1
|
Calonne J, Arsenijevic D, Scerri I, Miles-Chan JL, Montani JP, Dulloo AG. Low 24-hour core body temperature as a thrifty metabolic trait driving catch-up fat during weight regain after caloric restriction. Am J Physiol Endocrinol Metab 2019; 317:E699-E709. [PMID: 31430205 DOI: 10.1152/ajpendo.00092.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The recovery of body weight after substantial weight loss or growth retardation is often characterized by a disproportionately higher rate of fat mass vs. lean mass recovery, with this phenomenon of "preferential catch-up fat" being contributed by energy conservation (thrifty) metabolism. To test the hypothesis that a low core body temperature (Tc) constitutes a thrifty metabolic trait underlying the high metabolic efficiency driving catch-up fat, the Anipill system, with telemetry capsules implanted in the peritoneal cavity, was used for continuous monitoring of Tc for several weeks in a validated rat model of semistarvation-refeeding in which catch-up fat is driven solely by suppressed thermogenesis. In animals housed at 22°C, 24-h Tc was reduced in response to semistarvation (-0.77°C, P < 0.001) and remained significantly lower than in control animals during the catch-up fat phase of refeeding (-0.27°C on average, P < 0.001), the lower Tc during refeeding being more pronounced during the light phase than during the dark phase of the 24-h cycle (-0.30°C vs. -0.23°C, P < 0.01) and with no between-group differences in locomotor activity. A lower 24-h Tc in animals showing catch-up fat was also observed when the housing temperature was raised to 29°C (i.e., at thermoneutrality). The reduced energy cost of homeothermy in response to caloric restriction persists during weight recovery and constitutes a thrifty metabolic trait that contributes to the high metabolic efficiency that underlies the rapid restoration of the body's fat stores during weight regain, with implications for obesity relapse after therapeutic slimming and the pathophysiology of catch-up growth.
Collapse
Affiliation(s)
- Julie Calonne
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Denis Arsenijevic
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Isabelle Scerri
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Jennifer L Miles-Chan
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Jean-Pierre Montani
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Abdul G Dulloo
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
2
|
Refeeding abolishes beneficial effects of severe calorie restriction from birth on adipose tissue and glucose homeostasis of adult rats. Nutrition 2019; 66:87-93. [DOI: 10.1016/j.nut.2019.03.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 01/10/2023]
|
3
|
Calonne J, Isacco L, Miles-Chan J, Arsenijevic D, Montani JP, Guillet C, Boirie Y, Dulloo AG. Reduced Skeletal Muscle Protein Turnover and Thyroid Hormone Metabolism in Adaptive Thermogenesis That Facilitates Body Fat Recovery During Weight Regain. Front Endocrinol (Lausanne) 2019; 10:119. [PMID: 30873123 PMCID: PMC6403129 DOI: 10.3389/fendo.2019.00119] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/08/2019] [Indexed: 11/13/2022] Open
Abstract
Objective: The recovery of body composition after weight loss is characterized by an accelerated rate of fat recovery (preferential catch-up fat) resulting partly from an adaptive suppression of thermogenesis. Although the skeletal muscle has been implicated as an effector site for such thrifty (energy conservation) metabolism driving catch-up fat, the underlying mechanisms remain to be elucidated. We test here the hypothesis that this thrifty metabolism driving catch-up fat could reside in a reduced rate of protein turnover (an energetically costly "futile" cycle) and in altered local thyroid hormone metabolism in skeletal muscle. Methods: Using a validated rat model of semistarvation-refeeding in which catch-up fat is driven solely by suppressed thermogenesis, we measured after 1 week of refeeding in refed and control animals the following: (i) in-vivo rates of protein synthesis in hindlimb skeletal muscles using the flooding dose technique of 13C-labeled valine incorporation in muscle protein, (ii) ex-vivo muscle assay of net formation of thyroid hormone tri-iodothyronine (T3) from precursor hormone thyroxine (T4), and (iii) protein expression of skeletal muscle deiodinases (type 1, 2, and 3). Results: We show that after 1 week of calorie-controlled refeeding, the fractional protein synthesis rate was lower in skeletal muscles of refed animals than in controls (by 30-35%, p < 0.01) despite no between-group differences in the rate of skeletal muscle growth or whole-body protein deposition-thereby underscoring concomitant reductions in both protein synthesis and protein degradation rates in skeletal muscles of refed animals compared to controls. These differences in skeletal muscle protein turnover during catch-up fat were found to be independent of muscle type and fiber composition, and were associated with a slower net formation of muscle T3 from precursor hormone T4, together with increases in muscle protein expression of deiodinases which convert T4 and T3 to inactive forms. Conclusions: These results suggest that diminished skeletal muscle protein turnover, together with altered local muscle metabolism of thyroid hormones leading to diminished intracellular T3 availability, are features of the thrifty metabolism that drives the rapid restoration of the fat reserves during weight regain after caloric restriction.
Collapse
Affiliation(s)
- Julie Calonne
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Sciences and Medicine, University of FribourgFribourg, Switzerland
| | - Laurie Isacco
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Sciences and Medicine, University of FribourgFribourg, Switzerland
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CHU Clermont-Ferrand, Service de Nutrition Clinique, CRNH AuvergneClermont-Ferrand, France
- EA3920 and EPSI Platform, Bourgogne Franche-Comté UniversitéBesançon, France
| | - Jennifer Miles-Chan
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Sciences and Medicine, University of FribourgFribourg, Switzerland
| | - Denis Arsenijevic
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Sciences and Medicine, University of FribourgFribourg, Switzerland
| | - Jean-Pierre Montani
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Sciences and Medicine, University of FribourgFribourg, Switzerland
| | - Christelle Guillet
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CHU Clermont-Ferrand, Service de Nutrition Clinique, CRNH AuvergneClermont-Ferrand, France
| | - Yves Boirie
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CHU Clermont-Ferrand, Service de Nutrition Clinique, CRNH AuvergneClermont-Ferrand, France
| | - Abdul G. Dulloo
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Sciences and Medicine, University of FribourgFribourg, Switzerland
- *Correspondence: Abdul G. Dulloo
| |
Collapse
|
4
|
Skowronski AA, Ravussin Y, Leibel RL, LeDuc CA. Energy homeostasis in leptin deficient Lepob/ob mice. PLoS One 2017; 12:e0189784. [PMID: 29261744 PMCID: PMC5738099 DOI: 10.1371/journal.pone.0189784] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/03/2017] [Indexed: 01/28/2023] Open
Abstract
Maintenance of reduced body weight is associated both with reduced energy expenditure per unit metabolic mass and increased hunger in mice and humans. Lowered circulating leptin concentration, due to decreased fat mass, provides a primary signal for this response. However, leptin deficient (Lepob/ob) mice (and leptin receptor deficient Zucker rats) reduce energy expenditure following weight reduction by a necessarily non-leptin dependent mechanisms. To identify these mechanisms, Lepob/ob mice were fed ad libitum (AL group; n = 21) or restricted to 3 kilocalories of chow per day (CR group, n = 21). After losing 20% of initial weight (in approximately 2 weeks), the CR mice were stabilized at 80% of initial body weight for two weeks by titrated refeeding, and then released from food restriction. CR mice conserved energy (-17% below predicted based on body mass and composition during the day; -52% at night); and, when released to ad libitum feeding, CR mice regained fat and lean mass (to AL levels) within 5 weeks. CR mice did so while their ad libitum caloric intake was equal to that of the AL animals. While calorically restricted, the CR mice had a significantly lower respiratory exchange ratio (RER = 0.89) compared to AL (0.94); after release to ad libitum feeding, RER was significantly higher (1.03) than in the AL group (0.93), consistent with their anabolic state. These results confirm that, in congenitally leptin deficient animals, leptin is not required for compensatory reduction in energy expenditure accompanying weight loss, but suggest that the hyperphagia of the weight-reduced state is leptin-dependent.
