1
|
Lemche E, Hortobágyi T, Kiecker C, Turkheimer F. Neuropathological links between T2DM and LOAD: systematic review and meta-analysis. Physiol Rev 2025; 105:1429-1486. [PMID: 40062731 DOI: 10.1152/physrev.00040.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/01/2025] [Accepted: 02/22/2025] [Indexed: 04/16/2025] Open
Abstract
Recent decades have described parallel neuropathological mechanisms increasing the risk for developing late-onset Alzheimer's dementia (LOAD) in type 2 diabetes mellitus (T2DM); however, still little is known of the role of diabetic encephalopathy and brain atrophy in LOAD. The aim of this systematic review is to provide a comprehensive view on diabetic encephalopathy/cerebral atrophy, taking into account neuroimaging data, neuropathology, metabolic and endocrine mechanisms, amyloid formation, brain perfusion impairments, neuroimmunology, and inflammasome activation. Key switches were identified, to further meta-analyze genomic candidate loci and epigenetic modifications. For the qualitative meta-analysis of genomic bases extracted, human linkage studies were examined; for epigenetic mechanisms, data from both human and animal studies are described. For the systematic review of pathophysiological mechanisms, 1,259 publications were evaluated and 93 gene loci extracted for candidate risk linkages. Sixty-six publications were evaluated for genomic association and descriptions of epigenomic modifications. Overall accumulated results highlight the insulin signaling system, vascular markers, inflammation and inflammasome pathways, amylin interactions, and glycosylation mechanisms. The protocol was registered with PROSPERO (ID: CRD42023440535).
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Tibor Hortobágyi
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Clemens Kiecker
- Department for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Federico Turkheimer
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
2
|
Tasma Z, Garelja ML, Jamaluddin A, Alexander TI, Rees TA. Where are we now? Biased signalling of Class B G protein-coupled receptor-targeted therapeutics. Pharmacol Ther 2025; 270:108846. [PMID: 40216261 DOI: 10.1016/j.pharmthera.2025.108846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/07/2025] [Accepted: 03/24/2025] [Indexed: 04/19/2025]
Abstract
Class B G protein-coupled receptors (GPCRs) are a subfamily of 15 peptide hormone receptors with diverse roles in physiological functions and disease pathogenesis. Over the past decade, several novel therapeutics targeting these receptors have been approved for conditions like migraine, diabetes, and obesity, many of which are ground-breaking and first-in-class. Most of these therapeutics are agonist analogues with modified endogenous peptide sequences to enhance receptor activation or stability. Several small molecule and monoclonal antibody antagonists have also been approved or are in late-stage development. Differences in the sequence and structure of these therapeutic ligands lead to distinct signalling profiles, including biased behaviour or inhibition of specific pathways. Understanding this biased pharmacology offers unique development opportunities for improving therapeutic efficacy and reducing adverse effects. This review summarises current knowledge on the ligand bias of approved class B GPCR drugs, highlights strategies to refine and exploit their pharmacological profiles, and discusses key considerations related to receptor structure, localisation, and regulation for developing new therapies.
Collapse
Affiliation(s)
- Zoe Tasma
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Michael L Garelja
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Aqfan Jamaluddin
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Tyla I Alexander
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Tayla A Rees
- Headache Group, Wolfson Sensory Pain and Regeneration Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
3
|
Hankir MK, Le Foll C. Central nervous system pathways targeted by amylin in the regulation of food intake. Biochimie 2025; 229:95-104. [PMID: 39426704 DOI: 10.1016/j.biochi.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Amylin is a peptide hormone co-released with insulin from pancreatic β-cells during a meal and primarily serves to promote satiation. While the caudal hindbrain was originally implicated as a major site of action in this regard, it is becoming increasingly clear that amylin recruits numerous central nervous system pathways to exert multifaceted effects on food intake. In this Review, we discuss the evidence derived from preclinical studies showing that amylin and the related peptide salmon calcitonin (sCT) directly or indirectly target genetically distinct neurons in the caudal hindbrain (nucleus tractus solitarius and area postrema), rostral hindbrain (lateral parabrachial nucleus), midbrain (lateral dorsal tegmentum and ventral tegmental area) and hypothalamus (arcuate nucleus and parasubthalamic nucleus) via activation of amylin and/or calcitonin receptors. Given that the stable amylin analogue cagrilintide is under clinical development for the treatment of obesity, it is important to determine whether this drug recruits overlapping or distinct central nervous system pathways to that of amylin and sCT with implications for minimising any aversive effects it potentially causes. Such insight will also be important to understand how amylin and sCT analogues synergize with other molecules as part of dual or triple agonist therapies for obesity, especially the glucagon-like peptide 1 receptor (GLP-1R) agonist semaglutide, which has been shown to synergistically lower body weight with cagrilintide (CagriSema) in clinical trials.
Collapse
Affiliation(s)
- Mohammed K Hankir
- Department of Veterinary Physiology, University of Zurich, Zurich, Switzerland; School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland.
| | - Christelle Le Foll
- Department of Veterinary Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Geisler CE, Hayes MR. Metabolic hormone action in the VTA: Reward-directed behavior and mechanistic insights. Physiol Behav 2023; 268:114236. [PMID: 37178855 PMCID: PMC10330780 DOI: 10.1016/j.physbeh.2023.114236] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/10/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Dysfunctional signaling in midbrain reward circuits perpetuates diseases characterized by compulsive overconsumption of rewarding substances such as substance abuse, binge eating disorder, and obesity. Ventral tegmental area (VTA) dopaminergic activity serves as an index for how rewarding stimuli are perceived and triggers behaviors necessary to obtain future rewards. The evolutionary linking of reward with seeking and consuming palatable foods ensured an organism's survival, and hormone systems that regulate appetite concomitantly developed to regulate motivated behaviors. Today, these same mechanisms serve to regulate reward-directed behavior around food, drugs, alcohol, and social interactions. Understanding how hormonal regulation of VTA dopaminergic output alters motivated behaviors is essential to leveraging therapeutics that target these hormone systems to treat addiction and disordered eating. This review will outline our current understanding of the mechanisms underlying VTA action of the metabolic hormones ghrelin, glucagon-like peptide-1, amylin, leptin, and insulin to regulate behavior around food and drugs of abuse, highlighting commonalities and differences in how these five hormones ultimately modulate VTA dopamine signaling.
Collapse
Affiliation(s)
- Caroline E Geisler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Signaling pathways in obesity: mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022; 7:298. [PMID: 36031641 PMCID: PMC9420733 DOI: 10.1038/s41392-022-01149-x] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Obesity is a complex, chronic disease and global public health challenge. Characterized by excessive fat accumulation in the body, obesity sharply increases the risk of several diseases, such as type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease, and is linked to lower life expectancy. Although lifestyle intervention (diet and exercise) has remarkable effects on weight management, achieving long-term success at weight loss is extremely challenging, and the prevalence of obesity continues to rise worldwide. Over the past decades, the pathophysiology of obesity has been extensively investigated, and an increasing number of signal transduction pathways have been implicated in obesity, making it possible to fight obesity in a more effective and precise way. In this review, we summarize recent advances in the pathogenesis of obesity from both experimental and clinical studies, focusing on signaling pathways and their roles in the regulation of food intake, glucose homeostasis, adipogenesis, thermogenesis, and chronic inflammation. We also discuss the current anti-obesity drugs, as well as weight loss compounds in clinical trials, that target these signals. The evolving knowledge of signaling transduction may shed light on the future direction of obesity research, as we move into a new era of precision medicine.
Collapse
|
6
|
Corrigan RR, Piontkivska H, Casadesus G. Amylin Pharmacology in Alzheimer's Disease Pathogenesis and Treatment. Curr Neuropharmacol 2022; 20:1894-1907. [PMID: 34852745 PMCID: PMC9886804 DOI: 10.2174/1570159x19666211201093147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022] Open
Abstract
The metabolic peptide hormone amylin, in concert with other metabolic peptides like insulin and leptin, has an important role in metabolic homeostasis and has been intimately linked to Alzheimer's disease (AD). Interestingly, this pancreatic amyloid peptide is known to self-aggregate much like amyloid-beta and has been reported to be a source of pathogenesis in both Type II diabetes mellitus (T2DM) and Alzheimer's disease. The traditional "gain of toxic function" properties assigned to amyloid proteins are, however, contrasted by several reports highlighting neuroprotective effects of amylin and a recombinant analog, pramlintide, in the context of these two diseases. This suggests that pharmacological therapies aimed at modulating the amylin receptor may be therapeutically beneficial for AD development, as they already are for T2DMM. However, the nature of amylin receptor signaling is highly complex and not well studied in the context of CNS function. Therefore, to begin to address this pharmacological paradox in amylin research, the goal of this review is to summarize the current research on amylin signaling and CNS functions and critically address the paradoxical nature of this hormone's signaling in the context of AD pathogenesis.
Collapse
Affiliation(s)
| | | | - Gemma Casadesus
- Address correspondence to this author at the Department of Pharmacology and Therapeutics, University of Florida, PO Box 100495. Gainesville, FL32610 USA; Tel: 352-294-5346; E-mail:
| |
Collapse
|
7
|
Gamakharia S, Le Foll C, Rist W, Baader-Pagler T, Baljuls A, Lutz TA. The calcitonin receptor is the main mediator of LAAMA's body weight lowering effects in male mice. Eur J Pharmacol 2021; 908:174352. [PMID: 34274340 DOI: 10.1016/j.ejphar.2021.174352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 11/21/2022]
Abstract
The anorectic action of the pancreatic hormone amylin is mainly mediated through the area postrema (AP). Amylin activates AP neurons using a heterodimeric receptor (AMY) composed of the calcitonin receptor (CTR) and the receptor activity modifying protein (RAMP 1, 2 or 3). The aim of the following experiments is to test the effects of the long acting amylin analogue (LAAMA) in RAMP1/3 knock-out (KO) male mice and in neuronal CTR KO Nestin-CreCTR male mice. In vitro, LAAMA exerted an equipotent effect on CTR and AMYs that was maintained across species. Following one week of 45% high fat diet, WT, RAMP1/3 KO and Nestin-CreCTR mice were injected daily for one week with vehicle or LAAMA. LAAMA decreased body weight gain in WT and in RAMP1/3 KO mice suggesting that RAMP1/3 are not necessary for LAAMA-induced effects. However, LAAMA was not able to produce any body lowering and anorectic effects in Nestin-CreCTR mice. This was accompanied by the absence of any c-Fos signal in the AP opposite to WT control mice. Together, these results suggest that LAAMA's effects are mainly mediated through CTR rather than specific AMY. The study of LAAMA or any amylin receptor agonist in different receptor KO mouse models helps disentangle the underlying mechanisms used by these molecules.
