1
|
Francis J, Plunkett G, Shetty M, Davey MJ, Nixon GM, Walter LM, Horne RSC. Autonomic cardiovascular control is unaffected in children referred for assessment of excessive daytime sleepiness. J Sleep Res 2025; 34:e14318. [PMID: 39147593 PMCID: PMC11744242 DOI: 10.1111/jsr.14318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/06/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024]
Abstract
There is conflicting evidence for impaired autonomic control of heart rate (HR) in adults with narcolepsy and idiopathic hypersomnolence (IH). Despite these chronic hypersomnia conditions primarily being diagnosed around the age of puberty, there are limited studies in children. The present study investigated cardiovascular control using heart rate variability (HRV) and the extent of nocturnal HR dipping during sleep in children and adolescents with narcolepsy and IH. Children having an overnight polysomnographic study followed by a multiple sleep latency test (MSLT) for investigation of excessive daytime sleepiness (EDS) between May 2010 to December 2023 were included: 28 children diagnosed with narcolepsy, 11 with IH, and 26 subjectively sleepy children who did not meet the diagnostic criteria for either narcolepsy or IH. Each clinically referred child was matched for age and sex with a control. Time domain and frequency domain HRV were calculated from ECG recorded at 512 Hz. There were no differences in either time domain or spectral analysis of HRV between clinical groups or between clinical groups and their control group. The expected sleep state differences in HRV were observed in all groups. There was also no difference in HR nocturnal dipping between groups. Despite evidence for abnormal autonomic function in adults with narcolepsy and IH, our study did not identify any abnormalities in HR, HR control, or nocturnal dipping of HR in children referred for assessment of EDS. This suggests that autonomic dysfunction may be a feature of these conditions that develops in later life.
Collapse
Affiliation(s)
- Jamilla Francis
- Department of PaediatricsMonash UniversityMelbourneVictoriaAustralia
| | - Georgina Plunkett
- Department of PaediatricsMonash UniversityMelbourneVictoriaAustralia
| | - Marisha Shetty
- Department of PaediatricsMonash UniversityMelbourneVictoriaAustralia
| | - Margot J. Davey
- Department of PaediatricsMonash UniversityMelbourneVictoriaAustralia
- Melbourne Children's Sleep CentreMonash Children's HospitalMelbourneVictoriaAustralia
| | - Gillian M. Nixon
- Department of PaediatricsMonash UniversityMelbourneVictoriaAustralia
- Melbourne Children's Sleep CentreMonash Children's HospitalMelbourneVictoriaAustralia
| | - Lisa M. Walter
- Department of PaediatricsMonash UniversityMelbourneVictoriaAustralia
| | | |
Collapse
|
2
|
Bigalke JA, Shan Z, Carter JR. Orexin, Sleep, Sympathetic Neural Activity, and Cardiovascular Function. Hypertension 2022; 79:2643-2655. [PMID: 36148653 PMCID: PMC9649879 DOI: 10.1161/hypertensionaha.122.19796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Inadequate sleep duration and quality are associated with reduced cardiovascular health and increased mortality. Experimental evidence points to the sympathetic nervous system as a key mediator in the observed relationship between poor sleep and cardiovascular dysfunction. However, brain mechanisms underpinning the impaired sympathetic function associated with poor sleep remain unclear. Recent evidence suggests the central orexin system, particularly orexins A and B and their receptors, have a key regulatory role for sleep in animal and human models. While orexin system activity has been observed to significantly impact sympathetic regulation in animals, the extension of these findings to humans has been difficult due to an inability to directly assess orexin system activity in humans. However, direct measures of sympathetic activity in populations with narcolepsy and chronic insomnia, 2 sleep disorders associated with deficient and excessive orexin neural activity, have allowed indirect assessment of the relationships between orexin, sleep, and sympathetic regulation. Further, the recent pharmaceutical development of dual orexin receptor antagonists for use in clinical insomnia populations offers an unprecedented opportunity to examine the mechanistic role of orexin in sleep and cardiovascular health in humans. The current review assesses the role of orexin in both sleep and sympathetic regulation from a translational perspective, spanning animal and human studies. The review concludes with future research directions necessary to fully elucidate the mechanistic role for orexin in sleep and sympathetic regulation in humans.
Collapse
Affiliation(s)
- Jeremy A. Bigalke
- Department of Health and Human Development, Montana State University, Bozeman, Montana
- Department of Psychology, Montana State University, Bozeman, Montana
| | - Zhiying Shan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan
| | - Jason R. Carter
- Department of Health and Human Development, Montana State University, Bozeman, Montana
- Department of Psychology, Montana State University, Bozeman, Montana
| |
Collapse
|
3
|
Olsen N, Furlong TM, Carrive P. Behavioural and cardiovascular effects of orexin-A infused into the central amygdala under basal and fear conditions in rats. Behav Brain Res 2021; 415:113515. [PMID: 34371088 DOI: 10.1016/j.bbr.2021.113515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 07/16/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
The neuropeptide orexin-A (OX-A) has diverse functions, including maintaining arousal, autonomic control, motor activity and stress responses. These functions are regulated at different terminal regions where OX-A is released. The current study examined the physiological and behavioural effects of OX-A microinjections into the central amygdala (CeA) under basal and stressed conditions in rats. When OX-A was microinjected into the CeA and the animals returned to the home-cage, heart rate and mean arterial pressure were increased compared to vehicle-injected controls. General activity of the animal was also increased, indicating that OX-A activity in CeA contributes to increased arousal. This outcome is similar to the effects of central intracerebroventricular infusions of OX-A, as well as the cardiovascular effects previously demonstrated at many of OX's efferent hypothalamic and brainstem structures. In a second study, animals were fear-conditioned to a context by delivery of electric footshocks and then animals were re-exposed to the conditioned context at test. When OX-A was microinjected at test, freezing behaviour was reduced and there was a corresponding increase in the animal's activity but no impact on the pressor and cardiac responses (i.e, blood pressure and heart rate were unchanged). This reduction in freezing suggests that OX-A activates amygdala neurons that inhibit freezing, which is similar to the actions of other neuropeptides in the CeA that modulate the appropriate defence response to fearful stimuli. Overall, these data indicate that the CeA is an important site of OX-A modulation of cardiovascular and motor activity, as well as conditioned freezing responses.
Collapse
Affiliation(s)
- Nick Olsen
- School of Medical Sciences, The University of New South Wales, Sydney, Australia
| | - Teri M Furlong
- School of Medical Sciences, The University of New South Wales, Sydney, Australia; Neuroscience Research Australia, Randwick, Australia.
| | - Pascal Carrive
- School of Medical Sciences, The University of New South Wales, Sydney, Australia
| |
Collapse
|
4
|
Yilmaz A, Kalsbeek A, Buijs RM. Early changes of immunoreactivity to orexin in hypothalamus and to RFamide peptides in brainstem during the development of hypertension. Neurosci Lett 2021; 762:136144. [PMID: 34332031 DOI: 10.1016/j.neulet.2021.136144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 11/19/2022]
Abstract
Baroreflex sensitivity (BRS) is an important function of the nervous system and essential for maintaining blood pressure levels in the physiological range. In hypertension, BRS is decreased both in man and animals. Although increased sympathetic activity is thought to be the main cause of decreased BRS, hence the development of hypertension, the BRS is regulated by both sympathetic (SNS) and parasympathetic (PNS) nervous system. Here, we analyzed neuropeptide changes in the lateral hypothalamus (LH), which favours the SNS activity, as well as in PNS nuclei in the brainstem of spontaneously hypertensive rats (SHR) and their normotensive controls (Wistar Kyoto rats- WKY). The analyses revealed that in the WKY rats the hypothalamic orexin system, known for its role in sympathetic activation, showed a substantial decrease when animals age. At the same time, however, such a decrease was not observed when hypertension developed in the SHR. In contrast, Neuropeptide FF (NPFF) and Prolactin Releasing Peptide (PrRP) expression in the PNS associated Nucleus Tractus Solitarius (NTS) and Dorsal Motor Nucleus of the Vagus (DMV) diminished substantially, not only after the establishment of hypertension but also before its onset. Therefore, the current results indicate early changes in areas of the central nervous system involved in SNS and PNS control of blood pressure and associated with the development of hypertension.
