1
|
Then AA, Goenawan H, Lesmana R, Christoper A, Sylviana N, Gunadi JW. Exploring the potential regulation of DUOX in thyroid hormone‑autophagy signaling via IGF‑1 in the skeletal muscle (Review). Biomed Rep 2025; 22:39. [PMID: 39781041 PMCID: PMC11704872 DOI: 10.3892/br.2024.1917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/16/2024] [Indexed: 01/11/2025] Open
Abstract
Dual oxidases (DUOX) are enzymes that have the main function in producing reactive oxygen species (ROS) in various tissues. DUOX also play an important role in the synthesis of H2O2, which is essential for the production of thyroid hormone. Thyroid hormones can influence the process of muscle development through direct stimulation of ROS, 5' AMP-activated protein kinase (AMPK) and mTOR and indirect effect autophagy and the insulin-like growth factor 1 (IGF-1) pathway. IGF-1 signaling controls autophagy in two ways: Inhibiting autophagy through activation of the PI3K/AKT/mTOR/MAPK pathway and promoting mitophagy through the nuclear factor erythroid 2-related factor 2-binding receptor Bcl2/adenovirus E1B 19 kDa protein-interacting protein 3. Thyroid hormone deficiency caused by the absence of DUOX should be considered because it might have a significant effect on the growth of skeletal muscle. The effect of DUOX regulation on thyroid hormone autophagy via IGF-1 in skeletal muscle has not been well investigated. The present review discussed the regulatory interactions between DUOX, thyroid hormone, IGF-1 and autophagy, which can influence skeletal muscle development.
Collapse
Affiliation(s)
- Andreas Adiwinata Then
- Master's Program in Basic Biomedical Sciences, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java 40161, Indonesia
| | - Hanna Goenawan
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor-Sumedang, West Java 45363, Indonesia
- Biological Activity Division, Central Laboratory, Universitas Padjadjaran, Jatinangor-Sumedang, West Java 45363, Indonesia
| | - Ronny Lesmana
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor-Sumedang, West Java 45363, Indonesia
- Biological Activity Division, Central Laboratory, Universitas Padjadjaran, Jatinangor-Sumedang, West Java 45363, Indonesia
| | - Andreas Christoper
- Doctoral Program in Medical Science, PMDSU Program Batch VI, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java 40161, Indonesia
| | - Nova Sylviana
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor-Sumedang, West Java 45363, Indonesia
| | - Julia Windi Gunadi
- Department of Physiology, Faculty of Medicine, Maranatha Christian University, Bandung, West Java 40164, Indonesia
| |
Collapse
|
2
|
Ka Y, Lee I, Ji K. Thyroid and growth hormone endocrine disruption and mechanisms of homosalate and octisalate using wild-type, thrαa -/-, and dre-miR-499 -/- zebrafish embryo/larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117170. [PMID: 39413646 DOI: 10.1016/j.ecoenv.2024.117170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Homosalate (HS) and octisalate (OS), which are used in sunscreen for the purpose of blocking ultraviolet rays, are frequently detected in water environment. Although effects on estrogens and androgens have been reported, studies on thyroid and growth hormone endocrine disruption are limited. In the present study, larval mortality was compared in wild-type and two knockout fish (thyroid hormone receptor alpha a knockout (thrαa-/-) and dre-miR-499 knockout (dre-miR-499-/-)) after 96 h of exposure to HS and OS (0, 0.003, 0.03, 0.3, 3, 30 and 300 µg/L). To investigate the mechanisms of thyroid and growth hormone endocrine disruption, we measured the levels of triiodothyronine (T3), thyroxine (T4), thyroid stimulating hormone (TSH), growth hormone (GH), and insulin-like growth factor-1 (IGF-1), and the regulation of representative genes related to the hypothalamus-pituitary-thyroid (HPT) and GH/IGF axis in wild-type zebrafish exposed to target chemicals. The significantly lower larval survival rate of thrαa-/- and dre-miR-499-/- fish exposed to 300 μg/L of HS and OS suggest that thyroid hormone receptors and dre-miR-499 play a crucial role in the toxic effects of HS and OS. The finding of a significant increase in T3 and T4 in zebrafish larvae exposed to HS and OS supports a significant decrease in the crh gene. The reduction of GH and IGF-1 in fish exposed to HS and OS is well supported by the regulation of genes involved in the GH/IGF axis. Our observations suggest that exposure to HS and OS affects not only thyroid hormone receptors and their associated miRNAs, but also the feedback routes of HPT and GH/IGF axes, ultimately leading to growth reduction.
Collapse
Affiliation(s)
- Yujin Ka
- Department of Environmental Health, Graduate School at Yongin University, Yongin 17092, Republic of Korea
| | - Inhye Lee
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul 08826, Republic of Korea; Institute of Natural Sciences, Yongin University, Yongin 17092, Republic of Korea
| | - Kyunghee Ji
- Department of Environmental Health, Graduate School at Yongin University, Yongin 17092, Republic of Korea.
| |
Collapse
|
3
|
Nappi A, Moriello C, Morgante M, Fusco F, Crocetto F, Miro C. Effects of thyroid hormones in skeletal muscle protein turnover. J Basic Clin Physiol Pharmacol 2024; 35:253-264. [PMID: 39297559 DOI: 10.1515/jbcpp-2024-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/29/2024] [Indexed: 11/01/2024]
Abstract
Thyroid hormones (THs) are critical regulators of muscle metabolism in both healthy and unhealthy conditions. Acting concurrently as powerful anabolic and catabolic factors, THs are endowed with a vital role in muscle mass maintenance. As a result, thyroid dysfunctions are the leading cause of a wide range of muscle pathologies, globally identified as myopathies. Whether muscle wasting is a common feature in patients with hyperthyroidism and is mainly caused by THs-dependent stimulation of muscle proteolysis, also muscle growth is often associated with hyperthyroid conditions, linked to THs-dependent stimulation of muscle protein synthesis. Noteworthy, also hypothyroid status negatively impacts on muscle physiology, causing muscle weakness and fatigue. Most of these symptoms are due to altered balance between muscle protein synthesis and breakdown. Thus, a comprehensive understanding of THs-dependent skeletal muscle protein turnover might facilitate the management of physical discomfort or weakness in conditions of thyroid disease. Herein, we describe the molecular mechanisms underlying the THs-dependent alteration of skeletal muscle structure and function associated with muscle atrophy and hypertrophy, thus providing new insights for targeted modulation of skeletal muscle dynamics.
Collapse
Affiliation(s)
- Annarita Nappi
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Caterina Moriello
- Department of Advanced Medical and Surgical Sciences, University of Naples "Luigi Vanvitelli", Naples, Italy
| | | | - Ferdinando Fusco
- Department of Women, Children and General and Specialist Surgery, University of Naples "Luigi Vanvitelli", Naples, Italy
| | - Felice Crocetto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Caterina Miro
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
4
|
Hoh JFY. Developmental, physiologic and phylogenetic perspectives on the expression and regulation of myosin heavy chains in mammalian skeletal muscles. J Comp Physiol B 2023:10.1007/s00360-023-01499-0. [PMID: 37277594 DOI: 10.1007/s00360-023-01499-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 06/07/2023]
Abstract
The kinetics of myosin controls the speed and power of muscle contraction. Mammalian skeletal muscles express twelve kinetically different myosin heavy chain (MyHC) genes which provides a wide range of muscle speeds to meet different functional demands. Myogenic progenitors from diverse craniofacial and somitic mesoderm specify muscle allotypes with different repertoires for MyHC expression. This review provides a brief synopsis on the historical and current views on how cell lineage, neural impulse patterns, and thyroid hormone influence MyHC gene expression in muscles of the limb allotype during development and in adult life and the molecular mechanisms thereof. During somitic myogenesis, embryonic and foetal myoblast lineages form slow and fast primary and secondary myotube ontotypes which respond differently to postnatal neural and thyroidal influences to generate fully differentiated fibre phenotypes. Fibres of a given phenotype may arise from myotubes of different ontotypes which retain their capacity to respond differently to neural and thyroidal influences during postnatal life. This gives muscles physiological plasticity to adapt to fluctuations in thyroid hormone levels and patterns of use. The kinetics of MyHC isoforms vary inversely with animal body mass. Fast 2b fibres are specifically absent in muscles involved in elastic energy saving in hopping marsupials and generally absent in large eutherian mammals. Changes in MyHC expression are viewed in the context of the physiology of the whole animal. The roles of myoblast lineage and thyroid hormone in regulating MyHC gene expression are phylogenetically the most ancient while that of neural impulse patterns the most recent.
Collapse
Affiliation(s)
- Joseph Foon Yoong Hoh
- Discipline of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
- , PO Box 152, Killara, NSW, 2071, Australia.
| |
Collapse
|
5
|
Anas M, Diniz WJS, Menezes ACB, Reynolds LP, Caton JS, Dahlen CR, Ward AK. Maternal Mineral Nutrition Regulates Fetal Genomic Programming in Cattle: A Review. Metabolites 2023; 13:metabo13050593. [PMID: 37233634 DOI: 10.3390/metabo13050593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Maternal mineral nutrition during the critical phases of fetal development may leave lifetime impacts on the productivity of an individual. Most research within the developmental origins of the health and disease (DOHaD) field is focused on the role of macronutrients in the genome function and programming of the developing fetus. On the other hand, there is a paucity of knowledge about the role of micronutrients and, specifically, minerals in regulating the epigenome of livestock species, especially cattle. Therefore, this review will address the effects of the maternal dietary mineral supply on the fetal developmental programming from the embryonic to the postnatal phases in cattle. To this end, we will draw a parallel between findings from our cattle model research with data from model animals, cell lines, and other livestock species. The coordinated role and function of different mineral elements in feto-maternal genomic regulation underlies the establishment of pregnancy and organogenesis and, ultimately, affects the development and functioning of metabolically important tissues, such as the fetal liver, skeletal muscle, and, importantly, the placenta. Through this review, we will delineate the key regulatory pathways involved in fetal programming based on the dietary maternal mineral supply and its crosstalk with epigenomic regulation in cattle.
Collapse
Affiliation(s)
- Muhammad Anas
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 36849, USA
| | | | - Ana Clara B Menezes
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| | - Lawrence P Reynolds
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 36849, USA
| | - Joel S Caton
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 36849, USA
| | - Carl R Dahlen
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 36849, USA
| | - Alison K Ward
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
6
|
Kuhnen G, Guedes Russomanno T, Murgia M, Pillon NJ, Schönfelder M, Wackerhage H. Genes Whose Gain or Loss of Function Changes Type 1, 2A, 2X, or 2B Muscle Fibre Proportions in Mice—A Systematic Review. Int J Mol Sci 2022; 23:ijms232112933. [PMID: 36361732 PMCID: PMC9658117 DOI: 10.3390/ijms232112933] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/25/2022] Open
Abstract
Adult skeletal muscle fibres are classified as type 1, 2A, 2X, and 2B. These classifications are based on the expression of the dominant myosin heavy chain isoform. Muscle fibre-specific gene expression and proportions of muscle fibre types change during development and in response to exercise, chronic electrical stimulation, or inactivity. To identify genes whose gain or loss-of-function alters type 1, 2A, 2X, or 2B muscle fibre proportions in mice, we conducted a systematic review of transgenic mouse studies. The systematic review was conducted in accordance with the 2009 PRISMA guidelines and the PICO framework. We identified 25 “muscle fibre genes” (Akirin1, Bdkrb2, Bdnf, Camk4, Ccnd3, Cpt1a, Epas1, Esrrg, Foxj3, Foxo1, Il15, Mapk12, Mstn, Myod1, Ncor1, Nfatc1, Nol3, Ppargc1a, Ppargc1b, Sirt1, Sirt3, Thra, Thrb, Trib3, and Vgll2) whose gain or loss-of-function significantly changes type 1, 2A, 2X or 2B muscle fibre proportions in mice. The fact that 15 of the 25 muscle fibre genes are transcriptional regulators suggests that muscle fibre-specific gene expression is primarily regulated transcriptionally. A reanalysis of existing datasets revealed that the expression of Ppargc1a and Vgll2 increases and Mstn decreases after exercise, respectively. This suggests that these genes help to regulate the muscle fibre adaptation to exercise. Finally, there are many known DNA sequence variants of muscle fibre genes. It seems likely that such DNA sequence variants contribute to the large variation of muscle fibre type proportions in the human population.
