1
|
Laitano O, Oki K, Charkoudian N. Factors Contributing to Heat Tolerance in Humans and Experimental Models. Physiology (Bethesda) 2025; 40:0. [PMID: 39189870 DOI: 10.1152/physiol.00028.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/25/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
Understanding physiological mechanisms of tolerance to heat exposure, and potential ways to improve such tolerance, is increasingly important in the context of ongoing climate change. We discuss the concept of heat tolerance in humans and experimental models (primarily rodents), including intracellular mechanisms and improvements in tolerance with heat acclimation.
Collapse
Affiliation(s)
- Orlando Laitano
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Kentaro Oki
- Thermal and Mountain Medicine Division, United States Army Research Institute for Environmental Medicine (USARIEM), Natick, Massachusetts, United States
| | - Nisha Charkoudian
- Thermal and Mountain Medicine Division, United States Army Research Institute for Environmental Medicine (USARIEM), Natick, Massachusetts, United States
| |
Collapse
|
2
|
Ban J, Jung J, Shim K, Kang D. Comparison of selenium-mediated regulation of heat shock protein and inflammation in-vitro and in-ovo for heat resistance enhancement in broiler. Poult Sci 2024; 103:104271. [PMID: 39265516 PMCID: PMC11416588 DOI: 10.1016/j.psj.2024.104271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/14/2024] Open
Abstract
Selenium is a heat-stress-reducing substance that improves heat resistance and is being studied for its effective application in the broiler industry. However, research on feed additives is labor-intensive and time-consuming because of the need for feeding experiments. We aimed to compare the effects of selenium under heat stress in vitro and in ovo, specifically examining the gene expression of heat shock proteins (HSP) and inflammatory markers. Two groups were included in the in-vitro study: in-vitro control (TC; selenium 0 μg/ml) and in-vitro selenium (TS; selenium 5 μg/ml). The satellite cells were cultured at 42°C for 48 h after selenium treatment. The in-ovo study comprised 4 groups: in-ovo control and in-ovo selenium 1-3 (OC, OS1, OS2, and OS3; selenium 2.5, 5, and 10 μg/egg, respectively). Selenium was injected on the 18th day after hatching, and heat treatment was performed at 32-34°C from the 14th to the 21st day after hatching, and the leg muscles of the chicks were collected on the 21st day. The gene expression of heat shock proteins (HSP), caspase3, nuclear factor kappa light-chain enhancer of activated B cells (NF-kB), and IL-8 was analyzed in in-vitro and in-ovo experiments, respectively. In-vitro results showed significant increases in HSP90, HSP60, and HSP40 in TS compared to TC, with a significant decrease in HSP70. In the in-ovo study, HSP70, caspase3, NF-kB and IL-8 were significantly increased in OS1. HSP90, HSP60, HSP40, HSP27 and NF-kB were significantly decreased in in-ovo OS2 compared to in-vitro TS, implying a trend in ratio compared to control. Selenium appeared to enhance heat resistance in-vitro and in-ovo by modulating HSPs and inflammation. However, differences in mRNA expression were observed depending on the concentration of selenium. These findings suggest that selenium modulates heat resistance through different mechanisms in-vitro and in-ovo, likely due to the complexity of whole-organism interactions in-ovo compared to the single-cell-type environment in-vitro. Therefore, to directly apply in-vitro results to in-ovo, a concentration comparison study for each additive is necessary.
Collapse
Affiliation(s)
- Junseok Ban
- Department of Animal Resources and Biotechnology, College of Agriculture Life Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Jonghyun Jung
- Jung P&C Institute Inc., Yongin 16951, Republic of Korea
| | - Kwanseob Shim
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea; Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Darae Kang
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea; Institute of Agricultural Science and Technology, Jeonbuk 54896, Republic of Korea.
| |
Collapse
|
3
|
Chen J, Ding C, Cao J, Tong H, Chen Y. Heat stress combined with lipopolysaccharide induces pulmonary microvascular endothelial cell glycocalyx inflammatory damage in vitro. Immun Inflamm Dis 2023; 11:e1034. [PMID: 37904703 PMCID: PMC10552074 DOI: 10.1002/iid3.1034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/29/2023] [Accepted: 09/15/2023] [Indexed: 11/01/2023] Open
Abstract
Heat stroke is a life-threatening disease with high mortality and complications. Endothelial glycocalyx (EGCX) is essential for maintaining endothelial cell structure and function as well as preventing the adhesion of inflammatory cells. Potential relationship that underlies the imbalance in inflammation and coagulation remains elusive. Moreover, the role of EGCX in heat stroke-induced organ injury remained unclear. Therefore, the current study aimed to illustrate if EGCX aggravates apoptosis, inflammation, and oxidative damage in human pulmonary microvascular endothelial cells (HPMEC). Heat stress and lipopolysaccharide (LPS) were employed to construct in vitro models to study the changes of glycocalyx structure and function, as well as levels of heparansulfate proteoglycan (HSPG), syndecan-1 (SDC-1), heparansulfate (HS), tumor necrosis factor-α (TNF-α), interleukin (IL)-6, Von Willebrand factor (vWF), endothelin-1 (ET-1), occludin, E-selectin, vascular cell adhesion molecule-1 (VCAM-1), and reactive oxygen species (ROS). Here, we showed that heat stress and LPS devastated EGCX structure, activated EGCX degradation, and triggered oxidative damage and apoptosis in HPMEC. Stimulation of heat stress and LPS decreased expression of HSPG, increased levels of SDC-1 and HS in culture supernatant, promoted the production and release of proinflammation cytokines (TNF-α and IL-6,) and coagulative factors (vWF and ET-1) in HPMEC. Furthermore, Expressions of E-selection, VCAM-1, and ROS were upregulated, while that of occludin was downregulated. These changes could be deteriorated by heparanase, whereas they meliorated by unfractionated heparin. This study indicated that EGCX may contribute to apoptosis and heat stroke-induced coagulopathy, and these effects may have been due to the decrease in the shedding of EGCX.
Collapse
Affiliation(s)
- Jiadi Chen
- Department of Intensive Care Medicine First WardThe First Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongChina
| | - Chengjia Ding
- Department of Critical Care Medicine, Binhaiwan Central Hospital of DongguanDongguan Hospital Affiliated to Jinan UniversityDongguanGuangdongChina
- The Key Laboratory for Prevention and Treatment of Critical Illness in Dongguan CityDongguanGuangdongChina
| | - Jingjing Cao
- Department of Critical Care Medicine, Binhaiwan Central Hospital of DongguanDongguan Hospital Affiliated to Jinan UniversityDongguanGuangdongChina
- The Key Laboratory for Prevention and Treatment of Critical Illness in Dongguan CityDongguanGuangdongChina
| | - Huasheng Tong
- Department of Emergency MedicineGeneral Hospital of Southern Theatre Command of PLAGuangzhouGuangdongChina
| | - Yi Chen
- Department of Critical Care Medicine, Binhaiwan Central Hospital of DongguanDongguan Hospital Affiliated to Jinan UniversityDongguanGuangdongChina
- The Key Laboratory for Prevention and Treatment of Critical Illness in Dongguan CityDongguanGuangdongChina
| |
Collapse
|
4
|
Kim WS, Daddam JR, Keng BH, Kim J, Kim J. Heat shock protein 27 regulates myogenic and self-renewal potential of bovine satellite cells under heat stress. J Anim Sci 2023; 101:skad303. [PMID: 37688555 PMCID: PMC10629447 DOI: 10.1093/jas/skad303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/07/2023] [Indexed: 09/11/2023] Open
Abstract
While satellite cells play a key role in the hypertrophy, repair, and regeneration of skeletal muscles, their response to heat exposure remains poorly understood, particularly in beef cattle. This study aimed to investigate the changes in the transcriptome, proteome, and proliferation capability of bovine satellite cells in response to different levels of heat stress (HS) and exposure times. Satellite cells were isolated from 3-mo-old Holstein bulls (body weight: 77.10 ± 2.02 kg) and subjected to incubation under various temperature conditions: 1) control (38 °C; CON), 2) moderate (39.5 °C; MHS), and extreme (41 °C; EHS) for different durations ranging from 0 to 48 h. Following 3 h of exposure to extreme heat (EHS), satellite cells exhibited significantly increased gene expression and protein abundance of heat shock proteins (HSPs; HSP70, HSP90, HSP20) and paired box gene 7 (Pax7; P < 0.05). HSP27 expression peaked at 3 h of EHS and remained elevated until 24 h of exposure (P < 0.05). In contrast, the expression of myogenic factor 5 (Myf5) and paired box gene 3 (Pax3) was decreased by EHS compared to the control at 3 h of exposure (P < 0.05). Notably, the introduction of HSP27 small interference RNA (siRNA) transfection restored Myf5 expression to control levels, suggesting an association between HSP27 and Myf5 in regulating the self-renewal properties of satellite cells upon heat exposure. Immunoprecipitation experiments further confirmed the direct binding of HSP27 to Myf5, supporting its role as a molecular chaperone for Myf5. Protein-protein docking algorithms predicted a high probability of HSP27-Myf5 interaction as well. These findings indicate that extreme heat exposure intrinsically promotes the accumulation of HSPs and modulates the early myogenic regulatory factors in satellite cells. Moreover, HSP27 acts as a molecular chaperone by binding to Myf5, thereby regulating the division or differentiation of satellite cells in response to HS. The results of this study provide a better understanding of muscle physiology in heat-stressed cells, while unraveling the intricate molecular mechanisms that underlie the HS response in satellite cells.
Collapse
Affiliation(s)
- Won Seob Kim
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Jayasimha R Daddam
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Boon Hong Keng
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Jaehwan Kim
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Jongkyoo Kim
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
- Animal Science and Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
5
|
Gibson OR, Astin R, Puthucheary Z, Yadav S, Preston S, Gavins FNE, González-Alonso J. Skeletal muscle angiogenic, regulatory, and heat shock protein responses to prolonged passive hyperthermia of the human lower limb. Am J Physiol Regul Integr Comp Physiol 2023; 324:R1-R14. [PMID: 36409025 DOI: 10.1152/ajpregu.00320.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Passive hyperthermia induces a range of physiological responses including augmenting skeletal muscle mRNA expression. This experiment aimed to examine gene and protein responses to prolonged passive leg hyperthermia. Seven young participants underwent 3 h of resting unilateral leg heating (HEAT) followed by a further 3 h of rest, with the contralateral leg serving as an unheated control (CONT). Muscle biopsies were taken at baseline (0 h), and at 1.5, 3, 4, and 6 h in HEAT and 0 and 6 h in CONT to assess changes in selected mRNA expression via qRT-PCR, and HSP72 and VEGFα concentration via ELISA. Muscle temperature (Tm) increased in HEAT plateauing from 1.5 to 3 h (+3.5 ± 1.5°C from 34.2 ± 1.2°C baseline value; P < 0.001), returning to baseline at 6 h. No change occurred in CONT. Endothelial nitric oxide synthase (eNOS), Forkhead box O1 (FOXO-1), Hsp72, and VEGFα mRNA increased in HEAT (P < 0.05); however, post hoc analysis identified that only Hsp72 mRNA statistically increased (at 4 h vs. baseline). When peak change during HEAT was calculated angiopoietin 2 (ANGPT-2) decreased (-0.4 ± 0.2-fold), and C-C motif chemokine ligand 2 (CCL2) (+2.9 ± 1.6-fold), FOXO-1 (+6.2 ± 4.4-fold), Hsp27 (+2.9 ± 1.7-fold), Hsp72 (+8.5 ± 3.5-fold), Hsp90α (+4.6 ± 3.7-fold), and VEGFα (+5.9 ± 3.1-fold) increased from baseline (all P < 0.05). At 6 h Tm were not different between limbs (P = 0.582; CONT = 32.5 ± 1.6°C, HEAT = 34.3 ± 1.2°C), and only ANGPT-2 (P = 0.031; -1.3 ± 1.4-fold) and VEGFα (P = 0.030; 1.1 ± 1.2-fold) differed between HEAT and CONT. No change in VEGFα or HSP72 protein concentration were observed over time; however, peak change in VEGFα did increase (P < 0.05) in HEAT (+140 ± 184 pg·mL-1) versus CONT (+7 ± 86 pg·mL-1). Passive hyperthermia transiently augmented ANGPT-2, CCL2, eNOS, FOXO-1, Hsp27, Hsp72, Hsp90α and VEGFα mRNA, and VEGFα protein.