Collapse
Affiliation(s)
- Ajda Yilmaz
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam 1105 BA, the Netherlands
| | - Andries Kalsbeek
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam 1105 BA, the Netherlands; Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Ruud M Buijs
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam 1105 BA, the Netherlands; Department of Cell Biology and Physiology, Institute for Biomedical Research, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico.
| |
Collapse
|
5
|
Hwang YT, Piguet O, Hodges JR, Grunstein R, Burrell JR. Sleep and orexin: A new paradigm for understanding behavioural-variant frontotemporal dementia? Sleep Med Rev 2020; 54:101361. [DOI: 10.1016/j.smrv.2020.101361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
|
6
|
Iyer SH, Aggarwal A, Warren TJ, Hallgren J, Abel PW, Simeone TA, Simeone KA. Progressive cardiorespiratory dysfunction in Kv1.1 knockout mice may provide temporal biomarkers of pending sudden unexpected death in epilepsy (SUDEP): The contribution of orexin. Epilepsia 2020; 61:572-588. [PMID: 32030748 PMCID: PMC11818939 DOI: 10.1111/epi.16434] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 12/19/2019] [Accepted: 01/06/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Immediately preceding sudden unexpected death in epilepsy (SUDEP), patients experienced a final generalized tonic-clonic seizure (GTCS), rapid ventilation, apnea, bradycardia, terminal apnea, and asystole. Whether a progressive pathophysiology develops and increases risk of SUDEP remains unknown. Here, we determined (a) heart rate, respiratory rate, and blood oxygen saturation (SaO2 ) in low-risk and high-risk knockout (KO) mice; and (b) whether blocking receptors for orexin, a cardiorespiratory neuromodulator, influences cardiorespiratory function mice or longevity in high-risk KO mice. METHODS Heart rate and SaO2 were determined noninvasively with ECGenie and pulse oximetry. Respiration was determined with noninvasive airway mechanics technology. The role of orexin was determined within subject following acute treatment with a dual orexin receptor antagonist (DORA, 100 mg/kg). The number of orexin neurons in the lateral hypothalamus was determined with immunohistochemistry. RESULTS Intermittent bradycardia was more prevalent in high-risk KO mice, an effect that may be the result of increased parasympathetic drive. High-risk KO mice had more orexin neurons in the lateral hypothalamus. Blocking of orexin receptors differentially influenced heart rate in KO, but not wild-type (WT) mice. When DORA administration increased heart rate, it also decreased heart rate variability, breathing frequency, and/or hypopnea-apnea. Blocking orexin receptors prevented the methacholine (MCh)-induced increase in breathing frequency in KO mice and reduced MCh-induced seizures, via a direct or indirect mechanism. DORA improved oxygen saturation in KO mice with intermittent hypoxia. Daily administration of DORA to high-risk KO mice increased longevity. SIGNIFICANCE High-risk KO mice have a unique cardiorespiratory phenotype that is characterized by progressive changes in five interdependent endpoints. Blocking of orexin receptors attenuates some of these endpoints and increases longevity, supporting the notion that windows of opportunity for intervention exist in this preclinical SUDEP model.
Collapse
Affiliation(s)
- Shruthi H. Iyer
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, U.S.A
| | - Ankita Aggarwal
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, U.S.A
| | - Ted J. Warren
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, U.S.A
| | - Jodi Hallgren
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, U.S.A
| | - Peter W. Abel
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, U.S.A
| | - Timothy A. Simeone
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, U.S.A
| | - Kristina A. Simeone
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, U.S.A
| |
Collapse
|
7
|
Abstract
Narcolepsy is the most common neurological cause of chronic sleepiness. The discovery about 20 years ago that narcolepsy is caused by selective loss of the neurons producing orexins (also known as hypocretins) sparked great advances in the field. Here, we review the current understanding of how orexin neurons regulate sleep-wake behaviour and the consequences of the loss of orexin neurons. We also summarize the developing evidence that narcolepsy is an autoimmune disorder that may be caused by a T cell-mediated attack on the orexin neurons and explain how these new perspectives can inform better therapeutic approaches.
Collapse
Affiliation(s)
- Carrie E Mahoney
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Andrew Cogswell
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Igor J Koralnik
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Bastianini S, Silvani A. Clinical implications of basic research. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2018. [DOI: 10.1177/2514183x18789327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Stefano Bastianini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Silvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
Huber MJ, Chen QH, Shan Z. The Orexin System and Hypertension. Cell Mol Neurobiol 2018; 38:385-391. [PMID: 28349223 PMCID: PMC5617754 DOI: 10.1007/s10571-017-0487-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/18/2017] [Indexed: 12/18/2022]
Abstract
In this review, we focus on the role of orexin signaling in blood pressure control and its potential link to hypertension by summarizing evidence from several experimental animal models of hypertension. Studies using the spontaneously hypertensive rat (SHR) animal model of human essential hypertension show that pharmacological blockade of orexin receptors reduces blood pressure in SHRs but not in Wistar-Kyoto rats. In addition, increased activity of the orexin system contributes to elevated blood pressure and sympathetic nerve activity (SNA) in dark-active period Schlager hypertensive (BPH/2J) mice, another genetic model of neurogenic hypertension. Similar to these two models, Sprague-Dawley rats with stress-induced hypertension display an overactive central orexin system. Furthermore, upregulation of the orexin receptor 1 increases firing of hypothalamic paraventricular nucleus neurons, augments SNA, and contributes to hypertension in the obese Zucker rat, an animal model of obesity-related hypertension. Finally, we propose a hypothesis for the implication of the orexin system in salt-sensitive hypertension. All of this evidence, coupled with the important role of elevated SNA in increasing blood pressure, strongly suggests that hyperactivity of the orexin system contributes to hypertension.
Collapse
Affiliation(s)
- Michael J Huber
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, SDC 231, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Qing-Hui Chen
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, SDC 231, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Zhiying Shan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, SDC 231, 1400 Townsend Drive, Houghton, MI, 49931, USA.
| |
Collapse
|
10
|
Li TL, Chen JYS, Huang SC, Dai YWE, Hwang LL. Cardiovascular pressor effects of orexins in the dorsomedial hypothalamus. Eur J Pharmacol 2017; 818:343-350. [PMID: 29104046 DOI: 10.1016/j.ejphar.2017.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 10/27/2017] [Accepted: 11/01/2017] [Indexed: 10/18/2022]
Abstract
Orexins are important regulators of cardiovascular functions in various physiological and pathological conditions. The dorsomedial hypothalamus (DMH), an essential mediator of cardiovascular responses to stress, contains dense orexinergic innervations and receptors. We examined whether orexins can regulate cardiovascular functions through their actions in the DMH in anesthetized rats. An intra-DMH injection of orexin A (30pmol) produced elevation of arterial pressure and heart rate. Orexin A-sensitive sites were located within or immediately adjacent to the DMH and larger responses were induced at the compact part of the dorsomedial hypothalamic nucleus. Orexin A-induced responses were attenuated by intra-DMH pretreatment with an orexin receptor 1 (OX1R) antagonist, SB-334867 (15nmol) (17.7 ± 2.8 vs. 5.2 ± 1.0mmHg; 54.6 ± 10.0 vs. 22.8 ± 7.4 beats/min). Intra-DMH applied [Ala11,D-Leu15]-orexin B (300 pmol), an orexin receptor 2 (OX2R) agonist, elicited cardiovascular responses mimicking the responses of orexin A, except for a smaller pressor response (7.4 ± 1.7 vs. 16.4 ± 1.8mmHg). In a series of experiment, effects of orexin B (100pmol) and then orexin A (30pmol), were examined at a same site. Two patterns of responses were observed in 12 intra-DMH sites: (1) both orexin A and B (9 sites), and (2) only orexin A (3 sites) induced cardiovascular responses, respectively suggesting OX1R/OX2R-mediated and OX1R-predominant mechanisms. In conclusion, orexins regulated cardiovascular functions through OX1R/OX2R- or OX1R-mediated mechanisms at different locations in the DMH.
Collapse
Affiliation(s)
- Tzu-Ling Li
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taiwan.
| | - Jennifer Y S Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taiwan.
| | - Shang-Cheng Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taiwan.
| | - Yu-Wen E Dai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taiwan.
| | - Ling-Ling Hwang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taiwan; Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taiwan.
| |
Collapse
|
11
|
The link between narcolepsy and autonomic cardiovascular dysfunction: a translational perspective. Clin Auton Res 2017; 28:545-555. [DOI: 10.1007/s10286-017-0473-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/25/2017] [Indexed: 01/09/2023]
|
12
|
Huber MJ, Fan Y, Jiang E, Zhu F, Larson RA, Yan J, Li N, Chen QH, Shan Z. Increased activity of the orexin system in the paraventricular nucleus contributes to salt-sensitive hypertension. Am J Physiol Heart Circ Physiol 2017; 313:H1075-H1086. [PMID: 28667055 DOI: 10.1152/ajpheart.00822.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/08/2017] [Accepted: 06/22/2017] [Indexed: 01/29/2023]
Abstract
The orexin system is involved in arginine vasopressin (AVP) regulation, and its overactivation has been implicated in hypertension. However, its role in salt-sensitive hypertension (SSHTN) is unknown. Here, we tested the hypothesis that hyperactivity of the orexin system in the paraventricular nucleus (PVN) contributes to SSHTN via enhancing AVP signaling. Eight-week-old male Dahl salt-sensitive (Dahl S) and age- and sex-matched Sprague-Dawley (SD) rats were placed on a high-salt (HS; 8% NaCl) or normal-salt (NS; 0.4% NaCl) diet for 4 wk. HS intake did not alter mean arterial pressure (MAP), PVN mRNA levels of orexin receptor 1 (OX1R), or OX2R but slightly increased PVN AVP mRNA expression in SD rats. HS diet induced significant increases in MAP and PVN mRNA levels of OX1R, OX2R, and AVP in Dahl S rats. Intracerebroventricular infusion of orexin A (0.2 nmol) dramatically increased AVP mRNA levels and immunoreactivity in the PVN of SD rats. Incubation of cultured hypothalamus neurons from newborn SD rats with orexin A increased AVP mRNA expression, which was attenuated by OX1R blockade. In addition, increased cerebrospinal fluid Na+ concentration through intracerebroventricular infusion of NaCl solution (4 µmol) increased PVN OX1R and AVP mRNA levels and immunoreactivity in SD rats. Furthermore, bilateral PVN microinjection of the OX1R antagonist SB-408124 resulted in a greater reduction in MAP in HS intake (-16 ± 5 mmHg) compared with NS-fed (-4 ± 4 mmHg) anesthetized Dahl S rats. These results suggest that elevated PVN OX1R activation may contribute to SSHTN by enhancing AVP signaling.NEW & NOTEWORTHY To our best knowledge, this study is the first to investigate the involvement of the orexin system in salt-sensitive hypertension. Our results suggest that the orexin system may contribute to the Dahl model of salt-sensitive hypertension by enhancing vasopressin signaling in the hypothalamic paraventricular nucleus.