Collapse
Affiliation(s)
- Gabryela Kuhnen
- Department of Sports and Health Sciences, Technical University of Munich, 80809 Munich, Germany
| | - Tiago Guedes Russomanno
- Department of Sports and Health Sciences, Technical University of Munich, 80809 Munich, Germany
| | - Marta Murgia
- Max Planck Institute, Martinsried, 82152 Munich, Germany
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi, 58/B, 35131 Padua, Italy
| | - Nicolas J Pillon
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Martin Schönfelder
- Department of Sports and Health Sciences, Technical University of Munich, 80809 Munich, Germany
| | - Henning Wackerhage
- Department of Sports and Health Sciences, Technical University of Munich, 80809 Munich, Germany
| |
Collapse
|
7
|
Thyroid Hormone Receptor Isoforms Alpha and Beta Play Convergent Roles in Muscle Physiology and Metabolic Regulation. Metabolites 2022; 12:metabo12050405. [PMID: 35629909 PMCID: PMC9145723 DOI: 10.3390/metabo12050405] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/30/2022] Open
Abstract
Skeletal muscle is a key energy-regulating organ, skilled in rapidly boosting the rate of energy production and substrate consumption following increased workload demand. The alteration of skeletal muscle metabolism is directly associated with numerous pathologies and disorders. Thyroid hormones (THs) and their receptors (TRs, namely, TRα and TRβ) exert pleiotropic functions in almost all cells and tissues. Skeletal muscle is a major THs-target tissue and alterations of THs levels have multiple influences on the latter. However, the biological role of THs and TRs in orchestrating metabolic pathways in skeletal muscle has only recently started to be addressed. The purpose of this paper is to investigate the muscle metabolic response to TRs abrogation, by using two different mouse models of global TRα- and TRβKO. In line with the clinical features of resistance to THs syndromes in humans, characterized by THRs gene mutations, both animal models of TRs deficiency exhibit developmental delay and mitochondrial dysfunctions. Moreover, using transcriptomic and metabolomic approaches, we found that the TRs–THs complex regulates the Fatty Acids (FAs)-binding protein GOT2, affecting FAs oxidation and transport in skeletal muscle. In conclusion, these results underline a new metabolic role of THs in governing muscle lipids distribution and metabolism.
Collapse
|
8
|
Zhu X, Zou Y, Qi X, Sheng Y, Lv S, Yu J, Wang X, Ding G, Duan Y. 2,3',4,4',5-Pentachlorobiphenyl attenuated fast-twitch fibers and fiber size of skeletal muscle via disturbing thyroid hormone signaling and mitochondrial dynamics. J Appl Toxicol 2022; 42:1628-1638. [PMID: 35411558 DOI: 10.1002/jat.4330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 11/08/2022]
Abstract
Polychlorinated biphenyls (PCBs) affect multiple organs, and some of the effects are mediated by interfering with thyroid hormone (TH) signaling that regulates physiological processes in mammals. It remains unclear how PCBs affect skeletal muscle (SM). In our study, wistar rats were injected 2,3',4,4',5-Pentachlorobiphenyl (PCB118) intraperitoneally at 0, 10, 100, and 1,000 μg / kg / day for 13 weeks and C2C12 myoblasts were treated PCB118 (0, 0.25, 25, and 50 nM) for 24 hours or 48 hours. We found that myocyte cross sectional area (MCSA) was reduced, MyHC IIa and MyHC IIb mRNA levels significantly decreased, and muscle strength was weakened in PCB118-exposed rats. TH receptor α (TRα) and iodothyronine deiodinase type 2 (DIO2) were upregulated after PCB118 exposure both in vivo and vitro. Transmission electron microscopy showed significant mitochondrial abnormalities in PCB118-treated rats, and the expression of mitochondrial regulators such as PTEN-induced kinase 1 (PINK1) and GTPase dynamin-related protein 1 (DRP1) were altered after PCB118 exposure. These results suggest that PCB118 could weaken muscle strength and attenuate fast-twitch fibers and fiber size of SM in rats. TH signaling, mitochondrial dynamics and mitophagy were also disturbed by PCB118, which may contribute to the alternations of SM structure and function.
Collapse
Affiliation(s)
- Xiaoxia Zhu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuxin Zou
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyu Qi
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunlu Sheng
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shan Lv
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Yu
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaodong Wang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoxian Ding
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Duan
- Division of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
De Stefano MA, Ambrosio R, Porcelli T, Orlandino G, Salvatore D, Luongo C. Thyroid Hormone Action in Muscle Atrophy. Metabolites 2021; 11:metabo11110730. [PMID: 34822388 PMCID: PMC8625289 DOI: 10.3390/metabo11110730] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle atrophy is a condition associated with various physiological and pathophysiological conditions, such as denervation, cachexia, and fasting. It is characterized by an altered protein turnover in which the rate of protein degradation exceeds the rate of protein synthesis, leading to substantial muscle mass loss and weakness. Muscle protein breakdown reflects the activation of multiple proteolytic mechanisms, including lysosomal degradation, apoptosis, and ubiquitin-proteasome. Thyroid hormone (TH) plays a key role in these conditions. Indeed, skeletal muscle is among the principal TH target tissue, where TH regulates proliferation, metabolism, differentiation, homeostasis, and growth. In physiological conditions, TH stimulates both protein synthesis and degradation, and an alteration in TH levels is often responsible for a specific myopathy. Intracellular TH concentrations are modulated in skeletal muscle by a family of enzymes named deiodinases; in particular, in muscle, deiodinases type 2 (D2) and type 3 (D3) are both present. D2 activates the prohormone T4 into the active form triiodothyronine (T3), whereas D3 inactivates both T4 and T3 by the removal of an inner ring iodine. Here we will review the present knowledge of TH action in skeletal muscle atrophy, in particular, on the molecular mechanisms presiding over the control of intracellular T3 concentration in wasting muscle conditions. Finally, we will discuss the possibility of exploiting the modulation of deiodinases as a possible therapeutic approach to treat muscle atrophy.
Collapse
Affiliation(s)
- Maria Angela De Stefano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Raffaele Ambrosio
- Istituti di Ricovero e Cura a Carattere Scientifico, SDN, 80143 Naples, Italy;
| | - Tommaso Porcelli
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy;
| | | | - Domenico Salvatore
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy;
- Correspondence: (D.S.); (C.L.)
| | - Cristina Luongo
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy;
- Correspondence: (D.S.); (C.L.)
| |
Collapse
|
10
|
Abstract
The non-thyroidal illness syndrome (NTIS) was first reported in the 1970s as a remarkable ensemble of changes in serum TH (TH) concentrations occurring in probably any severe illness. Ever since, NTIS has remained an intriguing phenomenon not only because of the robustness of the decrease in serum triiodothyronine (T3), but also by its clear correlation with morbidity and mortality. In recent years, it has become clear that (parenteral) feeding in patients with critical illness should be taken into account as a major determinant not only of NTIS but also of clinical outcome. Moreover, both experimental animal and clinical studies have shown that tissue TH concentrations during NTIS do not necessarily reflect serum low TH concentrations and may decrease, remain unaltered, or even increase according to the organ and type of illness studied. These differential changes now have a solid basis in molecular studies on organ-specific TH transporters, receptors and deiodinases. Finally, the role of inflammatory pathways in these non-systemic changes has begun to be clarified. A fascinating role for TH metabolism in innate immune cells, including neutrophils and monocytes/macrophages, was reported in recent years, but there is no evidence at this early stage that this may be a determinant of susceptibility to infections. Although endocrinologists have been tempted to correct NTIS by TH supplementation, there is at present insufficient evidence that this is beneficial. Thus, there is a clear need for adequately powered randomized clinical trials (RCT) with clinically relevant endpoints to fill this knowledge gap.
Collapse
Affiliation(s)
- E Fliers
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - A Boelen
- Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Wang L, Sheng Y, Xu W, Sun M, Lv S, Yu J, Wang X, Ding G, Duan Y. Mechanism of thyroid hormone signaling in skeletal muscle of aging mice. Endocrine 2021; 72:132-139. [PMID: 32720201 DOI: 10.1007/s12020-020-02428-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/18/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIM Skeletal muscle (SM) has been shown as a target of thyroid hormones (THs). However, the status of TH signaling in aged SM remains unclear. This study aimed to explore the mechanism of TH signaling in SM of aging mice. METHODS Thirty C57BL/6J male mice were divided into 6-, 15- and 22-month (6, 15 and 22M) groups according to different age. Physical parameters were evaluated by analytical balance, grip strength test and histological analysis. Thyroid function was detected by enzyme-linked immunosorbent assay. TH signaling was compared among the three groups by real-time PCR and western blotting analysis. RESULTS p16, p21, and p53 mRNA levels in SM increased in age-dependent manner. The muscle weight and strength decreased in 22M group compared to 6 and 15M groups. Concentrations of thyroid hormones, including free triiodothyronine (FT3), free thyroxine (FT4) and thyroid-stimulating hormone (TSH) in 22 M mice were not shown significant difference compared to 6M or 15M mice, although FT3 showed slightly decrease and TSH appeared a mild increase accompanying with age. mRNA levels of TH transporters, including MCT8 and MCT10, as well as iodothyronine deiodinase type 2 (DIO2) and type 3 (DIO3), were higher in 22M, while TH receptor α (TRα) mRNA and protein expression was lower in 22M, compared to the other groups. Type-I myosin heavy chain (MyHC I), MyHC IIx, and MyHC IIa were upregulated and Type-IIb MyHC (MyHC IIb) was downregulated in SM with advancing age. CONCLUSIONS TH signaling in SM changes with aging.
Collapse
Affiliation(s)
- Li Wang
- Division of Geriatric Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Yunlu Sheng
- Division of Geriatric Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Wenli Xu
- Division of Geriatric Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Minne Sun
- Division of Geriatric Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Shan Lv
- Division of Geriatric Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Jing Yu
- Division of Geriatric Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Xiaodong Wang
- Division of Geriatric Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Guoxian Ding
- Division of Geriatric Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Yu Duan
- Division of Geriatric Endocrinology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
12
|
Volke L, Krause K. Effect of Thyroid Hormones on Adipose Tissue Flexibility. Eur Thyroid J 2021; 10:1-9. [PMID: 33777816 PMCID: PMC7983599 DOI: 10.1159/000508483] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/05/2020] [Indexed: 12/18/2022] Open
Abstract
The recruitment and activation of energy-consuming brown adipocytes is currently considered as potential therapeutic approach to combat obesity. Thyroid hormones (TH) significantly contribute to full thermogenic capacity of brown adipocytes. A number of recent studies suggest that TH also induce the recruitment of brown adipocytes in white adipose depots, a process known as browning. In this review, we will summarize underlying mechanisms by which TH mediate brown adipose tissue activity and white adipose tissue browning. Furthermore, we will discuss the relevance of TH-induced white adipose tissue browning for thermoregulation.
Collapse
Affiliation(s)
- Lisa Volke
- Medical Department III-Endocrinology, Nephrology, and Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Kerstin Krause
- Medical Department III-Endocrinology, Nephrology, and Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Department of Medicine, University of Leipzig, Leipzig, Germany
- *Kerstin Krause, Department of Medicine, University of Leipzig, Liebigstrasse 21, DE–04103 Leipzig (Germany),
| |
Collapse
|
13
|
An X, Ogawa-Wong A, Carmody C, Ambrosio R, Cicatiello AG, Luongo C, Salvatore D, Handy DE, Larsen PR, Wajner SM, Dentice M, Zavacki AM. A Type 2 Deiodinase-Dependent Increase in Vegfa Mediates Myoblast-Endothelial Cell Crosstalk During Skeletal Muscle Regeneration. Thyroid 2021; 31:115-127. [PMID: 32787533 PMCID: PMC7840309 DOI: 10.1089/thy.2020.0291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background: The type 2 deiodinase (DIO2) converts thyroxine to 3,3',5-triiodothyronine (T3), modulating intracellular T3. An increase in DIO2 within muscle stem cells during skeletal muscle regeneration leads to T3-dependent potentiation of differentiation. The muscle stem cell niche comprises numerous cell types, which coordinate the regeneration process. For example, muscle stem cells provide secretory signals stimulating endothelial cell-mediated vascular repair, and, in turn, endothelial cells promote muscle stem differentiation. We hypothesized that Dio2 loss in muscle stem cells directly impairs muscle stem cell-endothelial cell communication, leading to downstream disruption of endothelial cell function. Methods: We assessed the production of proangiogenic factors in differentiated C2C12 cells and in a C2C12 cell line without Dio2 (D2KO C2C12) by real-time quantitative-polymerase chain reaction and enzyme-linked immunosorbent assay. Conditioned medium (CM) was collected daily in parallel to evaluate its effects on human umbilical vein endothelial cell (HUVEC) proliferation, migration and chemotaxis, and vascular network formation. The effects of T3-treatment on vascular endothelial growth factor (Vegfa) mRNA expression in C2C12 cells and mouse muscle were assessed. Chromatin immunoprecipitation (ChIP) identified thyroid hormone receptor (TR) binding to the Vegfa gene. Using mice with a targeted disruption of Dio2 (D2KO mice), we determined endothelial cell number by immunohistochemistry/flow cytometry and evaluated related gene expression in both uninjured and injured skeletal muscle. Results: In differentiated D2KO C2C12 cells, Vegfa expression was 46% of wildtype (WT) C2C12 cells, while secreted VEGF was 45%. D2KO C2C12 CM exhibited significantly less proangiogenic effects on HUVECs. In vitro and in vivo T3 treatment of C2C12 cells and WT mice, and ChIP using antibodies against TRα, indicated that Vegfa is a direct genomic T3 target. In uninjured D2KO soleus muscle, Vegfa expression was decreased by 28% compared with WT mice, while endothelial cell numbers were decreased by 48%. Seven days after skeletal muscle injury, D2KO mice had 36% fewer endothelial cells, coinciding with an 83% decrease in Vegfa expression in fluorescence-activated cell sorting purified muscle stem cells. Conclusion:Dio2 loss in the muscle stem cell impairs muscle stem cell-endothelial cell crosstalk via changes in the T3-responsive gene Vegfa, leading to downstream impairment of endothelial cell function both in vitro and in vivo.
