1
|
Peng H, Ren J, Zhao Y, Fang X, Wang X, Liu C, Wan Z. Unraveling the Connection between PCOS and renal Complications: Current insights and Future Directions. Diabetes Res Clin Pract 2025; 224:112235. [PMID: 40334925 DOI: 10.1016/j.diabres.2025.112235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/24/2025] [Accepted: 05/05/2025] [Indexed: 05/09/2025]
Abstract
Polycystic ovary syndrome (PCOS) represents the most prevalent endocrine disorder among women of reproductive age, affecting approximately 5-18% of females worldwide. Characterized by irregular ovulation, hyperandrogenism, and polycystic ovaries, hyperandrogenism is the defining feature. Recent evidence highlights that, in addition to its notable reproductive and metabolic consequences, PCOS may also contribute to an elevated risk of renal complications. This increased risk is attributed to chronic low-grade inflammation, hormonal dysregulation, and disturbances in lipid metabolism inherent to the condition. However, the pathological mechanisms, clinical manifestations, and progression of secondary renal damage in this cohort remain insufficiently studied. This review consolidates current understanding of the relationship between PCOS and chronic kidney disease (CKD), aiming to clarify potential mechanisms by which PCOS may induce secondary renal dysfunction, encompassing both direct renal impairment and indirect damage mediated through systemic alterations. Furthermore, it advocates for comprehensive management strategies to mitigate renal risks in patients with PCOS, emphasizing the necessity of multidisciplinary approaches and further research to address these critical gaps.
Collapse
Affiliation(s)
- Haoyu Peng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Junyi Ren
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Zhao
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Department of Health Management Center & Institute of Health Management, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinyi Fang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoxiao Wang
- Department of Organ Transplantation, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chi Liu
- Department of Nephrology, Sichuan Clinical Research Center for Kidney Disease, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, China.
| | - Zhengwei Wan
- Department of Health Management Center & Institute of Health Management, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
2
|
Adams ZH, Berbrier DE, Schwende BK, Huckins W, Richards CT, Rees DA, Usselman CW, Lord RN. The impact of androgens on cardiovascular control mechanisms in polycystic ovary syndrome: Recent advances and translational approaches. J Physiol 2025; 603:2937-2957. [PMID: 40321041 DOI: 10.1113/jp287288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/24/2025] [Indexed: 06/02/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrinopathy in premenopausal females. The condition is associated with an increased prevalence of cardiovascular risk factors, including hypertension. Observational studies report that some blood pressure control mechanisms are altered in PCOS compared to controls (sympathetic nervous system activity, endothelial and vasodilator function, renin angiotensin aldosterone system activation), and that these impairments correlate with androgen hormone levels, which are chronically elevated in the condition. As such, hyperandrogenism is the proposed locus of origin for the link between PCOS and cardiovascular dysfunction, yet the underlying mechanisms remain poorly understood. Preclinical work has provided some insight into how androgens modulate blood pressure control in PCOS. However there are marked discrepancies between the effects of androgens in cellular and tissue studies versus in vivo animal and human PCOS studies. This may be related to the heterogeneity of the preclinical models and samples used in this research and whether preclinical work is modelling hyperandrogenism in physiologically relevant terms for PCOS. This review collates preclinical and clinical evidence to summarise what is known and what remains unknown about cardiovascular control mechanisms in PCOS. We examine aspects of blood pressure regulation that are altered in other hypertensive cohorts, presenting current evidence for a mechanistic role of androgens on these systems, while acknowledging the diverse experimental models and participant cohorts from which the results are derived.
Collapse
Affiliation(s)
- Zoe H Adams
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Danielle E Berbrier
- Department of Kinesiology and Physical Education, McGill University, Montreal, Canada
| | - Brittany K Schwende
- Department of Kinesiology and Physical Education, McGill University, Montreal, Canada
| | - Will Huckins
- Department of Kinesiology and Physical Education, McGill University, Montreal, Canada
| | - Cory T Richards
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - D Aled Rees
- Cardiff and Vale University Health Board, Cardiff, UK
- Neuroscience and Mental Health Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Charlotte W Usselman
- Department of Kinesiology and Physical Education, McGill University, Montreal, Canada
| | - Rachel N Lord
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| |
Collapse
|
3
|
Xue B, Johnson AK, Bassuk AG. Sex differences in the sensitization of prenatally programmed hypertension. Front Physiol 2025; 16:1589615. [PMID: 40356772 PMCID: PMC12066558 DOI: 10.3389/fphys.2025.1589615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
Studies have demonstrated that there are sex differences in the timing of onset and severity of prenatally programmed hypertension, with consistently milder phenotypes observed in females relative to male offspring. However, the root cause(s) for these sex-specific effects is unknown. Activation of the renin-angiotensin system (RAS), elevated oxidative stress and inflammation, and sympathetic hyperactivity in the cardiovascular organs and cardiovascular regulatory systems, are all involved in the pathogenesis of hypertension. Sex hormones interact with these prohypertensive systems to modulate blood pressure, and this interaction may lead to a sex-specific development of programmed hypertension. A more complete understanding of the functional capabilities of the sex hormones and their interactions with prohypertensive factors in offspring, from early life to aging, would likely lead to new insights into the basis of sex differences in programmed hypertension. Recently, we have discovered that sex differences also occur in the sensitization of offspring hypertension as programmed by maternal gestational hypertension and that this requires the brain RAS and proinflammatory factors. In this review, we will discuss the possible mechanisms underlying sex differences in sensitization to hypertension in the offspring of mothers exposed to various prenatal insults. These mechanisms operate at various levels from the periphery to the central nervous system (e.g., blood vessel, heart, kidney, and brain). Understanding the sex-specific mechanisms responsible for the sensitized state in offspring can help to develop therapeutic strategies for interrupting the vicious cycle of transgenerational hypertension and for treating hypertension in men and women differentially to maximize efficacy.
Collapse
Affiliation(s)
- Baojian Xue
- Stead Family Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa, IA, United States
| | - Alan Kim Johnson
- Department of Psychological and Brain Sciences, College of Liberal Arts and Sciences, University of Iowa, Iowa, IA, United States
| | - Alexander G. Bassuk
- Stead Family Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa, IA, United States
- The Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa, IA, United States
- The Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa, IA, United States
| |
Collapse
|
4
|
Tuorila K, Ollila MM, Hurskainen E, Tapanainen J, Franks S, Piltonen T, Kaikkonen K, Morin-Papunen L. Association of hyperandrogenaemia with hypertension and cardiovascular events in pre-menopausal women: a prospective population-based cohort study. Eur J Endocrinol 2024; 191:433-443. [PMID: 39361682 DOI: 10.1093/ejendo/lvae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/09/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
OBJECTIVE The present study aimed to clarify the conflicting association of premenopausal hyperandrogenaemia (HA) with the development of hypertension and cardiovascular disease (CVDs) in women. DESIGN A population-based cohort study including 5889 women. METHODS The association of serum testosterone (T), sex hormone-binding globulin (SHBG), and free androgen index (FAI) at age 31 with blood pressure (BP) and hypertension (BP ≥ 140/90 mmHg and/or use of antihypertensive medication) at ages 31 and 46 and with CVDs (angina pectoris [AP] and/or acute myocardial infarction [AMI] n = 74, transitory cerebral ischaemia and/or stroke n = 150) and combined CVD events (AP, AMI, stroke, heart failure, or CVD mortality n = 160) by age 53 was investigated. RESULTS T and FAI were positively associated with systolic and diastolic BP at ages 31 and 46 in the multivariable model. Compared to their lowest quartile, the highest quartiles of T and FAI were positively associated with hypertension at age 31 in the multivariable model. During the 22-year follow-up, FAI was positively associated with increased risk of AP/AMI (hazard ratio [HR]: 2.02, 95% CI: 1.06-3.85) and overall CVD events or mortality (HR: 1.54, 95% CI: 1.02-2.33) in the unadjusted models. However, the significance disappeared after adjusting for body mass index (BMI). CONCLUSIONS Women with HA at premenopausal age had an elevated risk of hypertension, and together with BMI, increased risk of CVD events and CVD mortality during the 22-year follow-up. However, because of several study limitations regarding ethnicity and BMI characteristics, a longer follow-up of this cohort and future studies in ethnically diverse populations are needed to verify the results.
Collapse
Affiliation(s)
- Katri Tuorila
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, University of Oulu and Oulu University Hospital, FI-90029, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FI-90029, Oulu, Finland
| | - Meri-Maija Ollila
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, University of Oulu and Oulu University Hospital, FI-90029, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FI-90029, Oulu, Finland
| | - Elisa Hurskainen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, University of Oulu and Oulu University Hospital, FI-90029, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FI-90029, Oulu, Finland
| | - Juha Tapanainen
- Department of Obstetrics and Gynaecology, University of Helsinki and Helsinki University Hospital, 00029, Helsinki, Finland
- Department of Obstetrics and Gynaecology, HFR-Cantonal Hospital of Fribourg and University of Fribourg, 79085 Fribourg, Switzerland
| | - Stephen Franks
- Institute of Reproductive and Developmental Biology, Imperial College London, London, W12-0NN, United Kingdom
| | - Terhi Piltonen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, University of Oulu and Oulu University Hospital, FI-90029, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FI-90029, Oulu, Finland
| | - Kari Kaikkonen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FI-90029, Oulu, Finland
- Division of Cardiology, Department of Clinical Medicine, University of Oulu and Oulu University Hospital, FI-90029, Oulu, Finland
| | - Laure Morin-Papunen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, University of Oulu and Oulu University Hospital, FI-90029, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, FI-90029, Oulu, Finland
| |
Collapse
|
5
|
Stamellou E, Sterzer V, Alam J, Roumeliotis S, Liakopoulos V, Dounousi E. Sex-Specific Differences in Kidney Function and Blood Pressure Regulation. Int J Mol Sci 2024; 25:8637. [PMID: 39201324 PMCID: PMC11354550 DOI: 10.3390/ijms25168637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024] Open
Abstract
Premenopausal women generally exhibit lower blood pressure and a lower prevalence of hypertension than men of the same age, but these differences reverse postmenopause due to estrogen withdrawal. Sexual dimorphism has been described in different components of kidney physiology and pathophysiology, including the renin-angiotensin-aldosterone system, endothelin system, and tubular transporters. This review explores the sex-specific differences in kidney function and blood pressure regulation. Understanding these differences provides insights into potential therapeutic targets for managing hypertension and kidney diseases, considering the patient's sex and hormonal status.
Collapse
Affiliation(s)
- Eleni Stamellou
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany (J.A.)