Collapse
Affiliation(s)
- Oliver R Gibson
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom.,Centre for Physical Activity in Health and Disease, Brunel University London, Uxbridge, United Kingdom.,Division of Sport, Health and Exercise Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Rónan Astin
- Department of Medicine, Centre for Human Health and Performance, University College London, London, United Kingdom
| | - Zudin Puthucheary
- Adult Critical Care Unit, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Shreya Yadav
- Centre for Inflammation Research and Translational Medicine, Brunel University London, Uxbridge, United Kingdom.,Division of Biosciences, Brunel University London, Uxbridge, United Kingdom
| | - Sophie Preston
- Centre for Inflammation Research and Translational Medicine, Brunel University London, Uxbridge, United Kingdom.,Division of Biosciences, Brunel University London, Uxbridge, United Kingdom
| | - Felicity N E Gavins
- Centre for Inflammation Research and Translational Medicine, Brunel University London, Uxbridge, United Kingdom.,Division of Biosciences, Brunel University London, Uxbridge, United Kingdom
| | - José González-Alonso
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom.,Division of Sport, Health and Exercise Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
6
|
Murray KO, Clanton TL, Horowitz M. Epigenetic responses to heat: From adaptation to maladaptation. Exp Physiol 2022; 107:1144-1158. [PMID: 35413138 PMCID: PMC9529784 DOI: 10.1113/ep090143] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/25/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the topic of this review? This review outlines the history of research on epigenetic adaptations to heat exposure. The perspective taken is that adaptations reflect properties of hormesis, whereby low, repeated doses of heat induce adaptation (acclimation/acclimatization); whereas brief, life-threatening exposures can induce maladaptive responses. What advances does it highlight? The epigenetic mechanisms underlying acclimation/acclimatization comprise specific molecular programmes on histones that regulate heat shock proteins transcriptionally and protect the organism from subsequent heat exposures, even after long delays. The epigenetic signalling underlying maladaptive responses might rely, in part, on extensive changes in DNA methylation that are sustained over time and might contribute to later health challenges. ABSTRACT Epigenetics plays a strong role in molecular adaptations to heat by producing a molecular memory of past environmental exposures. Moderate heat, over long periods of time, induces an 'adaptive' epigenetic memory, resulting in a condition of 'resilience' to future heat exposures or cross-tolerance to other forms of toxic stress. In contrast, intense, life-threatening heat exposures, such as severe heat stroke, can result in a 'maladaptive' epigenetic memory that can place an organism at risk of later health complications. These cellular memories are coded by post-translational modifications of histones on the nucleosomes and/or by changes in DNA methylation. They operate by inducing changes in the level of gene transcription and therefore phenotype. The adaptive response to heat acclimation functions, in part, by facilitating transcription of essential heat shock proteins and exhibits a biphasic short programme (maintaining DNA integrity, followed by a long-term consolidation). The latter accelerates acclimation responses after de-acclimation. Although less studied, the maladaptive responses to heat stroke appear to be coded in long-lasting changes in DNA methylation near the promoter region of genes involved with basic cell function. Whether these memories are also encoded in histone modifications is not yet known. There is considerable evidence that both adaptive and maladaptive epigenetic responses to heat can be inherited, although most evidence comes from lower organisms. Future challenges include understanding the signalling mechanisms responsible and discovering new ways to promote adaptive responses while suppressing maladaptive responses to heat, as all life forms adapt to life on a warming planet.
Collapse
Affiliation(s)
- Kevin O. Murray
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Thomas L. Clanton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Michal Horowitz
- Laboratory of Environmental Physiology, Faculty of Dentistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
7
|
Kim SH, Ramos SC, Valencia RA, Cho YI, Lee SS. Heat Stress: Effects on Rumen Microbes and Host Physiology, and Strategies to Alleviate the Negative Impacts on Lactating Dairy Cows. Front Microbiol 2022; 13:804562. [PMID: 35295316 PMCID: PMC8919045 DOI: 10.3389/fmicb.2022.804562] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Heat stress (HS) in dairy cows causes considerable losses in the dairy industry worldwide due to reduced animal performance, increased cases of metabolic disorders, altered rumen microbiome, and other health problems. Cows subjected to HS showed decreased ruminal pH and acetate concentration and an increased concentration of ruminal lactate. Heat-stressed cows have an increased abundance of lactate-producing bacteria such as Streptococcus and unclassified Enterobacteriaceae, and soluble carbohydrate utilizers such as Ruminobacter, Treponema, and unclassified Bacteroidaceae. Cellulolytic bacteria, especially Fibrobacteres, increase during HS due to a high heat resistance. Actinobacteria and Acetobacter, both acetate-producing bacteria, decreased under HS conditions. Rumen fermentation functions, blood parameters, and metabolites are also affected by the physiological responses of the animal during HS. Isoleucine, methionine, myo-inositol, lactate, tryptophan, tyrosine, 1,5-anhydro-D-sorbitol, 3-phenylpropionic acid, urea, and valine decreased under these conditions. These responses affect feed consumption and production efficiency in milk yield, growth rate, and reproduction. At the cellular level, activation of heat shock transcription factor (HSF) (located throughout the nucleus and the cytoplasm) and increased expression of heat shock proteins (HSPs) are the usual responses to cope with homeostasis. HSP70 is the most abundant HSP family responsible for the environmental stress response, while HSF1 is essential for increasing cell temperature. The expression of bovine lymphocyte antigen and histocompatibility complex class II (DRB3) is downregulated during HS, while HSP90 beta I and HSP70 1A are upregulated. HS increases the expression of the cytosolic arginine sensor for mTORC1 subunits 1 and 2, phosphorylation of mammalian target of rapamycin and decreases the phosphorylation of Janus kinase-2 (a signal transducer and activator of transcription factor-5). These changes in physiology, metabolism, and microbiomes in heat-stressed dairy cows require urgent alleviation strategies. Establishing control measures to combat HS can be facilitated by elucidating mechanisms, including proper HS assessment, access to cooling facilities, special feeding and care, efficient water systems, and supplementation with vitamins, minerals, plant extracts, and probiotics. Understanding the relationship between HS and the rumen microbiome could contribute to the development of manipulation strategies to alleviate the influence of HS. This review comprehensively elaborates on the impact of HS in dairy cows and introduces different alleviation strategies to minimize HS.
Collapse
Affiliation(s)
- Seon Ho Kim
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - Sonny C. Ramos
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - Raniel A. Valencia
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
- Department of Animal Science, College of Agriculture, Central Luzon State University, Science City of Muñoz, Philippines
| | - Yong Il Cho
- Animal Disease and Diagnostic Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - Sang Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| |
Collapse
|
8
|
Climate Resilience in Small Ruminant and Immune system: an old alliance in the new sustainability context. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Caldwell AR, Oki K, Ward SM, Ward JA, Mayer TA, Plamper ML, King MA, Leon LR. Impact of successive exertional heat injuries on thermoregulatory and systemic inflammatory responses in mice. J Appl Physiol (1985) 2021; 131:1469-1485. [PMID: 34528459 DOI: 10.1152/japplphysiol.00160.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The purpose of the study was to determine if repeated exertional heat injuries (EHIs) worsen the inflammatory response. We assessed the impact of a single EHI bout (EHI0) or two separate EHI episodes separated by 1 (EHI1), 3 (EHI3), and 7 (EHI7) days in male C57BL/6J mice (n = 236). To induce EHI, mice underwent a forced running protocol until loss of consciousness or core temperature reached ≥ 42.7°C. Blood and tissue samples were obtained 30 min, 3 h, 1 day, or 7 days after the EHI. We observed that mice undergoing repeated EHI (EHI1, EHI3, and EHI7) had longer running distances before collapse (∼528 m), tolerated higher core temperatures (∼0.18°C higher) before collapse, and had higher minimum core temperature (indicative of injury severity) during recovery relative to EHI0 group (∼2.18°C higher; all P < 0.05). Heat resilience was most pronounced when latency was shortest between EHI episodes (i.e., thermal load and running duration highest in EHI1), suggesting the response diminishes with longer recoveries between EHI events. Furthermore, mice experiencing a second EHI exhibited increased serum and liver HSP70, and lower corticosterone, FABP2, MIP-1β, MIP-2, and IP-10 relative to mice experiencing a single EHI typically at 30 min to 3 h after EHI. Our findings indicate that an EHI event may initiate some adaptive processes that provide acute heat resilience to subsequent EHI conditions. NEW & NOTEWORTHY Mice undergoing repeated exertional heat injuries, within 1 wk of an initial heat injury, appear to have some protective adaptations. During the second exertional heat injury, mice were able to run longer and sustain higher body temperatures before collapse. Despite this, the mice undergoing a second exertional heat injury were more resilient to the heat as evidenced by attenuated minimum body temperature, higher HPS70 (serum and liver), lower corticosterone, and lower FABP2.
Collapse
Affiliation(s)
- Aaron R Caldwell
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts.,Oak Ridge Institute of Science and Education, Oak Ridge, Tennessee
| | - Kentaro Oki
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Shauna M Ward
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Jermaine A Ward
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Thomas A Mayer
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts.,Oak Ridge Institute of Science and Education, Oak Ridge, Tennessee
| | - Mark L Plamper
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Michelle A King
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Lisa R Leon
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
10
|
Zhang W, Dong Y. Membrane lipid metabolism, heat shock response and energy costs mediate the interaction between acclimatization and heat-hardening response in the razor clam Sinonovacula constricta. J Exp Biol 2021; 224:272389. [PMID: 34499178 DOI: 10.1242/jeb.243031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/06/2021] [Indexed: 12/29/2022]
Abstract
Thermal plasticity on different time scales, including acclimation/acclimatization and heat-hardening response - a rapid adjustment for thermal tolerance after non-lethal thermal stress, can interact to improve the resilience of organisms to thermal stress. However, little is known about physiological mechanisms mediating this interaction. To investigate the underpinnings of heat-hardening responses after acclimatization in warm seasons, we measured thermal tolerance plasticity, and compared transcriptomic and metabolomic changes after heat hardening at 33 or 37°C followed by recovery of 3 or 24 h in an intertidal bivalve Sinonovacula constricta. Clams showed explicit heat-hardening responses after acclimatization in a warm season. The higher inducing temperature (37°C) caused less effective heat-hardening effects than the inducing temperature that was closer to the seasonal maximum temperature (33°C). Metabolomic analysis highlighted the elevated content of glycerophospholipids in all heat-hardened clams, which may help to maintain the structure and function of the membrane. Heat shock proteins (HSPs) tended to be upregulated after heat hardening at 37°C but not at 33°C, indicating that there was no complete dependency of heat-hardening effects on upregulated HSPs. Enhanced energy metabolism and decreased energy reserves were observed after heat hardening at 37°C, suggesting more energy costs during exposure to a higher inducing temperature, which may restrict heat-hardening effects. These results highlight the mediating role of membrane lipid metabolism, heat shock responses and energy costs in the interaction between heat-hardening response and seasonal acclimatization, and contribute to the mechanistic understanding of evolutionary change and thermal plasticity during global climate change.
Collapse
Affiliation(s)
- Wenyi Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.,Institute of Animal Genetic Resource, Nanjing Normal University, Nanjing 210046, China
| | - Yunwei Dong
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| |
Collapse
|
11
|
Cao Y, Liu Y, Dong Q, Wang T, Niu C. Alterations in the gut microbiome and metabolic profile in rats acclimated to high environmental temperature. Microb Biotechnol 2021; 15:276-288. [PMID: 33620148 PMCID: PMC8719808 DOI: 10.1111/1751-7915.13772] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 12/29/2022] Open
Abstract
Heat acclimation (HA) is the best strategy to improve heat stress tolerance by inducing positive physiological adaptations. Evidence indicates that the gut microbiome plays a fundamental role in the development of HA, and modulation of gut microbiota can improve tolerance to heat exposure and decrease the risks of heat illness. In this study, for the first time, we applied 16S rRNA gene sequencing and untargeted liquid chromatography–mass spectrometry (LC‐MS) metabolomics to explore variations in the gut microbiome and faecal metabolic profiles in rats after HA. The gut microbiota of HA subjects exhibited higher diversity and richer microbes. HA altered the gut microbiota composition with significant increases in the genera Lactobacillus (a major probiotic) and Oscillospira alongside significant decreases in the genera Blautia and Allobaculum. The faecal metabolome was also significantly changed after HA, and among the 13 perturbed metabolites, (S)‐AL 8810 and celastrol were increased. Moreover, the two increased genera were positively correlated with the two upregulated metabolites and negatively correlated with the other 11 downregulated metabolites, while the correlations between the two decreased genera and the upregulated/downregulated metabolites were completely contrary. In summary, both the structure of the gut microbiome community and the faecal metabolome were improved after 28 days of HA. These findings provide novel insights regarding the improvement of the gut microbiome and its functions as a potential mechanism by which HA confers protection against heat stress.
Collapse
Affiliation(s)
- Yang Cao
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Ying Liu
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Qingyang Dong
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Tao Wang
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Chao Niu
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| |
Collapse
|
12
|
Belity T, Hoffman JR, Horowitz M, Epstein Y, Bruchim Y, Cohen H. β-Alanine Supplementation Attenuates the Neurophysiological Response in Animals Exposed to an Acute Heat Stress. J Diet Suppl 2021; 19:443-458. [PMID: 33615958 DOI: 10.1080/19390211.2021.1889734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The effect of 30 days of β-alanine supplementation on neurophysiological responses of animals exposed to an acute heat stress (HS) was examined. Animals were randomized to one of three groups; exposed to HS (120 min at 40-41 °C) and fed a normal diet (EXP; n = 12); EXP and supplemented with β-alanine (EXP + BA; n = 10); or not exposed (CTL; n = 10). Hippocampal (CA1, CA3 and DG) and hypothalamic (PVN) immunoreactive (ir) cell numbers of COX2, IBA-1, BDNF, NPY and HSP70 were analyzed. Three animals in EXP and one in EXP-BA did not survive the HS, however no significant difference (p = 0.146) was noted in survival rate in EXP + BA. The % change in rectal temperature was significantly lower (p = 0.04) in EXP + BA than EXP. Elevations (p's < 0.05) in COX-2, IBA-1 and HSP70 ir-cell numbers were noted in animals exposed to HS in all subregions. COX-2 ir-cell numbers were attenuated for EXP + BA in CA1 (p = 0.02) and PVN (p = 0.015) compared to EXP. No difference in COX-2 ir-cell numbers was noted between CTL and EXP + BA at CA1. BDNF-ir cell numbers in CA1, DG and PVN were reduced (p's < 0.05) during HS compared to CTL. No difference in BDNF-ir cell numbers was noted between EXP + BA and CTL in CA3 and PVN. NPY-ir density was reduced in exposed animals in all subregions, but NPY-ir density for EXP-BA was greater than EXP in CA3 (p < 0.001) and PVN (p = 0.04). β-Alanine supplementation attenuated the thermoregulatory and inflammatory responses and maintained neurotrophin and neuropeptide levels during acute HS. Further research is necessary to determine whether β-alanine supplementation can increase survival rate during a heat stress.
