1
|
Knany Y, Kinaneh S, Khoury EE, Zohar Y, Abassi Z, Azzam ZS. The Effects of the Natriuretic Peptide System on Alveolar Epithelium in Heart Failure. Int J Mol Sci 2025; 26:3374. [PMID: 40244257 PMCID: PMC11989889 DOI: 10.3390/ijms26073374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/19/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Alveolar active sodium transport is essential for clearing edema from airspaces, in a process known as alveolar fluid clearance (AFC). Although it has been reported that atrial natriuretic peptide (ANP) attenuates AFC, little is known about the underlying molecular effects of natriuretic peptides (NPs). Therefore, we examined the contribution of NPs to AFC and their effects as mediators of active sodium transport. By using the isolated liquid-filled lungs model, we investigated the effects of NPs on AFC. The expression of NPs, Na+, K+-ATPase, and Na+ channels was assessed in alveolar epithelial cells. Congestive heart failure (CHF) was induced by using the aortocaval fistula model. ANP and brain NP (BNP) significantly reduced AFC rate from 0.49 ± 0.02 mL/h in sham rats to 0.26 ± 0.013 and 0.19 ± 0.005 in ANP and BNP-treated groups, respectively. These effects were mediated by downregulating the active Na+ transport components in the alveolar epithelium while enhancing the ubiquitination and degradation of αENaC in the lungs, as reflected by increased levels of Nedd4-2. In addition, AFC was reduced in compensated CHF rats treated with ANP, while in decompensated CHF, ANP partially restored AFC. In conclusion, NPs regulate AFC in health and CHF. This research could help optimize pharmacological treatments for severe CHF.
Collapse
Affiliation(s)
- Yara Knany
- Department of Physiology and Biophysics, The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa 3109601, Israel; (Y.K.); (S.K.); (E.E.K.); (Y.Z.); (Z.A.)
| | - Safa Kinaneh
- Department of Physiology and Biophysics, The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa 3109601, Israel; (Y.K.); (S.K.); (E.E.K.); (Y.Z.); (Z.A.)
| | - Emad E. Khoury
- Department of Physiology and Biophysics, The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa 3109601, Israel; (Y.K.); (S.K.); (E.E.K.); (Y.Z.); (Z.A.)
- Department of Otolaryngology-Head and Neck Surgery, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Yaniv Zohar
- Department of Physiology and Biophysics, The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa 3109601, Israel; (Y.K.); (S.K.); (E.E.K.); (Y.Z.); (Z.A.)
- Institute of Pathology, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Zaid Abassi
- Department of Physiology and Biophysics, The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa 3109601, Israel; (Y.K.); (S.K.); (E.E.K.); (Y.Z.); (Z.A.)
| | - Zaher S. Azzam
- Department of Physiology and Biophysics, The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa 3109601, Israel; (Y.K.); (S.K.); (E.E.K.); (Y.Z.); (Z.A.)
- Department of Medicine, Management, Rambam Health Care Campus, Haifa 3109601, Israel
| |
Collapse
|
2
|
Shi L, Wang YF, Zhang GF, Li Y, Yao ML, Li JC, Qiu CF, Yao S, Ouyang B, Wang LY. Cerebral salt wasting syndrome as a probable cause of postoperative polyuria in patients with supratentorial Non-midline tumors: A prospective observational study with targeted and quantitative metabolomic approach. Neurosurg Rev 2025; 48:274. [PMID: 40016562 PMCID: PMC11868211 DOI: 10.1007/s10143-025-03425-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 03/01/2025]
Abstract
Polyuria, or excessive fluid loss through the kidneys, is a common issue in neurocritical patients, often resulting from conditions such as fluid volume overload, osmotic diuretics, central diabetes insipidus (CDI), or cerebral salt wasting syndrome (CSWS). Notably, the specific cause of postoperative polyuria within 24 h in patients with tumors located in the supratentorial non-midline region remains poorly understood. To address this gap, we conducted a prospective observational study with 30 patients and found that eight (26.7%) experienced postoperative polyuria. Binary logistic regression analysis of clinical data ruled out fluid volume and osmotic diuretics as the underlying causes of postoperative polyuria, and suggested a very subtle association between tumor size and polyuria (OR = 1.030; p = 0.041). A significant postoperative decrease in serum sodium levels in the polyuria group (p = 0.005) pointed towards CSWS as potential mechanism. Differentiating between CDI and CSWS, both involving neuroendocrine hormone dysregulation, is challenging due to the lack of efficient clinical tests. To overcome this, we developed a novel liquid chromatography-tandem mass spectrometry (LC-MS)-based targeted and quantitative method to measure seven neuroendocrine hormones, including antidiuretic hormone (ADH) related to CDI and six natriuretic peptides associated with CSWS. Elevated levels of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), C-type natriuretic peptide (CNP), and ADH were observed in the polyuria group. Univariate analysis identified ANP, BNP, and ADH as significantly associated with polyuria at a threshold of p < 0.1. Later, multivariate logistic regression further revealed elevated BNP as an independent risk factor for polyuria (OR = 9111.901; p = 0.022). These findings suggest that CSWS may be the primary cause of postoperative polyuria in patients with supratentorial non-midline tumors, as evidenced by the concomitant decrease in serum sodium and increase in natriuretic peptides, particularly BNP.
Collapse
Affiliation(s)
- Lei Shi
- Division of Neurosurgical Intensive Care Unit, Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yu-Fang Wang
- Division of Neurosurgical Intensive Care Unit, Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Guo-Feng Zhang
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yan Li
- Division of Neurosurgical Intensive Care Unit, Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ming-Li Yao
- Division of Neurosurgical Intensive Care Unit, Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jing-Chao Li
- Division of Neurosurgical Intensive Care Unit, Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Chun-Fang Qiu
- Division of Neurosurgical Intensive Care Unit, Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shun Yao
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Bin Ouyang
- Division of Neurosurgical Intensive Care Unit, Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Ling-Yan Wang
- Division of Neurosurgical Intensive Care Unit, Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
3
|
Bakillah A, Al Subaiee M, Soliman AF, Obeid KK, Bashir SF, Al Hussaini A, Al Arab M, Al Otaibi A, Mubarak SAS, Al Qarni AA. Plasma Atrial Natriuretic Peptide Predicts Oxidized Low-Density Lipoprotein Levels in Type 2 Diabetes Mellitus Patients Independent of Circulating Adipokine and Cytokine. Int J Mol Sci 2025; 26:1859. [PMID: 40076485 PMCID: PMC11899485 DOI: 10.3390/ijms26051859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/09/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Atrial natriuretic peptide (ANP) and oxidized low-density lipoprotein (ox-LDL) play essential roles in the development and progression of vascular complications associated with type 2 diabetes mellitus (T2DM), and both are independently linked to cardiovascular diseases (CVD). However, the relationship between ANP and ox-LDL in patients with T2DM remains unclear as previous studies have primarily focused on circulating levels in various diseases. This study investigated the relationship between ANP and ox-LDL levels in obese individuals with T2DM. The cohort included 57 patients with T2DM (mean age 61.14 ± 9.99 years; HbA1c 8.66 ± 1.60%; BMI 35.15 ± 6.65 kg/m2). Notably, 95% of the patients had hypertension, 82% had dyslipidemia, 59% had an estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m2, 14% had coronary artery disease (CAD), and 5% had a history of stroke. Plasma concentrations of ANP and ox-LDL were measured using ELISA. Adipokines and cytokines levels were measured using the multiplex® MAP Human Adipokine Magnetic Beads Spearman's correlation analysis which revealed a negative correlation between ANP and ox-LDL (r = -0.446, p = 0.001) as well as with the ox-LDL/apoB ratio (r = -0.423, p = 0.001) and ox-LDL/LDLc ratio (r = -0.307, p = 0.038). Multivariable regression analysis indicated that ANP was independently associated with ox-LDL (β = -115.736, p = 0.005). Stepwise linear regression further identified TNFα, leptin, and adiponectin as the strongest predictors influencing the relationship between ANP and ox-LDL levels (β = -64.664, p = 0.0311, and r2 = 0.546 for the model). However, these factors did not significantly mediate this association. This study emphasizes the need for further exploration of the complex interaction between ANP and ox-LDL in larger patient populations. This could provide valuable insights into potential therapeutic approaches for managing vascular complications in obese individuals with T2DM.
Collapse
Affiliation(s)
- Ahmed Bakillah
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Mubarraz 36428, Saudi Arabia; (S.F.B.); (A.A.H.); (M.A.A.); (A.A.O.); (S.A.S.M.); (A.A.A.Q.)
- Division of Biomedical Research Core Facility, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Mubarraz 36428, Saudi Arabia
- Ministry of National Guard-Health Affairs (MNGHA), King Abdulaziz Hospital, Al Mubarraz 36428, Saudi Arabia; (M.A.S.); (A.F.S.); (K.K.O.)
| | - Maram Al Subaiee
- Ministry of National Guard-Health Affairs (MNGHA), King Abdulaziz Hospital, Al Mubarraz 36428, Saudi Arabia; (M.A.S.); (A.F.S.); (K.K.O.)
| | - Ayman Farouk Soliman
- Ministry of National Guard-Health Affairs (MNGHA), King Abdulaziz Hospital, Al Mubarraz 36428, Saudi Arabia; (M.A.S.); (A.F.S.); (K.K.O.)
| | - Khamis Khamees Obeid
- Ministry of National Guard-Health Affairs (MNGHA), King Abdulaziz Hospital, Al Mubarraz 36428, Saudi Arabia; (M.A.S.); (A.F.S.); (K.K.O.)
| | - Shahinaz Faisal Bashir
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Mubarraz 36428, Saudi Arabia; (S.F.B.); (A.A.H.); (M.A.A.); (A.A.O.); (S.A.S.M.); (A.A.A.Q.)
- Division of Biomedical Research Core Facility, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Mubarraz 36428, Saudi Arabia
- Ministry of National Guard-Health Affairs (MNGHA), King Abdulaziz Hospital, Al Mubarraz 36428, Saudi Arabia; (M.A.S.); (A.F.S.); (K.K.O.)
| | - Arwa Al Hussaini
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Mubarraz 36428, Saudi Arabia; (S.F.B.); (A.A.H.); (M.A.A.); (A.A.O.); (S.A.S.M.); (A.A.A.Q.)
- Division of Biomedical Research Core Facility, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Mubarraz 36428, Saudi Arabia
- Ministry of National Guard-Health Affairs (MNGHA), King Abdulaziz Hospital, Al Mubarraz 36428, Saudi Arabia; (M.A.S.); (A.F.S.); (K.K.O.)
| | - Mohammad Al Arab
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Mubarraz 36428, Saudi Arabia; (S.F.B.); (A.A.H.); (M.A.A.); (A.A.O.); (S.A.S.M.); (A.A.A.Q.)
- Division of Biomedical Research Core Facility, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Mubarraz 36428, Saudi Arabia
- Ministry of National Guard-Health Affairs (MNGHA), King Abdulaziz Hospital, Al Mubarraz 36428, Saudi Arabia; (M.A.S.); (A.F.S.); (K.K.O.)
| | - Abeer Al Otaibi
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Mubarraz 36428, Saudi Arabia; (S.F.B.); (A.A.H.); (M.A.A.); (A.A.O.); (S.A.S.M.); (A.A.A.Q.)
- Division of Biomedical Research Core Facility, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Mubarraz 36428, Saudi Arabia
- Ministry of National Guard-Health Affairs (MNGHA), King Abdulaziz Hospital, Al Mubarraz 36428, Saudi Arabia; (M.A.S.); (A.F.S.); (K.K.O.)
| | - Sindiyan Al Shaikh Mubarak
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Mubarraz 36428, Saudi Arabia; (S.F.B.); (A.A.H.); (M.A.A.); (A.A.O.); (S.A.S.M.); (A.A.A.Q.)
- Division of Biomedical Research Core Facility, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Mubarraz 36428, Saudi Arabia
- Ministry of National Guard-Health Affairs (MNGHA), King Abdulaziz Hospital, Al Mubarraz 36428, Saudi Arabia; (M.A.S.); (A.F.S.); (K.K.O.)
| | - Ali Ahmed Al Qarni
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Mubarraz 36428, Saudi Arabia; (S.F.B.); (A.A.H.); (M.A.A.); (A.A.O.); (S.A.S.M.); (A.A.A.Q.)
- Division of Biomedical Research Core Facility, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Mubarraz 36428, Saudi Arabia
- Ministry of National Guard-Health Affairs (MNGHA), King Abdulaziz Hospital, Al Mubarraz 36428, Saudi Arabia; (M.A.S.); (A.F.S.); (K.K.O.)
| |
Collapse
|
4
|
Nakayamada T, Taguchi K, Natori C, Nakamura N, Fujii M, Yamashita Y, Ito S, Fukami K. Takayasu arteritis-associated refractory hypertension induces nephrotic syndrome through glomerular microangiopathy. CEN Case Rep 2024:10.1007/s13730-024-00952-5. [PMID: 39648265 DOI: 10.1007/s13730-024-00952-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/12/2024] [Indexed: 12/10/2024] Open
Abstract
Takayasu arteritis (TAK) is a systemic inflammatory condition characterized by vasculitis in mainly the aorta and their branches; however, few reports have demonstrated glomerulonephritis and subsequent nephrotic syndrome in patients with TAK. We encountered a 69-year-old woman with TAK who developed nephrotic syndrome owing to uncontrolled hypertension. Kidney biopsy demonstrated endotheliosis, aberrant proliferation of vascular smooth muscle cells, and concentric intimal hyperplasia without any clues of vasculitis. Treatment with sacubitril/valsartan reduced proteinuria and increased serum albumin without affecting renal function, which continued to suppress blood pressure and prevent recurrence of nephrotic syndrome over 2 years.
Collapse
Affiliation(s)
- Tomoya Nakayamada
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, 830-0011, Japan
| | - Kensei Taguchi
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, 830-0011, Japan.