- Department of Nephrology, University Hospital of Ioannina, 45500 Ioannina, Greece;
| | - Viktor Sterzer
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany (J.A.)
| | - Jessica Alam
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany (J.A.)
| | - Stefanos Roumeliotis
- 2nd Department of Nephrology, AHEPA University Hospital Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.R.); (V.L.)
| | - Vassilios Liakopoulos
- 2nd Department of Nephrology, AHEPA University Hospital Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.R.); (V.L.)
| | - Evangelia Dounousi
- Department of Nephrology, University Hospital of Ioannina, 45500 Ioannina, Greece;
| |
Collapse
|
6
|
Yu Y, Chen T, Zheng Z, Jia F, Liao Y, Ren Y, Liu X, Liu Y. The role of the autonomic nervous system in polycystic ovary syndrome. Front Endocrinol (Lausanne) 2024; 14:1295061. [PMID: 38313837 PMCID: PMC10834786 DOI: 10.3389/fendo.2023.1295061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/27/2023] [Indexed: 02/06/2024] Open
Abstract
This article reviewed the relationship between the autonomic nervous system and the development of polycystic ovary syndrome (PCOS). PCOS is the most common reproductive endocrine disorder among women of reproductive age. Its primary characteristics include persistent anovulation, hyperandrogenism, and polycystic ovarian morphology, often accompanied by disturbances in glucose and lipid metabolism. The body's functions are regulated by the autonomic nervous system, which consists mainly of the sympathetic and parasympathetic nervous systems. The autonomic nervous system helps maintain homeostasis in the body. Research indicates that ovarian function in mammals is under autonomic neural control. The ovaries receive central nervous system information through the ovarian plexus nerves and the superior ovarian nerves. Neurotransmitters mediate neural function, with acetylcholine and norepinephrine being the predominant autonomic neurotransmitters. They influence the secretion of ovarian steroids and follicular development. In animal experiments, estrogen, androgens, and stress-induced rat models have been used to explore the relationship between PCOS and the autonomic nervous system. Results have shown that the activation of the autonomic nervous system contributes to the development of PCOS in rat. In clinical practice, assessments of autonomic nervous system function in PCOS patients have been gradually employed. These assessments include heart rate variability testing, measurement of muscle sympathetic nerve activity, skin sympathetic response testing, and post-exercise heart rate recovery evaluation. PCOS patients exhibit autonomic nervous system dysfunction, characterized by increased sympathetic nervous system activity and decreased vagal nerve activity. Abnormal metabolic indicators in PCOS women can also impact autonomic nervous system activity. Clinical studies have shown that various effective methods for managing PCOS regulate patients' autonomic nervous system activity during the treatment process. This suggests that improving autonomic nervous system activity may be an effective approach in treating PCOS.
Collapse
Affiliation(s)
- Yue Yu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tong Chen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zheng Zheng
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fan Jia
- Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Yan Liao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehan Ren
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinmin Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Abi-Ghanem C, Salinero AE, Smith RM, Kelly RD, Belanger KM, Richard RN, Paul AS, Herzog AA, Thrasher CA, Rybka KA, Riccio D, Gannon OJ, Kordit D, Kyaw NR, Mansour FM, Groom E, Brooks HL, Robison LS, Pumiglia K, Zuloaga DG, Zuloaga KL. Effects of Menopause and High Fat Diet on Metabolic Outcomes in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2024; 101:1177-1194. [PMID: 39302361 PMCID: PMC12045035 DOI: 10.3233/jad-231332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Background About two-thirds of those with Alzheimer's disease (AD) are women, most of whom are post-menopausal. Menopause accelerates dementia risk by increasing the risk for metabolic, cardiovascular, and cerebrovascular diseases. Mid-life metabolic disease (obesity, diabetes/prediabetes) is a well-known risk factor for dementia. A high fat diet can lead to poor metabolic health in both humans and rodents. Objective Our goal was to determine the effects of a high fat diet on metabolic outcomes in the AppNL-F knock-in mouse model of AD and assess the effects of menopause. Methods First, 3-month-old AppNL-F and WT female mice were placed on either a control or a high fat diet until 10 months of age then assessed for metabolic outcomes. Next, we did a more extensive assessment in AppNL-F mice that were administered VCD (4-vinylcyclohexene diepoxide) or vehicle (oil) and placed on a control or high fat diet for 7 months. VCD was used to model menopause by causing accelerated ovarian failure. Results Compared to WT controls, AD female mice had worse glucose intolerance. Menopause led to metabolic impairment (weight gain and glucose intolerance) and further exacerbated obesity in response to a high fat diet. There were interactions between diet and menopause on some metabolic health serum biomarkers and the expression of hypothalamic markers related to energy balance. Conclusions This work highlights the need to model endocrine aging in animal models of dementia and will contribute to further understanding the interaction between menopause and metabolic health in the context of AD.
Collapse
Affiliation(s)
- Charly Abi-Ghanem
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208, USA
| | - Abigail E. Salinero
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208, USA
| | - Rachel M. Smith
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208, USA
| | - Richard D. Kelly
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208, USA
| | - Kasey M. Belanger
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208, USA
| | - Riane N. Richard
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208, USA
| | - Aaron S. Paul
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208, USA
| | - Ava A. Herzog
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208, USA
| | - Christina A. Thrasher
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208, USA
| | - Krystyna A. Rybka
- Department of Psychology and Center for Neuroscience Research, State University of New York at Albany, 1400 Washington Ave, Biology 325, Albany, NY 12222, USA
| | - David Riccio
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208, USA
| | - Olivia J. Gannon
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208, USA
| | - David Kordit
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208, USA
| | - Nyi-Rein Kyaw
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208, USA
| | - Febronia M. Mansour
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208, USA
| | - Emily Groom
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208, USA
| | - Heddwen L. Brooks
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Lisa S. Robison
- Department of Psychology and Neuroscience, Nova Southeastern University. 3300 S University Drive, Fort Lauderdale, FL 33328, USA
| | - Kevin Pumiglia
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208, USA
| | - Damian G. Zuloaga
- Department of Psychology and Center for Neuroscience Research, State University of New York at Albany, 1400 Washington Ave, Biology 325, Albany, NY 12222, USA
| | - Kristen L. Zuloaga
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208, USA
| |
Collapse
|
8
|
Shawky NM, Reckelhoff JF, Alexander BT, Cardozo LLY. Insights Into the Cardiomodulatory Effects of Sex Hormones: Implications in Transgender Care. Hypertension 2023; 80:1810-1820. [PMID: 37462057 PMCID: PMC10530189 DOI: 10.1161/hypertensionaha.123.19501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Transgender individuals that undergo gender-affirming hormone therapy may experience discrimination in the health care setting with a lack of access to medical personnel competent in transgender medicine. Recent evidence suggests that gender-affirming hormone therapy is associated with an increased risk of cardiovascular diseases and cardiovascular risk factors. A recent statement from the American Heart Association reinforces the importance of cardiovascular-focused clinical management and the necessity for more research into the impact of gender-affirming hormone therapy. With this in mind, this review will highlight the known cardiovascular risk factors associated with gender-affirming hormone therapy and identify potential molecular mechanisms determined from the limited animal studies that explore the role of cross-sex steroids on cardiovascular risk. The lack of data in this understudied population requires future clinical and basic research studies to inform and educate clinicians and their transgender patient population to promote precision medicine for their care to improve their quality of life.
Collapse
Affiliation(s)
- Noha M. Shawky
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS
- Cardiovascular Renal Research Center, University of Mississippi Medical Center, Jackson, MS
| | - Jane F. Reckelhoff
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS
- Cardiovascular Renal Research Center, University of Mississippi Medical Center, Jackson, MS
| | - Barbara T. Alexander
- Department of Physiology, University of Mississippi Medical Center, Jackson, MS
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS
- Cardiovascular Renal Research Center, University of Mississippi Medical Center, Jackson, MS
| | - Licy L. Yanes Cardozo
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS
- Department of Physiology, University of Mississippi Medical Center, Jackson, MS
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS
- Cardiovascular Renal Research Center, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
9
|
Wei R, Li D, Jia S, Chen Y, Wang J. MC4R in Central and Peripheral Systems. Adv Biol (Weinh) 2023; 7:e2300035. [PMID: 37043700 DOI: 10.1002/adbi.202300035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/25/2023] [Indexed: 04/14/2023]
Abstract
Obesity has emerged as a critical and urgent health burden during the current global pandemic. Among multiple genetic causes, melanocortin receptor-4 (MC4R), involved in food intake and energy metabolism regulation through various signaling pathways, has been reported to be the lead genetic factor in severe and early onset obesity and hyperphagia disorders. Most previous studies have illustrated the roles of MC4R signaling in energy intake versus expenditure in the central system, while some evidence indicates that MC4R is also expressed in peripheral systems, such as the gut and endocrine organs. However, its physiopathological function remains poorly defined. This review aims to depict the central and peripheral roles of MC4R in energy metabolism and endocrine hormone homeostasis, the diversity of phenotypes, biased downstream signaling caused by distinct MC4R mutations, and current drug development targeting the receptor.
Collapse
Affiliation(s)
- Ran Wei
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Danjie Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| | - Sheng Jia
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| |
Collapse
|
10
|
Reckelhoff JF. Mechanisms of sex and gender differences in hypertension. J Hum Hypertens 2023; 37:596-601. [PMID: 36797338 DOI: 10.1038/s41371-023-00810-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/10/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023]
Abstract
The mechanisms that control blood pressure are multifaceted including the sympathetic nervous system and the renin-angiotensin system leading to vasoconstriction and sodium reabsorption that causes a shift in the pressure-natriuesis relationship to higher blood pressures. Sex steroids can affect these mechanisms either directly or indirectly, and the effects may be different depending on the sex of the individual. This review will discuss some of the major blood pressure-controlling mechanisms and how sex steroids may affect them and the need for future studies to better clarify the mechanisms responsible for sex and gender differences in blood pressure control. New mechanisms that are identified, along with what is already known, will provide better tools for treatment of hypertension in men and women of all ethnicities and decrease the risk of cardiovascular disease in the future.