Collapse
Affiliation(s)
- Tal Belity
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jay R Hoffman
- Department of Physical Therapy, Ariel University, Ariel, Israel
| | - Michal Horowitz
- Laboratory of Environmental Physiology, Faculty of Dental Medicine, The Hebrew University, Jerusalem, Israel
| | - Yoram Epstein
- Heller Institute of Medical Research, Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yaron Bruchim
- The Hebrew University Veterinary Teaching Hospital, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hagit Cohen
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Beer-Sheva Mental Health Center, Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
13
|
Chao CM, Chen CL, Niu KC, Lin CH, Tang LY, Lin LS, Chang CP. Hypobaric hypoxia preconditioning protects against hypothalamic neuron apoptosis in heat-exposed rats by reversing hypothalamic overexpression of matrix metalloproteinase-9 and ischemia. Int J Med Sci 2020; 17:2622-2634. [PMID: 33162790 PMCID: PMC7645337 DOI: 10.7150/ijms.47560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/24/2020] [Indexed: 12/03/2022] Open
Abstract
Background: Hypoxia-inducible factor-1α (HIF-1α), heat shock protein-72 (HSP-72), hemeoxygenase-1 (HO-1), and matrix metalloproteinase-9 (MMP-9) have been identified as potential therapeutic targets in the brain for cerebral ischemia. To elucidate their underlying mechanisms, we first aimed to ascertain whether these proteins participate in the pathogenesis of heat-induced ischemic damage to the hypothalamus of rats. Second, we investigated whether hypobaric hypoxia preconditioning (HHP) attenuates heat-induced hypothalamic ischemic/hypoxic injury by modulating these proteins in situ. Methods: Anesthetized rats treated with or without HHP were subjected to heat stress. Hypothalamic ischemic/hypoxic damage was evaluated by measuring hypothalamic levels of cerebral blood flow (CBF), partial oxygen pressure (PO2), and hypothalamic temperature via an implanted probe. Hypothalamic apoptotic neurons were counted by measuring the number of NeuN/caspase-3/DAPI triple-stained cells. Hypothalamic protein expression of HIF-1α, HSP-72, HO-1, and MMP-9 was determined biochemically. Results: Before the start of the thermal experiments, rats were subjected to 5 hours of HHP (0.66 ATA or 18.3% O2) daily for 5 consecutive days per week for 2 weeks, which led to significant loss of body weight, reduced brown adipose tissue (BAT) wet weight and decreased body temperature. The animals were then subjected to thermal studies. Twenty minutes after heat stress, heat-exposed rats not treated with HHP displayed significantly higher core and hypothalamic temperatures, hypothalamic MMP-9 levels, and numbers of hypothalamic apoptotic neurons but significantly lower mean blood pressure, hypothalamic blood flow, and PO2 values than control rats not exposed to heat. In heat-exposed rats, HHP significantly increased the hypothalamic levels of HIF-1α, HSP-72, and HO-1 but significantly alleviated body and hypothalamic hyperthermia, hypotension, hypothalamic ischemia, hypoxia, neuronal apoptosis and degeneration. Conclusions: HHP may protect against hypothalamic ischemic/hypoxic injury and overexpression of MMP-9 by upregulating the hypothalamic expression of HIF-1α, HSP-72, and HO-1 in rats subjected to heatstroke.
Collapse
Affiliation(s)
- Chien-Ming Chao
- Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan
- Department of Nursing, Min-Hwei College of Health Care Management, Tainan, Taiwan
| | - Chun-Liang Chen
- Department of Gastroenterology and General Surgery, Chi Mei Medical Hospital, Chiali, Tainan, Taiwan
| | - Ko-Chi Niu
- Department of Hyperbaric Oxygen, Chi Mei Medical Center, Tainan, Taiwan
| | - Cheng-Hsien Lin
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Ling-Yu Tang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Lieh-Sheng Lin
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
14
|
Pöhland R, Souza-Cácares MB, Datta TK, Vanselow J, Martins MIM, da Silva WAL, Cardoso CJT, Melo-Sterza FDA. Influence of long-term thermal stress on the
in vitro maturation on embryo development and Heat Shock Protein abundance in zebu cattle. Anim Reprod 2020; 17:e20190085. [PMID: 33029207 PMCID: PMC7534571 DOI: 10.1590/1984-3143-ar2019-0085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The objective of this study was to investigate the influence of long-term temperature stress during the in vitro maturation (IVM) of oocytes on the in vitro embryo production (IVP) and the abundance of HSP70 and HSP90 in zebu cattle. Viable cumulus-oocyte complexes (COCs) were incubated for 24 h at 37 °C, 38.5 °C, or 40 °C for the low-, physiological, and high-temperature stress treatments, respectively. Thereafter, they were subjected to in vitro fertilization and culture. Temperature did not affect the polar body extrusion. However, IVP was adversely affected when IVM took place at 37 °C and 40 °C. The highest abundance of HSP70 was observed in cumulus cells after maturation of COCs at 40 °C. In contrast, HSP70 was more abundant in oocytes at both 37 °C and 40 °C; however, at 40 °C, the difference to the control group (38.5 °C) was not significant. In contrast, the highest abundance of HSP90 was observed in oocytes and cumulus cells at 37 °C. It appears that HSP70 and HSP90 respond to cold and heat stress in different ways. In conclusion, moderately high (40 °C) and low (37 °C) thermal stress for 24 h during IVM is detrimental to the developmental competence of oocyte and is accompanied by changes in the abundances of HSP70 and HSP90, especially in cumulus cells.
Collapse
Affiliation(s)
- Ralf Pöhland
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | | | - Tirtha Kumar Datta
- National Dairy Research Institute, Animal Biotechnology Centre, Karnal, Haryana, India
| | - Jens Vanselow
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | | | | | | | - Fabiana de Andrade Melo-Sterza
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany.,Programa de Pós-graduação em Ciências Veterinárias, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil.,Programa de Pós-graduação em Zootecnia, Universidade Estadual de Mato Grosso do Sul, Aquidauana, MS, Brasil
| |
Collapse
|
15
|
Pallubinsky H, Phielix E, Dautzenberg B, Schaart G, Connell NJ, Wit‐Verheggen V, Havekes B, Baak MA, Schrauwen P, Marken Lichtenbelt WD. Passive exposure to heat improves glucose metabolism in overweight humans. Acta Physiol (Oxf) 2020; 229:e13488. [PMID: 32359193 PMCID: PMC7379279 DOI: 10.1111/apha.13488] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022]
Abstract
AIM Heat exposure has been indicated to positively affect glucose metabolism. An involvement of heat shock protein 72 (HSP72) in the enhancement of insulin sensitivity upon heat exposure has been previously suggested. Here, we performed an intervention study exploring the effect of passive heat acclimation (PHA) on glucose metabolism and intracellular (a) HSP72 concentrations in overweight humans. METHODS Eleven non-diabetic overweight (BMI 27-35 kg/m2 ) participants underwent 10 consecutive days of PHA (4-6 h/day, 34.4 ± 0.2°C, 22.8 ± 2.7%RH). Before and after PHA, whole-body insulin sensitivity was assessed using a one-step hyperinsulinaemic-euglycaemic clamp, skeletal muscle biopsies were taken to measure intracellular iHSP72, energy expenditure and substrate oxidation were measured using indirect calorimetry and blood samples were drawn to assess markers of metabolic health. Thermophysiological adaptations were measured during a temperature ramp protocol before and after PHA. RESULTS Despite a lack of change in iHSP72, 10 days of PHA reduced basal (9.7 ± 1.4 pre- vs 8.4 ± 2.1 μmol · kg-1 · min-1 post-PHA, P = .038) and insulin-stimulated (2.1 ± 0.9 pre- vs 1.5 ± 0.8 μmol · kg-1 · min-1 post-PHA, P = .005) endogenous glucose production (EGP) and increased insulin suppression of EGP (78.5 ± 9.7% pre- vs 83.0 ± 7.9% post-PHA, P = .028). Consistently, fasting plasma glucose (6.0 ± 0.5 pre- vs 5.8 ± 0.4 mmol/L post-PHA, P = .013) and insulin concentrations (97 ± 55 pre- vs 84 ± 49 pmol/L post-PHA, P = .026) decreased significantly. Moreover, fat oxidation increased, and free fatty acids as well as cholesterol concentrations and mean arterial pressure decreased after PHA. CONCLUSION Our results show that PHA for 10 days improves glucose metabolism and enhances fat metabolism, without changes in iHSP72. Further exploration of the therapeutic role of heat in cardio-metabolic disorders should be considered.
Collapse
Affiliation(s)
- Hannah Pallubinsky
- Department of Nutrition and Movement Sciences NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Maastricht the Netherlands
| | - Esther Phielix
- Department of Nutrition and Movement Sciences NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Maastricht the Netherlands
| | - Bas Dautzenberg
- Department of Nutrition and Movement Sciences NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Maastricht the Netherlands
| | - Gert Schaart
- Department of Nutrition and Movement Sciences NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Maastricht the Netherlands
| | - Niels J. Connell
- Department of Nutrition and Movement Sciences NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Maastricht the Netherlands
| | - Vera Wit‐Verheggen
- Department of Nutrition and Movement Sciences NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Maastricht the Netherlands
| | - Bas Havekes
- Department of Internal Medicine Division of Endocrinology Maastricht University Medical Centre+ Maastricht the Netherlands
| | - Marleen A. Baak
- Department of Human Biology NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Maastricht the Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Maastricht the Netherlands
| | - Wouter D. Marken Lichtenbelt
- Department of Nutrition and Movement Sciences NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Maastricht the Netherlands
| |
Collapse
|
16
|
Wu J, Zhang W, Li C. Recent Advances in Genetic and Epigenetic Modulation of Animal Exposure to High Temperature. Front Genet 2020; 11:653. [PMID: 32733534 PMCID: PMC7358359 DOI: 10.3389/fgene.2020.00653] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
Animals have evolved multiple systems, including genetic and epigenetic systems, to respond accordingly to heat exposure and heat acclimation. Heat exposure greatly affects immunity, changes metabolic processes, and poses a serious threat to animals. Heat acclimation is induced by repeated organism exposure to heat stress to dissipate heat. This review focuses on genetic modulation via heat shock transcription factors and calcium as two important factors and compares the changes in HSPs under heat stress and heat acclimation. Epigenetic regulation summarizes the role of HSPs in DNA methylation and histone modifications under heat stress and heat acclimation. These genetic and epigenetic modifications protect cells from thermal damage by mediating the transcriptional levels of heat-responsive genes. This review highlights recent advances in the genetic and epigenetic control of animal thermal responses and their interactions.
Collapse
Affiliation(s)
- Jiong Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Weiwei Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
17
|
Kim WS, Ghassemi Nejad J, Roh SG, Lee HG. Heat-Shock Proteins Gene Expression in Peripheral Blood Mononuclear Cells as an Indicator of Heat Stress in Beef Calves. Animals (Basel) 2020; 10:ani10050895. [PMID: 32455563 PMCID: PMC7278438 DOI: 10.3390/ani10050895] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022] Open
Abstract
Simple Summary This study explores the effects of heat stress on the expression of various heat-shock protein (HSP) genes in bovine peripheral blood mononuclear cells (PBMCs) and cell viability as an indicator of stress in beef calves. We found that heat stress inhibits cell proliferation and increases the expression of HSPs in an in vitro model. In addition, HSPs were found to regulate the physiological mechanisms of adaptation to heat stress in an in vivo model. The results showed that HSPs expression in PBMCs can be used as an indicator of heat stress (HS) in beef calves. Abstract This study was conducted to investigate the effect of HS on HSPs gene expression in bovine PBMCs of beef calves in in vitro and in vivo models. In the in vitro experiment, blood samples were collected from the jugular vein of five beef calves (age: 174.2 ± 5.20 days, BW: 145.2 ± 5.21 kg). In the in vivo experiment, sixteen Korean native male beef calves (age: 169.6 ± 4.60 days, BW: 136.9 ± 6.23 kg) were exposed to ambient temperature for seven days (22 to 24 °C, relative humidity 60%; temperature–humidity index (THI) = 68 to 70) and subsequently to the temperature and humidity corresponding to the target THI level for 21 days (HS). For PBMC isolation, blood samples were collected every three days. In the in vitro model, the cell viability was significantly decreased in HS groups compared with the control group (p = 0.015). The expression of HSP70 (p = 0.022), HSP90 (p = 0.003) and HSPB1 (p = 0.026) genes was increased in the HS group in in vitro model. In the in vivo experiment, the HSP70 gene expression was increased after sudden exposure to HS conditions (severe THI levels; THI = 88 to 90), whereas HSP90 and HSPB1 showed no differences among the THI groups (p > 0.05). However, in the severe THI group, the HSP70 gene expression returned to normal range after six days of continuous HS. In conclusion, the HSP70 gene plays a pivotal role in protecting cells from damage and is sensitive to HS in immune cells compared with other HSP genes in in vitro and in vivo models. In addition, the in vivo models suggest that calves exhibit active physiological mechanisms of adaptation to HS after six days of continuous exposure by regulating the HSP70 gene expression.
Collapse
Affiliation(s)
- Won-Seob Kim
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea; (W.-S.K.); (J.G.N.)
- Team of An Educational Program for Specialists in Global Animal Science, Brain Korea 21 Plus Project, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea
| | - Jalil Ghassemi Nejad
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea; (W.-S.K.); (J.G.N.)
- Team of An Educational Program for Specialists in Global Animal Science, Brain Korea 21 Plus Project, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea
| | - Sang-Gun Roh
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8577, Japan;
| | - Hong-Gu Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea; (W.-S.K.); (J.G.N.)