Collapse
Affiliation(s)
- Salome Gamakharia
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Christelle Le Foll
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland.
| | - Wolfgang Rist
- Boehringer-Ingelheim Pharma, 88400, Biberach, Germany
| | | | | | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| |
Collapse
|
8
|
Gjermeni E, Kirstein AS, Kolbig F, Kirchhof M, Bundalian L, Katzmann JL, Laufs U, Blüher M, Garten A, Le Duc D. Obesity-An Update on the Basic Pathophysiology and Review of Recent Therapeutic Advances. Biomolecules 2021; 11:1426. [PMID: 34680059 PMCID: PMC8533625 DOI: 10.3390/biom11101426] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity represents a major public health problem with a prevalence increasing at an alarming rate worldwide. Continuous intensive efforts to elucidate the complex pathophysiology and improve clinical management have led to a better understanding of biomolecules like gut hormones, antagonists of orexigenic signals, stimulants of fat utilization, and/or inhibitors of fat absorption. In this article, we will review the pathophysiology and pharmacotherapy of obesity including intersection points to the new generation of antidiabetic drugs. We provide insight into the effectiveness of currently approved anti-obesity drugs and other therapeutic avenues that can be explored.
Collapse
Affiliation(s)
- Erind Gjermeni
- Department of Electrophysiology, Heart Center Leipzig at University of Leipzig, 04289 Leipzig, Germany;
- Department of Cardiology, Median Centre for Rehabilitation Schmannewitz, 04774 Dahlen, Germany;
| | - Anna S. Kirstein
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany; (A.S.K.); (F.K.); (A.G.)
| | - Florentien Kolbig
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany; (A.S.K.); (F.K.); (A.G.)
| | - Michael Kirchhof
- Department of Cardiology, Median Centre for Rehabilitation Schmannewitz, 04774 Dahlen, Germany;
| | - Linnaeus Bundalian
- Institute of Human Genetics, University Medical Center Leipzig, 04103 Leipzig, Germany;
| | - Julius L. Katzmann
- Klinik und Poliklinik für Kardiologie, University Clinic Leipzig, 04103 Leipzig, Germany; (J.L.K.); (U.L.)
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, University Clinic Leipzig, 04103 Leipzig, Germany; (J.L.K.); (U.L.)
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Antje Garten
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany; (A.S.K.); (F.K.); (A.G.)
| | - Diana Le Duc
- Institute of Human Genetics, University Medical Center Leipzig, 04103 Leipzig, Germany;
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany;
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| |
Collapse
|
9
|
Saneyasu T, Ueno M, Nagata K, Kewan A, Honda K, Kamisoyama H. Central administration of insulin and refeeding lead to Akt and ERK phosphorylation in the chicken medulla. Neurosci Lett 2021; 758:136008. [PMID: 34098027 DOI: 10.1016/j.neulet.2021.136008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/18/2021] [Accepted: 05/29/2021] [Indexed: 10/21/2022]
Abstract
The purpose of this study was to investigate whether medullary cellular signaling pathways contribute to feeding regulation in chickens. Fasting inhibited the phosphorylated protein and its rates of ERK but not Akt in the chicken medulla, while refeeding promoted Akt and ERK. Intraperitoneal administration of sulfate cholecystokinin 8 did not affect medullary Akt and ERK phosphorylation in chickens. Intracerebroventricular administration of insulin significantly induced the phosphorylation of Akt and ERK in the chicken medulla. These findings suggest that the medullary Akt and ERK pathways are involved in the appetite-suppressive pathway of insulin in chickens.
Collapse
Affiliation(s)
- Takaoki Saneyasu
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan.
| | - Mizuki Ueno
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Kanami Nagata
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Ahmed Kewan
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Kazuhisa Honda
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Hiroshi Kamisoyama
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
10
|
Honegger M, Lutz TA, Boyle CN. Hypoglycemia attenuates acute amylin-induced reduction of food intake in male rats. Physiol Behav 2021; 237:113435. [PMID: 33933418 DOI: 10.1016/j.physbeh.2021.113435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 12/17/2022]
Abstract
The ability of amylin to inhibit gastric emptying and glucagon secretion in rats is reduced under hypoglycemic conditions. These effects are considered part of a fail-safe mechanism that prevents amylin from further decreasing nutrient supply when blood glucose levels are low. Because these actions and amylin-induced satiation are mediated by the area postrema (AP), it is plausible that these phenomena are based on the co-sensitivity of AP neurons to amylin and glucose. Using hyperinsulinemic glucose clamps in unrestrained and freely-feeding rats, we investigated whether amylin's ability to inhibit food intake is also reduced by hypoglycemia (HYPO). Following an 18 h fast, rats were infused with insulin and glucose for 45 min to clamp blood glucose at baseline levels (between 90 and 100 mg/dL). HYPO (approximately 55 mg/dL) was induced between 45 and 60 min and then maintained for the remainder of the clamp. Rats were injected with amylin (20 µg/kg) or saline and offered normal chow at 85 min. Food intake was measured at 30 and 60 min after amylin. Control hyperinsulinemic/euglycemic (EU) rats were maintained at approximately 150 mg/dL (which is a physiological periprandial glucose level) before and after amylin injection. Terminal experiments tested the effect of amylin to induce the phosphorylation of ERK, a marker of amylin action in the AP, in EU and HYPO conditions. Amylin significantly reduced 30- and 60-min food intake in EU rats, but the effect at 60-min was attenuated in HYPO rats. Interestingly, glucose infusion rate had to be dramatically reduced at meal onset in saline-treated, but not in amylin-treated, EU or HYPO rats; this suggests that meal-related glucose appearance in the blood was inhibited by amylin under both EU and HYPO. Finally, amylin induced a similar pERK response in the AP in EU and HYPO rats. We conclude that amylin's action to decrease eating is blunted in hypoglycemia, and this effect seems to be downstream from amylin-induced pERK in AP neurons. These data allow us to extend the idea of a hypoglycemic brake on amylin's actions to its food intake-reducing effect, but also demonstrate that amylin can buffer meal-induced glucose appearance at EU and HYPO levels.
Collapse
Affiliation(s)
- Miriam Honegger
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich (UZH), 8057 Zurich, Switzerland
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich (UZH), 8057 Zurich, Switzerland; Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Christina N Boyle
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich (UZH), 8057 Zurich, Switzerland.
| |
Collapse
|
11
|
Nassar SZ, Badae NM, Issa YA. Effect of amylin on memory and central insulin resistance in a rat model of Alzheimer's disease. Arch Physiol Biochem 2020; 126:326-334. [PMID: 30449203 DOI: 10.1080/13813455.2018.1534244] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Context: Alzheimer's disease is strongly associated with brain insulin signalling.Objective: Investigating the effect of amylin as a novel treatment in streptozotocin (STZ) rat model of AD.Materials and methods: Alzheimer's disease (AD) was induced in albino rats by intracerebroventricular injection of STZ (3 mg/kg). Rats received either amylin analogue (Pramlintide 200 μg/kg/day) or Metformin (30 mg/kg/day) for 5 weeks.Results: Both Pramlintide and Metformin improve learning and memory through enhancing insulin signalling (p-IR and p-PI3K) which lead to lowering level of CSF glucose, phosphorylated tau proteins, and amyloid-β peptide (Aβ) in hippocampus.Conclusions: Insulin sensitisers as Metformin and Pramlintide can improve learning and memory and decrease the pathological changes in STZ induced rat model of AD. However, Pramlintide is superior to Metformin in some memory tests which related to its action as an amylin analogue. Amylin improves learning and memory through an independent effect other than insulin sensitisation.
Collapse
Affiliation(s)
- Seham Zakaria Nassar
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Noha Mohamed Badae
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Yasmine Amr Issa
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
12
|
Boccia L, Gamakharia S, Coester B, Whiting L, Lutz TA, Le Foll C. Amylin brain circuitry. Peptides 2020; 132:170366. [PMID: 32634450 DOI: 10.1016/j.peptides.2020.170366] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022]
Abstract
Amylin is a peptide hormone that is mainly known to be produced by pancreatic β-cells in response to a meal but amylin is also produced by brain cells in discrete brain areas albeit in a lesser amount. Amylin receptor (AMY) is composed of the calcitonin core-receptor (CTR) and one of the 3 receptor activity modifying protein (RAMP), thus forming AMY1-3; RAMP enhances amylin binding properties to the CTR. However, amylin receptor agonist such as salmon calcitonin is able to bind CTR alone. Peripheral amylin's main binding site is located in the area postrema (AP) which then propagate the signal to the nucleus of the solitary tract and lateral parabrachial nucleus (LPBN) and it is then transmitted to the forebrain areas such as central amygdala and bed nucleus of the stria terminalis. Amylin's activation of these different brain areas mediates eating and other metabolic pathways controlling energy expenditure and glucose homeostasis. Peripheral amylin can also bind in the arcuate nucleus of the hypothalamus where it acts independently of the AP to activate POMC and NPY neurons. Amylin activation of NPY neurons has been shown to be transmitted to LPBN neurons to act on eating while amylin POMC signaling affects energy expenditure and locomotor activity. While a large amount of experiments have already been conducted, future studies will have to further investigate how amylin is taken up by forebrain areas and deepen our understanding of amylin action on peripheral metabolism.
Collapse
Affiliation(s)
- Lavinia Boccia
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Salome Gamakharia
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Bernd Coester
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Lynda Whiting
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Australia
| | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Christelle Le Foll
- Institute of Veterinary Physiology, University of Zurich, CH-8057, Zurich, Switzerland.
| |
Collapse
|
13
|
Zakariassen HL, John LM, Lutz TA. Central control of energy balance by amylin and calcitonin receptor agonists and their potential for treatment of metabolic diseases. Basic Clin Pharmacol Toxicol 2020; 127:163-177. [PMID: 32363722 DOI: 10.1111/bcpt.13427] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
The prevalence of obesity and associated comorbidities such as type 2 diabetes and cardiovascular disease is increasing globally. Body-weight loss reduces the risk of morbidity and mortality in obese individuals, and thus, pharmacotherapies that induce weight loss can be of great value in improving the health and well-being of people living with obesity. Treatment with amylin and calcitonin receptor agonists reduces food intake and induces weight loss in several animal models, and a number of companies have started clinical testing for peptide analogues in the treatment of obesity and/or type 2 diabetes. Studies predominantly performed in rodent models show that amylin and the dual amylin/calcitonin receptor agonist salmon calcitonin achieve their metabolic effects by engaging areas in the brain associated with regulating homeostatic energy balance. In particular, signalling via neuronal circuits in the caudal hindbrain and the hypothalamus is implicated in mediating effects on food intake and energy expenditure. We review the current literature investigating the interaction of amylin/calcitonin receptor agonists with neurocircuits that induce the observed metabolic effects. Moreover, the status of drug development of amylin and calcitonin receptor agonists for the treatment of metabolic diseases is summarized.