Collapse
Affiliation(s)
- Xingxing An
- Key Laboratory of Transplant Engineering and Immunology, Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Ashley Ogawa-Wong
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Colleen Carmody
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | - Cristina Luongo
- Department of Public Health, University of Naples “Federico II,” Naples, Italy
| | - Domenico Salvatore
- Department of Public Health, University of Naples “Federico II,” Naples, Italy
- CEINGE-Biotecnologie Avanzate Scarl, Naples, Italy
| | - Diane E. Handy
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - P. Reed Larsen
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Simone Magagnin Wajner
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Endocrine Division, Hospital de Clinicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Monica Dentice
- Department of Clinical Medicine and Surgery and University of Naples “Federico II,” Naples, Italy
| | - Ann Marie Zavacki
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Nicolaisen TS, Klein AB, Dmytriyeva O, Lund J, Ingerslev LR, Fritzen AM, Carl CS, Lundsgaard AM, Frost M, Ma T, Schjerling P, Gerhart-Hines Z, Flamant F, Gauthier K, Larsen S, Richter EA, Kiens B, Clemmensen C. Thyroid hormone receptor α in skeletal muscle is essential for T3-mediated increase in energy expenditure. FASEB J 2020; 34:15480-15491. [PMID: 32969079 PMCID: PMC7702122 DOI: 10.1096/fj.202001258rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 12/18/2022]
Abstract
Thyroid hormones are important for homeostatic control of energy metabolism and body temperature. Although skeletal muscle is considered a key site for thyroid action, the contribution of thyroid hormone receptor signaling in muscle to whole‐body energy metabolism and body temperature has not been resolved. Here, we show that T3‐induced increase in energy expenditure requires thyroid hormone receptor alpha 1 (TRα1) in skeletal muscle, but that T3‐mediated elevation in body temperature is achieved in the absence of muscle‐TRα1. In slow‐twitch soleus muscle, loss‐of‐function of TRα1 (TRαHSACre) alters the fiber‐type composition toward a more oxidative phenotype. The change in fiber‐type composition, however, does not influence the running capacity or motivation to run. RNA‐sequencing of soleus muscle from WT mice and TRαHSACre mice revealed differentiated transcriptional regulation of genes associated with muscle thermogenesis, such as sarcolipin and UCP3, providing molecular clues pertaining to the mechanistic underpinnings of TRα1‐linked control of whole‐body metabolic rate. Together, this work establishes a fundamental role for skeletal muscle in T3‐stimulated increase in whole‐body energy expenditure.
Collapse
Affiliation(s)
- Trine S Nicolaisen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Anders B Klein
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars R Ingerslev
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas M Fritzen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christian S Carl
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Marie Lundsgaard
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Frost
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tao Ma
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Bispebjerg-Frederiksberg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frederic Flamant
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR 5242, INRA USC 1370, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Karine Gauthier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR 5242, INRA USC 1370, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erik A Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Naicker M, Abbai N, Naidoo S. Bipolar limbic expression of auto-immune thyroid targets: thyroglobulin and thyroid-stimulating hormone receptor. Metab Brain Dis 2019; 34:1281-1298. [PMID: 31197680 DOI: 10.1007/s11011-019-00437-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 05/20/2019] [Indexed: 11/29/2022]
Abstract
The associations between thyroid auto-immunity and neuro-psychiatric disorders are well-documented. However, there exists limited literature specifically linking auto-immune thyroid disease (AITD) to bipolar disorder (BD). Thus, we investigated the likely association between Hashimoto's disease and BD through the extra-thyroidal localisation of thyroid-stimulating hormone receptor (TSH-R) and thyroglobulin (TG) in limbic regions of normal and bipolar human adult brain. Further, we hypothesised that changes in thyroid expression in bipolar limbic cortex may contribute to mood dysregulation associated with BD. Immuno-chemistry and in-situ PCR were used to localise TSH-R/TG within the amygdala, cingulate gyrus and frontal cortex of normal (n = 5) and bipolar (n = 5) brains. Reverse-transcriptase qPCR provided fold-change differences in TSH-R gene expression. The results demonstrated reduced thyroid protein expression in bipolar limbic regions; these novel results correlate with other neuro-imaging reports that describe reduced cortico-limbic tissue volumes and neuro-physiological activity during BD. We also demonstrated TG-like proteins exclusive to bipolar amygdala neurons, and which relates to previous neuro-imaging studies of amygdala hyperactivity and enhanced emotional sensitivity in BD. Indeed, reduced TSH-R/TG in limbic regions may predispose to, or bear relevance in the pathophysiology of mood dysregulation and symptoms of BD. Further, we attribute mood dysregulation in BD to limbic-derived TSH-R, which probably provides potential targets for thyroid auto-immune factors during Hashimoto's disease. Consequently, this may lead to inactivated and/or damaged neurons. The neuro-pathology of diminished neuronal functioning or neuronal atrophy suggests a novel neuro-degeneration mechanism in BD.
Collapse
Affiliation(s)
- Meleshni Naicker
- Therapeutics and Medicines Management, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Private bag X7, Durban, 4001, South Africa.
| | - Nathlee Abbai
- School of Clinical Medicine Research Laboratory, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Strinivasen Naidoo
- Therapeutics and Medicines Management, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Private bag X7, Durban, 4001, South Africa
| |
Collapse
|
16
|
Bianco AC, Dumitrescu A, Gereben B, Ribeiro MO, Fonseca TL, Fernandes GW, Bocco BMLC. Paradigms of Dynamic Control of Thyroid Hormone Signaling. Endocr Rev 2019; 40:1000-1047. [PMID: 31033998 PMCID: PMC6596318 DOI: 10.1210/er.2018-00275] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/15/2019] [Indexed: 12/17/2022]
Abstract
Thyroid hormone (TH) molecules enter cells via membrane transporters and, depending on the cell type, can be activated (i.e., T4 to T3 conversion) or inactivated (i.e., T3 to 3,3'-diiodo-l-thyronine or T4 to reverse T3 conversion). These reactions are catalyzed by the deiodinases. The biologically active hormone, T3, eventually binds to intracellular TH receptors (TRs), TRα and TRβ, and initiate TH signaling, that is, regulation of target genes and other metabolic pathways. At least three families of transmembrane transporters, MCT, OATP, and LAT, facilitate the entry of TH into cells, which follow the gradient of free hormone between the extracellular fluid and the cytoplasm. Inactivation or marked downregulation of TH transporters can dampen TH signaling. At the same time, dynamic modifications in the expression or activity of TRs and transcriptional coregulators can affect positively or negatively the intensity of TH signaling. However, the deiodinases are the element that provides greatest amplitude in dynamic control of TH signaling. Cells that express the activating deiodinase DIO2 can rapidly enhance TH signaling due to intracellular buildup of T3. In contrast, TH signaling is dampened in cells that express the inactivating deiodinase DIO3. This explains how THs can regulate pathways in development, metabolism, and growth, despite rather stable levels in the circulation. As a consequence, TH signaling is unique for each cell (tissue or organ), depending on circulating TH levels and on the exclusive blend of transporters, deiodinases, and TRs present in each cell. In this review we explore the key mechanisms underlying customization of TH signaling during development, in health and in disease states.
Collapse
Affiliation(s)
- Antonio C Bianco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Alexandra Dumitrescu
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Miriam O Ribeiro
- Developmental Disorders Program, Center of Biologic Sciences and Health, Mackenzie Presbyterian University, São Paulo, São Paulo, Brazil
| | - Tatiana L Fonseca
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Gustavo W Fernandes
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| | - Barbara M L C Bocco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, Chicago, Illinois
| |
Collapse
|
17
|
Carmody C, Ogawa-Wong AN, Martin C, Luongo C, Zuidwijk M, Sager B, Petersen T, Roginski Guetter A, Janssen R, Wu EY, Bogaards S, Neumann NM, Hau K, Marsili A, Boelen A, Silva JE, Dentice M, Salvatore D, Wagers AJ, Larsen PR, Simonides WS, Zavacki AM. A Global Loss of Dio2 Leads to Unexpected Changes in Function and Fiber Types of Slow Skeletal Muscle in Male Mice. Endocrinology 2019; 160:1205-1222. [PMID: 30951174 PMCID: PMC6482039 DOI: 10.1210/en.2019-00088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/29/2019] [Indexed: 12/20/2022]
Abstract
The type 2 iodothyronine-deiodinase (D2) enzyme converts T4 to T3, and mice deficient in this enzyme [D2 knockout (D2KO) mice] have decreased T3 derived from T4 in skeletal muscle despite normal circulating T3 levels. Because slow skeletal muscle is particularly susceptible to changes in T3 levels, we expected D2 inactivation to result in more pronounced slow-muscle characteristics in the soleus muscle, mirroring hypothyroidism. However, ex vivo studies of D2KO soleus revealed higher rates of twitch contraction and relaxation and reduced resistance to fatigue. Immunostaining of D2KO soleus showed that these properties were associated with changes in muscle fiber type composition, including a marked increase in the number of fast, glycolytic type IIB fibers. D2KO soleus muscle fibers had a larger cross-sectional area, and this correlated with increased myonuclear accretion in myotubes formed from D2KO skeletal muscle precursor cells differentiated in vitro. Consistent with our functional findings, D2KO soleus gene expression was markedly different from that in hypothyroid wild-type (WT) mice. Comparison of gene expression between euthyroid WT and D2KO mice indicated that PGC-1α, a T3-dependent regulator of slow muscle fiber type, was decreased by ∼50% in D2KO soleus. Disruption of Dio2 in the C2C12 myoblast cell line led to a significant decrease in PGC-1α expression and a faster muscle phenotype upon differentiation. These results indicate that D2 loss leads to significant changes in soleus contractile function and fiber type composition that are inconsistent with local hypothyroidism and suggest that reduced levels of PCG-1α may contribute to the observed phenotypical changes.
Collapse
Affiliation(s)
| | | | | | - Cristina Luongo
- Brigham and Women’s Hospital, Boston, Massachusetts
- University of Naples “Federico II,” Napoli, Italy
| | - Marian Zuidwijk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | | | | | - Rob Janssen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Sylvia Bogaards
- Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Kaman Hau
- Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Anita Boelen
- Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - J Enrique Silva
- Baystate Medical Center, Springfield, Massachusetts
- Tufts University School of Medicine, Boston, Massachusetts
| | | | | | | | | | | | | |
Collapse
|
18
|
Rosenbaum M, Goldsmith RL, Haddad F, Baldwin KM, Smiley R, Gallagher D, Leibel RL. Triiodothyronine and leptin repletion in humans similarly reverse weight-loss-induced changes in skeletal muscle. Am J Physiol Endocrinol Metab 2018; 315:E771-E779. [PMID: 29920214 PMCID: PMC6293163 DOI: 10.1152/ajpendo.00116.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Subjects maintaining a ≥10% dietary weight loss exhibit decreased circulating concentrations of bioactive thyroid hormones and increased skeletal muscle work efficiency largely due to increased expression of more-efficient myosin heavy chain (MHC) isoforms (MHC I) and significantly mediated by the adipocyte-derived hormone leptin. The primary purpose of this study was to examine the effects of triiodothyronine (T3) repletion on energy homeostasis and skeletal muscle physiology in weight-reduced subjects and to compare these results with the effects of leptin repletion. Nine healthy in-patients with obesity were studied at usual weight (Wtinitial) and following a 10% dietary weight loss while receiving 5 wk of a placebo (Wt-10%placebo) or T3 (Wt-10%T3) in a single-blind crossover design. Primary outcome variables were skeletal muscle work efficiency and vastus lateralis muscle mRNA expression. These results were compared with the effects of leptin repletion in a population of 22 subjects, some of whom participated in a previous study. At Wt-10%placebo, skeletal muscle work efficiency and relative expression of the more-efficient/less-efficient MHC I/MHC II isoforms were significantly increased and the ratio of the less-efficient to the more-efficient sarco(endo)plasmic reticulum Ca2+-ATPase isoforms (SERCA1/SERCA2) was significantly decreased. These changes were largely reversed by T3 repletion to a degree similar to the changes that occurred with leptin repletion. These data support the hypothesis that the effects of leptin on energy expenditure in weight-reduced individuals are largely mediated by T3 and suggest that further study of the possible role of thyroid hormone repletion as adjunctive therapy to help sustain weight loss is needed.