Collapse
Affiliation(s)
- Alicja A. Skowronski
- Institute of Human Nutrition, Columbia University, New York City, New York, United States of America
- Department of Medicine, Columbia University, New York City, New York, United States of America
| | - Yann Ravussin
- Department of Medicine, Columbia University, New York City, New York, United States of America
| | - Rudolph L. Leibel
- Institute of Human Nutrition, Columbia University, New York City, New York, United States of America
- Department of Pediatrics, Columbia University, New York City, New York, United States of America
- Obesity Research Core, Columbia University, New York City, New York, United States of America
| | - Charles A. LeDuc
- Department of Pediatrics, Columbia University, New York City, New York, United States of America
- Obesity Research Core, Columbia University, New York City, New York, United States of America
- * E-mail:
| |
Collapse
|
5
|
Roberts ZS, Wolden-Hanson T, Matsen ME, Ryu V, Vaughan CH, Graham JL, Havel PJ, Chukri DW, Schwartz MW, Morton GJ, Blevins JE. Chronic hindbrain administration of oxytocin is sufficient to elicit weight loss in diet-induced obese rats. Am J Physiol Regul Integr Comp Physiol 2017; 313:R357-R371. [PMID: 28747407 DOI: 10.1152/ajpregu.00169.2017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 02/06/2023]
Abstract
Oxytocin (OT) administration elicits weight loss in diet-induced obese (DIO) rodents, nonhuman primates, and humans by reducing energy intake and increasing energy expenditure. Although the neurocircuitry underlying these effects remains uncertain, OT neurons in the paraventricular nucleus are positioned to control both energy intake and sympathetic nervous system outflow to interscapular brown adipose tissue (BAT) through projections to the hindbrain nucleus of the solitary tract and spinal cord. The current work was undertaken to examine whether central OT increases BAT thermogenesis, whether this effect involves hindbrain OT receptors (OTRs), and whether such effects are associated with sustained weight loss following chronic administration. To assess OT-elicited changes in BAT thermogenesis, we measured the effects of intracerebroventricular administration of OT on interscapular BAT temperature in rats and mice. Because fourth ventricular (4V) infusion targets hindbrain OTRs, whereas third ventricular (3V) administration targets both forebrain and hindbrain OTRs, we compared responses to OT following chronic 3V infusion in DIO rats and mice and chronic 4V infusion in DIO rats. We report that chronic 4V infusion of OT into two distinct rat models recapitulates the effects of 3V OT to ameliorate DIO by reducing fat mass. While reduced food intake contributes to this effect, our finding that 4V OT also increases BAT thermogenesis suggests that increased energy expenditure may contribute as well. Collectively, these findings support the hypothesis that, in DIO rats, OT action in the hindbrain evokes sustained weight loss by reducing energy intake and increasing BAT thermogenesis.
Collapse
Affiliation(s)
- Zachary S Roberts
- Veterans Affairs Puget Sound Health Care System, Office of Research and Development, Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, Washington
| | - Tami Wolden-Hanson
- Veterans Affairs Puget Sound Health Care System, Office of Research and Development, Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, Washington
| | - Miles E Matsen
- University of Washington Diabetes Institute, University of Washington School of Medicine, Seattle, Washington
| | - Vitaly Ryu
- Department of Biology, Georgia State University, Atlanta, Georgia; and.,Center for Obesity Reversal, Georgia State University, Atlanta, Georgia
| | - Cheryl H Vaughan
- Department of Biology, Georgia State University, Atlanta, Georgia; and.,Center for Obesity Reversal, Georgia State University, Atlanta, Georgia
| | - James L Graham
- Departments of Nutrition and Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California
| | - Peter J Havel
- Departments of Nutrition and Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California
| | - Daniel W Chukri
- Veterans Affairs Puget Sound Health Care System, Office of Research and Development, Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, Washington
| | - Michael W Schwartz
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington.,University of Washington Diabetes Institute, University of Washington School of Medicine, Seattle, Washington
| | - Gregory J Morton
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington.,University of Washington Diabetes Institute, University of Washington School of Medicine, Seattle, Washington
| | - James E Blevins
- Veterans Affairs Puget Sound Health Care System, Office of Research and Development, Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, Washington; .,Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
6
|
A Calibrated Method of Massage Therapy Decreases Systolic Blood Pressure Concomitant With Changes in Heart Rate Variability in Male Rats. J Manipulative Physiol Ther 2017; 40:77-88. [DOI: 10.1016/j.jmpt.2016.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 07/07/2016] [Accepted: 07/07/2016] [Indexed: 11/23/2022]
|
7
|
Bortolotti M, Ventura G, Jegatheesan P, Choisy C, Cynober L, De Bandt JP. Impact of qualitative and quantitative variations in nitrogen supply on catch-up growth in food-deprived-refed young rats. Clin Nutr 2016; 35:669-78. [DOI: 10.1016/j.clnu.2015.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/09/2015] [Accepted: 04/22/2015] [Indexed: 02/07/2023]
|
8
|
De Andrade PBM, Neff LA, Strosova MK, Arsenijevic D, Patthey-Vuadens O, Scapozza L, Montani JP, Ruegg UT, Dulloo AG, Dorchies OM. Caloric restriction induces energy-sparing alterations in skeletal muscle contraction, fiber composition and local thyroid hormone metabolism that persist during catch-up fat upon refeeding. Front Physiol 2015; 6:254. [PMID: 26441673 PMCID: PMC4584973 DOI: 10.3389/fphys.2015.00254] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 08/28/2015] [Indexed: 11/18/2022] Open
Abstract
Weight regain after caloric restriction results in accelerated fat storage in adipose tissue. This catch-up fat phenomenon is postulated to result partly from suppressed skeletal muscle thermogenesis, but the underlying mechanisms are elusive. We investigated whether the reduced rate of skeletal muscle contraction-relaxation cycle that occurs after caloric restriction persists during weight recovery and could contribute to catch-up fat. Using a rat model of semistarvation-refeeding, in which fat recovery is driven by suppressed thermogenesis, we show that contraction and relaxation of leg muscles are slower after both semistarvation and refeeding. These effects are associated with (i) higher expression of muscle deiodinase type 3 (DIO3), which inactivates tri-iodothyronine (T3), and lower expression of T3-activating enzyme, deiodinase type 2 (DIO2), (ii) slower net formation of T3 from its T4 precursor in muscles, and (iii) accumulation of slow fibers at the expense of fast fibers. These semistarvation-induced changes persisted during recovery and correlated with impaired expression of transcription factors involved in slow-twitch muscle development. We conclude that diminished muscle thermogenesis following caloric restriction results from reduced muscle T3 levels, alteration in muscle-specific transcription factors, and fast-to-slow fiber shift causing slower contractility. These energy-sparing effects persist during weight recovery and contribute to catch-up fat.