Collapse
Affiliation(s)
- Michael J Huber
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan
| | - Yuanyuan Fan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan.,Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Enshe Jiang
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan.,Institute for Nursing and Health Research, Henan University, Kaifeng, China
| | - Fengli Zhu
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan
| | - Robert A Larson
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan
| | - Jianqun Yan
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Ningjun Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia; and
| | - Qing-Hui Chen
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan.,Biotech Research Center, Michigan Technological University, Houghton, Michigan
| | - Zhiying Shan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan; .,Biotech Research Center, Michigan Technological University, Houghton, Michigan
| |
Collapse
|
13
|
Dergacheva O, Yamanaka A, Schwartz AR, Polotsky VY, Mendelowitz D. Optogenetic identification of hypothalamic orexin neuron projections to paraventricular spinally projecting neurons. Am J Physiol Heart Circ Physiol 2017; 312:H808-H817. [PMID: 28159808 DOI: 10.1152/ajpheart.00572.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 02/07/2023]
Abstract
Orexin neurons, and activation of orexin receptors, are generally thought to be sympathoexcitatory; however, the functional connectivity between orexin neurons and a likely sympathetic target, the hypothalamic spinally projecting neurons (SPNs) in the paraventricular nucleus of the hypothalamus (PVN) has not been established. To test the hypothesis that orexin neurons project directly to SPNs in the PVN, channelrhodopsin-2 (ChR2) was selectively expressed in orexin neurons to enable photoactivation of ChR2-expressing fibers while examining evoked postsynaptic currents in SPNs in rat hypothalamic slices. Selective photoactivation of orexin fibers elicited short-latency postsynaptic currents in all SPNs tested (n = 34). These light-triggered responses were heterogeneous, with a majority being excitatory glutamatergic responses (59%) and a minority of inhibitory GABAergic (35%) and mixed glutamatergic and GABAergic currents (6%). Both glutamatergic and GABAergic responses were present in the presence of tetrodotoxin and 4-aminopyridine, suggesting a monosynaptic connection between orexin neurons and SPNs. In addition to generating postsynaptic responses, photostimulation facilitated action potential firing in SPNs (current clamp configuration). Glutamatergic, but not GABAergic, postsynaptic currents were diminished by application of the orexin receptor antagonist almorexant, indicating orexin release facilitates glutamatergic neurotransmission in this pathway. This work identifies a neuronal circuit by which orexin neurons likely exert sympathoexcitatory control of cardiovascular function.NEW & NOTEWORTHY This is the first study to establish, using innovative optogenetic approaches in a transgenic rat model, that there are robust heterogeneous projections from orexin neurons to paraventricular spinally projecting neurons, including excitatory glutamatergic and inhibitory GABAergic neurotransmission. Endogenous orexin release modulates glutamatergic, but not GABAergic, neurotransmission in these pathways.
Collapse
Affiliation(s)
- Olga Dergacheva
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia;
| | - Akihiro Yamanaka
- Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan; and
| | - Alan R Schwartz
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - David Mendelowitz
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia
| |
Collapse
|
14
|
Carrive P, Kuwaki T. Orexin and Central Modulation of Cardiovascular and Respiratory Function. Curr Top Behav Neurosci 2017; 33:157-196. [PMID: 27909989 DOI: 10.1007/7854_2016_46] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Orexin makes an important contribution to the regulation of cardiorespiratory function. When injected centrally under anesthesia, orexin increases blood pressure, heart rate, sympathetic nerve activity, and the amplitude and frequency of respiration. This is consistent with the location of orexin neurons in the hypothalamus and the distribution of orexin terminals at all levels of the central autonomic and respiratory network. These cardiorespiratory responses are components of arousal and are necessary to allow the expression of motivated behaviors. Thus, orexin contributes to the cardiorespiratory response to acute stressors, especially those of a psychogenic nature. Consequently, upregulation of orexin signaling, whether it is spontaneous or environmentally induced, can increase blood pressure and lead to hypertension, as is the case for the spontaneously hypertensive rat and the hypertensive BPH/2J Schlager mouse. Blockade of orexin receptors will reduce blood pressure in these animals, which could be a new pharmacological approach for the treatment of some forms of hypertension. Orexin can also magnify the respiratory reflex to hypercapnia in order to maintain respiratory homeostasis, and this may be in part why it is upregulated during obstructive sleep apnea. In this pathological condition, blockade of orexin receptors would make the apnea worse. To summarize, orexin is an important modulator of cardiorespiratory function. Acting on orexin signaling may help in the treatment of some cardiovascular and respiratory disorders.
Collapse
Affiliation(s)
- Pascal Carrive
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Tomoyuki Kuwaki
- Department of Physiology, Graduate School of Medical & Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
15
|
Dergacheva O, Yamanaka A, Schwartz AR, Polotsky VY, Mendelowitz D. Direct projections from hypothalamic orexin neurons to brainstem cardiac vagal neurons. Neuroscience 2016; 339:47-53. [PMID: 27693474 DOI: 10.1016/j.neuroscience.2016.09.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/21/2016] [Accepted: 09/21/2016] [Indexed: 11/29/2022]
Abstract
Orexin neurons are known to augment the sympathetic control of cardiovascular function, however the role of orexin neurons in parasympathetic cardiac regulation remains unclear. To test the hypothesis that orexin neurons contribute to parasympathetic control we selectively expressed channelrhodopsin-2 (ChR2) in orexin neurons in orexin-Cre transgenic rats and examined postsynaptic currents in cardiac vagal neurons (CVNs) in the dorsal motor nucleus of the vagus (DMV). Simultaneous photostimulation and recording in ChR2-expressing orexin neurons in the lateral hypothalamus resulted in reliable action potential firing as well as large whole-cell currents suggesting a strong expression of ChR2 and reliable optogenetic excitation. Photostimulation of ChR2-expressing fibers in the DMV elicited short-latency (ranging from 3.2ms to 8.5ms) postsynaptic currents in 16 out of 44 CVNs tested. These responses were heterogeneous and included excitatory glutamatergic (63%) and inhibitory GABAergic (37%) postsynaptic currents. The results from this study suggest different sub-population of orexin neurons may exert diverse influences on brainstem CVNs and therefore may play distinct functional roles in parasympathetic control of the heart.
Collapse
Affiliation(s)
- Olga Dergacheva
- Department of Pharmacology and Physiology, The George Washington University, 2300 Eye Street, NW, Washington, DC 20037, USA.
| | - Akihiro Yamanaka
- Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Alan R Schwartz
- Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | - David Mendelowitz
- Department of Pharmacology and Physiology, The George Washington University, 2300 Eye Street, NW, Washington, DC 20037, USA
| |
Collapse
|
16
|
Dergacheva O, Yamanaka A, Schwartz AR, Polotsky VY, Mendelowitz D. Hypoxia and hypercapnia inhibit hypothalamic orexin neurons in rats. J Neurophysiol 2016; 116:2250-2259. [PMID: 27559138 DOI: 10.1152/jn.00196.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/21/2016] [Indexed: 01/18/2023] Open
Abstract
Evidence of impaired function of orexin neurons has been found in individuals with cardiorespiratory disorders, such as obstructive sleep apnea (OSA) and sudden infant death syndrome (SIDS), but the mechanisms responsible are unknown. Individuals with OSA and SIDS experience repetitive breathing cessations and/or rebreathing of expired air, resulting in hypoxia/hypercapnia (H/H). In this study, we examined the responses of fluorescently identified rat orexin neurons in the lateral hypothalamus to acute H/H to test if and how these neurons alter their activity and function during this challenge. Experiments were conducted in an in vitro slice preparation using voltage-clamp and current-clamp configurations. H/H (10 min) induced hyperpolarization, accompanied by rapid depression, and finally, cessation of firing activity in orexin neurons. Hypoxia alone had similar but less potent effects. H/H did not alter the frequency of inhibitory glycinergic postsynaptic currents. The frequency of GABAergic currents was diminished but only at 8-10 min of H/H. In contrast, the frequency of excitatory glutamatergic postsynaptic events was diminished as early as 2-4 min of H/H. In the presence of glutamatergic receptor blockers, the inhibitory effects of H/H on the firing activity and membrane potential of orexin neurons persisted but to a lesser extent. In conclusion, both direct alteration of postsynaptic membrane properties and diminished glutamatergic neurotransmission likely contribute to the inhibition of orexin neurons by H/H. These mechanisms could be responsible for the decreased function of orexin in individuals at risk for OSA and SIDS.
