibi, Abdelgadir), College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh, Kingdom of Saudi Arabia.
| | - Ehab Elzayat
- From the Department of Pharmacology and Toxicology (F. Alasmari, F. M. Alotaibi, A. F. Alasmari, Alqahtani, AL-Rejaie, Alshammari); from the Department of Pharmaceutics (Elzayat, Alanazi); from the Department of Pharmaceutical Chemistry (Attwa, Ahmad), College of Pharmacy, King Saud University, and from the Department of Forensic Sciences (M. M. Alotaibi, Abdelgadir), College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh, Kingdom of Saudi Arabia.
| | - Majed M. Alotaibi
- From the Department of Pharmacology and Toxicology (F. Alasmari, F. M. Alotaibi, A. F. Alasmari, Alqahtani, AL-Rejaie, Alshammari); from the Department of Pharmaceutics (Elzayat, Alanazi); from the Department of Pharmaceutical Chemistry (Attwa, Ahmad), College of Pharmacy, King Saud University, and from the Department of Forensic Sciences (M. M. Alotaibi, Abdelgadir), College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh, Kingdom of Saudi Arabia.
| | - Farraj M. Alotaibi
- From the Department of Pharmacology and Toxicology (F. Alasmari, F. M. Alotaibi, A. F. Alasmari, Alqahtani, AL-Rejaie, Alshammari); from the Department of Pharmaceutics (Elzayat, Alanazi); from the Department of Pharmaceutical Chemistry (Attwa, Ahmad), College of Pharmacy, King Saud University, and from the Department of Forensic Sciences (M. M. Alotaibi, Abdelgadir), College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh, Kingdom of Saudi Arabia.
| | - Mohamed W. Attwa
- From the Department of Pharmacology and Toxicology (F. Alasmari, F. M. Alotaibi, A. F. Alasmari, Alqahtani, AL-Rejaie, Alshammari); from the Department of Pharmaceutics (Elzayat, Alanazi); from the Department of Pharmaceutical Chemistry (Attwa, Ahmad), College of Pharmacy, King Saud University, and from the Department of Forensic Sciences (M. M. Alotaibi, Abdelgadir), College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh, Kingdom of Saudi Arabia.
| | - Fars K. Alanazi
- From the Department of Pharmacology and Toxicology (F. Alasmari, F. M. Alotaibi, A. F. Alasmari, Alqahtani, AL-Rejaie, Alshammari); from the Department of Pharmaceutics (Elzayat, Alanazi); from the Department of Pharmaceutical Chemistry (Attwa, Ahmad), College of Pharmacy, King Saud University, and from the Department of Forensic Sciences (M. M. Alotaibi, Abdelgadir), College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh, Kingdom of Saudi Arabia.
| | - Elkhatim H. Abdelgadir
- From the Department of Pharmacology and Toxicology (F. Alasmari, F. M. Alotaibi, A. F. Alasmari, Alqahtani, AL-Rejaie, Alshammari); from the Department of Pharmaceutics (Elzayat, Alanazi); from the Department of Pharmaceutical Chemistry (Attwa, Ahmad), College of Pharmacy, King Saud University, and from the Department of Forensic Sciences (M. M. Alotaibi, Abdelgadir), College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh, Kingdom of Saudi Arabia.
| | - Syed Rizwan Ahmad
- From the Department of Pharmacology and Toxicology (F. Alasmari, F. M. Alotaibi, A. F. Alasmari, Alqahtani, AL-Rejaie, Alshammari); from the Department of Pharmaceutics (Elzayat, Alanazi); from the Department of Pharmaceutical Chemistry (Attwa, Ahmad), College of Pharmacy, King Saud University, and from the Department of Forensic Sciences (M. M. Alotaibi, Abdelgadir), College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh, Kingdom of Saudi Arabia.
| | - Faleh Alqahtani
- From the Department of Pharmacology and Toxicology (F. Alasmari, F. M. Alotaibi, A. F. Alasmari, Alqahtani, AL-Rejaie, Alshammari); from the Department of Pharmaceutics (Elzayat, Alanazi); from the Department of Pharmaceutical Chemistry (Attwa, Ahmad), College of Pharmacy, King Saud University, and from the Department of Forensic Sciences (M. M. Alotaibi, Abdelgadir), College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh, Kingdom of Saudi Arabia.
| | - Salim S. AL-Rejaie
- From the Department of Pharmacology and Toxicology (F. Alasmari, F. M. Alotaibi, A. F. Alasmari, Alqahtani, AL-Rejaie, Alshammari); from the Department of Pharmaceutics (Elzayat, Alanazi); from the Department of Pharmaceutical Chemistry (Attwa, Ahmad), College of Pharmacy, King Saud University, and from the Department of Forensic Sciences (M. M. Alotaibi, Abdelgadir), College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh, Kingdom of Saudi Arabia.
| | - Musaad A. Alshammari
- From the Department of Pharmacology and Toxicology (F. Alasmari, F. M. Alotaibi, A. F. Alasmari, Alqahtani, AL-Rejaie, Alshammari); from the Department of Pharmaceutics (Elzayat, Alanazi); from the Department of Pharmaceutical Chemistry (Attwa, Ahmad), College of Pharmacy, King Saud University, and from the Department of Forensic Sciences (M. M. Alotaibi, Abdelgadir), College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|
50
|
He L, Tong J. Resveratrol Protects Against Nicotine-Induced Apoptosis by Enhancing Autophagy in BEAS-2B Lung Epithelial Cells. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221109410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Background: Nicotine (Nic), the major component of tobacco products, can induce apoptosis in lung epithelial cells, and the resulting damage contributes to chronic obstructive pulmonary disease. Apoptosis is closely related to autophagy. Resveratrol (Res) can induce autophagy and inhibit apoptosis. Therefore, the present study investigated whether Nic induces apoptosis of lung epithelial cells by regulating autophagy and the effect of Res on apoptosis of Nic-exposed lung epithelial cells. Methods: The BEAS-2B lung epithelial cell line was used to study the harmful effects of Nic and the potential benefits of Res as well as the underlying mechanisms. Viability and apoptosis were examined using the Cell Counting Kit-8 and annexin V-propidium iodide staining, respectively. The expression of levels of apoptosis-related proteins, autophagy-related proteins, and members of the PI3K/Akt/mTOR pathway was measured by western blotting. Autophagic flux was detected via mRFP-GFP-LC3 double-labeled adenovirus transfection and transmission electron microscopy. Results: Nic significantly reduce the viability and increased the apoptosis of BEAS-2B cells in a concentration-dependent manner. Nic treatment also increased the numbers of autophagosomes in BEAS-2B cells and upregulated LC3II and p62 expression. Moreover, Res at concentration of 2, 10, and 50 μM protected BEAS-2B cells from Nic apoptosis, and the expression of LC3II increased further and p62 decreased in Res pretreatment group. Apart from this, Res reduced Akt and mTOR phosphorylation. Subsequently, upon inhibiting PI3K phosphorylation by PI3K inhibitors, BEAS-2B cell autophagy induced by Res was obviously abolished. Conclusions: Nic-induced BEAS-2B cell apoptosis by inhibiting the late-stage autophagic flux, but Res could protect BEAS-2B cells from the detrimental effects of nicotine by enhancing autophagy via the PI3K/Akt/mTOR pathway. These results will provide an experimental basis for the prevention and treatment of COPD.
Collapse
Affiliation(s)
- Li He
- Department of Critical Care Medicine, The Central Hospital of Dazhou, Dazhou, Sichuan, China
| | - Jin Tong
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|