- Research Institute of Medical Mass Spectrometry, Kurume University School of Medicine, Kurume, 830-0011, Japan.
| | - Chikei Natori
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, 830-0011, Japan
| | - Nao Nakamura
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, 830-0011, Japan
| | - Makiko Fujii
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, 830-0011, Japan
| | - Yuya Yamashita
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, 830-0011, Japan
| | - Sakuya Ito
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, 830-0011, Japan
| | - Kei Fukami
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, 830-0011, Japan
| |
Collapse
|
5
|
Masuda T, Nagata D. Glomerular pressure and tubular oxygen supply: a critical dual target for renal protection. Hypertens Res 2024; 47:3330-3337. [PMID: 39397109 DOI: 10.1038/s41440-024-01944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
The primary treatment goal of chronic kidney disease (CKD) is preserving renal function and preventing its progression to end-stage renal disease. Glomerular hypertension and tubular hypoxia are critical risk factors in CKD progression. However, the renal hemodynamics make it difficult to avoid both factors due to the existence of peritubular capillaries that supply oxygen to the renal tubules downstream from the glomerulus through the efferent arteriole. In the treatment strategies for balancing glomerular pressure and tubular oxygen supply, afferent and efferent arterioles of the glomerulus determine glomerular filtration rate and blood flow to the peritubular capillaries. Therefore, sodium-glucose cotransporter 2 inhibitors and angiotensin receptor-neprilysin inhibitors as well as classical renin-angiotensin system inhibitors, which can change the diameter of afferent and/or efferent arterioles, are promising options for balancing this dual target and achieving renal protection. This review focuses on the clinical importance of glomerular pressure and tubular oxygen supply and proposes an effective treatment modality for this dual target.
Collapse
Affiliation(s)
- Takahiro Masuda
- Division of Nephrology, Department of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan.
| | - Daisuke Nagata
- Division of Nephrology, Department of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
6
|
Lee HS, Kim HY, Ahn YM, Cho KW. Herbal medicine Oryeongsan (Wulingsan): Cardio-renal effects via modulation of renin-angiotensin system and atrial natriuretic peptide system. Integr Med Res 2024; 13:101066. [PMID: 39247397 PMCID: PMC11378099 DOI: 10.1016/j.imr.2024.101066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/06/2024] [Accepted: 06/20/2024] [Indexed: 09/10/2024] Open
Abstract
Background Oryeongsan (Wulingsan, Goreisan) has long been used for the treatment of impaired body fluid metabolism. However, the action mechanisms have not been clearly defined. Recently, effects of Oryeongsan on the body fluid and Na+ metabolism and the action mechanisms have been shown more clearly. The present review focuses on the recent findings on the effects of Oryeongsan in the cardio-renal system in relation with body fluid metabolism and action mechanisms leading to a decrease in blood pressure in animal models of hypertension. Methods The new and recent findings were searched by using searching systems including PubMed-NCBI and Google-Scholar. Results Oryeongsan induced an increase in glomerular filtration rate, and natriuresis and diuresis with a decreased osmolality and resulted in a contraction of the body fluid and Na+ balance. These findings were associated with a suppression of abundance of Na+-H +-exchanger isoform 3 expression and V2 receptor/aquaporin2 water channel signaling pathway in the kidney. Further, treatment with Oryeongsan accentuated atrial natriuretic peptide secretion in the atria from spontaneously hypertensive rats in which the secretion was suppressed. In addition, Oryeongsan ameliorated impaired vasodilation in spontaneously hypertensive rats. Conclusion The effects of Oryeongsan in the kidney, atria, and vessel were accompanied by a suppression of AT1 receptor and concurrent accentuation of abundance of AT2/Mas receptors expression and modulation of the natriuretic peptide system in these organs from hypertensive rats. The review shows multiple sites of action of Oryeongsan and mechanisms involved in the regulation of volume and pressure homeostasis in the body.
Collapse
Affiliation(s)
- Ho Sub Lee
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Republic of Korea
- College of Korean Medicine and Professional Graduate School of Korean Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Hye Yoom Kim
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Republic of Korea
- College of Korean Medicine and Professional Graduate School of Korean Medicine, Wonkwang University, Iksan, Republic of Korea
| | - You Mee Ahn
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Republic of Korea
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Kyung Woo Cho
- Hanbang Cardio-Renal Syndrome Research Center, Wonkwang University, Iksan, Republic of Korea
- College of Korean Medicine and Professional Graduate School of Korean Medicine, Wonkwang University, Iksan, Republic of Korea
| |
Collapse
|
7
|
Chen CE, Guo JY, Chou RH, Wu CH, Kuo CS, Wei JH, Huang PH. Circulating corin concentration is associated with risk of mortality and acute kidney injury in critically ill patients. Sci Rep 2024; 14:19848. [PMID: 39191876 PMCID: PMC11349996 DOI: 10.1038/s41598-024-70587-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Elevated serum corin concentrations in patients with cardiac diseases have been associated with adverse cardiovascular events and progressive renal dysfunction. This study aimed to determine the role of serum corin levels in predicting the incidence of acute kidney injury (AKI) and mortality in critically ill patients admitted to intensive care units (ICUs). We screened 323 patients admitted to the ICU in our institution from May 2018 through December 2019. After excluding patients receiving renal replacement therapy, 288 subjects were enrolled. Cases were divided equally into high (n = 144) and low (n = 144) corin groups according to median serum corin levels, using 910 pg/mL as the cut-off point. Patient characteristics and comorbidities were collected from medical records. The primary outcome was AKI within 48 h after ICU admission, while the secondary outcome was all-cause of mortality within 1 year. Compared with the low corin group, patients in the high corin group had higher prevalence rates of diabetes, cirrhosis, and nephrotoxic agent exposure; higher Sequential Organ Failure Assessment scores, white blood cell counts, proteinuria, and serum N-terminal pro-brain natriuretic peptide levels; but had lower initial estimated glomerular filtration rates. Furthermore, elevated serum corin was associated with higher risks of AKI within 48h of ICU admission (43.1% vs. 18.1%, p < 0.001) and all-cause mortality within one year (63.9% vs. 50.0%, p = 0.024). High corin level showed strongly positive results as an independent predictor of AKI (OR 2.15, 95% CI 1.11-4.19, p = 0.024) but not for the all-cause mortality after adjusting for confounding factors in multivariate analyses. Elevated circulating corin predicted AKI in critically ill patients, but did not predict all-cause mortality within 1 year. As a key enzyme in renin-angiotensin-aldosterone system, corin expression may be regulated through a feedback loop following natriuretic peptide resistance and desensitization of natriuretic peptide receptors in different critically ill status.
Collapse
Affiliation(s)
- Ching-En Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Jiun-Yu Guo
- School of Medicine, Cardiovascular Research Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Division of Cardiology, Department of Medicine, New Taipei City Hospital, New Taipei City, Taiwan
| | - Ruey-Hsing Chou
- Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan.
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
- School of Medicine, Cardiovascular Research Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan.
| | - Cheng-Hsueh Wu
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Chin-Sung Kuo
- Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- School of Medicine, Cardiovascular Research Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jih-Hua Wei
- Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Cardiovascular Division, Internal Medicine Department, Min-Sheng General Hospital, Taoyuan, Taiwan
- Department of Nutrition and Health Sciences, School of Healthcare Management, Kai-Nan University, Taoyuan, Taiwan
| | - Po-Hsun Huang
- Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan.
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
- School of Medicine, Cardiovascular Research Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan.
| |
Collapse
|
8
|
Abassi Z, Hamo‐Giladi DB, Kinaneh S, Heyman SN. The endocrine basis of the cardio-renal axis: New perspectives regarding corin. Physiol Rep 2024; 12:e16105. [PMID: 38942727 PMCID: PMC11213627 DOI: 10.14814/phy2.16105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/10/2024] [Accepted: 05/27/2024] [Indexed: 06/30/2024] Open
Abstract
The central role of natriuretic peptides (NPs) in the complex cardio-renal integrated physiology and organ failure has been revealed over the last four decades. Atrial natriuretic peptide (ANP), the oldest representative of the NPs family, is produced through conversion of proANP to the mature peptide by corin, a trans-membrane protease localized to the cardiac myocyte membrane. Similarly, brain natriuretic peptide (BNP) is generated by furin, which cleaves proBNP to BNP in myocytes. Though the components of NPs system, their synthesis and target organs are well established, understanding their role in the interplay between the heart and the kidney is steadily evolving. In this context, Feldman et al. (New England Journal of Medicine, 389, 1685) recently described patients with hypertension, cardiomyopathy, atrial arrhythmia and left atrial fibrosis, associated with a homozygous loss-of-function variant of the gene encoding corin (Cor-/-). Notably, reduced baseline urinary electrolyte and creatinine excretion have been observed in one of the studied patients. This renal excretory functional impairment could be attributed to the lack of cardiac-derived ANP in these patients, as implied by Feldman et al. Yet, in this mini-review we suggest that this aberrant renal manifestation may principally stem from lack of local ANP production at renal tissue, as corin is normally expressed in proximal tubules, Henle's loop and collecting ducts, with locally produced ANP provoking Na+ and water exertion. Collectively, it seems that beside the classic well-established cardio-renal axis, the renal NPs system functions as local endocrine machinery in the regulation of sodium excretion.
Collapse
Affiliation(s)
- Zaid Abassi
- Ruth & Bruce Rappaport Faculty of Medicine, Technion‐IITHaifaIsrael
- Department of Laboratory MedicineRambam Health Care CampusHaifaIsrael
| | | | - Safa Kinaneh
- Ruth & Bruce Rappaport Faculty of Medicine, Technion‐IITHaifaIsrael
| | - Samuel N. Heyman
- Department of MedicineHadassah Hebrew University Hospital, Mt. Scopus and Herzog HospitalJerusalemIsrael
| |
Collapse
|
9
|
Gladysheva IP, Wang D, Reed GL. Corin and Left Atrial Cardiomyopathy, Hypertension, Arrhythmia, and Fibrosis. N Engl J Med 2024; 390:1538-1539. [PMID: 38657260 DOI: 10.1056/nejmc2313870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Affiliation(s)
| | - Dong Wang
- University of Arizona College of Medicine-Phoenix, Phoenix, AZ
| | - Guy L Reed
- University of Arizona College of Medicine-Phoenix, Phoenix, AZ
| |
Collapse
|
10
|
Катамадзе НН, Пигарова ЕА, Дзеранова ЛК, Мокрышева НГ. [Features of water-electrolyte balance in persons of the older age group]. PROBLEMY ENDOKRINOLOGII 2024; 69:28-36. [PMID: 38311992 PMCID: PMC10848185 DOI: 10.14341/probl13214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/02/2023] [Accepted: 05/17/2023] [Indexed: 02/06/2024]
Abstract
Age-related changes have a great influence on the regulation of water and electrolyte homeostasis in the body, which is regulated by a complex interaction of environmental factors, drinking behavior, the secretion of a number of hormones and hormone-like substances, as well as the innervation and functional state of the kidneys. It is well known that the changes that are part of physiological aging underlie fluid and electrolyte imbalances, exacerbated by the presence of age-related diseases, medications, or a number of external factors such as malnutrition, fluid intake, and the presence of dementia. This review considers literature data on the effect of normal aging on the development of pathology of the water-sodium balance, including dehydration of senile patients, hyponatremia, hypernatremia, changes in the secretion of antidiuretic hormone and the activity of elements of the renin-angiotensin-aldosterone system.
Collapse
Affiliation(s)
- Н. Н. Катамадзе
- Национальный медицинский исследовательский центр эндокринологии
| | - Е. А. Пигарова
- Национальный медицинский исследовательский центр эндокринологии
| | - Л. К. Дзеранова
- Национальный медицинский исследовательский центр эндокринологии
| | - Н. Г. Мокрышева
- Национальный медицинский исследовательский центр эндокринологии
| |
Collapse
|
11
|
Shen Y, Ma G, Sun M, Li M, Chen M. Low plasma renin activity is associated with "Apparently" idiopathic atrial fibrillation. IJC HEART & VASCULATURE 2023; 49:101286. [PMID: 37920699 PMCID: PMC10618685 DOI: 10.1016/j.ijcha.2023.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
Background Previous studies have reported the direct or indirect relationship between the renin-angiotensin-aldosterone system (RAAS) and atrial fibrillation (AF). However, in patients with "apparently" idiopathic AF without possible external influence, whether RAAS is dysregulated at an early stage of AF and its relationship with the recurrence of AF after ablation have not been studied. Methods This single-center, prospective, case-control study included apparently healthy individuals with AF (the case group) or paroxysmal supraventricular tachycardia (PSVT, the control group) referred for catheter ablation at the same period. The primary outcome was RAAS activation in these two groups. The secondary outcome was the 1-year recurrence of AF after ablation. Results This study included 51 "apparently" idiopathic AF and 91 patients with PSVT. A greater proportion of patients in the case group had plasma renin activity (PRA) levels < 1 ng/ml/h compared to the control group (25.5 % vs. 7.7 %, P = 0.003). PRA < 1 ng/ml/h was the only factor found to be associated with the diagnose of AF in both the univariate model (odds ratio [OR] 4.11, 95 % confidence interval [CI] 1.52-11.11, P = 0.005) and the model adjusted for age and sex (OR 3.98, 95 % CI 1.20-13.25, P = 0.024). A similar pattern was seen with paroxysmal AF. No significant difference in the components of RAAS was observed between 11 patients with the recurrence of AF and 40 without the recurrence at the 1-year follow-up. Conclusions This observational study revealed an association between low renin activity and the diagnosis of "apparently" idiopathic AF, particularly paroxysmal AF.
Collapse
Affiliation(s)
- Youmei Shen
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, China
| | - Guodong Ma
- Division of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, China
| | - Min Sun
- Division of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, China
| | - Mingfang Li
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, China
| | - Minglong Chen
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, China
| |
Collapse
|
12
|
Baris Feldman H, Chai Gadot C, Zahler D, Mory A, Aviram G, Elhanan E, Shefer G, Goldiner I, Amir Y, Kurolap A, Ablin JN. Corin and Left Atrial Cardiomyopathy, Hypertension, Arrhythmia, and Fibrosis. N Engl J Med 2023; 389:1685-1692. [PMID: 37913506 DOI: 10.1056/nejmoa2301908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Two siblings presented with cardiomyopathy, hypertension, arrhythmia, and fibrosis of the left atrium. Each had a homozygous null variant in CORIN, the gene encoding atrial natriuretic peptide (ANP)-converting enzyme. A plasma sample obtained from one of the siblings had no detectable levels of corin or N-terminal pro-ANP but had elevated levels of B-type natriuretic peptide (BNP) and one of the two protein markers of fibrosis that we tested. These and other findings support the hypothesis that BNP cannot fully compensate for a lack of activation of the ANP pathway and that corin is critical to normal ANP activity, left atrial function, and cardiovascular homeostasis.