Collapse
Affiliation(s)
- Jane F Reckelhoff
- Department of Cell and Molecular Biology, Women's Health Research Center, Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Endothelial dysfunction is a major risk factor for many cardiovascular diseases, notably hypertension. Obesity increases the risk of endothelial dysfunction in association with increasing production of the adipokine leptin. Preclinical studies have begun to unravel the mechanisms whereby leptin leads to the development of endothelial dysfunction, which are sex-specific. This review will summarize recent findings of mechanisms of leptin-induced endothelial impairment in both male and females and in pregnancy. RECENT FINDINGS Leptin receptors are found in high concentrations in the central nervous system (CNS), via which leptin promotes appetite suppression and upregulates sympathetic nervous system activation. However, leptin receptors are expressed in many other tissues, including the vascular endothelial cells and smooth muscle cells. Recent studies in mice with vascular endothelial or smooth muscle-specific knockdown demonstrate that endothelial leptin receptor activation plays a protective role against endothelial dysfunction in male animals, but not necessarily in females. Clinical studies indicate that women may be more sensitive to obesity-associated vascular endothelial dysfunction. Emerging preclinical data indicates that leptin and progesterone increase aldosterone production and endothelial mineralocorticoid receptor activation, respectively. Furthermore, decades of clinical studies indicate that leptin levels increase in the hypertensive pregnancy disorder preeclampsia, which is characterized by systemic endothelial dysfunction. Leptin infusion in mice induces the clinical characteristics of preeclampsia, including endothelial dysfunction. SUMMARY Novel preclinical data indicate that the mechanisms whereby leptin promotes endothelial dysfunction are sex-specific. Leptin-induced endothelial dysfunction may also play a role in hypertensive pregnancy as well.
Collapse
Affiliation(s)
- Elisabeth Mellott
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA
| | - Jessica L Faulkner
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA
- Department of OBGYN, Medical College of Georgia at Augusta University, Augusta, GA
| |
Collapse
|
12
|
Pruett JE, Romero DG, Yanes Cardozo LL. Obesity-associated cardiometabolic complications in polycystic ovary syndrome: The potential role of sodium-glucose cotransporter-2 inhibitors. Front Endocrinol (Lausanne) 2023; 14:951099. [PMID: 36875461 PMCID: PMC9974663 DOI: 10.3389/fendo.2023.951099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 01/26/2023] [Indexed: 02/17/2023] Open
Abstract
Polycystic Ovary Syndrome (PCOS) is the most common endocrine disorder in reproductive-age women. PCOS is characterized by androgen excess, oligo/anovulation, and polycystic appearance of the ovaries. Women with PCOS have an increased prevalence of multiple cardiovascular risk factors such as insulin resistance, hypertension, renal injury, and obesity. Unfortunately, there is a lack of effective, evidence-based pharmacotherapeutics to target these cardiometabolic complications. Sodium-glucose cotransporter-2 (SGLT2) inhibitors provide cardiovascular protection in patients with and without type 2 diabetes mellitus. Although the exact mechanisms of how SGLT2 inhibitors confer cardiovascular protection remains unclear, numerous mechanistic hypotheses for this protection include modulation of the renin-angiotensin system and/or the sympathetic nervous system and improvement in mitochondrial function. Data from recent clinical trials and basic research show a potential role for SGLT2 inhibitors in treating obesity-associated cardiometabolic complications in PCOS. This narrative review discusses the mechanisms of the beneficial effect of SGLT2 inhibitors in cardiometabolic diseases in PCOS.
Collapse
Affiliation(s)
- Jacob E. Pruett
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Damian G. Romero
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, United States
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS, United States
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, United States
| | - Licy L. Yanes Cardozo
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, United States
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS, United States
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, United States
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
- *Correspondence: Licy L. Yanes Cardozo,
| |
Collapse
|
13
|
Pruett JE, Everman SJ, Hoang NH, Salau F, Taylor LC, Edwards KS, Hosler JP, Huffman AM, Romero DG, Yanes Cardozo LL. Mitochondrial function and oxidative stress in white adipose tissue in a rat model of PCOS: effect of SGLT2 inhibition. Biol Sex Differ 2022; 13:45. [PMID: 35986388 PMCID: PMC9389812 DOI: 10.1186/s13293-022-00455-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS), characterized by androgen excess and ovulatory dysfunction, is associated with a high prevalence of obesity and insulin resistance (IR) in women. We demonstrated that sodium–glucose cotransporter-2 inhibitor (SGLT2i) administration decreases fat mass without affecting IR in the PCOS model. In male models of IR, administration of SGLT2i decreases oxidative stress and improves mitochondrial function in white adipose tissue (WAT). Therefore, we hypothesized that SGLT2i reduces adiposity via improvement in mitochondrial function and oxidative stress in WAT in PCOS model. Methods Four-week-old female rats were treated with dihydrotestosterone for 90 days (PCOS model), and SGLT2i (empagliflozin) was co-administered during the last 3 weeks. Body composition was measured before and after SGLT2i treatment by EchoMRI. Subcutaneous (SAT) and visceral (VAT) WAT were collected for histological and molecular studies at the end of the study. Results PCOS model had an increase in food intake, body weight, body mass index, and fat mass/lean mass ratio compared to the control group. SGLT2i lowered fat mass/lean ratio in PCOS. Glucosuria was observed in both groups, but had a larger magnitude in controls. The net glucose balance was similar in both SGLT2i-treated groups. The PCOS SAT had a higher frequency of small adipocytes and a lower frequency of large adipocytes. In SAT of controls, SGLT2i increased frequencies of small and medium adipocytes while decreasing the frequency of large adipocytes, and this effect was blunted in PCOS. In VAT, PCOS had a lower frequency of small adipocytes while SGLT2i increased the frequency of small adipocytes in PCOS. PCOS model had decreased mitochondrial content in SAT and VAT without impacting oxidative stress in WAT or the circulation. SGLT2i did not modify mitochondrial function or oxidative stress in WAT in both treated groups. Conclusions Hyperandrogenemia in PCOS causes expansion of WAT, which is associated with decreases in mitochondrial content and function in SAT and VAT. SGLT2i increases the frequency of small adipocytes in VAT only without affecting mitochondrial dysfunction, oxidative stress, or IR in the PCOS model. SGLT2i decreases adiposity independently of adipose mitochondrial and oxidative stress mechanisms in the PCOS model. Supplementary Information The online version contains supplementary material available at 10.1186/s13293-022-00455-x. Androgen excess in PCOS model is associated with decreased markers of mitochondrial content in both subcutaneous and visceral white adipose tissue. Androgen excess in PCOS model is associated with increased frequency of small adipocytes in subcutaneous white adipose tissue while decreasing frequency of small adipocytes in visceral white adipose tissue. SGLT2 inhibition did not modify markers of mitochondrial content or oxidative stress in either subcutaneous or visceral white adipose tissue in PCOS model. SGLT2 inhibition increased frequency of small adipocytes in both subcutaneous and visceral white adipose tissue in control rats; however, SGLT2 inhibition only increased frequency of small adipocytes in visceral white adipose tissue in PCOS model.
Collapse
|
14
|
Reckelhoff JF, Shawky NM, Romero DG, Yanes Cardozo LL. Polycystic Ovary Syndrome: Insights from Preclinical Research. KIDNEY360 2022; 3:1449-1457. [PMID: 36176644 PMCID: PMC9416822 DOI: 10.34067/kid.0002052022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/13/2022] [Indexed: 01/11/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women of reproductive age, affecting approximately 10%. PCOS is diagnosed by the presence of at least two of these three criteria: hyperandrogenemia, oligo- or anovulation, and polycystic ovaries. The most common type (80%) of PCOS includes hyperandrogenemia. PCOS is also characterized by obesity or overweight (in 80% of US women with PCOS), insulin resistance with elevated plasma insulin but not necessarily hyperglycemia, dyslipidemia, proteinuria, and elevated BP. Although elevated compared with age-matched controls, BP may not reach levels considered treatable according to the current clinical hypertension guidelines. However, it is well known that elevated BP, even modestly so, increases the risk of cardiovascular disease. We have developed a model of hyperandrogenemia in rodents that mimics the characteristics of PCOS in women, with increases in body weight, insulin resistance, dyslipidemia, andproteinuria and elevated BP. This review discusses potential mechanisms responsible for the elevated BP in the adult and aging PCOS rat model that may be extrapolated to women with PCOS.
Collapse
Affiliation(s)
- Jane F. Reckelhoff
- Department of Cell and Molecular Biology Women’s Health Research Center, Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Noha M. Shawky
- Department of Cell and Molecular Biology Women’s Health Research Center, Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Damian G. Romero
- Department of Cell and Molecular Biology Women’s Health Research Center, Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Licy L. Yanes Cardozo
- Department of Cell and Molecular Biology Women’s Health Research Center, Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
15
|
Li S, Phillips JK. Patient Selection for Renal Denervation in Hypertensive Patients: What Makes a Good Candidate? Vasc Health Risk Manag 2022; 18:375-386. [PMID: 35592729 PMCID: PMC9113553 DOI: 10.2147/vhrm.s270182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/22/2022] [Indexed: 01/03/2023] Open
Affiliation(s)
- Sheran Li
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
- Correspondence: Sheran Li, Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yanjiang Road, Yuexiu District, Guangzhou, Guangdong Province, 510120, People’s Republic of China, Tel +86 20 81332723, Fax +86 20 8133 2650, Email
| | - Jacqueline K Phillips
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
16
|
Shawky NM, Dalmasso C, Ojeda NB, Zuchowski Y, Stachenfeld N, Alexander BT, Reckelhoff JF. Consequences of hyperandrogenemia during pregnancy in female offspring: attenuated response to angiotensin II. J Hypertens 2022; 40:712-722. [PMID: 34980865 PMCID: PMC8897268 DOI: 10.1097/hjh.0000000000003067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is characterized by reproductive and metabolic dysfunction, and elevated blood pressure (BP). The cardiometabolic consequences of maternal hyperandrogenemia on offspring, either as adults or with aging, have not been well studied. We previously found that male offspring of hyperandrogenemic female (HAF) rats, a model of PCOS, are normotensive but have an exaggerated pressor response to angiotensin (Ang) II. METHOD In this study, the hypothesis was tested that adult and aging female offspring of HAF rats develop a metabolic and hypertensive phenotype. Control and HAF rats were implanted prepubertally with placebo or dihydrotestosterone pellets, which continued throughout pregnancy and lactation. RESULTS Female offspring of HAF dams had lower birth weight than female control offspring. Although female HAF offspring (aged 16-24 weeks) had no differences in intrarenal Ang II, plasma lipids or proteinuria, they did have lower intrarenal Ang (1-7) and lower nitrate/nitrite excretion than controls. Adult HAF offspring had similar baseline BP as controls, but had an attenuated pressor response to Ang II. With aging (16-20 months), female HAF offspring remained normotensive with an attenuated pressor response to Ang II and high salt diet but more proteinuria and higher intrarenal Ang(1-7) than controls. CONCLUSION Taken together, these data suggest that female HAF offspring are protected from developing hypertension, but may be at risk for renal injury with aging. Future studies are necessary to determine whether adult and postmenopausal offspring of PCOS women are at increased risk for cardiovascular dysfunction.Graphical abstract:http://links.lww.com/HJH/B820.