Collapse
Affiliation(s)
- Hannah Louise Zakariassen
- Section of Experimental Animal Models, Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.,Obesity Pharmacology, Novo Nordisk A/S, Måløv, Denmark
| | | | | |
Collapse
|
14
|
Coester B, Pence SW, Arrigoni S, Boyle CN, Le Foll C, Lutz TA. RAMP1 and RAMP3 Differentially Control Amylin's Effects on Food Intake, Glucose and Energy Balance in Male and Female Mice. Neuroscience 2019; 447:74-93. [PMID: 31881259 DOI: 10.1016/j.neuroscience.2019.11.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/31/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
Amylin is a pancreatic peptide, which acts as a key controller of food intake and energy balance and predominately binds to three receptors (AMY 1-3). AMY 1-3 are composed of a calcitonin core receptor (CTR) and associated receptor-activity modifying proteins (RAMPs) 1-3. Using RAMP1, RAMP3 and RAMP1/3 global KO mice, this study aimed to determine whether the absence of one or two RAMP subunits affects food intake, glucose homeostasis and metabolism. Of all the RAMP-deficient mice, only high-fat diet fed RAMP1/3 KO mice had increased body weight. Chow-fed RAMP3 KO and high-fat diet fed 1/3 KO male mice were glucose intolerant. Fat depots were increased in RAMP1 KO male mice. No difference in energy expenditure was observed but the respiratory exchange ratio (RER) was elevated in RAMP1/3 KO. RAMP1 and 1/3 KO male mice displayed an increase in intermeal interval (IMI) and meal duration, whereas IMI was decreased in RAMP3 KO male and female mice. WT and RAMP1, RAMP3, and RAMP1/3 KO male and female littermates were then assessed for their food intake response to an acute intraperitoneal injection of amylin or its receptor agonist, salmon calcitonin (sCT). RAMP1/3 KO were insensitive to both, while RAMP3 KO were responsive to sCT only and RAMP1 KO to amylin only. While female mice generally weighed less than male mice, only RAMP1 KO showed a clear sex difference in meal pattern and food intake tests. Lastly, a decrease in CTR fibers did not consistently correlate with a decrease in amylin- induced c-Fos expression in the area postrema (AP). Ultimately, the results from this study provide evidence for a role of RAMP1 in mediation of fat utilization and a role for RAMP3 in glucose homeostasis and amylin's anorectic effect.
Collapse
Affiliation(s)
- Bernd Coester
- Institute of Veterinary Physiology, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland.
| | - Sydney W Pence
- Institute of Veterinary Physiology, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland.
| | - Soraya Arrigoni
- Institute of Veterinary Physiology, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland.
| | - Christina N Boyle
- Institute of Veterinary Physiology, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland.
| | - Christelle Le Foll
- Institute of Veterinary Physiology, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland.
| | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland.
| |
Collapse
|
15
|
Grizzanti J, Corrigan R, Casadesus G. Neuroprotective Effects of Amylin Analogues on Alzheimer's Disease Pathogenesis and Cognition. J Alzheimers Dis 2019; 66:11-23. [PMID: 30282360 DOI: 10.3233/jad-180433] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type II diabetes (T2D) has been identified as a major risk factor for the development of Alzheimer's disease (AD). Interestingly, both AD and T2D have similar characteristics including amyloid peptide aggregation, decreased metabolism, and increased oxidative stress and inflammation. Despite their prevalence, therapies for these diseases are limited. To date, most therapies for AD have targeted amyloid-β or tau. Unfortunately, most of these clinical trials have been largely unsuccessful, creating a crucial need for novel therapies. A number of studies have shown that metabolic hormone therapies are effective at ameliorating high blood glucose levels in diabetics as well as improving cognitive function in AD and mild cognitive impairment patients. Pramlintide, a synthetic analogue of the pancreatic hormone amylin, has been developed and used for years now as a treatment for both type I diabetes and T2D due to the loss of β-islet cells responsible for producing amylin. Importantly, recent data demonstrates its potential therapeutic role for AD as well. This review aims at addressing parallels between T2D and AD at a pathological and functional level, focusing on amylin signaling as a key, overlapping mediator in both diseases. The potential therapeutic use of this hormone to treat AD will also be explored from a mechanistic viewpoint.
Collapse
Affiliation(s)
- John Grizzanti
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Rachel Corrigan
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Gemma Casadesus
- School of Biomedical Sciences, Kent State University, Kent, OH, USA.,Department of Biological Sciences, Kent State University, Kent, OH, USA
| |
Collapse
|
16
|
Li X, Fan K, Li Q, Pan D, Hai R, Du C. Melanocortin 4 receptor-mediated effects of amylin on thermogenesis and regulation of food intake. Diabetes Metab Res Rev 2019; 35:e3149. [PMID: 30851142 DOI: 10.1002/dmrr.3149] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/02/2019] [Accepted: 03/05/2019] [Indexed: 02/02/2023]
Abstract
AIMS Amylin, a pancreatic hormone cosecreted with insulin, exerts important anorexic and weight-loss effects. Melanocortin 4 receptor (MC4R) signalling plays a critical role in energy homeostasis; however, its role on amylin-dependent regulation of food intake and adaptive thermogenesis of interscapular brown adipose tissue (IBAT) are unclear. In this study, we examined the effects of amylin on food intake and thermogenesis on IBAT via the MC4R pathway in mice. MATERIALS AND METHODS Acute food consumption and thermogenesis in IBAT were measured in male wild-type (WT) and MC4R-deficient mice following intraperitoneal injection of amylin and SHU9119, an MC3R/4R antagonist, to determine the role of the central melanocortin system on the hypothalamus and IBAT. RESULTS Amylin (50 μg/kg) suppressed feeding and stimulated thermogenesis on IBAT via activation of the MC4R system in mice. Pharmacological blockade of MC4R using SHU9119 (50 μg/kg) attenuated amylin-induced inhibition of feeding and stimulation of thermogenesis in IBAT. No changes were observed when SHU9119 was injected alone. Moreover, amylin significantly increased MC4R expression and c-Fos neuronal signals in the arcuate nucleus and significantly increased acetyl-CoA carboxylase (ACC) phosphorylation in the hypothalamus and IBAT and uncoupling protein-1 (UCP1) expression in the IBAT of WT mice via the MC4R pathway. CONCLUSION The melanocortin system was involved in amylin-induced suppression of food intake and activation of thermogenesis in both the hypothalamus and IBAT via modulation of ACC phosphorylation and UCP1 expression.
Collapse
Affiliation(s)
- Xiaojing Li
- College of Agronomy, Inner Mongolia Agricultural University, Hohhot, China
| | - Kuikui Fan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Qiang Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Deng Pan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Rihan Hai
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou, China
| | - Chenguang Du
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou, China
| |
Collapse
|
17
|
Almeida LS, Castro‐Lopes JM, Neto FL, Potes CS. Amylin, a peptide expressed by nociceptors, modulates chronic neuropathic pain. Eur J Pain 2019; 23:784-799. [DOI: 10.1002/ejp.1347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/05/2018] [Accepted: 11/27/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Lígia Sofia Almeida
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto Porto Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto Porto Portugal
- Departamento de Biomedicina – Unidade de Biologia Experimental, Faculdade de Medicina Universidade do Porto Porto Portugal
| | - José Manuel Castro‐Lopes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto Porto Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto Porto Portugal
- Departamento de Biomedicina – Unidade de Biologia Experimental, Faculdade de Medicina Universidade do Porto Porto Portugal
| | - Fani Lourença Neto
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto Porto Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto Porto Portugal
- Departamento de Biomedicina – Unidade de Biologia Experimental, Faculdade de Medicina Universidade do Porto Porto Portugal
| | - Catarina Soares Potes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto Porto Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto Porto Portugal
- Departamento de Biomedicina – Unidade de Biologia Experimental, Faculdade de Medicina Universidade do Porto Porto Portugal
| |
Collapse
|
18
|
Duffy S, Lutz TA, Boyle CN. Rodent models of leptin receptor deficiency are less sensitive to amylin. Am J Physiol Regul Integr Comp Physiol 2018; 315:R856-R865. [DOI: 10.1152/ajpregu.00179.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pancreatic hormone amylin is released from beta cells following nutrient ingestion and contributes to the control of body weight and glucose homeostasis. Amylin reduces food intake by activating neurons in the area postrema (AP). Amylin was also shown to synergize with the adipokine leptin, with combination therapy producing greater weight loss and food intake reduction than either hormone alone. Although amylin and leptin were initially thought to interact downstream of the AP in the hypothalamus, recent findings show that the two hormones can act on the same AP neurons, suggesting a more direct relationship. The objective of this study was to determine whether amylin action depends on functional leptin signaling. We tested the ability of amylin to induce satiation and to activate its primary target neurons in the AP in two rodent models of LepR deficiency, the db/db mouse and the Zucker diabetic fatty (ZDF) rat. When compared with wild-type (WT) mice, db/db mice exhibited reduced amylin-induced satiation, reduced amylin-induced Fos in the AP, and a lower expression of calcitonin receptor (CTR) protein, the core component of all amylin receptors. ZDF rats also showed no reduction in food intake following amylin treatment; however, unlike the db/db mice, levels of amylin-induced Fos and CTR in the AP were no different than WT rats. Our results suggest that LepR expression is required for the full anorexic effect of amylin; however, the neuronal activation in the AP seems to depend on the type of LepR mutation.
Collapse
Affiliation(s)
- Sonya Duffy
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| | - Thomas A. Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
- Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Christina N. Boyle
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Lutz TA, Coester B, Whiting L, Dunn-Meynell AA, Boyle CN, Bouret SG, Levin BE, Le Foll C. Amylin Selectively Signals Onto POMC Neurons in the Arcuate Nucleus of the Hypothalamus. Diabetes 2018; 67:805-817. [PMID: 29467172 PMCID: PMC5910000 DOI: 10.2337/db17-1347] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/09/2018] [Indexed: 02/05/2023]
Abstract
Amylin phosphorylates ERK (p-ERK) in the area postrema to reduce eating and synergizes with leptin to phosphorylate STAT3 in the arcuate (ARC) and ventromedial (VMN) hypothalamic nuclei to reduce food intake and body weight. The current studies assessed potential amylin and amylin-leptin ARC/VMN interactions on ERK signaling and their roles in postnatal hypothalamic pathway development. In amylin knockout mice, the density of agouti-related protein (AgRP)-immunoreactive (IR) fibers in the hypothalamic paraventricular nucleus (PVN) was increased, while the density of α-melanocyte-stimulating hormone (αMSH) fibers was decreased. In mice deficient of the amylin receptor components RAMP1/3, both AgRP and αMSH-IR fiber densities were decreased, while only αMSH-IR fiber density was decreased in rats injected neonatally in the ARC/VMN with an adeno-associated virus short hairpin RNA against the amylin core receptor. Amylin induced p-ERK in ARC neurons, 60% of which was present in POMC-expressing neurons, with none in NPY neurons. An amylin-leptin interaction was shown by an additive effect on ARC ERK signaling in neonatal rats and a 44% decrease in amylin-induced p-ERK in the ARC of leptin receptor-deficient and of ob/ob mice. Together, these results suggest that amylin directly acts, through a p-ERK-mediated process, on POMC neurons to enhance ARC-PVN αMSH pathway development.