Collapse
Affiliation(s)
- Hagit Baris Feldman
- From the Genetics Institute and Genomics Center (H.B.F., C.C.G., A.M., E.E., Y.A., A.K.), the Departments of Cardiology (D.Z.), Radiology (G.A.), Nephrology (E.E.), Clinical Laboratories (G.S., I.G.), and Internal Medicine H (J.N.A.) and the Institute of Rheumatology (J.N.A.), Tel Aviv Sourasky Medical Center, and the Faculty of Medicine, Tel Aviv University (H.B.F., D.Z., G.A., I.G., Y.A., J.N.A.) - all in Tel Aviv, Israel
| | - Chofit Chai Gadot
- From the Genetics Institute and Genomics Center (H.B.F., C.C.G., A.M., E.E., Y.A., A.K.), the Departments of Cardiology (D.Z.), Radiology (G.A.), Nephrology (E.E.), Clinical Laboratories (G.S., I.G.), and Internal Medicine H (J.N.A.) and the Institute of Rheumatology (J.N.A.), Tel Aviv Sourasky Medical Center, and the Faculty of Medicine, Tel Aviv University (H.B.F., D.Z., G.A., I.G., Y.A., J.N.A.) - all in Tel Aviv, Israel
| | - David Zahler
- From the Genetics Institute and Genomics Center (H.B.F., C.C.G., A.M., E.E., Y.A., A.K.), the Departments of Cardiology (D.Z.), Radiology (G.A.), Nephrology (E.E.), Clinical Laboratories (G.S., I.G.), and Internal Medicine H (J.N.A.) and the Institute of Rheumatology (J.N.A.), Tel Aviv Sourasky Medical Center, and the Faculty of Medicine, Tel Aviv University (H.B.F., D.Z., G.A., I.G., Y.A., J.N.A.) - all in Tel Aviv, Israel
| | - Adi Mory
- From the Genetics Institute and Genomics Center (H.B.F., C.C.G., A.M., E.E., Y.A., A.K.), the Departments of Cardiology (D.Z.), Radiology (G.A.), Nephrology (E.E.), Clinical Laboratories (G.S., I.G.), and Internal Medicine H (J.N.A.) and the Institute of Rheumatology (J.N.A.), Tel Aviv Sourasky Medical Center, and the Faculty of Medicine, Tel Aviv University (H.B.F., D.Z., G.A., I.G., Y.A., J.N.A.) - all in Tel Aviv, Israel
| | - Galit Aviram
- From the Genetics Institute and Genomics Center (H.B.F., C.C.G., A.M., E.E., Y.A., A.K.), the Departments of Cardiology (D.Z.), Radiology (G.A.), Nephrology (E.E.), Clinical Laboratories (G.S., I.G.), and Internal Medicine H (J.N.A.) and the Institute of Rheumatology (J.N.A.), Tel Aviv Sourasky Medical Center, and the Faculty of Medicine, Tel Aviv University (H.B.F., D.Z., G.A., I.G., Y.A., J.N.A.) - all in Tel Aviv, Israel
| | - Emil Elhanan
- From the Genetics Institute and Genomics Center (H.B.F., C.C.G., A.M., E.E., Y.A., A.K.), the Departments of Cardiology (D.Z.), Radiology (G.A.), Nephrology (E.E.), Clinical Laboratories (G.S., I.G.), and Internal Medicine H (J.N.A.) and the Institute of Rheumatology (J.N.A.), Tel Aviv Sourasky Medical Center, and the Faculty of Medicine, Tel Aviv University (H.B.F., D.Z., G.A., I.G., Y.A., J.N.A.) - all in Tel Aviv, Israel
| | - Gabi Shefer
- From the Genetics Institute and Genomics Center (H.B.F., C.C.G., A.M., E.E., Y.A., A.K.), the Departments of Cardiology (D.Z.), Radiology (G.A.), Nephrology (E.E.), Clinical Laboratories (G.S., I.G.), and Internal Medicine H (J.N.A.) and the Institute of Rheumatology (J.N.A.), Tel Aviv Sourasky Medical Center, and the Faculty of Medicine, Tel Aviv University (H.B.F., D.Z., G.A., I.G., Y.A., J.N.A.) - all in Tel Aviv, Israel
| | - Ilana Goldiner
- From the Genetics Institute and Genomics Center (H.B.F., C.C.G., A.M., E.E., Y.A., A.K.), the Departments of Cardiology (D.Z.), Radiology (G.A.), Nephrology (E.E.), Clinical Laboratories (G.S., I.G.), and Internal Medicine H (J.N.A.) and the Institute of Rheumatology (J.N.A.), Tel Aviv Sourasky Medical Center, and the Faculty of Medicine, Tel Aviv University (H.B.F., D.Z., G.A., I.G., Y.A., J.N.A.) - all in Tel Aviv, Israel
| | - Yam Amir
- From the Genetics Institute and Genomics Center (H.B.F., C.C.G., A.M., E.E., Y.A., A.K.), the Departments of Cardiology (D.Z.), Radiology (G.A.), Nephrology (E.E.), Clinical Laboratories (G.S., I.G.), and Internal Medicine H (J.N.A.) and the Institute of Rheumatology (J.N.A.), Tel Aviv Sourasky Medical Center, and the Faculty of Medicine, Tel Aviv University (H.B.F., D.Z., G.A., I.G., Y.A., J.N.A.) - all in Tel Aviv, Israel
| | - Alina Kurolap
- From the Genetics Institute and Genomics Center (H.B.F., C.C.G., A.M., E.E., Y.A., A.K.), the Departments of Cardiology (D.Z.), Radiology (G.A.), Nephrology (E.E.), Clinical Laboratories (G.S., I.G.), and Internal Medicine H (J.N.A.) and the Institute of Rheumatology (J.N.A.), Tel Aviv Sourasky Medical Center, and the Faculty of Medicine, Tel Aviv University (H.B.F., D.Z., G.A., I.G., Y.A., J.N.A.) - all in Tel Aviv, Israel
| | - Jacob N Ablin
- From the Genetics Institute and Genomics Center (H.B.F., C.C.G., A.M., E.E., Y.A., A.K.), the Departments of Cardiology (D.Z.), Radiology (G.A.), Nephrology (E.E.), Clinical Laboratories (G.S., I.G.), and Internal Medicine H (J.N.A.) and the Institute of Rheumatology (J.N.A.), Tel Aviv Sourasky Medical Center, and the Faculty of Medicine, Tel Aviv University (H.B.F., D.Z., G.A., I.G., Y.A., J.N.A.) - all in Tel Aviv, Israel
| |
Collapse
|
13
|
Tsukamoto S, Wakui H, Uehara T, Shiba Y, Azushima K, Abe E, Tanaka S, Taguchi S, Hirota K, Urate S, Suzuki T, Yamada T, Kinguchi S, Yamashita A, Tamura K. Combination of sacubitril/valsartan and blockade of the PI3K pathway enhanced kidney protection in a mouse model of cardiorenal syndrome. EUROPEAN HEART JOURNAL OPEN 2023; 3:oead098. [PMID: 37941728 PMCID: PMC10630100 DOI: 10.1093/ehjopen/oead098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023]
Abstract
Aims Angiotensin receptor-neprilysin inhibitor (ARNI) is an established treatment for heart failure. However, whether ARNI has renoprotective effects beyond renin-angiotensin system inhibitors alone in cardiorenal syndrome (CRS) has not been fully elucidated. Here, we examined the effects of ARNI on the heart and kidneys of CRS model mice with overt albuminuria and identified the mechanisms underlying ARNI-induced kidney protection. Methods and results C57BL6 mice were subjected to chronic angiotensin II infusion, nephrectomy, and salt loading (ANS); they developed CRS phenotypes and were divided into the vehicle treatment (ANS-vehicle), sacubitril/valsartan treatment (ANS-ARNI), and two different doses of valsartan treatment (ANS-VAL M, ANS-VAL H) groups. Four weeks after treatment, the hearts and kidneys of each group were evaluated. The ANS-vehicle group showed cardiac fibrosis, cardiac dysfunction, overt albuminuria, and kidney fibrosis. The ANS-ARNI group showed a reduction in cardiac fibrosis and cardiac dysfunction compared with the valsartan treatment groups. However, regarding the renoprotective effects characterized by albuminuria and fibrosis, ARNI was less effective than valsartan. Kidney transcriptomic analysis showed that the ANS-ARNI group exhibited a significant enhancement in the phosphoinositide 3-kinase (PI3K)-AKT signalling pathway compared with the ANS-VAL M group. Adding PI3K inhibitor treatment to ARNI ameliorated kidney injury to levels comparable with those of ANS-VAL M while preserving the superior cardioprotective effect of ARNI. Conclusion PI3K pathway activation has been identified as a key mechanism affecting remnant kidney injury under ARNI treatment in CRS pathology, and blockading the PI3K pathway with simultaneous ARNI treatment is a potential therapeutic strategy for treating CRS with overt albuminuria.
Collapse
Affiliation(s)
- Shunichiro Tsukamoto
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, 236-0004 Yokohama, Japan
| | - Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, 236-0004 Yokohama, Japan
| | - Tatsuki Uehara
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, 236-0004 Yokohama, Japan
| | - Yuka Shiba
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, 236-0004 Yokohama, Japan
| | - Kengo Azushima
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, 236-0004 Yokohama, Japan
| | - Eriko Abe
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, 236-0004 Yokohama, Japan
| | - Shohei Tanaka
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, 236-0004 Yokohama, Japan
| | - Shinya Taguchi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, 236-0004 Yokohama, Japan
| | - Keigo Hirota
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, 236-0004 Yokohama, Japan
| | - Shingo Urate
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, 236-0004 Yokohama, Japan
| | - Toru Suzuki
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, 236-0004 Yokohama, Japan
| | - Takayuki Yamada
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, 236-0004 Yokohama, Japan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sho Kinguchi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, 236-0004 Yokohama, Japan
| | - Akio Yamashita
- Department of Investigative Medicine Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, 236-0004 Yokohama, Japan
| |
Collapse
|
14
|
Wu Q. Natriuretic Peptide Signaling in Uterine Biology and Preeclampsia. Int J Mol Sci 2023; 24:12309. [PMID: 37569683 PMCID: PMC10418983 DOI: 10.3390/ijms241512309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Endometrial decidualization is a uterine process essential for spiral artery remodeling, embryo implantation, and trophoblast invasion. Defects in endometrial decidualization and spiral artery remodeling are important contributing factors in preeclampsia, a major disorder in pregnancy. Atrial natriuretic peptide (ANP) is a cardiac hormone that regulates blood volume and pressure. ANP is also generated in non-cardiac tissues, such as the uterus and placenta. In recent human genome-wide association studies, multiple loci with genes involved in natriuretic peptide signaling are associated with gestational hypertension and preeclampsia. In cellular experiments and mouse models, uterine ANP has been shown to stimulate endometrial decidualization, increase TNF-related apoptosis-inducing ligand expression and secretion, and enhance apoptosis in arterial smooth muscle cells and endothelial cells. In placental trophoblasts, ANP stimulates adenosine 5'-monophosphate-activated protein kinase and the mammalian target of rapamycin complex 1 signaling, leading to autophagy inhibition and protein kinase N3 upregulation, thereby increasing trophoblast invasiveness. ANP deficiency impairs endometrial decidualization and spiral artery remodeling, causing a preeclampsia-like phenotype in mice. These findings indicate the importance of natriuretic peptide signaling in pregnancy. This review discusses the role of ANP in uterine biology and potential implications of impaired ANP signaling in preeclampsia.
Collapse
Affiliation(s)
- Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| |
Collapse
|
15
|
Gu X, Wang K, Li W, He M, Zhou T, Liu M, Wu Q, Dong N. Corin Deficiency Diminishes Intestinal Sodium Excretion in Mice. BIOLOGY 2023; 12:945. [PMID: 37508377 PMCID: PMC10376046 DOI: 10.3390/biology12070945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Sodium excretion, a critical process in sodium homeostasis, occurs in many tissues, including the kidney and intestine. Unlike in the kidney, the hormonal regulation of intestinal sodium excretion remains unclear. Atrial natriuretic peptide (ANP) is a crucial hormone in renal natriuresis. Corin is a protease critical for ANP activation. Corin and ANP are expressed mainly in the heart. In this study, we investigated corin, ANP, and natriuretic peptide receptor A (Npra) expression in mouse intestines. Corin and ANP expression was co-localized in enteroendocrine cells, whereas Npra expression was on the luminal epithelial cells. In Corin knockout (KO) mice, fecal Na+ and Cl- excretion decreased compared with that in wild-type (WT) mice. Such a decrease was not found in conditional Corin KO mice lacking cardiac corin selectively. In kidney conditional Corin KO mice lacking renal corin, fecal Na+ and Cl- excretion increased, compared to that in WT mice. When WT, Corin KO, and the kidney conditional KO mice were treated with aldosterone, the differences in fecal Na+ and Cl- levels disappeared. These results suggest that intestinal corin may promote fecal sodium excretion in a paracrine mechanism independent of the cardiac corin function. The increased fecal sodium excretion in the kidney conditional Corin KO mice likely reflected an intestinal compensatory response to renal corin deficiency. Our results also suggest that intestinal corin activity may antagonize aldosterone action in the promotion of fecal sodium excretion. These findings help us understand the hormonal mechanism controlling sodium excretion the intestinal tract.
Collapse
Affiliation(s)
- Xiabing Gu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Medical School, Suzhou 215006, China
| | - Kun Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| | - Wenguo Li
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Medical School, Suzhou 215006, China
| | - Meiling He
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| | - Tiantian Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Medical School, Suzhou 215006, China
| |
Collapse
|
16
|
Horikoshi T, Nakamura T, Yamaguchi K, Yoshizaki T, Watanabe Y, Kuroki K, Uematsu M, Nakamura K, Kobayashi T, Sato A. Prognostic Value of Novel Natriuretic Peptide Index After Percutaneous Coronary Intervention. Circ J 2023; 87:296-305. [PMID: 36261336 DOI: 10.1253/circj.cj-22-0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The predictive value of both atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) is well known. This study evaluated the prognostic value of a novel natriuretic peptide index (NPI) combining ANP and BNP. METHODS AND RESULTS This study included 849 consecutive patients with coronary artery disease who underwent successful percutaneous coronary intervention (PCI). Patients were followed up clinically for up to 3 years or until the occurrence of major adverse cardiac events (MACE). The primary endpoint was a composite of all-cause death and non-fatal myocardial infarction. The NPI (pg/mL) was defined as √ANP×BNP. MACE occurred in 73 patients (8.6%) during the follow-up period. Receiver operating characteristic curve analysis showed the highest area under the curve for NPI (0.779) compared with ANP and BNP (0.773 and 0.755, respectively). A risk analysis of MACE occurrence adjusted for the multivariable model showed the highest hazard ratio (HR) for NPI (1.33; 95% confidence interval [CI] 1.18-1.51; P<0.001) compared with ANP and BNP (HR 1.25 [95% CI 1.13-1.39] and 1.30 [95% CI 1.13-1.49], respectively; P<0.001). The NPI was a significant independent predictor of MACE, among other clinical parameters, in the multivariable analysis. CONCLUSIONS Compared with ANP and BNP, the NPI was more effective in predicting future adverse events after PCI.
