1
|
Cai X, Li X, Shi J, Tang L, Yang J, Yu R, Wang Z, Wang D. S100A8/A9 high-expression macrophages mediate renal tubular epithelial cell damage in acute kidney injury following acute type A aortic dissection surgery. Front Mol Biosci 2025; 12:1530741. [PMID: 40270593 PMCID: PMC12015165 DOI: 10.3389/fmolb.2025.1530741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/07/2025] [Indexed: 04/25/2025] Open
Abstract
Background Acute kidney injury (AKI) is a major complication after acute type A aortic dissection (ATAAD), with an incidence rate of 20-66.7%. Many patients with AKI after ATAAD surgery show no clear signs of ischemia-reperfusion injury. In our previous study, S100A8 and S100A9 were identified as predictive biomarkers of AKI after ATAAD surgery. These proteins are primarily expressed in neutrophils and macrophages, where they contribute to cell damage and immune cell activation. However, the roles of S100A8/A9 in ATAAD-associated AKI remain unclear. Methods In this study, transcriptomics sequence was applied to identify differentially expressed genes in renal tubular epithelial cells (TCMK-1), stimulated by culture supernatant of S100A8/A9 overexpressed and downregulated RAW264.7 cells. Single-cell sequencing data were used to identify cell clusters with high S100A8/A9 expression. Cross-analysis between RNA sequencing datasets was used to investigate common pathways enrichment in both in vitro and in vivo models. Molecular biology experiments were used to explore the downstream signaling pathways of S100A8/S100A9. Results We found that S100A8/S100A9 expression levels were increased and co-localized primarily with macrophages in the kidneys of AKI mice. Marker genes of M1-type macrophages, like Nos2 and Il1b, were upregulated in S100A8/A9 overexpressed M1-type macrophages, while the opposite was observed in the downregulated group. In transcription sequencing results, TCMK-1 cells stimulated by the supernatant from S100A8/A9 overexpressed and downregulated RAW264.7 cells can activate the TNF and PPAR pathway respectively. Cross-analysis revealed that the TNF signaling, IL-17 signaling, and other inflammatory pathways were enriched in both S100A8/A9-related renal tubular epithelial cell impairment and other AKI sequencing datasets. Finally, recombinant protein S100A8/A9 activated the TNF signaling pathway in renal tubular epithelial cells. Conclusion These findings suggested that S100A8/A9 were promising predictive biomarkers for AKI after surgery for ATAAD. S100A8/A9 were upregulated and primarily localized in renal macrophages, where they promoted the transformation of macrophages into the M1 phenotype. S100A8/A9 overexpressed macrophages activated the TNF signaling pathway through secretion and direct interaction with renal tubular epithelial cells, highlighting the critical role of TNF signaling in AKI after ATAAD surgery.
Collapse
Affiliation(s)
- Xiujuan Cai
- Department of Cardiac Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Li
- Department of Cardiac Surgery, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Jian Shi
- Department of Cardiac Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lu Tang
- Department of Cardiac Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jie Yang
- Department of Cardiac Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ronghuang Yu
- Department of Cardiac Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhigang Wang
- Department of Cardiac Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Dongjin Wang
- Department of Cardiac Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Cardiac Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Addario G, Moroni L, Mota C. Kidney Fibrosis In Vitro and In Vivo Models: Path Toward Physiologically Relevant Humanized Models. Adv Healthc Mater 2025; 14:e2403230. [PMID: 39906010 PMCID: PMC11973949 DOI: 10.1002/adhm.202403230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/14/2025] [Indexed: 02/06/2025]
Abstract
Chronic kidney disease (CKD) affects over 10% of the global population and is a leading cause of mortality. Kidney fibrosis, a key endpoint of CKD, disrupts nephron tubule anatomy and filtration function, and disease pathomechanisms are not fully understood. Kidney fibrosis is currently investigated with in vivo models, that gradually support the identification of possible mechanisms of fibrosis, but with limited translational research, as they do not fully recapitulate human kidney physiology, metabolism, and molecular pathways. In vitro 2D cell culture models are currently used, as a starting point in disease modeling and pharmacology, however, they lack the 3D kidney architecture complexity and functions. The failure of several therapies and drugs in clinical trials highlights the urgent need for advanced 3D in vitro models. This review discusses the urinary system's anatomy, associated diseases, and diagnostic methods, including biomarker analysis and tissue biopsy. It evaluates 2D and in vivo models, highlighting their limitations. The review explores the state-of-the-art 3D-humanized in vitro models, such as 3D cell aggregates, on-chip models, biofabrication techniques, and hybrid models, which aim to mimic kidney morphogenesis and functions. These advanced models hold promise for translating new therapies and drugs for kidney fibrosis into clinics.
Collapse
Affiliation(s)
- Gabriele Addario
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityER Maastricht6229The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityER Maastricht6229The Netherlands
| | - Carlos Mota
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityER Maastricht6229The Netherlands
| |
Collapse
|
3
|
Li J, Chen LT, Wang YL, Kang MX, Liang ST, Hong XZ, Hou FF, Zhang FJ. Inhibition of HIF-prolyl hydroxylase promotes renal tubule regeneration via the reprogramming of renal proximal tubular cells. Acta Pharmacol Sin 2025; 46:1002-1015. [PMID: 39775504 PMCID: PMC11950656 DOI: 10.1038/s41401-024-01445-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/24/2024] [Indexed: 01/11/2025]
Abstract
The ability of the mammalian kidney to repair or regenerate after acute kidney injury (AKI) is very limited. The maladaptive repair of AKI promotes progression to chronic kidney disease (CKD). Therefore, new strategies to promote the repair/regeneration of injured renal tubules after AKI are urgently needed. Hypoxia has been shown to induce heart regeneration in adult mice. However, it is unknown whether hypoxia can induce kidney regeneration after AKI. In this study, we used a prolyl hydroxylase domain inhibitor (PHDI), MK-8617, to mimic hypoxic conditions and found that MK-8617 significantly ameliorated ischemia reperfusion injury (IRI)-induced AKI. We also showed that MK-8617 dramatically facilitated renal tubule regeneration by promoting the proliferation of renal proximal tubular cells (RPTCs) after IRI-induced AKI. We then performed bulk mRNA sequencing and discovered that multiple nephrogenesis-related genes were significantly upregulated with MK-8617 pretreatment. We also showed that MK-8617 may alleviate proximal tubule injury by stabilizing the HIF-1α protein specifically in renal proximal tubular cells. Furthermore, we demonstrated that MK-8617 promotes the reprogramming of renal proximal tubular cells to Sox9+ renal progenitor cells and the regeneration of renal proximal tubules. In summary, we report that the inhibition of prolyl hydroxylase improves renal proximal tubule regeneration after IRI-induced AKI by promoting the reprogramming of renal proximal tubular cells to Sox9+ renal progenitor cells.
Collapse
Affiliation(s)
- Jing Li
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
- Department of Critical Care Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Li-Ting Chen
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - You-Liang Wang
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Mei-Xia Kang
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Shi-Ting Liang
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Xi-Zhen Hong
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Fan Fan Hou
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Fu-Jian Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China.
| |
Collapse
|
4
|
Lopes-Gonçalves G, Costa-Pessoa JM, de Ponte MC, Braz HM, Oliveira-Souza M. Insights into the effects of apelin-13 on renal function and NHE3 activity following ischemia/reperfusion-induced acute kidney injury. Front Physiol 2025; 16:1544274. [PMID: 40177358 PMCID: PMC11961903 DOI: 10.3389/fphys.2025.1544274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/18/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Acute kidney injury (AKI) is a clinical syndrome characterized by rapid decline in renal function with varying severity. In this context, tubular function is impaired in ischemia-induced AKI. Although there are no effective therapies for AKI, many compounds have been reported to reduce kidney injury, such as apelin-13. Considering the relevance of proximal tubular cells in maintaining fluid and electrolyte homeostasis, the effects of apelin-13 on tubular injury or sodium proximal transport remain unclear. Thus, the present study aims to evaluate the effects of exogenous administration of apelin-13 in the renal ischemia/reperfusion (I/R) model, with particular focus on renal function, injury markers, and tubular proliferation. Methods Male C57BL/6 mice were initially treated with a vehicle or high dose of apelin-13 (200 μg/kg/day) and subjected to kidney bilateral ischemia procedure for 30 min or a sham surgery. The mice were euthanized by exsanguination 2 d after the ischemic procedure. Then, the renal function was assessed through the plasma urea level and creatinine clearance. Tubular injury was evaluated by hematoxylin and eosin staining. Kidney injury molecule 1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), megalin, Ki67, and phospho ERK 1/2 (Thr202/Tyr204) were evaluated through immunohistochemical or immunoblotting experiments. Moreover, the murine proximal tubular cells (TKPTS) were treated with apelin-13 (100 nM) to evaluate the activity of the Na+/H+ exchanger isoform 3 (NHE3) via intracellular pH measurements. Results Initial administration of apelin-13 did not improve tubular injury, creatinine clearance, or plasma urea level after renal I/R. Moreover, KIM-1 and NGAL markers were markedly increased after renal I/R and were not reduced in the apelin-13 + I/R group. Furthermore, megalin downregulation by renal I/R was not prevented by apelin-13. Interestingly, apelin-13 worsened the renal responses to tubular proliferation after renal I/R as Ki67 and phosphorylation of ERK/1/2 (Thr202/Tyr204) were sharply reduced in the apelin-13 + I/R group. In vitro experiments also demonstrated that apelin-13 inhibited NHE3 activity in murine proximal tubular cells. Conclusion The overall findings suggest that apelin-13 suppresses tubular proliferation and potentially impairs the adaptive response to renal I/R injury, thereby highlighting its relevance in ischemia-induced AKI.