- Team of An Educational Program for Specialists in Global Animal Science, Brain Korea 21 Plus Project, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea
- Correspondence: ; Tel.: +82-02-450-0523
| |
Collapse
|
18
|
Fleischmann C, Bar-Ilan N, Horowitz M, Bruchim Y, Deuster P, Heled Y. Astaxanthin supplementation impacts the cellular HSP expression profile during passive heating. Cell Stress Chaperones 2020; 25:549-558. [PMID: 31970694 PMCID: PMC7192986 DOI: 10.1007/s12192-019-01061-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022] Open
Abstract
Astaxanthin is a powerful carotenoid antioxidant prevalent in marine organisms and approved as a food supplement. Recent studies have demonstrated Astaxanthin's beneficial attributes in various health states. Following initial reports of potential heat protective properties in Astaxanthin supplemented rats, we present here results of a novel study examining the effect of Astaxanthin supplementation on the heat shock response in rats in relation to core temperature (Tc) and the ensuing physiological strain. Two hours of heat stress at 41 °C during which rats developed their thermoregulatory hyperthermic plateau resulted in progressive increases in HSP72 and HSP27 in the Astaxanthin (Oleoresin)-treated group but not in the control (Olive oil) group. Enhanced elevation in HSPs suggests that Astaxanthin supplementation may augment the cellular stress protective response to heat stress.
Collapse
Affiliation(s)
- Chen Fleischmann
- The Institute of Military Physiology, IDF Medical Corps, Tel Hashomer, Israel.
- Heller Institute of Medical Research, Sheba Medical Center, Tel Hashomer, Israel.
- Laboratory of Environmental Physiology, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Netta Bar-Ilan
- Laboratory of Environmental Physiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Horowitz
- Laboratory of Environmental Physiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yaron Bruchim
- Laboratory of Environmental Physiology, The Hebrew University of Jerusalem, Jerusalem, Israel
- Human Performance Resource Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Patricia Deuster
- Emergency and Specialist Veterinary Center, Ben-Shemen Youth Village, Israel
| | - Yuval Heled
- Heller Institute of Medical Research, Sheba Medical Center, Tel Hashomer, Israel
- The Kibbutzim College, Tel Aviv, Israel
| |
Collapse
|
19
|
Hunt AP, Minett GM, Gibson OR, Kerr GK, Stewart IB. Could Heat Therapy Be an Effective Treatment for Alzheimer's and Parkinson's Diseases? A Narrative Review. Front Physiol 2020; 10:1556. [PMID: 31998141 PMCID: PMC6965159 DOI: 10.3389/fphys.2019.01556] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases involve the progressive deterioration of structures within the central nervous system responsible for motor control, cognition, and autonomic function. Alzheimer's disease and Parkinson's disease are among the most common neurodegenerative disease and have an increasing prevalence over the age of 50. Central in the pathophysiology of these neurodegenerative diseases is the loss of protein homeostasis, resulting in misfolding and aggregation of damaged proteins. An element of the protein homeostasis network that prevents the dysregulation associated with neurodegeneration is the role of molecular chaperones. Heat shock proteins (HSPs) are chaperones that regulate the aggregation and disaggregation of proteins in intracellular and extracellular spaces, and evidence supports their protective effect against protein aggregation common to neurodegenerative diseases. Consequently, upregulation of HSPs, such as HSP70, may be a target for therapeutic intervention for protection against neurodegeneration. A novel therapeutic intervention to increase the expression of HSP may be found in heat therapy and/or heat acclimation. In healthy populations, these interventions have been shown to increase HSP expression. Elevated HSP may have central therapeutic effects, preventing or reducing the toxicity of protein aggregation, and/or peripherally by enhancing neuromuscular function. Broader physiological responses to heat therapy have also been identified and include improvements in muscle function, cerebral blood flow, and markers of metabolic health. These outcomes may also have a significant benefit for people with neurodegenerative disease. While there is limited research into body warming in patient populations, regular passive heating (sauna bathing) has been associated with a reduced risk of developing neurodegenerative disease. Therefore, the emerging evidence is compelling and warrants further investigation of the potential benefits of heat acclimation and passive heat therapy for sufferers of neurodegenerative diseases.
Collapse
Affiliation(s)
- Andrew P. Hunt
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Geoffrey M. Minett
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Oliver R. Gibson
- Centre for Human Performance, Exercise and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Graham K. Kerr
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Ian B. Stewart
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
20
|
Pistono C, Monti MC, Boiocchi C, Berzolari FG, Osera C, Mallucci G, Cuccia M, Pascale A, Montomoli C, Bergamaschi R. Response to oxidative stress of peripheral blood mononuclear cells from multiple sclerosis patients and healthy controls. Cell Stress Chaperones 2020; 25:81-91. [PMID: 31720998 PMCID: PMC6985352 DOI: 10.1007/s12192-019-01049-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/08/2019] [Accepted: 10/28/2019] [Indexed: 12/21/2022] Open
Abstract
The complex scenario of multiple sclerosis (MS) pathology involves several mechanisms, including oxidative stress response. The heat shock proteins (HSPs) are important for the protection of the cells; however, their role in MS is not clear. The present research is focused on the response of peripheral blood mononuclear cells (PBMCs) to oxidative stress and to the involvement of HSP70-2 (a protein coded by the HSPA1B gene, located in the MHC class III). To this aim, we challenged PBMCs from MS patients and healthy controls with hydrogen peroxide. Specifically, PBMCs mitochondrial activity, HSP70-2 protein expression and the production of intracellular reactive oxygen species were assessed. These parameters were also related to the HSP70-2 rs1061581 polymorphism, which is linked to the risk of developing MS. Moreover, mitochondrial activity and HSP70-2 protein levels were also related to disease severity. Overall, our results indicate that PBMCs, from both MS patients and healthy controls, may display a similar response towards an oxidative insult; within this context, HSP70-2 does not seem to be central in the protection of PBMCs. Nevertheless, the HSP70-2 rs1061581 polymorphism is related to ROS levels and appears to have a role in the different expression of HSP70-2 under oxidative stimulus.
Collapse
Affiliation(s)
- Cristiana Pistono
- Laboratory of Immunogenetics, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy.
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), CNRS/Université de Strasbourg, Faculté de psychologie, UMR, 7364, Strasbourg, France.
| | - Maria Cristina Monti
- Department of Public Health Experimental and Forensic Medicine, Unit of Biostatistics and Clinical Epidemiology, University of Pavia, Pavia, Italy
| | - Chiara Boiocchi
- Inter-Department Multiple Sclerosis Research Centre, National Neurological Institute "C. Mondino", Pavia, Italy
| | - Francesca Gigli Berzolari
- Department of Public Health Experimental and Forensic Medicine, Unit of Biostatistics and Clinical Epidemiology, University of Pavia, Pavia, Italy
| | - Cecilia Osera
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Giulia Mallucci
- Inter-Department Multiple Sclerosis Research Centre, National Neurological Institute "C. Mondino", Pavia, Italy
| | - Mariaclara Cuccia
- Laboratory of Immunogenetics, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Cristina Montomoli
- Department of Public Health Experimental and Forensic Medicine, Unit of Biostatistics and Clinical Epidemiology, University of Pavia, Pavia, Italy
| | - Roberto Bergamaschi
- Inter-Department Multiple Sclerosis Research Centre, National Neurological Institute "C. Mondino", Pavia, Italy
| |
Collapse
|
21
|
Nava R, Zuhl MN. Heat acclimation-induced intracellular HSP70 in humans: a meta-analysis. Cell Stress Chaperones 2020; 25:35-45. [PMID: 31823288 PMCID: PMC6985308 DOI: 10.1007/s12192-019-01059-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 02/08/2023] Open
Abstract
Heat acclimation (HA) in humans promotes thermoregulatory adaptations that support management of core temperature in hot environments and reduces the likelihood of heat related illness. Another adaptation to HA is thermotolerance through induction of the heat shock protein (HSP) stress system, which provides protection against thermal insult. However, whether or not HA leads to upregulation of the intracellular HSP system, namely intracellular HSP70 (HSP70), is unclear in humans. Therefore, the purposes of this meta-analysis were to determine if HA leads to HSP70 induction among humans and to evaluate how methodological differences among HA studies influence findings regarding HA-induced HSP70 accumulation. Several databases were searched to identify studies that measured HSP70 (protein and mRNA) changes in response to HA among humans. The effect of HA on HSP70 was analyzed. Differences in the effect of HA were assessed between protein and mRNA. The moderating effect of several independent variables (HA frequency, HA duration, core temperature, exercise intensity) on HSP70 was also evaluated. Data were extracted from 12 studies including 118 participants (mean age 24 years, 98% male). There was a significant effect of HA on HSP70 expression, g = 0.97 (95% CI, 0.08-1.89). The effect of HA was different between subgroups (protein vs. mRNA), g = 1.51 (95% CI, 0.71-2.31), and g = - 0.39 (95% CI, - 1.36), respectively. The frequency of HA (in days) moderated HSP70 protein expression. There was a significant effect of heat acclimation on HSP70 induction in humans. The only factor among identified studies that may moderate this response was the frequency (number of days) of heat exposure.
Collapse
Affiliation(s)
- Roberto Nava
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Micah N Zuhl
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, 87131, USA
- School of Health Sciences, Central Michigan University, Mount Pleasant, MI, 48859, USA
| |
Collapse
|
22
|
Fan L, An G, Wang S, Chen X, Liu Y, Liu Z, Ma Q, Wang J. Circular RNA Expression Profiling and Selection of Key Circular RNAs in the Hypothalamus of Heat-Acclimated Rats. Front Physiol 2019; 10:1112. [PMID: 31555146 PMCID: PMC6722210 DOI: 10.3389/fphys.2019.01112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022] Open
Abstract
Circular RNAs (circRNAs) have vital roles in great variety of biological processes. However, expression levels and functions of circRNAs related to heat acclimation (HA) are poorly understood. This study is the first time an in-depth circRNA expression profiling were used to investigate circRNA–miRNA interactions in HA rats in order to further comprehend the mechanisms underlying HA. CircRNA expression profile was performed in rats’ hypothalamus of HA and control group with microarray assays and their functions were predicted by using Bioinformatics analysis. Differential circRNAs and their regulated downstream miRNAs and mRNAs were quantitatively validated by means of quantitative polymerase chain reaction in real-time (RT-qPCR). Enzyme-linked immunosorbent assay (ELISA) was then applied to predict the expression of proteins. In total, 53 circRNAs were expressed distinctively between the HA and Control; up- and down-regulation of circRNAs were 28 and 25, respectively, in HA (fold change > 1.5, P < 0.05). Three circRNAs and two miRNAs and three predicted mRNAs were obviously regulated after validated by RT-qPCR in HA rats. Two proteins expression were proportional to their mRNA changes. Further analysis demonstrates that circRNAs closest to HA can be categorized into three signal pathways: including rno_circRNA_014301-vs-rno-miR-3575-vs-Hif-1α, rno_circRNA_014301-vs-rno-miR-3575-vs-Lppr4, and rno_circRNA_010393-vs-rno-miR-20b-3p-vs-Mfap4 in hypoxia response pathways, substance/energy metabolism, and inflammatory response pathways. Our findings implicate that many circRNAs regulate expressions of genes that interact with each other to exert their functions during HA.
Collapse
Affiliation(s)
- Lijun Fan
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.,Department of Human Movement Science, Tianjin University of Sport, Tianjin, China
| | - Gaihong An
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Shang Wang
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xuewei Chen
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Ying Liu
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhifeng Liu
- Department of Intensive Care Medicine, General Hospital of Southern Theatre Command of People's Liberation Army, Guangzhou, China
| | - Qiang Ma
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Jing Wang
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
23
|
de Fátima Bretanha Rocha R, Baena MM, de Cássia Estopa A, Gervásio IC, Guaratini Ibelli AM, Santos Gionbelli TR, Gionbelli MP, Fonseca de Freitas RT, Conceição Meirelles SL. Differential expression of HSF1 and HSPA6 genes and physiological responses in Angus and Simmental cattle breeds. J Therm Biol 2019; 84:92-98. [DOI: 10.1016/j.jtherbio.2019.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/21/2019] [Accepted: 06/02/2019] [Indexed: 12/16/2022]
|
24
|
Belal SA, Kang DR, Cho ESR, Park GH, Shim KS. Taurine Reduces Heat Stress by Regulating the Expression of Heat Shock Proteins in Broilers Exposed to Chronic Heat. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2018. [DOI: 10.1590/1806-9061-2017-0712] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- SA Belal
- Chonbuk National University, South Korea
| | - DR Kang
- Chonbuk National University, South Korea
| | - ESR Cho
- Chonbuk National University, South Korea
| | - GH Park
- Chonbuk National University, South Korea
| | - KS Shim
- Chonbuk National University, South Korea
| |
Collapse
|
25
|
Pollak A, Merin G, Horowitz M, Shochina M, Gilon D, Hasin Y. Heat Acclimatization Protects the Left Ventricle from Increased Diastolic Chamber Stiffness Immediately after Coronary Artery Bypass Surgery: A Lesson from 30 Years of Studies on Heat Acclimation Mediated Cross Tolerance. Front Physiol 2017; 8:1022. [PMID: 29311958 PMCID: PMC5732210 DOI: 10.3389/fphys.2017.01022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 11/27/2017] [Indexed: 12/27/2022] Open
Abstract
During the period of 1986–1997 the first 4 publications on the mechanical and metabolic properties of heat acclimated rat's heart were published. The outcome of these studies implied that heat acclimation, sedentary as well as combined with exercise training, confers long lasting protection against ischemic/reperfusion insult. These results promoted a clinical study on patients with coronary artery disease scheduled for elective coronary artery bypass operations aiming to elucidate whether exploitation of environmental stress can be translated into human benefits by improving physiological recovery. During the 1998 study, immediate-post operative chamber stiffness was assessed in patients acclimatized to heat and low intensity training in the desert (spring in the Dead Sea, 17–33°C) vs. patients in colder weather (spring in non-desert areas, 6–19°C) via echocardiogram acquisition simultaneous with left atrial pressure measurement during fast intravascular fluid bolus administration. We showed that patients undergoing “heat acclimatization combined with exercise training” were less susceptible to ischemic injury, therefore expressing less diastolic dysfunction after cardiopulmonary bypass compared to non-acclimatized patients. This was the first clinical translational study on cardiac patients, while exploiting environmental harsh conditions for human benefits. The original experimental data are described and discussed in view of the past as well as the present knowledge of the protective mechanisms induced by Heat Acclimation Mediated Cross-tolerance.