Collapse
Affiliation(s)
- Olga Dergacheva
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC;
| | - Akihiro Yamanaka
- Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan; and
| | - Alan R Schwartz
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - David Mendelowitz
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC
| |
Collapse
|
17
|
Beig MI, Horiuchi J, Dampney RAL, Carrive P. Both Ox1R and Ox2R orexin receptors contribute to the cardiorespiratory response evoked from the perifornical hypothalamus. Clin Exp Pharmacol Physiol 2015; 42:1059-67. [DOI: 10.1111/1440-1681.12461] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/23/2015] [Accepted: 07/09/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Mirza I Beig
- School of Medical Sciences; University of New South Wales; Sydney NSW Australia
| | - Jouji Horiuchi
- Department of Biomedical Engineering; Toyo University; Kawagoe Saitama Japan
| | - Roger AL Dampney
- School of Medical Sciences; University of New South Wales; Sydney NSW Australia
- School of Medical Sciences and Bosch Institute for Biomedical Research; University of Sydney; Sydney NSW Australia
| | - Pascal Carrive
- School of Medical Sciences; University of New South Wales; Sydney NSW Australia
| |
Collapse
|
18
|
Li J, Hu Z, de Lecea L. The hypocretins/orexins: integrators of multiple physiological functions. Br J Pharmacol 2014; 171:332-50. [PMID: 24102345 DOI: 10.1111/bph.12415] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 07/16/2013] [Accepted: 08/02/2013] [Indexed: 12/28/2022] Open
Abstract
The hypocretins (Hcrts), also known as orexins, are two peptides derived from a single precursor produced in the posterior lateral hypothalamus. Over the past decade, the orexin system has been associated with numerous physiological functions, including sleep/arousal, energy homeostasis, endocrine, visceral functions and pathological states, such as narcolepsy and drug abuse. Here, we review the discovery of Hcrt/orexins and their receptors and propose a hypothesis as to how the orexin system orchestrates these multifaceted physiological functions.
Collapse
Affiliation(s)
- Jingcheng Li
- Department of Physiology, Third Military Medical University, Chongqing, China
| | | | | |
Collapse
|
19
|
Hypothalamic orexin-A (hypocretin-1) neuronal projections to the vestibular complex and cerebellum in the rat. Brain Res 2014; 1579:20-34. [PMID: 25017945 DOI: 10.1016/j.brainres.2014.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/24/2014] [Accepted: 07/04/2014] [Indexed: 12/31/2022]
Abstract
Immunohistochemistry combined with retrograde tract-tracing techniques were used to investigate the distribution of orexin-A (OX-A)- and OX-A receptor-like (OX1) immunoreactivity within the vestibular complex and cerebellum, and the location of hypothalamic OX-A neurons sending axonal projections to these regions in the Wistar rat. OX-A immunoreactive fibers and presumptive terminals were found throughout the medial (MVe) and lateral (LVe) vestibular nuclei. Light fiber labeling was also observed in the spinal and superior vestibular nuclei. Within the cerebellum, dense fiber and presumptive terminal labeling was observed in the medial cerebellar nucleus (Med; fastigial nucleus), with less dense labeling in the interposed (Int) and lateral cerebellar nuclei (Lat; dentate nucleus). A few scattered OX-A immunoreactive fibers were also observed throughout the cortex of the paraflocculus. OX1-like immunoreactivity was found densely concentrated within LVe, moderate in MVe, and scattered within the spinal and superior vestibular nuclei. Within the cerebellum, OX1-like immunoreactivity was also observed densely within Med and in the dorsolateral aspects of Int. Additionally, OX1 like-labeling was found in Lat, and within the granular layer of the caudal paraflocculus cerebellar cortex. Fluorogold (FG) microinjected into these vestibular and cerebellar regions resulted in retrogradely labeled neurons throughout the ipsilateral hypothalamus. Retrogradely labeled neurons containing OX-A like immunoreactivity were observed dorsal and caudal to the anterior hypothalamic nucleus and extending laterally into the lateral hypothalamic area, with the largest number clustered around the dorsal aspects of the fornix in the perifornical area. A few FG OX-A like-immunoreactive neurons were also observed scattered throughout the dorsomedial, and posterior hypothalamic nuclei. These data indicate that axons from OX-A neurons terminate within the vestibular complex and deep cerebellar nuclei of the cerebellum and although the function of these pathways is unknown, they likely represent pathways by which hypothalamic OX-A containing neurons co-ordinate vestibulo-cerebellar motor and autonomic functions associated with ingestive behaviors.
Collapse
|
20
|
Carrive P. Orexin, orexin receptor antagonists and central cardiovascular control. Front Neurosci 2013; 7:257. [PMID: 24415993 PMCID: PMC3874580 DOI: 10.3389/fnins.2013.00257] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/09/2013] [Indexed: 01/08/2023] Open
Abstract
Orexin makes an important contribution to the regulation of cardiovascular function. When injected centrally under anesthesia, orexin increases blood pressure, heart rate and sympathetic nerve activity. This is consistent with the location of orexin neurons in the hypothalamus and the distribution of orexin terminals in the central autonomic network. Thus, the two orexin receptors, Ox1R and Ox2R, which have partly overlapping distributions in the brain, are expressed in the sympathetic preganglionic neurons (SPN) of the thoracic cord as well as in regions such as the pressor area of the rostral ventrolateral medulla (RVLM). Both Ox1R and Ox2R appear to contribute to the cardiovascular effects of orexin, although Ox1R is probably more important. Blockade of orexin receptors reduces the cardiovascular response to certain stressors, especially psychogenic stressors such as novelty, aggressive conspecifics and induced panic. Blockade of orexin receptors also reduces basal blood pressure and heart rate in spontaneous hypertensive rats, a model of essential hypertension. Thus, there is a link between psychogenic stress, orexin and elevated blood pressure. The use of dual orexin receptor antagonists (DORAs) and selective orexin receptor antagonists (SORAs) may be beneficial in the treatment of certain forms of hypertension.
Collapse
Affiliation(s)
- Pascal Carrive
- Blood Pressure, Brain and Behavior Laboratory, School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| |
Collapse
|
21
|
Xu TR, Yang Y, Ward R, Gao L, Liu Y. Orexin receptors: Multi-functional therapeutic targets for sleeping disorders, eating disorders, drug addiction, cancers and other physiological disorders. Cell Signal 2013; 25:2413-23. [DOI: 10.1016/j.cellsig.2013.07.025] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 07/26/2013] [Indexed: 12/29/2022]
|
22
|
Co-localization of hypocretin-1 and leucine-enkephalin in hypothalamic neurons projecting to the nucleus of the solitary tract and their effect on arterial pressure. Neuroscience 2013; 250:599-613. [PMID: 23912034 DOI: 10.1016/j.neuroscience.2013.07.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 01/03/2023]
Abstract
Experiments were done to investigate whether hypothalamic hypocretin-1 (hcrt-1; orexin-A) neurons that sent axonal projections to cardiovascular responsive sites in the nucleus of the solitary tract (NTS) co-expressed leucine-enkephalin (L-Enk), and to determine the effects of co-administration of hcrt-1 and D-Ala2,D-Leu5-Enkephalin (DADL) into NTS on mean arterial pressure (MAP) and heart rate. In the first series, in the Wistar rat the retrograde tract-tracer fluorogold (FG) was microinjected (50nl) into caudal NTS sites at which L-glutamate (0.25 M; 10 nl) elicited decreases in MAP and where fibers hcrt-1 immunoreactive fibers were observed that also contained L-Enk immunoreactivity. Of the number of hypothalamic hcrt-1 immunoreactive neurons identified ipsilateral to the NTS injection site (1207 ± 78), 32.3 ± 2.3% co-expressed L-Enk immunoreactivity and of these, 2.6 ± 1.1% were retrogradely labeled with FG. Hcrt-1/L-Enk neurons projecting to NTS were found mainly within the perifornical region. In the second series, the region of caudal NTS found to contain axons that co-expressed hcrt-1 and L-Enk immunoreactivity was microinjected with a combination of hcrt-1 and DADL in α-chloralose anesthetized Wistar rats. Microinjection of DADL into NTS elicited depressor and bradycardia responses similar to those elicited by microinjection of hcrt-1. An hcrt-1 injection immediately after the DADL injection elicited an almost twofold increase in the magnitude of the depressor and bradycardia responses compared to those elicited by hcrt-1 alone. Prior injections of the non-specific opioid receptor antagonist naloxone or the specific opioid δ-receptor antagonist ICI 154,129 significantly attenuated the cardiovascular responses to the combined hcrt-1-DADL injections. Taken together, these data suggest that activation of hypothalamic-opioidergic neuronal systems contribute to the NTS hcrt-1 induced cardiovascular responses, and that this descending hypothalamo-medullary pathway may represent the anatomical substrate by which hcrt-1/L-Enk neurons function in the coordination of autonomic-cardiovascular responses during different behavioral states.