Collapse
Affiliation(s)
- Takeo Horikoshi
- Department of Cardiology, University of Yamanashi, Faculty of Medicine
| | | | | | - Toru Yoshizaki
- Department of Cardiology, University of Yamanashi, Faculty of Medicine
| | - Yosuke Watanabe
- Department of Cardiology, University of Yamanashi, Faculty of Medicine
| | - Kenji Kuroki
- Department of Cardiology, University of Yamanashi, Faculty of Medicine
| | - Manabu Uematsu
- Department of Cardiology, University of Yamanashi, Faculty of Medicine
| | - Kazuto Nakamura
- Department of Cardiology, University of Yamanashi, Faculty of Medicine
| | | | - Akira Sato
- Department of Cardiology, University of Yamanashi, Faculty of Medicine
| |
Collapse
|
17
|
Sodium Homeostasis, a Balance Necessary for Life. Nutrients 2023; 15:nu15020395. [PMID: 36678265 PMCID: PMC9862583 DOI: 10.3390/nu15020395] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Body sodium (Na) levels must be maintained within a narrow range for the correct functioning of the organism (Na homeostasis). Na disorders include not only elevated levels of this solute (hypernatremia), as in diabetes insipidus, but also reduced levels (hyponatremia), as in cerebral salt wasting syndrome. The balance in body Na levels therefore requires a delicate equilibrium to be maintained between the ingestion and excretion of Na. Salt (NaCl) intake is processed by receptors in the tongue and digestive system, which transmit the information to the nucleus of the solitary tract via a neural pathway (chorda tympani/vagus nerves) and to circumventricular organs, including the subfornical organ and area postrema, via a humoral pathway (blood/cerebrospinal fluid). Circuits are formed that stimulate or inhibit homeostatic Na intake involving participation of the parabrachial nucleus, pre-locus coeruleus, medial tuberomammillary nuclei, median eminence, paraventricular and supraoptic nuclei, and other structures with reward properties such as the bed nucleus of the stria terminalis, central amygdala, and ventral tegmental area. Finally, the kidney uses neural signals (e.g., renal sympathetic nerves) and vascular (e.g., renal perfusion pressure) and humoral (e.g., renin-angiotensin-aldosterone system, cardiac natriuretic peptides, antidiuretic hormone, and oxytocin) factors to promote Na excretion or retention and thereby maintain extracellular fluid volume. All these intake and excretion processes are modulated by chemical messengers, many of which (e.g., aldosterone, angiotensin II, and oxytocin) have effects that are coordinated at peripheral and central level to ensure Na homeostasis.
Collapse
|
18
|
Heinl ES, Broeker KAE, Lehrmann C, Heydn R, Krieger K, Ortmaier K, Tauber P, Schweda F. Localization of natriuretic peptide receptors A, B, and C in healthy and diseased mouse kidneys. Pflugers Arch 2023; 475:343-360. [PMID: 36480070 PMCID: PMC9908653 DOI: 10.1007/s00424-022-02774-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022]
Abstract
The natriuretic peptides (NPs) ANP (atrial natriuretic peptide) and BNP (B-type natriuretic peptide) mediate their widespread effects by activating the natriuretic peptide receptor-A (NPR-A), while C-type natriuretic peptide (CNP) acts via natriuretic peptide receptor-B (NPR-B). NPs are removed from the circulation by internalization via the natriuretic peptide clearance receptor natriuretic peptide receptor-C (NPR-C). In addition to their well-known functions, for instance on blood pressure, all three NPs confer significant cardioprotection and renoprotection. Since neither the NP-mediated renal functions nor the renal target cells of renoprotection are completely understood, we performed systematic localization studies of NP receptors using in situ hybridization (RNAscope) in mouse kidneys. NPR-A mRNA is highly expressed in glomeruli (mainly podocytes), renal arterioles, endothelial cells of peritubular capillaries, and PDGFR-receptor β positive (PDGFR-β) interstitial cells. No NPR-A mRNA was detected by RNAscope in the tubular system. In contrast, NPR-B expression is highest in proximal tubules. NPR-C is located in glomeruli (mainly podocytes), in endothelial cells and PDGFR-β positive cells. To test for a possible regulation of NPRs in kidney diseases, their distribution was studied in adenine nephropathy. Signal intensity of NPR-A and NPR-B mRNA was reduced while their spatial distribution was unaltered compared with healthy kidneys. In contrast, NPR-C mRNA signal was markedly enhanced in cell clusters of myofibroblasts in fibrotic areas of adenine kidneys. In conclusion, the primary renal targets of ANP and BNP are glomerular, vascular, and interstitial cells but not the tubular compartment, while the CNP receptor NPR-B is highly expressed in proximal tubules. Further studies are needed to clarify the function and interplay of this specific receptor expression pattern.
Collapse
Affiliation(s)
- Elena-Sofia Heinl
- Institute for Physiology, University Regensburg, Regensburg, Germany.
| | | | - Claudia Lehrmann
- grid.7727.50000 0001 2190 5763Institute for Physiology, University Regensburg, Regensburg, Germany
| | - Rosmarie Heydn
- grid.7727.50000 0001 2190 5763Institute for Physiology, University Regensburg, Regensburg, Germany
| | - Katharina Krieger
- grid.7727.50000 0001 2190 5763Institute for Physiology, University Regensburg, Regensburg, Germany
| | - Katharina Ortmaier
- grid.7727.50000 0001 2190 5763Institute for Physiology, University Regensburg, Regensburg, Germany
| | - Philipp Tauber
- grid.7727.50000 0001 2190 5763Institute for Physiology, University Regensburg, Regensburg, Germany
| | - Frank Schweda
- Institute for Physiology, University Regensburg, Regensburg, Germany.
| |
Collapse
|
19
|
Zhou T, Zhang S, Du C, Wang K, Gu X, Sun S, Zhang X, Niu Y, Wang C, Liu M, Dong N, Wu Q. Renal Corin Is Essential for Normal Blood Pressure and Sodium Homeostasis. Int J Mol Sci 2022; 23:ijms231911251. [PMID: 36232551 PMCID: PMC9570390 DOI: 10.3390/ijms231911251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Atrial natriuretic peptide (ANP)-mediated natriuresis is known as a cardiac endocrine function in sodium and body fluid homeostasis. Corin is a protease essential for ANP activation. Here, we studied the role of renal corin in regulating salt excretion and blood pressure. We created corin conditional knockout (cKO), in which the Corin gene was selectively disrupted in the kidney (kcKO) or heart (hcKO). We examined the blood pressure, urinary Na+ and Cl− excretion, and cardiac hypertrophy in wild-type, corin global KO, kcKO, and hcKO mice fed normal- and high-salt diets. We found that on a normal-salt diet (0.3% NaCl), corin kcKO and hcKO mice had increased blood pressure, indicating that both renal and cardiac corin is necessary for normal blood pressure in mice. On a high-salt diet (4% NaCl), reduced urinary Na+ and Cl− excretion, increased body weight, salt-exacerbated hypertension, and cardiac hypertrophy were observed in corin kcKO mice. In contrast, impaired urinary Na+ and Cl− excretion and salt-exacerbated hypertension were not observed in corin hcKO mice. These results indicated that renal corin function is important in enhancing natriuresis upon high salt intakes and that this function cannot be compensated by the cardiac corin function in mice.
Collapse
Affiliation(s)
- Tiantian Zhou
- Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Shengnan Zhang
- Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou 215123, China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Soochow University, Suzhou 215006, China
| | - Chunyu Du
- Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou 215123, China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Soochow University, Suzhou 215006, China
| | - Kun Wang
- Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Xiabing Gu
- Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou 215123, China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Soochow University, Suzhou 215006, China
| | - Shijin Sun
- Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou 215123, China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Soochow University, Suzhou 215006, China
| | - Xianrui Zhang
- Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou 215123, China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Soochow University, Suzhou 215006, China
| | - Yayan Niu
- Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou 215123, China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Soochow University, Suzhou 215006, China
| | - Can Wang
- Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Meng Liu
- Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Ningzheng Dong
- Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou 215123, China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Soochow University, Suzhou 215006, China
- Correspondence: (N.D.); (Q.W.)
| | - Qingyu Wu
- Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Correspondence: (N.D.); (Q.W.)
| |
Collapse
|
20
|
Glucocorticoids Promote Na+ Excretion in the Renal Epithelia of Heart Failure Rats by Suppressing Transporter Proteins Involved in Acute Sodium Loading. J Cardiovasc Pharmacol 2022; 80:453-463. [PMID: 35853190 DOI: 10.1097/fjc.0000000000001310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/16/2022] [Indexed: 01/31/2023]
Abstract
ABSTRACT Glucocorticoid receptors are essential for normal development and stress responses. Their role in H 2 O and Na + metabolism, especially in chronic heart failure (CHF), is not well defined. In a previous study, we found that glucocorticoids potentiate urination in CHF and promote H 2 O excretion by inhibiting the vasopressin receptor 2 pathway. The present study examines the effect of glucocorticoids on renal Na + excretion and the underlying mechanisms in CHF rats with acute sodium loading. CHF was induced by left coronary artery ligation for 8 weeks. Rats were randomly assigned to 5 groups: control, CHF, dexamethasone (DEX)-administered CHF, DEX-administered CHF treated with RU486 (mifepristone, a glucocorticoid receptor antagonist), and RU486-treated CHF. An acute sodium loading test was performed 6 hours after DEX administration. Blood and urine samples were collected, and hemodynamics were measured. The expression and localization of Na + transporter proteins were determined by immunoblotting and immunohistochemistry. DEX increased the urine volume and urinary sodium and improved cardiac function and the estimated glomerular filtration rate in CHF rats. The upregulation of the epithelial sodium channel β and γ subunits, Na-K-2Cl cotransporter, serum glucocorticoid-regulated kinase 1 (SGK1), and Na + /K + -ATPase in the renal epithelium of CHF rats was downregulated by DEX. These beneficial effects were abolished by RU486. The expression of natriuretic peptide receptor A was opposite that of the above proteins. Glucocorticoids might induce profound natriuresis in CHF rats during acute sodium loading, which is associated with downregulating some Na + transporter proteins in the renal epithelium and improving intrarenal hemodynamics.
Collapse
|
21
|
Klemens CA, Dissanayake LV, Levchenko V, Zietara A, Palygin O, Staruschenko A. Modulation of blood pressure regulatory genes in the Agtrap-Plod1 locus associated with a deletion in Clcn6. Physiol Rep 2022; 10:e15417. [PMID: 35927940 PMCID: PMC9353118 DOI: 10.14814/phy2.15417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023] Open
Abstract
The AGTRAP-PLOD1 locus is a conserved gene cluster containing several blood pressure regulatory genes, including CLCN6, MTHFR, NPPA, and NPPB. Previous work revealed that knockout of Clcn6 on the Dahl Salt-Sensitive (SS) rat background (SS-Clcn6) resulted in lower diastolic blood pressure compared to SS-WT rats. Additionally, a recent study found sickle cell anemia patients with mutations in CLCN6 had improved survival and reduced stroke risk. We investigated whether loss of Clcn6 would delay the mortality of Dahl SS rats on an 8% NaCl (HS) diet. No significant difference in survival was found. The ability of Clcn6 to affect mRNA expression of nearby Mthfr, Nppa, and Nppb genes was also tested. On normal salt (0.4% NaCl, NS) diets, renal Mthfr mRNA and protein expression were significantly increased in the SS-Clcn6 rats. MTHFR reduces homocysteine to methionine, but no differences in circulating homocysteine levels were detected. Nppa mRNA levels in cardiac tissue from SS-Clcn6 rat in both normotensive and hypertensive conditions were significantly reduced compared to SS-WT. Nppb mRNA expression in SS-Clcn6 rats on a NS diet was also substantially decreased. Heightened Mthfr expression would be predicted to be protective; however, diminished Nppa and Nppb expression could be deleterious and by preventing or blunting vasodilation, natriuresis, and diuresis that ought to normally occur to offset blood pressure increases. The conserved nature of this genetic locus in humans and rats suggests more studies are warranted to understand how mutations in and around these genes may be influencing the expression of their neighbors.
Collapse
Affiliation(s)
- Christine A. Klemens
- Department of Molecular Pharmacology and PhysiologyUniversity of South FloridaTampaFloridaUSA
- Hypertension and Kidney Research CenterUniversity of South FloridaTampaFloridaUSA
| | - Lashodya V. Dissanayake
- Department of Molecular Pharmacology and PhysiologyUniversity of South FloridaTampaFloridaUSA
- Department of PhysiologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Vladislav Levchenko
- Department of Molecular Pharmacology and PhysiologyUniversity of South FloridaTampaFloridaUSA
| | - Adrian Zietara
- Department of Molecular Pharmacology and PhysiologyUniversity of South FloridaTampaFloridaUSA
- Department of PhysiologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Oleg Palygin
- Department of MedicineMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and PhysiologyUniversity of South FloridaTampaFloridaUSA
- Hypertension and Kidney Research CenterUniversity of South FloridaTampaFloridaUSA
- James A. Haley Veterans' HospitalTampaFloridaUSA
| |
Collapse
|
22
|
Zhang X, Li W, Zhou T, Liu M, Wu Q, Dong N. Corin Deficiency Alters Adipose Tissue Phenotype and Impairs Thermogenesis in Mice. BIOLOGY 2022; 11:biology11081101. [PMID: 35892957 PMCID: PMC9329919 DOI: 10.3390/biology11081101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
Abstract
Atrial natriuretic peptide (ANP) is a key regulator in body fluid balance and cardiovascular biology. In addition to its role in enhancing natriuresis and vasodilation, ANP increases lipolysis and thermogenesis in adipose tissue. Corin is a protease responsible for ANP activation. It remains unknown if corin has a role in regulating adipose tissue function. Here, we examined adipose tissue morphology and function in corin knockout (KO) mice. We observed increased weights and cell sizes in white adipose tissue (WAT), decreased levels of uncoupling protein 1 (Ucp1), a brown adipocyte marker in WAT and brown adipose tissue (BAT), and suppressed thermogenic gene expression in BAT from corin KO mice. At regular room temperature, corin KO and wild-type mice had similar metabolic rates. Upon cold exposure at 4 °C, corin KO mice exhibited impaired thermogenic responses and developed hypothermia. In BAT from corin KO mice, the signaling pathway of p38 mitogen-activated protein kinase, peroxisome proliferator-activated receptor c coactivator 1a, and Ucp1 was impaired. In cell culture, ANP treatment increased Ucp1 expression in BAT-derived adipocytes from corin KO mice. These data indicate that corin mediated-ANP activation is an important hormonal mechanism in regulating adipose tissue function and body temperature upon cold exposure in mice.
