1
|
Jamadar A, Ward CJ, Remadevi V, Varghese MM, Pabla NS, Gumz ML, Rao R. Circadian Clock Disruption and Growth of Kidney Cysts in Autosomal Dominant Polycystic Kidney Disease. J Am Soc Nephrol 2025; 36:378-392. [PMID: 39401086 PMCID: PMC11888963 DOI: 10.1681/asn.0000000528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
Key Points Lack of Bmal1 , a circadian clock protein in renal collecting ducts disrupted the clock and increased cyst growth and fibrosis in an autosomal dominant polycystic kidney disease mouse model. Bmal1 gene deletion increased cell proliferation by increasing lipogenesis in kidney cells. Thus, circadian clock disruption could be a risk factor for accelerated disease progression in patients with autosomal dominant polycystic kidney disease. Background Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in the PKD1 and PKD2 genes and often progresses to kidney failure. ADPKD progression is not uniform among patients, suggesting that factors secondary to the PKD1/2 gene mutation could regulate the rate of disease progression. Here, we tested the effect of circadian clock disruption on ADPKD progression. Circadian rhythms are regulated by cell-autonomous circadian clocks composed of clock proteins. BMAL1 is a core constituent of the circadian clock. Methods To disrupt the circadian clock, we deleted Bmal1 gene in the renal collecting ducts of the Pkd1 RC/RC (RC/RC) mouse model of ADPKD (RC/RC;Bmal1 f/f;Pkhd1 cre, called double knockout [DKO] mice) and in Pkd1 knockout mouse inner medullary collecting duct cells (Pkd1Bmal1 KO mouse renal inner medullary collecting duct cells). Only male mice were used. Results Human nephrectomy ADPKD kidneys showed altered clock gene expression when compared with normal control human kidneys. When compared with RC/RC kidneys, DKO kidneys showed significantly altered clock gene expression, increased cyst growth, cell proliferation, apoptosis, and fibrosis. DKO kidneys also showed increased lipogenesis and cholesterol synthesis–related gene expression and increased tissue triglyceride levels compared with RC/RC kidneys. Similarly, in vitro , Pkd1Bmal1 KO cells showed altered clock genes, increased lipogenesis and cholesterol synthesis–related genes, and reduced fatty acid oxidation–related gene expression compared with Pkd1KO cells. The Pkd1Bmal1 KO cells showed increased cell proliferation compared with Pkd1KO cells, which was rescued by pharmacological inhibition of lipogenesis. Conclusions Renal collecting duct–specific Bmal1 gene deletion disrupted the circadian clock and triggered accelerated ADPKD progression by altering lipid metabolism–related gene expression.
Collapse
Affiliation(s)
- Abeda Jamadar
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Department of Medicine, Division of Nephrology, University of Kansas Medical Center, Kansas City, Kansas
| | - Christopher J. Ward
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Department of Medicine, Division of Nephrology, University of Kansas Medical Center, Kansas City, Kansas
| | - Viji Remadevi
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Department of Medicine, Division of Nephrology, University of Kansas Medical Center, Kansas City, Kansas
| | - Meekha M. Varghese
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Department of Medicine, Division of Nephrology, University of Kansas Medical Center, Kansas City, Kansas
| | - Navjot S. Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Michelle L. Gumz
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Physiology and Aging, Department of Medicine, University of Florida, Gainesville, Florida
| | - Reena Rao
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Department of Medicine, Division of Nephrology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
2
|
Costello HM, Eikenberry SA, Cheng KY, Broderick B, Joshi AS, Scott GR, McKee A, Mendez VM, Douma LG, Crislip GR, Gumz ML. Sex differences in the adrenal circadian clock: a role for BMAL1 in the regulation of urinary aldosterone excretion and renal electrolyte balance in mice. Am J Physiol Renal Physiol 2025; 328:F1-F14. [PMID: 39447118 DOI: 10.1152/ajprenal.00177.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024] Open
Abstract
Brain and muscle ARNT-Like 1 (BMAL1) is a circadian clock transcription factor that regulates physiological functions. Male adrenal-specific Bmal1 (ASCre/+::Bmal1) KO mice displayed blunted serum corticosterone rhythms, altered blood pressure rhythm, and altered timing of eating, but there is a lack of knowledge in females. This study investigates the role of adrenal BMAL1 in renal electrolyte handling and urinary aldosterone levels in response to low salt in male and female mice. Mice were placed in metabolic cages to measure 12-h urinary aldosterone after a standard diet and 7 days low-salt diet, as well as daily body weight, 12-h food and water intake, and renal sodium and potassium balance. Adrenal glands and kidneys were collected at ZT0 or ZT12 to measure the expression of aldosterone synthesis genes and clock genes. Compared with littermate controls, ASCre/+::Bmal1 KO male and female mice displayed increased urinary aldosterone in response to a low-salt diet, although mRNA expression of aldosterone synthesis genes was decreased. Timing of food intake was altered in ASCre/+::Bmal1 KO male and female mice, with a blunted night/day ratio. ASCre/+::Bmal1 KO female mice displayed decreases in renal sodium excretion in response to low salt, but both male and female KO mice had changes in sodium balance that were time-of-day-dependent. In addition, sex differences were found in adrenal and kidney clock gene expression. Notably, this study highlights sex differences in clock gene expression that could contribute to sex differences in physiological functions.NEW & NOTEWORTHY Our findings highlight the importance of sex as well as time-of-day in understanding the role of the circadian clock in the regulation of homeostasis. Time-of-day is a key biological variable that is often ignored in research, particularly in preclinical rodent studies. Our findings demonstrate important differences in several measures at 6 AM compared with 6 PM. Consideration of time-of-day is critical for the translation of findings in nocturnal rodent physiology to diurnal human physiology.
Collapse
Affiliation(s)
- Hannah M Costello
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida, United States
| | - Sophia A Eikenberry
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida, United States
| | - Kit-Yan Cheng
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
| | - Bryanna Broderick
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
| | - Advay S Joshi
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
| | - Gianna R Scott
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
| | - Annalisse McKee
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
| | - Victor M Mendez
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
| | - Lauren G Douma
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States
| | - G Ryan Crislip
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida, United States
| | - Michelle L Gumz
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida, United States
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States
- Research, North Florida/South Georgia Malcolm Randall Veterans Affairs Medical Center, Gainesville, Florida, United States
| |
Collapse
|
3
|
Jamadar A, Ward CJ, Remadevi V, Varghese MM, Pabla NS, Gumz ML, Rao R. Circadian clock disruption and growth of kidney cysts in autosomal dominant polycystic kidney disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606676. [PMID: 39211074 PMCID: PMC11361200 DOI: 10.1101/2024.08.05.606676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in the PKD1 and PKD2 genes, and often progresses to kidney failure. ADPKD progression is not uniform among patients, suggesting that factors secondary to the PKD1/2 gene mutation could regulate the rate of disease progression. Here we tested the effect of circadian clock disruption on ADPKD progression. Circadian rhythms are regulated by cell-autonomous circadian clocks composed of clock proteins. BMAL1 is a core constituent of the circadian clock. Methods To disrupt the circadian clock, we deleted Bmal1 gene in the renal collecting ducts of the Pkd1 RC/RC (RC/RC) mouse model of ADPKD (RC/RC; Bmal1 f/f ; Pkhd1 cre , called DKO mice), and in Pkd1 knockout mouse inner medullary collecting duct cells ( Pkd1Bmal1 KO mIMCD3 cells). Only male mice were used. Results Human nephrectomy ADPKD kidneys and Pkd1 KO mIMCD3 cells showed reduced Bmal1 gene expression compared to normal controls. When compared to RC/RC kidneys, DKO kidneys showed significantly altered clock gene expression, increased cyst growth, cell proliferation, apoptosis and fibrosis. DKO kidneys also showed increased lipogenesis and cholesterol synthesis-related gene expression, and increased tissue triglyceride levels compared to RC/RC kidneys. Similarly, in vitro, Pkd1Bmal1 KO cells showed altered clock genes, increased lipogenesis and cholesterol synthesis-related genes, and reduced fatty-acid oxidation-related gene expression compared to Pkd1KO cells. The Pkd1Bmal1 KO cells showed increased cell proliferation compared to Pkd1KO cells, which was rescued by pharmacological inhibition of lipogenesis. Conclusion Renal collecting duct specific Bmal1 gene deletion disrupts the circadian clock and triggers accelerated ADPKD progression by altering lipid metabolism-related gene expression. Key points Lack of BMAL1, a circadian clock protein in renal collecting ducts disrupted the clock and increased cyst growth and fibrosis in an ADPKD mouse model.BMAL1 gene deletion increased cell proliferation by increasing lipogenesis in kidney cells.Thus, circadian clock disruption could be a risk factor for accelerated disease progression in patients with ADPKD.
Collapse
|
4
|
Li J, Wang S, Yan K, Wang P, Jiao J, Wang Y, Chen M, Dong Y, Zhong J. Intestinal microbiota by angiotensin receptor blocker therapy exerts protective effects against hypertensive damages. IMETA 2024; 3:e222. [PMID: 39135690 PMCID: PMC11316932 DOI: 10.1002/imt2.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 08/15/2024]
Abstract
Dysbiosis of the gut microbiota has been implicated in hypertension, and drug-host-microbiome interactions have drawn considerable attention. However, the influence of angiotensin receptor blocker (ARB)-shaped gut microbiota on the host is not fully understood. In this work, we assessed the alterations of blood pressure (BP), vasculatures, and intestines following ARB-modified gut microbiome treatment and evaluated the changes in the intestinal transcriptome and serum metabolome in hypertensive rats. Hypertensive patients with well-controlled BP under ARB therapy were recruited as human donors, spontaneously hypertensive rats (SHRs) receiving normal saline or valsartan were considered animal donors, and SHRs were regarded as recipients. Histological and immunofluorescence staining was used to assess the aorta and small intestine, and 16S rRNA amplicon sequencing was performed to examine gut bacteria. Transcriptome and metabonomic analyses were conducted to determine the intestinal transcriptome and serum metabolome, respectively. Notably, ARB-modified fecal microbiota transplantation (FMT), results in marked decreases in systolic BP levels, collagen deposition and reactive oxygen species accumulation in the vasculature, and alleviated intestinal structure impairments in SHRs. These changes were linked with the reconstruction of the gut microbiota in SHR recipients post-FMT, especially with a decreased abundance of Lactobacillus, Aggregatibacter, and Desulfovibrio. Moreover, ARB-treated microbes contributed to increased intestinal Ciart, Per1, Per2, Per3, and Cipc gene levels and decreased Nfil3 and Arntl expression were detected in response to ARB-treated microbes. More importantly, circulating metabolites were dramatically reduced in ARB-FMT rats, including 6beta-Hydroxytestosterone and Thromboxane B2. In conclusion, ARB-modified gut microbiota exerts protective roles in vascular remodeling and injury, metabolic abnormality and intestinal dysfunctions, suggesting a pivotal role in mitigating hypertension and providing insights into the cross-talk between antihypertensive medicines and the gut microbiome.