Collapse
Affiliation(s)
- Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Bernd Coester
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Lynda Whiting
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | | | - Christina N Boyle
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Sebastien G Bouret
- Developmental Neuroscience Program, The Saban Research Institute, Children's Hospital Los Angeles, Department of Pediatrics, University of Southern California, Los Angeles, CA
- INSERM U1172, Jean-Pierre Aubert Research Center, Lille, France
| | - Barry E Levin
- Department of Neurology, Rutgers New Jersey Medical School, Newark, NJ
| | - Christelle Le Foll
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Characterization of signalling and regulation of common calcitonin receptor splice variants and polymorphisms. Biochem Pharmacol 2017; 148:111-129. [PMID: 29277692 DOI: 10.1016/j.bcp.2017.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/19/2017] [Indexed: 01/27/2023]
Abstract
The calcitonin receptor (CTR) is a class B G protein-coupled receptor that is a therapeutic target for the treatment of hypercalcaemia of malignancy, Paget's disease and osteoporosis. In primates, the CTR is subject to alternative splicing, with a unique, primate-specific splice variant being preferentially expressed in reproductive organs, lung and kidney. In addition, humans possess a common non-synonymous single-nucleotide polymorphism (SNP) encoding a proline/leucine substitution in the C-terminal tail. In low power studies, the leucine polymorphism has been associated with increased risk of osteoporosis in East Asian populations and, independently, with increased risk of kidney stone disease in a central Asian population. The CTR is pleiotropically coupled, though the relative physiological importance of these pathways is poorly understood. Using both COS-7 and HEK293 cells recombinantly expressing human CTR, we have characterized both splice variant and polymorphism dependent response to CTs from several species in key signalling pathways and competition binding assays. These data indicate that the naturally occurring changes to the intracellular face of CTR alter ligand affinity and signalling, in a pathway and agonist dependent manner. These results further support the potential for these primate-specific CTR variants to engender different physiological responses. In addition, we report that the CTR exhibits constitutive internalization, independent of splice variant and polymorphism and this profile is unaltered by peptide binding.
Collapse
|
21
|
Reiner DJ, Mietlicki-Baase EG, Olivos DR, McGrath LE, Zimmer DJ, Koch-Laskowski K, Krawczyk J, Turner CA, Noble EE, Hahn JD, Schmidt HD, Kanoski SE, Hayes MR. Amylin Acts in the Lateral Dorsal Tegmental Nucleus to Regulate Energy Balance Through Gamma-Aminobutyric Acid Signaling. Biol Psychiatry 2017; 82:828-838. [PMID: 28237459 PMCID: PMC5503810 DOI: 10.1016/j.biopsych.2016.12.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/13/2016] [Accepted: 12/28/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND The pancreatic- and brain-derived hormone amylin promotes negative energy balance and is receiving increasing attention as a promising obesity therapeutic. However, the neurobiological substrates mediating amylin's effects are not fully characterized. We postulated that amylin acts in the lateral dorsal tegmental nucleus (LDTg), an understudied neural processing hub for reward and homeostatic feeding signals. METHODS We used immunohistochemical and quantitative polymerase chain reaction analyses to examine expression of the amylin receptor complex in rat LDTg tissue. Behavioral experiments were performed to examine the mechanisms underlying the hypophagic effects of amylin receptor activation in the LDTg. RESULTS Immunohistochemical and quantitative polymerase chain reaction analyses show expression of the amylin receptor complex in the LDTg. Activation of LDTg amylin receptors by the agonist salmon calcitonin dose-dependently reduces body weight, food intake, and motivated feeding behaviors. Acute pharmacological studies and longer-term adeno-associated viral knockdown experiments indicate that LDTg amylin receptor signaling is physiologically and potentially preclinically relevant for energy balance control. Finally, immunohistochemical data indicate that LDTg amylin receptors are expressed on gamma-aminobutyric acidergic neurons, and behavioral results suggest that local gamma-aminobutyric acid receptor signaling mediates the hypophagia after LDTg amylin receptor activation. CONCLUSIONS These findings identify the LDTg as a novel nucleus with therapeutic potential in mediating amylin's effects on energy balance through gamma-aminobutyric acid receptor signaling.
Collapse
Affiliation(s)
- David J Reiner
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Elizabeth G Mietlicki-Baase
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Diana R Olivos
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Lauren E McGrath
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Derek J Zimmer
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kieran Koch-Laskowski
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Joanna Krawczyk
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Christopher A Turner
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, Philadelphia, Pennsylvania; Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Emily E Noble
- Department of Biological Sciences, Human and Evolutionary Biology Section, Los Angeles, California
| | - Joel D Hahn
- Neurobiology Section, University of Southern California, Los Angeles, California
| | - Heath D Schmidt
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Scott E Kanoski
- Department of Biological Sciences, Human and Evolutionary Biology Section, Los Angeles, California
| | - Matthew R Hayes
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
22
|
Boyle CN, Lutz TA, Le Foll C. Amylin - Its role in the homeostatic and hedonic control of eating and recent developments of amylin analogs to treat obesity. Mol Metab 2017; 8:203-210. [PMID: 29203236 PMCID: PMC5985014 DOI: 10.1016/j.molmet.2017.11.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/13/2017] [Accepted: 11/17/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Amylin is a pancreatic β-cell hormone that produces effects in several different organ systems. One of its best-characterized effects is the reduction in eating and body weight seen in preclinical and clinical studies. Amylin activates specific receptors, a portion of which it shares with calcitonin gene-related peptide (CGRP). Amylin's role in the control of energy metabolism relates to its satiating effect, but recent data indicate that amylin may also affect hedonic aspects in the control of eating, including a reduction of the rewarding value of food. Recently, several amylin-based peptides have been characterized. Pramlintide (Symlin®) is currently the only one being used clinically to treat type 1 and type 2 diabetes. However other amylin analogs with improved pharmacokinetic properties are being considered as anti-obesity treatment strategies. Several other studies in obesity have shown that amylin agonists could also be useful for weight loss, especially in combination with other agents. SCOPE OF REVIEW This review will briefly summarize amylin physiology and pharmacology and then focus on amylin's role in food reward and the effects of amylin analogs in pre-clinical testing for anti-obesity drugs. CONCLUSION We propose here that the effects of amylin may be homeostatic and hedonic in nature.
Collapse
Affiliation(s)
- Christina Neuner Boyle
- Institute of Veterinary Physiology and Zurich Centre for Integrative Human Physiology, University of Zurich, Switzerland
| | - Thomas Alexander Lutz
- Institute of Veterinary Physiology and Zurich Centre for Integrative Human Physiology, University of Zurich, Switzerland.
| | - Christelle Le Foll
- Institute of Veterinary Physiology and Zurich Centre for Integrative Human Physiology, University of Zurich, Switzerland
| |
Collapse
|
23
|
Amylin and its G-protein-coupled receptor: A probable pathological process and drug target for Alzheimer's disease. Neuroscience 2017; 356:44-51. [PMID: 28528968 DOI: 10.1016/j.neuroscience.2017.05.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 12/31/2022]
Abstract
G-protein-coupled receptors (GPCRs) are shown to be involved in Alzheimer's disease (AD) pathogenesis. However, because GPCRs include a large family of membrane receptors, it is unclear which specific GPCR or pathway with rational ligands can become effective therapeutic targets for AD. Amylin receptor (AmR) is a GPCR that mediates several activities, such as improving glucose metabolism, relaxing cerebrovascular structure, modulating inflammatory reactions and potentially enhancing neural regeneration. Recent studies show that peripheral treatments with amylin or its clinical analog, pramlintide, reduced several components of AD pathology, including amyloid plaques, tauopathy, neuroinflammation and other components in the brain, corresponding with improved learning and memory in AD mouse models. Because amylin shares a similar secondary structure with amyloid-β peptide (Aβ), I propose that the AmR/GPCR pathway is disturbed by a large amount of Aβ in the AD brain, leading to tau phosphorylation, neuroinflammation and neuronal death in the pathological cascade. Amylin-type peptides, readily crossing the blood-brain barrier (BBB), are the rational ligands to enhance this GPCR pathway and may exhibit utility as novel therapeutic agents for treating AD.
Collapse
|
24
|
Khlaifia A, Matias I, Cota D, Tell F. Nutritional status-dependent endocannabinoid signalling regulates the integration of rat visceral information. J Physiol 2017; 595:3267-3285. [PMID: 28233325 DOI: 10.1113/jp273484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 02/21/2017] [Indexed: 12/27/2022] Open
Abstract
KEY POINTS Vagal sensory inputs transmit information from the viscera to brainstem neurones located in the nucleus tractus solitarii to set physiological parameters. These excitatory synapses exhibit a CB1 endocannabinoid-induced long-term depression (LTD) triggered by vagal fibre stimulation. We investigated the impact of nutritional status on long-term changes in this long-term synaptic plasticity. Food deprivation prevents LTD induction by disrupting CB1 receptor signalling. Short-term refeeding restores the capacity of vagal synapses to express LTD. Ghrelin and cholecystokinin, respectively released during fasting and refeeding, play a key role in the control of LTD via the activation of energy sensing pathways such as AMPK and the mTOR and ERK pathways. ABSTRACT Communication form the viscera to the brain is essential to set physiological homoeostatic parameters but also to drive more complex behaviours such as mood, memory and emotional states. Here we investigated the impact of the nutritional status on long-term changes in excitatory synaptic transmission in the nucleus tractus solitarii, a neural hub integrating visceral signals. These excitatory synapses exhibit a CB1 endocannabinoid (eCB)-induced long-term depression (LTD) triggered by vagal fibre stimulation. Since eCB signalling is known to be an important component of homoeostatic regulation of the body and is regulated during various stressful conditions, we tested the hypothesis that food deprivation alters eCB signalling in central visceral afferent fibres. Food deprivation prevents eCB-LTD induction due to the absence of eCB signalling. This loss was reversed by blockade of ghrelin receptors. Activation of the cellular fuel sensor AMP-activated protein kinase or inhibition of the mechanistic target of rapamycin pathway abolished eCB-LTD in free-fed rats. Signals associated with energy surfeit, such as short-term refeeding, restore eCB-LTD induction, which in turn requires activation of cholecystokinin receptors and the extracellular signal-regulated kinase pathway. These data suggest a tight link between eCB-LTD in the NTS and nutritional status and shed light on the key role of eCB in the integration of visceral information.