Collapse
Affiliation(s)
- Guilherme Lopes-Gonçalves
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Juliana Martins Costa-Pessoa
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Mariana Charleaux de Ponte
- Laboratory of Cellular and Molecular Bases of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Heitor Macedo Braz
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Oliveira-Souza
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
5
|
Liu Y, Xin Y, Yuan M, Liu Y, Song Y, Shen L, Xiao Y, Wang X, Wang D, Liu L, Liu Y, Luo Y, Huang P, Zhang Q, Zhang W, Li H, Zhou Y, Wang X, Yu K, Wang C. Sivelestat sodium protects against renal ischemia/reperfusion injury by reduction of NETs formation. Arch Biochem Biophys 2025; 765:110318. [PMID: 39863096 DOI: 10.1016/j.abb.2025.110318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/19/2024] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) often results in renal impairment. While the presence of neutrophil extracellular traps (NETs) is consistently observed, their specific impact on IRI is not yet defined. Sivelestat sodium, an inhibitor of neutrophil elastase which is crucial for NET formation, may offer a therapeutic approach to renal IRI, warranting further research. METHODS A mouse model was established for early-stage renal IRI, confirmed by injury markers and histological assessments. The involvement of NETs in renal I/R was demonstrated using immunofluorescence and Western blot. Renal function and pathology were further evaluated through a comprehensive set of methods, including Periodic Acid-Schiff staining (PAS) and Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling (TUNEL) staining, enzyme-linked immunosorbent assay (ELISA), Real time Glomerular Filtration Rate (RT-GFR) monitoring, Polymerase Chain Reaction (PCR), biochemical analysis, and additional Western blot and immunofluorescence assays. RESULTS We firstly quantified NET expression in renal IRI mice, noting a peak at 24 h. Subsequently, sivelestat sodium treatment was administered, resulting in decreased MPO, CitH3, and attenuated tubular damage. Moreover, it resulted in a decrease in serum levels of creatinine, blood urea nitrogen (BUN), as well as neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1). Additionally, it lowered the abundance of renal tissue inflammatory markers interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), and mitigated the levels of oxidative stress indicators malondialdehyde (MDA) and 4 Hydroxynonenal (4HNE), accompanied by a decline in renal cell apoptosis and an enhancement of GFR in renal I/R mice. CONCLUSION Sivelestat sodium ameliorates renal IRI by downregulating neutrophil NETs, reducing inflammation, oxidative stress, and apoptosis, thereby enhancing renal function.
Collapse
Affiliation(s)
- Yanqi Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China; Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, 150001, China; Central Laboratory of the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yu Xin
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China; Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, 150001, China; Central Laboratory of the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Mengyao Yuan
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China; Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, 150001, China; Central Laboratory of the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yuhan Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China; Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, 150001, China; Central Laboratory of the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yuchen Song
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China; Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, 150001, China; Central Laboratory of the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Lifeng Shen
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China; Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, 150001, China; Central Laboratory of the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yu Xiao
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China; Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, 150001, China; Central Laboratory of the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xinran Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China; Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, 150001, China; Central Laboratory of the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Dawei Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China; Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, No. 150 Haping Rd, Nangang District, Harbin, 150081, China; Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, 150001, China; Central Laboratory of the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Linqiong Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China; Department of Critical Care Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China; Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, 150001, China; Central Laboratory of the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yuxi Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China; Department of Critical Care Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China; Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, 150001, China; Central Laboratory of the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yinghao Luo
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China; Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, 150001, China; Central Laboratory of the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Pengfei Huang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China; Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, 150001, China; Central Laboratory of the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Qianqian Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China; Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, 150001, China; Central Laboratory of the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Weiting Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China; Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, 150001, China; Central Laboratory of the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Hongxu Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China; Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, 150001, China; Central Laboratory of the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yuxin Zhou
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China; Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, 150001, China; Central Laboratory of the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xibo Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China; Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, 150001, China; Central Laboratory of the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Kaijiang Yu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China; Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, 150001, China; Central Laboratory of the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Changsong Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China; Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin, 150001, China; Central Laboratory of the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
6
|
Guilpin A, Magnin M, Aigle A, Ayoub J, Schuhler T, Lac R, Marchal T, Brichart T, Hammed A, Louzier V. Temporary bilateral clamping of renal arteries induces ischemia-reperfusion: A new pig model of acute kidney injury using total intravenous anesthesia. Physiol Rep 2025; 13:e70203. [PMID: 39895016 PMCID: PMC11788332 DOI: 10.14814/phy2.70203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025] Open
Abstract
Ischemia-reperfusion (IR) is a leading cause of acute kidney injury (AKI), and pigs are commonly used in preclinical AKI models. However, existing models often vary in the methods used to induce ischemia, and the resulting AKI tends to be mild-to-moderate. Moreover, follow-up is often performed under volatile anesthesia, which, in contrast to total intravenous anesthesia (TIVA), can induce malignant hyperthermia and cause hemodynamic instability. Here we present a novel surgical model of IR-induced AKI using bilateral renal artery clamping under TIVA. Anesthesia was induced via TIVA with diazepam, ketamine, and morphine. After retroperitoneal exposure, the renal arteries were isolated and clamped with a plastic tube for 90 min, followed by 8 h of reperfusion. The IR group (n = 6) was compared with a Sham group (n = 5) that underwent the same procedure without IR. The IR group developed moderate-to-severe AKI as evidenced by reduced glomerular filtration, a 158% increase in plasma creatinine versus 21% in the Sham group, and elevated neutrophil gelatinase-associated lipocalin levels (+280% in IR vs. 0% in Sham), indicating tubular injury. Histopathology confirmed these findings. Thus, this preclinical model successfully induced moderate-to-severe AKI in pigs. The TIVA anesthetic protocol offered several advantages compared to halogenated gas anesthesia.
Collapse
Affiliation(s)
- Axel Guilpin
- MexBrainVilleurbanneFrance
- Université de Lyon, UR APCSe Agressions Pulmonaires et Circulatoires Dans le Sepsis, VetAgro SupMarcy l'EtoileFrance
| | - Mathieu Magnin
- Université de Lyon, UR APCSe Agressions Pulmonaires et Circulatoires Dans le Sepsis, VetAgro SupMarcy l'EtoileFrance
- Université de Lyon, VetAgro Sup, Unité de Physiologie, Pharmacodynamie et ThérapeutiqueMarcy l'EtoileFrance
| | | | - Jean‐Yves Ayoub
- Université de Lyon, UR APCSe Agressions Pulmonaires et Circulatoires Dans le Sepsis, VetAgro SupMarcy l'EtoileFrance
| | - Timothée Schuhler
- Université de Lyon, UR APCSe Agressions Pulmonaires et Circulatoires Dans le Sepsis, VetAgro SupMarcy l'EtoileFrance
| | - Romain Lac
- Université de Lyon, UR APCSe Agressions Pulmonaires et Circulatoires Dans le Sepsis, VetAgro SupMarcy l'EtoileFrance
| | - Thierry Marchal
- Université de Lyon, VetAgro Sup, Pole de Pathologie VétérinaireMarcy l'EtoileFrance
| | | | - Abdessalem Hammed
- Université de Lyon, UR APCSe Agressions Pulmonaires et Circulatoires Dans le Sepsis, VetAgro SupMarcy l'EtoileFrance
| | - Vanessa Louzier
- Université de Lyon, UR APCSe Agressions Pulmonaires et Circulatoires Dans le Sepsis, VetAgro SupMarcy l'EtoileFrance
- Université de Lyon, VetAgro Sup, Unité de Physiologie, Pharmacodynamie et ThérapeutiqueMarcy l'EtoileFrance
| |
Collapse
|
7
|
Milošević N, Rütter M, Ventura Y, Feinshtein V, David A. Targeted Polymer-Peptide Conjugates for E-Selectin Blockade in Renal Injury. Pharmaceutics 2025; 17:82. [PMID: 39861730 PMCID: PMC11768228 DOI: 10.3390/pharmaceutics17010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Leukocytes play a significant role in both acute kidney injury (AKI) and chronic kidney disease (CKD), contributing to pathogenesis and tissue damage. The process of leukocyte infiltration into the inflamed tissues is mediated by the interactions between the leukocytes and cell adhesion molecules (CAMs, i.e., E-selectin, P-selectin, and VCAM-1) present on the inner surface of the inflamed vasculature. Directly interfering with these interactions is a viable strategy to limit the extent of excessive inflammation; however, several small-molecule drug candidates failed during clinical translation. We hypothesized that a synthetic polymer presenting multiple copies of the high-affinity E-selecting binding peptide (P-Esbp) could block E-selectin-mediated functions and decrease leukocytes infiltration, thus reducing the extent of inflammatory kidney injury. METHODS P-Esbp was synthesized by conjugating E-selecting binding peptide (Esbp) to N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer with reactive ester groups via aminolysis. The effects of P-Esbp treatment on kidney injury were investigated in two different models: AKI model (renal ischemia-reperfusion injury-RIRI) and CKD model (adenine-induced kidney injury). RESULTS We found that the mRNA levels of E-selectin were up-regulated in the kidney following acute and chronic tissue injury. P-Esbp demonstrated an extended half-life time in the bloodstream, and the polymer accumulated significantly in the liver, lungs, and kidneys within 4 h post injection. Treatment with P-Esbp suppressed the up-regulation of E-selectin in mice with RIRI and attenuated the inflammatory process. In the adenine-induced CKD model, the use of the E-selectin blocking copolymer had little impact on the progression of kidney injury, owing to the compensating function of P-selectin and VCAM-1. CONCLUSION Our findings provide valuable insights into the interconnection between CAMs and compensatory mechanisms in controlling leukocyte migration in AKI and CKD. The combination of multiple CAM blockers, given simultaneously, may provide protective effects for preventing excessive leukocyte infiltration and control renal injury.