Collapse
Affiliation(s)
- Michael Rosenbaum
- Departments of Pediatrics and Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Rochelle L Goldsmith
- Division of Cardiology, Department of Medicine, Columbia University College of Physicians and Surgeons , New York, New York
| | - Fadia Haddad
- Department of Physiology and Biophysics, University of California at Irvine , Irvine, California
| | - Kenneth M Baldwin
- Department of Physiology and Biophysics, University of California at Irvine , Irvine, California
| | - Richard Smiley
- Departments of Pediatrics and Medicine, Columbia University College of Physicians and Surgeons, New York, New York
- Department of Anesthesia, Columbia University College of Physicians and Surgeons , New York, New York
| | - Dympna Gallagher
- Obesity Research Center, Columbia University, St. Luke's-Roosevelt Hospital , New York, New York
| | - Rudolph L Leibel
- Departments of Pediatrics and Medicine, Columbia University College of Physicians and Surgeons, New York, New York
- Division of Molecular Genetics, Columbia University College of Physicians and Surgeons , New York, New York
| |
Collapse
|
19
|
Barakat-Walter I, Kraftsik R. Stimulating effect of thyroid hormones in peripheral nerve regeneration: research history and future direction toward clinical therapy. Neural Regen Res 2018; 13:599-608. [PMID: 29722302 PMCID: PMC5950660 DOI: 10.4103/1673-5374.230274] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Injury to peripheral nerves is often observed in the clinic and severe injuries may cause loss of motor and sensory functions. Despite extensive investigation, testing various surgical repair techniques and neurotrophic molecules, at present, a satisfactory method to ensuring successful recovery does not exist. For successful molecular therapy in nerve regeneration, it is essential to improve the intrinsic ability of neurons to survive and to increase the speed of axonal outgrowth. Also to induce Schwann cell phenotypical changes to prepare the local environment favorable for axonal regeneration and myelination. Therefore, any molecule that regulates gene expression of both neurons and Schwann cells could play a crucial role in peripheral nerve regeneration. Clinical and experimental studies have reported that thyroid hormones are essential for the normal development and function of the nervous system, so they could be candidates for nervous system regeneration. This review provides an overview of studies devoted to testing the effect of thyroid hormones on peripheral nerve regeneration. Also it emphasizes the importance of combining biodegradable tubes with local administration of triiodothyronine for future clinical therapy of human severe injured nerves. We highlight that the local and single administration of triiodothyronine within biodegradable nerve guide improves significantly the regeneration of severed peripheral nerves, and accelerates functional recovering. This technique provides a serious step towards future clinical application of triiodothyronine in human severe injured nerves. The possible regulatory mechanism by which triiodothyronine stimulates peripheral nerve regeneration is a rapid action on both axotomized neurons and Schwann cells.
Collapse
Affiliation(s)
- I Barakat-Walter
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - R Kraftsik
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
20
|
Wrutniak-Cabello C, Casas F, Cabello G. Mitochondrial T3 receptor and targets. Mol Cell Endocrinol 2017; 458:112-120. [PMID: 28167126 DOI: 10.1016/j.mce.2017.01.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/28/2017] [Accepted: 01/31/2017] [Indexed: 12/25/2022]
Abstract
The demonstration that TRα1 mRNA encodes a nuclear thyroid hormone receptor and two proteins imported into mitochondria with molecular masses of 43 and 28 kDa has brought new clues to better understand the pleiotropic influence of iodinated hormones. If p28 activity remains unknown, p43 binds to T3 responsive elements occurring in the organelle genome, and, in the T3 presence, stimulates mitochondrial transcription and the subsequent synthesis of mitochondrial encoded proteins. This influence increases mitochondrial activity and through changes in the mitochondrial/nuclear cross talk affects important nuclear target genes regulating cell proliferation and differentiation, oncogenesis, or apoptosis. In addition, this pathway influences muscle metabolic and contractile phenotype, as well as glycaemia regulation. Interestingly, according to the process considered, p43 exerts opposite or cooperative effects with the well-known T3 pathway, thus allowing a fine tuning of the physiological influence of this hormone.
Collapse
Affiliation(s)
- Chantal Wrutniak-Cabello
- INRA, UMR 866 Dynamique Musculaire et Métabolisme, 34060 Montpellier, France; Université de Montpellier, UMR 866 Dynamique Musculaire et Métabolisme, 34060 Montpellier, France.
| | - François Casas
- INRA, UMR 866 Dynamique Musculaire et Métabolisme, 34060 Montpellier, France; Université de Montpellier, UMR 866 Dynamique Musculaire et Métabolisme, 34060 Montpellier, France
| | - Gérard Cabello
- INRA, UMR 866 Dynamique Musculaire et Métabolisme, 34060 Montpellier, France; Université de Montpellier, UMR 866 Dynamique Musculaire et Métabolisme, 34060 Montpellier, France
| |
Collapse
|
21
|
Milanesi A, Lee JW, Yang A, Liu YY, Sedrakyan S, Cheng SY, Perin L, Brent GA. Thyroid Hormone Receptor Alpha is Essential to Maintain the Satellite Cell Niche During Skeletal Muscle Injury and Sarcopenia of Aging. Thyroid 2017; 27:1316-1322. [PMID: 28847239 PMCID: PMC5649408 DOI: 10.1089/thy.2017.0021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Myopathic changes are commonly described in hypothyroid and hyperthyroid patients, including muscular atrophy and weakness. Satellite cells (SCs) play a major role in skeletal muscle maintenance and regeneration after injury. A mouse model of resistance to thyroid hormone-TRα1PV demonstrated impaired skeletal muscle regeneration after injury with significant reduction of SCs, suggesting that exhaustion of the SC pool contributes to the impaired regeneration. To test this hypothesis, SC activation and proliferation were analyzed in vivo in response to skeletal muscle injury and during aging. METHODS SCs of TRα1PV male mice were analyzed four days after cardiotoxin-induced muscle injury, and they were compared to wild-type (WT) male animals. TRα-knockdown C2C12 myoblasts were injected into injured skeletal muscle, and four days after transplantation, the in vivo behavior was compared to control C2C12 myoblasts. Skeletal muscle regeneration was compared in younger and older TRα1PV and WT animals. RESULTS The total number of SCs in skeletal muscle of TRα1PV mice was significantly lower than control, both before and shortly after muscle injury, with significant impairment of SC activation, consistent with SC pool exhaustion. TRα-knockdown myoblasts showed impaired in vivo proliferation and migration. TRα1PV mice had skeletal muscle loss and significant impairment in skeletal muscle regeneration with aging. This translated to a significant reduction of the SC pool with aging compared to WT mice. CONCLUSION TRα plays an important role in the maintenance of the SC pool. Impaired skeletal muscle regeneration in TRα1PV mice is associated with insufficient SC activation and proliferation, as well as the progressive loss of the SC pool with aging. Regulation of the SC pool and SC proliferation provides a therapeutic target to enhance skeletal muscle regeneration and possibly slow age-associated sarcopenia.
Collapse
Affiliation(s)
- Anna Milanesi
- Division of Endocrinology, Department of Medicine, Veterans Affairs Greater Los Angeles Healthcare System, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jang-Won Lee
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - An Yang
- Division of Endocrinology, Department of Medicine, Veterans Affairs Greater Los Angeles Healthcare System, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Yan-Yun Liu
- Division of Endocrinology, Department of Medicine, Veterans Affairs Greater Los Angeles Healthcare System, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Sargis Sedrakyan
- Department of Urology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California
| | - Sheue-yann Cheng
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland
| | - Laura Perin
- Department of Urology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California
| | - Gregory A. Brent
- Division of Endocrinology, Department of Medicine, Veterans Affairs Greater Los Angeles Healthcare System, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
22
|
Vestigial-like 2 contributes to normal muscle fiber type distribution in mice. Sci Rep 2017; 7:7168. [PMID: 28769032 PMCID: PMC5540913 DOI: 10.1038/s41598-017-07149-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle is composed of heterogeneous populations of myofibers that are classified as slow- and fast-twitch fibers. The muscle fiber-type is regulated in a coordinated fashion by multiple genes, including transcriptional factors and microRNAs (miRNAs). However, players involved in this regulation are not fully elucidated. One of the members of the Vestigial-like factors, Vgll2, is thought to play a pivotal role in TEA domain (TEAD) transcription factor-mediated muscle-specific gene expression because of its restricted expression in skeletal muscles of adult mice. Here, we generated Vgll2 null mice and investigated Vgll2 function in adult skeletal muscles. These mice presented an increased number of fast-twitch type IIb fibers and exhibited a down-regulation of slow type I myosin heavy chain (MyHC) gene, Myh7, which resulted in exercise intolerance. In accordance with the decrease in Myh7, down-regulation of miR-208b, encoded within Myh7 gene and up-regulation of targets of miR-208b, Sox6, Sp3, and Purβ, were observed in Vgll2 deficient mice. Moreover, we detected the physical interaction between Vgll2 and TEAD1/4 in neonatal skeletal muscles. These results suggest that Vgll2 may be both directly and indirectly involved in the programing of slow muscle fibers through the formation of the Vgll2-TEAD complex.
Collapse
|
23
|
Kupr B, Schnyder S, Handschin C. Role of Nuclear Receptors in Exercise-Induced Muscle Adaptations. Cold Spring Harb Perspect Med 2017; 7:a029835. [PMID: 28242783 PMCID: PMC5453380 DOI: 10.1101/cshperspect.a029835] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Skeletal muscle is not only one of the largest, but also one of the most dynamic organs. For example, plasticity elicited by endurance or resistance exercise entails complex transcriptional programs that are still poorly understood. Various signaling pathways are engaged in the contracting muscle fiber and collectively culminate in the modulation of the activity of numerous transcription factors (TFs) and coregulators. Because exercise confers many benefits for the prevention and treatment of a wide variety of pathologies, pharmacological activation of signaling pathways and TFs is an attractive avenue to elicit therapeutic effects. Members of the nuclear receptor (NR) superfamily are of particular interest owing to the presence of well-defined DNA- and ligand-binding domains. In this review, we summarize the current understanding of the involvement of NRs in muscle biology and exercise adaptation.
Collapse
Affiliation(s)
- Barbara Kupr
- Biozentrum, University of Basel, Basel 4056, Switzerland
| | | | | |
Collapse
|
24
|
Ignacio DL, Silvestre DHS, Anne-Palmer E, Bocco BMLC, Fonseca TL, Ribeiro MO, Gereben B, Bianco AC, Werneck-de-Castro JP. Early Developmental Disruption of Type 2 Deiodinase Pathway in Mouse Skeletal Muscle Does Not Impair Muscle Function. Thyroid 2017; 27:577-586. [PMID: 27967605 PMCID: PMC5385430 DOI: 10.1089/thy.2016.0392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Myogenesis is positively regulated by thyroid hormone (triiodothyronine [T3]), which is amplified by the type 2 deiodinase (D2) activation of thyroxine to T3. Global inactivation of the Dio2 gene impairs skeletal muscle (SKM) differentiation and regeneration in response to muscle injury. Given that newborn and adult mice with late developmental SKM Dio2 disruption do not develop a significant phenotype, it was hypothesized that D2 plays an early role in this process. METHODS This was tested in mice with SKM disruption of Dio2 driven by two early developmental promoters: MYF5 and MYOD. RESULTS MYF5 myoblasts in culture differentiate normally into myotubes, despite loss of almost all D2 activity. Dio2 mRNA levels in developing SKM obtained from MYF5-D2KO embryos (E18.5) were about 54% of control littermates, but the expression of the T3-responsive genes Myh1 and 7 and Atp2a1 and 2 were not affected. In MYF5-D2KO and MYOD-D2KO neonatal hind-limb muscle, the expression of Myh1 and 7 and Atp2a2 remained unaffected, despite 60-70% loss in D2 activity and/or mRNA. Only in MYOD-D2KO neonatal muscle was there a 40% reduction in Atp2a1 mRNA. Postnatal growth of both mouse models and SKM function as assessed by exercise capacity and measurement of muscle strength were normal. Furthermore, an analysis of the adult soleus revealed no changes in the expression of T3-responsive genes, except for an about 18% increase in MYOD-D2KO SOL Myh7 mRNA. CONCLUSION Two mouse models of early developmental disruption of Dio2 in myocyte precursor exhibit no significant SKM phenotype.