Collapse
Affiliation(s)
- Jing Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Si‐Yuan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Kai‐Xin Yan
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Pan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Jie Jiao
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Yi‐Dan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Mu‐Lei Chen
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Ying Dong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Jiu‐Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
- Department of Cardiology, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
5
|
Dutta P, Layton AT. Sex and circadian regulation of metabolic demands in the rat kidney: A modeling analysis. PLoS One 2024; 19:e0293419. [PMID: 39018272 PMCID: PMC11253979 DOI: 10.1371/journal.pone.0293419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/12/2023] [Indexed: 07/19/2024] Open
Abstract
Renal hemodynamics, renal transporter expression levels, and urine excretion exhibit circadian variations. Disruption of these diurnal patterns is associated with the pathophysiology of hypertension and chronic kidney disease. Renal hemodynamics determines oxygen delivery, whereas renal transport and metabolism determines oxygen consumption; the balance between them yields renal oxygenation which also demonstrates 24-h periodicity. Another notable modulator of kidney function is sex, which has impacts on renal hemodynamics and transport function that are regulated by as well as independent of the circadian clock. The goal of this study was to investigate the diurnal and sexual variations in renal oxygen consumption and oxygenation. For this purpose, we developed computational models of rat kidney function that represent sexual dimorphism and circadian variation in renal hemodynamics and transporter activities. Model simulations predicted substantial differences in tubular Na+ transport and oxygen consumption among different nephron segments. We also simulated the effect of loop diuretics, which are used in the treatment of renal hypoxia, on medullary oxygen tension. Our model predicted a significantly higher effect of loop diuretics on medullary oxygenation in female rats compared to male rats and when administered during the active phase.
Collapse
Affiliation(s)
- Pritha Dutta
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Anita T. Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
- Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
6
|
Bartman CM, Nesbitt L, Lee KK, Khalfaoui L, Fang Y, Pabelick CM, Prakash YS. BMAL1 sex-specific effects in the neonatal mouse airway exposed to moderate hyperoxia. Physiol Rep 2024; 12:e16122. [PMID: 38942729 PMCID: PMC11213646 DOI: 10.14814/phy2.16122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/30/2024] Open
Abstract
Supplemental O2 (hyperoxia) is a critical intervention for premature infants (<34 weeks) but consequently is associated with development of bronchial airway hyperreactivity (AHR) and asthma. Clinical practice shifted toward the use of moderate hyperoxia (<60% O2), but risk for subsequent airway disease remains. In mouse models of moderate hyperoxia, neonatal mice have increased AHR with effects on airway smooth muscle (ASM), a cell type involved in airway tone, bronchodilation, and remodeling. Understanding mechanisms by which moderate O2 during the perinatal period initiates sustained airway changes is critical to drive therapeutic advancements toward treating airway diseases. We propose that cellular clock factor BMAL1 is functionally important in developing mouse airways. In adult mice, cellular clocks target pathways highly relevant to asthma pathophysiology and Bmal1 deletion increases inflammatory response, worsens lung function, and impacts survival outcomes. Our understanding of BMAL1 in the developing lung is limited, but our previous findings show functional relevance of clocks in human fetal ASM exposed to O2. Here, we characterize Bmal1 in our established mouse neonatal hyperoxia model. Our data show that Bmal1 KO deleteriously impacts the developing lung in the context of O2 and these data highlight the importance of neonatal sex in understanding airway disease.
Collapse
Affiliation(s)
- Colleen M. Bartman
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Lisa Nesbitt
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Kenge K. Lee
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Latifa Khalfaoui
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
| | - Yun‐Hua Fang
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Christina M. Pabelick
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Y. S. Prakash
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMinnesotaUSA
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
7
|
Juffre A, Gumz ML. Recent advances in understanding the kidney circadian clock mechanism. Am J Physiol Renal Physiol 2024; 326:F382-F393. [PMID: 38174377 PMCID: PMC11207534 DOI: 10.1152/ajprenal.00214.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
Circadian rhythms are endogenous biological oscillations that regulate various physiological processes in organisms, including kidney function. The kidney plays a vital role in maintaining homeostasis by regulating water and electrolyte balance, blood pressure, and excretion of metabolic waste products, all of which display circadian rhythmicity. For this reason, studying the circadian regulation of the kidney is important, and the time of day is a biological and experimental variable that must be considered. Over the past decade, considerable progress has been made in understanding the molecular mechanisms underlying circadian regulation within the kidney. In this review, the current knowledge regarding circadian rhythms in the kidney is explored, focusing on the molecular clock machinery, circadian control of renal functions, and the impact of disrupted circadian rhythms on kidney health. In addition, parameters that should be considered and future directions are outlined in this review.
Collapse
Affiliation(s)
- Alexandria Juffre
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida, United States
| | - Michelle L Gumz
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
8
|
Benjamin JI, Pollock DM. Current perspective on circadian function of the kidney. Am J Physiol Renal Physiol 2024; 326:F438-F459. [PMID: 38134232 PMCID: PMC11207578 DOI: 10.1152/ajprenal.00247.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/28/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023] Open
Abstract
Behavior and function of living systems are synchronized by the 24-h rotation of the Earth that guides physiology according to time of day. However, when behavior becomes misaligned from the light-dark cycle, such as in rotating shift work, jet lag, and even unusual eating patterns, adverse health consequences such as cardiovascular or cardiometabolic disease can arise. The discovery of cell-autonomous molecular clocks expanded interest in regulatory systems that control circadian physiology including within the kidney, where function varies along a 24-h cycle. Our understanding of the mechanisms for circadian control of physiology is in the early stages, and so the present review provides an overview of what is known and the many gaps in our current understanding. We include a particular focus on the impact of eating behaviors, especially meal timing. A better understanding of the mechanisms guiding circadian function of the kidney is expected to reveal new insights into causes and consequences of a wide range of disorders involving the kidney, including hypertension, obesity, and chronic kidney disease.
Collapse
Affiliation(s)
- Jazmine I Benjamin
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - David M Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
9
|
Chen W, Zhao S, Xing J, Yu W, Rao T, Zhou X, Ruan Y, Li S, Xia Y, Song T, Zou F, Li W, Cheng F. BMAL1 inhibits renal fibrosis and renal interstitial inflammation by targeting the ERK1/2/ELK-1/Egr-1 axis. Int Immunopharmacol 2023; 125:111140. [PMID: 37951191 DOI: 10.1016/j.intimp.2023.111140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/07/2023] [Accepted: 10/24/2023] [Indexed: 11/13/2023]
Abstract
RATIONALE Renal fibrosis and renal interstitial inflammation due to hydronephrosis are associated with progressive chronic kidney disease (CKD). The clock gene BMAL1 is thought to be involved in various diseases, including hypertension, diabetes, etc. However, little is known about how BMAL1 regulates renal fibrosis and renal interstitial inflammation in obstructed kidneys. METHODS The expression level of BMAL1 in UUO was examined using the GEO database. Lentivirus, siRNA and adeno-associated virus were used to modulate BMAL1 levels in HK-2 cells and mouse kidney. qRT-PCR, immunofluorescence staining, histological analysis, ELISA and Western blot were used to determine the level of fibrin deposition and the release of inflammatory factors. Immunofluorescence staining and western blotting were used to examine the interaction between BMAL1 and the ERK1/2/ELK-1/Egr-1 axis. RESULTS Bioinformatics analysis and in vivo experiments in this study showed that the expression level of BMAL1 in UUO model kidneys was higher than that in normal kidneys. We then found that downregulation of BMAL1 promoted the production of extracellular matrix (ECM) proteins and proinflammatory factors in vivo and in vitro, whereas upregulation inhibited this process. In addition, we demonstrated that the ERK1/2/ELK-1/Egr-1 axis is an important pathway for BMAL1 to play a regulatory role, and the use of PD98059 abolished the promoting effect of down-regulation of BMAL1 on fibrosis and inflammation. CONCLUSIONS Our findings suggest that BAML1 can target the ERK1/2/ELK-1/Egr-1 axis to suppress fibrotic progression and inflammatory events in obstructed kidneys, thereby inhibiting the development of CKD.
Collapse
Affiliation(s)
- Wu Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Sheng Zhao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ji Xing
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Weimin Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuan Ruan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Siqi Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuqi Xia
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tianbao Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fan Zou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
10
|
Costello HM, Sharma RK, McKee AR, Gumz ML. Circadian Disruption and the Molecular Clock in Atherosclerosis and Hypertension. Can J Cardiol 2023; 39:1757-1771. [PMID: 37355229 PMCID: PMC11446228 DOI: 10.1016/j.cjca.2023.06.416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/05/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023] Open
Abstract
Circadian rhythms are crucial for maintaining vascular function and disruption of these rhythms are associated with negative health outcomes including cardiovascular disease and hypertension. Circadian rhythms are regulated by the central clock within the suprachiasmatic nucleus of the hypothalamus and peripheral clocks located in nearly every cell type in the body, including cells within the heart and vasculature. In this review, we summarize the most recent preclinical and clinical research linking circadian disruption, with a focus on molecular circadian clock mechanisms, in atherosclerosis and hypertension. Furthermore, we provide insight into potential future chronotherapeutics for hypertension and vascular disease. A better understanding of the influence of daily rhythms in behaviour, such as sleep/wake cycles, feeding, and physical activity, as well as the endogenous circadian system on cardiovascular risk will help pave the way for targeted approaches in atherosclerosis and hypertension treatment/prevention.