Collapse
Affiliation(s)
| | | | | | | | - Ayelet David
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
8
|
Ji Y, Xiao Y, Li S, Fan Y, Cai Y, Yang B, Chen H, Hu S. Protective effect and mechanism of Xiaoyu Xiezhuo decoction on ischemia-reperfusion induced acute kidney injury based on gut-kidney crosstalk. Ren Fail 2024; 46:2365982. [PMID: 39010816 PMCID: PMC11740681 DOI: 10.1080/0886022x.2024.2365982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/17/2024] Open
Abstract
This study aimed to explore the mechanism of Xiaoyu Xiezhuo decoction (XXD) on ischemia-reperfusion-induced acute kidney injury (IRI-AKI) using network pharmacology methods and gut microbiota analysis. A total of 1778 AKI-related targets were obtained, including 140 targets possibly regulated by AKI in XXD, indicating that the core targets were mainly enriched in inflammatory-related pathways, such as the IL-17 signaling pathway and TNF signaling pathway. The unilateral IRI-AKI animal model was established and randomly divided into four groups: the sham group, the AKI group, the sham + XXD group, and the AKI + XXD group. Compared with the rats in the AKI group, XXD improved not only renal function, urinary enzymes, and biomarkers of renal damage such as Kim-1, cystatin C, and serum inflammatory factors such as IL-17, TNF-α, IL-6, and IL 1-β, but also intestinal metabolites including lipopolysaccharides, d-lactic acid, indoxyl sulfate, p-cresyl sulfate, and short-chain fatty acids. XXD ameliorated renal and colonic pathological injury as well as inflammation and chemokine gene abundance, such as IL-17, TNF-α, IL-6, IL-1β, ICAM-1, and MCP-1, in AKI rats via the TLR4/NF-κB/NLRP3 pathway, reducing the AKI score, renal pathological damage, and improving the intestinal mucosa's inflammatory infiltration. It also repaired markers of the mucosal barrier, including claudin-1, occludin, and ZO-1. Compared with the rats in the AKI group, the α diversity was significantly increased, and the Chao1 index was significantly enhanced after XXD treatment in both the sham group and the AKI group. The treatment group significantly reversed this change in microbiota.
Collapse
Affiliation(s)
- Yue Ji
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, PR China
- Institute of Nephrology & Beijing Key Laboratory, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, PR China
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Yunming Xiao
- Department of Nephrology, Medical School of Chinese PLA, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, PR China
| | - Shipian Li
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, PR China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Yihua Fan
- Department of Rheumatism and Immunity, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Yuzi Cai
- Institute of Nephrology & Beijing Key Laboratory, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, PR China
| | - Bo Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Hongbo Chen
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, PR China
| | - Shouci Hu
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, PR China
| |
Collapse
|
9
|
Zhang T, Widdop RE, Ricardo SD. Transition from acute kidney injury to chronic kidney disease: mechanisms, models, and biomarkers. Am J Physiol Renal Physiol 2024; 327:F788-F805. [PMID: 39298548 DOI: 10.1152/ajprenal.00184.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 09/01/2024] [Indexed: 09/22/2024] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are increasingly recognized as interconnected conditions with overlapping pathophysiological mechanisms. This review examines the transition from AKI to CKD, focusing on the molecular mechanisms, animal models, and biomarkers essential for understanding and managing this progression. AKI often progresses to CKD due to maladaptive repair processes, persistent inflammation, and fibrosis, with both conditions sharing common pathways involving cell death, inflammation, and extracellular matrix (ECM) deposition. Current animal models, including ischemia-reperfusion injury (IRI) and nephrotoxic damage, help elucidate these mechanisms but have limitations in replicating the complexity of human disease. Emerging biomarkers such as kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and soluble tumor necrosis factor receptors (TNFRs) show promise in early detection and monitoring of disease progression. This review highlights the need for improved animal models and biomarker validation to better mimic human disease and enhance clinical translation. Advancing our understanding of the AKI-to-CKD transition through targeted therapies and refined research approaches holds the potential to significantly improve patient outcomes.
Collapse
Affiliation(s)
- Tingfang Zhang
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Robert E Widdop
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sharon D Ricardo
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
10
|
Jogdeo CM, Panja S, Kumari N, Tang W, Kapoor E, Siddhanta K, Das A, Boesen EI, Foster KW, Oupický D. Inulin-based nanoparticles for targeted siRNA delivery in acute kidney injury. J Control Release 2024; 376:577-592. [PMID: 39419450 DOI: 10.1016/j.jconrel.2024.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
RNA interference has emerged as a promising therapeutic strategy to tackle acute kidney injury (AKI). Development of targeted delivery systems is highly desired for selective renal delivery of RNA and improved therapeutic outcomes in AKI. Inulin is a plant polysaccharide traditionally employed to measure glomerular filtration rate. Here, we describe the synthesis of inulin modified with α-cyclam-p-toluic acid (CPTA) to form a novel renal-targeted polymer, Inulin-CPTA (IC), which is capable of selective siRNA delivery to the injured kidneys. We show that conjugating CPTA to inulin imparts IC with targeting properties for cells that overexpress the C-X-C chemokine receptor 4 (CXCR4). Self-assembled IC/siRNA nanoparticles (polyplexes) demonstrated rapid accumulation in the injured kidneys with selective uptake and prolonged retention in injured renal tubules overexpressing the CXCR4 receptor. Tumor-suppressor protein p53 contributes significantly to the pathogenesis of AKI. siRNA-induced silencing of p53 has shown therapeutic potential in several preclinical studies, making it an important target in the treatment of AKI. Systemically administered nanoparticles formulated using IC and siRNA against p53 selectively accumulated in the injured kidneys and potently silenced p53 expression. Selective p53 knockdown led to positive therapeutic outcomes in mice with cisplatin-induced AKI, as seen by reduced tubular cell death, renal injury, inflammation, and overall improved renal function. These findings indicate that IC is a promising new carrier for renal-targeted delivery of RNA for the treatment of AKI.
Collapse
Affiliation(s)
- Chinmay M Jogdeo
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sudipta Panja
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Neha Kumari
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Weimin Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ekta Kapoor
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kasturi Siddhanta
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ashish Das
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Erika I Boesen
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kirk W Foster
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
11
|
Liu L, Liu Y, Xin Y, Liu Y, Gao Y, Yu K, Wang C. An early and stable mouse model of polymyxin-induced acute kidney injury. Intensive Care Med Exp 2024; 12:88. [PMID: 39352603 PMCID: PMC11445218 DOI: 10.1186/s40635-024-00667-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Polymyxins have been revived as a last-line therapeutic option for multi-drug resistant bacteria and continue to account for a significant proportion of global antibiotic usage. However, kidney injury is often a treatment limiting event with kidney failure rates ranging from 5 to 13%. The mechanisms underlying polymyxin-induced nephrotoxicity are currently unclear. Researches of polymyxin-associated acute kidney injury (AKI) models need to be more standardized, which is crucial for obtaining consistent and robust mechanistic results. METHODS In this study, male C57BL/6 mice received different doses of polymyxin B (PB) and polymyxin E (PE, also known as colistin) by different routes once daily (QD), twice daily (BID), and thrice daily (TID) for 3 days. We continuously monitored the glomerular filtration rate (GFR) and the AKI biomarkers, including serum creatinine (Scr), blood urea nitrogen (BUN), neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury molecule-1 (KIM-1). We also performed histopathological examinations to assess the extent of kidney injury. RESULTS Mice receiving PB (35 mg/kg/day subcutaneously) once daily exhibited a significant decrease in GFR and a notable increase in KIM-1 two hours after the first dose. Changes in GFR and KIM-1 at 24, 48 and 72 h were consistent and demonstrated the occurrence of kidney injury. Histopathological assessments showed a positive correlation between the severity of kidney injury and the changes in GFR and KIM-1 (Spearman's rho = 0.3167, P = 0.0264). The other groups of mice injected with PB and PE did not show significant changes in GFR and AKI biomarkers compared to the control group. CONCLUSION The group receiving PB (35 mg/kg/day subcutaneously) once daily consistently developed AKI at 2 h after the first dose. Establishing an early and stable AKI model facilitates researches into the mechanisms of early-stage kidney injury. In addition, our results indicated that PE had less toxicity than PB and mice receiving the same dose of PB in the QD group exhibited more severe kidney injury than the BID and TID groups.