Collapse
Affiliation(s)
- Daniele L Ignacio
- 1 Division of Endocrinology and Metabolism, Rush University Medical Center , Chicago, Illinois
- 2 Biophysics Institute and School of Physical Education and Sports, Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
| | - Diego H S Silvestre
- 1 Division of Endocrinology and Metabolism, Rush University Medical Center , Chicago, Illinois
- 2 Biophysics Institute and School of Physical Education and Sports, Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
- 3 Nutrition Institute Josué de Castro, Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
| | - Elena Anne-Palmer
- 1 Division of Endocrinology and Metabolism, Rush University Medical Center , Chicago, Illinois
| | - Barbara M L C Bocco
- 1 Division of Endocrinology and Metabolism, Rush University Medical Center , Chicago, Illinois
- 4 Department of Translational Medicine, Federal University of São Paulo , São Paulo, Brazil
| | - Tatiana L Fonseca
- 1 Division of Endocrinology and Metabolism, Rush University Medical Center , Chicago, Illinois
| | - Miriam O Ribeiro
- 5 Developmental Disorders Program, Center for Biological and Health Sciences, Mackenzie Presbyterian University , São Paulo, Brazil
| | - Balázs Gereben
- 6 Department of Endocrine Neurobiology, Institute of Experimental Medicine , Hungarian Academy of Sciences, Budapest, Hungary
| | - Antonio C Bianco
- 1 Division of Endocrinology and Metabolism, Rush University Medical Center , Chicago, Illinois
| | - Joao P Werneck-de-Castro
- 1 Division of Endocrinology and Metabolism, Rush University Medical Center , Chicago, Illinois
- 2 Biophysics Institute and School of Physical Education and Sports, Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
- 3 Nutrition Institute Josué de Castro, Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Zhang D, Li Y, Liu S, Wang YC, Guo F, Zhai Q, Jiang J, Ying H. microRNA and thyroid hormone signaling in cardiac and skeletal muscle. Cell Biosci 2017; 7:14. [PMID: 28331574 PMCID: PMC5359910 DOI: 10.1186/s13578-017-0141-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/08/2017] [Indexed: 01/18/2023] Open
Abstract
Thyroid hormone (TH) signaling plays critical roles in the differentiation, growth, metabolism, and physiological function of all organs or tissues, including heart and skeletal muscle. Due to the significant progress in our understanding of the molecular mechanisms that underlie TH action, it's widely accepted that TH signaling is regulated at multiple levels. A growing number of discoveries suggest that microRNAs (miRNAs) act as fine-tune regulators of gene expression and adds sophisticated regulatory tiers to signaling pathways. Recently, some pioneering studies in cardiac and skeletal muscle demonstrating the interplay between miRNAs and TH signaling suggest that miRNAs might mediate and/or modulate TH signaling. This review presents recent advances involving the crosstalk between miRNAs and TH signaling and current evidence showing the importance of miRNA in TH signaling with particular emphasis on the study of muscle-specific miRNAs (myomiRs) in cardiac and skeletal muscle. Although the research of the reciprocal regulation of miRNAs and TH signaling is only at the beginning stage, it has already contributed to our current understanding of both TH action and miRNA biology. We also encourage further investigations to address the relative contributions of miRNAs in TH signaling under physiological and pathological conditions and how a group of miRNAs are coordinated to integrate into the complex hierarchical regulatory network of TH.
Collapse
Affiliation(s)
- Duo Zhang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Yan Li
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Shengnan Liu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Yu-Cheng Wang
- Shanghai Clinical Center, Chinese Academy of Sciences, Shanghai Xuhui Central Hospital, 966 Middle Huaihai Road, Shanghai, 200031 China
| | - Feifan Guo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Qiwei Zhai
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China
| | - Jingjing Jiang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Hao Ying
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031 China.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China.,Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Institute for Nutritional Sciences, Room A1912, New Life Science Building, 320 Yueyang Road, Shanghai, 200031 China
| |
Collapse
|
26
|
The thyroid hormone nuclear receptors and the Wnt/β-catenin pathway: An intriguing liaison. Dev Biol 2017; 422:71-82. [DOI: 10.1016/j.ydbio.2017.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/26/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022]
|
27
|
Xie X, Wu SP, Tsai MJ, Tsai S. The Role of COUP-TFII in Striated Muscle Development and Disease. Curr Top Dev Biol 2017; 125:375-403. [PMID: 28527579 DOI: 10.1016/bs.ctdb.2016.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Skeletal and cardiac muscles are the only striated muscles in the body. Although sharing many structural and functional similarities, skeletal and cardiac muscles have intrinsic differences in terms of physiology and regenerative potential. While skeletal muscle possesses a robust regenerative response, the mammalian heart has limited repair capacity after birth. In this review, we provide an updated view regarding chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) function in vertebrate myogenesis, with particular emphasis on the skeletal and cardiac muscles. We also highlight the new insights of COUP-TFII hyperactivity underlying striated muscle dysfunction. Lastly, we discuss the challenges and strategies in translating COUP-TFII action for clinical intervention.
Collapse
Affiliation(s)
- Xin Xie
- Baylor College of Medicine, Houston, TX, United States
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC, United States
| | - Ming-Jer Tsai
- Baylor College of Medicine, Houston, TX, United States; Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States.
| | - Sophia Tsai
- Baylor College of Medicine, Houston, TX, United States; Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
28
|
Lee EJ, Pokharel S, Jan AT, Huh S, Galope R, Lim JH, Lee DM, Choi SW, Nahm SS, Kim YW, Park SY, Choi I. Transthyretin: A Transporter Protein Essential for Proliferation of Myoblast in the Myogenic Program. Int J Mol Sci 2017; 18:ijms18010115. [PMID: 28075349 PMCID: PMC5297749 DOI: 10.3390/ijms18010115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 12/25/2022] Open
Abstract
Irregularities in the cellular uptake of thyroid hormones significantly affect muscle development and regeneration. Herein, we report indispensable role of transthyretin (TTR) in maintaining cellular thyroxine level. TTR was found to enhance recruitment of muscle satellite cells to the site of injury, thereby regulating muscle regeneration. Fluorescence-activated cell sorting (FACS) and immunofluorescence analysis of TTRwt (TTR wild type) and TTRkd (TTR knock-down) cells revealed that TTR controlled cell cycle progression by affecting the expression of Cyclin A2. Deiodinase 2 (D2) mediated increases in triiodothyronine levels were found to regulate the expression of myogenic marker, myogenin (MYOG). Moreover, use of a coumarin derivative (CD) revealed a significant reduction in cellular thyroxine, thereby indicating that TTR play a role in the transport of thyroxine. Taken together, these findings suggest that TTR mediated transport of thyroxine represents a survival mechanism necessary for the myogenic program. The results of this study will be highly useful to the strategic development of novel therapeutics to combat muscular dystrophies.
Collapse
Affiliation(s)
- Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| | - Smritee Pokharel
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| | - Arif Tasleem Jan
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| | - Soyeon Huh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| | - Richelle Galope
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| | - Jeong Ho Lim
- Technology Convergence R&D Group, Korea Institute of Industrial Technology, Yeongcheon 770-200, Korea.
| | - Dong-Mok Lee
- Technology Convergence R&D Group, Korea Institute of Industrial Technology, Yeongcheon 770-200, Korea.
| | - Sung Wook Choi
- Department of New Drug Discovery and Development, Chungnam National University, Daejon 305-764, Korea.
| | - Sang-Soep Nahm
- College of Veterinary Medicine, Konkuk University, Seoul 143-701, Korea.
| | - Yong-Woon Kim
- Department of Physiology, College of Medicine, Yeungnam University, 42415, Korea.
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, 42415, Korea.
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| |
Collapse
|
29
|
Lesmana R, Iwasaki T, Iizuka Y, Amano I, Shimokawa N, Koibuchi N. The change in thyroid hormone signaling by altered training intensity in male rat skeletal muscle. Endocr J 2016; 63:727-38. [PMID: 27350720 DOI: 10.1507/endocrj.ej16-0126] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Aerobic (sub lactate threshold; sub-LT) exercise training facilitates oxidative phosphorylation and glycolysis of skeletal muscle. Thyroid hormone (TH) also facilitates such metabolic events. Thus, we studied whether TH signaling pathway is activated by treadmill training. Male adult rats received 30 min/day treadmill training with different exercise intensity for 12 days. Then plasma lactate and thyrotropin (TSH) levels were measured. By lactate levels, rats were divided into stationary control (SC, 0 m/min), sub-LT (15 m/min) and supra lactate threshold (supra-LT; 25 m/min) training groups. Immediately after the last training, the soleus muscles were dissected out to measure TH receptor (TR) mRNA and protein expressions. Other rats received intraperitoneal injection of T3, 24 h after the last training and sacrificed 6 h after the injection to measure TH target gene expression. TSH level was suppressed in both sub-LT and supra-LT groups during the exercise. TRβ1 mRNA and protein levels were increased in sub-LT group. Sensitivity to T3 was altered in several TH-target genes by training. Particularly, induction of Na(+)/K(+)-ATPase β1 expression by T3 was significantly augmented in sub-LT group. These results indicate that sub-LT training alters TH signaling at least in part by increasing TRβ1 expression. Such TH signaling alteration may contribute metabolic adaptation in skeletal muscle during physical training.
Collapse
Affiliation(s)
- Ronny Lesmana
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Milanesi A, Lee JW, Kim NH, Liu YY, Yang A, Sedrakyan S, Kahng A, Cervantes V, Tripuraneni N, Cheng SY, Perin L, Brent GA. Thyroid Hormone Receptor α Plays an Essential Role in Male Skeletal Muscle Myoblast Proliferation, Differentiation, and Response to Injury. Endocrinology 2016; 157:4-15. [PMID: 26451739 PMCID: PMC4701883 DOI: 10.1210/en.2015-1443] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Thyroid hormone plays an essential role in myogenesis, the process required for skeletal muscle development and repair, although the mechanisms have not been established. Skeletal muscle develops from the fusion of precursor myoblasts into myofibers. We have used the C2C12 skeletal muscle myoblast cell line, primary myoblasts, and mouse models of resistance to thyroid hormone (RTH) α and β, to determine the role of thyroid hormone in the regulation of myoblast differentiation. T3, which activates thyroid hormone receptor (TR) α and β, increased myoblast differentiation whereas GC1, a selective TRβ agonist, was minimally effective. Genetic approaches confirmed that TRα plays an important role in normal myoblast proliferation and differentiation and acts through the Wnt/β-catenin signaling pathway. Myoblasts with TRα knockdown, or derived from RTH-TRα PV (a frame-shift mutation) mice, displayed reduced proliferation and myogenic differentiation. Moreover, skeletal muscle from the TRα1PV mutant mouse had impaired in vivo regeneration after injury. RTH-TRβ PV mutant mouse model skeletal muscle and derived primary myoblasts did not have altered proliferation, myogenic differentiation, or response to injury when compared with control. In conclusion, TRα plays an essential role in myoblast homeostasis and provides a potential therapeutic target to enhance skeletal muscle regeneration.