Collapse
Affiliation(s)
- Arthur Pollak
- Department of Cardiology, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gideon Merin
- Department of Cardio-Thoracic Surgery, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Horowitz
- Laboratory of Environmental Physiology, Faculty of Dentistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mara Shochina
- Department of Rehabilitation, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dan Gilon
- Department of Cardiology, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yonathan Hasin
- Department of Cardiology, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
26
|
Barrington JH, Chrismas BCR, Gibson OR, Tuttle J, Pegrum J, Govilkar S, Kabir C, Giannakakis N, Rayan F, Okasheh Z, Sanaullah A, Ng Man Sun S, Pearce O, Taylor L. Hypoxic Air Inhalation and Ischemia Interventions Both Elicit Preconditioning Which Attenuate Subsequent Cellular Stress In vivo Following Blood Flow Occlusion and Reperfusion. Front Physiol 2017; 8:560. [PMID: 28824456 PMCID: PMC5539087 DOI: 10.3389/fphys.2017.00560] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/18/2017] [Indexed: 12/17/2022] Open
Abstract
Ischemic preconditioning (IPC) is valid technique which elicits reductions in femoral blood flow occlusion mediated reperfusion stress (oxidative stress, Hsp gene transcripts) within the systemic blood circulation and/or skeletal muscle. It is unknown whether systemic hypoxia, evoked by hypoxic preconditioning (HPC) has efficacy in priming the heat shock protein (Hsp) system thus reducing reperfusion stress following blood flow occlusion, in the same manner as IPC. The comparison between IPC and HPC being relevant as a preconditioning strategy prior to orthopedic surgery. In an independent group design, 18 healthy men were exposed to 40 min of (1) passive whole-body HPC (FiO2 = 0.143; no ischemia. N = 6), (2) IPC (FiO2 = 0.209; four bouts of 5 min ischemia and 5 min reperfusion. n = 6), or (3) rest (FiO2 = 0.209; no ischemia. n = 6). The interventions were administered 1 h prior to 30 min of tourniquet derived femoral blood flow occlusion and were followed by 2 h subsequent reperfusion. Systemic blood samples were taken pre- and post-intervention. Systemic blood and gastrocnemius skeletal muscle samples were obtained pre-, 15 min post- (15PoT) and 120 min (120PoT) post-tourniquet deflation. To determine the cellular stress response gastrocnemius and leukocyte Hsp72 mRNA and Hsp32 mRNA gene transcripts were determined by RT-qPCR. The plasma oxidative stress response (protein carbonyl, reduced glutathione/oxidized glutathione ratio) was measured utilizing commercially available kits. In comparison to control, at 15PoT a significant difference in gastrocnemius Hsp72 mRNA was seen in HPC (−1.93-fold; p = 0.007) and IPC (−1.97-fold; p = 0.006). No significant differences were observed in gastrocnemius Hsp32 and Hsp72 mRNA, leukocyte Hsp72 and Hsp32 mRNA, or oxidative stress markers (p > 0.05) between HPC and IPC. HPC provided near identical amelioration of blood flow occlusion mediated gastrocnemius stress response (Hsp72 mRNA), compared to an established IPC protocol. This was seen independent of changes in systemic oxidative stress, which likely explains the absence of change in Hsp32 mRNA transcripts within leukocytes and the gastrocnemius. Both the established IPC and novel HPC interventions facilitate a priming of the skeletal muscle, but not leukocyte, Hsp system prior to femoral blood flow occlusion. This response demonstrates a localized tissue specific adaptation which may ameliorate reperfusion stress.
Collapse
Affiliation(s)
- James H Barrington
- Institute of Sport and Physical Activity Research, University of BedfordshireLuton, United Kingdom
| | - Bryna C R Chrismas
- Sport Science Program, College of Arts and Sciences, Qatar UniversityDoha, Qatar
| | - Oliver R Gibson
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Centre for Human Performance, Exercise and Rehabilitation, Brunel University LondonUxbridge, United Kingdom
| | - James Tuttle
- Institute of Sport and Physical Activity Research, University of BedfordshireLuton, United Kingdom
| | - J Pegrum
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - S Govilkar
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - Chindu Kabir
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - N Giannakakis
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - F Rayan
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - Z Okasheh
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - A Sanaullah
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - S Ng Man Sun
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - Oliver Pearce
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - Lee Taylor
- ASPETAR, Athlete Health and Performance Research Centre, Qatar Orthopedic and Sports Medicine HospitalDoha, Qatar.,School of Sport, Exercise and Health Sciences. Loughborough UniversityLoughborough, United Kingdom
| |
Collapse
|
27
|
Horowitz M. Heat Acclimation-Mediated Cross-Tolerance: Origins in within-Life Epigenetics? Front Physiol 2017; 8:548. [PMID: 28804462 PMCID: PMC5532440 DOI: 10.3389/fphys.2017.00548] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 07/14/2017] [Indexed: 12/29/2022] Open
Abstract
The primary outcome of heat acclimation is increased thermotolerance, which stems from enhancement of innate cytoprotective pathways. These pathways produce “ON CALL” molecules that can combat stressors to which the body has never been exposed, via cross-tolerance mechanisms (heat acclimation-mediated cross-tolerance—HACT). The foundation of HACT lies in the sharing of generic stress signaling, combined with tissue/organ- specific protective responses. HACT becomes apparent when acclimatory homeostasis is achieved, lasts for several weeks, and has a memory. HACT differs from other forms of temporal protective mechanisms activated by exposure to lower “doses” of the stressor, which induce adaptation to higher “doses” of the same/different stressor; e.g., preconditioning, hormesis. These terms have been adopted by biochemists, toxicologists, and physiologists to describe the rapid cellular strategies ensuring homeostasis. HACT employs two major protective avenues: constitutive injury attenuation and abrupt post-insult release of help signals enhanced by acclimation. To date, the injury-attenuating features seen in all organs studied include fast-responding, enlarged cytoprotective reserves with HSPs, anti-oxidative, anti-apoptotic molecules, and HIF-1α nuclear and mitochondrial target gene products. Using cardiac ischemia and brain hypoxia models as a guide to the broader framework of phenotypic plasticity, HACT is enabled by a metabolic shift induced by HIF-1α and there are less injuries caused by Ca+2 overload, via channel or complex-protein remodeling, or decreased channel abundance. Epigenetic markers such as post-translational histone modification and altered levels of chromatin modifiers during acclimation and its decline suggest that dynamic epigenetic mechanisms controlling gene expression induce HACT and acclimation memory, to enable the rapid return of the protected phenotype. In this review the link between in vivo physiological evidence and the associated cellular and molecular mechanisms leading to HACT and its difference from short-acting cross-tolerance strategies will be discussed.
Collapse
Affiliation(s)
- Michal Horowitz
- Laboratory of Environmental Physiology, Faculty of Dentistry, Hebrew University of JerusalemJerusalem, Israel
| |
Collapse
|
28
|
Expression of Hsp27 and Hsp70 and vacuolization in the pituitary glands in cases of fatal hypothermia. Forensic Sci Med Pathol 2017. [DOI: 10.1007/s12024-017-9884-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Alexander-Shani R, Mreisat A, Smeir E, Gerstenblith G, Stern MD, Horowitz M. Long-term HIF-1α transcriptional activation is essential for heat-acclimation-mediated cross tolerance: mitochondrial target genes. Am J Physiol Regul Integr Comp Physiol 2017; 312:R753-R762. [PMID: 28274939 DOI: 10.1152/ajpregu.00461.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 11/22/2022]
Abstract
An important adaptive feature of heat acclimation (HA) is the induction of cross tolerance against novel stressors (HACT) Reprogramming of gene expression leading to enhanced innate cytoprotective features by attenuating damage and/or enhancing the response of "help" signals plays a pivotal role. Hypoxia-inducible factor-1α (HIF-1α), constitutively upregulated by HA (1 mo, 34°C), is a crucial transcription factor in this program, although its specific role is as yet unknown. By using a rat HA model, we studied the impact of disrupting HIF-1α transcriptional activation [HIF-1α:HIF-1β dimerization blockade by intraperitoneal acriflavine (4 mg/kg)] on its mitochondrial gene targets [phosphoinositide-dependent kinase-1 (PDK1), LON, and cyclooxygenase 4 (COX4) isoforms] in the HA rat heart. Physiological measures of cardiac HACT were infarct size after ischemia-reperfusion and time to rigor contracture during hypoxia in cardiomyocytes. We show that HACT requires transcriptional activation of HIF-1α throughout the course of HA and that this activation is accompanied by two metabolic switches: 1) profound upregulation of PDK1, which reduces pyruvate entry into the mitochondria, consequently increasing glycolytic lactate production; 2) remodeling of the COX4 isoform ratio, inducing hypoxic-tolerant COX4.2 dominance, and optimizing electron transfer and possibly ATP production during the ischemic and hypoxic insults. LON and COX4.2 transcript upregulation accompanied this shift. Loss of HACT despite elevated expression of the cytoprotective protein heat shock protein-72 concomitantly with disrupted HIF-1α dimerization suggests that HIF-1α is essential for HACT. The role of a PDK1 metabolic switch is well known in hypoxia acclimation but not in the HA model and its ischemic setting. Remodeling of COX4 isoforms by environmental acclimation is a novel finding.
Collapse
Affiliation(s)
- Rivka Alexander-Shani
- Laboratory of Environmental Physiology, Faculty of Dental Medicine, The Hebrew University, Jerusalem, Israel
| | - Ahmad Mreisat
- Laboratory of Environmental Physiology, Faculty of Dental Medicine, The Hebrew University, Jerusalem, Israel
| | - Elia Smeir
- Laboratory of Environmental Physiology, Faculty of Dental Medicine, The Hebrew University, Jerusalem, Israel
| | | | - Michael D Stern
- Gerontology Research Center, National Institute on Aging, Baltimore, Maryland
| | - Michal Horowitz
- Laboratory of Environmental Physiology, Faculty of Dental Medicine, The Hebrew University, Jerusalem, Israel;
| |
Collapse
|
30
|
Doberentz E, Genneper L, Wagner R, Madea B. Expression times for hsp27 and hsp70 as an indicator of thermal stress during death due to fire. Int J Legal Med 2017; 131:1707-1718. [PMID: 28233103 DOI: 10.1007/s00414-017-1566-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/16/2017] [Indexed: 12/23/2022]
Abstract
The expression of heat shock proteins (hsps) increases in cases of hyperthermal cellular stress in order to protect cellular structures. Hsps can be visualized with immunohistochemical staining. We examined 48 cases of death from fire and excessive heat and a control group of 100 deaths without any perimortem thermal stress, measuring both the hsp27 and hsp70 expressions in myocardial, pulmonary, and renal tissues. The results revealed a correlation between hsp expression and survival time. Hsps are expressed rapidly within seconds or minutes after exposure to heat stress. In particular, hsp27 is expressed fast in high levels, whereas hsp70 expression is higher in the pulmonary and renal tissue of long-term survivors. In the myocardial tissue, hsp27 expression dominated in both short- and long-term survival. The expression pattern is strongly dependent on the organ structure and the survival time, which should be considered in future postmortem studies on hsps.
Collapse
Affiliation(s)
- E Doberentz
- Institute of Legal Medicine, University of Bonn, Bonn, Germany
| | - L Genneper
- Institute of Legal Medicine, University of Bonn, Bonn, Germany
| | - R Wagner
- Institute of Legal Medicine, University of Bonn, Bonn, Germany
| | - B Madea
- Institute of Legal Medicine, University of Bonn, Bonn, Germany.
| |
Collapse
|
31
|
Mayengbam P, Tolenkhomba TC, Upadhyay RC. Expression of heat-shock protein 72 mRNA in relation to heart rate variability of Sahiwal and Karan-Fries in different temperature-humidity indices. Vet World 2016; 9:1051-1055. [PMID: 27847412 PMCID: PMC5104711 DOI: 10.14202/vetworld.2016.1051-1055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/25/2016] [Indexed: 11/16/2022] Open
Abstract
AIM To investigate the effect of temperature-humidity index (THI) on the expression pattern of heat-shock protein 72 (HSP72) mRNA of Sahiwal and Karan-Fries (KF) cattle in different THIs. MATERIALS AND METHODS Five different periods of a year were selected based on combinations of Tmax/Tmin, viz., P1: <20°C/<10°C; P2: >20°C/<10°C, P3: <30°C/<15°C; P4: >35°C/<20°C, and P5: >35°C/>20°C. The THI was calculated from the records of temperature and relative humidity in different periods. Heart rate variability (HRV) was calculated from electrocardiogram records in different periods. HSP72 mRNA expression was estimated by reverse transcription polymerase chain reaction. RESULTS The THI recorded during P1, P2, P3, P4, and P5 were 55.5, 60.3, 70.1, 74.5, and 79.0, respectively. THI in P4 and P5 were stressful to animals. HSP72 mRNA expression increased during cold stress in P1 in Sahiwal and heat stress in P4 and P5 in both Sahiwal and KF. Sahiwal maintained increased HSP72 mRNA expression longer than KF without causing a significant change in HRV. CONCLUSION Both low THI in winter and high THI in summer increased HSP72 mRNA of Sahiwal and KF without significant change in HRV. Thermotolerance of Sahiwal could be due to the maintenance of higher HSP72 expression longer than KF in prolonged heat stress in summer.