Collapse
Affiliation(s)
- Paula B M De Andrade
- Department of Medicine, Physiology, University of Fribourg Fribourg, Switzerland
| | - Laurence A Neff
- Pharmaceutical Biochemistry, Geneva-Lausanne School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Geneva, Switzerland
| | - Miriam K Strosova
- Pharmacology, Geneva-Lausanne School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Geneva, Switzerland
| | - Denis Arsenijevic
- Department of Medicine, Physiology, University of Fribourg Fribourg, Switzerland
| | - Ophélie Patthey-Vuadens
- Pharmaceutical Biochemistry, Geneva-Lausanne School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Geneva, Switzerland ; Pharmacology, Geneva-Lausanne School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Geneva, Switzerland
| | - Leonardo Scapozza
- Pharmaceutical Biochemistry, Geneva-Lausanne School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Geneva, Switzerland
| | - Jean-Pierre Montani
- Department of Medicine, Physiology, University of Fribourg Fribourg, Switzerland
| | - Urs T Ruegg
- Pharmacology, Geneva-Lausanne School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Geneva, Switzerland
| | - Abdul G Dulloo
- Department of Medicine, Physiology, University of Fribourg Fribourg, Switzerland
| | - Olivier M Dorchies
- Pharmaceutical Biochemistry, Geneva-Lausanne School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Geneva, Switzerland ; Pharmacology, Geneva-Lausanne School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Geneva, Switzerland
| |
Collapse
|
9
|
Fukushima A, Hagiwara H, Fujioka H, Kimura F, Akema T, Funabashi T. Sex differences in feeding behavior in rats: the relationship with neuronal activation in the hypothalamus. Front Neurosci 2015; 9:88. [PMID: 25870535 PMCID: PMC4378303 DOI: 10.3389/fnins.2015.00088] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 03/02/2015] [Indexed: 01/21/2023] Open
Abstract
There is general agreement that the central nervous system in rodents differs between sexes due to the presence of gonadal steroid hormone during differentiation. Sex differences in feeding seem to occur among species, and responses to fasting (i.e., starvation), gonadal steroids (i.e., testosterone and estradiol), and diet (i.e., western-style diet) vary significantly between sexes. The hypothalamus is the center for controlling feeding behavior. We examined the activation of feeding-related peptides in neurons in the hypothalamus. Phosphorylation of cyclic AMP response element-binding protein (CREB) is a good marker for neural activation, as is the Fos antigen. Therefore, we predicted that sex differences in the activity of melanin-concentrating hormone (MCH) neurons would be associated with feeding behavior. We determined the response of MCH neurons to glucose in the lateral hypothalamic area (LHA) and our results suggested MCH neurons play an important role in sex differences in feeding behavior. In addition, fasting increased the number of orexin neurons harboring phosphorylated CREB in female rats (regardless of the estrous day), but not male rats. Glucose injection decreased the number of these neurons with phosphorylated CREB in fasted female rats. Finally, under normal spontaneous food intake, MCH neurons, but not orexin neurons, expressed phosphorylated CREB. These sex differences in response to fasting and glucose, as well as under normal conditions, suggest a vulnerability to metabolic challenges in females.
Collapse
Affiliation(s)
- Atsushi Fukushima
- Department of Physiology, St. Marianna University School of Medicine Kawasaki, Japan
| | - Hiroko Hagiwara
- Department of Physiology, St. Marianna University School of Medicine Kawasaki, Japan ; Department of Physiology, Yokohama City University Graduate School of Medicine Yokohama, Japan
| | - Hitomi Fujioka
- Department of Physiology, St. Marianna University School of Medicine Kawasaki, Japan
| | - Fukuko Kimura
- Department of Physiology, Yokohama City University Graduate School of Medicine Yokohama, Japan
| | - Tatsuo Akema
- Department of Physiology, St. Marianna University School of Medicine Kawasaki, Japan
| | - Toshiya Funabashi
- Department of Physiology, St. Marianna University School of Medicine Kawasaki, Japan ; Department of Physiology, Yokohama City University Graduate School of Medicine Yokohama, Japan
| |
Collapse
|
10
|
Gairdner SE, Amara CE. Serum leptin is not correlated with body fat in severe food restriction. Appl Physiol Nutr Metab 2012; 37:1063-71. [PMID: 22891941 DOI: 10.1139/h2012-092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Leptin is an adipose-derived hormone with established roles in energy balance that can impact the response to refeeding after malnutrition. Although the amount of circulating leptin has traditionally been associated with the amount of adipose tissue, controversy exists as to whether this relationship is constant in both humans and animals and over a wide range of body composition. Our objective was to evaluate whether the leptin - body fat ratio is constant in the range of healthy to low body mass in female Wistar rats. Eight ad libitum fed (C) and eight food-restricted (FR) rats were compared over a period of four weeks. FR rats attained the target 75% of baseline body mass after the first two weeks, which was maintained for the remaining two weeks. Serum leptin and IGF-1 (ELISA) and body composition (DXA) were measured at baseline (t(0)) and once weekly for the remainder of the study (t(1)-t(4)). The leptin - body fat ratio was reduced during the two-week period of weight loss (t(0) = 0.036 ± 0.016 (ng·mL(-1))·g(-1) vs. t(1) = 0.010 ± 0.004 (ng·mL(-1))·g(-1) and t(2) = 0.015 ± 0.007 (ng·mL(-1))·g(-1), p < 0.05). Leptin concentration plateaued at its nadir (~0.24 (ng·mL(-1))·g(-1)) at fat mass < 22 g. IGF-1 was correlated with lean mass (r = 0.45, p < 0.05) and fat mass (r = 0.58, p < 0.05), regardless of body mass. We concluded that the leptin - body fat ratio was reduced early in food restriction and the correlation between these two variables was absent at low body fat.