Collapse
|
23
|
Brailoiu GC, Deliu E, Tica AA, Rabinowitz JE, Tilley DG, Benamar K, Koch WJ, Brailoiu E. Nesfatin-1 activates cardiac vagal neurons of nucleus ambiguus and elicits bradycardia in conscious rats. J Neurochem 2013; 126:739-48. [PMID: 23795642 DOI: 10.1111/jnc.12355] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/12/2013] [Accepted: 06/20/2013] [Indexed: 11/30/2022]
Abstract
Nesfatin-1, a peptide whose receptor is yet to be identified, has been involved in the modulation of feeding, stress, and metabolic responses. More recently, increasing evidence supports a modulatory role for nesfatin-1 in autonomic and cardiovascular activity. This study was undertaken to test if the expression of nesfatin-1 in the nucleus ambiguus, a key site for parasympathetic cardiac control, may be correlated with a functional role. As we have previously demonstrated that nesfatin-1 elicits Ca²⁺ signaling in hypothalamic neurons, we first assessed the effect of this peptide on cytosolic Ca²⁺ in cardiac pre-ganglionic neurons of nucleus ambiguus. We provide evidence that nesfatin-1 increases cytosolic Ca²⁺ concentration via a Gi/o-coupled mechanism. The nesfatin-1-induced Ca²⁺ rise is critically dependent on Ca²⁺ influx via P/Q-type voltage-activated Ca²⁺ channels. Repeated administration of nesfatin-1 leads to tachyphylaxis. Furthermore, nesfatin-1 produces a dose-dependent depolarization of cardiac vagal neurons via a Gi/o-coupled mechanism. In vivo studies, using telemetric and tail-cuff monitoring of heart rate and blood pressure, indicate that microinjection of nesfatin-1 into the nucleus ambiguus produces bradycardia not accompanied by a change in blood pressure in conscious rats. Taken together, our results identify for the first time that nesfatin-1 decreases heart rate by activating cardiac vagal neurons of nucleus ambiguus. Our results indicate that nesfatin-1, one of the most potent feeding peptides, increases cytosolic Ca²⁺ by promoting Ca²⁺ influx via P/Q channels and depolarizes nucleus ambiguus neurons; both effects are Gi/o-mediated. In vivo studies indicate that microinjection of nesfatin-1 into nucleus ambiguus produces bradycardia in conscious rats. This is the first report that nesfatin-1 increases the parasympathetic cardiac tone.
Collapse
Affiliation(s)
- G Cristina Brailoiu
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson School of Pharmacy, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Lee YH, Dai YWE, Huang SC, Li TL, Hwang LL. Blockade of central orexin 2 receptors reduces arterial pressure in spontaneously hypertensive rats. Exp Physiol 2013; 98:1145-55. [DOI: 10.1113/expphysiol.2013.072298] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Sorensen GL, Knudsen S, Petersen ER, Kempfner J, Gammeltoft S, Sorensen HBD, Jennum P. Attenuated heart rate response is associated with hypocretin deficiency in patients with narcolepsy. Sleep 2013; 36:91-8. [PMID: 23288975 DOI: 10.5665/sleep.2308] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVE Several studies have suggested that hypocretin-1 may influence the cerebral control of the cardiovascular system. We analyzed whether hypocretin-1 deficiency in narcolepsy patients may result in a reduced heart rate response. DESIGN We analyzed the heart rate response during various sleep stages from a 1-night polysomnography in patients with narcolepsy and healthy controls. The narcolepsy group was subdivided by the presence of +/- cataplexy and +/- hypocretin-1 deficiency. SETTING Sleep laboratory studies conducted from 2001-2011. PARTICIPANTS In total 67 narcolepsy patients and 22 control subjects were included in the study. Cataplexy was present in 46 patients and hypocretin-1 deficiency in 38 patients. INTERVENTIONS None. MEASUREMENTS AND RESULTS All patients with narcolepsy had a significantly reduced heart rate response associated with arousals and leg movements (P < 0.05). Heart rate response associated with arousals was significantly lower in the hypocretin-1 deficiency and cataplexy groups compared with patients with normal hypocretin-1 levels (P < 0.04) and patients without cataplexy (P < 0.04). Only hypocretin-1 deficiency significantly predicted the heart rate response associated with arousals in both REM and non-REM in a multivariate linear regression. CONCLUSIONS Our results show that autonomic dysfunction is part of the narcoleptic phenotype, and that hypocretin-1 deficiency is the primary predictor of this dysfunction. This finding suggests that the hypocretin system participates in the modulation of cardiovascular function at rest.
Collapse
Affiliation(s)
- Gertrud Laura Sorensen
- Danish Center for Sleep Medicine, Glostrup University Hospital, Glostrup Hospital, Denmark.
| | | | | | | | | | | | | |
Collapse
|
26
|
Xiao F, Jiang M, Du D, Xia C, Wang J, Cao Y, Shen L, Zhu D. Orexin A regulates cardiovascular responses in stress-induced hypertensive rats. Neuropharmacology 2012; 67:16-24. [PMID: 23147417 DOI: 10.1016/j.neuropharm.2012.10.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 10/16/2012] [Accepted: 10/20/2012] [Indexed: 01/22/2023]
Abstract
Several pieces of evidence indicate that the rostral ventrolateral medulla (RVLM) is probably one of the key neural structures mediating the pressor effects of orexins in the brain. Nitric oxide synthase/nitric oxide (NOS/NO) system in the RVLM modulates cardiovascular activities. Our experiments were designed to test the hypothesis that orexin-A (OXA) is involved in the mechanism of stress-induced hypertension (SIH) by adjusting NOS/NO system in the RVLM. The stress-induced hypertensive rats (SIHR) model was established by electric foot-shocks and noises. Here we examined the expression of OXA immunoreactive (OXA-IR) cells in the lateral hypothalamus (LH) and the protein level of orexin 1 receptor (OX1R) in the RVLM of SIHR, and we found that the expressions of OXA-IR and OX1R were higher than those of the control group. The double-staining immunohistochemical evidence showed that OX1R immunoreactive (OX1R-IR) cells and neuronal nitric oxide synthase (nNOS) or inducible nitric oxide synthase (iNOS) immunoreactive (IR) cells were co-localizated in the RVLM. Microinjection of OXA (10, 50, 100 pmol/100 nl) into the unilateral (right) RVLM of control rats or SIHR produced pressor and tachycardiac effects in a dose-dependent manner. SB-408124 (100 pmol/100 nl, an antagonist of OX1R) or TCS OX2 29 (100 pmol/100 nl, an antagonist of OX2R) partly abolished the cardiovascular effects of exogenously-administrated OXA into the RVLM of control rats and SIHR, and lowered the increased systolic blood pressure (SBP) and heart rate (HR) of SIHR, with no difference in statistical significance between the two antagonists' effects. Microinjection into the RVLM of both control and SIHR groups of 7-Ni (0.05 pmol/100 nl, nNOS inhibitor) or Methylene Blue [100 pmol/100 nl, an inhibitor of soluble guanylate cyclase (sGC)] suppressed the OXA-induced increase of SBP and HR, whereas microinjection of AG (1, 10, 100 pmol/100 nl) had no obvious effects on the OXA-induced increase of SBP and HR. Our results indicate that OXA in the RVLM may participate in the central regulation of cardiovascular activities in SIHR, and OX1R and OX2R both have important roles in it. The cardiovascular effects of OXA in the RVLM may be induced by nNOS-derived NO, which activated sGC-associated signaling pathway.
Collapse
Affiliation(s)
- Fen Xiao
- Department of Physiology and Pathophysiology, Shanghai Medical College of Fudan University, 138 Yixueyuan Road, Shanghai 200032, PR China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Shahid IZ, Rahman AA, Pilowsky PM. Orexin A in rat rostral ventrolateral medulla is pressor, sympatho-excitatory, increases barosensitivity and attenuates the somato-sympathetic reflex. Br J Pharmacol 2012; 165:2292-303. [PMID: 21951179 DOI: 10.1111/j.1476-5381.2011.01694.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND PURPOSE The rostral ventrolateral medulla (RVLM) maintains sympathetic nerve activity (SNA), and integrates adaptive reflexes. Orexin A-immunoreactive neurones in the lateral hypothalamus project to the RVLM. Microinjection of orexin A into RVLM increases blood pressure and heart rate. However, the expression of orexin receptors, and effects of orexin A in the RVLM on splanchnic SNA (sSNA), respiration and adaptive reflexes are unknown. EXPERIMENTAL APPROACH The effect of orexin A on baseline cardio-respiratory variables as well as the somato-sympathetic, baroreceptor and chemoreceptor reflexes in RVLM were investigated in urethane-anaesthetized, vagotomized and artificially ventilated male Sprague-Dawley rats (n= 50). orexin A and its receptors were detected with fluorescence immunohistochemistry. KEY RESULTS Tyrosine hydroxylase-immunoreactive neurones in the RVLM were frequently co-localized with orexin 1 (OX(1) ) and orexin 2 (OX(2) ) receptors and closely apposed to orexin A-immunoreactive terminals. Orexin A injected into the RVLM was pressor and sympatho-excitatory. Peak effects were observed at 50 pmol with increased mean arterial pressure (42 mmHg) and SNA (45%). Responses to orexin A (50 pmol) were attenuated by the OX(1) receptor antagonist, SB334867, and reproduced by the OX(2) receptor agonist, [Ala(11) , D-Leu(15) ]orexin B. Orexin A attenuated the somato-sympathetic reflex but increased baroreflex sensitivity. Orexin A increased or reduced sympatho-excitation following hypoxia or hypercapnia respectively. CONCLUSIONS AND IMPLICATIONS Although central cardio-respiratory control mechanisms at rest do not rely on orexin, responses to adaptive stimuli are dramatically affected by the functional state of orexin receptors.