Collapse
Affiliation(s)
- Xianrui Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China; (X.Z.); (W.L.); (T.Z.); (M.L.)
- MOH Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wenguo Li
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China; (X.Z.); (W.L.); (T.Z.); (M.L.)
- MOH Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Tiantian Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China; (X.Z.); (W.L.); (T.Z.); (M.L.)
| | - Meng Liu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China; (X.Z.); (W.L.); (T.Z.); (M.L.)
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China; (X.Z.); (W.L.); (T.Z.); (M.L.)
- Correspondence: (Q.W.); (N.D.)
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China; (X.Z.); (W.L.); (T.Z.); (M.L.)
- MOH Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Correspondence: (Q.W.); (N.D.)
| |
Collapse
|
23
|
Semenikhina M, Stefanenko M, Spires DR, Ilatovskaya DV, Palygin O. Nitric-Oxide-Mediated Signaling in Podocyte Pathophysiology. Biomolecules 2022; 12:biom12060745. [PMID: 35740870 PMCID: PMC9221338 DOI: 10.3390/biom12060745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 11/23/2022] Open
Abstract
Nitric oxide (NO) is a potent signaling molecule involved in many physiological and pathophysiological processes in the kidney. NO plays a complex role in glomerular ultrafiltration, vasodilation, and inflammation. Changes in NO bioavailability in pathophysiological conditions such as hypertension or diabetes may lead to podocyte damage, proteinuria, and rapid development of chronic kidney disease (CKD). Despite the extensive data highlighting essential functions of NO in health and pathology, related signaling in glomerular cells, particularly podocytes, is understudied. Several reports indicate that NO bioavailability in glomerular cells is decreased during the development of renal pathology, while restoring NO level can be beneficial for glomerular function. At the same time, the compromised activity of nitric oxide synthase (NOS) may provoke the formation of peroxynitrite and has been linked to autoimmune diseases such as systemic lupus erythematosus. It is known that the changes in the distribution of NO sources due to shifts in NOS subunits expression or modifications of NADPH oxidases activity may be linked to or promote the development of pathology. However, there is a lack of information about the detailed mechanisms describing the production and release of NO in the glomerular cells. The interaction of NO and other reactive oxygen species in podocytes and how NO-calcium crosstalk regulates glomerular cells’ function is still largely unknown. Here, we discuss recent reports describing signaling, synthesis, and known pathophysiological mechanisms mediated by the changes in NO homeostasis in the podocyte. The understanding and further investigation of these essential mechanisms in glomerular cells will facilitate the design of novel strategies to prevent or manage health conditions that cause glomerular and kidney damage.
Collapse
Affiliation(s)
- Marharyta Semenikhina
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (M.S.); (M.S.)
| | - Mariia Stefanenko
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (M.S.); (M.S.)
| | - Denisha R. Spires
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (D.R.S.); (D.V.I.)
| | - Daria V. Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (D.R.S.); (D.V.I.)
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (M.S.); (M.S.)
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Correspondence:
| |
Collapse
|
24
|
Abramicheva PA, Plotnikov EY. Hormonal Regulation of Renal Fibrosis. Life (Basel) 2022; 12:737. [PMID: 35629404 PMCID: PMC9143586 DOI: 10.3390/life12050737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Fibrosis is a severe complication of many acute and chronic kidney pathologies. According to current concepts, an imbalance in the synthesis and degradation of the extracellular matrix by fibroblasts is considered the key cause of the induction and progression of fibrosis. Nevertheless, inflammation associated with the damage of tissue cells is among the factors promoting this pathological process. Most of the mechanisms accompanying fibrosis development are controlled by various hormones, which makes humoral regulation an attractive target for therapeutic intervention. In this vein, it is particularly interesting that the kidney is the source of many hormones, while other hormones regulate renal functions. The normal kidney physiology and pathogenesis of many kidney diseases are sex-dependent and thus modulated by sex hormones. Therefore, when choosing therapy, it is necessary to focus on the sex-associated characteristics of kidney functioning. In this review, we considered renal fibrosis from the point of view of vasoactive and reproductive hormone imbalance. The hormonal therapy possibilities for the treatment or prevention of kidney fibrosis are also discussed.
Collapse
Affiliation(s)
- Polina A. Abramicheva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Egor Y. Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| |
Collapse
|
25
|
Corin: A Key Mediator in Sodium Homeostasis, Vascular Remodeling, and Heart Failure. BIOLOGY 2022; 11:biology11050717. [PMID: 35625445 PMCID: PMC9138375 DOI: 10.3390/biology11050717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 12/11/2022]
Abstract
Simple Summary Atrial natriuretic peptide (ANP) is an important hormone that regulates many physiological and pathological processes, including electrolyte and body fluid balance, blood volume and pressure, cardiac channel activity and function, inflammatory response, lipid metabolism, and vascular remodeling. Corin is a transmembrane serine protease that activates ANP. Variants in the CORIN gene are associated with cardiovascular disease, including hypertension, cardiac hypertrophy, atrial fibrillation, heart failure, and preeclampsia. The current data indicate a key role of corin-mediated ANP production and signaling in the maintenance of cardiovascular homeostasis. In this review, we discuss the latest findings regarding the molecular and cellular mechanisms underlying the role of corin in sodium homeostasis, uterine spiral artery remodeling, and heart failure. Abstract Atrial natriuretic peptide (ANP) is a crucial element of the cardiac endocrine function that promotes natriuresis, diuresis, and vasodilation, thereby protecting normal blood pressure and cardiac function. Corin is a type II transmembrane serine protease that is highly expressed in the heart, where it converts the ANP precursor to mature ANP. Corin deficiency prevents ANP activation and causes hypertension and heart disease. In addition to the heart, corin is expressed in other tissues, including those of the kidney, skin, and uterus, where corin-mediated ANP production and signaling act locally to promote sodium excretion and vascular remodeling. These results indicate that corin and ANP function in many tissues via endocrine and autocrine mechanisms. In heart failure patients, impaired natriuretic peptide processing is a common pathological mechanism that contributes to sodium and body fluid retention. In this review, we discuss most recent findings regarding the role of corin in non-cardiac tissues, including the kidney and skin, in regulating sodium homeostasis and body fluid excretion. Moreover, we describe the molecular mechanisms underlying corin and ANP function in supporting orderly cellular events in uterine spiral artery remodeling. Finally, we assess the potential of corin-based approaches to enhance natriuretic peptide production and activity as a treatment of heart failure.
Collapse
|
26
|
Amini P, Amrovani M, Nassaj ZS, Ajorlou P, Pezeshgi A, Ghahrodizadehabyaneh B. Hypertension: Potential Player in Cardiovascular Disease Incidence in Preeclampsia. Cardiovasc Toxicol 2022; 22:391-403. [PMID: 35347585 DOI: 10.1007/s12012-022-09734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/17/2022] [Indexed: 11/28/2022]
Abstract
Preeclampsia (PE) is one of the complications, that threatens pregnant mothers during pregnancy. According to studies, it accounts for 3-7% of all pregnancies, and also is effective in preterm delivery. PE is the third leading cause of death in pregnant women. High blood pressure in PE can increase the risk of developing cardiovascular disease (CVD) in cited individuals, and is one of the leading causes of death in PE individuals. Atrial natriuretic peptide (ANP), Renin-Angiotensin system and nitric oxide (NO) are some of involved factors in regulating blood pressure. Therefore, by identifying the signaling pathways, that are used by these molecules to regulate and modulate blood pressure, appropriate treatment strategies can be provided to reduce blood pressure through target therapy in PE individuals; consequently, it can reduce CVD risk and mortality.
Collapse
Affiliation(s)
- Parya Amini
- Atherosclerosis Research Center, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Mehran Amrovani
- High Institute for Education and Research in Transfusion Medicine, Tehran, Iran
| | - Zohre Saleh Nassaj
- Center for Health Related Social and Behavioral Sciences Research, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Parisa Ajorlou
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Aiyoub Pezeshgi
- Internal Medicine Department, Zanjan University of Medical Sciences, Zanjan, Iran.
| | | |
Collapse
|
27
|
Ilatovskaya DV, Levchenko V, Winsor K, Blass GR, Spires DR, Sarsenova E, Polina I, Zietara A, Paterson M, Kriegel AJ, Staruschenko A. Effects of elevation of ANP and its deficiency on cardiorenal function. JCI Insight 2022; 7:148682. [PMID: 35380994 PMCID: PMC9090260 DOI: 10.1172/jci.insight.148682] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/30/2022] [Indexed: 11/17/2022] Open
Abstract
Atrial natriuretic peptide (ANP), encoded by Nppa, is a vasodilatory hormone that promotes salt excretion. Genome-wide association studies identified Nppa as a causative factor of blood pressure development, and in humans, ANP levels were suggested as an indicator of salt sensitivity. This study aimed to provide insights into the effects of ANP on cardiorenal function in salt-sensitive hypertension. To address this question, hypertension was induced in SSNPPA-/- (knockout of Nppa in the Dahl Salt-Sensitive (SS) rat background) or SSWT (wild type Dahl SS) rats by a high salt diet challenge (HS, 4% NaCl for 21 days). Chronic infusion of ANP in SSWT rats attenuated the increase in blood pressure and cardiorenal damage. Overall, SSNPPA-/- strain demonstrated higher blood pressure and intensified cardiac fibrosis (with no changes in ejection fraction) compared to SSWT rats. Furthermore, SSNPPA-/- rats exhibited kidney hypertrophy and higher glomerular injury scores, reduced diuresis, and lower sodium and chloride excretion than SSWT when fed a HS diet. Additionally, the activity of epithelial Na+ channel (ENaC) was found to be increased in the collecting ducts of the SSNPPA-/- rats. Taken together, these data show promise for the therapeutic benefits of ANP and ANP-increasing drugs for treating salt-sensitive hypertension.
Collapse
Affiliation(s)
- Daria V Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta, United States of America
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States of America
| | - Kristen Winsor
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States of America
| | - Gregory R Blass
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States of America
| | - Denisha R Spires
- Department of Physiology, Medical College of Georgia, Augusta, United States of America
| | - Elizaveta Sarsenova
- Department of Medicine, Medical University of South Carolina, Charleston, United States of America
| | - Iuliia Polina
- Department of Medicine, Medical University of South Carolina, Charleston, United States of America
| | - Adrian Zietara
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States of America
| | - Mark Paterson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States of America
| | - Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, United States of America
| | | |
Collapse
|
28
|
Weisert M, Su JA, Menteer J, Shaddy RE, Kantor PF. Drug Treatment of Heart Failure in Children: Gaps and Opportunities. Paediatr Drugs 2022; 24:121-136. [PMID: 35084696 DOI: 10.1007/s40272-021-00485-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 12/11/2022]
Abstract
Medical therapy for pediatric heart failure is based on a detailed mechanistic understanding of the underlying causes, which are diverse and unlike those encountered in most adult patients. Diuresis and improved perfusion are the immediate goals of care in the child with acute decompensated heart failure. Conversion to maintenance oral therapy for heart failure is based on the results of landmark studies in adults, as well as recent pediatric clinical trials and heart failure guidelines. There will continue to be an important role for newer drugs, some of which are in active trials in adults, and some of which are already approved for use in children. The need to plan for clinical trials in children during drug development for heart failure is emphasized.
Collapse
Affiliation(s)
- Molly Weisert
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Division of Cardiology, Heart Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Jennifer A Su
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Division of Cardiology, Heart Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Jondavid Menteer
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Division of Cardiology, Heart Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Robert E Shaddy
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Division of Cardiology, Heart Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Paul F Kantor
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Division of Cardiology, Heart Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
29
|
Zhang X, Zhou Y, Ma R. Potential effects and application prospect of angiotensin receptor-neprilysin inhibitor in diabetic kidney disease. J Diabetes Complications 2022; 36:108056. [PMID: 34893426 DOI: 10.1016/j.jdiacomp.2021.108056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 12/18/2022]
Abstract
Diabetic kidney disease (DKD) is one of the main causes of end-stage renal disease (ESRD) and all-cause mortality in diabetic patients, despite the extensive use of angiotensin-converting enzyme inhibitor (ACEI) and angiotensin II receptor blocker (ARB). Angiotensin receptor-neprilysin inhibitor (ARNI), combining ARB and neutral endopeptidase inhibitor (NEPI), is likely to have potential favorable effects in DKD. This review summarizes existing preclinical and clinical studies on mechanism of ARNI and its potential effects on DKD. In preclinical studies, ARNI manifested its renoprotective effects by improving natriuresis, ameliorating inflammation, oxidative stress and renal dysfunction, and slowing down glomerulosclerosis and tubulointerstitial injury of kidney, but its effect on proteinuria is still controversial. Beneficial effects of ARNI on blood glucose regulation and glycometabolism have also been reported. There are no clinical studies of ARNI that specifically focus on DKD patients so far. ARNI has application potential in DKD, but there still need clinical studies that focus on DKD patients to determine its effectiveness, safety and underlying mechanism.