Collapse
Affiliation(s)
- Sarah E Gairdner
- Department of Exercise Sciences, University of Toronto, Toronto, ON M5S 2W6, Canada
| | | |
Collapse
|
11
|
Singru PS, Wittmann G, Farkas E, Zséli G, Fekete C, Lechan RM. Refeeding-activated glutamatergic neurons in the hypothalamic paraventricular nucleus (PVN) mediate effects of melanocortin signaling in the nucleus tractus solitarius (NTS). Endocrinology 2012; 153:3804-14. [PMID: 22700769 PMCID: PMC3404351 DOI: 10.1210/en.2012-1235] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We previously demonstrated that refeeding after a prolonged fast activates a subset of neurons in the ventral parvocellular subdivision of the paraventricular nucleus (PVNv) as a result of increased melanocortin signaling. To determine whether these neurons contribute to satiety by projecting to the nucleus tractus solitarius (NTS), the retrogradely transported marker substance, cholera toxin-β (CTB), was injected into the dorsal vagal complex of rats that were subsequently fasted and refed for 2 h. By double-labeling immunohistochemistry, CTB accumulation was found in the cytoplasm of the majority of refeeding-activated c-Fos neurons in the ventral parvocellular subdivision of the hypothalamic paraventricular nucleus (PVNv). In addition, a large number of refeeding-activated c-Fos-expressing neurons were observed in the lateral parvocellular subdivision (PVNl) that also contained CTB and were innervated by axon terminals of proopiomelanocortin neurons. To visualize the location of neuronal activation within the NTS by melanocortin-activated PVN neurons, α-MSH was focally injected into the PVN, resulting in an increased number of c-Fos-containing neurons in the PVN and in the NTS, primarily in the medial and commissural parts. All refeeding-activated neurons in the PVNv and PVNl expressed the mRNA of the glutamatergic marker, type 2 vesicular glutamate transporter (VGLUT2), indicating their glutamatergic phenotype, but only rare neurons contained oxytocin. These data suggest that melanocortin-activated neurons in the PVNv and PVNl may contribute to refeeding-induced satiety through effects on the NTS and may alter the sensitivity of NTS neurons to vagal satiety inputs via glutamate excitation.
Collapse
Affiliation(s)
- Praful S Singru
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Tufts Medical Center, no. 268, 800 Washington Street, Boston, Massachusetts 02111, USA
| | | | | | | | | | | |
Collapse
|
12
|
Zhang XY, Yang HD, Zhang Q, Wang Z, Wang DH. Increased feeding and food hoarding following food deprivation are associated with activation of dopamine and orexin neurons in male Brandt's voles. PLoS One 2011; 6:e26408. [PMID: 22046281 PMCID: PMC3203142 DOI: 10.1371/journal.pone.0026408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 09/26/2011] [Indexed: 11/18/2022] Open
Abstract
Small mammals usually face energetic challenges, such as food shortage, in the field. They have thus evolved species-specific adaptive strategies for survival and reproductive success. In the present study, we examined male Brandt's voles (Lasiopodomys brandtii) for their physiological, behavioral, and neuronal responses to food deprivation (FD) and subsequent re-feeding. Although 48 hr FD induced a decrease in body weight and the resting metabolic rate (RMR), such decreases did not reach statistical significance when compared to the control males that did not experience FD. During the first 2 hr of re-feeding following 48 hr FD, voles showed higher levels of feeding than controls. However, when permitted to hoard food, FD voles showed an increase in food hoarding, rather than feeding, compared to the controls. Further, both feeding and food hoarding induced an increase in neuronal activation, measured by Fos-ir, in a large number of brain areas examined. Interestingly, feeding and food hoarding also induced an increase in the percentage of tyrosine hydroxylase immunoreactive (TH-ir) cells that co-expressed Fos-ir in the ventral tegmental area (VTA), whereas both FD and feeding induced an increase in the percentage of orexin-ir cells that co-expressed Fos-ir in the lateral hypothalamus (LH). Food hoarding also increased orexin-ir/Fos-ir labeling in the LH. Together, our data indicate that food-deprived male Brandt's voles display enhanced feeding or food hoarding dependent upon an environmental setting. In addition, changes in central dopamine and orexin activities in selected brain areas are associated with feeding and hoarding behaviors following FD and subsequent re-feeding.
Collapse
Affiliation(s)
- Xue-Ying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hui-Di Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qiang Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, United States of America
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Hou C, Bolt KM, Bergman A. A general model for ontogenetic growth under food restriction. Proc Biol Sci 2011; 278:2881-90. [PMID: 21345868 PMCID: PMC3151715 DOI: 10.1098/rspb.2011.0047] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 01/31/2011] [Indexed: 01/14/2023] Open
Abstract
Food restriction (FR) retards animals' growth. Understanding the underlying mechanisms of this phenomenon is important to conceptual problems in life-history theory, as well as to applied problems in animal husbandry and biomedicine. Despite a considerable amount of empirical data published since the 1930s, there is no relevant general theoretical framework that predicts how animals vary their energy budgets and life-history traits under FR. In this paper, we develop such a general quantitative model based on fundamental principles of metabolic energy allocation during ontogeny. This model predicts growth curves under varying conditions of FR, such as the compensatory growth, different age at which FR begins, its degree and its duration. Our model gives a quantitative explanation for the counterintuitive phenomenon that under FR, lower body temperature and lower metabolism lead to faster growth and larger adult size. This model also predicts that the animals experiencing FR reach the same fraction of their adult mass at the same age as their ad libitum counterparts. All predictions are well supported by empirical data from mammals and birds of varying body size, under different conditions of FR.