Collapse
Affiliation(s)
- Hannah M Costello
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, USA; Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida, USA.
| | - Ravindra K Sharma
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, USA; Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida, USA
| | - Annalisse R McKee
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, USA; Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Michelle L Gumz
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, USA; Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida, USA; Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
11
|
Crislip GR, Costello HM, Juffre A, Cheng KY, Lynch IJ, Johnston JG, Drucker CB, Bratanatawira P, Agarwal A, Mendez VM, Thelwell RS, Douma LG, Wingo CS, Alli AA, Scindia YM, Gumz ML. Male kidney-specific BMAL1 knockout mice are protected from K +-deficient, high-salt diet-induced blood pressure increases. Am J Physiol Renal Physiol 2023; 325:F656-F668. [PMID: 37706232 PMCID: PMC10874679 DOI: 10.1152/ajprenal.00126.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/22/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
The circadian clock protein basic helix-loop-helix aryl hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1) is a transcription factor that impacts kidney function, including blood pressure (BP) control. Previously, we have shown that male, but not female, kidney-specific cadherin Cre-positive BMAL1 knockout (KS-BMAL1 KO) mice exhibit lower BP compared with littermate controls. The goal of this study was to determine the BP phenotype and immune response in male KS-BMAL1 KO mice in response to a low-K+ high-salt (LKHS) diet. BP, renal inflammatory markers, and immune cells were measured in male mice following an LKHS diet. Male KS-BMAL1 KO mice had lower BP following the LKHS diet compared with control mice, yet their circadian rhythm in pressure remained unchanged. Additionally, KS-BMAL1 KO mice exhibited lower levels of renal proinflammatory cytokines and immune cells following the LKHS diet compared with control mice. KS-BMAL1 KO mice were protected from the salt-sensitive hypertension observed in control mice and displayed an attenuated immune response following the LKHS diet. These data suggest that BMAL1 plays a role in driving the BP increase and proinflammatory environment that occurs in response to an LKHS diet.NEW & NOTEWORTHY We show here, for the first time, that kidney-specific BMAL1 knockout mice are protected from blood pressure (BP) increases and immune responses to a salt-sensitive diet. Other kidney-specific BMAL1 knockout models exhibit lower BP phenotypes under basal conditions. A salt-sensitive diet exacerbates this genotype-specific BP response, leading to fewer proinflammatory cytokines and immune cells in knockout mice. These data demonstrate the importance of distal segment BMAL1 in BP and immune responses to a salt-sensitive environment.
Collapse
Affiliation(s)
- G Ryan Crislip
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida, United States
| | - Hannah M Costello
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida, United States
| | - Alexandria Juffre
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida, United States
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States
| | - Kit-Yan Cheng
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
| | - I Jeanette Lynch
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Department of Research, North Florida/South Georgia Veterans Health System, Gainesville, Florida, United States
| | - Jermaine G Johnston
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida, United States
- Department of Research, North Florida/South Georgia Veterans Health System, Gainesville, Florida, United States
| | - Charles B Drucker
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
| | - Phillip Bratanatawira
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
| | - Annanya Agarwal
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States
| | - Victor M Mendez
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
| | - Ryanne S Thelwell
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
| | - Lauren G Douma
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States
| | - Charles S Wingo
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Department of Research, North Florida/South Georgia Veterans Health System, Gainesville, Florida, United States
| | - Abdel A Alli
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida, United States
| | - Yogesh M Scindia
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, Florida, United States
| | - Michelle L Gumz
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, United States
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, United States
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida, United States
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
12
|
Buncha V, Cherezova A, Alexander S, Baranovskaya I, Coleman KA, Cherian-Shaw M, Brands MW, Sullivan JC, O'Connor PM, Mamenko M. Aldosterone Antagonism Is More Effective at Reducing Blood Pressure and Excessive Renal ENaC Activity in AngII-Infused Female Rats Than in Males. Hypertension 2023; 80:2196-2208. [PMID: 37593894 PMCID: PMC10528186 DOI: 10.1161/hypertensionaha.123.21287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND AngII (angiotensin II)-dependent hypertension causes comparable elevations of blood pressure (BP), aldosterone levels, and renal ENaC (epithelial Na+ channel) activity in male and female rodents. Mineralocorticoid receptor (MR) antagonism has a limited antihypertensive effect associated with insufficient suppression of renal ENaC in male rodents with AngII-hypertension. While MR blockade effectively reduces BP in female mice with salt-sensitive and leptin-induced hypertension, MR antagonism has not been studied in female rodents with AngII-hypertension. We hypothesize that overstimulation of renal MR signaling drives redundant ENaC-mediated Na+ reabsorption and BP increase in female rats with AngII-hypertension. METHODS We employ a combination of physiological, pharmacological, biochemical, and biophysical approaches to compare the effect of MR inhibitors on BP and ENaC activity in AngII-infused male and female Sprague Dawley rats. RESULTS MR blockade markedly attenuates AngII-hypertension in female rats but has only a marginal effect in males. Spironolactone increases urinary sodium excretion and urinary sodium-to-potassium ratio in AngII-infused female, but not male, rats. The expression of renal MR and HSD11β2 (11β-hydroxysteroid dehydrogenase type 2) that determines the availability of MR to aldosterone is significantly higher in AngII-infused female rats than in males. ENaC activity is ≈2× lower in spironolactone-treated AngII-infused female rats than in males. Reduced ENaC activity in AngII-infused female rats on spironolactone correlates with increased interaction with ubiquitin ligase Nedd4-2 (neural precursor cell expressed developmentally down-regulated protein 4-2), targeting ENaC for degradation. CONCLUSIONS MR-ENaC axis is the primary determinant of excessive renal sodium reabsorption and an attractive antihypertensive target in female rats with AngII-hypertension, but not in males.
Collapse
Affiliation(s)
- Vadym Buncha
- Department of Physiology, Medical College of Georgia, Augusta University
| | - Alena Cherezova
- Department of Physiology, Medical College of Georgia, Augusta University
| | - Sati Alexander
- Department of Physiology, Medical College of Georgia, Augusta University
| | - Irina Baranovskaya
- Department of Physiology, Medical College of Georgia, Augusta University
| | - Kathleen A Coleman
- Department of Physiology, Medical College of Georgia, Augusta University
| | - Mary Cherian-Shaw
- Department of Physiology, Medical College of Georgia, Augusta University
| | - Michael W Brands
- Department of Physiology, Medical College of Georgia, Augusta University
| | | | - Paul M O'Connor
- Department of Physiology, Medical College of Georgia, Augusta University
| | - Mykola Mamenko
- Department of Physiology, Medical College of Georgia, Augusta University
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Women experience unique life events, for example, pregnancy and lactation, that challenge renal regulation of electrolyte homeostasis. Recent analyses of nephron organization in female vs. male rodent kidneys, revealed distinct sexual dimorphisms in electrolyte transporter expression, abundance, and activity. This review aims to provide an overview of electrolyte transporters' organization and operation in female compared with the commonly studied male kidney, and the (patho)physiologic consequences of the differences. RECENT FINDINGS When electrolyte transporters are assessed in kidney protein homogenates from both sexes, relative transporter abundance ratios in females/males are less than one along proximal tubule and greater than one post macula densa, which is indicative of a 'downstream shift' in fractional reabsorption of electrolytes in females. This arrangement improves the excretion of a sodium load, challenges potassium homeostasis, and is consistent with the lower blood pressure and greater pressure natriuresis observed in premenopausal women. SUMMARY We summarize recently reported new knowledge about sex differences in renal transporters: abundance and expression along nephron, implications for regulation by Na + , K + and angiotensin II, and mathematical models of female nephron function.
Collapse
Affiliation(s)
- Alicia A. McDonough
- Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Anita T. Layton
- Departments of Applied Mathematics and Biology, University of Waterloo, Waterloo, Ontario, Canada; Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada; School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
14
|
Yang C, Deng Z, Zeng Q, Chang X, Wu X, Li G. BMAL1 involved in autophagy and injury of thoracic aortic endothelial cells of rats induced by intermittent heat stress through the AMPK/mTOR/ULK1 pathway. Biochem Biophys Res Commun 2023; 661:34-41. [PMID: 37086572 DOI: 10.1016/j.bbrc.2023.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/30/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023]
Abstract
Physiological activities of the body exhibit an obvious biological rhythm. At the core of the circadian rhythm, BMAL1 is the only clock gene whose deletion leads to abnormal physiological functions. However, whether intermittent heat stress influences cardiovascular function by altering the circadian rhythm of clock genes has not been reported. This study aimed to investigate whether intermittent heat stress induces autophagy and apoptosis, and the effects of BMAL1 on thoracic aortic autophagy and apoptosis. An intermittent heat stress model was established in vitro, and western blotting and immunofluorescence were used to detect the expression of autophagy, apoptosis, the AMPK/mTOR/ULK1 pathway, and BMAL1. After BMAL1 silencing, RT-qPCR was performed to detect the expression levels of autophagy and apoptosis-related genes. Our results suggest that heat stress induces autophagy and apoptosis in RTAECs. In addition, intermittent heat stress increased the phosphorylation of AMPK and ULK1, but reduced the phosphorylation of mTOR, AMPK inhibitor Compound C reversed the phosphorylation of AMPK, mTOR, and ULK1, and Beclin1 and LC3-II/LC3-I were downregulated. Furthermore, BMAL1 expression was elevated in vitro and shBMAL1 decreased autophagy and apoptosis. We revealed that intermittent heat stress induces autophagy and apoptosis, and that BMAL1 may be involved in the occurrence of autophagy and apoptosis.
Collapse
Affiliation(s)
- Chunli Yang
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, 750004, China; Nursing Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Ziwei Deng
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Qihang Zeng
- Institute of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Xiaoyu Chang
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Xiaomin Wu
- Institute of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Guanghua Li
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, 750004, China; Institute of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
15
|
Bingham MA, Neijman K, Yang CR, Aponte A, Mak A, Kikuchi H, Jung HJ, Poll BG, Raghuram V, Park E, Chou CL, Chen L, Leipziger J, Knepper MA, Dona M. Circadian gene expression in mouse renal proximal tubule. Am J Physiol Renal Physiol 2023; 324:F301-F314. [PMID: 36727945 PMCID: PMC9988533 DOI: 10.1152/ajprenal.00231.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Circadian variability in kidney function is well recognized but is often ignored as a potential confounding variable in physiological experiments. Here, we have created a data resource consisting of expression levels for mRNA transcripts in microdissected proximal tubule segments from mice as a function of the time of day. Small-sample RNA sequencing was applied to microdissected S1 proximal convoluted tubules and S2 proximal straight tubules. After stringent filtering, the data were analyzed using JTK-Cycle to detect periodicity. The data set is provided as a user-friendly webpage at https://esbl.nhlbi.nih.gov/Databases/Circadian-Prox2/. In proximal convoluted tubules, 234 transcripts varied in a circadian manner (4.0% of the total). In proximal straight tubules, 334 transcripts varied in a circadian manner (5.3%). Transcripts previously known to be associated with corticosteroid action and with increased flow were found to be overrepresented among circadian transcripts peaking during the "dark" portion of the day [zeitgeber time (ZT)14-22], corresponding to peak levels of corticosterone and glomerular filtration rate in mice. To ask whether there is a time-of-day dependence of protein abundances in the kidney, we carried out LC-MS/MS-based proteomics in whole mouse kidneys at ZT12 and ZT0. The full data set (n = 6,546 proteins) is available at https://esbl.nhlbi.nih.gov/Databases/Circadian-Proteome/. Overall, 293 proteins were differentially expressed between ZT12 and ZT0 (197 proteins greater at ZT12 and 96 proteins greater at ZT0). Among the regulated proteins, only nine proteins were found to be periodic in the RNA-sequencing analysis, suggesting a high level of posttranscriptional regulation of protein abundances.NEW & NOTEWORTHY Circadian variation in gene expression can be an important determinant in the regulation of kidney function. The authors used RNA-sequencing transcriptomics and LC-MS/MS-based proteomics to identify gene products expressed in a periodic manner. The data were used to construct user-friendly web resources.