Collapse
Affiliation(s)
- Anna Milanesi
- Department of Medicine (A.M., Y.-Y.L., A.Y., G.A.B.), Veterans Affairs Greater Los Angeles Healthcare System, and Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90073; Department of Neurosurgery (J.-W.L., N.-H.K., A.K., V.C.), Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Urology (S.S., N.T., L.P.), Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027; and National Cancer Institute (S.C.), Bethesda, Maryland 20892
| | - Jang-Won Lee
- Department of Medicine (A.M., Y.-Y.L., A.Y., G.A.B.), Veterans Affairs Greater Los Angeles Healthcare System, and Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90073; Department of Neurosurgery (J.-W.L., N.-H.K., A.K., V.C.), Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Urology (S.S., N.T., L.P.), Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027; and National Cancer Institute (S.C.), Bethesda, Maryland 20892
| | - Nam-Ho Kim
- Department of Medicine (A.M., Y.-Y.L., A.Y., G.A.B.), Veterans Affairs Greater Los Angeles Healthcare System, and Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90073; Department of Neurosurgery (J.-W.L., N.-H.K., A.K., V.C.), Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Urology (S.S., N.T., L.P.), Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027; and National Cancer Institute (S.C.), Bethesda, Maryland 20892
| | - Yan-Yun Liu
- Department of Medicine (A.M., Y.-Y.L., A.Y., G.A.B.), Veterans Affairs Greater Los Angeles Healthcare System, and Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90073; Department of Neurosurgery (J.-W.L., N.-H.K., A.K., V.C.), Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Urology (S.S., N.T., L.P.), Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027; and National Cancer Institute (S.C.), Bethesda, Maryland 20892
| | - An Yang
- Department of Medicine (A.M., Y.-Y.L., A.Y., G.A.B.), Veterans Affairs Greater Los Angeles Healthcare System, and Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90073; Department of Neurosurgery (J.-W.L., N.-H.K., A.K., V.C.), Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Urology (S.S., N.T., L.P.), Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027; and National Cancer Institute (S.C.), Bethesda, Maryland 20892
| | - Sargis Sedrakyan
- Department of Medicine (A.M., Y.-Y.L., A.Y., G.A.B.), Veterans Affairs Greater Los Angeles Healthcare System, and Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90073; Department of Neurosurgery (J.-W.L., N.-H.K., A.K., V.C.), Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Urology (S.S., N.T., L.P.), Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027; and National Cancer Institute (S.C.), Bethesda, Maryland 20892
| | - Andrew Kahng
- Department of Medicine (A.M., Y.-Y.L., A.Y., G.A.B.), Veterans Affairs Greater Los Angeles Healthcare System, and Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90073; Department of Neurosurgery (J.-W.L., N.-H.K., A.K., V.C.), Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Urology (S.S., N.T., L.P.), Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027; and National Cancer Institute (S.C.), Bethesda, Maryland 20892
| | - Vanessa Cervantes
- Department of Medicine (A.M., Y.-Y.L., A.Y., G.A.B.), Veterans Affairs Greater Los Angeles Healthcare System, and Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90073; Department of Neurosurgery (J.-W.L., N.-H.K., A.K., V.C.), Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Urology (S.S., N.T., L.P.), Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027; and National Cancer Institute (S.C.), Bethesda, Maryland 20892
| | - Nikita Tripuraneni
- Department of Medicine (A.M., Y.-Y.L., A.Y., G.A.B.), Veterans Affairs Greater Los Angeles Healthcare System, and Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90073; Department of Neurosurgery (J.-W.L., N.-H.K., A.K., V.C.), Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Urology (S.S., N.T., L.P.), Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027; and National Cancer Institute (S.C.), Bethesda, Maryland 20892
| | - Sheue-yann Cheng
- Department of Medicine (A.M., Y.-Y.L., A.Y., G.A.B.), Veterans Affairs Greater Los Angeles Healthcare System, and Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90073; Department of Neurosurgery (J.-W.L., N.-H.K., A.K., V.C.), Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Urology (S.S., N.T., L.P.), Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027; and National Cancer Institute (S.C.), Bethesda, Maryland 20892
| | - Laura Perin
- Department of Medicine (A.M., Y.-Y.L., A.Y., G.A.B.), Veterans Affairs Greater Los Angeles Healthcare System, and Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90073; Department of Neurosurgery (J.-W.L., N.-H.K., A.K., V.C.), Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Urology (S.S., N.T., L.P.), Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027; and National Cancer Institute (S.C.), Bethesda, Maryland 20892
| | - Gregory A Brent
- Department of Medicine (A.M., Y.-Y.L., A.Y., G.A.B.), Veterans Affairs Greater Los Angeles Healthcare System, and Departments of Medicine and Physiology, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90073; Department of Neurosurgery (J.-W.L., N.-H.K., A.K., V.C.), Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Urology (S.S., N.T., L.P.), Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027; and National Cancer Institute (S.C.), Bethesda, Maryland 20892
| |
Collapse
|
31
|
Abstract
Skeletal and cardiac muscles play key roles in the regulation of systemic energy homeostasis and display remarkable plasticity in their metabolic responses to caloric availability and physical activity. In this Perspective we discuss recent studies highlighting transcriptional mechanisms that govern systemic metabolism by striated muscles. We focus on the participation of the Mediator complex in this process, and suggest that tissue-specific regulation of Mediator subunits impacts metabolic homeostasis.
Collapse
Affiliation(s)
- Kedryn K Baskin
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Benjamin R Winders
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA; Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA.
| |
Collapse
|
32
|
Affiliation(s)
- Wataru Mizunoya
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University
| |
Collapse
|
33
|
Zhang D, Wang X, Li Y, Zhao L, Lu M, Yao X, Xia H, Wang YC, Liu MF, Jiang J, Li X, Ying H. Thyroid hormone regulates muscle fiber type conversion via miR-133a1. ACTA ACUST UNITED AC 2014; 207:753-66. [PMID: 25512392 PMCID: PMC4274265 DOI: 10.1083/jcb.201406068] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Thyroid hormone promotes slow-to-fast muscle fiber type conversion by inducing miR-133a1 and thereby repressing the expression of the slow muscle determinant TEAD1. It is known that thyroid hormone (TH) is a major determinant of muscle fiber composition, but the molecular mechanism by which it does so remains unclear. Here, we demonstrated that miR-133a1 is a direct target gene of TH in muscle. Intriguingly, miR-133a, which is enriched in fast-twitch muscle, regulates slow-to-fast muscle fiber type conversion by targeting TEA domain family member 1 (TEAD1), a key regulator of slow muscle gene expression. Inhibition of miR-133a in vivo abrogated TH action on muscle fiber type conversion. Moreover, TEAD1 overexpression antagonized the effect of miR-133a as well as TH on muscle fiber type switch. Additionally, we demonstrate that TH negatively regulates the transcription of myosin heavy chain I indirectly via miR-133a/TEAD1. Collectively, we propose that TH inhibits the slow muscle phenotype through a novel epigenetic mechanism involving repression of TEAD1 expression via targeting by miR-133a1. This identification of a TH-regulated microRNA therefore sheds new light on how TH achieves its diverse biological activities.
Collapse
Affiliation(s)
- Duo Zhang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; and Center for RNA Research, State Key Laboratory of Molecular Biology; University of Chinese Academy of Sciences, Shanghai 200031, China Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, China
| | - Xiaoyun Wang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; and Center for RNA Research, State Key Laboratory of Molecular Biology; University of Chinese Academy of Sciences, Shanghai 200031, China Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, China
| | - Yuying Li
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; and Center for RNA Research, State Key Laboratory of Molecular Biology; University of Chinese Academy of Sciences, Shanghai 200031, China Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, China
| | - Lei Zhao
- Department of Neuromuscular Disease, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Minghua Lu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; and Center for RNA Research, State Key Laboratory of Molecular Biology; University of Chinese Academy of Sciences, Shanghai 200031, China Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, and Clinical Research Center of Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuan Yao
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; and Center for RNA Research, State Key Laboratory of Molecular Biology; University of Chinese Academy of Sciences, Shanghai 200031, China Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, China
| | - Hongfeng Xia
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; and Center for RNA Research, State Key Laboratory of Molecular Biology; University of Chinese Academy of Sciences, Shanghai 200031, China Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, China
| | - Yu-Cheng Wang
- Department of Nutrition, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Mo-Fang Liu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; and Center for RNA Research, State Key Laboratory of Molecular Biology; University of Chinese Academy of Sciences, Shanghai 200031, China Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, and Clinical Research Center of Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jingjing Jiang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xihua Li
- Department of Neuromuscular Disease, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Hao Ying
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; and Center for RNA Research, State Key Laboratory of Molecular Biology; University of Chinese Academy of Sciences, Shanghai 200031, China Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, China Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, and Clinical Research Center of Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
34
|
Salvatore D, Simonides WS, Dentice M, Zavacki AM, Larsen PR. Thyroid hormones and skeletal muscle--new insights and potential implications. Nat Rev Endocrinol 2014; 10:206-14. [PMID: 24322650 PMCID: PMC4037849 DOI: 10.1038/nrendo.2013.238] [Citation(s) in RCA: 255] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Thyroid hormone signalling regulates crucial biological functions, including energy expenditure, thermogenesis, development and growth. The skeletal muscle is a major target of thyroid hormone signalling. The type 2 and 3 iodothyronine deiodinases (DIO2 and DIO3, respectively) have been identified in skeletal muscle. DIO2 expression is tightly regulated and catalyses outer-ring monodeiodination of the secreted prohormone tetraiodothyronine (T4) to generate the active hormone tri-iodothyronine (T3). T3 can remain in the myocyte to signal through nuclear receptors or exit the cell to mix with the extracellular pool. By contrast, DIO3 inactivates T3 through removal of an inner-ring iodine. Regulation of the expression and activity of deiodinases constitutes a cell-autonomous, pre-receptor mechanism for controlling the intracellular concentration of T3. This local control of T3 activity is crucial during the various phases of myogenesis. Here, we review the roles of T3 in skeletal muscle development and homeostasis, with a focus on the emerging local deiodinase-mediated control of T3 signalling. Moreover, we discuss these novel findings in the context of both muscle homeostasis and pathology, and examine how skeletal muscle deiodinase activity might be therapeutically harnessed to improve satellite-cell-mediated muscle repair in patients with skeletal muscle disorders, muscle atrophy or injury.
Collapse
Affiliation(s)
- Domenico Salvatore
- Department of Clinical Medicine and Surgery, University of Naples 'Federico II', Building 1, 1st floor, Via Pansini 5, 80131 Naples, Italy
| | - Warner S Simonides
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Centre, van der Boechorststraat 7, 1081 BT, Amsterdam, Netherlands
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples 'Federico II', Building 1, 1st floor, Via Pansini 5, 80131 Naples, Italy
| | - Ann Marie Zavacki
- Thyroid Section, Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, HIM room 641, Boston, MA 02115, USA
| | - P Reed Larsen
- Thyroid Section, Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, HIM room 641, Boston, MA 02115, USA
| |
Collapse
|
35
|
Bianco AC, Anderson G, Forrest D, Galton VA, Gereben B, Kim BW, Kopp PA, Liao XH, Obregon MJ, Peeters RP, Refetoff S, Sharlin DS, Simonides WS, Weiss RE, Williams GR. American Thyroid Association Guide to investigating thyroid hormone economy and action in rodent and cell models. Thyroid 2014; 24:88-168. [PMID: 24001133 PMCID: PMC3887458 DOI: 10.1089/thy.2013.0109] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND An in-depth understanding of the fundamental principles that regulate thyroid hormone homeostasis is critical for the development of new diagnostic and treatment approaches for patients with thyroid disease. SUMMARY Important clinical practices in use today for the treatment of patients with hypothyroidism, hyperthyroidism, or thyroid cancer are the result of laboratory discoveries made by scientists investigating the most basic aspects of thyroid structure and molecular biology. In this document, a panel of experts commissioned by the American Thyroid Association makes a series of recommendations related to the study of thyroid hormone economy and action. These recommendations are intended to promote standardization of study design, which should in turn increase the comparability and reproducibility of experimental findings. CONCLUSIONS It is expected that adherence to these recommendations by investigators in the field will facilitate progress towards a better understanding of the thyroid gland and thyroid hormone dependent processes.
Collapse
Affiliation(s)
- Antonio C. Bianco
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, Florida
| | - Grant Anderson
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota Duluth, Duluth, Minnesota
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Valerie Anne Galton
- Department of Physiology and Neurobiology, Dartmouth Medical School, Lebanon, New Hampshire
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Brian W. Kim
- Division of Endocrinology, Diabetes and Metabolism, University of Miami Miller School of Medicine, Miami, Florida
| | - Peter A. Kopp
- Division of Endocrinology, Metabolism, and Molecular Medicine, and Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Xiao Hui Liao
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, Illinois
| | - Maria Jesus Obregon
- Institute of Biomedical Investigation (IIB), Spanish National Research Council (CSIC) and Autonomous University of Madrid, Madrid, Spain
| | - Robin P. Peeters
- Division of Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Samuel Refetoff
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, Illinois
| | - David S. Sharlin
- Department of Biological Sciences, Minnesota State University, Mankato, Minnesota
| | - Warner S. Simonides
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Roy E. Weiss
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, Illinois
| | - Graham R. Williams
- Department of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom
| |
Collapse
|
36
|
Vandenbon A, Kumagai Y, Teraguchi S, Amada KM, Akira S, Standley DM. A Parzen window-based approach for the detection of locally enriched transcription factor binding sites. BMC Bioinformatics 2013; 14:26. [PMID: 23331723 PMCID: PMC3602658 DOI: 10.1186/1471-2105-14-26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 01/14/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Identification of cis- and trans-acting factors regulating gene expression remains an important problem in biology. Bioinformatics analyses of regulatory regions are hampered by several difficulties. One is that binding sites for regulatory proteins are often not significantly over-represented in the set of DNA sequences of interest, because of high levels of false positive predictions, and because of positional restrictions on functional binding sites with regard to the transcription start site. RESULTS We have developed a novel method for the detection of regulatory motifs based on their local over-representation in sets of regulatory regions. The method makes use of a Parzen window-based approach for scoring local enrichment, and during evaluation of significance it takes into account GC content of sequences. We show that the accuracy of our method compares favourably to that of other methods, and that our method is capable of detecting not only generally over-represented regulatory motifs, but also locally over-represented motifs that are often missed by standard motif detection approaches. Using a number of examples we illustrate the validity of our approach and suggest applications, such as the analysis of weaker binding sites. CONCLUSIONS Our approach can be used to suggest testable hypotheses for wet-lab experiments. It has potential for future analyses, such as the prediction of weaker binding sites. An online application of our approach, called LocaMo Finder (Local Motif Finder), is available at http://sysimm.ifrec.osaka-u.ac.jp/tfbs/locamo/.