Collapse
Affiliation(s)
| | | | - Aviv Bergman
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
14
|
Zhang LN, Mitchell SE, Hambly C, Morgan DG, Clapham JC, Speakman JR. Physiological and behavioral responses to intermittent starvation in C57BL/6J mice. Physiol Behav 2011; 105:376-87. [PMID: 21907222 DOI: 10.1016/j.physbeh.2011.08.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/08/2011] [Accepted: 08/26/2011] [Indexed: 01/29/2023]
Abstract
The dual intervention point model states that body mass is controlled by upper and lower intervention points, above and below which animals (and humans) intervene physiologically to bring their body mass back into the acceptable range. It has been further suggested that the lower intervention point may be defined by the risk of starvation, while the upper intervention point may be defined by the risk of predation. The objective of the present study was to test whether the risk of starvation determines the lower intervention point and to examine the physiological and behavioral mechanisms that underpin the regulation of body mass, when the risk of starvation is increased. Sixty-four mice were exposed to random days of complete fasting or 50% food restriction and their body mass and fat mass responses were measured. Food intake, physical activity and body temperature were measured throughout the experiment. In addition, plasma leptin and insulin, triglyceride and non-esterified fatty acids, along with hypothalamic neuropeptides gene expression in the arcuate nucleus were assessed after 13 and 42 days of treatment. We found that C57BL/6J mice increased body mass and fatness in response to a short-term (13 days) intermittent fasting, which was restored to baseline as the treatment was prolonged. In contrast, intermittently 50% food restricted mice showed no significant changes in body mass or fatness. Over the first 13 days of treatment the data were consistent with the dual intervention point model as the mice showed both increased body mass and adiposity over this period. Over the more protracted period of 42 days the effect waned and was therefore inconsistent with the model. The body mass and fat mass gains in intermittently fasted mice were mainly accounted for by increased food intake. Elevated NPY gene expression after 13 days (three 24 h fasting events) may have driven the increase in food intake. However, no changes were observed in such neuropeptides as POMC, CART, AgRP, Ob-Rb and SOCS 3 or circulating levels of leptin, insulin, NEFA and TG. Hypothermia during fasting days may have also contributed to the increase in body mass. Over 42 days of treatment (nine 24 h fasting events) cumulative food intake was not affected by intermittent starvation. However physical activity, mainly activity during the light phase was lowered suggesting an adaptation to unpredictable starvation. Overall, mice exhibited different behavioral and physiological responses to intermittent starvation depending on the duration of treatment.
Collapse
Affiliation(s)
- Li-Na Zhang
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | | | | | | | | | | |
Collapse
|
15
|
Dos Santos ZA, Da Silva RJ, Bacurau RFP, Tirapegui J, Ribeiro SML. Effect of food restriction and intense physical training on estrous cyclicity and plasma leptin concentrations in rats. J Nutr Sci Vitaminol (Tokyo) 2011; 57:1-8. [PMID: 21512284 DOI: 10.3177/jnsv.57.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Intense physical training and dietary energy restriction have been associated with consequences such as nutritional amenorrhea. We investigated the effects of intense physical training, food restriction or the combination of both strategies on estrous cyclicity in female rats, and the relationship between leptin ad these effects. Twenty-seven female Wistar rats were distributed into four groups: SF: sedentary, fed ad libitum; SR: sedentary subjected to 50% food restriction (based on the food intake of their fed counterparts); TF: trained (physical training on a motor treadmill with a gradual increase in speed and time), fed ad libitum; TR: trained with 50% food restriction. We analysed estrous cyclicity, plasma leptin and estradiol as well as chemical composition of the carcass, body weight variation, and weight of ovaries and perirenal adipose tissue. Data demonstrate that physical training alone was not responsible for significant modifications in either carcass chemical composition or reproductive function. Food restriction reduced leptin levels in all animals and interrupted the estrous cyclicity in some animals, but only the combination of food restriction and physical training was capable of interrupting the estrous cyclicity in all animals. Leptin was not directly related to estrous cyclicity. From our findings, it may be concluded that there is an additive or synergistic effect of energy intake restriction and energy expenditure by intense physical training on estrous cyclicity. Leptin appears to be one among others factors related to estrous cycle, but it probably acts indirectly.
Collapse
|
16
|
Knight WD, Witte MM, Parsons AD, Gierach M, Overton JM. Long-term caloric restriction reduces metabolic rate and heart rate under cool and thermoneutral conditions in FBNF1 rats. Mech Ageing Dev 2011; 132:220-9. [PMID: 21513729 PMCID: PMC3118456 DOI: 10.1016/j.mad.2011.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 02/14/2011] [Accepted: 04/02/2011] [Indexed: 12/21/2022]
Abstract
The long-term metabolic and cardiovascular responses to caloric restriction (CR) are poorly understood. We examined the responses to one year of CR in FBNF1 rats housed in cool (COOL; T(a)=15 °C) or thermoneutral (TMN; T(a)=30 °C) conditions. Rats were acclimated to COOL or TMN for 2 months, instrumented for cardiovascular telemetry and studied in calorimeters. Baseline caloric intake, oxygen consumption (VO(2)), mean arterial blood pressure (MAP), and heart rate (HR) were determined prior to assignment to ad lib (AL) or CR groups (30-40% CR) within each T(a) (n = 8). Groups of rats were studied after 10 weeks CR, one year CR, and after 4 days of re-feeding. Both 10 weeks and one year of CR reduced HR and VO(2) irrespective of T(a). Evaluation of the relationship between metabolic organ mass (liver, heart, brain, and kidney mass) and energy expenditure revealed a clear shift induced by CR to reduce expenditure per unit metabolic mass in both COOL and TMN groups. Re-feeding resulted in prompt elevations of HR and VO(2) to levels observed in control rats. These findings are consistent with the hypothesis that long term CR produces sustained reductions in metabolic rate and heart rate in rats.
Collapse
Affiliation(s)
- W David Knight
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, College of Medicine, Tallahassee, FL 32306-4340, USA
| | | | | | | | | |
Collapse
|
17
|
Cameron KM, Speakman JR. Reduction of dietary energy density reduces body mass regain following energy restriction in female mice. J Nutr 2011; 141:182-8. [PMID: 21169228 DOI: 10.3945/jn.110.129056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Restriction of energy intake induces a loss of body mass that is often regained when the restriction ends. We aimed to determine whether dietary energy density (independent of macronutrient composition) modulates postrestriction regain of body mass. Fifteen female mice consumed ad libitum a standard rodent diet (with 20% added cellulose). They were then subjected to a 20% energy restriction on this diet for 10 d. Following restriction, mice consumed ad libitum the same diet with either 0 or 40% added cellulose. The study utilized a crossover design so all mice consumed both diets. Body temperature, physical activity, and digestibility were all lower when consuming the 40% cellulose diet (P < 0.001). Mice regained less mass (9%) when consuming the 40% than the 0% cellulose diet, because net energy intake was reduced by 26% (P < 0.001), despite having a greater gross energy intake (P < 0.001) (29%). To test whether there might be a constraint on intake and digestibility of the 40% cellulose diet, 20 different female mice consumed this diet at room temperature and were then transferred to the cold (7°C) to determine whether they would increase intake of this diet in response to increased energy demands. It took up to 5 d after transfer for body mass, food intake, and digestibility to increase. This suggests a digestion constraint might have limited intake of the low-energy density diet immediately following restriction. Modulation of dietary energy density in the postrestriction phase may be a valuable strategy for maintaining mass loss achieved on energy-restricted diets.