Collapse
Affiliation(s)
- Molly A Bingham
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Kim Neijman
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Chin-Rang Yang
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Angel Aponte
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Angela Mak
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Hiroaki Kikuchi
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Hyun Jun Jung
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Brian G Poll
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Viswanathan Raghuram
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Euijung Park
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Chung-Lin Chou
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Lihe Chen
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Jens Leipziger
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | - Mark A Knepper
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Margo Dona
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Dutta P, Sadria M, Layton AT. Influence of administration time and sex on natriuretic, diuretic, and kaliuretic effects of diuretics. Am J Physiol Renal Physiol 2023; 324:F274-F286. [PMID: 36701479 DOI: 10.1152/ajprenal.00296.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Sex differences in renal function and blood pressure have been widely described across many species. Blood pressure dips during sleep and peaks in the early morning. Similarly, glomerular filtration rate, filtered electrolyte loads, urine volume, and urinary excretion all exhibit notable diurnal rhythms, which reflect, in part, the regulation of renal transporter proteins by circadian clock genes. That regulation is sexually dimorphic; as such, sex and time of day are not two independent regulators of kidney function and blood pressure. The objective of the present study was to assess the effect of sex and administration time on the natriuretic and diuretic effects of loop, thiazide, and K+-sparing diuretics, which are common treatments for hypertension. Loop diuretics inhibit Na+-K+-2Cl- cotransporters on the apical membrane of the thick ascending limb, thiazide diuretics inhibit Na+-Cl- cotransporters on the distal convoluted tubule, and K+-sparing diuretics inhibit epithelial Na+ channels on the connecting tubule and collecting duct. We simulated Na+ transporter inhibition using sex- and time-of-day-specific computational models of mouse kidney function. The simulation results highlighted significant sex and time-of-day differences in the drug response. Loop diuretics induced larger natriuretic and diuretic effects during the active phase. The natriuretic and diuretic effects of thiazide diuretics exhibited sex and time-of-day differences, whereas these effects of K+-sparing diuretics exhibited a significant time-of-day difference in females only. The kaliuretic effect depended on the type of diuretics and time of administration. The present computational models can be a useful tool in chronotherapy, to tailor drug administration time to match the body's diurnal rhythms to optimize the drug effect.NEW & NOTEWORTHY Sex influences cardiovascular disease, and the timing of onset of acute cardiovascular events exhibits circadian rhythms. Kidney function also exhibits sex differences and circadian rhythms. How do the natriuretic and diuretic effects of diuretics, a common treatment for hypertension that targets the kidneys, differ between the sexes? And how do these effects vary during the day? To answer these questions, we conducted computer simulations to assess the effects of loop, thiazide, and K+-sparing diuretics.
Collapse
Affiliation(s)
- Pritha Dutta
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Mehrshad Sadria
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Anita T Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada.,Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada.,Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.,School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
17
|
Gumz ML, Shimbo D, Abdalla M, Balijepalli RC, Benedict C, Chen Y, Earnest DJ, Gamble KL, Garrison SR, Gong MC, Hogenesch JB, Hong Y, Ivy JR, Joe B, Laposky AD, Liang M, MacLaughlin EJ, Martino TA, Pollock DM, Redline S, Rogers A, Dan Rudic R, Schernhammer ES, Stergiou GS, St-Onge MP, Wang X, Wright J, Oh YS. Toward Precision Medicine: Circadian Rhythm of Blood Pressure and Chronotherapy for Hypertension - 2021 NHLBI Workshop Report. Hypertension 2023; 80:503-522. [PMID: 36448463 PMCID: PMC9931676 DOI: 10.1161/hypertensionaha.122.19372] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Healthy individuals exhibit blood pressure variation over a 24-hour period with higher blood pressure during wakefulness and lower blood pressure during sleep. Loss or disruption of the blood pressure circadian rhythm has been linked to adverse health outcomes, for example, cardiovascular disease, dementia, and chronic kidney disease. However, the current diagnostic and therapeutic approaches lack sufficient attention to the circadian rhythmicity of blood pressure. Sleep patterns, hormone release, eating habits, digestion, body temperature, renal and cardiovascular function, and other important host functions as well as gut microbiota exhibit circadian rhythms, and influence circadian rhythms of blood pressure. Potential benefits of nonpharmacologic interventions such as meal timing, and pharmacologic chronotherapeutic interventions, such as the bedtime administration of antihypertensive medications, have recently been suggested in some studies. However, the mechanisms underlying circadian rhythm-mediated blood pressure regulation and the efficacy of chronotherapy in hypertension remain unclear. This review summarizes the results of the National Heart, Lung, and Blood Institute workshop convened on October 27 to 29, 2021 to assess knowledge gaps and research opportunities in the study of circadian rhythm of blood pressure and chronotherapy for hypertension.
Collapse
Affiliation(s)
- Michelle L Gumz
- Department of Physiology and Aging; Center for Integrative Cardiovascular and Metabolic Disease, Department of Medicine, Division of Nephrology, Hypertension and Renal Transplantation, University of Florida, Gainesville, FL (M.L.G.)
| | - Daichi Shimbo
- Department of Medicine, The Columbia Hypertension Center, Columbia University Irving Medical Center, New York, NY (D.S.)
| | - Marwah Abdalla
- Department of Medicine, Center for Behavioral Cardiovascular Health, Columbia University Irving Medical Center, New York, NY (M.A.)
| | - Ravi C Balijepalli
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD (R.C.B., Y.H., J.W., Y.S.O.)
| | - Christian Benedict
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala University, Sweden (C.B.)
| | - Yabing Chen
- Department of Pathology, University of Alabama at Birmingham, and Research Department, Birmingham VA Medical Center, AL (Y.C.)
| | - David J Earnest
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University, Bryan, TX (D.J.E.)
| | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, AL (K.L.G.)
| | - Scott R Garrison
- Department of Family Medicine, University of Alberta, Canada (S.R.G.)
| | - Ming C Gong
- Department of Physiology, University of Kentucky, Lexington, KY (M.C.G.)
| | | | - Yuling Hong
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD (R.C.B., Y.H., J.W., Y.S.O.)
| | - Jessica R Ivy
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom (J.R.I.)
| | - Bina Joe
- Department of Physiology and Pharmacology and Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, OH (B.J.)
| | - Aaron D Laposky
- National Center on Sleep Disorders Research, Division of Lung Diseases, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD (A.D.L.)
| | - Mingyu Liang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI (M.L.)
| | - Eric J MacLaughlin
- Department of Pharmacy Practice, Texas Tech University Health Sciences Center, Amarillo, TX (E.J.M.)
| | - Tami A Martino
- Center for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Ontario, Canada (T.A.M.)
| | - David M Pollock
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, AL (D.M.P.)
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (S.R.)
| | - Amy Rogers
- Division of Molecular and Clinical Medicine, University of Dundee, United Kingdom (A.R.)
| | - R Dan Rudic
- Department of Pharmacology and Toxicology, Augusta University, GA (R.D.R.)
| | - Eva S Schernhammer
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (E.S.S.)
| | - George S Stergiou
- Hypertension Center, STRIDE-7, National and Kapodistrian University of Athens, School of Medicine, Third Department of Medicine, Sotiria Hospital, Athens, Greece (G.S.S.)
| | - Marie-Pierre St-Onge
- Division of General Medicine, Department of Medicine, Columbia University Irving Medical Center' New York, NY (M.-P.S.-O.)
| | - Xiaoling Wang
- Georgia Prevention Institute, Department of Medicine, Augusta University, GA (X.W.)
| | - Jacqueline Wright
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD (R.C.B., Y.H., J.W., Y.S.O.)
| | - Young S Oh
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD (R.C.B., Y.H., J.W., Y.S.O.)
| |
Collapse
|
18
|
Costello HM, Crislip GR, Cheng KY, Lynch IJ, Juffre A, Bratanatawira P, Mckee A, Thelwell RS, Mendez VM, Wingo CS, Douma LG, Gumz ML. Adrenal-Specific KO of the Circadian Clock Protein BMAL1 Alters Blood Pressure Rhythm and Timing of Eating Behavior. FUNCTION 2023; 4:zqad001. [PMID: 36778748 PMCID: PMC9909366 DOI: 10.1093/function/zqad001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 01/11/2023] Open
Abstract
Brain and muscle ARNT-like 1 (BMAL1) is a core circadian clock protein and transcription factor that regulates many physiological functions, including blood pressure (BP). Male global Bmal1 knockout (KO) mice exhibit ∼10 mmHg reduction in BP, as well as a blunting of BP rhythm. The mechanisms of how BMAL1 regulates BP remains unclear. The adrenal gland synthesizes hormones, including glucocorticoids and mineralocorticoids, that influence BP rhythm. To determine the role of adrenal BMAL1 on BP regulation, adrenal-specific Bmal1 (ASCre/+ ::Bmal1) KO mice were generated using aldosterone synthase Cre recombinase to KO Bmal1 in the adrenal gland zona glomerulosa. We confirmed the localization and efficacy of the KO of BMAL1 to the zona glomerulosa. Male ASCre/+ ::Bmal1 KO mice displayed a shortened BP and activity period/circadian cycle (typically 24 h) by ∼1 h and delayed peak of BP and activity by ∼2 and 3 h, respectively, compared with littermate Cre- control mice. This difference was only evident when KO mice were in metabolic cages, which acted as a stressor, as serum corticosterone was increased in metabolic cages compared with home cages. AS Cre/+ ::Bmal1 KO mice also displayed altered diurnal variation in serum corticosterone. Furthermore, these mice have altered eating behaviors where they have a blunted night/day ratio of food intake, but no change in overall food consumed compared with controls. Overall, these data suggest that adrenal BMAL1 has a role in the regulation of BP rhythm and eating behaviors.