Collapse
Affiliation(s)
- Noha M. Shawky
- Departments of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Carolina Dalmasso
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington
| | - Norma B. Ojeda
- Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Yvonne Zuchowski
- Departments of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Nina Stachenfeld
- The John Pierce Laboratory, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT
| | - Barbara T. Alexander
- Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jane F. Reckelhoff
- Departments of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi
- Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
17
|
Frame AA, Nist KM, Kim K, Kuwabara JT, Wainford RD. Natriuresis During an Acute Intravenous Sodium Chloride Infusion in Conscious Sprague Dawley Rats Is Mediated by a Blood Pressure-Independent α1-Adrenoceptor-Mediated Mechanism. Front Physiol 2022; 12:784957. [PMID: 35111076 PMCID: PMC8802910 DOI: 10.3389/fphys.2021.784957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
The mechanisms that sense alterations in total body sodium content to facilitate sodium homeostasis in response to an acute sodium challenge that does not increase blood pressure have not been fully elucidated. We hypothesized that the renal sympathetic nerves are critical to mediate natriuresis via α1- or β-adrenoceptors signal transduction pathways to maintain sodium balance in the face of acute increases in total body sodium content that do not activate the pressure-natriuresis mechanism. To address this hypothesis, we used acute bilateral renal denervation (RDNX), an anteroventral third ventricle (AV3V) lesion and α1- or β-antagonism during an acute 1M NaCl sodium challenge in conscious male Sprague Dawley rats. An acute 1M NaCl infusion did not alter blood pressure and evoked profound natriuresis and sympathoinhibition. Acute bilateral RDNX attenuated the natriuretic and sympathoinhibitory responses evoked by a 1M NaCl infusion [peak natriuresis (μeq/min) sham 14.5 ± 1.3 vs. acute RDNX: 9.2 ± 1.4, p < 0.05; plasma NE (nmol/L) sham control: 44 ± 4 vs. sham 1M NaCl infusion 11 ± 2, p < 0.05; acute RDNX control: 42 ± 6 vs. acute RDNX 1M NaCl infusion 25 ± 3, p < 0.05]. In contrast, an AV3V lesion did not impact the cardiovascular, renal excretory or sympathoinhibitory responses to an acute 1M NaCl infusion. Acute i.v. α1-adrenoceptor antagonism with terazosin evoked a significant drop in baseline blood pressure and significantly attenuated the natriuretic response to a 1M NaCl load [peak natriuresis (μeq/min) saline 17.2 ± 1.4 vs. i.v. terazosin 7.8 ± 2.5, p < 0.05]. In contrast, acute β-adrenoceptor antagonism with i.v. propranolol infusion did not impact the cardiovascular or renal excretory responses to an acute 1M NaCl infusion. Critically, the natriuretic response to an acute 1M NaCl infusion was significantly blunted in rats receiving a s.c. infusion of the α1-adrenoceptor antagonist terazosin at a dose that did not lower baseline blood pressure [peak natriuresis (μeq/min) sc saline: 18 ± 1 vs. sc terazosin 7 ± 2, p < 0.05]. Additionally, a s.c. infusion of the α1-adrenoceptor antagonist terazosin further attenuated the natriuretic response to a 1M NaCl infusion in acutely RDNX animals. Collectively these data indicate a specific role of a blood pressure-independent renal sympathetic nerve-dependent α1-adrenoceptor-mediated pathway in the natriuretic and sympathoinhibitory responses evoked by acute increases in total body sodium.
Collapse
Affiliation(s)
- Alissa A. Frame
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Kayla M. Nist
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Kiyoung Kim
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Jill T. Kuwabara
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Richard D. Wainford
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
- *Correspondence: Richard D. Wainford,
| |
Collapse
|
18
|
Zuchowski Y, Dalmasso C, Shawky NM, Reckelhoff JF. Cardiometabolic consequences of maternal hyperandrogenemia in male offspring. Physiol Rep 2021; 9:e14941. [PMID: 34288567 PMCID: PMC8290632 DOI: 10.14814/phy2.14941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/16/2021] [Accepted: 05/30/2021] [Indexed: 11/24/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) in women is characterized by hyperandrogenemia, obesity, and oligo- or anovulation. In addition, women with PCOS are often obese, with insulin resistance, hyperlipidemia, and elevated blood pressure. The cardiometabolic consequences for the male offspring of maternal hyperandrogenemia are unclear. The present studies tested the hypothesis that male offspring of a rat model of PCOS would develop cardiometabolic disease as adults. Female Sprague-Dawley rats (hyperandrogenemic females (HAF)) were implanted with dihydrotestosterone or placebo pellets (controls) at 4 weeks of age, and were mated at 10-12 weeks and allowed to lactate their offspring after birth. Body weights in male HAF offspring were lower at birth than in controls until postnatal day 4, but body weights remained similar between male control and HAF offspring from 2 to 8 weeks of age. However, at 16 weeks of age, body weight was lower in HAF male offspring, but there were no differences in fat mass or lean mass factored for body weight in HAF males, compared to controls. Plasma total cholesterol and HDL and proteinuria were higher and nitrate/nitrite excretion was lower in male HAF offspring than in controls. Baseline blood pressure was similar between HAF male offspring and controls, but HAF offspring had an exaggerated pressor response to angiotensin II infusion. These data suggest that adult sons of PCOS mothers may be at increased risk of cardiometabolic disease.
Collapse
Affiliation(s)
- Yvonne Zuchowski
- Department of Cell and Molecular BiologyUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Carolina Dalmasso
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKYUSA
| | - Noha M. Shawky
- Department of Cell and Molecular BiologyUniversity of Mississippi Medical CenterJacksonMSUSA
- Mississippi Center of Excellence in Perinatal ResearchUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Jane F. Reckelhoff
- Department of Cell and Molecular BiologyUniversity of Mississippi Medical CenterJacksonMSUSA
- Mississippi Center of Excellence in Perinatal ResearchUniversity of Mississippi Medical CenterJacksonMSUSA
| |
Collapse
|
19
|
Obesity-associated cardiovascular risk in women: hypertension and heart failure. Clin Sci (Lond) 2021; 135:1523-1544. [PMID: 34160010 DOI: 10.1042/cs20210384] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/14/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023]
Abstract
The pathogenesis of obesity-associated cardiovascular diseases begins long prior to the presentation of a cardiovascular event. In both men and women, cardiovascular events, and their associated hospitalizations and mortality, are often clinically predisposed by the presentation of a chronic cardiovascular risk factor. Obesity increases the risk of cardiovascular diseases in both sexes, however, the clinical prevalence of obesity, as well as its contribution to crucial cardiovascular risk factors is dependent on sex. The mechanisms via which obesity leads to cardiovascular risk is also discrepant in women between their premenopausal, pregnancy and postmenopausal phases of life. Emerging data indicate that at all reproductive statuses and ages, the presentation of a cardiovascular event in obese women is strongly associated with hypertension and its subsequent chronic risk factor, heart failure with preserved ejection fraction (HFpEF). In addition, emerging evidence indicates that obesity increases the risk of both hypertension and heart failure in pregnancy. This review will summarize clinical and experimental data on the female-specific prevalence and mechanisms of hypertension and heart failure in women across reproductive stages and highlight the particular risks in pregnancy as well as emerging data in a high-risk ethnicity in women of African ancestry (AA).
Collapse
|
20
|
Administration of recombinant human placental growth factor decreases blood pressure in obese hypertensive pregnant rats. J Hypertens 2021; 38:2295-2304. [PMID: 32618892 DOI: 10.1097/hjh.0000000000002528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Although epidemiological studies have shown that obesity is associated with increased incidence of hypertension during pregnancy, the mechanisms linking these two comorbidities are not as well studied. Previous investigations detected lower levels of the anti-hypertensive and pregnancy-related factor, placental growth factor (PlGF), in obese hypertensive pregnancies. Therefore, we examined whether obese hypertensive pregnant rats have reduced PlGF and whether increasing its levels by administering recombinant human (rh)PlGF reduces their blood pressure. METHODS We utilized a genetic model of obesity characterized to be heavier, hypertensive and fertile, namely rats having heterozygous deficiency of the melanocortin-4 receptor (MC4R-def). RESULTS MC4R-def obese rats had lower circulating levels of PlGF than wild-type lean controls at gestational day 19. Also, assessment of the PlGF receptor, Flt-1, in the vasculature showed that its levels were reduced in aorta and kidney glomeruli but increased in small mesenteric arteries. Chronic intraperitoneal administration of rhPlGF from gestational day 13-19 significantly increased circulating PlGF levels in both obese and lean rats, but reduced blood pressure only in the obese pregnant group. The rhPlGF treatment did not alter maternal body and fat masses or circulating levels of the adipokines, leptin and adiponectin. In addition, this treatment did not impact average foetal weights but increased placental weights regardless of obese or lean pregnancy. CONCLUSION PlGF is reduced in MC4R-def obese hypertensive pregnant rats, which is similar to findings in obese hypertensive pregnant women, while increasing its levels with exogenous rhPlGF reduces their blood pressure.
Collapse
|
21
|
Mattson DL, Dasinger JH, Abais-Battad JM. Amplification of Salt-Sensitive Hypertension and Kidney Damage by Immune Mechanisms. Am J Hypertens 2021; 34:3-14. [PMID: 32725162 PMCID: PMC7891248 DOI: 10.1093/ajh/hpaa124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/27/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022] Open
Abstract
Humans with salt-sensitive (SS) hypertension demonstrate increased morbidity, increased mortality, and renal end-organ damage when compared with normotensive subjects or those with salt-resistant hypertension. Increasing evidence indicates that immune mechanisms play an important role in the full development of SS hypertension and associated renal damage. Recent experimental advances and studies in animal models have permitted a greater understanding of the mechanisms of activation and action of immunity in this disease process. Evidence favors a role of both innate and adaptive immune mechanisms that are triggered by initial, immune-independent alterations in blood pressure, sympathetic activity, or tissue damage. Activation of immunity, which can be enhanced by a high-salt intake or by alterations in other components of the diet, leads to the release of cytokines, free radicals, or other factors that amplify renal damage and hypertension and mediate malignant disease.