Collapse
Affiliation(s)
- Alexis Vandenbon
- Laboratory of Systems Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Thyroid hormone receptors: the challenge of elucidating isotype-specific functions and cell-specific response. Biochim Biophys Acta Gen Subj 2012; 1830:3900-7. [PMID: 22704954 DOI: 10.1016/j.bbagen.2012.06.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/04/2012] [Accepted: 06/05/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND Thyroid hormone receptors TRα1, TRβ1 and TRβ2 are broadly expressed and exert a pleiotropic influence on many developmental and homeostatic processes. Extensive genetic studies in mice precisely defined their respective function. SCOPE OF REVIEW The purpose of the review is to discuss two puzzling issues: MAJOR CONCLUSIONS Mouse genetics support a balanced contribution of expression pattern and receptor intrinsic properties in defining the receptor respective functions. The molecular mechanisms sustaining cell specific response remain hypothetical and based on studies performed with other nuclear receptors. GENERAL SIGNIFICANCE The isoform-specificity and cell-specificity questions have many implications for clinical research, drug development, and endocrine disruptor studies. This article is part of a Special Issue entitled Thyroid hormone signalling.
Collapse
|
38
|
Kilikevicius A, Venckunas T, Zelniene R, Carroll AM, Lionikaite S, Ratkevicius A, Lionikas A. Divergent physiological characteristics and responses to endurance training among inbred mouse strains. Scand J Med Sci Sports 2012; 23:657-68. [PMID: 22414113 DOI: 10.1111/j.1600-0838.2012.01451.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2012] [Indexed: 12/20/2022]
Abstract
Both baseline values and adaptive changes in mice can vary depending on the genetic background. We aimed to assess variation in a battery of variables and their adaptations to endurance training in six inbred mouse strains. Males, n = 184, from A/J, BALB/cByJ, C3H/HeJ, C57BL/6J, DBA/2J, and PWD/PhJ strains were assigned to a control or an endurance group (5 weeks swimming exercise). Enzyme activity, histology of soleus (SOL) muscle, swimming endurance, cardiac ventricular and hind limb muscle weight, and femur length were examined. Endurance capacity, morphological and histological variables, and enzyme activity substantially differed among strains. For example, SOL weight was twofold higher and cross-sectional area (CSA) of fibers was ≈ 30% greater in C57BL/6J than in PWD/PhJ strain. The CSA of type 1 fibers were larger than type 2A in PWD/PhJ (P < 0.01); however, the reverse was true in DBA/2J and BALB/cByJ strains (P < 0.05). Swimming endurance in DBA/2J strain was ≈ 9 times better than in BALB/cByJ. Endurance training increased the activity of citrate synthase in gastrocnemius across strains (P < 0.01), however, changes in endurance were strain-specific; the C57BL/6J and DBA/2J strains improved substantially, whereas A/J and BALB/cByJ strains did not. In conclusion, genetic background is a potent determinant of the physiological characteristics and adaptations to training in mice.
Collapse
Affiliation(s)
- A Kilikevicius
- Lithuanian Academy of Physical Education, Sports and Movement Science Centre, Kaunas, Lithuania
| | | | | | | | | | | | | |
Collapse
|
39
|
Pessemesse L, Schlernitzauer A, Sar C, Levin J, Grandemange S, Seyer P, Favier FB, Kaminski S, Cabello G, Wrutniak-Cabello C, Casas F. Depletion of the p43 mitochondrial T3 receptor in mice affects skeletal muscle development and activity. FASEB J 2011; 26:748-56. [PMID: 22109994 DOI: 10.1096/fj.11-195933] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In vertebrates, skeletal muscle myofibers display different contractile and metabolic properties associated with different mitochondrial content and activity. We have previously identified a mitochondrial triiodothyronine receptor (p43) regulating mitochondrial transcription and mitochondrial biogenesis. When overexpressed in skeletal muscle, it increases mitochondrial DNA content, stimulates mitochondrial respiration, and induces a shift in the metabolic and contractile features of muscle fibers toward a slower and more oxidative phenotype. Here we show that a p43 depletion in mice decreases mitochondrial DNA replication and respiratory chain activity in skeletal muscle in association with the induction of a more glycolytic muscle phenotype and a decrease of capillary density. In addition, p43(-/-) mice displayed a significant increase in muscle mass relative to control animals and had an improved ability to use lipids. Our findings establish that the p43 mitochondrial receptor strongly affects muscle mass and the metabolic and contractile features of myofibers and provides evidence that this receptor mediates, in part, the influence of thyroid hormone in skeletal muscle.
Collapse
Affiliation(s)
- Laurence Pessemesse
- Institut National de Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR)866 Dynamique Musculaire et Métabolisme, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Boelen A, Kwakkel J, Fliers E. Beyond low plasma T3: local thyroid hormone metabolism during inflammation and infection. Endocr Rev 2011; 32:670-93. [PMID: 21791567 DOI: 10.1210/er.2011-0007] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Decreased serum thyroid hormone concentrations in severely ill patients were first reported in the 1970s, but the functional meaning of the observed changes in thyroid hormone levels, together known as nonthyroidal illness syndrome (NTIS), remains enigmatic. Although the common view was that NTIS results in overall down-regulation of metabolism in order to save energy, recent work has shown a more complex picture. NTIS comprises marked variation in transcriptional and translational activity of genes involved in thyroid hormone metabolism, ranging from inhibition to activation, dependent on the organ or tissue studied. Illness-induced changes in each of these organs appear to be very different during acute or chronic inflammation, adding an additional level of complexity. Organ- and timing-specific changes in the activity of thyroid hormone deiodinating enzymes (deiodinase types 1, 2, and 3) highlight deiodinases as proactive players in the response to illness, whereas the granulocyte is a novel and potentially important cell type involved in NTIS during bacterial infection. Although acute NTIS can be seen as an adaptive response to support the immune response, NTIS may turn disadvantageous when critical illness enters a chronic phase necessitating prolonged life support. For instance, changes in thyroid hormone metabolism in muscle during critical illness may be relevant for the pathogenesis of myopathy associated with prolonged ventilator dependence. This review focuses on NTIS as a timing-related and organ-specific response to illness, occurring independently from the decrease in serum thyroid hormone levels and potentially relevant for disease progression.
Collapse
Affiliation(s)
- Anita Boelen
- Department of Endocrinology and Metabolism, F5-165, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | | | | |
Collapse
|
41
|
Quiat D, Voelker KA, Pei J, Grishin NV, Grange RW, Bassel-Duby R, Olson EN. Concerted regulation of myofiber-specific gene expression and muscle performance by the transcriptional repressor Sox6. Proc Natl Acad Sci U S A 2011; 108:10196-201. [PMID: 21633012 PMCID: PMC3121857 DOI: 10.1073/pnas.1107413108] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In response to physiological stimuli, skeletal muscle alters its myofiber composition to significantly affect muscle performance and metabolism. This process requires concerted regulation of myofiber-specific isoforms of sarcomeric and calcium regulatory proteins that couple action potentials to the generation of contractile force. Here, we identify Sox6 as a fast myofiber-enriched repressor of slow muscle gene expression in vivo. Mice lacking Sox6 specifically in skeletal muscle have an increased number of slow myofibers, elevated mitochondrial activity, and exhibit down-regulation of the fast myofiber gene program, resulting in enhanced muscular endurance. In addition, microarray profiling of Sox6 knockout muscle revealed extensive muscle fiber-type remodeling, and identified numerous genes that display distinctive fiber-type enrichment. Sox6 directly represses the transcription of slow myofiber-enriched genes by binding to conserved cis-regulatory elements. These results identify Sox6 as a robust regulator of muscle contractile phenotype and metabolism, and elucidate a mechanism by which functionally related muscle fiber-type specific gene isoforms are collectively controlled.
Collapse
Affiliation(s)
| | - Kevin A. Voelker
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech University, Blacksburg, VA 24061
| | - Jimin Pei
- Department of Biochemistry, and
- The Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Nick V. Grishin
- Department of Biochemistry, and
- The Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Robert W. Grange
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech University, Blacksburg, VA 24061
| | | | | |
Collapse
|
42
|
Lionikas A, Cheng R, Lim JE, Palmer AA, Blizard DA. Fine-mapping of muscle weight QTL in LG/J and SM/J intercrosses. Physiol Genomics 2010; 42A:33-8. [PMID: 20627939 DOI: 10.1152/physiolgenomics.00100.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Genetic variation plays a substantial role in variation in strength, but the underlying mechanisms remain poorly understood. The objective of the present study was to examine the mechanisms underlying variation in muscle mass, a predictor of strength, between LG/J and SM/J strains, which are the inbred progeny of mice selected, respectively, for high and low body weight. We measured weight of five hindlimb muscles in LG/J and SM/J males and females, in F(1) and F(2) intercrosses, and in an advanced intercross (AI), F(34), between the two. F(2) mice were genotyped using 162 SNPs throughout the genome; F(34) mice were genotyped at 3,015 SNPs. A twofold difference in muscle mass between the LG/J and SM/J mouse strains was observed. Integrated genome-wide association analysis in the combined population of F(2) and AI identified 22 quantitative trait loci (QTL; genome-wide P < 0.05) affecting muscle weight on Chr 2 (2 QTL), 4, 5, 6 (7 QTL), 7 (4 QTL), 8 (4 QTL), and 11 (3 QTL). The LG/J allele conferred greater muscle weight in all cases. The 1.5-LOD QTL support intervals ranged between 0.3 and 13.4 Mb (median 3.7 Mb) restricting the list of candidates to between 5 and 97 genes. Selection for body weight segregated the alleles affecting skeletal muscle, the most abundant tissue in the body. Combination of analyses in an F(2) and AI was an effective strategy to detect and refine the QTL in a genome-wide manner. The achieved resolution facilitates further elucidation of the underlying genetic mechanisms affecting muscle mass.
Collapse
Affiliation(s)
- A Lionikas
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom.
| | | | | | | | | |
Collapse
|
43
|
Zhong WWH, Withers KW, Hoh JFY. Effects of hypothyroidism on myosin heavy chain composition and fibre types of fast skeletal muscles in a small marsupial, Antechinus flavipes. J Comp Physiol B 2009; 180:531-44. [PMID: 20012435 DOI: 10.1007/s00360-009-0431-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 11/02/2009] [Accepted: 11/25/2009] [Indexed: 11/29/2022]
Abstract
Effects of drug-induced hypothyroidism on myosin heavy chain (MyHC) content and fibre types of fast skeletal muscles were studied in a small marsupial, Antechinus flavipes. SDS-PAGE of MyHCs from the tibialis anterior and gastrocnemius revealed four isoforms, 2B, 2X, 2A and slow, in that order of decreasing abundance. After 5 weeks treatment with methimazole, the functionally fastest 2B MyHC significantly decreased, while 2X, 2A and slow MyHCs increased. Immunohistochemistry using monospecific antibodies to each of the four MyHCs revealed decreased 2b and 2x fibres, and increased 2a and hybrid fibres co-expressing two or three MyHCs. In the normally homogeneously fast superficial regions of these muscles, evenly distributed slow-staining fibres appeared, resembling the distribution of slow primary myotubes in fast muscles during development. Hybrid fibres containing 2A and slow MyHCs were virtually absent. These results are more detailed but broadly similar to the earlier studies on eutherians. We hypothesize that hypothyroidism essentially reverses the effects of thyroid hormone on MyHC gene expression of muscle fibres during myogenesis, which differ according to the developmental origin of the fibre: it induces slow MyHC expression in 2b fibres derived from fast primary myotubes, and shifts fast MyHC expression in fibres of secondary origin towards 2A, but not slow, MyHC.