Collapse
Affiliation(s)
- Linqiong Liu
- Departments of Critical Care Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Departments of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Yuxi Liu
- Departments of Critical Care Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Departments of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Yu Xin
- Departments of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Yanqi Liu
- Departments of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Yan Gao
- Departments of Critical Care Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| | - Kaijiang Yu
- Departments of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001, Heilongjiang, China.
| | - Changsong Wang
- Departments of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
12
|
Funahashi Y, Park SH, Hebert JF, Eiwaz MB, Munhall AC, Groat T, Zeng L, Kim J, Choi HS, Hutchens MP. Nanotherapeutic kidney cell-specific targeting to ameliorate acute kidney injury. Kidney Int 2024; 106:597-610. [PMID: 39067856 DOI: 10.1016/j.kint.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 07/30/2024]
Abstract
Acute kidney injury (AKI) increases the risk of in-hospital death, adds to expense of care, and risk of early chronic kidney disease. AKI often follows an acute event such that timely treatment could ameliorate AKI and potentially reduce the risk of additional disease. Despite therapeutic success of dexamethasone in animal models, clinical trials have not demonstrated broad success. To improve the safety and efficacy of dexamethasone for AKI, we developed and characterized a novel, kidney-specific nanoparticle enabling specific within-kidney targeting to proximal tubular epithelial cells provided by the megalin ligand cilastatin. Cilastatin and dexamethasone were complexed to H-Dot nanoparticles, which were constructed from generally recognized as safe components. Cilastatin/Dexamethasone/H-Dot nanotherapeutics were found to be stable at plasma pH and demonstrated salutary release kinetics at urine pH. In vivo, they were specifically biodistributed to the kidney and bladder, with 75% recovery in the urine and with reduced systemic toxicity compared to native dexamethasone. Cilastatin complexation conferred proximal tubular epithelial cell specificity within the kidney in vivo and enabled dexamethasone delivery to the proximal tubular epithelial cell nucleus in vitro. The Cilastatin/Dexamethasone/H-Dot nanotherapeutic improved kidney function and reduced kidney cellular injury when administered to male C57BL/6 mice in two translational models of AKI (rhabdomyolysis and bilateral ischemia reperfusion). Thus, our design-based targeting and therapeutic loading of a kidney-specific nanoparticle resulted in preservation of the efficacy of dexamethasone, combined with reduced off-target disposition and toxic effects. Hence, our study illustrates a potential strategy to target AKI and other diseases of the kidney.
Collapse
Affiliation(s)
- Yoshio Funahashi
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Seung Hun Park
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jessica F Hebert
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Mahaba B Eiwaz
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Adam C Munhall
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Tahnee Groat
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Lingxue Zeng
- Department of Biomedical & Nutritional Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Jonghan Kim
- Department of Biomedical & Nutritional Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael P Hutchens
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon, USA; Operative Care Division, Portland VA Medical Center, Portland, Oregon, USA.
| |
Collapse
|
13
|
Wei Q, Huang J, Livingston MJ, Wang S, Dong G, Xu H, Zhou J, Dong Z. Pseudogene GSTM3P1 derived long non-coding RNA promotes ischemic acute kidney injury by target directed microRNA degradation of kidney-protective mir-668. Kidney Int 2024; 106:640-657. [PMID: 39074555 PMCID: PMC11416318 DOI: 10.1016/j.kint.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 07/31/2024]
Abstract
Long non-coding RNAs (lncRNAs) are a group of epigenetic regulators that have been implicated in kidney diseases including acute kidney injury (AKI). However, very little is known about the specific lncRNAs involved in AKI and the mechanisms underlying their pathologic roles. Here, we report a new lncRNA derived from the pseudogene GSTM3P1, which mediates ischemic AKI by interacting with and promoting the degradation of mir-668, a kidney-protective microRNA. GSTM3P1 and its mouse orthologue Gstm2-ps1 were induced by hypoxia in cultured kidney proximal tubular cells. In mouse kidneys, Gstm2-ps1 was significantly upregulated in proximal tubules at an early stage of ischemic AKI. This transient induction of Gstm2-ps1 depends on G3BP1, a key component in stress granules. GSTM3P1 overexpression increased kidney proximal tubular apoptosis after ATP depletion, which was rescued by mir-668. Notably, kidney proximal tubule-specific knockout of Gstm2-ps1 protected mice from ischemic AKI, as evidenced by improved kidney function, diminished tubular damage and apoptosis, and reduced kidney injury biomarker (NGAL) induction. To test the therapeutic potential, Gstm2-ps1 siRNAs were introduced into cultured mouse proximal tubular cells or administered to mice. In cultured cells, Gstm2-ps1 knockdown suppressed ATP depletion-associated apoptosis. In mice, Gstm2-ps1 knockdown ameliorated ischemic AKI. Mechanistically, both GSTM3P1 and Gstm2-ps1 possessed mir-668 binding sites and downregulated the mature form of mir-668. Specifically, GSTM3P1 directly bound to mature mir-668 to induce its decay via target-directed microRNA degradation. Thus, our results identify GSTM3P1 as a novel lncRNA that promotes kidney tubular cell death in AKI by binding mir-668 to inducing its degradation.
Collapse
Affiliation(s)
- Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.
| | - Jing Huang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA; Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Man Jiang Livingston
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Shixuan Wang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Guie Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Hongyan Xu
- Department of Biostatistics, Data Science and Epidemiology, School of Public Health, Augusta University, Augusta, Georgia, USA
| | - Jiliang Zhou
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA; Charlie Norwood VA Medical Center, Augusta, Georgia, USA.
| |
Collapse
|
14
|
Melchinger I, Guo K, Li X, Guo J, Cantley LG, Xu L. VCAM-1 mediates proximal tubule-immune cell cross talk in failed tubule recovery during AKI-to-CKD transition. Am J Physiol Renal Physiol 2024; 327:F610-F622. [PMID: 39116349 PMCID: PMC11483080 DOI: 10.1152/ajprenal.00076.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Studies in animal models have suggested a linkage between the inflammatory response to injury and subsequent nephron loss during the acute kidney injury (AKI) to chronic kidney disease (CKD) transition. Failure of normal repair during the CKD transition correlates with de novo expression of vascular cell adhesion protein-1 (VCAM-1) by a subset of injured proximal tubule cells. This study identified the role of VCAM-1 expression in promoting the failed repair state. Single-cell transcriptome analysis of patients with AKI and CKD and whole kidney RNA and protein analyses of mouse models of CKD confirmed a marked increase of VCAM-1 expression in the proximal tubules of injured kidneys. In immortalized mouse proximal tubular cells and primary cultured renal cells (PCRCs), VCAM-1 expression was induced by proinflammatory cytokines including tumor necrosis factor (TNF)-α and interleukin (IL)-1β. Analyses of bulk RNA sequencing of TNF-α-treated primary cultured renal cells or pseudo-bulk RNA sequencing of biopsies from Kidney Precision Medicine Project datasets indicated activation of NF-κB and an enrichment of inflammatory response and cell adhesion pathways in VCAM-1-positive cells. Pharmacological inhibition of NF-κB signaling or genetic deletion of myeloid differentiation factor 88 and TIR domain-containing adapter-inducing interferon-β suppressed TNF-α- and IL-1β-induced VCAM-1 expression in vitro. TNF-α stimulation or overexpression of VCAM-1 significantly increased splenocyte adhesion to the mouse proximal tubular monolayer in culture. These results demonstrate that persistence of proinflammatory cytokines after AKI can induce NF-κB-dependent VCAM-1 expression by proximal tubule cells, mediating increased immune cell adhesion to the tubule and thus promoting further tubule injury and greater risk of progression from AKI to CKD.NEW & NOTEWORTHY We demonstrated the induction of VCAM-1 and its biological function in proximal tubules. We found that proinflammatory cytokines (TNF-α and IL-1β) significantly induced VCAM-1 expression via NF-κB signaling pathway. TNF-α treatment or overexpression of VCAM-1 in immortalized MPT cells increased CD45+ splenocyte adhesion. Pharmacological inhibition of NF-κB or genetic deletion of Vcam1 suppressed TNF-α-induced splenocyte adhesion in vitro, suggesting that VCAM-1 mediates proximal tubular-immune cell cross talk in failed tubule recovery during AKI-to-CKD transition.