Collapse
Affiliation(s)
- Prava Mayengbam
- Dairy Cattle Physiology Division, National Dairy Research Institute, ICAR, Karnal - 132 001, Haryana, India
| | - T C Tolenkhomba
- Dairy Cattle Physiology Division, National Dairy Research Institute, ICAR, Karnal - 132 001, Haryana, India
| | - R C Upadhyay
- Dairy Cattle Physiology Division, National Dairy Research Institute, ICAR, Karnal - 132 001, Haryana, India
| |
Collapse
|
32
|
Akerman AP, Tipton M, Minson CT, Cotter JD. Heat stress and dehydration in adapting for performance: Good, bad, both, or neither? Temperature (Austin) 2016; 3:412-436. [PMID: 28349082 PMCID: PMC5356617 DOI: 10.1080/23328940.2016.1216255] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/15/2016] [Accepted: 07/20/2016] [Indexed: 01/14/2023] Open
Abstract
Physiological systems respond acutely to stress to minimize homeostatic disturbance, and typically adapt to chronic stress to enhance tolerance to that or a related stressor. It is legitimate to ask whether dehydration is a valuable stressor in stimulating adaptation per se. While hypoxia has had long-standing interest by athletes and researchers as an ergogenic aid, heat and nutritional stressors have had little interest until the past decade. Heat and dehydration are highly interlinked in their causation and the physiological strain they induce, so their individual roles in adaptation are difficult to delineate. The effectiveness of heat acclimation as an ergogenic aid remains unclear for team sport and endurance athletes despite several recent studies on this topic. Very few studies have examined the potential ergogenic (or ergolytic) adaptations to ecologically-valid dehydration as a stressor in its own right, despite longstanding evidence of relevant fluid-regulatory adaptations from short-term hypohydration. Transient and self-limiting dehydration (e.g., as constrained by thirst), as with most forms of stress, might have a time and a place in physiological or behavioral adaptations independently or by exacerbating other stressors (esp. heat); it cannot be dismissed without the appropriate evidence. The present review did not identify such evidence. Future research should identify how the magnitude and timing of dehydration might augment or interfere with the adaptive processes in behaviorally constrained versus unconstrained humans.
Collapse
Affiliation(s)
- Ashley Paul Akerman
- School of Physical Education, Sport and Exercise Sciences, Division of Sciences, University of Otago , New Zealand
| | - Michael Tipton
- Extreme Environments Laboratory, Department of Sport & Exercise Science, University of Portsmouth , UK
| | | | - James David Cotter
- School of Physical Education, Sport and Exercise Sciences, Division of Sciences, University of Otago , New Zealand
| |
Collapse
|
33
|
Horowitz M. Epigenetics and cytoprotection with heat acclimation. J Appl Physiol (1985) 2016; 120:702-10. [DOI: 10.1152/japplphysiol.00552.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/05/2015] [Indexed: 01/19/2023] Open
Abstract
Studying “phenotypic plasticity” involves comparison of traits expressed in response to environmental fluctuations and aims to understand tolerance and survival in new settings. Reversible phenotypic changes that enable individuals to match their phenotype to environmental demands throughout life can be artificially induced, i.e., acclimation or occur naturally, i.e., acclimatization. The onset and achievement of acclimatory homeostasis are determined by molecular programs that induce the acclimated transcriptome. In heat acclimation, much evidence suggests that epigenetic mechanisms are powerful players in these processes. Epigenetic mechanisms affect the accessibility of the DNA to transcription factors, thereby regulating gene expression and controlling the phenotype. The heat-acclimated phenotype confers cytoprotection against novel stressors via cross-tolerance mechanisms, by attenuation of the initial damage and/or by accelerating spontaneous recovery through the release of help signals. This indispensable acclimatory feature has a memory and can be rapidly reestablished after the loss of acclimation and the return to the physiological preacclimated phenotype. The transcriptional landscape of the deacclimated phenotype includes constitutive transcriptional activation of epigenetic bookmarks. Heat shock protein (HSP) 70/HSP90/heat shock factor 1 memory protocol demonstrated constitutive histone H4 acetylation on hsp70 and hsp90 promotors. Novel players in the heat acclimation setup are poly(ADP-ribose)ribose polymerase 1 affecting chromatin condensation, DNA linker histones from the histone H1 cluster, and transcription factors associated with the P38 pathway. We suggest that these orchestrated responses maintain euchromatin and proteostasis during deacclimation and predispose to rapid reacclimation and cytoprotection. These mechanisms represent within-life epigenetic adaptations and cytoprotective memory.
Collapse
Affiliation(s)
- Michal Horowitz
- Laboratory of Environmental Physiology, Faculty of Dental Medicine, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
34
|
Lee BJ, Miller A, James RS, Thake CD. Cross Acclimation between Heat and Hypoxia: Heat Acclimation Improves Cellular Tolerance and Exercise Performance in Acute Normobaric Hypoxia. Front Physiol 2016; 7:78. [PMID: 27014080 PMCID: PMC4781846 DOI: 10.3389/fphys.2016.00078] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/15/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The potential for cross acclimation between environmental stressors is not well understood. Thus, the aim of this investigation was to determine the effect of fixed-workload heat or hypoxic acclimation on cellular, physiological, and performance responses during post acclimation hypoxic exercise in humans. METHOD Twenty-one males (age 22 ± 5 years; stature 1.76 ± 0.07 m; mass 71.8 ± 7.9 kg; [Formula: see text]O2 peak 51 ± 7 mL(.)kg(-1.)min(-1)) completed a cycling hypoxic stress test (HST) and self-paced 16.1 km time trial (TT) before (HST1, TT1), and after (HST2, TT2) a series of 10 daily 60 min training sessions (50% N [Formula: see text]O2 peak) in control (CON, n = 7; 18°C, 35% RH), hypoxic (HYP, n = 7; fraction of inspired oxygen = 0.14, 18°C, 35% RH), or hot (HOT, n = 7; 40°C, 25% RH) conditions. RESULTS TT performance in hypoxia was improved following both acclimation treatments, HYP (-3:16 ± 3:10 min:s; p = 0.0006) and HOT (-2:02 ± 1:02 min:s; p = 0.005), but unchanged after CON (+0:31 ± 1:42 min:s). Resting monocyte heat shock protein 72 (mHSP72) increased prior to HST2 in HOT (62 ± 46%) and HYP (58 ± 52%), but was unchanged after CON (9 ± 46%), leading to an attenuated mHSP72 response to hypoxic exercise in HOT and HYP HST2 compared to HST1 (p < 0.01). Changes in extracellular hypoxia-inducible factor 1-α followed a similar pattern to those of mHSP72. Physiological strain index (PSI) was attenuated in HOT (HST1 = 4.12 ± 0.58, HST2 = 3.60 ± 0.42; p = 0.007) as a result of a reduced HR (HST1 = 140 ± 14 b.min(-1); HST2 131 ± 9 b.min(-1) p = 0.0006) and Trectal (HST1 = 37.55 ± 0.18°C; HST2 37.45 ± 0.14°C; p = 0.018) during exercise. Whereas PSI did not change in HYP (HST1 = 4.82 ± 0.64, HST2 4.83 ± 0.63). CONCLUSION Heat acclimation improved cellular and systemic physiological tolerance to steady state exercise in moderate hypoxia. Additionally we show, for the first time, that heat acclimation improved cycling time trial performance to a magnitude similar to that achieved by hypoxic acclimation.
Collapse
Affiliation(s)
- Ben J Lee
- Department for Health, University of BathBath, UK; Centre for Applied Biological and Exercise Sciences, Coventry UniversityCoventry, UK
| | - Amanda Miller
- Centre for Applied Biological and Exercise Sciences, Coventry University Coventry, UK
| | - Rob S James
- Centre for Applied Biological and Exercise Sciences, Coventry University Coventry, UK
| | - Charles D Thake
- Centre for Applied Biological and Exercise Sciences, Coventry University Coventry, UK
| |
Collapse
|
35
|
Gibson OR, Turner G, Tuttle JA, Taylor L, Watt PW, Maxwell NS. Heat acclimation attenuates physiological strain and the HSP72, but not HSP90α, mRNA response to acute normobaric hypoxia. J Appl Physiol (1985) 2015. [DOI: 10.1152/japplphysiol.00332.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Heat acclimation (HA) attenuates physiological strain in hot conditions via phenotypic and cellular adaptation. The aim of this study was to determine whether HA reduced physiological strain, and heat shock protein (HSP) 72 and HSP90α mRNA responses in acute normobaric hypoxia. Sixteen male participants completed ten 90-min sessions of isothermic HA (40°C/40% relative humidity) or exercise training [control (CON); 20°C/40% relative humidity]. HA or CON were preceded (HYP1) and proceeded (HYP2) by a 30-min normobaric hypoxic exposure [inspired O2 fraction = 0.12; 10-min rest, 10-min cycling at 40% peak O2 uptake (V̇o2 peak), 10-min cycling at 65% V̇o2 peak]. HA induced greater rectal temperatures, sweat rate, and heart rates (HR) than CON during the training sessions. HA, but not CON, reduced resting rectal temperatures and resting HR and increased sweat rate and plasma volume. Hemoglobin mass did not change following HA nor CON. HSP72 and HSP90α mRNA increased in response to each HA session, but did not change with CON. HR during HYP2 was lower and O2 saturation higher at 65% V̇o2 peak following HA, but not CON. O2 uptake/HR was greater at rest and 65% V̇o2 peak in HYP2 following HA, but was unchanged after CON. At rest, the respiratory exchange ratio was reduced during HYP2 following HA, but not CON. The increase in HSP72 mRNA during HYP1 did not occur in HYP2 following HA. In CON, HSP72 mRNA expression was unchanged during HYP1 and HYP2. In HA and CON, increases in HSP90α mRNA during HYP1 were maintained in HYP2. HA reduces physiological strain, and the transcription of HSP72, but not HSP90α mRNA in acute normobaric hypoxia.
Collapse
Affiliation(s)
- Oliver R. Gibson
- Centre for Sport and Exercise Science and Medicine (SESAME), Environmental Extremes Laboratory, University of Brighton, Welkin Human Performance Laboratories, Eastbourne, United Kingdom
| | - Gareth Turner
- Centre for Sport and Exercise Science and Medicine (SESAME), Environmental Extremes Laboratory, University of Brighton, Welkin Human Performance Laboratories, Eastbourne, United Kingdom
- English Institute of Sport, EIS Performance Centre, Loughborough University, Loughborough, United Kingdom; and
| | - James A. Tuttle
- Muscle Cellular and Molecular Physiology (MCMP) and Applied Sport and Exercise Science (ASEP) Research Groups, Department of Sport Science and Physical Activity, Institute of Sport and Physical Activity Research (ISPAR), University of Bedfordshire, Bedfordshire, United Kingdom
| | - Lee Taylor
- Muscle Cellular and Molecular Physiology (MCMP) and Applied Sport and Exercise Science (ASEP) Research Groups, Department of Sport Science and Physical Activity, Institute of Sport and Physical Activity Research (ISPAR), University of Bedfordshire, Bedfordshire, United Kingdom
| | - Peter W. Watt
- Centre for Sport and Exercise Science and Medicine (SESAME), Environmental Extremes Laboratory, University of Brighton, Welkin Human Performance Laboratories, Eastbourne, United Kingdom
| | - Neil S. Maxwell
- Centre for Sport and Exercise Science and Medicine (SESAME), Environmental Extremes Laboratory, University of Brighton, Welkin Human Performance Laboratories, Eastbourne, United Kingdom
| |
Collapse
|
36
|
Horowitz M, Umschweif G, Yacobi A, Shohami E. Molecular programs induced by heat acclimation confer neuroprotection against TBI and hypoxic insults via cross-tolerance mechanisms. Front Neurosci 2015; 9:256. [PMID: 26283898 PMCID: PMC4516883 DOI: 10.3389/fnins.2015.00256] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 07/10/2015] [Indexed: 01/30/2023] Open
Abstract
Neuroprotection following prolonged exposure to high ambient temperatures (heat acclimation HA) develops via altered molecular programs such as cross-tolerance Heat Acclimation-Neuroprotection Cross-Tolerance (HANCT). The mechanisms underlying cross-tolerance depend on enhanced "on-demand" protective pathways evolving during acclimation. The protection achieved is long lasting and limits the need for de novo recruitment of cytoprotective pathways upon exposure to novel stressors. Using mouse and rat acclimated phenotypes, we will focus on the impact of heat acclimation on Angiotensin II-AT2 receptors in neurogenesis and on HIF-1 as key mediators in spontaneous recovery and HANCT after traumatic brain injury (TBI). The neuroprotective consequences of heat acclimation on NMDA and AMPA receptors will be discussed using the global hypoxia model. A behavioral-molecular link will be crystallized. The differences between HANCT and consensus preconditioning will be reviewed.