Collapse
Affiliation(s)
- Wendy W H Zhong
- Discipline of Physiology and the Bosch Institute, Bldg F13, Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
44
|
MUROYA S, WATANABE K, HAYASHI S, MIYAKE M, KONASHI S, SATO Y, TAKAHASHI M, KAWAHATA S, YOSHIKAWA Y, ASO H, CHIKUNI K, YAMAGUCHI T. Muscle type-specific effect of myostatin deficiency on myogenic regulatory factor expression in adult double-muscled Japanese Shorthorn cattle. Anim Sci J 2009; 80:678-85. [DOI: 10.1111/j.1740-0929.2009.00684.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Wallis K, Sjögren M, van Hogerlinden M, Silberberg G, Fisahn A, Nordström K, Larsson L, Westerblad H, Morreale de Escobar G, Shupliakov O, Vennström B. Locomotor deficiencies and aberrant development of subtype-specific GABAergic interneurons caused by an unliganded thyroid hormone receptor alpha1. J Neurosci 2008; 28:1904-15. [PMID: 18287507 PMCID: PMC6671444 DOI: 10.1523/jneurosci.5163-07.2008] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 01/06/2007] [Accepted: 01/06/2008] [Indexed: 01/15/2023] Open
Abstract
Thyroid hormone (TH) deficiency during development causes severe and permanent neuronal damage, but the primary insult at the tissue level has remained unsolved. We have defined locomotor deficiencies in mice caused by a mutant thyroid hormone receptor alpha1 (TR alpha1) with potent aporeceptor activity attributable to reduced affinity to TH. This allowed identification of distinct functions that required either maternal supply of TH during early embryonic development or sufficient innate levels of hormone during late fetal development. In both instances, continued exposure to high levels of TH after birth and throughout life was needed. The hormonal dependencies correlated with severely delayed appearance of parvalbumin-immunoreactive GABAergic interneurons and increased numbers of calretinin-immunoreactive cells in the neocortex. This resulted in reduced numbers of fast spiking interneurons and defects in cortical network activity. The identification of locomotor deficiencies caused by insufficient supply of TH during fetal/perinatal development and their correlation with subtype-specific interneurons suggest a previously unknown basis for the neuronal consequences of endemic cretinism and untreated congenital hypothyroidism, and specifies TR alpha1 as the receptor isoform mediating these effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lars Larsson
- Department of Neuroscience, Uppsala University, SE-751 24 Uppsala, Sweden, and
| | - Håkan Westerblad
- Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Gabriela Morreale de Escobar
- Instituto de Investigaciones Biomédicas “Alberto Sols,” Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid and Center for Biomedical Research on Rare Diseases, 28029 Madrid, Spain
| | | | | |
Collapse
|
46
|
Simonides WS, van Hardeveld C. Thyroid hormone as a determinant of metabolic and contractile phenotype of skeletal muscle. Thyroid 2008; 18:205-16. [PMID: 18279021 DOI: 10.1089/thy.2007.0256] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Skeletal muscles are composed of several types of fibers with different contractile and metabolic properties. Genetic background and type of innervation of the fibers primarily determine these properties, but thyroid hormone (TH) is a powerful modulator of the fiber phenotype. The rates of contraction and relaxation are stimulated by TH, as are the energy consumption and heat production associated with activity. Quantitative and qualitative changes in substrate metabolism accommodate the increase in ATP turnover. Because of the total mass of skeletal muscle, these changes affect whole-body physiology. Although apparently straightforward, the phenotypic shifts induced by TH are highly complex and fiber specific. This review addresses the mechanisms by which TH may modulate fiber gene expression and discusses some of the implications of the TH-regulated changes in metabolic and contractile phenotype of skeletal muscle.
Collapse
Affiliation(s)
- Warner S Simonides
- Laboratory for Physiology, Institute for Cardiovascular Research VU University Medical Center, Amsterdam, The Netherlands.
| | | |
Collapse
|
47
|
Nordquist J, Höglund AS, Norman H, Tang X, Dworkin B, Larsson L. Transcription factors in muscle atrophy caused by blocked neuromuscular transmission and muscle unloading in rats. Mol Med 2007; 13:461-70. [PMID: 17622304 PMCID: PMC2014727 DOI: 10.2119/2006-00066.nordquist] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 06/19/2007] [Indexed: 01/15/2023] Open
Abstract
The muscle wasting associated with long-term intensive care unit (ICU) treatment has a negative effect on muscle function resulting in prolonged periods of rehabilitation and a decreased quality of life. To identify mechanisms behind this form of muscle wasting, we have used a rat model designed to mimic the conditions in an ICU. Rats were pharmacologically paralyzed with a postsynaptic blocker of neuromuscular transmission, and mechanically ventilated for one to two weeks, thereby unloading the limb muscles. Transcription factors were analyzed for cellular localization and nuclear concentration in the fast-twitch muscle extensor digitorum longus (EDL) and in the slow-twitch soleus. Significant muscle wasting and upregulation of mRNA for the ubiquitin ligases MAFbx and MuRF1 followed the treatment. The IkappaB family-member Bcl-3 displayed a concomitant decrease in concentration, suggesting altered kappaB controlled gene expression, although NFkappaB p65 was not significantly affected. The nuclear levels of the glucocorticoid receptor (GR) and the thyroid receptor alpha1 (TRalpha1) were altered and also suggested as potential mediators of the MAFbx- and MuRF1-induction in the absence of induced Foxo1. We believe that this model, and the strategy of quantifying nuclear proteins, will provide a valuable tool for further, more detailed, analyses of the muscle wasting occurring in patients kept on a mechanical ventilator.
Collapse
MESH Headings
- Animals
- Cobra Neurotoxin Proteins/pharmacology
- Disease Models, Animal
- Female
- Hindlimb Suspension
- Immunohistochemistry
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/metabolism
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Fast-Twitch/pathology
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/pathology
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Skeletal/pathology
- Muscular Atrophy/chemically induced
- Muscular Atrophy/metabolism
- Muscular Atrophy/pathology
- Neuromuscular Junction/drug effects
- Neuromuscular Junction/physiology
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Glucocorticoid/metabolism
- SKP Cullin F-Box Protein Ligases/genetics
- SKP Cullin F-Box Protein Ligases/metabolism
- Thyroid Hormone Receptors alpha/metabolism
- Transcription Factors/analysis
- Tripartite Motif Proteins
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Jenny Nordquist
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Sweden.
| | | | | | | | | | | |
Collapse
|
48
|
Jeneson JAL, de Snoo MW, Verlinden NAT, Joosten BJLJ, Doornenbal A, Schot A, Everts ME. Treadmill but not wheel running improves fatigue resistance of isolated extensor digitorum longus muscle in mice. Acta Physiol (Oxf) 2007; 190:151-61. [PMID: 17394571 DOI: 10.1111/j.1748-1716.2007.01680.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM The present study is the first to compare the physiological impact of either forced treadmill or voluntary wheel running exercise on hindlimb muscle in mice. METHODS Male C57BL/6 mice were subjected to either 6 weeks of forced treadmill or voluntary wheel running exercise. Mice in the treadmill running exercise group (TRE; n = 8) ran 1.9 km day(-1) at a speed of 16 m min(-1) against an uphill incline of 11 degrees. In the running wheel exercise group (RWE; n = 8) animals ran 8.8 +/- 0.2 km per day (average speed 42 +/- 2 m min(-1)). After the experimental period, animals were killed and mechanical performance and oxygen consumption of isolated extensor digitorum longus (EDL) muscle were determined during serial electrical stimulation at 0.5, 1 and 2 Hz. RESULTS Steady-state half-width time (HWT) of twitch contraction at 0.5 Hz was significantly shorter in TRE and RWE than controls (CON) (41.3 +/- 0.2, 41.3 +/- 0.1 and 44.3 +/- 0.1 s respectively; P < 0.05). The rate of fatigue development and HWT lengthening at 2 Hz was the same in RWE and CON but lower in TRE (1.2-fold and twofold respectively; P < 0.05). EDL oxygen consumption, mitochondrial content and myosin heavy chain (MyHC) composition were not different between the groups. CONCLUSION These results indicate that both exercise modalities have an effect on a hindlimb fast-twitch muscle in mice, with the greatest impact seen with forced treadmill running.
Collapse
Affiliation(s)
- J A L Jeneson
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
49
|
Yang X, Xie J, Wu T, Yue G, Chen J, Zhao R. Hepatic and muscle expression of thyroid hormone receptors in association with body and muscle growth in large yellow croaker, Pseudosciaena crocea (Richardson). Gen Comp Endocrinol 2007; 151:163-71. [PMID: 17324424 DOI: 10.1016/j.ygcen.2007.01.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2006] [Revised: 12/28/2006] [Accepted: 01/10/2007] [Indexed: 11/20/2022]
Abstract
The role of thyroid hormone (TH) and its receptors (TRs) in the regulation of body growth and muscle accretion is well established in mammals and birds, whereas the involvement of THs and TRs in fish growth, especially during the muscle accretion period of juvenile-adult transition, is unknown. This study describes the cloning of the partial cDNA sequences of TRalpha and TRbeta in large yellow croaker, Pseudosciaena crocea (Richardson) and the patterns of TRalpha and TRbeta mRNA expression in liver and muscle of 1- and 2-year-old large yellow croaker, associated with changes in body mass and muscle characteristics. Two TRalpha isoforms (TRalpha1, TRalpha2) and TRbeta were identified in large yellow croaker. The deduced amino acid sequences showed high homology to the TRs of human and other teleosts. Hepatic TRbeta mRNA expression was markedly lower in 2-year-old large yellow croaker compared with the 1-year-old, while no significant age difference was observed for hepatic TRalpha mRNA expression. Muscle expression of TRalpha mRNA was significantly higher in 2-year-old large yellow croaker, whereas TRbeta exhibited no significant age difference. Meanwhile, serum concentration of T(4) was significantly decreased in 2-year-old large yellow croaker, but no change was observed for T(3). The body mass, fork length and body height of 2-year-old large yellow croaker were 4.7, 1.6 and 1.7 times greater, respectively compared with that of 1-year-old. Average diameters of skeletal muscle in 2-year-old large yellow croaker were remarkably larger than that in 1-year-old with no significant difference in muscle crude fat content. The down-regulation of hepatic TRbeta expression was associated with the decrease in general growth rate and the increase in muscle expression of TRalpha was accompanied with muscle accretion and myofiber hypertrophy, implicating the different roles of TRs in the regulation of growth in large yellow croaker.
Collapse
Affiliation(s)
- Xiaojing Yang
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | | | | | | | | | | |
Collapse
|
50
|
Sato I, Miyado M, Miwa Y, Sunohara M. Expression of nuclear and mitochondrial thyroid hormone receptors in postnatal rat tongue muscle. Cells Tissues Organs 2007; 183:195-205. [PMID: 17159345 DOI: 10.1159/000096510] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2006] [Indexed: 11/19/2022] Open
Abstract
In this quantitative study, a competitive RT-PCR analysis was used to measure the level of the thyroid hormone receptors (TRs) in rat tongue muscle during the development of male Wistar rats aged 0, 5, 10, 15 and 21 postnatal days. There were differences between the expression of TR-alpha1 mRNA and the mRNAs for TR-beta1 and TR-beta2 in rat tongue muscle. Using Western blot analysis, a difference in expression between TR-alpha1 protein (c-ErbAalpha1 protein) and 43-kD c-ErbAalpha1 protein (T(3)-binding 43-kD mitochondrial protein) was detected during the development of the rat tongue muscle. Immunohistochemical examination using electron microscopy showed that TR-alpha1 was found in the mitochondria and nuclei in contrast to TR-beta1 detected in rat tongue muscle. In mitochondrial fractions from rat tongue muscle, the expression of 43-kD c-ErbAalpha1 protein was increased dramatically at 15 and 21 days, and a similar tendency was seen in cytochrome c proteins using Western blot analysis. We presume that the 43-kD c-ErbAalpha1 protein plays a role in regulating mitochondrial RNA synthesis during the postnatal development of rat tongue. The mRNA and protein myosin heavy chain isoforms of muscle also had a different expression during development. The slow myosin isoform protein was not found from day 10 in contrast to fast myosin isoforms. It is likely that the expression of TR-alpha1 mRNA from the rat tongue muscle may be related to a specific phase in muscle phenotype during the development.
Collapse
Affiliation(s)
- Iwao Sato
- Department of Anatomy, School of Life Dentistry at Tokyo, Nippon Dental University, Tokyo, Japan.
| | | | | | | |
Collapse
|