Collapse
Affiliation(s)
- Kerry M Cameron
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK.
| | | |
Collapse
|
18
|
Up-regulation of stearoyl-CoA desaturase 1 and elongase 6 genes expression in rat lipogenic tissues by chronic food restriction and chronic food restriction/refeeding. Mol Cell Biochem 2010; 345:181-8. [DOI: 10.1007/s11010-010-0571-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 08/09/2010] [Indexed: 12/28/2022]
|
19
|
Can overeating induce conditioned taste avoidance in previously food restricted rats? Physiol Behav 2010; 99:482-6. [DOI: 10.1016/j.physbeh.2009.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 12/11/2009] [Accepted: 12/15/2009] [Indexed: 11/22/2022]
|
20
|
Short-term physiological hyperleptinemia decreases arterial blood pressure. ACTA ACUST UNITED AC 2009; 154:60-8. [DOI: 10.1016/j.regpep.2009.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 12/08/2008] [Accepted: 02/03/2009] [Indexed: 11/18/2022]
|
21
|
Govic A, Levay EA, Kent S, Paolini AG. The social behavior of male rats administered an adult-onset calorie restriction regimen. Physiol Behav 2009; 96:581-5. [DOI: 10.1016/j.physbeh.2008.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 10/30/2008] [Accepted: 12/17/2008] [Indexed: 11/27/2022]
|
22
|
Caton SJ, Yinglong B, Burget L, Spangler LJ, Tschöp MH, Bidlingmaier M. Low-carbohydrate high-fat diets: regulation of energy balance and body weight regain in rats. Obesity (Silver Spring) 2009; 17:283-9. [PMID: 19039316 DOI: 10.1038/oby.2008.529] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The aim of the current investigations was to examine the effects of a low-carbohydrate high-fat diet (LC-HFD) on body weight, body composition, growth hormone (GH), IGF-I, and body weight regain after stopping the dietary intervention and returning the diet back to standard laboratory chow (CH). In study one, both adolescent and mature male Wistar rats were maintained on either an isocaloric LC-HFD or CH for 16 days before having their diet switched. In study two, mature rats were maintained on either LC-HFD or CH for 16 days to determine the effects of the LC-HFD on fat pad weight. LC-HFD leads to body weight loss in mature rats (P < 0.01) and lack of body weight gain in adolescent rats (P < 0.01). Despite less body weight, increased body fat was observed in rats maintained on LC-HFD (P < 0.05). Leptin concentrations were higher (P < 0.05), and IGF-I (P < 0.01) concentrations were reduced in the LC-HFD rats. When the diet was returned to CH following LC-HFD, body weight regain was above and beyond that which was lost (P < 0.01). The LC-HFD resulted in increased body fat and had a negative effect upon both GH and IGF-I concentrations, which might have implications for the accretion and maintenance of lean body mass (LBM), normal growth rate and overall metabolic health. Moreover, when the LC-HFD ceases and a high-carbohydrate diet follows, more body weight is regained as compared to when the LC-HFD is consumed, in the absence of increased energy intake.
Collapse
Affiliation(s)
- Samantha J Caton
- Neuroendocrine Unit, Medizinische Klinik Innenstadt, Ludwig Maximilians University, Munich, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Sánchez E, Singru PS, Acharya R, Bodria M, Fekete C, Zavacki AM, Bianco AC, Lechan RM. Differential effects of refeeding on melanocortin-responsive neurons in the hypothalamic paraventricular nucleus. Endocrinology 2008; 149:4329-35. [PMID: 18467436 PMCID: PMC2553369 DOI: 10.1210/en.2008-0411] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To explore the effect of refeeding on recovery of TRH gene expression in the hypothalamic paraventricular nucleus (PVN) and its correlation with the feeding-related neuropeptides in the arcuate nucleus (ARC), c-fos immunoreactivity (IR) in the PVN and ARC 2 h after refeeding and hypothalamic TRH, neuropeptide Y (NPY) and agouti-related protein (AGRP) mRNA levels 4, 12, and 24 h after refeeding were studied in Sprague-Dawley rats subjected to prolonged fasting. Despite rapid reactivation of proopiomelanocortin neurons by refeeding as demonstrated by c-fos IR in ARC alpha-MSH-IR neurons and ventral parvocellular subdivision PVN neurons, c-fos IR was present in only 9.7 +/- 1.1% hypophysiotropic TRH neurons. Serum TSH levels remained suppressed 4 and 12 h after the start of refeeding, returning to fed levels after 24 h. Fasting reduced TRH mRNA compared with fed animals, and similar to TSH, remained suppressed at 4 and 12 h after refeeding, returning toward normal at 24 h. AGRP and NPY gene expression in the ARC were markedly elevated in fasting rats, AGRP mRNA returning to baseline levels 12 h after refeeding and NPY mRNA remaining persistently elevated even at 24 h. These data raise the possibility that refeeding-induced activation of melanocortin signaling exerts differential actions on its target neurons in the PVN, an early action directed at neurons that may be involved in satiety, and a later action on hypophysiotropic TRH neurons involved in energy expenditure, potentially mediated by sustained elevations in AGRP and NPY. This response may be an important homeostatic mechanism to allow replenishment of depleted energy stores associated with fasting.
Collapse
Affiliation(s)
- Edith Sánchez
- Tupper Research Institute and Department of Medicine, Tufts Medical Center, 750 Washington Street, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Levay EA, Paolini AG, Govic A, Hazi A, Penman J, Kent S. Anxiety-like behaviour in adult rats perinatally exposed to maternal calorie restriction. Behav Brain Res 2008; 191:164-72. [DOI: 10.1016/j.bbr.2008.03.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 03/12/2008] [Accepted: 03/17/2008] [Indexed: 12/01/2022]
|
25
|
Hambly C, Mercer JG, Speakman JR. Hunger does not diminish over time in mice under protracted caloric restriction. Rejuvenation Res 2008; 10:533-42. [PMID: 17990972 DOI: 10.1089/rej.2007.0555] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Caloric restriction (CR) is the only nongenetic manipulation known to reliably prolong life-span. Modeling suggests that humans would need to restrict their intake for many years to reap any lifespan benefits. The feasibility of such prolonged restriction may hinge on whether hunger diminishes with the time period spent restricted. We used the magnitude of hyperphagia on release from restriction as a bioassay of hunger in restricted mice. During restriction, mice develop a characteristic pattern of neuropeptide signals in the arcuate nucleus that reflect their hunger. This pattern is normalized after the postrestriction hyperphagia, validating hyperphagia as an indicator of the hunger during restriction. Mice were food restricted (80% of ad lib.) for 50 days. They initially lost weight, but then became weight stable and were maintained in CR at this lower level of energy balance for between 0 and 50 days and were then fed ad lib. for 50 days. When released onto ad lib. food, the magnitude of the hyperphagic response was independent of the prior length of CR. Hyperphagia ended when body mass was normalized. Hunger therefore did not diminish even when they were restricted for 100 days, equivalent to about 11 years in humans. The pattern of hyperphagic response suggested that signals coding body mass drive hunger during restriction, and because body mass under restriction remains depressed, this suggests that hunger would never disappear, making restriction to prolong lifespan in humans difficult to accomplish.