Collapse
Affiliation(s)
- Xingjian Zhang
- Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yan Zhou
- Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Ruixia Ma
- Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
30
|
Tegin G, Gao Y, Hamlyn JM, Clark BJ, El-Mallakh RS. Inhibition of endogenous ouabain by atrial natriuretic peptide is a guanylyl cyclase independent effect. PLoS One 2021; 16:e0260131. [PMID: 34793577 PMCID: PMC8601428 DOI: 10.1371/journal.pone.0260131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 11/03/2021] [Indexed: 12/15/2022] Open
Abstract
Background Endogenous ouabain (EO) and atrial natriuretic peptide (ANP) are important in regulation of sodium and fluid balance. There is indirect evidence that ANP may be involved in the regulation of endogenous cardenolides. Methods H295R are human adrenocortical cells known to release EO. Cells were treated with ANP at physiologic concentrations or vehicle (0.1% DMSO), with or without guanylyl cyclase inhibitor 1,2,4 oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). Cyclic guanosine monophosphate (cGMP), the intracellular second messenger of ANP, was measured by a chemiluminescent immunoassay and EO was measured by radioimmunoassay of C18 extracted samples. Results EO secretion is inhibited by ANP treatment, with the most prolonged inhibition (90 min vs ≤ 60 min) occurring at physiologic ANP concentrations (50 pg/mL). Inhibition of guanylyl cyclase with ODQ, also reduces EO secretion. The inhibitory effects on EO release in response to cotreatment with ANP and ODQ appeared to be additive. Conclusions ANP inhibits basal EO secretion, and it is unlikely that this is mediated through ANP-A or ANP-B receptors (the most common natriuretic peptide receptors) or their cGMP second messenger; the underlying mechanisms involved are not revealed in the current studies. The role of ANP in the control of EO synthesis and secretion in vivo requires further investigation.
Collapse
Affiliation(s)
- Gulay Tegin
- Department of Psychiatry and Behavioral Sciences, University of Louisville, Louisville, Kentucky, United States of America
| | - Yonglin Gao
- Department of Psychiatry and Behavioral Sciences, University of Louisville, Louisville, Kentucky, United States of America
| | - John M. Hamlyn
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Mississippi, United States of America
| | - Barbara J. Clark
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky, United States of America
| | - Rif S. El-Mallakh
- Department of Psychiatry and Behavioral Sciences, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
31
|
Effect of Water-Pipe Smoking on the Normal Development of Zebrafish. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111659. [PMID: 34770174 PMCID: PMC8582815 DOI: 10.3390/ijerph182111659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022]
Abstract
Background: Among all types of tobacco consumption, Water-Pipe Smoking (WPS) is the most widely used in the Middle East and second-most in several other countries. The effect of WPS on normal development is not yet fully understood, thus the aim of this study is to explore the acute toxicity effects of WPS extract on zebrafish larvae. Methods: In this study, we compared the effects of WPS smoke condensates at concentrations varying from 50 to 200 µg/mL on developmental, cardiac, and behavioural (neurotoxicity) functions. Gene expression patterns of cardiac biomarkers were also evaluated by RT-qPCR. Results: Exposing zebrafish embryos to 50, 100, 150 and 200 µg/mL WPS for three days did not affect the normal morphology of Zebrafish embryos, as the tail flicking, behavioural and locomotion assays did not show any change. However, WPS deregulated cardiac markers including atrial natriuretic peptide (ANP/NPPA) and brain natriuretic peptide (BNP/NPPB). Furthermore, it induced apoptosis in a dose-dependent manner. Conclusion: Our data demonstrate that WPS can significantly affect specific cardiac parameters during the normal development of zebrafish. Further investigations are necessary to elucidate the pathogenic outcome of WPS on different aspects of human life, including pregnancy.
Collapse
|
32
|
Liu C, Li Q, Feng X, Zhu J, Li Q. Deterioration of diabetic nephropathy via stimulating secretion of cytokines by atrial natriuretic peptide. BMC Endocr Disord 2021; 21:204. [PMID: 34663293 PMCID: PMC8525036 DOI: 10.1186/s12902-021-00867-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Atrial natriuretic peptide (ANP) is a cardiovascular and metabolic hormone that has been identified recently as being associated with chronic kidney disease (CKD) without diabetes. Cytokines such as interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and adiponectin (ADP) contribute to the development of type 2 diabetes (T2DM). The aim here was to investigate the relationships of ANP with cytokine levels and clinical variables in T2DM nephropathy patients. METHODS A total of 81 participants with T2DM were recruited, including 37 patients with normoalbuminuria, 23 patients with microalbuminuria and 21 patients with macroalbuminuria. Serum concentrations of ANP and cytokines were measured using enzyme-linked immunosorbent assay (ELISA) kits. The correlations between ANP and clinical variables were analyzed. Multiple linear regression and logistic regression models were constructed to test the associations between ANP and the severity and presence of albuminuria. RESULTS The macroalbuminuria patients exhibited higher plasma levels of ANP, TNF-α, IL-6, and ADP; higher serum creatinine (Cr) and blood urea nitrogen (BUN); and longer duration of diabetes mellitus (DM) than the patients with normoalbuminuria and microalbuminuria. Plasma ANP level was significantly associated with TNF-α (r = 0.876, p < 0.001), IL-6 (r = 0.816, p < 0.001) and ADP (r = 0.772, p < 0.001), independent of the duration of DM or the BUN concentration. CONCLUSION ANP is higher in type 2 diabetes mellitus nephropathy subjects, especially those who have macroalbuminuria, which is associated with compensatory responses to inflammation.
Collapse
Affiliation(s)
- Chenxiao Liu
- Department of Endocrinology, Suzhou Municipal Hospital, Nanjing Medical University, 242 Guangji Road, Suzhou, China.
| | - Qi Li
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, 210006, Jiangsu Province, China
| | - Xiu Feng
- Department of Endocrinology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jian Zhu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, 210006, Jiangsu Province, China
| | - Qian Li
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, 210006, Jiangsu Province, China.
| |
Collapse
|
33
|
Nishiguchi Y, Hata Y, Date R, Fujimoto D, Umemoto S, Kanki T, Yokoi H, Mori KP, Handa T, Watanabe-Takano H, Kanai Y, Yasoda A, Izumi Y, Kakizoe Y, Mochizuki N, Mukoyama M, Kuwabara T. Osteocrin, a bone-derived humoral factor, exerts a renoprotective role in ischemia-reperfusion injury in mice. Nephrol Dial Transplant 2021; 37:444-453. [PMID: 34610136 PMCID: PMC8875462 DOI: 10.1093/ndt/gfab286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
Background Osteocrin (OSTN), a bone-derived humoral factor, was reported to act on heart and bone by potentiating the natriuretic peptide (NP) system. Ostn gene polymorphisms have been associated with renal function decline, but its pathophysiological role in the kidney remains unclear. Methods The role of endogenous OSTN was investigated using systemic Ostn-knockout (KO) mice. As a model for OSTN administration, liver-specific Ostn-overexpressing mice crossed with KO (KO-Tg) were generated. These mice were subjected to unilateral ischemia–reperfusion injury (IRI) and renal lesions after 21 days of insult were evaluated. A comprehensive analysis of the Wnt/β-catenin pathway was performed using a polymerase chain reaction (PCR) array. Reporter plasmid-transfected proximal tubular cells (NRK52E) were used to investigate the mechanism by which OSTN affects the pathway. Results After injury, KO mice showed marginal worsening of renal fibrosis compared with wild-type mice, with comparable renal atrophy. KO-Tg mice showed significantly ameliorated renal atrophy, fibrosis and tubular injury, together with reduced expressions of fibrosis- and inflammation-related genes. The PCR array showed that the activation of the Wnt/β-catenin pathway was attenuated in KO-Tg mice. The downstream targets Mmp7, Myc and Axin2 showed similar results. MMP7 and Wnt2 were induced in corticomedullary proximal tubules after injury, but not in KO-Tg. In NRK52E, OSTN significantly potentiated the inhibitory effects of NP on transforming growth factor β1–induced activation of the Wnt/β-catenin pathway, which was reproduced by a cyclic guanosine monophosphate analog. Conclusions Ectopic Ostn overexpression ameliorated subsequent renal injury following ischemia–reperfusion. OSTN could represent possible renoprotection in acute to chronic kidney disease transition, thus serving as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Yoshihiko Nishiguchi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Yusuke Hata
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Ryosuke Date
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Daisuke Fujimoto
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Shuro Umemoto
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Tomoko Kanki
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Hideki Yokoi
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Keita P Mori
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takaya Handa
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Haruko Watanabe-Takano
- Department of Cell Biology, National Cerebral and Cardiovascular Center, Research Institute, Osaka, Japan
| | - Yugo Kanai
- Department of Diabetes Mellitus and Endocrinology, Osaka Red Cross Hospital, Osaka, Japan
| | - Akihiro Yasoda
- Clinical Research Center, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Yuichiro Izumi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Yutaka Kakizoe
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center, Research Institute, Osaka, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Takashige Kuwabara
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| |
Collapse
|
34
|
Angiotensin receptor-neprilysin inhibitors: Comprehensive review and implications in hypertension treatment. Hypertens Res 2021; 44:1239-1250. [PMID: 34290389 DOI: 10.1038/s41440-021-00706-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023]
Abstract
Angiotensin receptor-neprilysin inhibitors (ARNIs) are a new class of cardiovascular agents characterized by their dual action on the major regulators of the cardiovascular system, including the renin-angiotensin system (RAS) and the natriuretic peptide (NP) system. The apparent clinical benefit of one ARNI, sacubitril/valsartan, as shown in clinical trials, has positioned the drug class as a first-line therapy in patients with heart failure, particularly with reduced ejection fraction. Accumulating evidence also suggests that sacubitril/valsartan is superior to conventional RAS blockers in lowering blood pressure in patients with hypertension. To decide whether to apply an ARNI to treat hypertension clinically, it is important to understand the potential properties of the drug in modulating multiple factors inside and outside the cardiovascular system beyond its effect on reducing peripheral blood pressure. In this context, ARNIs are distinct from preexisting antihypertensive medications in terms of the multiple actions of NPs in various organs and the pharmacological potential of neprilysin inhibitors to modulate multiple cardiac and noncardiac peptides. In particular, analysis of the clinical trials of sacubitril/valsartan implies that ARNIs can provide additional clinical benefits independent of their original purpose, including alleviation of glycemic control and renal impairment in patients with heart failure. Understanding the potential mechanisms of action of ARNIs will help interpret the relevance of their additional benefits beyond lowering blood pressure in hypertension. This review summarizes the comprehensive clinical evidence and relevance of ARNIs by specifically focusing on the potential properties of this new drug class in treating patients with hypertension.
Collapse
|
35
|
Bernhardt A, Häberer S, Xu J, Damerau H, Steffen J, Reichardt C, Wolters K, Steffen H, Isermann B, Borucki K, Artelt N, Endlich N, Kozyraki R, Brandt S, Lindquist JA, Mertens PR. High salt diet-induced proximal tubular phenotypic changes and sodium-glucose cotransporter-2 expression are coordinated by cold shock Y-box binding protein-1. FASEB J 2021; 35:e21912. [PMID: 34533842 DOI: 10.1096/fj.202100667rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/06/2021] [Accepted: 08/25/2021] [Indexed: 11/11/2022]
Abstract
High salt diet (HSD) is a hallmark of blood pressure elevations, weight gain and diabetes onset in the metabolic syndrome. In kidney, compensatory mechanisms are activated to balance salt turnover and maintain homeostasis. Data on the long-term effects of HSD with respect to tubular cell functions and kidney architecture that exclude confounding indirect blood pressure effects are scarce. Additionally we focus on cold shock Y-box binding protein-1 as a tubular cell protective factor. A HSD model (4% NaCl in chow; 1% NaCl in water) was compared to normal salt diet (NSD, standard chow) over 16 months using wild type mice and an inducible conditional whole body knockout for cold shock Y-box binding protein-1 (BL6J/N, Ybx1). HSD induced no difference in blood pressure over 16 months, comparing NSD/HSD and Ybx1 wild type/knockout. Nevertheless, marked phenotypic changes were detected. Glucosuria and subnephrotic albuminuria ensued in wild type animals under HSD, which subsided in Ybx1-deficient animals. At the same time megalin receptors were upregulated. The sodium-glucose cotransporter-2 (SGLT2) was completely downregulated in wild type HSD animals that developed glucosuria. In Ybx1 knockouts, expression of AQP1 and SGLT2 was maintained under HSD; proximal tubular widening and glomerular tubularization developed. Concurrently, amino aciduria of neutral and hydrophobic amino acids was seen. In vitro translation confirmed that YB-1 translationally represses Sglt2 transcripts. Our data reveal profound effects of HSD primarily within glomeruli and proximal tubular segments. YB-1 is regulated by HSD and orchestrates HSD-dependent changes; notably, sets reabsorption thresholds for amino acids, proteins and glucose.
Collapse
Affiliation(s)
- Anja Bernhardt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Saskia Häberer
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - JingJing Xu
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Hannah Damerau
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Johannes Steffen
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Charlotte Reichardt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Katharina Wolters
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Hannes Steffen
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Berend Isermann
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Katrin Borucki
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Nadine Artelt
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany.,NIPOKA GmbH, Greifswald, Germany
| | - Nicole Endlich
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany.,NIPOKA GmbH, Greifswald, Germany
| | - Renata Kozyraki
- Centre de Recherche des Cordeliers, INSERM, UMRS-1138, Université de Paris, Paris, France
| | - Sabine Brandt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jonathan A Lindquist
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Peter R Mertens
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
36
|
Function and regulation of corin in physiology and disease. Biochem Soc Trans 2021; 48:1905-1916. [PMID: 33125488 DOI: 10.1042/bst20190760] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
Atrial natriuretic peptide (ANP) is of major importance in the maintenance of electrolyte balance and normal blood pressure. Reduced plasma ANP levels are associated with the increased risk of cardiovascular disease. Corin is a type II transmembrane serine protease that converts the ANP precursor to mature ANP. Corin deficiency prevents ANP generation and alters electrolyte and body fluid homeostasis. Corin is synthesized as a zymogen that is proteolytically activated on the cell surface. Factors that disrupt corin folding, intracellular trafficking, cell surface expression, and zymogen activation are expected to impair corin function. To date, CORIN variants that reduce corin activity have been identified in hypertensive patients. In addition to the heart, corin expression has been detected in non-cardiac tissues, where corin and ANP participate in diverse physiological processes. In this review, we summarize the current knowledge in corin biosynthesis and post-translational modifications. We also discuss tissue-specific corin expression and function in physiology and disease.