Collapse
Affiliation(s)
- Isabel Melchinger
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Kailin Guo
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Xiaoxu Li
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Jiankan Guo
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Lloyd G Cantley
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Leyuan Xu
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
15
|
Li X, Zhou X, Ping X, Zhao X, Kang H, Zhang Y, Ma Y, Ge H, Liu L, Li R, Guo L. Combined Plasma Olink Proteomics and Transcriptomics Identifies CXCL1 and TNFRSF12A as Potential Predictive and Diagnostic Inflammatory Markers for Acute Kidney Injury. Inflammation 2024; 47:1547-1563. [PMID: 38472598 DOI: 10.1007/s10753-024-01993-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024]
Abstract
Acute kidney injury (AKI) poses a significant global public health challenge. Current methods for detecting AKI rely on monitoring changes in serum creatinine (Scr), blood urea nitrogen (BUN), urinary output and some commonly employed biomarkers. However, these indicators are usually neither specific nor sensitive to AKI, especially in cases of mild kidney injury. AKI is accompanied by severe inflammatory reactions, resulting in the upregulation of numerous inflammation-associated proteins in the plasma. Plasma biomarkers are a noninvasive method for detecting kidney injury, and to date, plasma inflammation-associated cytokines have not been adequately studied in AKI patients. The objective of our research was to identify novel inflammatory biomarkers for AKI. We utilized Olink proteomics to analyze the alterations in plasma inflammation-related proteins in the serum of healthy mice (n = 2) or mice treated with cisplatin (n = 6). Additionally, transcriptome datasets for the lipopolysaccharide (LPS), cisplatin, and ischemia‒reperfusion injury (IRI) groups were obtained from the National Center of Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database. We calculated the intersection of differentially expressed proteins (DEPs) and genes (DEGs) from both datasets. In the Olink proteomics analysis, the AKI group had significantly greater levels of 11 DEPs than did the control group. In addition, 56 common upregulated DEGs were obtained from the transcriptome dataset. The expression of CXCL1 and TNFRSF12A overlapped across all the datasets. The transcription and protein expression levels of CXCL1 and TNFRSF12A were detected in vivo. The gene and protein levels of CXCL1 and TNFRSF12A were significantly increased in different AKI mouse models and clinical patients, suggesting that these genes and proteins could be potential specific biomarkers for the identification of AKI.
Collapse
Affiliation(s)
- Xiaoyang Li
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People's Hospital, Yingze District, 29 Shuangta East Street, Taiyuan, 030000, People's Republic of China
| | - Xiangyang Zhou
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People's Hospital, Yingze District, 29 Shuangta East Street, Taiyuan, 030000, People's Republic of China
- Basic-Medicine of Shanxi Medical University, Yingze District, 56 Xinjian South Road, Taiyuan, 030000, People's Republic of China
| | - Xinbo Ping
- Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Xin Zhao
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People's Hospital, Yingze District, 29 Shuangta East Street, Taiyuan, 030000, People's Republic of China
| | - Huixia Kang
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People's Hospital, Yingze District, 29 Shuangta East Street, Taiyuan, 030000, People's Republic of China
- Second Department of Nephrology, Hospital of Traditional Chinese Medicine of Shanxi Province, Taiyuan, China
| | - Yue Zhang
- The Fifth Clinical Medical College of Shanxi Medical University, Fifth Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuehong Ma
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People's Hospital, Yingze District, 29 Shuangta East Street, Taiyuan, 030000, People's Republic of China
| | - Haijun Ge
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People's Hospital, Yingze District, 29 Shuangta East Street, Taiyuan, 030000, People's Republic of China
| | - Lili Liu
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People's Hospital, Yingze District, 29 Shuangta East Street, Taiyuan, 030000, People's Republic of China
| | - Rongshang Li
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People's Hospital, Yingze District, 29 Shuangta East Street, Taiyuan, 030000, People's Republic of China
- Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Lili Guo
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People's Hospital, Yingze District, 29 Shuangta East Street, Taiyuan, 030000, People's Republic of China.
- Basic-Medicine of Shanxi Medical University, Yingze District, 56 Xinjian South Road, Taiyuan, 030000, People's Republic of China.
| |
Collapse
|
16
|
Lee MS, Cho JY, Moon MH, Lee J, Lee JP, Shin N, Jin W, Cho A. Comprehensive ultrasonographic evaluation of normal and fibrotic kidneys in a mouse model with an ultra-high-frequency transducer. Ultrasonography 2024; 43:314-326. [PMID: 39113383 PMCID: PMC11374587 DOI: 10.14366/usg.24024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 09/04/2024] Open
Abstract
PURPOSE This study aimed to establish baseline morphological and functional data for normal mouse kidneys via a clinical 33 MHz ultra-high-frequency (UHF) transducer, compare the data with the findings from fibrotic mice, and assess correlations between ultrasonography (US) parameters and fibrosis-related markers. METHODS This retrospective study aggregated data from three separate experiments (obstructive nephropathy, diabetic nephropathy, and acute-to-chronic kidney injury models). Morphological parameters (kidney size, parenchymal thickness [PT]) and functional (shear-wave speed [SWS], stiffness, resistive index [RI], and microvascular imaging-derived vascular index [VI]) were assessed and compared between normal and fibrotic mouse kidneys. Semi-quantitative histopathologic scores were calculated and molecular markers (epithelial cadherin), Collagen 1A1 [Col1A1], transforming growth factor-β, and α-smooth muscle actin [α-SMA]) were evaluated using western blots. Correlations with US parameters were explored. RESULTS Clinical UHF US successfully imaged the kidneys of the experimental mice. A three-layer configuration was prevalent in the normal mouse kidney parenchyma (34/35) but was blurred in most fibrotic mouse kidneys (33/40). US parameters, including size (11.14 vs. 10.70 mm), PT (2.07 vs. 1.24 mm), RI (0.64 vs. 0.77), VI (22.55% vs. 11.47%, only for non-obstructive kidneys), SWS (1.67 vs. 2.06 m/s), and stiffness (8.23 vs. 12.92 kPa), showed significant differences between normal and fibrotic kidneys (P<0.001). These parameters also demonstrated strong discriminative ability in receiver operating characteristic curve analysis (area under the curve, 0.76 to 0.95; P<0.001). PT, VI, and RI were significantly correlated with histological fibrosis markers (ρ=-0.64 to -0.68 for PT and VI, ρ=0.71-0.76 for RI, P<0.001). VI exhibited strong negative correlations with Col1A1 (ρ=-0.76, P=0.006) and α-SMA (ρ=-0.75, P=0.009). CONCLUSION Clinical UHF US effectively distinguished normal and fibrotic mouse kidneys, indicating the potential of US parameters, notably VI, as noninvasive markers for tracking fibrosis initiation and progression in mouse kidney fibrosis models.
Collapse
Affiliation(s)
- Myoung Seok Lee
- Department of Radiology, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Jeong Yeon Cho
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Min Hoan Moon
- Department of Radiology, Seoul National University Boramae Medical Center, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Jeonghwan Lee
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Translational Medicine Major, Seoul National University College of Medicine, Seoul, Korea
| | - Nayeon Shin
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Wencheng Jin
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ara Cho
- Translational Medicine Major, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
17
|
Ganguly A, Chetty S, Primavera R, Levitte S, Regmi S, Dulken BW, Sutherland SM, Angeles W, Wang J, Thakor AS. Time-course analysis of cisplatin induced AKI in preclinical models: implications for testing different sources of MSCs. J Transl Med 2024; 22:789. [PMID: 39192240 DOI: 10.1186/s12967-024-05439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/26/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Kidneys are at risk from drug-induced toxicity, with a significant proportion of acute kidney injury (AKI) linked to medications, particularly cisplatin. Existing cytoprotective drugs for cisplatin-AKI carry side effects, prompting a search for better biological therapies. Mesenchymal Stem Cells (MSCs) are under consideration given their regenerative properties, yet their clinical application has not achieved their full potential, mainly due to variability in the source of MSC tested. In addition, translating treatments from rodent models to humans remains challenging due to a lack of standardized dosing and understanding potential differential responses to cisplatin between animal strains. METHOD In the current study, we performed a time-course analysis of the effect of cisplatin across different mouse strains and evaluated gender related differences to create a robust preclinical model that could then be used to explore the therapeutic efficacy of different sources of MSCs for their ability to reverse AKI. RESULT Our data indicated that different mouse strains produce differential responses to the same cisplatin dosing regimen. Despite this, we did not observe any gender-related bias towards cisplatin nephrotoxicity. Furthermore, our time-course analysis identified that cisplatin-induced inflammation was driven by a strong CXCL1 response, which was used as a putative biomarker to evaluate the comparative therapeutic efficacy of different MSC sources in reversing AKI. Our data indicates that UC-MSCs have a stronger anti-inflammatory effect compared to BM-MSCs and AD-MSCs, which helped to ameliorate cisplatin-AKI. CONCLUSION Overall, our data underscores the importance of using an optimized preclinical model of cisplatin-AKI to test different therapies. We identified CXCL1 as a potential biomarker of cisplatin-AKI and identified the superior efficacy of UC-MSCs in mitigating cisplatin-AKI.