Collapse
Affiliation(s)
- Catherine Hambly
- Aberdeen Centre for Energy Regulation and Obesity (ACERO), Rowett Research Institute, Bucksburn, Aberdeen, Scotland, United Kingdom.
| | | | | |
Collapse
|
26
|
Yamaoka I, Nakayama M, Miki T, Yokoyama T, Takeuchi Y. Dietary protein modulates circadian changes in core body temperature and metabolic rate in rats. J Physiol Sci 2008; 58:75-81. [PMID: 18237456 DOI: 10.2170/physiolsci.rp006707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 01/31/2008] [Indexed: 11/05/2022]
Abstract
We assessed the contribution of dietary protein to circadian changes in core body temperature (Tb) and metabolic rate in freely moving rats. Daily changes in rat intraperitoneal temperature, locomotor activity (LMA), whole-body oxygen consumption (VO2), and carbon dioxide production (VCO2) were measured before and during 4 days of consuming a 20% protein diet (20% P), a protein-free diet (0% P), or a pair-fed 20% P diet (20% P-R). Changes in Tb did not significantly differ between the 20% P and 20% P-R groups throughout the study. The Tb in the 0% P group remained elevated during the dark (D) phase throughout the study, but VO2, VCO2, and LMA increased late in the study when compared with the 20% P-R group almost in accordance with elevated Tb. By contrast, during the light (L) phase in the 0% P group, Tb became elevated early in the study and thereafter declined with a tendency to accompany significantly lower VO2 and VCO2 when compared with the 20% P group, but not the 20% P-R group. The respiratory quotient (RQ) in the 0% P group declined throughout the D phase and during the early L phase. By contrast, RQ in the 20% P-R group consistently decreased from the late D phase to the end of the L phase. Our findings suggest that dietary protein contributes to the maintenance of daily oscillations in Tb with modulating metabolic rates during the D phase. However, the underlying mechanisms of Tb control during the L phase remain obscure.
Collapse
Affiliation(s)
- Ippei Yamaoka
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan.
| | | | | | | | | |
Collapse
|
27
|
Summermatter S, Mainieri D, Russell AP, Seydoux J, Montani JP, Buchala A, Solinas G, Dulloo AG. Thrifty metabolism that favors fat storage after caloric restriction: a role for skeletal muscle phosphatidylinositol-3-kinase activity and AMP-activated protein kinase. FASEB J 2007; 22:774-85. [PMID: 17928359 DOI: 10.1096/fj.07-8972com] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Energy conservation directed at accelerating body fat recovery (or catch-up fat) contributes to obesity relapse after slimming and to excess fat gain during catch-up growth after malnutrition. To investigate the mechanisms underlying such thrifty metabolism for catch-up fat, we tested whether during refeeding after caloric restriction rats exhibiting catch-up fat driven by suppressed thermogenesis have diminished skeletal muscle phosphatidylinositol-3-kinase (PI3K) activity or AMP-activated protein kinase (AMPK) signaling-two pathways required for hormone-induced thermogenesis in ex vivo muscle preparations. The results show that during isocaloric refeeding with a low-fat diet, at time points when body fat, circulating free fatty acids, and intramyocellular lipids in refed animals do not exceed those of controls, muscle insulin receptor substrate 1-associated PI3K activity (basal and in vivo insulin-stimulated) is lower than that in controls. Isocaloric refeeding with a high-fat diet, which exacerbates the suppression of thermogenesis, results in further reductions in muscle PI3K activity and in impaired AMPK phosphorylation (basal and in vivo leptin-stimulated). It is proposed that reduced skeletal muscle PI3K/AMPK signaling and suppressed thermogenesis are interdependent. Defective PI3K or AMPK signaling will reduce the rate of substrate cycling between de novo lipogenesis and lipid oxidation, leading to suppressed thermogenesis, which accelerates body fat recovery and furthermore sensitizes skeletal muscle to dietary fat-induced impairments in PI3K/AMPK signaling.
Collapse
Affiliation(s)
- S Summermatter
- Department of Medicine, Division of Physiology, University of Fribourg, Rue du Musée 5, CH-1700 Fribourg, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
28
|
King NA, Caudwell P, Hopkins M, Byrne NM, Colley R, Hills AP, Stubbs JR, Blundell JE. Metabolic and behavioral compensatory responses to exercise interventions: barriers to weight loss. Obesity (Silver Spring) 2007; 15:1373-83. [PMID: 17557973 DOI: 10.1038/oby.2007.164] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An activity-induced increase in energy expenditure theoretically disturbs energy balance (EB) by creating an acute energy deficit. Compensatory responses could influence the weight loss associated with the energy deficit. Individual variability in compensation for perturbations in EB could partly explain why some individuals fail to lose weight with exercise. It is accepted that the regulatory system will readily defend impositions that promote a negative EB. Therefore, a criticism of exercise interventions is that they will be ineffective and futile methods of weight control because the acute energy deficit is counteracted. Compensation for exercise-induced energy deficits can be categorized into behavioral or metabolic responses and automatic or volitional. An automatic compensatory response is a biological inevitability and considered to be obligatory. An automatic compensatory response is typically a metabolic consequence (e.g., reduced resting metabolic rate) of a negative EB. In contrast, a volitional compensatory response tends to be deliberate and behavioral, which the individual intentionally performs (e.g., increased snack intake). The purpose of this review is to highlight the various metabolic and behavioral compensatory responses that could reduce the effectiveness of exercise and explain why some individuals experience a lower than expected weight loss. We propose that the extent and degree of compensation will vary between individuals. That is, some individuals will be predisposed to compensatory responses that render them resistant to the weight loss benefits theoretically associated with an exercise-induced increase in energy expenditure. Therefore, given the inter-individual variability in behavioral and metabolic compensatory responses, exercise prescriptions might be more effective if tailored to suit individuals.