Collapse
|
37
|
Kallash M, Mahan JD. Mechanisms and management of edema in pediatric nephrotic syndrome. Pediatr Nephrol 2021; 36:1719-1730. [PMID: 33216218 DOI: 10.1007/s00467-020-04779-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/18/2020] [Accepted: 09/11/2020] [Indexed: 10/23/2022]
Abstract
Edema is the abnormal accumulation of fluid in the interstitial compartment of tissues within the body. In nephrotic syndrome, edema is often seen in dependent areas such as the legs, but it can progress to cause significant accumulation in other areas leading to pulmonary edema, ascites, and/or anasarca. In this review, we focus on mechanisms and management of edema in children with nephrotic syndrome. We review the common mechanisms of edema, its burden in pediatric patients, and then present our approach and algorithm for management of edema in pediatric patients. The extensive body of experience accumulated over the last 5 decades means that there are many options, and clinicians may choose among these options based on their experience and careful monitoring of responses in individual patients.
Collapse
Affiliation(s)
- Mahmoud Kallash
- Division of Pediatric Nephrology, Nationwide Children's Hospital, 700 Children's Dr., Columbus, OH, 43205, USA. .,The Ohio State University College of Medicine, Columbus, OH, USA.
| | - John D Mahan
- Division of Pediatric Nephrology, Nationwide Children's Hospital, 700 Children's Dr., Columbus, OH, 43205, USA.,The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
38
|
He J, Yang L. Diuretic effect of Lagopsis supina fraction in saline-loaded rats is mediated through inhibition of aquaporin and renin-angiotensin-aldosterone systems and up-regulation of atriopeptin. Biomed Pharmacother 2021; 139:111554. [PMID: 33845373 DOI: 10.1016/j.biopha.2021.111554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 12/31/2022] Open
Abstract
Lagopsis supina (Steph. ex Willd.) lk. -Gal. ex Knorr. has been used as a diuretic agent in China for centuries with limited scientific evidence. This study investigated the diuretic efficacy and underlying mechanism of a macroporous adsorption resin with 30% ethanol elution fraction from L. supina (LSC) in saline-loaded rats and to identify its phytochemicals by ultra-high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-qTOF-MS/MS). As a result, 18 phenylpropanoids, 14 flavonoids and 15 others were identified in LSC, among which stachysoside A and acteoside could be the main bio-active constituents responsible for the diuretic effect. In parallel, the daily administration of LSC (16, 32 and 64 mg/kg) markedly promoted urinary excretion after 2 h of treatment. Moreover, LSC had no effect on urinary Na+ and K+ concentrations, as well as on serum Na+-K+-ATPase activity. Meanwhile, LSC significantly decreased the serum levels of angiotensin II (Ang II), anti-diuretic hormone (ADH), aldosterone (ALD), aquaporin (AQP) 1, AQP2 and AQP3, suppressed renal AQP1, AQP2, and AQP3 mRNA expressions, down-regulated AQP1, AQP2 and AQP3 protein levels, and up-regulated serum atriopeptin (ANP) level in a dose-dependent manner. These findings suggest that LSC has acute and prolonged diuretic effects by inhibiting the AQPs, RAAS, and upregulation of atriopeptin in saline-loaded rats, and this finding support LSC as a novel diuretic agent.
Collapse
Affiliation(s)
- Junwei He
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Li Yang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
39
|
Choi MR, Fernández BE. Protective Renal Effects of Atrial Natriuretic Peptide: Where Are We Now? Front Physiol 2021; 12:680213. [PMID: 34135773 PMCID: PMC8202499 DOI: 10.3389/fphys.2021.680213] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Atrial natriuretic peptide belongs to the family of natriuretic peptides, a system with natriuretic, diuretic, and vasodilator effects that opposes to renin-angiotensin system. In addition to its classic actions, atrial natriuretic peptide exerts a nephroprotective effect given its antioxidant and anti-inflammatory properties, turning it as a beneficial agent against acute and chronic kidney diseases. This minireview describes the most relevant aspects of atrial natriuretic peptide in the kidney, including its renal synthesis, physiological actions through specific receptors, the importance of its metabolism, and its potential use in different pathological scenarios.
Collapse
Affiliation(s)
- Marcelo Roberto Choi
- Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Cátedra de Anatomía e Histología, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto Universitario de Ciencias de la Salud, Fundación H.A. Barceló, Buenos Aires, Argentina
| | | |
Collapse
|
40
|
Travis OK, Tardo GA, Giachelli C, Siddiq S, Nguyen HT, Crosby MT, Johnson T, Brown AK, Williams JM, Cornelius DC. Tumor Necrosis Factor-alpha Blockade Improves Uterine Artery Resistance, Maternal Blood Pressure, and Fetal Growth in Placental Ischemic Rats. Pregnancy Hypertens 2021; 25:39-47. [PMID: 34051437 DOI: 10.1016/j.preghy.2021.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 12/25/2022]
Abstract
We recently reported that adoptive transfer of cytolytic Natural Killer cells (cNKs) from the Reduced Uterine Perfusion Pressure (RUPP) rat induces a preeclampsia (PE)-like phenotype in pregnant rats, accompanied by increased TNF-α. The purpose of this study was to investigate a role for increased TNF-α to induce oxidative stress (ROS), decrease nitric oxide (NO) bioavailability, and induce vascular dysfunction as mechanisms of hypertension (HTN) and intrauterine growth restriction (IUGR) in RUPPs. Pregnant Sprague Dawley rats underwent the RUPP or a Sham procedure on gestation day (GD) 14. On GDs 15 and 18, a subset of Sham and RUPP rats received i.p.injections of vehicle or 0.4 mg/kg of Etanercept (ETA), a soluble TNF-α receptor (n = 10/group). On GD18, Uterine Artery Resistance Index (UARI) was measured, and on GD19, mean arterial pressure (MAP), fetal and placental weights were measured, and blood and tissues were processed for analysis. TNF-α blockade normalized the elevated MAP observed RUPP. Additionally, both fetal and placental weights were decreased in RUPP compared to Sham, and were normalized in RUPP + ETA. Placental ROS was also increased in RUPP rats compared to Sham, and remained elevated in RUPP + ETA. Compared to Sham, UARI was elevated in RUPPs while plasma total nitrate was reduced, and these were normalized in ETA treated RUPPs. In conclusion, TNF-α blockade in RUPPs reduced MAP and UARI, improved fetal growth, and increased NO bioavailability. These data suggest that TNF-α regulation of NO bioavailability is a potential mechanism that contributes to PE pathophysiology and may represent a therapeutic target to improve maternal outcomes and fetal growth.
Collapse
Affiliation(s)
- Olivia K Travis
- Departments of Pharmacology and Toxicology, University of Mississippi Medical Center, United States
| | - Geilda A Tardo
- Emergency Medicine, University of Mississippi Medical Center, United States
| | - Chelsea Giachelli
- Emergency Medicine, University of Mississippi Medical Center, United States
| | - Shani Siddiq
- Departments of Pharmacology and Toxicology, University of Mississippi Medical Center, United States
| | - Henry T Nguyen
- Emergency Medicine, University of Mississippi Medical Center, United States
| | - Madison T Crosby
- Emergency Medicine, University of Mississippi Medical Center, United States
| | - Tyler Johnson
- Departments of Pharmacology and Toxicology, University of Mississippi Medical Center, United States
| | - Andrea K Brown
- Departments of Pharmacology and Toxicology, University of Mississippi Medical Center, United States
| | - Jan M Williams
- Departments of Pharmacology and Toxicology, University of Mississippi Medical Center, United States
| | - Denise C Cornelius
- Departments of Pharmacology and Toxicology, University of Mississippi Medical Center, United States; Emergency Medicine, University of Mississippi Medical Center, United States.
| |
Collapse
|
41
|
Sholokh A, Klussmann E. Local cyclic adenosine monophosphate signalling cascades-Roles and targets in chronic kidney disease. Acta Physiol (Oxf) 2021; 232:e13641. [PMID: 33660401 DOI: 10.1111/apha.13641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/20/2022]
Abstract
The molecular mechanisms underlying chronic kidney disease (CKD) are poorly understood and treatment options are limited, a situation underpinning the need for elucidating the causative molecular mechanisms and for identifying innovative treatment options. It is emerging that cyclic 3',5'-adenosine monophosphate (cAMP) signalling occurs in defined cellular compartments within nanometre dimensions in processes whose dysregulation is associated with CKD. cAMP compartmentalization is tightly controlled by a specific set of proteins, including A-kinase anchoring proteins (AKAPs) and phosphodiesterases (PDEs). AKAPs such as AKAP18, AKAP220, AKAP-Lbc and STUB1, and PDE4 coordinate arginine-vasopressin (AVP)-induced water reabsorption by collecting duct principal cells. However, hyperactivation of the AVP system is associated with kidney damage and CKD. Podocyte injury involves aberrant AKAP signalling. cAMP signalling in immune cells can be local and slow the progression of inflammatory processes typical for CKD. A major risk factor of CKD is hypertension. cAMP directs the release of the blood pressure regulator, renin, from juxtaglomerular cells, and plays a role in Na+ reabsorption through ENaC, NKCC2 and NCC in the kidney. Mutations in the cAMP hydrolysing PDE3A that cause lowering of cAMP lead to hypertension. Another major risk factor of CKD is diabetes mellitus. AKAP18 and AKAP150 and several PDEs are involved in insulin release. Despite the increasing amount of data, an understanding of functions of compartmentalized cAMP signalling with relevance for CKD is fragmentary. Uncovering functions will improve the understanding of physiological processes and identification of disease-relevant aberrations may guide towards new therapeutic concepts for the treatment of CKD.
Collapse
Affiliation(s)
- Anastasiia Sholokh
- Max‐Delbrück‐Center for Molecular Medicine (MDC) Helmholtz Association Berlin Germany
| | - Enno Klussmann
- Max‐Delbrück‐Center for Molecular Medicine (MDC) Helmholtz Association Berlin Germany
- DZHK (German Centre for Cardiovascular Research) Berlin Germany
| |
Collapse
|
42
|
Hepatocardiac or Cardiohepatic Interaction: From Traditional Chinese Medicine to Western Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6655335. [PMID: 33777158 PMCID: PMC7981187 DOI: 10.1155/2021/6655335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/18/2021] [Accepted: 02/05/2021] [Indexed: 12/16/2022]
Abstract
There is a close relationship between the liver and heart based on "zang-xiang theory," "five-element theory," and "five-zang/five-viscus/five-organ correlation theory" in the theoretical system of Traditional Chinese Medicine (TCM). Moreover, with the development of molecular biology, genetics, immunology, and others, the Modern Medicine indicates the existence of the essential interorgan communication between the liver and heart (the heart and liver). Anatomically and physiologically, the liver and heart are connected with each other primarily via "blood circulation." Pathologically, liver diseases can affect the heart; for example, patients with end-stage liver disease (liver failure/cirrhosis) may develop into "cirrhotic cardiomyopathy," and nonalcoholic fatty liver disease (NAFLD) may promote the development of cardiovascular diseases via multiple molecular mechanisms. In contrast, heart diseases can affect the liver, heart failure may lead to cardiogenic hypoxic hepatitis and cardiac cirrhosis, and atrial fibrillation (AF) markedly alters the hepatic gene expression profile and induces AF-related hypercoagulation. The heart can also influence liver metabolism via certain nonsecretory cardiac gene-mediated multiple signals. Moreover, organokines are essential mediators of organ crosstalk, e.g., cardiomyokines link the heart to the liver, while hepatokines link the liver to the heart. Therefore, both TCM and Western Medicine, and both the basic research studies and the clinical practices, all indicate that there exist essential "heart-liver axes" and "liver-heart axes." To investigate the organ interactions between the liver and heart (the heart and liver) will help us broaden and deepen our understanding of the pathogenesis of both liver and heart diseases, thus improving the strategies of prevention and treatment in the future.
Collapse
|
43
|
He M, Zhou T, Niu Y, Feng W, Gu X, Xu W, Zhang S, Wang Z, Zhang Y, Wang C, Dong L, Liu M, Dong N, Wu Q. The protease corin regulates electrolyte homeostasis in eccrine sweat glands. PLoS Biol 2021; 19:e3001090. [PMID: 33591965 PMCID: PMC7909636 DOI: 10.1371/journal.pbio.3001090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/26/2021] [Accepted: 01/04/2021] [Indexed: 01/02/2023] Open
Abstract
Sweating is a basic skin function in body temperature control. In sweat glands, salt excretion and reabsorption are regulated to avoid electrolyte imbalance. To date, the mechanism underlying such regulation is not fully understood. Corin is a transmembrane protease that activates atrial natriuretic peptide (ANP), a cardiac hormone essential for normal blood volume and pressure. Here, we report an unexpected role of corin in sweat glands to promote sweat and salt excretion in regulating electrolyte homeostasis. In human and mouse eccrine sweat glands, corin and ANP are expressed in the luminal epithelial cells. In corin-deficient mice on normal- and high-salt diets, sweat and salt excretion is reduced. This phenotype is associated with enhanced epithelial sodium channel (ENaC) activity that mediates Na+ and water reabsorption. Treatment of amiloride, an ENaC inhibitor, normalizes sweat and salt excretion in corin-deficient mice. Moreover, treatment of aldosterone decreases sweat and salt excretion in wild-type (WT), but not corin-deficient, mice. These results reveal an important regulatory function of corin in eccrine sweat glands to promote sweat and salt excretion.
Collapse
Affiliation(s)
- Meiling He
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
- Department of Nephrology, the People’s Hospital of Suzhou New District, Suzhou, China
| | - Tiantian Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Yayan Niu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wansheng Feng
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Xiabing Gu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenting Xu
- International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai, China
| | - Shengnan Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiting Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Yue Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Can Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Liang Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
- MOH Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, the First Affiliated Hospital, Soochow University, Suzhou, China
- Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, United States of America
| |
Collapse
|
44
|
Angiotensin Receptor Neprilysin Inhibitors in HFrEF: Is This the First Disease Modifying Therapy Drug Class Leading to a Substantial Reduction in Diuretic Need? INTERNATIONAL JOURNAL OF HEART FAILURE 2021; 3:106-116. [PMID: 36262879 PMCID: PMC9536695 DOI: 10.36628/ijhf.2020.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/24/2021] [Accepted: 02/07/2021] [Indexed: 01/12/2023]
Abstract
Despite significant advances in disease modifying therapy in heart failure (HF), diuretics have remained the cornerstone of volume management in all HF phenotypes. Diuretics, alongside their definite acute haemodynamic and symptomatic benefits, also possess many possible deleterious side effects. Moreover, questions remain regarding the prognostic impact of chronic diuretic use. To date, few data exist pertaining to diuretic reduction as a result of individual traditional guideline directed medical therapy in HF with reduced ejection fraction (HFrEF). However, diuretic reduction has been demonstrated with sacubitril/valsartan (angiotensin receptor-neprilysin inhibitor [ARNi]) from the PARADIGM study, as well as, post-marketing reports from our own group and others. Whether the ARNi compound represents the dawn of a new era, where effective therapies will have a more noticeable reduction on diuretic need, remains to be seen. The emergence of sodium glucose transport 2 inhibitors and guanylate cyclase stimulators may further exemplify this issue and potentially extend this benefit to HF patients outside of the HFrEF phenotype. In conclusion, emerging new therapies in HFrEF could reduce the reliance on diuretics in the management of this phenotype of HF. These developments further highlight the clinical importance to continually assess an individual's diuretic requirements through careful volume assessment.