Collapse
Affiliation(s)
- Hannah M Costello
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL 32610, USA
| | - G Ryan Crislip
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Kit-Yan Cheng
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA
| | - I Jeanette Lynch
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA
- Research, North Florida/South Georgia Malcolm Randall Veterans Affairs Medical Center, Gainesville, FL 32608, USA
| | - Alexandria Juffre
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Phillip Bratanatawira
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA
| | - Annalisse Mckee
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
| | - Ryanne S Thelwell
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
| | - Victor M Mendez
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
| | - Charles S Wingo
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA
- Research, North Florida/South Georgia Malcolm Randall Veterans Affairs Medical Center, Gainesville, FL 32608, USA
| | - Lauren G Douma
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Michelle L Gumz
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL 32610, USA
- Research, North Florida/South Georgia Malcolm Randall Veterans Affairs Medical Center, Gainesville, FL 32608, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
19
|
Layton AT, Gumz ML. Sex differences in circadian regulation of kidney function of the mouse. Am J Physiol Renal Physiol 2022; 323:F675-F685. [PMID: 36264883 PMCID: PMC11905794 DOI: 10.1152/ajprenal.00227.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022] Open
Abstract
Kidney function is regulated by the circadian clock. Not only do glomerular filtration rate and urinary excretion oscillate during the day, but the expressions of several renal transporter proteins also exhibit circadian rhythms. Interestingly, the circadian regulation of these transporters appears to be sexually dimorphic. Thus, the goal of the present study was to investigate the mechanisms by which the kidney function of the mouse is modulated by sex and time of day. To accomplish this, we developed the first computational models of epithelial water and solute transport along the mouse nephrons that represent the effects of sex and the circadian clock on renal hemodynamics and transporter activity. We conducted simulations to study how the circadian control of renal transport genes affects overall kidney function and how that process differs between male and female mice. Simulation results predicted that tubular transport differs substantially among segments, with relative variations in water and Na+ reabsorption along the proximal tubules and thick ascending limb tracking that of glomerular filtration rate. In contrast, relative variations in distal segment transport were much larger, with Na+ reabsorption almost doubling during the active phase. Oscillations in Na+ transport drive K+ transport variations in the opposite direction. Model simulations of basic helix-loop-helix ARNT like 1 (BMAL1) knockout mice predicted a significant reduction in net Na+ reabsorption along the distal segments in both sexes, but more so in males than in females. This can be attributed to the reduction of mean epithelial Na+ channel activity in males only, a sex-specific effect that may lead to a reduction in blood pressure in BMAL1-null males.NEW & NOTEWORTHY How does the circadian control of renal transport genes affect overall kidney function, and how does that process differ between male and female mice? How does the differential circadian regulation of the expression levels of key transporter genes impact the transport processes along different nephron segments during the day? And how do those effects differ between males and females? We built computational models of mouse kidney function to answer these questions.
Collapse
Affiliation(s)
- Anita T Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
- Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Michelle L Gumz
- Department of Physiology and Aging, University of Florida, Gainesville, Florida
| |
Collapse
|
20
|
Zietara A, Spires DR, Juffre A, Costello HM, Crislip GR, Douma LG, Levchenko V, Dissanayake LV, Klemens CA, Nikolaienko O, Geurts AM, Gumz ML, Staruschenko A. Knockout of the Circadian Clock Protein PER1 (Period1) Exacerbates Hypertension and Increases Kidney Injury in Dahl Salt-Sensitive Rats. Hypertension 2022; 79:2519-2529. [PMID: 36093781 PMCID: PMC9669134 DOI: 10.1161/hypertensionaha.122.19316] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Circadian rhythms play an essential role in physiological function. The molecular clock that underlies circadian physiological function consists of a core group of transcription factors, including the protein PER1 (Period1). Studies in mice show that PER1 plays a role in the regulation of blood pressure and renal sodium handling; however, the results are dependent on the strain being studied. Using male Dahl salt-sensitive (SS) rats with global knockout of PER1 (SSPer1-/-), we aim to test the hypothesis that PER1 plays a key role in the regulation of salt-sensitive blood pressure. METHODS The model was generated using CRISPR/Cas9 and was characterized using radiotelemetry and measures of renal function and circadian rhythm. RESULTS SSPer1-/- rats had similar mean arterial pressure when fed a normal 0.4% NaCl diet but developed augmented hypertension after three weeks on a high-salt (4% NaCl) diet. Despite being maintained on a normal 12:12 light:dark cycle, SSPer1-/- rats exhibited desynchrony mean arterial pressure rhythms on a high-salt diet, as evidenced by increased variability in the time of peak mean arterial pressure. SSPer1-/- rats excrete less sodium after three weeks on the high-salt diet. Furthermore, SSPer1-/- rats exhibited decreased creatinine clearance, a measurement of renal function, as well as increased signs of kidney tissue damage. SSPer1-/- rats also exhibited higher plasma aldosterone levels. CONCLUSIONS Altogether, our findings demonstrate that loss of PER1 in Dahl SS rats causes an array of deleterious effects, including exacerbation of the development of salt-sensitive hypertension and renal damage.
Collapse
Affiliation(s)
- Adrian Zietara
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33602, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Denisha R. Spires
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Alexandria Juffre
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | - Hannah M. Costello
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | - G. Ryan Crislip
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | - Lauren G. Douma
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Vladislav Levchenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33602, USA
| | - Lashodya V. Dissanayake
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33602, USA
| | - Christine A. Klemens
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33602, USA
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL 33602, USA
| | - Oksana Nikolaienko
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Aron M. Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Michelle L. Gumz
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL 32610, USA
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33602, USA
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL 33602, USA
- James A. Haley Veterans’ Hospital, Tampa, FL 33612, USA
| |
Collapse
|
21
|
Costello HM, Johnston JG, Juffre A, Crislip GR, Gumz ML. Circadian clocks of the kidney: function, mechanism, and regulation. Physiol Rev 2022; 102:1669-1701. [PMID: 35575250 PMCID: PMC9273266 DOI: 10.1152/physrev.00045.2021] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/22/2022] Open
Abstract
An intrinsic cellular circadian clock is located in nearly every cell of the body. The peripheral circadian clocks within the cells of the kidney contribute to the regulation of a variety of renal processes. In this review, we summarize what is currently known regarding the function, mechanism, and regulation of kidney clocks. Additionally, the effect of extrarenal physiological processes, such as endocrine and neuronal signals, on kidney function is also reviewed. Circadian rhythms in renal function are an integral part of kidney physiology, underscoring the importance of considering time of day as a key biological variable. The field of circadian renal physiology is of tremendous relevance, but with limited physiological and mechanistic information on the kidney clocks this is an area in need of extensive investigation.
Collapse
Affiliation(s)
- Hannah M Costello
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - Jermaine G Johnston
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
- North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida
| | - Alexandria Juffre
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| | - G Ryan Crislip
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - Michelle L Gumz
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
- North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida
| |
Collapse
|
22
|
Stadt MM, Layton AT. Sex and species differences in epithelial transport in rat and mouse kidneys: Modeling and analysis. Front Physiol 2022; 13:991705. [PMID: 36246142 PMCID: PMC9559190 DOI: 10.3389/fphys.2022.991705] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
The goal of this study was to investigate the functional implications of sex and species differences in the pattern of transporters along nephrons in the rat and mouse kidney, as reported by Veiras et al. (J Am Soc Nephrol 28: 3504–3517, 2017). To do so, we developed the first sex-specific computational models of epithelial water and solute transport along the nephrons from male and female mouse kidneys, and conducted simulations along with our published rat models. These models account for the sex differences in the abundance of apical and basolateral transporters, glomerular filtration rate, and tubular dimensions. Model simulations predict that 73% and 57% of filtered Na+ is reabsorbed by the proximal tubules of male and female rat kidneys, respectively. Due to their smaller transport area and lower NHE3 activity, the proximal tubules in the mouse kidney reabsorb a significantly smaller fraction of the filtered Na+, at 53% in male and only 34% in female. The lower proximal fractional Na+ reabsorption in female kidneys of both rat and mouse is due primarily to their smaller transport area, lower Na+/H+ exchanger activity, and lower claudin-2 abundance, culminating in significantly larger fractional delivery of water and Na+ to the downstream nephron segments in female kidneys. Conversely, the female distal nephron exhibits a higher abundance of key Na+ transporters, including Na+-Cl− cotransporters in both species, epithelial Na+ channels for the female rat, and Na+-K+-Cl−cotransporters for the female mouse. The higher abundance of transporters accounts for the enhanced water and Na+ transport along the female rat and mouse distal nephrons, relative to the respective male, resulting in similar urine excretion between the sexes. Model simulations indicate that the sex and species differences in renal transporter patterns may partially explain the experimental observation that, in response to a saline load, the diuretic and natriuretic responses were more rapid in female rats than males, but no significant sex difference was found in mice. These computational models can serve as a valuable tool for analyzing findings from experimental studies conducted in rats and mice, especially those involving genetic modifications.
Collapse
Affiliation(s)
- Melissa Maria Stadt
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada
| | - Anita T. Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada
- Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
- *Correspondence: Anita T. Layton,
| |
Collapse
|
23
|
Ohara H, Nabika T. Genetic Modifications to Alter Blood Pressure Level. Biomedicines 2022; 10:biomedicines10081855. [PMID: 36009402 PMCID: PMC9405136 DOI: 10.3390/biomedicines10081855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
Genetic manipulation is one of the indispensable techniques to examine gene functions both in vitro and in vivo. In particular, cardiovascular phenotypes such as blood pressure cannot be evaluated in vitro system, necessitating the creation of transgenic or gene-targeted knock-out and knock-in experimental animals to understand the pathophysiological roles of specific genes on the disease conditions. Although genome-wide association studies (GWAS) in various human populations have identified multiple genetic variations associated with increased risk for hypertension and/or its complications, the causal links remain unresolved. Genome-editing technologies can be applied to many different types of cells and organisms for creation of knock-out/knock-in models. In the post-GWAS era, it may be more worthwhile to validate pathophysiological implications of the risk variants and/or candidate genes by creating genome-edited organisms.