Collapse
Affiliation(s)
- Abantika Ganguly
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA, 94304, USA
| | - Shashank Chetty
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA, 94304, USA
| | - Rosita Primavera
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA, 94304, USA
| | - Steven Levitte
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA, 94304, USA
| | - Shobha Regmi
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA, 94304, USA
| | | | - Scott M Sutherland
- Department of Pediatrics, Division of Nephrology, Stanford University, Palo Alto, CA, USA
| | - Wendy Angeles
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA, 94304, USA
| | - Jing Wang
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA, 94304, USA
| | - Avnesh S Thakor
- Interventional Radiology Innovation at Stanford (IRIS), Department of Radiology, School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, CA, 94304, USA.
| |
Collapse
|
18
|
Zeng J, Ye C, Zhang C, Su H. Membranous translocation of murine double minute 2 promotes the increased renal tubular immunogenicity in ischemia-reperfusion-induced acute kidney injury. Am J Physiol Renal Physiol 2024; 327:F290-F303. [PMID: 38867673 DOI: 10.1152/ajprenal.00200.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
Kidneys from donors with prolonged warm and cold ischemia are prone to posttransplant T cell-mediated rejection (TCMR) due to ischemia-reperfusion injury (IRI). However, the precise mechanisms still remain obscure. Renal tubular epithelial cells (TECs) are the main target during IRI. Meanwhile, we have previously reported that murine double minute 2 (MDM2) actively participates in TEC homeostasis during IRI. In this study, we established a murine model of renal IRI and a cell model of hypoxia-reoxygenation by culturing immortalized rat renal proximal tubule cells (NRK-52E) in a hypoxic environment for different time points followed by 24 h of reoxygenation and incubating NRK-52E cells in a chemical anoxia-recovery environment. We found that during renal IRI MDM2 expression increased on the membrane of TECs and aggregated mainly on the basolateral side. This process was accompanied by a reduction of a transmembrane protein, programmed death ligand 1 (PD-L1), a coinhibitory second signal for T cells in TECs. Using mutant plasmids of MDM2 to anchor MDM2 on the cell membrane or nuclei, we found that the upregulation of membrane MDM2 could promote the ubiquitination of PD-L1 and lead to its ubiquitination-proteasome degradation. Finally, we set up a coculture system of TECs and CD4+ T cells in vitro; our results revealed that the immunogenicity of TECs was enhanced during IRI. In conclusion, our findings suggest that the increased immunogenicity of TECs during IRI may be related to ubiquitinated degradation of PD-L1 by increased MDM2 on the cell membrane, which consequently results in T-cell activation and TCMR.NEW & NOTEWORTHY Ischemic acute kidney injury (AKI) donors can effectively shorten the waiting time for kidney transplantation but increase immune rejection, especially T cell-mediated rejection (TCMR), the mechanism of which remains to be elucidated. Our study demonstrates that during ischemia-reperfusion injury (IRI), the translocation of tubular murine double minute 2 leads to basolateral programmed death ligand 1 degradation, which ultimately results in the occurrence of TCMR, which may provide a new therapeutic strategy for preventing AKI donor-associated TCMR.
Collapse
Affiliation(s)
- Jieyu Zeng
- Department of Nephrology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan Hubei China
| | - Chen Ye
- Department of Nephrology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan Hubei China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan Hubei China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan Hubei China
| |
Collapse
|
19
|
de Oliveira Bezerra D, Amorim Aita G, Rhands Coelho de Moura C, dos Santos Silva L, Ernanda Sousa de Carvalho C, Rafaela Alves da Silva C, Rebeca Soares Carneiro de Sousa M, Barros Ferraz JC, Cardoso de Brito F, Silva Carvalho M, Gabriel Gomes de Melo W, Benício Campêlo C, Martins de Carvalho MA. Kidney/Aorta Ratio for Renal Morphometric Determination in Swine Subjected to Acute Kidney Injury Using an Optimized Surgical Model. Comp Med 2024; 74:255-262. [PMID: 38849202 PMCID: PMC11373677 DOI: 10.30802/aalas-cm-23-000080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/22/2024] [Accepted: 04/17/2024] [Indexed: 06/09/2024]
Abstract
This research aims to establish an experimental surgical model for access to the renal pedicle and kidney and to determine renal length measurement via the kidney/aorta ratio (K/AO) using ultrasound. Fifteen swine underwent ventral median celiotomy with a supraumbilical transverse incision to access the right and left renal pedicles and induce renal ischemia-reperfusion injury (IRR). The kidneys were evaluated using ultrasonography to standardize renal length, aortic diameter, and the K/AO. Assessment was performed at 2 time points: 1 h before and 24 h after the surgery to induce IRR. Blood and urine samples were collected to assess renal function. Histologic evaluation of kidney fragments was also conducted. The proposed abdominal cavity access method proved to be highly efficient for exposing the right and left renal pedicles and inducing IRR. Serum levels of urea, creatinine, calcium, and phosphorus, as well as levels of the urinary protein/urinary creatinine ratio and urinary GGT, did not show significant differences. Acute kidney injury was confirmed through histopathology. The mean lengths of the right and left kidneys were 82.63 and 87.64 mm, respectively. The values of the right and left K/AO were 9.81 and 10.38, respectively. There was no statistically significant difference in the K/AO ratio before and after IRR. The proposed surgical model allowed surgical intervention on the renal pedicles without intra- or postoperative complications. Furthermore, the K/AO could be measured through ultrasonography, establishing a reference for healthy animals.
Collapse
Affiliation(s)
- Dayseanny de Oliveira Bezerra
- Núcleo Integrado e Morfologia e Pesquisas com Células-tronco (NUPCelt), Centro de Ciências Agrárias, Universidade Federal do Piauí, Teresina, Brazil
| | | | - Charlys Rhands Coelho de Moura
- Núcleo Integrado e Morfologia e Pesquisas com Células-tronco (NUPCelt), Centro de Ciências Agrárias, Universidade Federal do Piauí, Teresina, Brazil
| | - Lucilene dos Santos Silva
- Núcleo Integrado e Morfologia e Pesquisas com Células-tronco (NUPCelt), Centro de Ciências Agrárias, Universidade Federal do Piauí, Teresina, Brazil
| | - Camila Ernanda Sousa de Carvalho
- Núcleo Integrado e Morfologia e Pesquisas com Células-tronco (NUPCelt), Centro de Ciências Agrárias, Universidade Federal do Piauí, Teresina, Brazil
| | - Catarina Rafaela Alves da Silva
- Núcleo Integrado e Morfologia e Pesquisas com Células-tronco (NUPCelt), Centro de Ciências Agrárias, Universidade Federal do Piauí, Teresina, Brazil
| | | | | | | | - Marina Silva Carvalho
- Núcleo Integrado e Morfologia e Pesquisas com Células-tronco (NUPCelt), Centro de Ciências Agrárias, Universidade Federal do Piauí, Teresina, Brazil
| | - Wanderson Gabriel Gomes de Melo
- Núcleo Integrado e Morfologia e Pesquisas com Células-tronco (NUPCelt), Centro de Ciências Agrárias, Universidade Federal do Piauí, Teresina, Brazil
| | - Camile Benício Campêlo
- Núcleo Integrado e Morfologia e Pesquisas com Células-tronco (NUPCelt), Centro de Ciências Agrárias, Universidade Federal do Piauí, Teresina, Brazil
| | - Maria Acelina Martins de Carvalho
- Núcleo Integrado e Morfologia e Pesquisas com Células-tronco (NUPCelt), Centro de Ciências Agrárias, Universidade Federal do Piauí, Teresina, Brazil
| |
Collapse
|
20
|
Oliveira CA, Mercês ÉAB, Portela FS, Malheiro LFL, Silva HBL, De Benedictis LM, De Benedictis JM, Silva CCDE, Santos ACL, Rosa DP, Velozo HS, de Jesus Soares T, de Brito Amaral LS. An integrated view of cisplatin-induced nephrotoxicity, hepatotoxicity, and cardiotoxicity: characteristics, common molecular mechanisms, and current clinical management. Clin Exp Nephrol 2024; 28:711-727. [PMID: 38678166 DOI: 10.1007/s10157-024-02490-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/18/2024] [Indexed: 04/29/2024]
Abstract
Cisplatin (CP) is a chemotherapy drug widely prescribed to treat various neoplasms. Although fundamental for the therapeutic action of the drug, its cytotoxic mechanisms trigger adverse effects in several tissues, such as the kidney, liver, and heart, which limit its clinical use. In this sense, studies point to an essential role of damage to nuclear and mitochondrial DNA associated with oxidative stress, inflammation, and apoptosis in the pathophysiology of tissue injuries. Due to the limitation of effective preventive and therapeutic measures against CP-induced toxicity, new strategies with potential cytoprotective effects have been studied. Therefore, this article is timely in reviewing the characteristics and main molecular mechanisms common to renal, hepatic, and cardiac toxicity previously described, in addition to addressing the main validated strategies for the current management of these adverse events in clinical practice. We also handle the main promising antioxidant substances recently presented in the literature to encourage the development of new research that consolidates their potential preventive and therapeutic effects against CP-induced cytotoxicity.
Collapse
Affiliation(s)
- Caroline Assunção Oliveira
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
| | - Érika Azenathe Barros Mercês
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
- Programa de Pós-Graduação em Biociências, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
| | - Fernanda Santos Portela
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
- Programa de Pós-Graduação em Biociências, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
| | - Lara Fabiana Luz Malheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
- Programa de Pós-Graduação em Biociências, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
| | | | | | | | | | | | | | - Helloisa Souza Velozo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
| | - Telma de Jesus Soares
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
- Programa de Pós-Graduação em Biociências, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil
| | - Liliany Souza de Brito Amaral
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil.
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil.