Collapse
|
45
|
Špiranec Spes K, Chen W, Krebes L, Völker K, Abeßer M, Eder Negrin P, Cellini A, Nickel A, Nikolaev VO, Hofmann F, Schuh K, Schweda F, Kuhn M. Heart-Microcirculation Connection: Effects of ANP (Atrial Natriuretic Peptide) on Pericytes Participate in the Acute and Chronic Regulation of Arterial Blood Pressure. Hypertension 2020; 76:1637-1648. [PMID: 32951468 DOI: 10.1161/hypertensionaha.120.15772] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiac ANP (atrial natriuretic peptide) moderates arterial blood pressure. The mechanisms mediating its hypotensive effects are complex and involve inhibition of the renin-angiotensin-aldosterone system, increased natriuresis, endothelial permeability, and vasodilatation. The contribution of the direct vasodilating effects of ANP to blood pressure homeostasis is controversial because variable levels of the ANP receptor, GC-A (guanylyl cyclase-A), are expressed among vascular beds. Here, we show that ANP stimulates GC-A/cyclic GMP signaling in cultured microvascular pericytes and thereby the phosphorylation of the regulatory subunit of myosin phosphatase 1 by cGMP-dependent protein kinase I. Moreover, ANP prevents the calcium and contractile responses of pericytes to endothelin-1 as well as microvascular constrictions. In mice with conditional inactivation (knock-out) of GC-A in microcirculatory pericytes, such vasodilating effects of ANP on precapillary arterioles and capillaries were fully abolished. Concordantly, these mice have increased blood pressure despite preserved renal excretory function. Furthermore, acute intravascular volume expansion, which caused release of cardiac ANP, did not affect blood pressure of control mice but provoked hypertensive reactions in pericyte GC-A knock-out littermates. We conclude that GC-A/cGMP-dependent modulation of pericytes and microcirculatory tone contributes to the acute and chronic moderation of arterial blood pressure by ANP. Graphic Abstract A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Katarina Špiranec Spes
- From the Institute of Physiology, University of Würzburg (K.S.S., W.C., L.K., K.V., M.A., K.S., M.K.), University Hospital Würzburg, Germany.,Comprehensive Heart Failure Center (K.S.S., W.C., P.E.N., A.C., A.N., M.K.), University Hospital Würzburg, Germany
| | - Wen Chen
- From the Institute of Physiology, University of Würzburg (K.S.S., W.C., L.K., K.V., M.A., K.S., M.K.), University Hospital Würzburg, Germany.,Comprehensive Heart Failure Center (K.S.S., W.C., P.E.N., A.C., A.N., M.K.), University Hospital Würzburg, Germany.,The Affiliated Haimen Hospital, Nantong University, Jiangsu, China (W.C.)
| | - Lisa Krebes
- From the Institute of Physiology, University of Würzburg (K.S.S., W.C., L.K., K.V., M.A., K.S., M.K.), University Hospital Würzburg, Germany
| | - Katharina Völker
- From the Institute of Physiology, University of Würzburg (K.S.S., W.C., L.K., K.V., M.A., K.S., M.K.), University Hospital Würzburg, Germany
| | - Marco Abeßer
- From the Institute of Physiology, University of Würzburg (K.S.S., W.C., L.K., K.V., M.A., K.S., M.K.), University Hospital Würzburg, Germany
| | - Petra Eder Negrin
- Comprehensive Heart Failure Center (K.S.S., W.C., P.E.N., A.C., A.N., M.K.), University Hospital Würzburg, Germany
| | - Antonella Cellini
- Comprehensive Heart Failure Center (K.S.S., W.C., P.E.N., A.C., A.N., M.K.), University Hospital Würzburg, Germany
| | - Alexander Nickel
- Comprehensive Heart Failure Center (K.S.S., W.C., P.E.N., A.C., A.N., M.K.), University Hospital Würzburg, Germany
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (V.O.N.)
| | - Franz Hofmann
- Institute of Pharmacology and Toxicology, TU Munich, Germany (F.H.)
| | - Kai Schuh
- From the Institute of Physiology, University of Würzburg (K.S.S., W.C., L.K., K.V., M.A., K.S., M.K.), University Hospital Würzburg, Germany
| | - Frank Schweda
- Institute of Physiology, University of Regensburg, Germany (F.S.)
| | - Michaela Kuhn
- From the Institute of Physiology, University of Würzburg (K.S.S., W.C., L.K., K.V., M.A., K.S., M.K.), University Hospital Würzburg, Germany
| |
Collapse
|
46
|
Krüppel-like factor 17 upregulates uterine corin expression and promotes spiral artery remodeling in pregnancy. Proc Natl Acad Sci U S A 2020; 117:19425-19434. [PMID: 32719113 DOI: 10.1073/pnas.2003913117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Spiral artery remodeling is an important physiological process in the pregnant uterus which increases blood flow to the fetus. Impaired spiral artery remodeling contributes to preeclampsia, a major disease in pregnancy. Corin, a transmembrane serine protease, is up-regulated in the pregnant uterus to promote spiral artery remodeling. To date, the mechanism underlying uterine corin up-regulation remains unknown. Here we show that Krüppel-like factor (KLF) 17 is a key transcription factor for uterine corin expression in pregnancy. In cultured human uterine endometrial cells, KLF17 binds to the CORIN promoter and enhances the promoter activity. Disruption of the KLF17 gene in the endometrial cells abolishes CORIN expression. In mice, Klf17 is up-regulated in the pregnant uterus. Klf17 deficiency prevents uterine Corin expression in pregnancy. Moreover, Klf17-deficient mice have poorly remodeled uterine spiral arteries and develop gestational hypertension and proteinuria. Together, our results reveal an important function of KLF17 in regulating Corin expression and uterine physiology in pregnancy.
Collapse
|
47
|
Polina I, Domondon M, Fox R, Sudarikova AV, Troncoso M, Vasileva VY, Kashyrina Y, Gooz MB, Schibalski RS, DeLeon-Pennell KY, Fitzgibbon WR, Ilatovskaya DV. Differential effects of low-dose sacubitril and/or valsartan on renal disease in salt-sensitive hypertension. Am J Physiol Renal Physiol 2020; 319:F63-F75. [PMID: 32463726 PMCID: PMC7468826 DOI: 10.1152/ajprenal.00125.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Diuretics and renin-angiotensin system blockers are often insufficient to control the blood pressure (BP) in salt-sensitive (SS) subjects. Abundant data support the proposal that the level of atrial natriuretic peptide may correlate with the pathogenesis of SS hypertension. We hypothesized here that increasing atrial natriuretic peptide levels with sacubitril, combined with renin-angiotensin system blockage by valsartan, can be beneficial for alleviation of renal damage in a model of SS hypertension, the Dahl SS rat. To induce a BP increase, rats were challenged with a high-salt 4% NaCl diet for 21 days, and chronic administration of vehicle or low-dose sacubitril and/or valsartan (75 μg/day each) was performed. Urine flow, Na+ excretion, and water consumption were increased on the high-salt diet compared with the starting point (0.4% NaCl) in all groups but remained similar among the groups at the end of the protocol. Upon salt challenge, we observed a mild decrease in systolic BP and urinary neutrophil gelatinase-associated lipocalin levels (indicative of alleviated tubular damage) in the valsartan-treated groups. Sacubitril, as well as sacubitril/valsartan, attenuated the glomerular filtration rate decline induced by salt. Alleviation of protein cast formation and lower renal medullary fibrosis were observed in the sacubitril/valsartan- and valsartan-treated groups, but not when sacubitril alone was administered. Interestingly, proteinuria was mildly mitigated only in rats that received sacubitril/valsartan. Further studies of the effects of sacubitril/valsartan in the setting of SS hypertension, perhaps involving a higher dose of the drug, are warranted to determine if it can interfere with the progression of the disease.
Collapse
Affiliation(s)
- Iuliia Polina
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Mark Domondon
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Rebecca Fox
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Anastasia V Sudarikova
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Miguel Troncoso
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Valeriia Y Vasileva
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Yuliia Kashyrina
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Monika Beck Gooz
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Ryan S Schibalski
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Kristine Y DeLeon-Pennell
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - Wayne R Fitzgibbon
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Daria V Ilatovskaya
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
48
|
Salazar J, Rojas-Quintero J, Cano C, Pérez JL, Ramírez P, Carrasquero R, Torres W, Espinoza C, Chacín-González M, Bermúdez V. Neprilysin: A Potential Therapeutic Target of Arterial Hypertension? Curr Cardiol Rev 2020; 16:25-35. [PMID: 31241018 PMCID: PMC7062041 DOI: 10.2174/1573403x15666190625160352] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023] Open
Abstract
Arterial hypertension is the most prevalent chronic disease in the adult population of developed countries and it constitutes a significant risk factor in the development of cardiovascular disease, contributing to the emergence of many comorbidities, among which heart failure excels, a clinical syndrome that nowadays represents a major health problem with uncountable hospitalizations and the indolent course of which progressively worsens until quality of life decreases and lastly death occurs prematurely. In the light of this growing menace, each day more efforts are invested in the field of cardiovascular pharmacology, searching for new therapeutic options that allow us to modulate the physiological systems that appear among these pathologies. Therefore, in the later years, the study of natriuretic peptides has become so relevant, which mediate beneficial effects at the cardiovascular level such as diuresis, natriuresis, and decreasing cardiac remodeling; their metabolism is mediated by neprilysin, a metalloproteinase, widely expressed in the human and capable of catalyzing many substrates. The modulation of these functions has been studied by decades, giving room to Sacubitril, the first neprilysin inhibitor, which in conjunction with an angiotensin receptor blocker has provided a high efficacy and tolerability among patients with heart failure, for whom it has already been approved and recommended. Nonetheless, in the matter of arterial hypertension, significant findings have arisen that demonstrate the potential role that it will play among the pharmacological alternatives in the upcoming years.
Collapse
Affiliation(s)
- Juan Salazar
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Joselyn Rojas-Quintero
- Pulmonary and Critical Care Medicine Department, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Clímaco Cano
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - José L Pérez
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Paola Ramírez
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Rubén Carrasquero
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Wheeler Torres
- Endocrine and Metabolic Disease Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | | | | | - Valmore Bermúdez
- Universidad Simon Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| |
Collapse
|
49
|
Membrane-anchored serine proteases as regulators of epithelial function. Biochem Soc Trans 2020; 48:517-528. [PMID: 32196551 PMCID: PMC9869603 DOI: 10.1042/bst20190675] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Cleavage of proteins in the extracellular milieu, including hormones, growth factors and their receptors, ion channels, and various cell adhesion and extracellular matrix molecules, plays a key role in the regulation of cell behavior. Among more than 500 proteolytic enzymes encoded by mammalian genomes, membrane-anchored serine proteases (MASPs), which are expressed on the surface of epithelial cells of all major organs, are excellently suited to mediate signal transduction across the epithelia and are increasingly being recognized as important regulators of epithelial development, function, and disease [ 1-3]. In this minireview, we summarize current knowledge of the in vivo roles of MASPs in acquisition and maintenance of some of the defining functions of epithelial tissues, such as barrier formation, ion transport, and sensory perception.
Collapse
|
50
|
Yagmur E, Sckaer JH, Koek GH, Weiskirchen R, Trautwein C, Koch A, Tacke F. Elevated MR-proANP plasma concentrations are associated with sepsis and predict mortality in critically ill patients. J Transl Med 2019; 17:415. [PMID: 31830996 PMCID: PMC6909604 DOI: 10.1186/s12967-019-02165-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
Background and aims Mid-regional pro atrial natriuretic peptide (MR-proANP) is an established biomarker for heart failure, based on its key role in regulating homeostasis of water balance and blood pressure. The aim of the study was to determine the value of MR-proANP as a clinical biomarker in critical illness and/or sepsis. Upon admission to the medical intensive care unit (ICU), we investigated MR-proANP plasma concentrations in 217 critically ill patients (144 with sepsis, 73 without sepsis). Results were compared with 65 healthy controls. Results MR-proANP plasma levels were significantly elevated in critically ill patients, when compared to healthy controls. Notably, MR-proANP levels were significantly higher in ICU patients with sepsis. MR-proANP levels were not associated with metabolic comorbidities like diabetes or obesity. In critically ill patients, MR-proANP plasma concentrations correlated with inflammatory cytokines, markers of organ dysfunction and several adipocytokines, such as resistin, retinol-binding protein 4 (RBP4) and adiponectin. Importantly, high MR-proANP plasma levels were associated with mortality, as MR-proANP levels above 227.0 pmol/l indicated a particularly increased mortality risk in ICU patients. The association between MR-proANP and mortality was independent of single organ failure and inflammation markers. Conclusion Our study emphasizes the role of circulating MR-proANP as a biomarker in critically ill patients, in which high MR-proANP indicates organ dysfunction, sepsis and mortality risk. The association between high MR-proANP and inflammatory as well as adipose tissue-derived endocrine mediators warrants further pathophysiological investigations.
Collapse
Affiliation(s)
- Eray Yagmur
- Medical Care Center, Dr. Stein and Colleagues, Tomphecke 45, 41169, Mönchengladbach, Germany.
| | | | - Ger H Koek
- Section of Gastroenterology and Hepatology, Department of Internal Medicine, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH-University Hospital Aachen, Aachen, Germany
| | - Christian Trautwein
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| | - Alexander Koch
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| | - Frank Tacke
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany.,Department of Hepatology and Gastroenterology, Charité University Medical Center, Berlin, Germany
| |
Collapse
|