Collapse
|
24
|
Kravtsova O, Bohovyk R, Levchenko V, Palygin O, Klemens CA, Rieg T, Staruschenko A. SGLT2 inhibition effect on salt-induced hypertension, RAAS, and Na + transport in Dahl SS rats. Am J Physiol Renal Physiol 2022; 322:F692-F707. [PMID: 35466690 PMCID: PMC9142161 DOI: 10.1152/ajprenal.00053.2022] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/08/2022] [Accepted: 04/21/2022] [Indexed: 12/27/2022] Open
Abstract
Na+-glucose cotransporter-2 (SGLT2) inhibitors are the new mainstay of treatment for diabetes mellitus and cardiovascular diseases. Despite the remarkable benefits, the molecular mechanisms mediating the effects of SGLT2 inhibitors on water and electrolyte balance are incompletely understood. The goal of this study was to determine whether SGLT2 inhibition alters blood pressure and kidney function via affecting the renin-angiotensin-aldosterone system (RAAS) and Na+ channels/transporters along the nephron in Dahl salt-sensitive rats, a model of salt-induced hypertension. Administration of dapagliflozin (Dapa) at 2 mg/kg/day via drinking water for 3 wk blunted the development of salt-induced hypertension as evidenced by lower blood pressure and a left shift of the pressure natriuresis curve. Urinary flow rate, glucose excretion, and Na+- and Cl--to-creatinine ratios increased in Dapa-treated compared with vehicle-treated rats. To define the contribution of the RAAS, we measured various hormones. Despite apparent effects on Na+- and Cl--to-creatinine ratios, Dapa treatment did not affect RAAS metabolites. Subsequently, we assessed the effects of Dapa on renal Na+ channels and transporters using RT-PCR, Western blot analysis, and patch clamp. Neither mRNA nor protein expression levels of renal transporters (SGLT2, Na+/H+ exchanger isoform 3, Na+-K+-2Cl- cotransporter 2, Na+-Cl- cotransporter, and α-, β-, and γ-epithelial Na+ channel subunits) changed significantly between groups. Furthermore, electrophysiological experiments did not reveal any difference in Dapa treatment on the conductance and activity of epithelial Na+ channels. Our data suggest that SGLT2 inhibition in a nondiabetic model of salt-sensitive hypertension blunts the development of salt-induced hypertension by causing glucosuria and natriuresis without changes in the RAAS or the expression or activity of the main Na+ channels and transporters.NEW & NOTEWORTHY The present study indicates that Na+-glucose cotransporter-2 (SGLT2) inhibition in a nondiabetic model of salt-sensitive hypertension blunts the development and magnitude of salt-induced hypertension. Chronic inhibition of SGLT2 increases glucose and Na+ excretion without secondary effects on the expression and function of other Na+ transporters and channels along the nephron and hormone levels in the renin-angiotensin-aldosterone system. These data provide novel insights into the effects of SGLT2 inhibitors and their potential use in hypertension.
Collapse
Affiliation(s)
- Olha Kravtsova
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Ruslan Bohovyk
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Vladislav Levchenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Oleg Palygin
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Christine A Klemens
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
- James A. Haley Veterans' Hospital, Tampa, Florida
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
- James A. Haley Veterans' Hospital, Tampa, Florida
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida
| |
Collapse
|
25
|
Ibarz-Blanch N, Morales D, Calvo E, Ros-Medina L, Muguerza B, Bravo FI, Suárez M. Role of Chrononutrition in the Antihypertensive Effects of Natural Bioactive Compounds. Nutrients 2022; 14:nu14091920. [PMID: 35565887 PMCID: PMC9103085 DOI: 10.3390/nu14091920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022] Open
Abstract
Hypertension (HTN) is one of the main cardiovascular risk factors and is considered a major public health problem. Numerous approaches have been developed to lower blood pressure (BP) in hypertensive patients, most of them involving pharmacological treatments. Within this context, natural bioactive compounds have emerged as a promising alternative to drugs in HTN prevention. This work reviews not only the mechanisms of BP regulation by these antihypertensive compounds, but also their efficacy depending on consumption time. Although a plethora of studies has investigated food-derived compounds, such as phenolic compounds or peptides and their impact on BP, only a few addressed the relevance of time consumption. However, it is known that BP and its main regulatory mechanisms show a 24-h oscillation. Moreover, evidence shows that phenolic compounds can interact with clock genes, which regulate the biological rhythm followed by many physiological processes. Therefore, further research might be carried out to completely elucidate the interactions along the time–nutrition–hypertension axis within the framework of chrononutrition.
Collapse
Affiliation(s)
| | | | - Enrique Calvo
- Correspondence: (E.C.); (F.I.B.); Tel.: +34-977558837 (E.C.)
| | | | | | | | | |
Collapse
|
26
|
Douma LG, Costello HM, Crislip GR, Cheng KY, Lynch IJ, Juffre A, Barral D, Masten S, Roig E, Beguiristain K, Li W, Bratanatawira P, Wingo CS, Gumz ML. Kidney-specific KO of the circadian clock protein PER1 alters renal Na + handling, aldosterone levels, and kidney/adrenal gene expression. Am J Physiol Renal Physiol 2022; 322:F449-F459. [PMID: 35129370 PMCID: PMC9169971 DOI: 10.1152/ajprenal.00385.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 11/22/2022] Open
Abstract
PERIOD 1 (PER1) is a circadian clock transcription factor that is regulated by aldosterone, a hormone that increases blood volume and Na+ retention to increase blood pressure. Male global Per1 knockout (KO) mice develop reduced night/day differences in Na+ excretion in response to a high-salt diet plus desoxycorticosterone pivalate treatment (HS + DOCP), a model of salt-sensitive hypertension. In addition, global Per1 KO mice exhibit higher aldosterone levels on a normal-salt diet. To determine the role of Per1 in the kidney, male kidney-specific Per1 KO (KS-Per1 KO) mice were generated using Ksp-cadherin Cre recombinase to remove exons 2-8 of Per1 in the distal nephron and collecting duct. Male KS-Per1 KO mice have increased Na+ retention but have normal diurnal differences in Na+ excretion in response to HS + DOCP. The increased Na+ retention is associated with altered expression of glucocorticoid and mineralocorticoid receptors, increased serum aldosterone, and increased medullary endothelin-1 compared with control mice. Adrenal gland gene expression analysis revealed that circadian clock and aldosterone synthesis genes have altered expression in KS-Per1 KO mice compared with control mice. These results emphasize the importance of the circadian clock not only in maintaining rhythms of physiological functions but also for adaptability in response to environmental cues, such as HS + DOCP, to maintain overall homeostasis. Given the prevalence of salt-sensitive hypertension in the general population, these findings have important implications for our understanding of how circadian clock proteins regulate homeostasis.NEW & NOTEWORTHY For the first time, we show that knockout of the circadian clock transcription factor PERIOD 1 using kidney-specific cadherin Cre results in increased renal Na+ reabsorption, increased aldosterone levels, and changes in gene expression in both the kidney and adrenal gland. Diurnal changes in renal Na+ excretion were not observed, demonstrating that the clock protein PER1 in the kidney is important for maintaining homeostasis and that this effect may be independent of time of day.
Collapse
Affiliation(s)
- Lauren G Douma
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| | - Hannah M Costello
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - G Ryan Crislip
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - Kit-Yan Cheng
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - I Jeanette Lynch
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
- North Florida/South Georgia Malcolm Randall Veterans Affairs Medical Center, Gainesville, Florida
| | - Alexandria Juffre
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| | - Dominique Barral
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - Sarah Masten
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - Emilio Roig
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - Kevin Beguiristain
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - Wendy Li
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - Phillip Bratanatawira
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - Charles S Wingo
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
- North Florida/South Georgia Malcolm Randall Veterans Affairs Medical Center, Gainesville, Florida
| | - Michelle L Gumz
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida
| |
Collapse
|
27
|
Crislip GR, Wohlgemuth SE, Wolff CA, Gutierrez-Monreal MA, Douglas CM, Ebrahimi E, Cheng KY, Masten SH, Barral D, Bryant AJ, Esser KA, Gumz ML. Apparent Absence of BMAL1-Dependent Skeletal Muscle-Kidney Cross Talk in Mice. Biomolecules 2022; 12:261. [PMID: 35204763 PMCID: PMC8961518 DOI: 10.3390/biom12020261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 12/05/2022] Open
Abstract
BMAL1 is a core mammalian circadian clock transcription factor responsible for the regulation of the expression of thousands of genes. Previously, male skeletal-muscle-specific BMAL1-inducible-knockout (iMS-BMAL1 KO) mice have been described as a model that exhibits an aging-like phenotype with an altered gait, reduced mobility, muscle weakness, and impaired glucose uptake. Given this aging phenotype and that chronic kidney disease is a disease of aging, the goal of this study was to determine if iMS-BMAL1 KO mice exhibit a renal phenotype. Male iMS-BMAL1 KO and control mice were challenged with a low potassium diet for five days. Both genotypes responded appropriately by conserving urinary potassium. The iMS-BMAL1 KO mice excreted less potassium during the rest phase during the normal diet but there was no genotype difference during the active phase. Next, iMS-BMAL1 KO and control mice were used to compare markers of kidney injury and assess renal function before and after a phase advance protocol. Following phase advance, no differences were detected in renal mitochondrial function in iMS-BMAL1 KO mice compared to control mice. Additionally, the glomerular filtration rate and renal morphology were similar between groups in response to phase advance. Disruption of the clock in skeletal muscle tissue activates inflammatory pathways within the kidney of male mice, and there is evidence of this affecting other organs, such as the lungs. However, there were no signs of renal injury or altered function following clock disruption of skeletal muscle under the conditions tested.
Collapse
Affiliation(s)
- Gene Ryan Crislip
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.R.C.); (C.A.W.); (M.A.G.-M.); (C.M.D.); (K.-Y.C.)
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Stephanie E. Wohlgemuth
- Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Christopher A. Wolff
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.R.C.); (C.A.W.); (M.A.G.-M.); (C.M.D.); (K.-Y.C.)
| | - Miguel A. Gutierrez-Monreal
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.R.C.); (C.A.W.); (M.A.G.-M.); (C.M.D.); (K.-Y.C.)
| | - Collin M. Douglas
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.R.C.); (C.A.W.); (M.A.G.-M.); (C.M.D.); (K.-Y.C.)
| | - Elnaz Ebrahimi
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (E.E.); (A.J.B.)
| | - Kit-Yan Cheng
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.R.C.); (C.A.W.); (M.A.G.-M.); (C.M.D.); (K.-Y.C.)
| | - Sarah H. Masten
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (S.H.M.); (D.B.)
| | - Dominique Barral
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (S.H.M.); (D.B.)
| | - Andrew J. Bryant
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (E.E.); (A.J.B.)
| | - Karyn A. Esser
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
- Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Michelle L. Gumz
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.R.C.); (C.A.W.); (M.A.G.-M.); (C.M.D.); (K.-Y.C.)
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (S.H.M.); (D.B.)