Collapse
Affiliation(s)
- Israt Z Shahid
- Australian School of Advanced Medicine, Macquarie University, Sydney, Australia
| | | | | |
Collapse
|
28
|
Gotter AL, Webber AL, Coleman PJ, Renger JJ, Winrow CJ. International Union of Basic and Clinical Pharmacology. LXXXVI. Orexin receptor function, nomenclature and pharmacology. Pharmacol Rev 2012; 64:389-420. [PMID: 22759794 DOI: 10.1124/pr.111.005546] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Orexin signaling is essential for normal regulation of arousal and behavioral state control and represents an attractive target for therapeutics combating insomnia. Alternatively termed hypocretins, these neuropeptides were named to reflect sequence similarity to incretins and their potential to promote feeding. Current nomenclature reflects these molecular and biochemical discovery approaches in which HCRT, HCRTR1, and HCRTR2 genes encode prepro-orexin, the orexin 1 receptor (OX(1)) and the orexin 2 receptor (OX(2))-gene names designated by the Human Genome Organization and receptor names designated by the International Union of Basic and Clinical Pharmacology. Orexinergic neurons are most active during wakefulness and fall silent during inactive periods, a prolonged disruption in signaling most profoundly resulting in hypersomnia and narcolepsy. Hcrtr2 mutations underlie the etiology of canine narcolepsy, deficiencies in orexin-producing neurons are observed in the human disorder, and ablation of mouse orexin neurons or the Hcrt gene results in a narcolepsy-cataplexy phenotype. The development of orexin receptor antagonists and genetic models targeting components of the orexin pathway have elucidated the OX(2) receptor-specific role in histamine-mediated arousal and the contribution of both receptors in brainstem pathways involved in vigilance state gating. Orexin receptor antagonists of varying specificity uncovered additional roles beyond sleep and feeding that include addiction, depression, anxiety, and potential influences on peripheral physiology. Combined genetic and pharmacological approaches indicate that orexin signaling may represent a confluence of sleep, feeding, and reward pathways. Selective orexin receptor antagonism takes advantage of these properties toward the development of novel insomnia therapeutics.
Collapse
MESH Headings
- Animals
- Arousal/drug effects
- Arousal/genetics
- Clinical Trials as Topic
- Evolution, Molecular
- Humans
- Hypnotics and Sedatives/chemistry
- Hypnotics and Sedatives/pharmacology
- Hypnotics and Sedatives/therapeutic use
- International Agencies
- Ligands
- Models, Molecular
- Molecular Structure
- Narcolepsy/drug therapy
- Narcolepsy/genetics
- Neurotransmitter Agents/chemistry
- Neurotransmitter Agents/pharmacology
- Neurotransmitter Agents/therapeutic use
- Orexin Receptors
- Protein Conformation
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/classification
- Receptors, G-Protein-Coupled/genetics
- Receptors, Neuropeptide/agonists
- Receptors, Neuropeptide/antagonists & inhibitors
- Receptors, Neuropeptide/classification
- Receptors, Neuropeptide/genetics
- Sleep Initiation and Maintenance Disorders/drug therapy
- Sleep Initiation and Maintenance Disorders/genetics
- Terminology as Topic
Collapse
Affiliation(s)
- Anthony L Gotter
- Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, PA 19486-0004.
| | | | | | | | | |
Collapse
|
29
|
Dergacheva O, Bateman R, Byrne P, Mendelowitz D. Orexinergic modulation of GABAergic neurotransmission to cardiac vagal neurons in the brain stem nucleus ambiguus changes during development. Neuroscience 2012; 209:12-20. [PMID: 22390944 DOI: 10.1016/j.neuroscience.2012.02.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 01/26/2012] [Accepted: 02/13/2012] [Indexed: 11/17/2022]
Abstract
Cardiac vagal neurons (CVNs) in the nucleus ambiguus (NA) are the major determinant of parasympathetic activity to the heart. Spontaneous GABAergic neurotransmission to CVNs is modulated by hypothalamic neuropeptide orexin-A in postnatal days 2-5 (P5) rats; however, during early postnatal development, orexin expression changes, and the role of orexin-A in modulating CVN activity at other stages of development is unknown. In this study, we compared changes in GABAergic inhibitory postsynaptic currents (IPSCs) in CVNs evoked by orexin-A in P5, P16-20 (P20), and P27-30 (P30) rats using an in vitro brain stem slice preparation. Bath-applied orexin-A enhanced GABAergic IPSCs in all CVNs tested in P5 and P30 animals and in the majority of neurons tested in P20 pups. Focal application of orexin-A ejected from a pipette positioned within 30 μm of the patched CVN did not alter GABAergic signaling in P5 pups. In contrast, in both P20 and P30 rats, focal application of orexin-A inhibited GABAergic IPSCs, and this inhibition persisted in the presence of tetrodotoxin. These results indicate orexin-A facilitates GABAergic IPSCs likely by activating preceding GABAergic neurons that project to CVNs. Orexin-A also likely acts at GABAergic presynaptic terminals surrounding CVNs within the NA to inhibit GABA release. The latter mechanism is absent in P5 pups but occurs in P20 and P30 rats. In conclusion, this study elucidates an important maturation of the parasympathetic cardiac control system. Alterations in these developmental mechanisms may play a role in pathogenesis of disorders related to a specific stage of development maturation.
Collapse
Affiliation(s)
- O Dergacheva
- Department of Pharmacology and Physiology, The George Washington University, 2300 Eye Street NW, Washington, D.C. 20037, USA.
| | | | | | | |
Collapse
|
30
|
Abstract
Orexin, a small neuropeptide released from neurons in the hypothalamus with widespread projections throughout the central nervous system, has broad biological roles including the modulation of breathing and autonomic function. That orexin activity is fundamentally dependent on sleep-wake state, and circadian cycle requires consideration of orexin function in physiological control systems in respect to these two state-related activity patterns. Both transgenic mouse studies and focal orexin receptor antagonism support a role for orexins in respiratory chemosensitivity to CO₂ predominantly in wakefulness, with further observations limiting this role to the dark period. In addition, orexin neurons participate in the regulation of sympathetic activity, including effects on blood pressure and thermoregulation. Orexin is also essential in physiological responses to stress. Orexin-mediated processes may operate at two levels: (1) in sleep-wake and circadian states and (2) in stress, for example, the defense or "fight-or-flight" response and panic-anxiety syndrome.
Collapse
Affiliation(s)
- Eugene Nattie
- Department of Physiology and Neurobiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| | | |
Collapse
|
31
|
Dauvilliers Y, Pennestri MH, Whittom S, Lanfranchi PA, Montplaisir JY. Autonomic response to periodic leg movements during sleep in narcolepsy-cataplexy. Sleep 2011; 34:219-23. [PMID: 21286243 DOI: 10.1093/sleep/34.2.219] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES To test the hypothesis of autonomic nervous system dysfunction in patients with narcolepsy-cataplexy (NC) by assessing the physiologic activations associated with periodic limb movements during sleep (PLMS). DESIGN Sleep and heart rate (HR) were recorded during 1 night of polysomnography. SETTING Data were collected at the Sleep Disorders Center, Sacre-Coeur Hospital, Montreal, Canada. PARTICIPANTS Data from 14 patients with NC (6 men, 8 women, mean age: 52.5 ± 11.9 years) were compared with data from 14 healthy control subjects matched for age and sex. INTERVENTIONS NA. MEASUREMENTS AND RESULTS Analyses included sleep stages, PLMS, microarousals, RR intervals converted into beats per minute on segments lasting 25 heartbeats (10 RR intervals before PLMS and 15 after), and cardiac-activation amplitudes. A Group-by-Heartbeat interaction was noted for PLMS without microarousals; the patients had a tachycardia of lower amplitude and a delayed and lower-amplitude bradycardia, compared with normal control subjects. Similar significant HR modifications were observed for PLMS with microarousals between patients with NC and control subjects. Patients with NC had a reduced magnitude of cardiac activation associated with PLMS with and without microarousals, as compared with control subjects. A negative correlation was noted between cardiac-activation amplitude and age in patients with NC, but no correlation with PLMS index was found in either patients with NC or control subjects. CONCLUSION A significant reduction in the amplitude of PLMS-related HR responses in both tachycardia and bradycardia was found in patients with NC. These findings favor the physiologic relevance of the action of hypocretin on autonomic function that may be of clinical significance, i.e., increasing the risk of cardiovascular diseases.