Collapse
Affiliation(s)
- Abdessattar Khlaifia
- Aix-Marseille Université, CNRS, CRN2M, UMR 7286, 51 Boulevard Pierre Dramard, 13344, Marseille, France
| | - Isabelle Matias
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000, Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000, Bordeaux, France
| | - Daniela Cota
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000, Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000, Bordeaux, France
| | - Fabien Tell
- Aix-Marseille Université, CNRS, CRN2M, UMR 7286, 51 Boulevard Pierre Dramard, 13344, Marseille, France
| |
Collapse
|
25
|
Levin BE, Lutz TA. Amylin and Leptin: Co-Regulators of Energy Homeostasis and Neuronal Development. Trends Endocrinol Metab 2017; 28:153-164. [PMID: 27938937 DOI: 10.1016/j.tem.2016.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 12/18/2022]
Abstract
While the regulation of energy homeostasis by amylin is already well-characterized, emerging data suggest that amylin is also crucial for the development of neural pathways in the hypothalamus and caudal hindbrain (area postrema, AP; nucleus tractus solitarius, NTS). Exciting new findings demonstrate crucial amylin-leptin interactions in altering the activity of specific hypothalamic and AP neurons, and a role for amylin as a novel class of 'leptin sensitizers' which enhance leptin signaling in both leptin-sensitive and -resistant individuals, in part by stimulating IL-6 production by hypothalamic microglia. This review summarizes these findings and provides a hypothetical framework for future studies to elucidate the mechanisms by which amylin and leptin act individually and as co-conspirators to alter energy homeostasis and neuronal development.
Collapse
Affiliation(s)
- Barry E Levin
- Department of Neurology, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA.
| | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Lutz TA. Gut hormones such as amylin and GLP-1 in the control of eating and energy expenditure. INTERNATIONAL JOURNAL OF OBESITY SUPPLEMENTS 2016; 6:S15-S21. [PMID: 28685025 DOI: 10.1038/ijosup.2016.4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The control of meal size is the best studied aspect of the control of energy balance, and manipulation of this system constitutes a promising target to treat obesity. A major part of this control system is based on gastrointestinal hormones such as glucagon-like peptide-1 (GLP-1) or amylin, which are released in response to a meal and which limit the size of an ongoing meal. Both amylin and GLP-1 have also been shown to increase energy expenditure in experimental rodents, but mechanistically we know much less how this effect may be mediated, which brain sites may be involved, and what the physiological relevance of these findings may be. Most studies indicate that the effect of peripheral amylin is centrally mediated via the area postrema, but other brain areas, such as the ventral tegmental area, may also be involved. GLP-1's effect on eating seems to be mainly mediated by vagal afferents projecting to the caudal hindbrain. Chronic exposure to amylin, GLP-1 or their analogs decrease food intake and body weight gain. Next to the induction of satiation, amylin may also constitute an adiposity signal and in fact interact with the adiposity signal leptin. Amylin analogs are under clinical consideration for their effect to reduce food intake and body weight in humans, and similar to rodents, amylin analogs seem to be particularly active when combined with leptin analogs.
Collapse
Affiliation(s)
- T A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland.,Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Johnson MD, Bouret SG, Dunn-Meynell AA, Boyle CN, Lutz TA, Levin BE. Early postnatal amylin treatment enhances hypothalamic leptin signaling and neural development in the selectively bred diet-induced obese rat. Am J Physiol Regul Integr Comp Physiol 2016; 311:R1032-R1044. [PMID: 27629888 PMCID: PMC5256974 DOI: 10.1152/ajpregu.00326.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/02/2016] [Accepted: 09/02/2016] [Indexed: 12/25/2022]
Abstract
Selectively bred diet-induced obese (DIO) rats become obese on a high-fat diet and are leptin resistant before becoming obese. Compared with diet-resistant (DR) neonates, DIO neonates have impaired leptin-dependent arcuate (ARC) neuropeptide Y/agouti-related peptide (NPY/AgRP) and α-melanocyte-stimulating hormone (α-MSH; from proopiomelanocortin (POMC) neurons) axon outgrowth to the paraventricular nucleus (PVN). Using phosphorylation of STAT3 (pSTAT3) as a surrogate, we show that reduced DIO ARC leptin signaling develops by postnatal day 7 (P7) and is reduced within POMC but not NPY/AgRP neurons. Since amylin increases leptin signaling in adult rats, we treated DIO neonates with amylin during postnatal hypothalamic development and assessed leptin signaling, leptin-dependent ARC-PVN pathway development, and metabolic changes. DIO neonates treated with amylin from P0-6 and from P0-16 increased ARC leptin signaling and both AgRP and α-MSH ARC-PVN pathway development, but increased only POMC neuron number. Despite ARC-PVN pathway correction, P0-16 amylin-induced reductions in body weight did not persist beyond treatment cessation. Since amylin enhances adult DIO ARC signaling via an IL-6-dependent mechanism, we assessed ARC-PVN pathway competency in IL-6 knockout mice and found that the AgRP, but not the α-MSH, ARC-PVN pathway was reduced. These results suggest that both leptin and amylin are important neurotrophic factors for the postnatal development of the ARC-PVN pathway. Amylin might act as a direct neurotrophic factor in DIO rats to enhance both the number of POMC neurons and their α-MSH ARC-PVN pathway development. This suggests important and selective roles for amylin during ARC hypothalamic development.
Collapse
Affiliation(s)
- Miranda D Johnson
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sebastien G Bouret
- The Saban Research Institute, Developmental Neuroscience Program, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California.,INSERM, Jean-Pierre Aubert Research Center, Lille, France
| | | | - Christina N Boyle
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; and
| | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; and
| | - Barry E Levin
- Department of Neurology, Rutgers New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
28
|
Liberini CG, Borner T, Boyle CN, Lutz TA. The satiating hormone amylin enhances neurogenesis in the area postrema of adult rats. Mol Metab 2016; 5:834-843. [PMID: 27688997 PMCID: PMC5034493 DOI: 10.1016/j.molmet.2016.06.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 06/22/2016] [Accepted: 06/27/2016] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Adult neurogenesis in the subgranular zone and subventricular zone is generally accepted, but its existence in other brain areas is still controversial. Circumventricular organs, such as the area postrema (AP) have recently been described as potential neurogenic niches in the adult brain. The AP is the major site of action of the satiating hormone amylin. Amylin has been shown to promote the formation of neuronal projections originating from the AP in neonatal rodents but the role of amylin in adult neurogenesis remains unknown. METHODS To test this, we first performed an RNA-sequencing of the AP of adult rats acutely injected with either amylin (20 μg/kg), amylin plus the amylin receptor antagonist AC187 (500 μg/kg) or vehicle. Second, animals were subcutaneously equipped with minipumps releasing either amylin (50 μg/kg/day) or vehicle for 3 weeks to assess cell proliferation and differentiation with the 5'-bromo-2-deoxyuridine (BrdU) technique. RESULTS Acute amylin injections affected genes involved in pathways and processes that control adult neurogenesis. Amylin consistently upregulated NeuroD1 transcript and protein in the adult AP, and this effect was blocked by the co-administration of AC187. Further, chronic amylin treatment increased the number of newly proliferated AP-cells and significantly promoted their differentiation into neurons rather than astrocytes. CONCLUSION Our findings revealed a novel role of the satiating hormone amylin in promoting neurogenesis in the AP of adult rats.
Collapse
Key Words
- AP, area postrema
- Adult neurogenesis
- Amylin
- Area postrema
- BrdU
- BrdU, 5′-bromo-2-deoxyuridine
- CR, calretinin
- CTR, calcitonin receptor
- CVO, circumventricular organs
- Circumventricular organs
- ERK1/2, extracellular signal-regulated kinase 1 and 2
- EphRs, ephrin receptors
- FDR, false discovery rate
- GO, gene ontology
- ME, median eminence
- NGS, next generation sequencing
- NSC, neural stem cells
- NeuroD, neuronal differentiation
- NeuroD1, neuronal differentiation-1
- RAMP, receptor activity-modifying protein
- Wnt, Wingless-Type MMTV Integration Site Family
- bHLH, basic helix-loop-helix
Collapse
Affiliation(s)
- Claudia G Liberini
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich (UZH), 8057 Zurich, Switzerland; Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland; Zurich Centre for Clinical Studies, Vetsuisse Faculty University of Zurich, 8057 Zurich, Switzerland
| | - Tito Borner
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich (UZH), 8057 Zurich, Switzerland; Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Christina N Boyle
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich (UZH), 8057 Zurich, Switzerland.
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich (UZH), 8057 Zurich, Switzerland; Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
29
|
Liberini CG, Boyle CN, Cifani C, Venniro M, Hope BT, Lutz TA. Amylin receptor components and the leptin receptor are co-expressed in single rat area postrema neurons. Eur J Neurosci 2016; 43:653-61. [PMID: 26750109 PMCID: PMC10704335 DOI: 10.1111/ejn.13163] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 12/16/2023]
Abstract
Amylin is a pancreatic β-cell hormone that acts as a satiating signal to inhibit food intake by binding to amylin receptors (AMYs) and activating a specific neuronal population in the area postrema (AP). AMYs are heterodimers that include a calcitonin receptor (CTR) subunit [CTR isoform a or b (CTRa or CTRb)] and a member of the receptor activity-modifying proteins (RAMPs). Here, we used single-cell quantitative polymerase chain reaction to assess co-expression of AMY subunits in AP neurons from rats that were injected with amylin or vehicle. Because amylin interacts synergistically with the adipokine leptin to reduce body weight, we also assessed the co-expression of AMY and the leptin receptor isoform b (LepRb) in amylin-activated AP neurons. Single cells were collected from Wistar rats and from transgenic Fos-GFP rats that express green fluorescent protein (GFP) under the control of the Fos promoter. We found that the mRNAs of CTRa, RAMP1, RAMP2 and RAMP3 were all co-expressed in single AP neurons. Moreover, most of the CTRa+ cells co-expressed more than one of the RAMPs. Amylin down-regulated RAMP1 and RAMP3 but not CTR mRNAs in AMY+ neurons, suggesting a possible negative feedback mechanism of amylin at its own primary receptors. Interestingly, amylin up-regulated RAMP2 mRNA. We also found that a high percentage of single cells that co-expressed all components of a functional AMY expressed LepRb mRNA. Thus, single AP cells expressed both AMY and LepRb, which formed a population of first-order neurons that presumably can be directly activated by amylin and, at least in part, also by leptin.