Collapse
Affiliation(s)
- David L Mattson
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - John Henry Dasinger
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Justine M Abais-Battad
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
22
|
Shawky NM, Patil CN, Dalmasso C, Maranon RO, Romero DG, Drummond H, Reckelhoff JF. Pregnancy Protects Hyperandrogenemic Female Rats From Postmenopausal Hypertension. Hypertension 2020; 76:943-952. [PMID: 32755410 PMCID: PMC7429272 DOI: 10.1161/hypertensionaha.120.15504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/29/2020] [Indexed: 01/06/2023]
Abstract
Polycystic ovary syndrome, the most common endocrine disorder in women of reproductive age, is characterized by hyperandrogenemia, obesity, insulin resistance, and elevated blood pressure. However, few studies have focused on the consequences of pregnancy on postmenopausal cardiovascular disease and hypertension in polycystic ovary syndrome women. In hyperandrogenemic female (HAF) rats, the hypothesis was tested that previous pregnancy protects against age-related hypertension. Rats were implanted with dihydrotestosterone (7.5 mg/90 days, beginning at 4 weeks and continued throughout life) or placebo pellets (controls), became pregnant at 10 to 15 weeks, and pups were weaned at postnatal day 21. Dams and virgins were then aged to 10 months (still estrous cycling) or 16 months (postcycling). Although numbers of offspring per litter were similar for HAF and control dams, birth weights were lower in HAF offspring. At 10 months of age, there were no differences in blood pressure, proteinuria, nitrate/nitrite excretion, or body composition in previously pregnant HAF versus virgin HAF. However, by 16 months of age, despite no differences in dihydrotestosterone, fat mass/or lean mass/body weight, previously pregnant HAF had significantly lower blood pressure and proteinuria, higher nitrate/nitrite excretion, with increased intrarenal mRNA expression of endothelin B receptor and eNOS (endothelial nitric oxide synthase), and decreased ACE (angiotensin-converting enzyme), AT1aR (angiotensin 1a receptor), and endothelin A receptor than virgin HAF. Thus, pregnancy protects HAF rats against age-related hypertension, and the mechanism(s) may be due to differential regulation of the nitric oxide, endothelin, and renin-angiotensin systems. These data suggest that polycystic ovary syndrome women who have experienced uncomplicated pregnancy may be protected from postmenopausal hypertension.
Collapse
Affiliation(s)
- Noha M. Shawky
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS
- The Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS
| | - Chetan N. Patil
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | | | | | - Damian G. Romero
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS
- The Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS
| | - Heather Drummond
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS
- Physiology, University of Mississippi Medical Center, Jackson, MS
| | - Jane F. Reckelhoff
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS
- The Women’s Health Research Center, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
23
|
Eleutheroside E attenuates isoflurane-induced cognitive dysfunction by regulating the α7-nAChR-NMDAR pathway. Neuroreport 2019; 30:188-194. [PMID: 30585907 DOI: 10.1097/wnr.0000000000001182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is growing evidence that cognitive dysfunction induced by anesthetics is adversely affecting a large number of elderly surgical patients. Eleutheroside E (EE), a principal component of Eleutherococcus senticosus, exerts obvious protective effects on cognition. The aim of this study was to investigate the neuroprotective effect of EE on isoflurane (ISO)-induced cognitive dysfunction and explore the possible mechanisms. Learning and memory are assessed in novel object recognition and Morris water maze. We found that with ISO exposure, aged rats had a lower preference for the new object and spent less time in the target quarter. However, the amnesia can be alleviated by EE (50 mg/kg, intraperitoneally). Further research focused on the possible protective molecules associated with learning and memory, such as acetylcholine (ACh) and choline acetyltransferase (ChAT), nicotinic acetylcholine receptors (α7-nAChR), and NR2B, is required. The ACh in the hippocampus and serum was decreased after ISO exposure; meanwhile, the expression of ChAT, α7-nAChRs, and NR2B was downregulated. This abnormal state can be reversed by the administration of EE. Here, our results suggested that EE may be a potential therapeutic agent against ISO-induced cognitive dysfunction. The possible mechanism can be attributed to its neuroprotection through enhancing ChAT, which promotes the synthesis of ACh, further influencing the expression of the α7-nAChR-NR2B complex.
Collapse
|
24
|
Torres Fernandez ED, Huffman AM, Syed M, Romero DG, Yanes Cardozo LL. Effect of GLP-1 Receptor Agonists in the Cardiometabolic Complications in a Rat Model of Postmenopausal PCOS. Endocrinology 2019; 160:2787-2799. [PMID: 31593246 PMCID: PMC6825516 DOI: 10.1210/en.2019-00450] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023]
Abstract
Polycystic ovary syndrome (PCOS) is characterized by hyperandrogenism and ovulatory dysfunction. Women with PCOS have an elevated prevalence of cardiometabolic risk factors that worsen after menopause. Liraglutide (Lira), a glucagon-like peptide-1 receptor agonist, has shown beneficial metabolic effects in small clinic trials in reproductive-age women with PCOS. We have shown that chronic hyperandrogenemia in an experimental model of postmenopausal PCOS is associated with an adverse cardiometabolic profile and upregulation of the intrarenal renin-angiotensin system (RAS). We analyzed the effect of Lira in the cardiometabolic profile, intrarenal RAS, and blood pressure (BP) in postmenopausal PCOS. Four-week-old female Sprague Dawley rats were treated with DHT or placebo for 17 months. Lira administration during the last 3 weeks caused a bigger reduction in food intake, body weight, fat mass, and homeostasis model assessment of insulin resistance index in PCOS than in control rats. Moreover, Lira improved dyslipidemia and elevated leptin levels in PCOS. In contrast, Lira decreased intrarenal expression of RAS components only in the control group. Lira transiently increased heart rate and decreased BP in control rats. However, Lira did not modify BP but increased heart rate in PCOS. The angiotensin-converting-enzyme inhibitor enalapril abolished the BP differences between PCOS and control rats. However, Lira coadministration with enalapril further reduced BP only in control rats. In summary, Lira has beneficial effects for several cardiometabolic risk factors in postmenopausal PCOS. However, hyperandrogenemia blunted the BP-lowering effect of Lira in postmenopausal PCOS. Androgen-induced activation of intrarenal RAS may play a major role mediating increases in BP in postmenopausal PCOS.
Collapse
Affiliation(s)
- Edgar D Torres Fernandez
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi
- Mississippi Center for Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, Mississippi
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi
- Cardio Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Alexandra M Huffman
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Maryam Syed
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Damian G Romero
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi
- Mississippi Center for Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, Mississippi
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi
- Cardio Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Licy L Yanes Cardozo
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi
- Mississippi Center for Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, Mississippi
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi
- Cardio Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
- Correspondence: Licy L. Yanes Cardozo, MD, Departments of Cell & Molecular Biology and Medicine (Endocrinology), University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi 39216. E-mail:
| |
Collapse
|
25
|
Spradley FT, Palei AC, Anderson CD, Granger JP. Melanocortin-4 Receptor Deficiency Attenuates Placental Ischemia-Induced Hypertension in Pregnant Rats. Hypertension 2019; 73:162-170. [PMID: 30571561 DOI: 10.1161/hypertensionaha.118.12028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Preeclampsia is a pregnancy-specific disorder of new-onset hypertension linked to placental ischemia. While obesity is a major risk factor for preeclampsia, not all obese pregnant women develop pregnancy-induced hypertension or preeclampsia. Previously, we reported that placental ischemia-induced hypertension is dependent upon intact signaling of the sympathetic nervous system. Moreover, in various models of obesity, blockade of MC4R (melanocortin-4 receptor) signaling protects against the development of hypertension via suppression of the sympathetic nervous system. Less is known about this pathway during obese pregnancy. Although blockade of MC4R may lead to increased body weight during pregnancy, we tested the hypothesis that placental ischemia-induced hypertension is attenuated in obese MC4R-deficient pregnant rats. On gestational day 14, MC4R wild-type or heterozygous-deficient (MC4R-def) rats were subjected to chronic placental ischemia via the reduced uterine perfusion pressure procedure or Sham surgery then examined on gestational day 19. In Sham MC4R-def versus Sham wild-type pregnant rats, there was increased body weight, fat mass, and circulating leptin levels but they had similar fetus weights. Reduced uterine perfusion pressure reduced fetus weights in both strains. Reduced uterine perfusion pressure increased blood pressure in wild-type rats but this response was significantly attenuated in MC4R-def rats, although blood pressure was elevated in Sham MC4R-def over Sham wild-type. These data indicate that while obese MC4R-def pregnant rats have higher blood pressure during pregnancy, placental ischemia-induced hypertension is attenuated in obese MC4R-def pregnant rats. Thus, obese women with abnormal MC4R signaling may be less susceptible to the development of placental ischemia-induced hypertension.