Collapse
Affiliation(s)
- Michal Horowitz
- Laboratory of Environmental Physiology, The Hebrew University Jerusalem, Israel
| | - Gali Umschweif
- Laboratory of Environmental Physiology, The Hebrew University Jerusalem, Israel ; Department of Pharmacology, The Hebrew University Jerusalem, Israel
| | - Assaf Yacobi
- Laboratory of Environmental Physiology, The Hebrew University Jerusalem, Israel
| | - Esther Shohami
- Department of Pharmacology, The Hebrew University Jerusalem, Israel
| |
Collapse
|
37
|
Human monocyte heat shock protein 72 responses to acute hypoxic exercise after 3 days of exercise heat acclimation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:849809. [PMID: 25874231 PMCID: PMC4385626 DOI: 10.1155/2015/849809] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/21/2014] [Indexed: 01/21/2023]
Abstract
The aim of this study was to determine whether short-term heat acclimation (STHA) could confer increased cellular tolerance to acute hypoxic exercise in humans as determined via monocyte HSP72 (mHSP72) expression. Sixteen males were separated into two matched groups. The STHA group completed 3 days of exercise heat acclimation; 60 minutes cycling at 50% V̇O2peak in 40°C 20% relative humidity (RH). The control group (CON) completed 3 days of exercise training in 20°C, 40% RH. Each group completed a hypoxic stress test (HST) one week before and 48 hours following the final day of CON or STHA. Percentage changes in HSP72 concentrations were similar between STHA and CON following HST1 (P = 0.97). STHA induced an increase in basal HSP72 (P = 0.03) with no change observed in CON (P = 0.218). Basal mHSP72 remained elevated before HST2 for the STHA group (P < 0.05) and was unchanged from HST1 in CON (P > 0.05). Percent change in mHSP72 was lower after HST2 in STHA compared to CON (P = 0.02). The mHSP72 response to hypoxic exercise was attenuated following 3 days of heat acclimation. This is indicative of improved tolerance and ability to cope with the hypoxic insult, potentially mediated in part by increased basal reserves of HSP72.
Collapse
|
38
|
Tetievsky A, Assayag M, Ben-Hamo R, Efroni S, Cohen G, Abbas A, Horowitz M. Heat acclimation memory: do the kinetics of the deacclimated transcriptome predispose to rapid reacclimation and cytoprotection? J Appl Physiol (1985) 2014; 117:1262-77. [PMID: 25237184 DOI: 10.1152/japplphysiol.00422.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Faster reinduction of heat acclimation (AC) after its decline indicates "AC memory." Our previous results revealed involvement of epigenetic mechanisms of transcriptional regulation. We hypothesized that the decline of AC (DeAC) is a period of "dormant memory" during which many processes are alerted to enable rapid reacclimation (ReAC). Using a genomewide approach we studied the AC, DeAC, and ReAC transcriptomes, to uncover hallmark pathways linked to "molecular memory" in the cardioacclimatome. Fifty rats subjected to heat acclimation [34°C for 2d (AC2d) or 30d (AC30)], DeAC (24°C, 30 days), ReAC (34°C, 2 days), and untreated controls were used. The GeneChip Rat Gene 1.0 ST Array was employed for left ventricular (cardiac) mRNA hybridization. Three independent bioinformatic analyses showed that 1) during AC2d enrichment of DNA impair/repair-linked genes is seen, and this is the molecular on-switch of acclimation; 2) genes activated in AC30 underlie the qualitative physiological adaptations of cardiac performance; 3) particular molecular programs encompassing constitutive upregulation of p38 MAPK, Jak/Stat, and Akt pathways and targets are specifically activated during DeAC and ReAC; and 4) epigenetic markers such as linker histones (histones H1 cluster), associated with nucleosome spacing, transcriptional chromatin modifiers, poly-(ADP-ribose) polymerase-1 (PARP1) linked to chromatin compaction, and microRNAs are only altered during DeAC/ReAC. The latter are newcomers to the AC/DeAC puzzle. We suggest that these transcriptional responses maintain euchromatin and proteostasis and enable faster physiological recovery upon ReAC by rapidly reestablishing the protected acclimated cardiophenotype. We propose that the cardiac AC model can be applied to acclimation processes in general.
Collapse
Affiliation(s)
- Anna Tetievsky
- Laboratory of Environmental Physiology, Faculty of Dentistry, The Hebrew University, Jerusalem, Israel; and
| | - Miri Assayag
- Laboratory of Environmental Physiology, Faculty of Dentistry, The Hebrew University, Jerusalem, Israel; and
| | - Rotem Ben-Hamo
- The Mina and Everard Goodman Faculty of Life Science Bar Ilan University, Ramat Gan, Israel
| | - Sol Efroni
- The Mina and Everard Goodman Faculty of Life Science Bar Ilan University, Ramat Gan, Israel
| | - Gal Cohen
- Laboratory of Environmental Physiology, Faculty of Dentistry, The Hebrew University, Jerusalem, Israel; and
| | - Atallah Abbas
- Laboratory of Environmental Physiology, Faculty of Dentistry, The Hebrew University, Jerusalem, Israel; and
| | - Michal Horowitz
- Laboratory of Environmental Physiology, Faculty of Dentistry, The Hebrew University, Jerusalem, Israel; and
| |
Collapse
|
39
|
Ely BR, Lovering AT, Horowitz M, Minson CT. Heat acclimation and cross tolerance to hypoxia: Bridging the gap between cellular and systemic responses. Temperature (Austin) 2014; 1:107-14. [PMID: 27583292 PMCID: PMC4977168 DOI: 10.4161/temp.29800] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/01/2014] [Accepted: 07/01/2014] [Indexed: 11/29/2022] Open
Abstract
Recent research has suggested a potential for some of the physiological and cellular responses to heat acclimation to carry over to improved tolerance of the novel stresses of another environment. This cross-tolerance is evident in heat-acclimated animals that exhibit enhanced tolerance to either hypoxic or ischemic stress, and is primarily attributed to shared cellular stress response pathways. These pathways include Hypoxia-Inducible Factor-1 (HIF-1) and Heat Shock Proteins (HSP). Whether these shared cellular stress response pathways translate to systemic cross-tolerance (improved exercise tolerance, reduced risk of environment-associated illness) has not been clearly shown, particularly in humans. This review highlights the HIF-1 and HSP pathways and their relationship with systemic acclimation responses, and further examines the potential cellular and systemic adaptations that may result in cross-tolerance between hot and hypoxic environments.
Collapse
Affiliation(s)
- Brett R Ely
- University of Oregon; Department of Human Physiology; Eugene, OR USA
| | - Andrew T Lovering
- University of Oregon; Department of Human Physiology; Eugene, OR USA
| | - Michal Horowitz
- The Hebrew University of Jerusalem; Laboratory of Environmental Physiology; Faculty of Dental Medicine; Jerusalem, Israel
| | | |
Collapse
|
40
|
Yacobi A, Stern Bach Y, Horowitz M. The protective effect of heat acclimation from hypoxic damage in the brain involves changes in the expression of glutamate receptors. Temperature (Austin) 2014; 1:57-65. [PMID: 27583282 PMCID: PMC4972514 DOI: 10.4161/temp.29719] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 06/21/2014] [Accepted: 06/24/2014] [Indexed: 11/19/2022] Open
Abstract
Long-term heat acclimation (34 °C, 30d) alters the physiological responses and the metabolic state of organisms. It also improves ability to cope with hypoxic stress via a cross-tolerance mechanism. Within the brain, the hippocampal and frontal cortex neurons are the most sensitive to hypoxia and cell death is mainly caused by calcium influx via glutamate-gated ion channels, specifically NMDA and AMPA receptors. GluN1 subunit levels of NMDA-R correspond to NMDA-R levels. GluN2B/GluN2A subunit ratio is a qualitative index of channel activity; a higher ratio implies lower calcium permeability. The GluA2 subunit of AMPA-R controls channel permeability by inhibiting calcium penetration. Here, in rats model we (i)used behavioral-assessment tests to evaluate heat acclimation mediated hypoxic (15' 4.5 ± 0.5% O2) neuroprotection, (ii) measured protein and transcript levels of NMDA-R and AMPA-R subunits before and after hypoxia in the hippocampus and the frontal cortex, to evaluate the role of Ca(2+) in neuro-protection/cross-tolerance. Behavioral tests confirmed hypoxic tolerance in long-term (30d) but not in short-term (2d) heat acclimated rats. Hypoxic tolerance in the long-term acclimated phenotype was accompanied by a significant decrease in basal NMDA receptor GluN1 protein and an increase in its mRNA. The long-term acclimated rats also showed post ischemic increases in the GluN2B/GluN2A subunit ratio and GluA2 subunit of the AMPA receptor, supporting the hypothesis that reduced calcium permeability contributes to heat acclimation mediated hypoxia cross-tolerance. Abrupt post ischemic change in GluN2B/GluN2A subunit ratio with no change in NMDA-R subunits transcript levels implies that post-translational processes are inseparable acclimatory cross-tolerance mechanism.
Collapse
Affiliation(s)
- Assaf Yacobi
- Laboratory of Environmental Physiology; Faculty of Dental Medicine; The Hebrew University; Jerusalem, Israel
| | - Yael Stern Bach
- Department of Biochemistry and Molecular Biology; IMRIC; The Hebrew University; Jerusalem, Israel
| | - Michal Horowitz
- Laboratory of Environmental Physiology; Faculty of Dental Medicine; The Hebrew University; Jerusalem, Israel
| |
Collapse
|
41
|
Bruchim Y, Aroch I, Eliav A, Abbas A, Frank I, Kelmer E, Codner C, Segev G, Epstein Y, Horowitz M. Two years of combined high-intensity physical training and heat acclimatization affect lymphocyte and serum HSP70 in purebred military working dogs. J Appl Physiol (1985) 2014; 117:112-8. [PMID: 24903923 DOI: 10.1152/japplphysiol.00090.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Military working dogs in hot countries undergo exercise training at high ambient temperatures for at least 9 mo annually. Physiological adaptations to these harsh conditions have been extensively studied; however, studies focusing on the underlying molecular adaptations are limited. In the current study, military working dogs were chosen as a model to examine the effects of superimposing endurance exercise on seasonal acclimatization to environmental heat stress. The lymphocyte HSP70 profile and extracellular HSP70 were studied in tandem with physiological performance in the dogs from their recruitment for the following 2 yr. Aerobic power and heat shock proteins were measured at the end of each summer, with physical performance tests (PPTs) in an acclimatized room (22°C). The study shows that together with a profound enhancement of aerobic power and physical performance, hsp72 mRNA induction immediately post-PPT and 45 min later, progressively increased throughout the study period (relative change in median lymphocyte hsp72 mRNA first PPT, 4.22 and 12.82; second PPT, 17.19 and 109.05, respectively), whereas induction of HSP72 protein was stable. These responses suggest that cellular/molecular adaptive tools for maintaining HSP72 homeostasis exist. There was also a significant rise in basal and peak median optical density extracellular HSP at the end of each exercise test (first PPT, 0.13 and 0.15; second PPT, 1.04 and 1.52, respectively). The relationship between these enhancements and improved aerobic power capacity is not yet fully understood.
Collapse
Affiliation(s)
- Yaron Bruchim
- The Hebrew University Veterinary Teaching Hospital, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem;
| | - Itamar Aroch
- The Hebrew University Veterinary Teaching Hospital, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem
| | - Ady Eliav
- The Hebrew University Veterinary Teaching Hospital, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem
| | - Atallah Abbas
- Laboratory of Environmental Physiology, Hadassah Medical Center, The Hebrew University of Jerusalem
| | - Ilan Frank
- Israel Defense Force Military Working Dog Unit
| | - Efrat Kelmer
- The Hebrew University Veterinary Teaching Hospital, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem
| | - Carolina Codner
- The Hebrew University Veterinary Teaching Hospital, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem
| | - Gilad Segev
- The Hebrew University Veterinary Teaching Hospital, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem
| | - Yoram Epstein
- Heller Institute of Medical Research, Chaim Sheba Medical Center, Tel Hashomer, and Tel-Aviv University Medical School, Israel; and
| | - Michal Horowitz
- Laboratory of Environmental Physiology, Hadassah Medical Center, The Hebrew University of Jerusalem
| |
Collapse
|
42
|
Sugimoto N, Matsuzaki K, Ishibashi H, Tanaka M, Sawaki T, Fujita Y, Kawanami T, Masaki Y, Okazaki T, Sekine J, Koizumi S, Yachie A, Umehara H, Shido O. Upregulation of aquaporin expression in the salivary glands of heat-acclimated rats. Sci Rep 2014; 3:1763. [PMID: 23942196 PMCID: PMC3743064 DOI: 10.1038/srep01763] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/16/2013] [Indexed: 12/22/2022] Open
Abstract
It is known that aquaporin (AQP) 5 expression in the apical membrane of acinar cells in salivary glands is important for the secretion of saliva in rodents and humans. Although heat acclimation enhances saliva secretion in rodents, the molecular mechanism of how heat induces saliva secretion has not been determined. Here, we found that heat acclimation enhanced the expression of AQP5 and AQP1 in rat submandibular glands concomitant with the promotion of the HIF-1α pathway, leading to VEGF induction and CD31-positive angiogenesis. The apical membrane distribution of AQP5 in serous acinar cells enhanced after heat acclimation, while AQP1 expression was restricted to the endothelial cells in the submandibular glands. A network of AQPs may be involved in heat-acclimated regulation in saliva secretion. Because AQPs probably plays a crucial role in saliva secretion in humans, these findings may lead to a novel strategy for treating saliva hyposecretion.