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
28
|
Abstract
The reality of life in modern times is that our internal circadian rhythms are often out of alignment with the light/dark cycle of the external environment. This is known as circadian disruption, and a wealth of epidemiological evidence shows that it is associated with an increased risk for cardiovascular disease. Cardiovascular disease remains the top cause of death in the United States, and kidney disease in particular is a tremendous public health burden that contributes to cardiovascular deaths. There is an urgent need for new treatments for kidney disease; circadian rhythm-based therapies may be of potential benefit. The goal of this Review is to summarize the existing data that demonstrate a connection between circadian rhythm disruption and renal impairment in humans. Specifically, we will focus on chronic kidney disease, lupus nephritis, hypertension, and aging. Importantly, the relationship between circadian dysfunction and pathophysiology is thought to be bidirectional. Here we discuss the gaps in our knowledge of the mechanisms underlying circadian dysfunction in diseases of the kidney. Finally, we provide a brief overview of potential circadian rhythm-based interventions that could provide benefit in renal disease.
Collapse
Affiliation(s)
- Rajesh Mohandas
- Department of Medicine, Division of Nephrology.,Center for Integrative Cardiovascular and Metabolic Diseases
| | | | - Yogesh Scindia
- Department of Medicine, Division of Nephrology.,Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine.,Department of Pathology, and
| | - Michelle L Gumz
- Department of Medicine, Division of Nephrology.,Center for Integrative Cardiovascular and Metabolic Diseases.,Department of Biochemistry and Molecular Biology.,Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
29
|
Crislip GR, Johnston JG, Douma LG, Costello HM, Juffre A, Boyd K, Li W, Maugans CC, Gutierrez-Monreal M, Esser KA, Bryant AJ, Liu AC, Gumz ML. Circadian Rhythm Effects on the Molecular Regulation of Physiological Systems. Compr Physiol 2021; 12:2769-2798. [PMID: 34964116 PMCID: PMC11514412 DOI: 10.1002/cphy.c210011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nearly every system within the body contains an intrinsic cellular circadian clock. The circadian clock contributes to the regulation of a variety of homeostatic processes in mammals through the regulation of gene expression. Circadian disruption of physiological systems is associated with pathophysiological disorders. Here, we review the current understanding of the molecular mechanisms contributing to the known circadian rhythms in physiological function. This article focuses on what is known in humans, along with discoveries made with cell and rodent models. In particular, the impact of circadian clock components in metabolic, cardiovascular, endocrine, musculoskeletal, immune, and central nervous systems are discussed. © 2021 American Physiological Society. Compr Physiol 11:1-30, 2021.
Collapse
Affiliation(s)
- G. Ryan Crislip
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | - Jermaine G. Johnston
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | | | - Hannah M. Costello
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | | | - Kyla Boyd
- Department of Biochemistry and Molecular Biology
| | - Wendy Li
- Department of Biochemistry and Molecular Biology
| | | | | | - Karyn A. Esser
- Department of Physiology and Functional Genomics
- Myology Institute
| | | | - Andrew C. Liu
- Department of Physiology and Functional Genomics
- Myology Institute
| | - Michelle L. Gumz
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
- Department of Biochemistry and Molecular Biology
- Department of Physiology and Functional Genomics
- Center for Integrative Cardiovascular and Metabolic Disease
| |
Collapse
|
30
|
Multi-Modal Regulation of Circadian Physiology by Interactive Features of Biological Clocks. BIOLOGY 2021; 11:biology11010021. [PMID: 35053019 PMCID: PMC8772734 DOI: 10.3390/biology11010021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022]
Abstract
The circadian clock is a fundamental biological timing mechanism that generates nearly 24 h rhythms of physiology and behaviors, including sleep/wake cycles, hormone secretion, and metabolism. Evolutionarily, the endogenous clock is thought to confer living organisms, including humans, with survival benefits by adapting internal rhythms to the day and night cycles of the local environment. Mirroring the evolutionary fitness bestowed by the circadian clock, daily mismatches between the internal body clock and environmental cycles, such as irregular work (e.g., night shift work) and life schedules (e.g., jet lag, mistimed eating), have been recognized to increase the risk of cardiac, metabolic, and neurological diseases. Moreover, increasing numbers of studies with cellular and animal models have detected the presence of functional circadian oscillators at multiple levels, ranging from individual neurons and fibroblasts to brain and peripheral organs. These oscillators are tightly coupled to timely modulate cellular and bodily responses to physiological and metabolic cues. In this review, we will discuss the roles of central and peripheral clocks in physiology and diseases, highlighting the dynamic regulatory interactions between circadian timing systems and multiple metabolic factors.
Collapse
|
31
|
Soliman RH, Pollock DM. Circadian Control of Sodium and Blood Pressure Regulation. Am J Hypertens 2021; 34:1130-1142. [PMID: 34166494 PMCID: PMC9526808 DOI: 10.1093/ajh/hpab100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/12/2021] [Accepted: 06/23/2021] [Indexed: 01/26/2023] Open
Abstract
The attention for the control of dietary risk factors involved in the development of hypertension, includes a large effort on dietary salt restrictions. Ample studies show the beneficial role of limiting dietary sodium as a lifestyle modification in the prevention and management of essential hypertension. Not until the past decade or so have studies more specifically investigated diurnal variations in renal electrolyte excretion, which led us to the hypothesis that timing of salt intake may impact cardiovascular health and blood pressure regulation. Cell autonomous molecular clocks as the name implies, function independently to maintain optimum functional rhythmicity in the face of environmental stressors such that cellular homeostasis is maintained at all times. Our understanding of mechanisms influencing diurnal patterns of sodium excretion and blood pressure has expanded with the discovery of the circadian clock genes. In this review, we discuss what is known about circadian regulation of renal sodium handling machinery and its influence on blood pressure regulation, with timing of sodium intake as a potential modulator of the kidney clock.
Collapse
Affiliation(s)
- Reham H Soliman
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David M Pollock
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
32
|
Abstract
Accumulating evidence suggests that the molecular circadian clock is crucial in blood pressure (BP) control. Circadian rhythms are controlled by the central clock, which resides in the suprachiasmatic nucleus of the hypothalamus and peripheral clocks throughout the body. Both light and food cues entrain these clocks but whether these cues are important for the circadian rhythm of BP is a growing area of interest. The peripheral clocks in the smooth muscle, perivascular adipose tissue, liver, adrenal gland, and kidney have been recently implicated in the regulation of BP rhythm. Dysregulation of the circadian rhythm of BP is associated with adverse cardiorenal outcomes and increased risk of cardiovascular mortality. In this review, we summarize the most recent advances in peripheral clocks as BP regulators, highlight the adverse outcomes of disrupted circadian BP rhythm in hypertension, and provide insight into potential future work in areas exploring the circadian clock in BP control and chronotherapy. A better understanding of peripheral clock function in regulating the circadian rhythm of BP will help pave the way for targeted therapeutics in the treatment of circadian BP dysregulation and hypertension.
Collapse
Affiliation(s)
- Hannah M. Costello
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL 32610
| | - Michelle L. Gumz
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FL 32610
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL 32610
| |
Collapse
|
33
|
Zhang J, Sun R, Jiang T, Yang G, Chen L. Circadian Blood Pressure Rhythm in Cardiovascular and Renal Health and Disease. Biomolecules 2021; 11:biom11060868. [PMID: 34207942 PMCID: PMC8230716 DOI: 10.3390/biom11060868] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 12/21/2022] Open
Abstract
Blood pressure (BP) follows a circadian rhythm, it increases on waking in the morning and decreases during sleeping at night. Disruption of the circadian BP rhythm has been reported to be associated with worsened cardiovascular and renal outcomes, however the underlying molecular mechanisms are still not clear. In this review, we briefly summarized the current understanding of the circadian BP regulation and provided therapeutic overview of the relationship between circadian BP rhythm and cardiovascular and renal health and disease.
Collapse
Affiliation(s)
- Jiayang Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; (J.Z.); (R.S.); (T.J.)
| | - Ruoyu Sun
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; (J.Z.); (R.S.); (T.J.)
| | - Tingting Jiang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; (J.Z.); (R.S.); (T.J.)
| | - Guangrui Yang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China;
| | - Lihong Chen
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; (J.Z.); (R.S.); (T.J.)
- Correspondence: ; Tel.: +86-411-86118984
| |
Collapse
|
34
|
Cortellari M, Barbato M, Talenti A, Bionda A, Carta A, Ciampolini R, Ciani E, Crisà A, Frattini S, Lasagna E, Marletta D, Mastrangelo S, Negro A, Randi E, Sarti FM, Sartore S, Soglia D, Liotta L, Stella A, Ajmone-Marsan P, Pilla F, Colli L, Crepaldi P. The climatic and genetic heritage of Italian goat breeds with genomic SNP data. Sci Rep 2021; 11:10986. [PMID: 34040003 PMCID: PMC8154919 DOI: 10.1038/s41598-021-89900-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/29/2021] [Indexed: 02/04/2023] Open
Abstract
Local adaptation of animals to the environment can abruptly become a burden when faced with rapid climatic changes such as those foreseen for the Italian peninsula over the next 70 years. Our study investigates the genetic structure of the Italian goat populations and links it with the environment and how genetics might evolve over the next 50 years. We used one of the largest national datasets including > 1000 goats from 33 populations across the Italian peninsula collected by the Italian Goat Consortium and genotyped with over 50 k markers. Our results showed that Italian goats can be discriminated in three groups reflective of the Italian geography and its geo-political situation preceding the country unification around two centuries ago. We leveraged the remarkable genetic and geographical diversity of the Italian goat populations and performed landscape genomics analysis to disentangle the relationship between genotype and environment, finding 64 SNPs intercepting genomic regions linked to growth, circadian rhythm, fertility, and inflammatory response. Lastly, we calculated the hypothetical future genotypic frequencies of the most relevant SNPs identified through landscape genomics to evaluate their long-term effect on the genetic structure of the Italian goat populations. Our results provide an insight into the past and the future of the Italian local goat populations, helping the institutions in defining new conservation strategy plans that could preserve their diversity and their link to local realities challenged by climate change.
Collapse
Affiliation(s)
- Matteo Cortellari
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Mario Barbato
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti and BioDNA Centro di ricerca sulla Biodiversità e sul DNA Antico, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Andrea Talenti
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy.