Collapse
Affiliation(s)
- Frank T Spradley
- From the Department of Surgery (F.T.S., A.C.P., C.D.A.), The University of Mississippi Medical Center, Jackson.,Department of Physiology and Biophysics (F.T.S., J.P.G.), The University of Mississippi Medical Center, Jackson
| | - Ana C Palei
- From the Department of Surgery (F.T.S., A.C.P., C.D.A.), The University of Mississippi Medical Center, Jackson
| | - Christopher D Anderson
- From the Department of Surgery (F.T.S., A.C.P., C.D.A.), The University of Mississippi Medical Center, Jackson
| | - Joey P Granger
- Department of Physiology and Biophysics (F.T.S., J.P.G.), The University of Mississippi Medical Center, Jackson
| |
Collapse
|
26
|
Frame AA, Puleo F, Kim K, Walsh KR, Faudoa E, Hoover RS, Wainford RD. Sympathetic regulation of NCC in norepinephrine-evoked salt-sensitive hypertension in Sprague-Dawley rats. Am J Physiol Renal Physiol 2019; 317:F1623-F1636. [PMID: 31608673 DOI: 10.1152/ajprenal.00264.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Salt sensitivity of blood pressure is characterized by inappropriate sympathoexcitation and renal Na+ reabsorption during high salt intake. In salt-resistant animal models, exogenous norepinephrine (NE) infusion promotes salt-sensitive hypertension and prevents dietary Na+-evoked suppression of the Na+-Cl- cotransporter (NCC). Studies of the adrenergic signaling pathways that modulate NCC activity during NE infusion have yielded conflicting results implicating α1- and/or β-adrenoceptors and a downstream kinase network that phosphorylates and activates NCC, including with no lysine kinases (WNKs), STE20/SPS1-related proline-alanine-rich kinase (SPAK), and oxidative stress response 1 (OxSR1). In the present study, we used selective adrenoceptor antagonism in NE-infused male Sprague-Dawley rats to investigate the differential roles of α1- and β-adrenoceptors in sympathetically mediated NCC regulation. NE infusion evoked salt-sensitive hypertension and prevented dietary Na+-evoked suppression of NCC mRNA, protein expression, phosphorylation, and in vivo activity. Impaired NCC suppression during high salt intake in NE-infused rats was paralleled by impaired suppression of WNK1 and OxSR1 expression and SPAK/OxSR1 phosphorylation and a failure to increase WNK4 expression. Antagonism of α1-adrenoceptors before high salt intake or after the establishment of salt-sensitive hypertension restored dietary Na+-evoked suppression of NCC, resulted in downregulation of WNK4, SPAK, and OxSR1, and abolished the salt-sensitive component of hypertension. In contrast, β-adrenoceptor antagonism attenuated NE-evoked hypertension independently of dietary Na+ intake and did not restore high salt-evoked suppression of NCC. These findings suggest that a selective, reversible, α1-adenoceptor-gated WNK/SPAK/OxSR1 NE-activated signaling pathway prevents dietary Na+-evoked NCC suppression, promoting the development and maintenance of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Alissa A Frame
- Department of Pharmacology and Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Franco Puleo
- Department of Pharmacology and Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Kiyoung Kim
- Department of Pharmacology and Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Kathryn R Walsh
- Department of Pharmacology and Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Elizabeth Faudoa
- College of Arts and Sciences, Boston University, Boston, Massachusetts
| | - Robert S Hoover
- Research Service, Atlanta Veterans Affairs Medical Center, Decatur, Georgia.,Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia
| | - Richard D Wainford
- Department of Pharmacology and Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
27
|
Reckelhoff JF. Androgens and Blood Pressure Control: Sex Differences and Mechanisms. Mayo Clin Proc 2019; 94:536-543. [PMID: 30713048 PMCID: PMC6546172 DOI: 10.1016/j.mayocp.2018.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 01/13/2023]
Abstract
The role that androgens play in mediating elevated blood pressure is unclear. Low levels of androgens in men and increased levels of androgens in women, as occurs with polycystic ovary syndrome (PCOS), are both associated with increased risk for cardiovascular disease and elevated blood pressure. We have used animal models to evaluate the potential mechanisms by which men and women have differential responses to androgens that affect regulation of blood pressure and the implications these may have for the health of men and women.
Collapse
Affiliation(s)
- Jane F Reckelhoff
- Department of Cell and Molecular Biology, Mississippi Center of Excellence in Perinatal Research and Women's Health Research Center, University of Mississippi Medical Center, Jackson.
| |
Collapse
|
28
|
|
29
|
Yanes Cardozo LL, Romero DG, Reckelhoff JF. Cardiometabolic Features of Polycystic Ovary Syndrome: Role of Androgens. Physiology (Bethesda) 2018; 32:357-366. [PMID: 28814496 DOI: 10.1152/physiol.00030.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 01/09/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder that affects reproductive-age women. Hyperandrogenemia is present in a significant fraction (~80%) of women with PCOS. Increased prevalence of cardiometabolic risk factors is frequently observed in PCOS women. The present review aims to highlight the key role of androgens in mediating the negative cardiometabolic profile observed in PCOS women.
Collapse
Affiliation(s)
- Licy L Yanes Cardozo
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi; .,Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi.,Women's Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi; and.,Cardio Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Damian G Romero
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi; .,Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi.,Cardio Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jane F Reckelhoff
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi.,Cardio Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
30
|
Tamadon A, Hu W, Cui P, Ma T, Tong X, Zhang F, Li X, Shao LR, Feng Y. How to choose the suitable animal model of polycystic ovary syndrome? TRADITIONAL MEDICINE AND MODERN MEDICINE 2018. [DOI: 10.1142/s2575900018300047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a gynecological metabolic and endocrine disorder with uncertain etiology. To understand the etiology of PCOS or the evaluation of various therapeutic agents, different animal models have been introduced. Considering this fact that is difficult to develop an animal model that mimics all aspects of this syndrome, but, similarity of biological, anatomical, and/or biochemical features of animal model to the human PCOS phenotypes can increase its application. This review paper evaluates the recently researched animal models and introduced the best models for different research purposes in PCOS studies. During January 2013 to January 2017, 162 studies were identified which applied various kinds of animal models of PCOS including rodent, primate, ruminant and fish. Between these models, prenatal and pre-pubertal androgen rat models and then prenatal androgen mouse model have been studied in detail than others. The comparison of main features of these models with women PCOS demonstrates higher similarity of these three models to human conditions. Thereafter, letrozole models can be recommended for the investigation of various aspects of PCOS. Interestingly, similarity of PCOS features of post-pubertal insulin and human chorionic gonadotropin rat models with women PCOS were considerable which can make it as a good choice for future investigations.
Collapse
Affiliation(s)
- Amin Tamadon
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Wei Hu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Peng Cui
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Tong Ma
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Xiaoyu Tong
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Feifei Zhang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P. R. China
| | - Xin Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P. R. China
| | - Linus R. Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Yi Feng
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P. R. China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan University, Shanghai 200032, P. R. China
- Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
31
|
Patil CN, Racusen LC, Reckelhoff JF. Consequences of advanced aging on renal function in chronic hyperandrogenemic female rat model: implications for aging women with polycystic ovary syndrome. Physiol Rep 2018; 5:5/20/e13461. [PMID: 29051304 PMCID: PMC5661229 DOI: 10.14814/phy2.13461] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 01/06/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine and reproductive disorder in premenopausal women, characterized by hyperandrogenemia, metabolic syndrome, and inflammation. Women who had PCOS during their reproductive years remain hyperandrogenemic after menopause. The consequence of chronic hyperandrogenemia with advanced aging has not been studied to our knowledge. We have characterized a model of hyperandrogenemia in female rats and have aged them to 22–25 months to mimic advanced aging in hyperandrogenemic women, and tested the hypothesis that chronic exposure to hyperandrogenemia with aging has a deleterious effect on renal function. Female rats were chronically implanted with dihydrotestosterone pellets (DHT 7.5 mg/90 days) that were changed every 85 days or placebo pellets, and renal function was measured by clearance methods. Aging DHT‐treated females had a threefold higher level of DHT with significantly higher body weight, mean arterial pressure, left kidney weight, proteinuria, and kidney injury molecule‐1 (KIM‐1), than did age‐matched controls. In addition, DHT‐treated‐old females had a 60% reduction in glomerular filtration rate, 40% reduction in renal plasma flow, and significant reduction in urinary nitrate and nitrite excretion (UNOxV), an index of nitric oxide production. Morphological examination of kidneys showed that old DHT‐treated females had significant focal segmental glomerulosclerosis, global sclerosis, and interstitial fibrosis compared to controls. Thus chronic hyperandrogenemia that persists into old age in females is associated with renal injury. These data suggest that women with chronic hyperandrogenemia such as in PCOS may be at increased risk for development of chronic kidney disease with advanced age.
Collapse
Affiliation(s)
- Chetan N Patil
- Department of Physiology, The Women's Health Research Center University of Mississippi Medical Center, Jackson, Mississippi.,Department of Biophysics, The Women's Health Research Center University of Mississippi Medical Center, Jackson, Mississippi
| | - Lorraine C Racusen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jane F Reckelhoff
- Department of Physiology, The Women's Health Research Center University of Mississippi Medical Center, Jackson, Mississippi .,Department of Biophysics, The Women's Health Research Center University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
32
|
Banek CT, Gauthier MM, Baumann DC, Van Helden D, Asirvatham-Jeyaraj N, Panoskaltsis-Mortari A, Fink GD, Osborn JW. Targeted afferent renal denervation reduces arterial pressure but not renal inflammation in established DOCA-salt hypertension in the rat. Am J Physiol Regul Integr Comp Physiol 2018; 314:R883-R891. [PMID: 29513561 PMCID: PMC6032306 DOI: 10.1152/ajpregu.00416.2017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 12/13/2022]
Abstract
Recent preclinical studies show renal denervation (RDNx) may be an effective treatment for hypertension; however, the mechanism remains unknown. We have recently reported total RDNx (TRDNx) and afferent-selective RDNx (ARDNx) similarly attenuated the development of deoxycorticosterone acetate (DOCA)-salt hypertension. Whereas TRDNx abolished renal inflammation, ARDNx had a minimal effect despite an identical antihypertensive effect. Although this study established that ARDNx attenuates the development of DOCA-salt hypertension, it is unknown whether this mechanism remains operative once hypertension is established. The current study tested the hypothesis that TRDNx and ARDNx would similarly decrease mean arterial pressure (MAP) in the DOCA-salt hypertensive rat, and only TRDNx would mitigate renal inflammation. After 21 days of DOCA-salt treatment, male Sprague-Dawley rats underwent TRDNx ( n = 16), ARDNx ( n = 16), or Sham ( n = 14) treatment and were monitored for 14 days. Compared with baseline, TRDNx and ARDNx decreased MAP similarly (TRDNx -14 ± 4 and ARDNx -15 ± 6 mmHg). After analysis of diurnal rhythm, rhythm-adjusted mean and amplitude of night/day cycle were also reduced in TRDNx and ARDNx groups compared with Sham. Notably, no change in renal inflammation, injury, or function was detected with either treatment. We conclude from these findings that: 1) RDNx mitigates established DOCA-salt hypertension; 2) the MAP responses to RDNx are primarily mediated by ablation of afferent renal nerves; and 3) renal nerves do not contribute to the maintenance of renal inflammation in DOCA-salt hypertension.