Collapse
Affiliation(s)
- Claudia G. Liberini
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich (UZH), Zurich, Switzerland
- Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- Zurich Centre for Clinical Studies, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| | - Christina Neuner Boyle
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich (UZH), Zurich, Switzerland
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Italy
- Intramural Research Program, National Institutes of Health/National Institute on Drug Abuse, Baltimore, Maryland 21224
| | - Marco Venniro
- Intramural Research Program, National Institutes of Health/National Institute on Drug Abuse, Baltimore, Maryland 21224
| | - Bruce T. Hope
- Intramural Research Program, National Institutes of Health/National Institute on Drug Abuse, Baltimore, Maryland 21224
| | - Thomas A. Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich (UZH), Zurich, Switzerland
- Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Dunn-Meynell AA, Le Foll C, Johnson MD, Lutz TA, Hayes MR, Levin BE. Endogenous VMH amylin signaling is required for full leptin signaling and protection from diet-induced obesity. Am J Physiol Regul Integr Comp Physiol 2016; 310:R355-65. [PMID: 26676252 PMCID: PMC4868368 DOI: 10.1152/ajpregu.00462.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/10/2015] [Indexed: 12/29/2022]
Abstract
Amylin enhances arcuate (ARC) and ventromedial (VMN) hypothalamic nuclei leptin signaling and synergistically reduces food intake and body weight in selectively bred diet-induced obese (DIO) rats. Since DIO (125)I-amylin dorsomedial nucleus-dorsomedial VMN binding was reduced, we postulated that this contributed to DIO ventromedial hypothalamus (VMH) leptin resistance, and that impairing VMH (ARC + VMN) calcitonin receptor (CTR)-mediated signaling by injecting adeno-associated virus (AAV) expressing a short hairpin portion of the CTR mRNA would predispose diet-resistant (DR) rats to obesity on high-fat (45%) diet (HFD). Depleting VMH CTR by 80-90% in 4-wk-old male DR rats reduced their ARC and VMN (125)I-labeled leptin binding by 57 and 51%, respectively, and VMN leptin-induced phospho-signal transducer and activator of transcription 3-positive neurons by 59% vs. AAV control rats. After 6 wk on chow, VMH CTR-depleted DR rats ate and gained the equivalent amount of food and weight but had 18% heavier fat pads (relative to carcass weight), 144% higher leptin levels, and were insulin resistant compared with control AAV DR rats. After 6 wk more on HFD, VMH CTR-depleted DR rats ate the same amount but gained 28% more weight, had 60% more carcass fat, 254% higher leptin levels, and 132% higher insulin areas under the curve during an oral glucose tolerance test than control DR rats. Therefore, impairing endogenous VMH CTR-mediated signaling reduced leptin signaling and caused DR rats to become more obese and insulin resistant, both on chow and HFD. These results suggest that endogenous VMH amylin signaling is required for full leptin signaling and protection from HFD-induced obesity.
Collapse
Affiliation(s)
| | - Christelle Le Foll
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Miranda D Johnson
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Matthew R Hayes
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Barry E Levin
- Neurology Service, Veterans Administration Medical Center, East Orange, New Jersey; Department of Neurology, Rutgers, New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
31
|
Abstract
Previously, we have identified a novel role for the cytoplasmic protein, synphilin-1(SP1), in the controls of food intake and body weight in both mice and Drosophila. Ubiquitous overexpression of human SP1 in brain neurons in transgenic mice results in hyperphagia expressed as an increase in meal size. However, the mechanisms underlying this action of SP1 remain to be determined. Here we investigate a potential role for altered gut feedback signaling in the effects of SP1 on food intake. We examined responses to peripheral administration of cholecytokinin (CCK), amylin, and the glucagon like peptide-1 (GLP-1) receptor agonist, exendin-4. Intraperitoneal administration of CCK at doses ranging from 1–10 nmol/kg significantly reduced glucose intake in wild type (WT) mice, but failed to affect intake in SP1 transgenic mice. Moreover, there was a significant attenuation of CCK-induced c-Fos expression in the dorsal vagal complex in SP1 transgenic mice. In contrast, WT and SP1 transgenic mice were similarly responsive to both amylin and exendin-4 treatment. These studies demonstrate that SP1 results in a CCK response deficiency that may contribute to the increased meal size and overall hyperphagia in synphillin-1 transgenic mice.
Collapse
|
32
|
Hay DL, Chen S, Lutz TA, Parkes DG, Roth JD. Amylin: Pharmacology, Physiology, and Clinical Potential. Pharmacol Rev 2015; 67:564-600. [PMID: 26071095 DOI: 10.1124/pr.115.010629] [Citation(s) in RCA: 270] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amylin is a pancreatic β-cell hormone that produces effects in several different organ systems. Here, we review the literature in rodents and in humans on amylin research since its discovery as a hormone about 25 years ago. Amylin is a 37-amino-acid peptide that activates its specific receptors, which are multisubunit G protein-coupled receptors resulting from the coexpression of a core receptor protein with receptor activity-modifying proteins, resulting in multiple receptor subtypes. Amylin's major role is as a glucoregulatory hormone, and it is an important regulator of energy metabolism in health and disease. Other amylin actions have also been reported, such as on the cardiovascular system or on bone. Amylin acts principally in the circumventricular organs of the central nervous system and functionally interacts with other metabolically active hormones such as cholecystokinin, leptin, and estradiol. The amylin-based peptide, pramlintide, is used clinically to treat type 1 and type 2 diabetes. Clinical studies in obesity have shown that amylin agonists could also be useful for weight loss, especially in combination with other agents.
Collapse
Affiliation(s)
- Debbie L Hay
- School of Biological Sciences, Maurice Wilkins Centre for Molecular Biodiscovery and Centre for Brain Research, University of Auckland, Auckland, New Zealand (D.L.H.); Amylin Pharmaceuticals LLC, San Diego, California (S.C., D.G.P.); Institute of Veterinary Physiology, Institute of Laboratory Animal Sciences and Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland (T.A.L.); and Intercept Pharmaceuticals, Inc., San Diego, California (J.D.R.)
| | - Steve Chen
- School of Biological Sciences, Maurice Wilkins Centre for Molecular Biodiscovery and Centre for Brain Research, University of Auckland, Auckland, New Zealand (D.L.H.); Amylin Pharmaceuticals LLC, San Diego, California (S.C., D.G.P.); Institute of Veterinary Physiology, Institute of Laboratory Animal Sciences and Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland (T.A.L.); and Intercept Pharmaceuticals, Inc., San Diego, California (J.D.R.)
| | - Thomas A Lutz
- School of Biological Sciences, Maurice Wilkins Centre for Molecular Biodiscovery and Centre for Brain Research, University of Auckland, Auckland, New Zealand (D.L.H.); Amylin Pharmaceuticals LLC, San Diego, California (S.C., D.G.P.); Institute of Veterinary Physiology, Institute of Laboratory Animal Sciences and Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland (T.A.L.); and Intercept Pharmaceuticals, Inc., San Diego, California (J.D.R.)
| | - David G Parkes
- School of Biological Sciences, Maurice Wilkins Centre for Molecular Biodiscovery and Centre for Brain Research, University of Auckland, Auckland, New Zealand (D.L.H.); Amylin Pharmaceuticals LLC, San Diego, California (S.C., D.G.P.); Institute of Veterinary Physiology, Institute of Laboratory Animal Sciences and Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland (T.A.L.); and Intercept Pharmaceuticals, Inc., San Diego, California (J.D.R.)
| | - Jonathan D Roth
- School of Biological Sciences, Maurice Wilkins Centre for Molecular Biodiscovery and Centre for Brain Research, University of Auckland, Auckland, New Zealand (D.L.H.); Amylin Pharmaceuticals LLC, San Diego, California (S.C., D.G.P.); Institute of Veterinary Physiology, Institute of Laboratory Animal Sciences and Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland (T.A.L.); and Intercept Pharmaceuticals, Inc., San Diego, California (J.D.R.)
| |
Collapse
|
33
|
Mietlicki-Baase EG, Olivos DR, Jeffrey BA, Hayes MR. Cooperative interaction between leptin and amylin signaling in the ventral tegmental area for the control of food intake. Am J Physiol Endocrinol Metab 2015; 308:E1116-22. [PMID: 25898952 PMCID: PMC4469808 DOI: 10.1152/ajpendo.00087.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/15/2015] [Indexed: 12/16/2022]
Abstract
Peripheral coadministration of amylin and leptin produces enhanced suppression of food intake and body weight, but the central nuclei mediating these effects remain unclear. Because each of these peptides controls feeding via actions at the ventral tegmental area (VTA), we tested the hypothesis that the VTA is a site of action for the cooperative effects of leptin and amylin on energy balance control. First, we show that intra-VTA injection of amylin and leptin at doses of each peptide that are effective in reducing food intake and body weight when administered separately produces an enhanced suppression of feeding when administered in combination. We also demonstrate that subthreshold doses of both amylin and leptin cause significant hypophagia and body weight loss when coadministered into the VTA. Additionally, we provide evidence that VTA amylin receptor blockade significantly attenuates the ability of intra-VTA leptin to reduce feeding and body weight gain. Together, these data provide the first evidence that the VTA mediates the interaction of amylin and leptin to cooperatively promote negative energy balance.
Collapse
Affiliation(s)
- Elizabeth G Mietlicki-Baase
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Diana R Olivos
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Brianne A Jeffrey
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew R Hayes
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
34
|
Rizvi SMD, Shaikh S, Waseem SMA, Shakil S, Abuzenadah AM, Biswas D, Tabrez S, Ashraf GM, Kamal MA. Role of anti-diabetic drugs as therapeutic agents in Alzheimer's disease. EXCLI JOURNAL 2015; 14:684-96. [PMID: 27152105 PMCID: PMC4849108 DOI: 10.17179/excli2015-252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/05/2015] [Indexed: 12/16/2022]
Abstract
Recent data have suggested a strong possible link between Type 2 Diabetes Mellitus and Alzheimer's disease (AD), although exact mechanisms linking the two are still a matter of research and debate. Interestingly, both are diseases with high incidence and prevalence in later years of life. The link appears so strong that some scientists use Alzheimer's and Type 3 Diabetes interchangeably. In depth study of recent data suggests that the anti diabetic drugs not only have possible role in treatment of Alzheimer's but may also arrest the declining cognitive functions associated with it. The present review gives an insight into the possible links, existing therapeutics and clinical trials of anti diabetic drugs in patients suffering from AD primarily or as co-morbidity. It may be concluded that the possible beneficial effects and usefulness of the current anti diabetic drugs in AD cannot be neglected and further research is required to achieve positive results. Currently, several drug trials are in progress to give conclusive evidence based data.
Collapse
Affiliation(s)
| | | | - Shah Mohammad Abbas Waseem
- Department of Physiology, Integral Institute of Medical Sciences & Research, Integral University, Lucknow, India
| | - Shazi Shakil
- Center of Innovation in Personalized Medicine, Faculty of Applied Medical Sciences,King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adel M. Abuzenadah
- Center of Innovation in Personalized Medicine, Faculty of Applied Medical Sciences,King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Md. Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Enzymoic, 7 Peterlee Pl, Hebersham, NSW 2770, Australia
| |
Collapse
|
35
|
Walker CS, Eftekhari S, Bower RL, Wilderman A, Insel PA, Edvinsson L, Waldvogel HJ, Jamaluddin MA, Russo AF, Hay DL. A second trigeminal CGRP receptor: function and expression of the AMY1 receptor. Ann Clin Transl Neurol 2015; 2:595-608. [PMID: 26125036 PMCID: PMC4479521 DOI: 10.1002/acn3.197] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/01/2015] [Accepted: 03/02/2015] [Indexed: 12/14/2022] Open
Abstract
Objective The trigeminovascular system plays a central role in migraine, a condition in need of new treatments. The neuropeptide, calcitonin gene-related peptide (CGRP), is proposed as causative in migraine and is the subject of intensive drug discovery efforts. This study explores the expression and functionality of two CGRP receptor candidates in the sensory trigeminal system. Methods Receptor expression was determined using Taqman G protein-coupled receptor arrays and immunohistochemistry in trigeminal ganglia (TG) and the spinal trigeminal complex of the brainstem in rat and human. Receptor pharmacology was quantified using sensitive signaling assays in primary rat TG neurons. Results mRNA and histological expression analysis in rat and human samples revealed the presence of two CGRP-responsive receptors (AMY1: calcitonin receptor/receptor activity-modifying protein 1 [RAMP1]) and the CGRP receptor (calcitonin receptor-like receptor/RAMP1). In support of this finding, quantification of agonist and antagonist potencies revealed a dual population of functional CGRP-responsive receptors in primary rat TG neurons. Interpretation The unexpected presence of a functional non-canonical CGRP receptor (AMY1) at neural sites important for craniofacial pain has important implications for targeting the CGRP axis in migraine.