Collapse
Affiliation(s)
- Naotoshi Sugimoto
- 1] Department of Physiology, Graduate School of Medical Science, Kanazawa University [2] Department of Environmental Physiology, School of Medicine, Shimane University
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
DiGiacomo K, Warner RD, Leury BJ, Gaughan JB, Dunshea FR. Dietary betaine supplementation has energy-sparing effects in feedlot cattle during summer, particularly in those without access to shade. ANIMAL PRODUCTION SCIENCE 2014. [DOI: 10.1071/an13418] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Dietary betaine supplementation improves water retention in steers and may influence lean-tissue deposition, while also acting as an osmolyte to help regulate cellular osmotic balance. This study investigated the interactions between shade and dietary betaine on carcass characteristics, tissue enzyme activity and gene expression in 48 feedlot steers during summer. Steers were randomly allocated to a 4 × 2 factorial design with the factors being dietary betaine (0, 10, 20 or 40 g) and shade (with and without shade) for 120 days. Tissue samples were obtained at slaughter and analysed for gene expression of heat shock proteins 70 and 90 (HSP70/90) and expression of heat shock factor 1 (HSF1), and enzyme activity of fatty acid synthase (FAS) and glycerol-6-phosphate dehydrogenase (G6PDH). Carcasses were evaluated for quality. Carcass weight at slaughter was not altered by shade (P = 0.18) but tended to be increased by dietary betaine (306 v. 314 kg, P = 0.09). The P8 backfat was not altered by shade (P = 0.43) or dietary betaine (P = 0.32), although there was a within dietary betaine effect whereby P8 backfat tended to be greater in steers fed 10 g compared with 40 g betaine/day (17.4 v. 14.5 mm, P = 0.06). Muscle pH at 1 h (5.97 v. 6.03, P = 0.01) and 2 h (5.73 v. 5.80, P = 0.04) post-slaughter was higher in shaded steers, and muscle pH at 1 h post-slaughter was higher in steers fed 10 or 20 g than those fed 40 g betaine/day (6.03 v. 6.03 v. 5.95, P = 0.005). Gene expression was not altered by betaine, while adipose tissues expressed more of each gene than muscle (P < 0.001). The mRNA expression of HSF1 and HSP90 was influenced by a shade × betaine interaction, although the direction of this interaction was irregular (P = 0.03 and 0.03, respectively). Adipose tissue FAS and G6PDH enzyme activity was unaffected by shade and betaine. The results of this study indicate that betaine supplementation may be a successful carcass modifier in growing feedlot steers during summer. Provision of shade during summer may reduce the rate of pH decline in the first 2 h after slaughter and reduce the risk of high rigor temperature.
Collapse
|
45
|
Xiong Q, Chai J, Xiong H, Li W, Huang T, Liu Y, Suo X, Zhang N, Li X, Jiang S, Chen M. Association analysis of HSP70A1A haplotypes with heat tolerance in Chinese Holstein cattle. Cell Stress Chaperones 2013; 18:711-8. [PMID: 23543596 PMCID: PMC3789873 DOI: 10.1007/s12192-013-0421-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/16/2013] [Accepted: 03/18/2013] [Indexed: 11/26/2022] Open
Abstract
Single-nucleotide polymorphisms (SNPs) in the coding and untranslated regions of heat shock 70 kDa protein 1A (HSP70A1A), an inducible molecular chaperone that is responsible for cellular protection against heat stress, have been reported as being associated with heat tolerance. A fragment of the HSP70A1A gene was amplified in Chinese Holstein cattle and eight novel mutations were found. We performed comprehensive linkage disequilibrium (LD) and haplotype analyses of the eight SNPs of the HSP70A1A gene and examined their involvement in heat resistance in 600 Chinese Holstein cattle. Our results revealed the presence of significant differences between individuals carrying haplotype 1 and those without haplotype 1 for most of the heat-tolerance traits. Haplotype 1 increased the risk of heat stress; however, association analysis of its combination with haplotype 2 showed the lowest rectal temperature and red blood cell K(+) level, moderate respiratory rate, and the highest red blood cell NKA level, suggesting a heterozygote advantage in the penetration of the phenotype. Protein expression levels in white blood cells among haplotype combinations further confirmed the hypothesis that heterozygotes for haplotypes 1 and 2 are more sensitive to heat stress. We presume that these mutations may be useful in the future as molecular genetic markers to assist selection for heat tolerance in cattle.
Collapse
Affiliation(s)
- Qi Xiong
- />Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Jin Chai
- />Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Haiqian Xiong
- />Institute of Animal Husbandry and Veterinary, Huanggang Academy of Agricultural Sciences, Huanggang, 438000 China
| | - Wengong Li
- />Institute of Animal Husbandry and Veterinary, Huanggang Academy of Agricultural Sciences, Huanggang, 438000 China
| | - Tao Huang
- />Animal Husbandry and Veterinary Bureau of Hubei Province, Wuhan, 430064 China
| | - Yang Liu
- />Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Xiaojun Suo
- />Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Nian Zhang
- />Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Xiaofeng Li
- />Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Siwen Jiang
- />Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Mingxin Chen
- />Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| |
Collapse
|
46
|
Umschweif G, Alexandrovich AG, Trembovler V, Horowitz M, Shohami E. The role and dynamics of β-catenin in precondition induced neuroprotection after traumatic brain injury. PLoS One 2013; 8:e76129. [PMID: 24124534 PMCID: PMC3790702 DOI: 10.1371/journal.pone.0076129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 08/19/2013] [Indexed: 12/30/2022] Open
Abstract
Preconditioning via heat acclimation (34°C 30 d) results in neuroprotection from traumatic brain injury due to constitutive as well as dynamic changes triggered by the trauma. Among these changes is Akt phosphorylation, which decreases apoptosis and induces HIF1α. In the present study we investigated the Akt downstream GSK3β/β -catenin pathway and focused on post injury alternations of β catenin and its impact on the cellular response in preconditioned heat acclimated mice. We found that the reduction in motor disability is accompanied with attenuation of depressive like behavior in heat acclimated mice that correlates with the GSK3β phosphorylation state. Concomitantly, a robust β catenin phosphorylation is not followed by its degradation, or by reduced nuclear accumulation. Enhanced tyrosine phosphorylation of β catenin in the injured area weakens the β catenin-N cadherin complex. Membrane β catenin is transiently reduced in heat acclimated mice and its recovery 7 days post TBI is accompanied by induction of the synaptic marker synaptophysin. We suggest a set of cellular events following traumatic brain injury in heat acclimated mice that causes β catenin to participate in cell-cell adhesion alternations rather than in Wnt signaling. These events may contribute to synaptogenesis and the improved motor and cognitive abilities seen heat acclimated mice after traumatic brain injury.
Collapse
Affiliation(s)
- Gali Umschweif
- Department of Pharmacology, The Hebrew University, Jerusalem, Israel
- Laboratory of Environmental Physiology, The Hebrew University, Jerusalem, Israel
| | | | | | - Michal Horowitz
- Laboratory of Environmental Physiology, The Hebrew University, Jerusalem, Israel
- * E-mail: (ES); (MH)
| | - Esther Shohami
- Laboratory of Environmental Physiology, The Hebrew University, Jerusalem, Israel
- * E-mail: (ES); (MH)
| |
Collapse
|
47
|
Sodhi M, Mukesh M, Kishore A, Mishra BP, Kataria RS, Joshi BK. Novel polymorphisms in UTR and coding region of inducible heat shock protein 70.1 gene in tropically adapted Indian zebu cattle (Bos indicus) and riverine buffalo (Bubalus bubalis). Gene 2013; 527:606-15. [PMID: 23792016 DOI: 10.1016/j.gene.2013.05.078] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/23/2013] [Accepted: 05/29/2013] [Indexed: 11/18/2022]
Abstract
Due to evolutionary divergence, cattle (taurine, and indicine) and buffalo are speculated to have different responses to heat stress condition. Variation in candidate genes associated with a heat-shock response may provide an insight into the dissimilarity and suggest targets for intervention. The present work was undertaken to characterize one of the inducible heat shock protein genes promoter and coding regions in diverse breeds of Indian zebu cattle and buffaloes. The genomic DNA from a panel of 117 unrelated animals representing 14 diversified native cattle breeds and 6 buffalo breeds were utilized to determine the complete sequence and gene diversity of HSP70.1 gene. The coding region of HSP70.1 gene in Indian zebu cattle, Bos taurus and buffalo was similar in length (1,926 bp) encoding a HSP70 protein of 641 amino acids with a calculated molecular weight (Mw) of 70.26 kDa. However buffalo had a longer 5' and 3' untranslated region (UTR) of 204 and 293 nucleotides respectively, in comparison to Indian zebu cattle and Bos taurus wherein length of 5' and 3'-UTR was 172 and 286 nucleotides, respectively. The increased length of buffalo HSP70.1 gene compared to indicine and taurine gene was due to two insertions each in 5' and 3'-UTR. Comparative sequence analysis of cattle (taurine and indicine) and buffalo HSP70.1 gene revealed a total of 54 gene variations (50 SNPs and 4 INDELs) among the three species in the HSP70.1 gene. The minor allele frequencies of these nucleotide variations varied from 0.03 to 0.5 with an average of 0.26. Among the 14 B. indicus cattle breeds studied, a total of 19 polymorphic sites were identified: 4 in the 5'-UTR and 15 in the coding region (of these 2 were non-synonymous). Analysis among buffalo breeds revealed 15 SNPs throughout the gene: 6 at the 5' flanking region and 9 in the coding region. In bubaline 5'-UTR, 2 additional putative transcription factor binding sites (Elk-1 and C-Re1) were identified, other than three common sites (CP2, HSE and Pax-4) observed across all the analyzed animals. No polymorphism was found within the 3'-UTR of Indian cattle or buffalo as it was found to be monomorphic. The promoter sequences generated in 117 individuals showed a rich array of sequence elements known to be involved in transcription regulation. A total of 11 nucleotide changes were observed in the promoter sequence across the analyzed species, 3 of these changes were located within the potential transcription factor binding domains. We also identified 4 microsatellite markers within the buffalo HSP70.1 gene and 3 microsatellites within bovine HSP70.1. The present study identified several distinct changes across indicine, taurine and bubaline HSP70.1 genes that could further be evaluated as molecular markers for thermotolerance.
Collapse
Affiliation(s)
- M Sodhi
- National Bureau of Animal Genetic resources, Karnal 132001, India.
| | | | | | | | | | | |
Collapse
|
48
|
Romanucci M, Salda LD. Pathophysiology and pathological findings of heatstroke in dogs. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2013; 4:1-9. [PMID: 32670838 PMCID: PMC7337213 DOI: 10.2147/vmrr.s29978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/23/2013] [Indexed: 11/29/2022]
Abstract
Canine heatstroke is a life-threatening condition resulting from an imbalance between heat dissipation and production, and characterized by a nonpyrogenic elevation in core body temperature above 41°C (105.8°F). Several exogenous and endogenous factors may predispose dogs to the development of heatstroke; on the other hand, adaptive mechanisms also exists which allow organisms to combat the deleterious effects of heat stress, which are represented by the cellular heat-shock response and heat acclimatization. The pathophysiology and consequences of heatstroke share many similarities to those observable in sepsis and are related to the interaction between the direct cytotoxicity of heat, the acute physiological alterations associated with hyperthermia, such as increased metabolic demand, hypoxia, and circulatory failure, and the inflammatory and coagulation responses of the host to the widespread endothelial and tissue injuries, which may culminate in disseminated intravascular coagulation, systemic inflammatory response syndrome, and multiple organ dysfunction.
Collapse
Affiliation(s)
- Mariarita Romanucci
- Department of Comparative Biomedical Sciences, Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Leonardo Della Salda
- Department of Comparative Biomedical Sciences, Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| |
Collapse
|
49
|
Gaughan JB, Bonner SL, Loxton I, Mader TL. Effects of chronic heat stress on plasma concentration of secreted heat shock protein 70 in growing feedlot cattle1. J Anim Sci 2013; 91:120-9. [DOI: 10.2527/jas.2012-5294] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- J. B. Gaughan
- School of Agriculture and Food Sciences, Animal Science Group, The University of Queensland, Gatton, Australia, 4343
| | - S. L. Bonner
- School of Agriculture and Food Sciences, Animal Science Group, The University of Queensland, Gatton, Australia, 4343
| | - I. Loxton
- Beef Support Services P/L, P.O. Box 247 Yeppoon, Australia, 4703
| | - T. L. Mader
- Haskell Agricultural Laboratory, University of Nebraska-Lincoln 57905 866 Rd., Concord 68278
| |
Collapse
|
50
|
Abstract
Environmentally induced periods of heat stress decrease productivity with devastating economic consequences to global animal agriculture. Heat stress can be defined as a physiological condition when the core body temperature of a given species exceeds its range specified for normal activity, which results from a total heat load (internal production and environment) exceeding the capacity for heat dissipation and this prompts physiological and behavioral responses to reduce the strain. The ability of ruminants to regulate body temperature is species- and breed-dependent. Dairy breeds are typically more sensitive to heat stress than meat breeds, and higher-producing animals are more susceptible to heat stress because they generate more metabolic heat. During heat stress, ruminants, like other homeothermic animals, increase avenues of heat loss and reduce heat production in an attempt to maintain euthermia. The immediate responses to heat load are increased respiration rates, decreased feed intake and increased water intake. Acclimatization is a process by which animals adapt to environmental conditions and engage behavioral, hormonal and metabolic changes that are characteristics of either acclimatory homeostasis or homeorhetic mechanisms used by the animals to survive in a new 'physiological state'. For example, alterations in the hormonal profile are mainly characterized by a decline and increase in anabolic and catabolic hormones, respectively. The response to heat load and the heat-induced change in homeorhetic modifiers alters post-absorptive energy, lipid and protein metabolism, impairs liver function, causes oxidative stress, jeopardizes the immune response and decreases reproductive performance. These physiological modifications alter nutrient partitioning and may prevent heat-stressed lactating cows from recruiting glucose-sparing mechanisms (despite the reduced nutrient intake). This might explain, in large part, why decreased feed intake only accounts for a minor portion of the reduced milk yield from environmentally induced hyperthermic cows. How these metabolic changes are initiated and regulated is not known. It also remains unclear how these changes differ between short-term v. long-term heat acclimation to impact animal productivity and well-being. A better understanding of the adaptations enlisted by ruminants during heat stress is necessary to enhance the likelihood of developing strategies to simultaneously improve heat tolerance and increase productivity.
Collapse
|