Collapse
Affiliation(s)
- Christopher T Banek
- Department of Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
| | - Madeline M Gauthier
- Department of Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
| | - Daniel C Baumann
- Department of Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
| | - Dusty Van Helden
- Department of Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
| | | | | | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - John W Osborn
- Department of Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
33
|
Nooranizadeh MH, Rahmanifar F, Ahmadloo S, Shaaban Z, Jafarzadeh Shirazi MR, Tamadon A. Enhancement of Melanocortin-4 Receptor (MC4R) and Constancy of Kiss1 mRNAs Expression in the Hypothalamic Arcuate Nucleus in a Model of Polycystic Ovary Syndrome Rat. Galen Med J 2018; 7:e1070. [PMID: 34466430 PMCID: PMC8344174 DOI: 10.22086/gmj.v0i0.1070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 03/11/2018] [Accepted: 03/13/2018] [Indexed: 11/30/2022] Open
Abstract
Background: Hypothalamic Melanocortin-4Receptor (MC4R) and kiss1/kisspeptin systems play roles in reproductive processes. This study was conducted to evaluate changes in MC4R and kiss1 genes expression in the arcuate nucleus (ARC) of the hypothalamus and its relationship with polycystic ovary syndrome (PCOS) in rats. Materials and Methods: In the current experimental study, 24 female rats were randomly and equally allocated into nulliparous and primiparous groups and then were divided into two subgroups of PCOS and control. PCOS was induced by exposure to continuous light. Sex-related hormones were evaluated by radioimmunoassay or immunoradiometric assay. Expressions of MC4R and kiss1 gene in the ARC of the hypothalamus of the rats were evaluated by real-time PCR. Histomorphometric alterations of ovaries were compared between groups. Results: Number of tertiary follicles and their size and number of atretic follicles in the PCOS subgroups were more than those in the controls (P<0.05) whereas the number of secondary follicles and corpus luteum in the PCOS subgroups were lower than those in the controls (P<0.05). Antrum and total diameters of tertiary follicles in the PCOS subgroups were greater and granulosa layer diameter was lower than those in the controls (P<0.05). The MC4R mRNA expression in the PCOS subgroups was 6.5-fold in nulliparous and 3.5-fold in primiparous groups more than their controls’ pairs (P<0.05). However, parity did not affect the expression of MC4R gene (P>0.05). The kiss1 mRNA expression in the PCOS and control subgroups was not significantly different (P>0.05). Conclusion: Overexpression of MC4R gene after PCOS induction in the ARC of the hypothalamus may link to metabolic disorders of induced PCOS in the rats. However, alteration in the kiss1 mRNA expression after PCOS induction was not observed in the rats.
Collapse
Affiliation(s)
| | - Farhad Rahmanifar
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Somayeh Ahmadloo
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Shaaban
- Department of Animal Sciences, College of Agriculture, Shiraz University, Shiraz, Iran
| | | | - Amin Tamadon
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
34
|
Reckelhoff JF. Sex Differences in Regulation of Blood Pressure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1065:139-151. [PMID: 30051382 DOI: 10.1007/978-3-319-77932-4_9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hypertension is one of the leading risk factors for cardiovascular disease, myocardial infarction, and stroke. There are gender differences in the prevalence of hypertension and in the mechanisms responsible for hypertension in humans. This review will discuss the mechanisms for regulation of blood pressure, sex differences that have been identified in animal studies, and the gender differences that have been identified in humans.
Collapse
Affiliation(s)
- Jane F Reckelhoff
- Department of Cell and Molecular Biology and Women's Health Research Center and The Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
35
|
Loh SY, Giribabu N, Salleh N. Changes in plasma aldosterone and electrolytes levels, kidney epithelial sodium channel (ENaC) and blood pressure in normotensive WKY and hypertensive SHR rats following gonadectomy and chronic testosterone treatment. Steroids 2017; 128:128-135. [PMID: 28954214 DOI: 10.1016/j.steroids.2017.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/14/2017] [Accepted: 09/20/2017] [Indexed: 12/17/2022]
Abstract
UNLABELLED We hypothesized that testosterone-induced increase in blood pressure involve changes in aldosterone levels and expression of epithelial sodium channel (ENaC) in the kidneys. METHODS Ovariectomized female normotensive Wistar Kyoto (WKY) and Spontaneous hypertensive (SHR) rats were given six weeks treatment with testosterone via subcutaneous silastic implant. The rats were anesthetized and mean arterial pressure (MAP) was measured via direct cannulation of the carotid artery. Animals were sacrificed and kidneys were removed and subjected for α, β and γ-ENaC protein and mRNA expression analyses by Western blotting and Real-time polymerase chain reaction (qPCR), respectively. Distributions of α, β and γ-ENaC proteins in kidneys were observed by immunofluorescence. Plasma testosterone, aldosterone, electrolytes, osmolality, urea and creatinine levels were determined by biochemical assays. Analysis were also performed in non-testosterone treated orchidectomized and sham-operated male WKY and SHR rats. RESULTS Treatment of ovariectomized female WKY and SHR rats with testosterone causes increased in MAP but decreased in plasma aldosterone, sodium (Na+), osmolality and expression and distribution of α, β and γ-ENaC subunits in the kidneys. Orchidectomy decreased the MAP but increased plasma aldosterone, Na+, osmolality and α, β and γ-ENaC expression and distribution in the kidneys of male WKY and SHR rats. CONCLUSIONS Decreased in plasma aldosterone, Na+ and ENaC levels in kidneys under testosterone influence indicated that testosterone-induced increased in MAP were not due to increased plasma aldosterone and ENaC levels in kidneys, and thus the testosterone effect on MAP likely involve other mechanisms.
Collapse
Affiliation(s)
- Su Yi Loh
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
36
|
Faulkner JL, Belin de Chantemèle EJ. Sex Differences in Mechanisms of Hypertension Associated With Obesity. Hypertension 2017; 71:15-21. [PMID: 29133358 DOI: 10.1161/hypertensionaha.117.09980] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jessica L Faulkner
- From the Vascular Biology Center, Medical College of Georgia at Augusta University, GA
| | | |
Collapse
|
37
|
Abstract
The objective of this review is to provide an in-depth evaluation of how renal nerves regulate renal and cardiovascular function with a focus on long-term control of arterial pressure. We begin by reviewing the anatomy of renal nerves and then briefly discuss how the activity of renal nerves affects renal function. Current methods for measurement and quantification of efferent renal-nerve activity (ERNA) in animals and humans are discussed. Acute regulation of ERNA by classical neural reflexes as well and hormonal inputs to the brain is reviewed. The role of renal nerves in long-term control of arterial pressure in normotensive and hypertensive animals (and humans) is then reviewed with a focus on studies utilizing continuous long-term monitoring of arterial pressure. This includes a review of the effect of renal-nerve ablation on long-term control of arterial pressure in experimental animals as well as humans with drug-resistant hypertension. The extent to which changes in arterial pressure are due to ablation of renal afferent or efferent nerves are reviewed. We conclude by discussing the importance of renal nerves, relative to sympathetic activity to other vascular beds, in long-term control of arterial pressure and hypertension and propose directions for future research in this field. © 2017 American Physiological Society. Compr Physiol 7:263-320, 2017.
Collapse
Affiliation(s)
- John W Osborn
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jason D Foss
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Immune mechanisms exacerbate the severity of hypertension in humans and animal models of disease. This review summarizes recent mechanistic studies exploring the pathways whereby immunity influences salt-sensitive hypertension and renal disease. RECENT FINDINGS Emphasis is placed on the role of T cell subtypes, the mechanisms of T-cell activation, and the identification of potential antigens or neoantigens. SUMMARY Significant advancements have occurred in the search for pathways which activate the adaptive immune response. An enhanced understanding of the factors contributing to hypertension can lead to better therapies.
Collapse
|
39
|
Spradley FT, Sasser JM, Musall JB, Sullivan JC, Granger JP. Nitric oxide synthase-mediated blood pressure regulation in obese melanocortin-4 receptor-deficient pregnant rats. Am J Physiol Regul Integr Comp Physiol 2016; 311:R851-R857. [PMID: 27534879 DOI: 10.1152/ajpregu.00285.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/14/2016] [Indexed: 11/22/2022]
Abstract
Although obesity increases the risk for hypertension in pregnancy, the mechanisms responsible are unknown. Increased nitric oxide (NO) production results in vasodilation and reduced blood pressure during normal pregnancy in lean rats; however, the role of NO is less clear during obese pregnancies. We examined the impact of obesity on NO synthase (NOS)-mediated regulation of blood pressure during pregnancy by testing the hypothesis that NOS activity, expression, and regulation of vascular tone and blood pressure are reduced in obese pregnant rats. At gestational day 19, melanocortin-4 receptor (MC4R)-deficient obese rats (MC4R) had greater body weight and fat mass with elevated blood pressure and circulating sFlt-1 levels compared with MC4R pregnant rats. MC4R pregnant rats also had less circulating cGMP levels and reduced total NOS enzymatic activity and expression in mesenteric arteries. Despite decreased biochemical measures of NO/NOS in MC4R rats, NOS inhibition enhanced vasoconstriction only in mesenteric arteries from MC4R rats, suggesting greater NOS-mediated tone. To examine the role of NOS on blood pressure regulation in obese pregnant rats, MC4R and MC4R pregnant rats were administered the nonselective NOS inhibitor NG-nitro-l-arginine methyl ester (l-NAME, 100 mg/l) from gestational day 14 to 19 in drinking water. The degree by which l-NAME raised blood pressure was similar between obese and lean pregnant rats. Although MC4R obese pregnant rats had elevated blood pressure associated with reduced total NOS activity and expression, they had enhanced NOS-mediated attenuation of vasoconstriction, with no evidence of alterations in NOS-mediated regulation of blood pressure.
Collapse
Affiliation(s)
- Frank T Spradley
- Department of Surgery, The University of Mississippi Medical Center, Jackson, Mississippi; .,Department of Physiology and Biophysics, The University of Mississippi Medical Center, Jackson, Mississippi.,Cardiovascular-Renal Research Center, The University of Mississippi Medical Center, Jackson, Mississippi.,Women's Health Research Center, The University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Jennifer M Sasser
- Department of Pharmacology and Toxicology, The University of Mississippi Medical Center, Jackson, Mississippi.,Cardiovascular-Renal Research Center, The University of Mississippi Medical Center, Jackson, Mississippi.,Women's Health Research Center, The University of Mississippi Medical Center, Jackson, Mississippi; and
| | | | | | - Joey P Granger
- Department of Physiology and Biophysics, The University of Mississippi Medical Center, Jackson, Mississippi.,Cardiovascular-Renal Research Center, The University of Mississippi Medical Center, Jackson, Mississippi.,Women's Health Research Center, The University of Mississippi Medical Center, Jackson, Mississippi; and
| |
Collapse
|
40
|
do Carmo JM, da Silva AA, Moak SP, Houghton HJ, Smith A, Hall JE. Regulation of Blood Pressure, Appetite, and Glucose by CNS Melanocortin System in Hyperandrogenemic Female SHR. Am J Hypertens 2016; 29:832-40. [PMID: 26584577 DOI: 10.1093/ajh/hpv182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/20/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hyperandrogenemia in females may be associated with sympathetic nervous system (SNS) activation and increased blood pressure (BP). However the importance of hyperandrogenemia in causing hypertension in females and the mechanisms involved are still unclear. We tested whether chronic hyperandrogenemia exacerbates hypertension in young female spontaneously hypertensive rats (SHR) and whether endogenous melanocortin-3/4 receptor (MC3/4R) activation contributes to the elevated BP. METHODS Cardiovascular and metabolic effects of chronic MC3/4R antagonism were assessed in female SHR treated with dihydrotestosterone (DHT, beginning at 5 weeks of age) and placebo-treated female SHR. BP and heart rate (HR) were measured by telemetry and an intracerebroventricular (ICV) cannula was placed in the lateral ventricle for infusions. After control measurements, the MC3/4R antagonist (SHU-9119) was infused for 10 days (1 nmol/hour, ICV, at 15 weeks of age) followed by a 5-day recovery period. RESULTS MC3/4R antagonism increased food intake and body weight in DHT-treated SHR (14±1 to 35±1g/day and 244±3 to 298±8g) and controls (14±1 to 34±2g/day and 207±4 to 269±8g). Compared to untreated SHR, DHT-treated SHR had similar BP but lower HR (146±3 vs. 142±4mm Hg and 316±2 vs. 363±4 bpm). Chronic SHU-9119 infusion reduced BP and HR in DHT-treated SHR (-12±2mm Hg and -14±4 bpm) and control female SHR (-19±2mm Hg and -21±6 bpm). CONCLUSION These results indicate that hyperandrogenemia does not exacerbate hypertension in female SHR. MC3/4R antagonism reduces BP and HR despite marked increases in food intake and body weight in hyperandrogenemic and control female SHR.