Collapse
Affiliation(s)
- Christopher S Walker
- School of Biological Sciences, University of Auckland Auckland, 1142, New Zealand ; Centre for Brain Research, University of Auckland Auckland, 1142, New Zealand
| | - Sajedeh Eftekhari
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Lund, Sweden
| | - Rebekah L Bower
- School of Biological Sciences, University of Auckland Auckland, 1142, New Zealand ; Centre for Brain Research, University of Auckland Auckland, 1142, New Zealand
| | - Andrea Wilderman
- Departments of Pharmacology and Medicine, University of California at San Diego La Jolla, California
| | - Paul A Insel
- Departments of Pharmacology and Medicine, University of California at San Diego La Jolla, California
| | - Lars Edvinsson
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Lund, Sweden
| | - Henry J Waldvogel
- Centre for Brain Research, University of Auckland Auckland, 1142, New Zealand ; Department of Anatomy with Radiology, Faculty of Medical and Health Science, University of Auckland Auckland, 1142, New Zealand
| | | | - Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa Iowa City, Iowa ; Department of Neurology, Veterans Affairs Medical Center, University of Iowa Iowa City, Iowa
| | - Debbie L Hay
- School of Biological Sciences, University of Auckland Auckland, 1142, New Zealand ; Centre for Brain Research, University of Auckland Auckland, 1142, New Zealand
| |
Collapse
|
36
|
Lelliott CJ, Ahnmark A, Admyre T, Ahlstedt I, Irving L, Keyes F, Patterson L, Mumphrey MB, Bjursell M, Gorman T, Bohlooly-Y M, Buchanan A, Harrison P, Vaughan T, Berthoud HR, Lindén D. Monoclonal antibody targeting of fibroblast growth factor receptor 1c ameliorates obesity and glucose intolerance via central mechanisms. PLoS One 2014; 9:e112109. [PMID: 25427253 PMCID: PMC4245083 DOI: 10.1371/journal.pone.0112109] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/13/2014] [Indexed: 12/21/2022] Open
Abstract
We have generated a novel monoclonal antibody targeting human FGFR1c (R1c mAb) that caused profound body weight and body fat loss in diet-induced obese mice due to decreased food intake (with energy expenditure unaltered), in turn improving glucose control. R1c mAb also caused weight loss in leptin-deficient ob/ob mice, leptin receptor-mutant db/db mice, and in mice lacking either the melanocortin 4 receptor or the melanin-concentrating hormone receptor 1. In addition, R1c mAb did not change hypothalamic mRNA expression levels of Agrp, Cart, Pomc, Npy, Crh, Mch, or Orexin, suggesting that R1c mAb could cause food intake inhibition and body weight loss via other mechanisms in the brain. Interestingly, peripherally administered R1c mAb accumulated in the median eminence, adjacent arcuate nucleus and in the circumventricular organs where it activated the early response gene c-Fos. As a plausible mechanism and coinciding with the initiation of food intake suppression, R1c mAb induced hypothalamic expression levels of the cytokines Monocyte chemoattractant protein 1 and 3 and ERK1/2 and p70 S6 kinase 1 activation.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Arcuate Nucleus of Hypothalamus/drug effects
- Arcuate Nucleus of Hypothalamus/metabolism
- Arcuate Nucleus of Hypothalamus/physiopathology
- Chemokine CCL2/agonists
- Chemokine CCL2/genetics
- Chemokine CCL2/metabolism
- Chemokine CCL7/agonists
- Chemokine CCL7/genetics
- Chemokine CCL7/metabolism
- Circumventricular Organs/drug effects
- Circumventricular Organs/metabolism
- Circumventricular Organs/physiopathology
- Eating/drug effects
- Energy Metabolism
- Female
- Gene Expression Regulation
- Glucose Intolerance/drug therapy
- Glucose Intolerance/genetics
- Glucose Intolerance/metabolism
- Glucose Intolerance/physiopathology
- Humans
- Hypothalamus/drug effects
- Hypothalamus/metabolism
- Hypothalamus/physiopathology
- Leptin/deficiency
- Leptin/genetics
- Mice
- Mice, Knockout
- Mice, Obese
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/metabolism
- Obesity/drug therapy
- Obesity/genetics
- Obesity/metabolism
- Obesity/physiopathology
- Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Melanocortin, Type 4/deficiency
- Receptor, Melanocortin, Type 4/genetics
- Receptors, Somatostatin/deficiency
- Receptors, Somatostatin/genetics
- Ribosomal Protein S6 Kinases, 70-kDa/genetics
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- Serum Response Factor/agonists
- Serum Response Factor/genetics
- Serum Response Factor/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Christopher J. Lelliott
- Cardiovascular & Metabolic Disease Innovative Medicines, Dept of Bioscience Diabetes, AstraZeneca, Mölndal, Sweden
| | - Andrea Ahnmark
- Cardiovascular & Metabolic Disease Innovative Medicines, Dept of Bioscience Diabetes, AstraZeneca, Mölndal, Sweden
| | - Therese Admyre
- Discovery Sciences Transgenics, AstraZeneca, Mölndal, Sweden
| | - Ingela Ahlstedt
- Cardiovascular & Metabolic Disease Innovative Medicines, Dept of Bioscience Diabetes, AstraZeneca, Mölndal, Sweden
| | - Lorraine Irving
- Antibody Discovery and Protein Engineering, MedImmune, Cambridge, United Kingdom
| | - Feenagh Keyes
- Antibody Discovery and Protein Engineering, MedImmune, Cambridge, United Kingdom
| | - Laurel Patterson
- Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, Baton Rouge, United States of America
| | - Michael B. Mumphrey
- Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, Baton Rouge, United States of America
| | - Mikael Bjursell
- Discovery Sciences Transgenics, AstraZeneca, Mölndal, Sweden
| | - Tracy Gorman
- AstraZeneca, Discovery Sciences, Mereside, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | | | - Andrew Buchanan
- Antibody Discovery and Protein Engineering, MedImmune, Cambridge, United Kingdom
| | - Paula Harrison
- Antibody Discovery and Protein Engineering, MedImmune, Cambridge, United Kingdom
| | - Tristan Vaughan
- Antibody Discovery and Protein Engineering, MedImmune, Cambridge, United Kingdom
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, Baton Rouge, United States of America
| | - Daniel Lindén
- Cardiovascular & Metabolic Disease Innovative Medicines, Dept of Bioscience Diabetes, AstraZeneca, Mölndal, Sweden
- * E-mail:
| |
Collapse
|
37
|
Qiu WQ, Zhu H. Amylin and its analogs: a friend or foe for the treatment of Alzheimer's disease? Front Aging Neurosci 2014; 6:186. [PMID: 25120481 PMCID: PMC4114192 DOI: 10.3389/fnagi.2014.00186] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/09/2014] [Indexed: 12/20/2022] Open
Abstract
Amylin, a gut-brain axis hormone, and amyloid-beta peptides (Aβ), a major component of the Alzheimer's disease (AD) brain, share several features, including similar β-sheet secondary structures, binding to the same receptor and being degraded by the same protease, insulin degrading enzyme (IDE). However, while amylin readily crosses the blood brain barrier (BBB) and mediates several activities including improving glucose metabolism, relaxing cerebrovascular structure, modulating inflammatory reaction and perhaps enhancing neural regeneration, Aβ has no known physiological functions. Thus, abundant Aβ in the AD brain could block or interfere with the binding of amylin to its receptor and hinder its functions. Recent studies using animal models for AD demonstrate that amylin and its analog reduce the AD pathology in the brain and improve cognitive impairment in AD. Given that, in addition to amyloid plaques and neurofibrillary tangles, perturbed cerebral glucose metabolism and cerebrovascular damage are the hallmarks of the AD brain, we propose that giving exogenous amylin type peptides have the potential to become a new avenue for the diagnosis and therapeutic of AD. Although amylin's property of self-aggregation may be a limitation to developing it as a therapeutic for AD, its clinical analog, pramlintide containing 3 amino acid differences from amylin, does not aggregate like human amylin, but more potently mediates amylin's activities in the brain. Pramlintide is an effective drug for diabetes with a favorable profile of safety. Thus a randomized, double-blind, placebo-controlled clinical trial should be conducted to examine the efficacy of pramlintide for AD. This review summarizes the knowledge and findings on amylin type peptides and discuss pros and cons for their potential for AD.
Collapse
Affiliation(s)
- Wei Qiao Qiu
- Department of Psychiatry, Boston University School of Medicine Boston, MA, USA ; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine Boston, MA, USA ; Alzheimer's Disease Center, Boston University School of Medicine Boston, MA, USA
| | - Haihao Zhu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine Boston, MA, USA
| |
Collapse
|
38
|
Wang R, Ross CA, Cai H, Cong WN, Daimon CM, Carlson OD, Egan JM, Siddiqui S, Maudsley S, Martin B. Metabolic and hormonal signatures in pre-manifest and manifest Huntington's disease patients. Front Physiol 2014; 5:231. [PMID: 25002850 PMCID: PMC4066441 DOI: 10.3389/fphys.2014.00231] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/02/2014] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder typified by involuntary body movements, and psychiatric and cognitive abnormalities. Many HD patients also exhibit metabolic changes including progressive weight loss and appetite dysfunction. Here we have investigated metabolic function in pre-manifest and manifest HD subjects to establish an HD subject metabolic hormonal plasma signature. Individuals at risk for HD who have had predictive genetic testing showing the cytosine-adenine-guanine (CAG) expansion causative of HD, but who do not yet present signs and symptoms sufficient for the diagnosis of manifest HD are said to be “pre-manifest.” Pre-manifest and manifest HD patients, as well as both familial and non-familial controls, were evaluated for multiple peripheral metabolism signals including circulating levels of hormones, growth factors, lipids, and cytokines. Both pre-manifest and manifest HD subjects exhibited significantly reduced levels of circulating growth factors, including growth hormone and prolactin. HD-related changes in the levels of metabolic hormones such as ghrelin, glucagon, and amylin were also observed. Total cholesterol, HDL-C, and LDL-C were significantly decreased in HD subjects. C-reactive protein was significantly elevated in pre-manifest HD subjects. The observation of metabolic alterations, even in subjects considered to be in the pre-manifest stage of HD, suggests that in addition, and prior, to overt neuronal damage, HD affects metabolic hormone secretion and energy regulation, which may shed light on pathogenesis, and provide opportunities for biomarker development.