- Programa de Pós-Graduação em Biociências, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Bahia, 45029-094, Brazil.
| |
Collapse
|
21
|
Song Z, Yao W, Wang X, Mo Y, Liu Z, Li Q, Jiang L, Wang H, He H, Li N, Zhang Z, Lv P, Zhang Y, Yang L, Wang Y. The novel potential therapeutic target PSMP/MSMP promotes acute kidney injury via CCR2. Mol Ther 2024; 32:2248-2263. [PMID: 38796708 PMCID: PMC11286806 DOI: 10.1016/j.ymthe.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/14/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024] Open
Abstract
Acute kidney injury (AKI) is a major worldwide health concern that currently lacks effective medical treatments. PSMP is a damage-induced chemotactic cytokine that acts as a ligand of CCR2 and has an unknown role in AKI. We have observed a significant increase in PSMP levels in the renal tissue, urine, and plasma of patients with AKI. PSMP deficiency improved kidney function and decreased tubular damage and inflammation in AKI mouse models induced by kidney ischemia-reperfusion injury, glycerol, and cisplatin. Single-cell RNA sequencing analysis revealed that Ly6Chi or F4/80lo infiltrated macrophages (IMs) were a major group of proinflammatory macrophages with strong CCR2 expression in AKI. We observed that PSMP deficiency decreased CCR2+Ly6Chi or F4/80lo IMs and inhibited M1 polarization in the AKI mouse model. Moreover, overexpressed human PSMP in the mouse kidney could reverse the attenuation of kidney injury in a CCR2-dependent manner, and this effect could be achieved without CCL2 involvement. Extracellular PSMP played a crucial role, and treatment with a PSMP-neutralizing antibody significantly reduced kidney injury in vivo. Therefore, PSMP might be a therapeutic target for AKI, and its antibody is a promising therapeutic drug for the treatment of AKI.
Collapse
Affiliation(s)
- Zhanming Song
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, People's Republic of China
| | - Weijian Yao
- Renal Division, Peking University Institute of Nephrology, Key Laboratory of Renal Disease-Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University)-Ministry of Education of China, Research Units of Diagnosis and Treatment of Immune-mediated Kidney, Diseases-Chinese Academy of Medical Sciences, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Xuekang Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, People's Republic of China
| | - Yaqian Mo
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, People's Republic of China
| | - Zhongtian Liu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, People's Republic of China
| | - Qingqing Li
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, People's Republic of China
| | - Lei Jiang
- Renal Division, Peking University Institute of Nephrology, Key Laboratory of Renal Disease-Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University)-Ministry of Education of China, Research Units of Diagnosis and Treatment of Immune-mediated Kidney, Diseases-Chinese Academy of Medical Sciences, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Hui Wang
- Laboratory of Electron Microscopy Pathological Center, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Huiying He
- Department of Pathology, School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Beijing 100191, People's Republic of China
| | - Ning Li
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, People's Republic of China
| | - Zhaohuai Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, People's Republic of China
| | - Ping Lv
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, People's Republic of China
| | - Yu Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, People's Republic of China
| | - Li Yang
- Renal Division, Peking University Institute of Nephrology, Key Laboratory of Renal Disease-Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University)-Ministry of Education of China, Research Units of Diagnosis and Treatment of Immune-mediated Kidney, Diseases-Chinese Academy of Medical Sciences, Peking University First Hospital, Beijing 100034, People's Republic of China.
| | - Ying Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing 100191, People's Republic of China; Center for Human Disease Genomics, Peking University, Beijing 100191, People's Republic of China.
| |
Collapse
|
22
|
Ren L, Zhao Y, Wang T, Tong Y, Zhao P, Nie F, Luo Y, Zhu L. Ultrasound molecular imaging for early detection of acute renal ischemia-reperfusion injury. Bioeng Transl Med 2024; 9:e10638. [PMID: 39036076 PMCID: PMC11256142 DOI: 10.1002/btm2.10638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 07/23/2024] Open
Abstract
Background Microcirculatory perfusion disorder and inflammatory response are critical links in acute kidney injury (AKI). We aim to construct anti-vascular cell adhesion molecule-1(VCAM-1) targeted microbubbles (TM) to monitor renal microcirculatory perfusion and inflammatory response. Methods TM carrying VCAM-1 polypeptide was constructed by biological coupling. The binding ability of TM to human umbilical vein endothelial cells (HUVECs) was detected. Bilateral renal ischemia-reperfusion injury (IRI) models of mice were established to evaluate microcirculatory perfusion and inflammatory response using TM. Thirty-six mice were randomly divided into six groups according to the different reperfusion time (0.5, 2, 6, 12, and 24 h) and sham-operated group (Sham group). The correlation of TM imaging with serum and histopathological biomarkers was investigated. Results TM has advantages such as uniform distribution, regular shape, high stability, and good biosafety. TM could bind specifically to VCAM-1 molecule expressed by tumor necrosis factor-alpha (TNF-α)-treated HUVECs. In the renal IRI-AKI model, the area under the curve (AUC) of TM significantly decreased both in the renal cortical and medullary after 2 h of reperfusion compared with the Sham group (p < 0.05). Normalized intensity difference (NID) of TM at different reperfusion time was all higher than that of blank microbubbles (BM) and the Sham group (p < 0.05). Ultrasound molecular imaging of TM could detect AKI early before commonly used renal function markers, histopathological biomarkers, and BM imaging. AUC of TM was negatively correlated with serum creatinine (Scr), blood urea nitrogen (BUN), and Cystatin C (Cys-C) levels, and NID of TM was linearly correlated with VCAM-1, TNF-α, and interleukin-6 (IL-6) expression (p < 0.05). Conclusions Ultrasound molecular imaging based on TM carrying VCAM-1 polypeptide can accurately evaluate the changes in renal microcirculatory perfusion and inflammatory response, which might be a promising modality for early diagnosis of AKI.
Collapse
Affiliation(s)
- Ling Ren
- The Second Medical College of Lanzhou UniversityLanzhouGansuChina
- Department of UltrasoundFirst Medical Center of Chinese PLA General HospitalBeijingChina
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney DiseasesBeijing Key Laboratory of Kidney Disease ResearchBeijingChina
| | - Yuzhuo Zhao
- Department of UltrasoundFirst Medical Center of Chinese PLA General HospitalBeijingChina
| | - Tiantian Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney DiseasesBeijing Key Laboratory of Kidney Disease ResearchBeijingChina
| | - Yan Tong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney DiseasesBeijing Key Laboratory of Kidney Disease ResearchBeijingChina
| | - Ping Zhao
- Department of UltrasoundFirst Medical Center of Chinese PLA General HospitalBeijingChina
| | - Fang Nie
- The Second Medical College of Lanzhou UniversityLanzhouGansuChina
| | - Yukun Luo
- The Second Medical College of Lanzhou UniversityLanzhouGansuChina
- Department of UltrasoundFirst Medical Center of Chinese PLA General HospitalBeijingChina
| | - Lianhua Zhu
- Department of UltrasoundFirst Medical Center of Chinese PLA General HospitalBeijingChina
| |
Collapse
|
23
|
KISAOGLU A, KOSE E, YILMAZ N, TANBEK K, YILDIZ A, YILMAZ U, CIRIK RH, OZBAG D. Investigation of the Effect of Astaxanthin on Autophagy in Renal Ischemia-reperfusion Modeled Rats. Medeni Med J 2024; 39:101-108. [PMID: 38940481 PMCID: PMC11572265 DOI: 10.4274/mmj.galenos.2024.27243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/04/2024] [Indexed: 06/29/2024] Open
Abstract
Objective The aim of this study was to investigate the effect of various astaxanthin (ATX) doses on oxidative damage and autophagy in renal ischemia-reperfusion (I/R) injury-modeled rats. Methods The rats were divided into five groups: sham group (n=8), I/R (n=8), I/R + 5 mg/kg ATX (n=8), I/R + 10 mg/kg ATX (n=8), and I/R + 25 mg/kg ATX (n=8) groups. ATX was dissolved in 5 mg/kg, 10 mg/kg, and 25 mg/kg olive oil for 7 days and administered to the rats in the experimental group. Sham and I/R groups were also administered ATX solution (olive oil) via oral gavage for 7 days. Renal ischemia reperfusion was induced in all rats except the sham group after the last dose was administered on the 7th day. Reperfusion was conducted for 24 hours after 45 minutes of ischemia. Results Blood samples were collected, and kidney tissue were incised for biochemical and histological analyses. Superoxide dismutase (SOD) and total antioxidant status (TAS) were significantly lower in the I/R group than in the sham group (p<0.05), whereas malondialdehyde (MDA) and total oxidant status (TOS) values were higher (p<0.05). It was determined that SOD and TAS increased and MDA and TOS decreased in the ATX-administration groups compared with the I/R group, independent of the dose (p<0.05). In the 25 mg/kg ATX + I/R group, Beclin-1 and LC3β immunoreactivities were significantly higher than those in the other groups (p<0.05). The lowest p62 immunoreactivity was observed in the 25 mg/kg ATX + I/R group. Conclusions ATX had a protective effect on kidney function and against oxidative damage. Furthermore, high-dose ATX administration protected kidney tissue via autophagy induction in this study.