Collapse
Affiliation(s)
- Jussara M do Carmo
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA;
| | - Alexandre A da Silva
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA; Barão de Mauá University Center, Ribeirão Preto, São Paulo, Brazil
| | - Sydney P Moak
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Haley J Houghton
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Andrew Smith
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA; Department of Radiology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - John E Hall
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
41
|
Dalmasso C, Maranon R, Patil C, Bui E, Moulana M, Zhang H, Smith A, Yanes Cardozo LL, Reckelhoff JF. Cardiometabolic Effects of Chronic Hyperandrogenemia in a New Model of Postmenopausal Polycystic Ovary Syndrome. Endocrinology 2016; 157:2920-7. [PMID: 27145003 PMCID: PMC4929551 DOI: 10.1210/en.2015-1617] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Postmenopausal women who have had polycystic ovary syndrome (PCOS) and chronic hyperandrogenemia may be at a greater risk for cardiovascular disease than normoandrogenemic postmenopausal women. The cardiometabolic effect of chronic hyperandrogenemia in women with PCOS after menopause is unclear. The present study was performed to test the hypothesis that chronic hyperandrogenemia in aging female rats would have more deleterious effects on metabolic function, blood pressure, and renal function than in normoandrogenemic age-matched females. Female Sprague Dawley were implanted continuously, beginning at 4-5 weeks, with dihydrotestosterone (postmenopausal hyperandrogenemic female [PMHAF]) or placebo pellets (controls), and were studied at 13 months of age. Plasma DHT was 3-fold higher, and estradiol was 90% lower in PMHAF than controls. Body weights were higher; EchoMRI showed greater fat and lean mass; and computed tomography showed more sc and visceral adiposity in PMHAF, but with similar femur length compared with controls. Insulin resistance was present in PMHAF with higher plasma insulin, normal fasting blood glucose, abnormal oral glucose tolerance test, and higher nonfasting blood glucose. Blood pressure (radiotelemetry) was significantly higher and heart rate was lower, and renal function (glomerular filtration rate) was reduced by 40% in PMHAF. Thus the aging chronically hyperandrogenemic female rat is a new model of postmenopausal PCOS, which exhibits insulin resistance and visceral obesity, hypertension, and impairment in renal function. This new model provides a unique tool to study the deleterious effects of chronic androgen excess in postmenopausal females rats.
Collapse
Affiliation(s)
- Carolina Dalmasso
- Departments of Physiology and Biophysics (C.D., R.M., C.P., L.L.Y.C., J.F.R.), Medicine (E.B., R.M., L.L.Y.C.), Psychiatry (M.M.), Radiology (H.Z., A.S.), Endocrinology (L.L.Y.C.), and Women's Health Research Center (C.D., R.M., C.P., L.L.Y.C., J.F.R.), University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Rodrigo Maranon
- Departments of Physiology and Biophysics (C.D., R.M., C.P., L.L.Y.C., J.F.R.), Medicine (E.B., R.M., L.L.Y.C.), Psychiatry (M.M.), Radiology (H.Z., A.S.), Endocrinology (L.L.Y.C.), and Women's Health Research Center (C.D., R.M., C.P., L.L.Y.C., J.F.R.), University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Chetan Patil
- Departments of Physiology and Biophysics (C.D., R.M., C.P., L.L.Y.C., J.F.R.), Medicine (E.B., R.M., L.L.Y.C.), Psychiatry (M.M.), Radiology (H.Z., A.S.), Endocrinology (L.L.Y.C.), and Women's Health Research Center (C.D., R.M., C.P., L.L.Y.C., J.F.R.), University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Elizabeth Bui
- Departments of Physiology and Biophysics (C.D., R.M., C.P., L.L.Y.C., J.F.R.), Medicine (E.B., R.M., L.L.Y.C.), Psychiatry (M.M.), Radiology (H.Z., A.S.), Endocrinology (L.L.Y.C.), and Women's Health Research Center (C.D., R.M., C.P., L.L.Y.C., J.F.R.), University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Mohadetheh Moulana
- Departments of Physiology and Biophysics (C.D., R.M., C.P., L.L.Y.C., J.F.R.), Medicine (E.B., R.M., L.L.Y.C.), Psychiatry (M.M.), Radiology (H.Z., A.S.), Endocrinology (L.L.Y.C.), and Women's Health Research Center (C.D., R.M., C.P., L.L.Y.C., J.F.R.), University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Howei Zhang
- Departments of Physiology and Biophysics (C.D., R.M., C.P., L.L.Y.C., J.F.R.), Medicine (E.B., R.M., L.L.Y.C.), Psychiatry (M.M.), Radiology (H.Z., A.S.), Endocrinology (L.L.Y.C.), and Women's Health Research Center (C.D., R.M., C.P., L.L.Y.C., J.F.R.), University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Andrew Smith
- Departments of Physiology and Biophysics (C.D., R.M., C.P., L.L.Y.C., J.F.R.), Medicine (E.B., R.M., L.L.Y.C.), Psychiatry (M.M.), Radiology (H.Z., A.S.), Endocrinology (L.L.Y.C.), and Women's Health Research Center (C.D., R.M., C.P., L.L.Y.C., J.F.R.), University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Licy L Yanes Cardozo
- Departments of Physiology and Biophysics (C.D., R.M., C.P., L.L.Y.C., J.F.R.), Medicine (E.B., R.M., L.L.Y.C.), Psychiatry (M.M.), Radiology (H.Z., A.S.), Endocrinology (L.L.Y.C.), and Women's Health Research Center (C.D., R.M., C.P., L.L.Y.C., J.F.R.), University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Jane F Reckelhoff
- Departments of Physiology and Biophysics (C.D., R.M., C.P., L.L.Y.C., J.F.R.), Medicine (E.B., R.M., L.L.Y.C.), Psychiatry (M.M.), Radiology (H.Z., A.S.), Endocrinology (L.L.Y.C.), and Women's Health Research Center (C.D., R.M., C.P., L.L.Y.C., J.F.R.), University of Mississippi Medical Center, Jackson, Mississippi 39216
| |
Collapse
|
42
|
Hypertension and immunity: mechanisms of T cell activation and pathways of hypertension. Curr Opin Nephrol Hypertens 2016; 24:470-4. [PMID: 26125645 DOI: 10.1097/mnh.0000000000000146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The role of immune mechanisms to amplify hypertension in patients and animal models has been appreciated for decades. This review briefly summarizes recent studies exploring the mechanistic pathways, whereby the immune system participates in hypertension and renal disease. RECENT FINDINGS Emphasis in this review is placed upon recent studies exploring the role of T cell subtypes, newly described mechanisms of T cell activation, the identification of potential neoantigens, and environmental influences on immune cell activation. SUMMARY Significant advancements have been made in the search for antigens and pathways responsible for activation of the adaptive immune response, furthering our understanding of the factors contributing to hypertension and potentially leading to the development of new and more effective therapies.
Collapse
|
43
|
Ressler IB, Grayson BE, Ulrich-Lai YM, Seeley RJ. Diet-induced obesity exacerbates metabolic and behavioral effects of polycystic ovary syndrome in a rodent model. Am J Physiol Endocrinol Metab 2015; 308:E1076-84. [PMID: 26078189 PMCID: PMC4469809 DOI: 10.1152/ajpendo.00182.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 04/09/2015] [Indexed: 01/13/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrinopathy affecting women of reproductive age. Although a comorbidity of PCOS is obesity, many are lean. We hypothesized that increased saturated fat consumption and obesity would exacerbate metabolic and stress indices in a rodent model of PCOS. Female rats were implanted with the nonaromatizable androgen dihydrotestosterone (DHT) or placebo pellets prior to puberty. Half of each group was maintained ad libitum on either a high-fat diet (HFD; 40% butter fat calories) or nutrient-matched low-fat diet (LFD). Irrespective of diet, DHT-treated animals gained more body weight, had irregular cycles, and were glucose intolerant compared with controls on both diets. HFD/DHT animals had the highest levels of fat mass and insulin resistance. DHT animals demonstrated increased anxiety-related behavior in the elevated plus maze by decreased distance traveled and time in the open arms. HFD consumption increased immobility during the forced-swim test. DHT treatment suppressed diurnal corticosterone measurements in both diet groups. In parallel, DHT treatment significantly dampened stress responsivity to a mild stressor. Brains of DHT animals showed attenuated c-Fos activation in the ventromedial hypothalamus and arcuate nucleus; irrespective of DHT-treatment, however, all HFD animals had elevated hypothalamic paraventricular nucleus c-Fos activation. Whereas hyperandrogenism drives overall body weight gain, glucose intolerance, anxiety behaviors, and stress responsivity, HFD consumption exacerbates the effect of androgens on adiposity, insulin resistance, and depressive behaviors.
Collapse
Affiliation(s)
- Ilana B Ressler
- Department of Obstetrics and Gynecology, University of Cincinnati Medical Center, Cincinnati, Ohio; Department of Internal Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Cincinnati, Cincinnati, Ohio
| | - Bernadette E Grayson
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - Yvonne M Ulrich-Lai
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio; and
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|