Collapse
Affiliation(s)
- Rui Wang
- Metabolism Unit, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Departments of Neuroscience and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Huan Cai
- Metabolism Unit, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Wei-Na Cong
- Metabolism Unit, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Caitlin M Daimon
- Metabolism Unit, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Olga D Carlson
- Diabetes Section, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Josephine M Egan
- Diabetes Section, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Sana Siddiqui
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | - Stuart Maudsley
- VIB Department of Molecular Genetics, University of Antwerp Antwerpen, Belgium
| | - Bronwen Martin
- Metabolism Unit, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| |
Collapse
|
39
|
Mietlicki-Baase EG, Hayes MR. Amylin activates distributed CNS nuclei to control energy balance. Physiol Behav 2014; 136:39-46. [PMID: 24480072 DOI: 10.1016/j.physbeh.2014.01.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/13/2014] [Accepted: 01/16/2014] [Indexed: 01/25/2023]
Abstract
Amylin is a pancreas-derived neuropeptide that acts in the central nervous system (CNS) to reduce food intake. Much of the literature describing the anorectic effects of amylin are focused on amylin's actions in the area postrema, a hindbrain circumventricular structure. Although the area postrema is certainly an important site that mediates the intake-suppressive effects of amylin, several pieces of evidence indicate that amylin may also promote negative energy balance through action in additional CNS nuclei, including hypothalamic and mesolimbic structures. Therefore, this review highlights the distributed neural network mediating the feeding effects of amylin signaling with special attention being devoted to the recent discovery that the ventral tegmental area is physiologically relevant for amylin-mediated control of feeding. The production of amylin by alternative, extra-pancreatic sources and its potential relevance to food intake regulation is also considered. Finally, the utility of amylin and amylin-like compounds as a component of combination pharmacotherapies for the treatment of obesity is discussed.
Collapse
Affiliation(s)
- Elizabeth G Mietlicki-Baase
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Matthew R Hayes
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
40
|
Adler BL, Yarchoan M, Hwang HM, Louneva N, Blair JA, Palm R, Smith MA, Lee HG, Arnold SE, Casadesus G. Neuroprotective effects of the amylin analogue pramlintide on Alzheimer's disease pathogenesis and cognition. Neurobiol Aging 2013; 35:793-801. [PMID: 24239383 DOI: 10.1016/j.neurobiolaging.2013.10.076] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 10/05/2013] [Accepted: 10/06/2013] [Indexed: 12/24/2022]
Abstract
Amylin is a metabolic peptide hormone that is co-secreted with insulin from beta cells in the pancreas and activates many of the downstream targets of insulin. To investigate the relationship between this hormone and Alzheimer's disease (AD), we measured plasma human amylin levels in 206 subjects with AD, 64 subjects with mild cognitive impairment, and 111 subjects with no cognitive impairment and found significantly lower amylin levels among subjects with AD and mild cognitive impairment compared with the cognitively intact subjects. To investigate mechanisms underlying amylin's effects in the brain, we administered chronic infusions of the amylin analog pramlintide in the senescence-accelerated prone mouse, a mouse model of sporadic AD. Pramlintide administration improved performance in the novel object recognition task, a validated test of memory and cognition. The pramlintide-treated mice had increased expression of the synaptic marker synapsin I and the kinase cyclin-dependent kinase-5 in the hippocampus, as well as decreased oxidative stress and inflammatory markers in the hippocampus. A dose-dependent increase in cyclin-dependent kinase-5 and activation of extracellular-signal-regulated-kinases 1/2 by pramlintide treatment in vitro was also present indicating functionality of the amylin receptor in neurons. Together these results suggest that amylin analogs have neuroprotective properties and might be of therapeutic benefit in AD.
Collapse
Affiliation(s)
- Brittany L Adler
- Department of Neurosciences, Case Western Reserve University, Cleveland OH USA
| | - Mark Yarchoan
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Hae Min Hwang
- Department of Neurosciences, Case Western Reserve University, Cleveland OH USA
| | - Natalia Louneva
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Jeffrey A Blair
- Department of Neurosciences, Case Western Reserve University, Cleveland OH USA
| | - Russell Palm
- Department of Neurosciences, Case Western Reserve University, Cleveland OH USA
| | - Mark A Smith
- Department of Pathology, Case Western Reserve University, Cleveland OH USA
| | - Hyoung-Gon Lee
- Department of Pathology, Case Western Reserve University, Cleveland OH USA
| | - Steven E Arnold
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | - Gemma Casadesus
- Department of Neurosciences, Case Western Reserve University, Cleveland OH USA.
| |
Collapse
|
41
|
Mietlicki-Baase EG, Rupprecht LE, Olivos DR, Zimmer DJ, Alter MD, Pierce RC, Schmidt HD, Hayes MR. Amylin receptor signaling in the ventral tegmental area is physiologically relevant for the control of food intake. Neuropsychopharmacology 2013; 38:1685-97. [PMID: 23474592 PMCID: PMC3717548 DOI: 10.1038/npp.2013.66] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/12/2013] [Accepted: 03/01/2013] [Indexed: 11/09/2022]
Abstract
The ability of amylin, a pancreatic β-cell-derived neuropeptide, to promote negative energy balance has been ascribed to neural activation at the area postrema. However, despite amylin binding throughout the brain, the possible role of amylin signaling at other nuclei in the control of food intake has been largely neglected. We show that mRNA for all components of the amylin receptor complex is expressed in the ventral tegmental area (VTA), a mesolimbic structure mediating food intake and reward. Direct activation of VTA amylin receptors reduces the intake of chow and palatable sucrose solution in rats. This effect is mediated by reductions in meal size and is not due to nausea/malaise or prolonged suppression of locomotor activity. VTA amylin receptor activation also reduces sucrose self-administration on a progressive ratio schedule. Finally, antagonist studies provide novel evidence that VTA amylin receptor blockade increases food intake and attenuates the intake-suppressive effects of a peripherally administered amylin analog, suggesting that amylin receptor signaling in the VTA is physiologically relevant for food intake control and potentially clinically relevant for the treatment of obesity.
Collapse
Affiliation(s)
- Elizabeth G Mietlicki-Baase
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Laura E Rupprecht
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Diana R Olivos
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Derek J Zimmer
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Mark D Alter
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - R Christopher Pierce
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Heath D Schmidt
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew R Hayes
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
42
|
Lutz TA. The interaction of amylin with other hormones in the control of eating. Diabetes Obes Metab 2013; 15:99-111. [PMID: 22862822 DOI: 10.1111/j.1463-1326.2012.01670.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 07/20/2012] [Accepted: 07/28/2012] [Indexed: 11/30/2022]
Abstract
Twenty years of research established amylin as an important control of energy homeostasis. Amylin controls nutrient and energy fluxes by reducing energy intake, by modulating nutrient utilization via an inhibition of postprandial glucagon secretion and by increasing energy disposal via a prevention of compensatory decreases of energy expenditure in weight reduced individuals. Like many other gastrointestinal hormones, amylin is secreted in response to meals and it reduces eating by promoting meal-ending satiation. Not surprisingly, amylin interacts with many of these hormones to control eating. These interactions seem to occur at different levels because amylin seems to mediate the eating inhibitory effect of some of these gastrointestinal hormones, and the combination of some of these hormones seems to lead to a stronger reduction in eating than single hormones alone. Amylin's effect on eating is thought to be mediated by a stimulation of specific amylin receptors in the area postrema. Secondary brain sites that were defined to mediate amylin action - and hence potential additional sites of interaction with other hormones - include the nucleus of the solitary tract, the lateral parabrachial nucleus, the lateral hypothalamic area and other hypothalamic nuclei. The focus of this review is to summarize the current knowledge of amylin interactions in the control of eating. In most cases, these interactions have only been studied at a descriptive rather than a mechanistic level and despite the clear knowledge on primary sites of amylin action, the interaction sites between amylin and other hormones are often unknown.
Collapse
Affiliation(s)
- T A Lutz
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
43
|
Roth JD. Amylin and the regulation of appetite and adiposity: recent advances in receptor signaling, neurobiology and pharmacology. Curr Opin Endocrinol Diabetes Obes 2013. [PMID: 23183359 DOI: 10.1097/med.0b013e32835b896f] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE OF REVIEW This review focuses on recent advances in receptor signaling, neurobiology, and pharmacological interactions of amylin with nutritive status, as well as other metabolism-related regulatory signals. RECENT FINDINGS Manipulation of components of the amylin receptor complex revealed important roles for the accessory proteins of amylin receptors in energy balance. In-vitro findings point to potential novel sites of action and postreceptor signaling pathways activated by amylin. Neurobiological studies elucidated how amylin activation of hindbrain neural circuitry modulates hypothalamic signaling and responsiveness to leptin. The notion of 'amylin resistance' was addressed in several models (drug or diet-induced hyper-amylinemia). Finally, progress in the design and delivery of amylinomimetics is briefly discussed. SUMMARY Collectively, these mechanistic studies deepen our understanding of the role of endogenous amylin in the regulation of appetite and adiposity, and hopefully will help guide research efforts towards the development of more effective amylin-based therapies for metabolic diseases.
Collapse
|
44
|
Lutz TA. Control of energy homeostasis by amylin. Cell Mol Life Sci 2012; 69:1947-65. [PMID: 22193913 PMCID: PMC11114503 DOI: 10.1007/s00018-011-0905-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/13/2011] [Accepted: 12/06/2011] [Indexed: 02/04/2023]
Abstract
Amylin is an important control of nutrient fluxes because it reduces energy intake, modulates nutrient utilization by inhibiting postprandial glucagon secretion, and increases energy disposal by preventing compensatory decreases of energy expenditure in weight-reduced individuals. The best investigated function of amylin which is cosecreted with insulin is to reduce eating by promoting meal-ending satiation. This effect is thought to be mediated by a stimulation of specific amylin receptors in the area postrema. Secondary brain sites to mediate amylin action include the nucleus of the solitary tract and the lateral parabrachial nucleus, which convey the neural signal to the lateral hypothalamic area and other hypothalamic nuclei. Amylin may also signal adiposity because plasma levels of amylin are increased in adiposity and because higher amylin concentrations in the brain result in reduced body weight gain and adiposity, while amylin receptor antagonists increase body adiposity. The central mechanisms involved in amylin's effect on energy expenditure are much less known. A series of recent experiments in animals and humans indicate that amylin is a promising option for anti-obesity therapy especially in combination with other hormones. The most extensive dataset is available for the combination therapy of amylin and leptin. Ongoing research focuses on the mechanisms of these interactions.
Collapse
Affiliation(s)
- Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Switzerland.
| |
Collapse
|