Collapse
Affiliation(s)
- Yves Dauvilliers
- Department of Neurology, National Reference Network for Orphan Diseases (Narcolepsy and Idiopathic Hypersomnia), Hôpital Gui de Chauliac, INSERM U888, Montpellier, France
| | | | | | | | | |
Collapse
|
32
|
Puskás N, Papp RS, Gallatz K, Palkovits M. Interactions between orexin-immunoreactive fibers and adrenaline or noradrenaline-expressing neurons of the lower brainstem in rats and mice. Peptides 2010; 31:1589-97. [PMID: 20434498 DOI: 10.1016/j.peptides.2010.04.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 04/20/2010] [Accepted: 04/21/2010] [Indexed: 11/16/2022]
Abstract
Orexins are expressed in neurons of the dorsolateral hypothalamus and their axons widely distribute throughout the central nervous system. The noradrenergic cell groups of the lower brainstem belong to the targets of these orexin projections. Double immunostainings for orexin and phenylethanolamine N-methyltransferase (PNMT), as well as orexin and tyrosine hydroxylase (TH) were applied to demonstrate the orexinergic innervation of catecholamine cell groups in the lower brainstem of the mouse and the rat. In various densities, networks of orexin-positive fibers and terminals were present on neurons of each adrenaline (C1, C2, C3) and noradrenaline (locus coeruleus, A1, A2, A4, A5 and A7) cell groups. The most dense networks of orexin fibers and terminals were detected in the locus coeruleus, the subcoeruleus area, and in the nucleus of the solitary tract. By using confocal microscope to analyze triple immunostainings we could detect that about two-third of the orexin-PNMT or orexin-TH immunopositive close contacts contained synaptophysin (a presynapse-specific protein) in the C1, C2 and C3 adrenaline, or in the A1, A2 noradrenaline cell groups, respectively. Orexin-immunopositive axons in the C1, C2, as well as A1, A2 and A6 cell groups have been examined by an electron microscope. Relatively few asymmetrical (excitatory) synaptic contacts could be demonstrated between PNMT- or TH-positive dendrites and orexin terminals, although the vast majority of orexin-positive axons was located in juxtaposition to PNMT- or TH-positive neurons.
Collapse
Affiliation(s)
- Nela Puskás
- Neuromorphological and Neuroendocrine Research Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University and Hungarian Academy of Sciences, Tűzoltó utca 58, 1094 Budapest, Hungary
| | | | | | | |
Collapse
|
33
|
Huang SC, Dai YWE, Lee YH, Chiou LC, Hwang LL. Orexins depolarize rostral ventrolateral medulla neurons and increase arterial pressure and heart rate in rats mainly via orexin 2 receptors. J Pharmacol Exp Ther 2010; 334:522-9. [PMID: 20494957 DOI: 10.1124/jpet.110.167791] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An injection of orexin A or B into the cisterna magna or the rostral ventrolateral medulla (RVLM), where bulbospinal vasomotor neurons are located, elevated arterial pressure (AP) and heart rate (HR). We examined how orexins affected RVLM neurons to regulate cardiovascular functions by using in vitro recordings of neuronal activity of the RVLM and in vivo measurement of cardiovascular functions in rats. Orexin A and B concentration-dependently depolarized RVLM neurons. At 100 nM, both peptides excited 42% of RVLM neurons. Tetrodotoxin failed to block orexin-induced depolarization. In the presence of N-(2-methyl-6-benzoxazolyl)-N'-1, 5-naphthyridin-4-yl urea (SB-334867), an orexin 1 receptor (OX(1)R) antagonist, orexin A depolarized 42% of RVLM neurons with a smaller, but not significantly different, amplitude (4.9 +/- 0.8 versus 7.2 +/- 1.1 mV). In the presence of (2S)-1- (3,4-dihydro-6,7-dimethoxy-2(1H)-isoquinolinyl)-3,3-dimethyl-2-[(4-pyridinylmethyl)amino]-1-butanone hydrochloride (TCS OX2 29), an orexin 2 receptor (OX(2)R) antagonist, orexin A depolarized 25% of RVLM neurons with a significantly smaller amplitude (1.7 +/- 0.5 mV). Coapplication of both antagonists completely eliminated orexin A-induced depolarization. An OX(2)R agonist, [Ala(11),D-Leu(15)]-orexin B, concentration-dependently depolarized RVLM neurons. Regarding neuronal phenotypes, orexins depolarized 88% of adrenergic, 43% of nonadrenergic, and 36 to 41% of rhythmically firing RVLM neurons. Intracisternal TCS OX2 29 (3 and 10 nmol) suppressed intracisternal orexin A-induced increases of AP and HR, whereas intracisternal SB-334867 (3 and 10 nmol) had no effect on the orexin A-induced increase of HR but suppressed the orexin A-induced pressor response at 10 nmol. We concluded that orexins directly excite RVLM neurons, which include bulbospinal vasomotor neurons, and regulate cardiovascular function mainly via the OX(2)R, with a smaller contribution from the OX(1)R.
Collapse
Affiliation(s)
- Shang-Cheng Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
34
|
Hou L, Tang H, Chen Y, Wang L, Zhou X, Rong W, Wang J. Presynaptic modulation of tonic and respiratory inputs to cardiovagal motoneurons by substance P. Brain Res 2009; 1284:31-40. [DOI: 10.1016/j.brainres.2009.05.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 05/19/2009] [Accepted: 05/25/2009] [Indexed: 02/05/2023]
|
35
|
Dias MB, Li A, Nattie EE. Antagonism of orexin receptor-1 in the retrotrapezoid nucleus inhibits the ventilatory response to hypercapnia predominantly in wakefulness. J Physiol 2009; 587:2059-67. [PMID: 19273574 DOI: 10.1113/jphysiol.2008.168260] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent data from transgenic mice suggest that orexin plays an important role in the ventilatory response to CO(2) during wakefulness. We hypothesized that orexin receptor-1 (OX(1)R) in the retrotrapezoid nucleus (RTN) contributes to chemoreception. In unanaesthetized rats, we measured ventilation using a whole-body plethysmograph, together with EEG and EMG. We dialysed the vehicle and then SB-334867 (OX(1)R antagonist) into the RTN to focally inhibit OX(1)R and studied the effects of both treatments on breathing in air and in 7% CO(2). During wakefulness, SB-334867 caused a 30% reduction of the hyperventilation induced by 7% CO(2) (mean +/- S.E.M., 135 +/- 10 ml (100 g)(-1) min(-1)) compared with vehicle (182 +/- 10 ml (100 g)(-1) min(-1)) (P < 0.01). This effect was due to both decreased tidal volume and breathing frequency. There was a much smaller, though significant, effect in sleep (9% reduction). Neither basal ventilation nor oxygen consumption was affected. The number and duration of apnoeas were similar between control and treatment periods. No effect was observed in a separate group of animals who had the microdialysis probe misplaced (peri-RTN). We conclude that projections of orexin-containing neurons to the RTN contribute, via OX(1)Rs in the region, to the hypercapnic chemoreflex control during wakefulness and to a lesser extent, non-rapid eye movement sleep.
Collapse
Affiliation(s)
- Mirela Barros Dias
- Department of Physiology, Dartmouth Medical School, Lebanon, NH 03756-0001, USA
| | | | | |
Collapse
|
36
|
|
37
|
Zhang W, Sakurai T, Fukuda Y, Kuwaki T. Orexin neuron-mediated skeletal muscle vasodilation and shift of baroreflex during defense response in mice. Am J Physiol Regul Integr Comp Physiol 2006; 290:R1654-63. [PMID: 16410401 DOI: 10.1152/ajpregu.00704.2005] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that some features of the defense response, such as increases in arterial blood pressure (AP), heart rate (HR), and ventilation were attenuated in prepro-orexin knockout (ORX-KO) mice. Here, we examined whether the same was true in orexin neuron-ablated [orexin/ataxin-3 transgenic mice (ORX/ATX-Tg)] mice. In addition, we examined other features of the defense response: skeletal muscular vasodilation and shift of baroreceptor reflex. In both anesthetized and conscious conditions, basal AP in ORX/ATX-Tg mice was significantly lower by ∼20 mmHg than in wild-type (WT) controls, as was the case in ORX-KO mice. The difference in AP disappeared after treatment with an α-blocker but not with a β-blocker, indicating lower sympathetic vasoconstrictor outflow. Stimulation of the perifornical area (PFA) in urethane-anesthetized ORX/ATX-Tg mice elicited smaller and shorter-lasting increases in AP, HR, and ventilation, and skeletal muscle vasodilation than in WT controls. In addition, air jet stress-induced elevations of AP and HR were attenuated in conscious ORX/ATX-Tg mice. After pretreatment with a β-blocker, atenolol, stimulation of PFA suppressed phenylephrine (50 μg/kg iv)-induced bradycardia (ΔHR = −360 ± 29 beats/min without PFA stimulation vs. −166 ± 26 during stimulation) in WT. This demonstrated the resetting of the baroreflex. In ORX/ATX-Tg mice, however, no significant suppression was observed (−355 ± 16 without stimulation vs. −300 ± 30 during stimulation). The present study provided further support for our hypothesis that orexin-containing neurons in PFA play a role as a master switch to activate multiple efferent pathways of the defense response and also operate as a regulator of basal AP.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Molecular and Integrative Physiology, Chiba University Graduate School of Medicine, 1-8-1 Chuo-ku, Chiba 260-8670, Japan
| | | | | | | |
Collapse
|
38
|
Wang JJ, Chen YH, Li KY, Sun FY. Differential sensitivity of GABAergic and glycinergic inputs to orexin-A in preganglionic cardiac vagal neurons of newborn rats. Acta Pharmacol Sin 2005; 26:1442-7. [PMID: 16297341 DOI: 10.1111/j.1745-7254.2005.00231.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To test the effect of orexin-A (hypocretin-1), a neuropeptide synthesized in the lateral hypothalamus and the perifornical area, on the glycinergic inputs and the GABAergic inputs of cardiac vagal neurons (CVN). METHODS The effects of orexin-A at three concentrations (20 nmol/L, 100 nmol/L, 500 nmol/L) on the glycinergic inputs and the GABAergic inputs were investigated by using retrograde fluorescent labeling of cardiac neurons (CVN) in the nucleus ambiguus (NA) and the voltage patch-clamp technique. RESULTS Orexin-A dose-dependently increased the frequency of both the glycinergic and the GABAergic spontaneous inhibitory postsynaptic currents (sIPSC). However, at a lower concentration (20 nmol/L) of orexin-A, although the frequency of the glycinergic sIPSC was significantly increased, the frequency of the GABAergic sIPSC was not significantly changed. CONCLUSION The glycinergic inputs and the GABAergic inputs have different sensitivities to orexin-A, which suggests that the two kinds of inhibitory inputs might play different roles in the synaptic control of cardiac vagal functions.