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| | - Arianna Bionda
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Antonello Carta
- Unità di Ricerca di Genetica e Biotecnologie, Agris Sardegna, 07100, Sassari, Italy
| | - Roberta Ciampolini
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge 2, 56124, Pisa, Italy
| | - Elena Ciani
- Dipartimento di Bioscienze Biotecnologie e Biofarmaceutica, Università degli Studi di Bari, Via Orabona 4, 70126, Bari, Italy
| | - Alessandra Crisà
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA) - Research Centre for Animal Production and Acquaculture, 00015, Monterotondo, Rome, Italy
| | - Stefano Frattini
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Emiliano Lasagna
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Donata Marletta
- Department of Agriculture, Food and Environment, University of Catania, Via Valdisavoia 5, 95123, Catania, Italy
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128, Palermo, Italy
| | - Alessio Negro
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - Ettore Randi
- Department of Chemistry and Bioscience, Faculty of Engineering and Science, University of Aalborg, Aalborg, Denmark
| | - Francesca M Sarti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Stefano Sartore
- Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, largo Braccini 2, 10095, Grugliasco, Italy
| | - Dominga Soglia
- Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, largo Braccini 2, 10095, Grugliasco, Italy
| | - Luigi Liotta
- Dipartimento di Scienze Veterinarie, University of Messina, Messina, Italy
| | - Alessandra Stella
- Institute of Biology and Biotechnology in Agriculture, National Research Council (CNR), Milan, Italy
| | - Paolo Ajmone-Marsan
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti and BioDNA Centro di ricerca sulla Biodiversità e sul DNA Antico, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Fabio Pilla
- Dipartimento Agricoltura, Ambiente e Alimenti Universitá degli Studi del Molise, 86100, Campobasso, Italy
| | - Licia Colli
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti and BioDNA Centro di ricerca sulla Biodiversità e sul DNA Antico, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Paola Crepaldi
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| |
Collapse
|
35
|
Zhang J, Liu C, Liang Q, Zheng F, Guan Y, Yang G, Chen L. Postnatal deletion of Bmal1 in mice protects against obstructive renal fibrosis via suppressing Gli2 transcription. FASEB J 2021; 35:e21530. [PMID: 33813752 DOI: 10.1096/fj.202002452r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 12/17/2022]
Abstract
Circadian clock is involved in regulating most renal physiological functions, including water and electrolyte balance and blood pressure homeostasis, however, the role of circadian clock in renal pathophysiology remains largely unknown. Here we aimed to investigate the role of Bmal1, a core clock component, in the development of renal fibrosis, the hallmark of pathological features in many renal diseases. The inducible Bmal1 knockout mice (iKO) whose gene deletion occurred in adulthood were used in the study. Analysis of the urinary water, sodium and potassium excretion showed that the iKO mice exhibit abolished diurnal variations. In the model of renal fibrosis induced by unilateral ureteral obstruction, the iKO mice displayed significantly decreased tubulointerstitial fibrosis reflected by attenuated collagen deposition and mitigated expression of fibrotic markers α-SMA and fibronectin. The hedgehog pathway transcriptional effectors Gli1 and Gli2, which have been reported to be involved in the pathogenesis of renal fibrosis, were significantly decreased in the iKO mice. Mechanistically, ChIP assay and luciferase reporter assay revealed that BMAL1 bound to the promoter of and activate the transcription of Gli2, but not Gli1, suggesting that the involvement of Bmal1 in renal fibrosis was possibly mediated via Gli2-dependent mechanisms. Furthermore, treatment with TGF-β increased Bmal1 in cultured murine proximal tubular cells. Knockdown of Bmal1 abolished, while overexpression of Bmal1 increased, Gli2 and the expression of fibrosis-related genes. Collectively, these results revealed a prominent role of the core clock gene Bmal1 in tubulointerstitial fibrosis. Moreover, we identified Gli2 as a novel target of Bmal1, which may mediate the adverse effect of Bmal1 in obstructive nephropathy.
Collapse
Affiliation(s)
- Jiayang Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Chengcheng Liu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Qing Liang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Feng Zheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Guangrui Yang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lihong Chen
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
36
|
Brooks HL. Kidney physiology: our future is now. Am J Physiol Renal Physiol 2021; 320:F1021-F1024. [PMID: 33870732 DOI: 10.1152/ajprenal.00098.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Heddwen L Brooks
- Department of Physiology, Sarver Heart Center, University of Arizona, Tucson, Arizona
| |
Collapse
|
37
|
Coelho NR, Matos C, Pimpão AB, Correia MJ, Sequeira CO, Morello J, Pereira SA, Monteiro EC. AHR canonical pathway: in vivo findings to support novel antihypertensive strategies. Pharmacol Res 2021; 165:105407. [PMID: 33418029 DOI: 10.1016/j.phrs.2020.105407] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/23/2022]
Abstract
Essential hypertension (HTN) is a disease where genetic and environmental factors interact to produce a high prevalent set of almost indistinguishable phenotypes. The weak definition of what is under the umbrella of HTN is a consequence of the lack of knowledge on the players involved in environment-gene interaction and their impact on blood pressure (BP) and mechanisms. The disclosure of these mechanisms that sense and (mal)adapt to toxic-environmental stimuli might at least determine some phenotypes of essential HTN and will have important therapeutic implications. In the present manuscript, we looked closer to the environmental sensor aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor involved in cardiovascular physiology, but better known by its involvement in biotransformation of xenobiotics through its canonical pathway. This review aims to disclose the contribution of the AHR-canonical pathway to HTN. For better mirror the complexity of the mechanisms involved in BP regulation, we privileged evidence from in vivo studies. Here we ascertained the level of available evidence and a comprehensive characterization of the AHR-related phenotype of HTN. We reviewed clinical and rodent studies on AHR-HTN genetic association and on AHR ligands and their impact on BP. We concluded that AHR is a druggable mechanistic linker of environmental exposure to HTN. We conclude that is worth to investigate the canonical pathway of AHR and the expression/polymorphisms of its related genes and/or other biomarkers (e.g. tryptophan-related ligands), in order to identify patients that may benefit from an AHR-centered antihypertensive treatment.
Collapse
Affiliation(s)
- Nuno R Coelho
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Clara Matos
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - António B Pimpão
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - M João Correia
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Catarina O Sequeira
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Judit Morello
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Sofia A Pereira
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal.
| | - Emília C Monteiro
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| |
Collapse
|
38
|
Ivy JR, Bailey MA. Nondipping Blood Pressure: Predictive or Reactive Failure of Renal Sodium Handling? Physiology (Bethesda) 2021; 36:21-34. [PMID: 33325814 DOI: 10.1152/physiol.00024.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Blood pressure follows a daily rhythm, dipping during nocturnal sleep in humans. Attenuation of this dip (nondipping) is associated with increased risk of cardiovascular disease. Renal control of sodium homeostasis is essential for long-term blood pressure control. Sodium reabsorption and excretion have rhythms that rely on predictive/circadian as well as reactive adaptations. We explore how these rhythms might contribute to blood pressure rhythm in health and disease.
Collapse
Affiliation(s)
- Jessica R Ivy
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew A Bailey
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
39
|
Zhang D, Colson JC, Jin C, Becker BK, Rhoads MK, Pati P, Neder TH, King MA, Valcin JA, Tao B, Kasztan M, Paul JR, Bailey SM, Pollock JS, Gamble KL, Pollock DM. Timing of Food Intake Drives the Circadian Rhythm of Blood Pressure. FUNCTION 2020; 2:zqaa034. [PMID: 33415319 PMCID: PMC7772288 DOI: 10.1093/function/zqaa034] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 01/10/2023] Open
Abstract
Timing of food intake has become a critical factor in determining overall cardiometabolic health. We hypothesized that timing of food intake entrains circadian rhythms of blood pressure (BP) and renal excretion in mice. Male C57BL/6J mice were fed ad libitum or reverse feeding (RF) where food was available at all times of day or only available during the 12-h lights-on period, respectively. Mice eating ad libitum had a significantly higher mean arterial pressure (MAP) during lights-off compared to lights-on (113 ± 2 mmHg vs 100 ± 2 mmHg, respectively; P < 0.0001); however, RF for 6 days inverted the diurnal rhythm of MAP (99 ± 3 vs 110 ± 3 mmHg, respectively; P < 0.0001). In contrast to MAP, diurnal rhythms of urine volume and sodium excretion remained intact after RF. Male Bmal1 knockout mice (Bmal1KO) underwent the same feeding protocol. As previously reported, Bmal1KO mice did not exhibit a diurnal MAP rhythm during ad libitum feeding (95 ± 1 mmHg vs 92 ± 3 mmHg, lights-off vs lights-on; P > 0.05); however, RF induced a diurnal rhythm of MAP (79 ± 3 mmHg vs 95 ± 2 mmHg, lights-off vs lights-on phase; P < 0.01). Transgenic PERIOD2::LUCIFERASE knock-in mice were used to assess the rhythm of the clock protein PERIOD2 in ex vivo tissue cultures. The timing of the PER2::LUC rhythm in the renal cortex and suprachiasmatic nucleus was not affected by RF; however, RF induced significant phase shifts in the liver, renal inner medulla, and adrenal gland. In conclusion, the timing of food intake controls BP rhythms in mice independent of Bmal1, urine volume, or sodium excretion.
Collapse
Affiliation(s)
| | | | - Chunhua Jin
- Division of Nephrology, Department of Medicine
| | | | | | | | | | | | - Jennifer A Valcin
- Division of Molecular and Cellular Pathology, Department of Pathology
| | - Binli Tao
- Division of Nephrology, Department of Medicine
| | | | - Jodi R Paul
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shannon M Bailey
- Division of Molecular and Cellular Pathology, Department of Pathology
| | | | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
40
|
Kanki M, Young MJ. Corticosteroids and circadian rhythms in the cardiovascular system. Curr Opin Pharmacol 2020; 57:21-27. [PMID: 33207294 DOI: 10.1016/j.coph.2020.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022]
Abstract
The mineralocorticoid receptor (MR) plays a central role in cardiac physiological function and disease and is thus an attractive therapeutic target for patients with heart failure. However, the incidence of significant side effects from mineralocorticoid receptor antagonist (MRA) treatment has led to investigation of new mechanisms that may enhance MR targeted therapies. Recent studies have identified the circadian clock as a novel, reciprocal interacting partner of the MR in the heart. While the closely related glucocorticoid receptor (GR) and its ligand, cortisol (corticosterone in rodents), are established regulators of the circadian clock, new data suggest that the MR can also regulate circadian clock gene expression and timing. This review will discuss the role of the MR and its ligands in the regulation of the circadian clock in the heart and the implications of dysregulation of these systems for cardiac disease progression, and for MR activation.
Collapse
Affiliation(s)
- Monica Kanki
- Cardiovascular Endocrinology Laboratory, Baker Heart & Diabetes Institute, Melbourne, VIC, Australia; Cardiovascular Endocrinology Laboratory, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular & Translational Science, Monash University, Clayton, VIC, Australia
| | - Morag J Young
- Cardiovascular Endocrinology Laboratory, Baker Heart & Diabetes Institute, Melbourne, VIC, Australia; Cardiovascular Endocrinology Laboratory, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular & Translational Science, Monash University, Clayton, VIC, Australia; Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|