Collapse
Affiliation(s)
- Neil A King
- Human Movement Studies, Queensland University of Technology, Brisbane, Queensland 4059, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Singru PS, Sánchez E, Fekete C, Lechan RM. Importance of melanocortin signaling in refeeding-induced neuronal activation and satiety. Endocrinology 2007; 148:638-46. [PMID: 17068131 DOI: 10.1210/en.2006-1233] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To identify regions in the hypothalamus involved in refeeding and their regulation by alpha-MSH, adult rats were subjected to a 3-d fast, and 2 h after refeeding, the distribution of c-Fos-immunoreactive neurons was elucidated. Compared with fed and fasted animals, a significant increase (P < 0.001) in the number of c-Fos-immunoreactive cells was identified in refed animals in the supraoptic nucleus, magnocellular and ventral parvocellular subdivisions of the hypothalamic paraventricular nucleus (PVNv), and the dorsal and ventral subdivisions of the dorsomedial nucleus (DMNd and DMNv, respectively). Refeeding shifted the location of c-Fos-labeled neurons from the medial to lateral arcuate where c-Fos was induced in 88.7 +/- 2.2% of alpha-MSH-containing neurons. alpha-MSH-containing axons densely innervated the PVNv, DMNd, and DMNv and organized in close apposition to the majority of refeeding-activated c-Fos-positive neurons. To test whether the melanocortin system is involved in induction of c-Fos in these regions, the melanocortin 3/4 receptor antagonist, agouti-related protein (AGRP 83-132), was administered to fasting animals just before refeeding. Compared with artificial cerebrospinal fluid, a single intracerebroventricular bolus of agouti-related protein (5 microg/5 microl) not only significantly increased the total amount of food consumed within 2 h but also nearly abolished refeeding-induced c-Fos expression in the PVNv and DMNd and partially reduced c-Fos immunoreactivity in the DMNv. We conclude that refeeding activates a subset of neurons in the PVN and DMN as a result of increased melanocortin signaling and propose that one or more of these neuronal populations mediate the potent anorexic actions of alpha-MSH.
Collapse
Affiliation(s)
- Praful S Singru
- Professor of Medicine, Division of Endocrinology, Box No. 268, New England Medical Center, 750 Washington Street, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
30
|
Crescenzo R, Lionetti L, Mollica MP, Ferraro M, D'Andrea E, Mainieri D, Dulloo AG, Liverini G, Iossa S. Altered skeletal muscle subsarcolemmal mitochondrial compartment during catch-up fat after caloric restriction. Diabetes 2006; 55:2286-93. [PMID: 16873692 DOI: 10.2337/db06-0312] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
An accelerated rate of fat recovery (catch-up fat) and insulin resistance are characteristic features of weight recovery after caloric restriction, with implications for the pathophysiology of catch-up growth and weight fluctuations. Using a previously described rat model of weight recovery in which catch-up fat and skeletal muscle insulin resistance have been linked to suppressed thermogenesis per se, we investigated alterations in mitochondrial energetics and oxidative stress in subsarcolemmal (SS) and intermyofibrillar (IMF) skeletal muscle mitochondria. After 2 weeks of semistarvation followed by 1 week of refeeding, the refed rats show persistent and selective reductions in SS mitochondrial mass (assessed from citrate synthase activity in tissue homogenate and isolated mitochondria) and oxidative capacity. Furthermore, the refed rats show, in both SS and IMF muscle mitochondria, a lower aconitase activity (whose inactivation is an index of increased reactive oxygen species [ROS]), associated with higher superoxide dismutase activity and increased proton leak. Taken together, these studies suggest that diminished skeletal muscle mitochondrial mass and function, specifically in the SS mitochondrial compartment, contribute to the high metabolic efficiency for catch-up fat after caloric restriction and underscore a potential link between diminished skeletal muscle SS mitochondrial energetics, increased ROS concentration, and insulin resistance during catch-up fat.
Collapse
Affiliation(s)
- Raffaella Crescenzo
- Department of Biological Sciences, Section of Physiology, University of Naples, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ramsey JJ, Hagopian K. Energy expenditure and restriction of energy intake: could energy restriction alter energy expenditure in companion animals? J Nutr 2006; 136:1958S-1966S. [PMID: 16772468 DOI: 10.1093/jn/136.7.1958s] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The treatment of obesity in companion animals frequently focuses on restriction of energy intake. One important question with this treatment is whether dietary energy restriction (ER) produces a sustained decrease in mass-adjusted energy expenditure (EE), which prevents further weight loss and promotes rapid regain of body weight during lapses in dietary ER. This review summarizes studies that investigated the effects of dietary ER on EE at the whole-animal, organ, and cellular level. Whole-animal studies indicate that long-term dietary ER either decreases or does not affect mass-adjusted EE. The reason for this discrepancy between studies is not entirely clear, although analysis of data pooled from multiple studies suggests that a reduction in mass-adjusted EE with long-term ER would be observed if the sample size were sufficiently large and appropriate methods were used to adjust EE for body size. At the organ level, attempts were made to determine whether alterations in organ mass can entirely explain changes in EE with dietary ER. However, these studies were not conclusive, and it remains to be determined whether changes in EE exceed those that would be predicted from ER-induced alterations in organ mass. At the cellular level, there is evidence that dietary ER may induce sustained decreases in substrate oxidation, mitochondrial proton, and Na+-K+-ATPase activity in at least some tissues. These results are consistent with the idea that dietary ER may induce decreases in cellular EE. However, future studies integrating measurements at the whole-animal, organ, and cellular level will be required to determine definitively whether dietary ER produces sustained decreases in tissue or cellular EE.
Collapse
Affiliation(s)
- Jon J Ramsey
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
32
|
Mainieri D, Summermatter S, Seydoux J, Montani JP, Rusconi S, Russell AP, Boss O, Buchala AJ, Dulloo AG. A role for skeletal muscle stearoyl-CoA desaturase 1 in control of thermogenesis. FASEB J 2006; 20:1751-3. [PMID: 16809433 DOI: 10.1096/fj.06-5934fje] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An enhanced metabolic efficiency for accelerating the recovery of fat mass (or catch-up fat) is a characteristic feature of body weight regulation after weight loss or growth retardation and is the outcome of an "adipose-specific" suppression of thermogenesis, i.e., a feedback control system in which signals from the depleted adipose tissue fat stores exert a suppressive effect on thermogenesis. Using a previously described rat model of semistarvation-refeeding in which catch-up fat results from suppressed thermogenesis per se, we report here that the gene expression of stearoyl-coenzyme A desaturase 1 (SCD1) is elevated in skeletal muscle after 2 wk of semistarvation and remains elevated in parallel to the phase of suppressed thermogenesis favoring catch-up fat during refeeding. These elevations in the SCD1 transcript are skeletal muscle specific and are associated with elevations in microsomal Delta9 desaturase enzyme activity, in the Delta9 desaturation index, and in the relative content of SCD1-derived monounsaturates in several lipid fractions extracted from skeletal muscle. An elevated skeletal muscle SCD1, by desaturating the products of de novo lipogenesis and diverting them away from mitochondrial oxidation, would inhibit substrate cycling between de novo lipogenesis and lipid oxidation, thereby leading to a state of suppressed thermogenesis that regulates the body's fat stores.
Collapse
Affiliation(s)
- Davide Mainieri
- Division of Physiology, Department of Medicine, Faculty of Medicine, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|