Collapse
Affiliation(s)
- Ji-Jiang Wang
- National Key Laboratory of Medical Neurobiology, Fudan University Shanghai Medical College, Shanghai 200032, China.
| | | | | | | |
Collapse
|
39
|
Baumann CR, Bassetti CL. Hypocretins (orexins): clinical impact of the discovery of a neurotransmitter. Sleep Med Rev 2005; 9:253-68. [PMID: 15979356 DOI: 10.1016/j.smrv.2005.01.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hypothalamic excitatory hypocretin (orexin) neurons have been discovered in 1998 and found to have widespread projections to basal forebrain, monoaminergic and cholinergic brainstem, and spinal cord regions. The hypocretin system is influenced both neuronally (e.g. suprachiasmatic nucleus, GABAergic, cholinergic and aminergic brainstem nuclei) as well as metabolically (e.g. glucose, ghrelin, and leptin). Physiologically the hypocretin system has been implicated in the regulation of behaviours that are associated with wakefulness, locomotion, and feeding. A role in REM sleep, neuroendocrine, autonomic and metabolic functions has also been suggested. Pathophysiologically a deficient hypocretin neurotransmission has been found in human narcolepsy and (engineered) animal models of the disorder. Different mechanisms are involved including (1) degeneration of hypocretin neurons (mice), (2) hypocretin ligand deficiency (humans, mice, dogs), (3) hypocretin receptor deficiency (mice, dogs). Reports of low hypocretin-1 cerebrospinal fluid levels in neurologic conditions (e.g. Guillain-Barré syndrome, traumatic brain injury, hypothalamic lesions) with and without sleep-wake disturbances and, on the other hand, observations of normal levels in about 11% of narcoleptics raise questions about the exact nature and pathophysiological base of the link between hypocretin deficiency and clinical manifestations in human narcolepsy.
Collapse
Affiliation(s)
- Christian R Baumann
- Neurologische Klinik, Universitätsspital Zürich, Frauenklinikstrasse 26, CH-8091 Zürich, Switzerland
| | | |
Collapse
|
40
|
Young JK, Wu M, Manaye KF, Kc P, Allard JS, Mack SO, Haxhiu MA. Orexin stimulates breathing via medullary and spinal pathways. J Appl Physiol (1985) 2005; 98:1387-95. [PMID: 15557013 DOI: 10.1152/japplphysiol.00914.2004] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A central neuronal network that regulates respiration may include hypothalamic neurons that produce orexin, a peptide that influences sleep and arousal. In these experiments, we investigated 1) projections of orexin-containing neurons to the pre-Bötzinger region of the rostral ventrolateral medulla that regulates rhythmic breathing and to phrenic motoneurons that innervate the diaphragm; 2) the presence of orexin A receptors in the pre-Bötzinger region and in phrenic motoneurons; and 3) physiological effects of orexin administered into the pre-Bötzinger region and phrenic nuclei at the C3–C4 levels. We found orexin-containing fibers within the pre-Bötzinger complex. However, only 0.5% of orexin-containing neurons projected to the pre-Bötzinger region, whereas 2.9% of orexin-containing neurons innervated the phrenic nucleus. Neurons of the pre-Bötzinger region and phrenic nucleus stained for orexin receptors, and activation of orexin receptors by microperfusion of orexin in either site produced a dose-dependent, significant ( P < 0.05) increase in diaphragm electromyographic activity. These data indicate that orexin regulates respiratory activity and may have a role in the pathophysiology of sleep-related respiratory disorders.
Collapse
Affiliation(s)
- John K Young
- Dept. of Anatomy, Howard Univ. College of Medicine, 520 W St., NW, Washington, DC 20059, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Berthoud HR, Patterson LM, Sutton GM, Morrison C, Zheng H. Orexin inputs to caudal raphé neurons involved in thermal, cardiovascular, and gastrointestinal regulation. Histochem Cell Biol 2005; 123:147-56. [PMID: 15742197 DOI: 10.1007/s00418-005-0761-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2004] [Indexed: 02/02/2023]
Abstract
Orexin-expressing neurons in the lateral hypothalamus with their wide projections throughout the brain are important for the regulation of sleep and wakefulness, ingestive behavior, and the coordination of these behaviors in the environmental context. To further identify downstream effector targets of the orexin system, we examined in detail orexin-A innervation of the caudal raphe nuclei in the medulla, known to harbor sympathetic preganglionic motor neurons involved in thermal, cardiovascular, and gastrointestinal regulation. All three components of the caudal raphe nuclei, raphe pallidus, raphe obscurus, and parapyramidal nucleus, are innervated by orexin-A-immunoreactive fibers. Using confocal microscopy, we demonstrate close anatomical appositions between varicose orexin-A immunoreactive axon profiles and sympathetic premotor neurons identified with either a transneuronal retrograde pseudorabies virus tracer injected into the interscapular brown fat pads, or with in situ hybridization of pro-TRH mRNA. Furthermore, orexin-A injected into the fourth ventricle induced c-Fos expression in the raphe pallidus and parapyramidal nucleus. These findings suggest that orexin neurons in the hypothalamus can modulate brown fat thermogenesis, cardiovascular, and gastrointestinal functions by acting directly on neurons in the caudal raphe nuclei, and support the idea that orexin's simultaneous stimulation of food intake and sympathetic activity might have evolved as a mechanism to stay alert while foraging.
Collapse
Affiliation(s)
- Hans-Rudolf Berthoud
- Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA.
| | | | | | | | | |
Collapse
|
42
|
Zheng H, Patterson LM, Berthoud HR. Orexin-A projections to the caudal medulla and orexin-induced c-Fos expression, food intake, and autonomic function. J Comp Neurol 2005; 485:127-42. [PMID: 15776447 DOI: 10.1002/cne.20515] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Orexin-expressing neurons in the hypothalamus project throughout the neuraxis and are involved in regulation of the sleep/wake cycle, food intake, and autonomic functions. Here we specifically analyze the anatomical organization of orexin projections to the dorsal vagal complex (DVC) and raphe pallidus and effects on ingestive behavior and autonomic functions of local orexin-A administration in nonanesthetized rats. Retrograde tracing experiments revealed that as many as 20% of hypothalamic orexin neurons project to the DVC, where they form straight varicose axon profiles, some of which are in close anatomical apposition with tyrosine hydroxylase (TH)-, glucagon-like peptide-1-, gamma-aminobutyric acid-, and nitric oxide synthase-immunoreactive neurons in a nonselective manner. Similar contacts were frequently observed with neurons of the nucleus of the solitary tract whose activation by gastrointestinal food stimuli was demonstrated by the expression of nuclear c-Fos immunoreactivity. Orexin-A administration to the fourth ventricle induced significant Fos-expression throughout the DVC compared with saline control injections, with about 20-25% of TH-ir neurons among the stimulated ones. Fourth ventricular orexin injections also significantly stimulated chow and water intake in nonfood-deprived rats. Direct bilateral injections of orexin into the DVC increased intake of palatable high-fat pellets. Orexin-ir fibers also innervated raphe pallidus. Fourth ventricular orexin-A (1 nmol) activated Fos expression in the raphe pallidus and C1/A1 catecholaminergic neurons in the ventral medulla and increased body temperature, heart rate, and locomotor activity. The results confirm that hypothalamomedullary orexin projections are involved in a variety of physiological functions, including ingestive behavior and sympathetic outflow.
Collapse
Affiliation(s)
- Huiyuan Zheng
- Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana 70808, USA
| | | | | |
Collapse
|
43
|
|