Collapse
Affiliation(s)
- Aysegul KISAOGLU
- Inonu University Faculty of Medicine, Department of Anatomy, Malatya, Türkiye
| | - Evren KOSE
- Inonu University Faculty of Medicine, Department of Anatomy, Malatya, Türkiye
| | - Nesibe YILMAZ
- Karabuk University Faculty of Medicine, Department of Anatomy, Karabuk, Türkiye
| | - Kevser TANBEK
- Inonu University Faculty of Medicine, Department of Physiology, Malatya, Türkiye
| | - Azibe YILDIZ
- Inonu University Faculty of Medicine, Department of Histology and Embryology, Malatya, Türkiye
| | - Umit YILMAZ
- Karabuk University Faculty of Medicine, Department of Physiology, Karabuk, Türkiye
| | - Rumeyza Hilal CIRIK
- Inonu University Faculty of Medicine, Department of Histology and Embryology, Malatya, Türkiye
| | - Davut OZBAG
- Adiyaman University Faculty of Medicine, Department of Anatomy, Adiyaman, Türkiye
| |
Collapse
|
24
|
Fu Y, Xiang Y, Wei Q, Ilatovskaya D, Dong Z. Rodent models of AKI and AKI-CKD transition: an update in 2024. Am J Physiol Renal Physiol 2024; 326:F563-F583. [PMID: 38299215 PMCID: PMC11208034 DOI: 10.1152/ajprenal.00402.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/02/2024] Open
Abstract
Despite known drawbacks, rodent models are essential tools in the research of renal development, physiology, and pathogenesis. In the past decade, rodent models have been developed and used to mimic different etiologies of acute kidney injury (AKI), AKI to chronic kidney disease (CKD) transition or progression, and AKI with comorbidities. These models have been applied for both mechanistic research and preclinical drug development. However, current rodent models have their limitations, especially since they often do not fully recapitulate the pathophysiology of AKI in human patients, and thus need further refinement. Here, we discuss the present status of these rodent models, including the pathophysiologic compatibility, clinical translational significance, key factors affecting model consistency, and their main limitations. Future efforts should focus on establishing robust models that simulate the major clinical and molecular phenotypes of human AKI and its progression.
Collapse
Affiliation(s)
- Ying Fu
- Department of Nephrology, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, People's Republic of China
| | - Yu Xiang
- Department of Nephrology, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, People's Republic of China
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, United States
| | - Daria Ilatovskaya
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Zheng Dong
- Department of Nephrology, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, People's Republic of China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, United States
- Research Department, Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, United States
| |
Collapse
|
25
|
Zhang H, Zheng C, Xu Y, Hu X. Comprehensive molecular and cellular characterization of endoplasmic reticulum stress-related key genes in renal ischemia/reperfusion injury. Front Immunol 2024; 15:1340997. [PMID: 38495888 PMCID: PMC10940334 DOI: 10.3389/fimmu.2024.1340997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Background Renal ischemia-reperfusion injury (RIRI) is an inevitable complication in the process of kidney transplantation and lacks specific therapy. The study aims to determine the underlying mechanisms of RIRI to uncover a promising target for efficient renoprotection. Method Four bulk RNA-seq datasets including 495 renal samples of pre- and post-reperfusion were collected from the GEO database. The machine learning algorithms were utilized to ascertain pivotal endoplasmic reticulum stress genes. Then, we incorporated correlation analysis and determined the interaction pathways of these key genes. Considering the heterogeneous nature of bulk-RNA analysis, the single-cell RNA-seq analysis was performed to investigate the mechanisms of key genes at the single-cell level. Besides, 4-PBA was applied to inhibit endoplasmic reticulum stress and hence validate the pathological role of these key genes in RIRI. Finally, three clinical datasets with transcriptomic profiles were used to assess the prognostic role of these key genes in renal allograft outcomes after RIRI. Results In the bulk-RNA analysis, endoplasmic reticulum stress was identified as the top enriched pathway and three endoplasmic reticulum stress-related genes (PPP1R15A, JUN, and ATF3) were ranked as top performers in both LASSO and Boruta analyses. The three genes were found to significantly interact with kidney injury-related pathways, including apoptosis, inflammatory response, oxidative stress, and pyroptosis. For oxidative stress, these genes were more strongly related to oxidative markers compared with antioxidant markers. In single-cell transcriptome, the three genes were primarily upregulated in endothelium, distal convoluted tubule cells, and collecting duct principal cells among 12 cell types of renal tissues in RIRI. Furthermore, distal convoluted tubule cells and collecting duct principal cells exhibited pro-inflammatory status and the highest pyroptosis levels, suggesting their potential as main effectors of three key genes for mediating RIRI-associated injuries. Importantly, inhibition of these key genes using 4-phenyl butyric acid alleviated functional and histological damage in a mouse RIRI model. Finally, the three genes demonstrated highly prognostic value in predicting graft survival outcomes. Conclusion The study identified three key endoplasmic reticulum stress-related genes and demonstrated their prognostic value for graft survival, providing references for individualized clinical prevention and treatment of postoperative complications after renal transplantation.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Chaoyue Zheng
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Yue Xu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Xiaopeng Hu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
van der Pluijm LA, Koudijs A, Stam W, Roelofs JJ, Danser AJ, Rotmans JI, Gross KW, Pieper MP, van Zonneveld AJ, Bijkerk R. SGLT2 inhibition promotes glomerular repopulation by cells of renin lineage in experimental kidney disease. Acta Physiol (Oxf) 2024; 240:e14108. [PMID: 38314444 PMCID: PMC10923162 DOI: 10.1111/apha.14108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/06/2024]
Abstract
AIM Sodium glucose co-transporter-2 (SGLT2) inhibitors stimulate renal excretion of sodium and glucose and exert renal protective effects in patients with (non-)diabetic chronic kidney disease (CKD) and may as well protect against acute kidney injury (AKI). The mechanism behind this kidney protective effect remains unclear. Juxtaglomerular cells of renin lineage (CoRL) have been demonstrated to function as progenitors for multiple adult glomerular cell types in kidney disease. This study assesses the impact of SGLT2 inhibition on the repopulation of glomerular cells by CoRL and examines their phenotypic commitment. METHODS Experiments were performed in Ren1cre-tdTomato lineage-trace mice. Either 5/6 nephrectomy (5/6NX) modeling CKD or bilateral ischaemia reperfusion injury (bIRI) mimicking AKI was applied, while the SGLT2 inhibitor empagliflozin (10 mg/kg) was administered daily via oral gavage for 14 days. RESULTS Both 5/6NX and bIRI-induced kidney injury increased the number of glomerular CoRL-derived cells. SGLT2 inhibition improved kidney function after 5/6NX, indicated by decreased blood creatinine and urea levels, but not after bIRI. In line with this, empagliflozin in 5/6NX animals resulted in less glomerulosclerosis, while it did not affect histopathological features in bIRI. Treatment with empagliflozin resulted in an increase in the number of CoRL-derived glomerular cells in both 5/6NX and bIRI conditions. Interestingly, SGLT2 inhibition led to more CoRL-derived podocytes in 5/6NX animals, whereas empagliflozin-treated bIRI mice presented with increased levels of parietal epithelial and mesangial cells derived from CoRL. CONCLUSION We conclude that SGLT2 inhibition by empagliflozin promotes CoRL-mediated glomerular repopulation with selective CoRL-derived cell types depending on the type of experimental kidney injury. These findings suggest a previously unidentified mechanism that could contribute to the renoprotective effect of SGLT2 inhibitors.
Collapse
Affiliation(s)
- Loïs A.K. van der Pluijm
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Centre, Leiden, the Netherlands
| | - Angela Koudijs
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Centre, Leiden, the Netherlands
| | - Wendy Stam
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Centre, Leiden, the Netherlands
| | - Joris J.T.H. Roelofs
- Department of Pathology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - A.H. Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Joris I. Rotmans
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Centre, Leiden, the Netherlands
| | - Kenneth W. Gross
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Michael P. Pieper
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany
| | - Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Centre, Leiden, the Netherlands
| | - Roel Bijkerk
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Centre, Leiden, the Netherlands
| |
Collapse
|
27
|
Huang L, Zhang L, Zhang Z, Tan F, Ma Y, Zeng X, Cao D, Deng L, Liu Q, Sun H, Shen B, Liao X. Loss of nephric augmenter of liver regeneration facilitates acute kidney injury via ACSL4-mediated ferroptosis. J Cell Mol Med 2024; 28:e18076. [PMID: 38088220 PMCID: PMC10844764 DOI: 10.1111/jcmm.18076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/01/2023] [Accepted: 11/25/2023] [Indexed: 02/08/2024] Open
Abstract
Ferroptosis, characterized by lipid accumulation in intracellular compartments, is related to acute kidney injury (AKI), but the mechanism remains obscure. In our previous study, the protective effect of augmenter of liver regeneration (ALR) on AKI was not fully clarified. In this study, we established an AKI mouse model by knocking out proximal tubule-specific ALR and an AKI cell model by inducing hypoxia, as well as enrolled AKI patients, to investigate the effects of ALR on ferroptosis and the progression of AKI. We found that ALR knockout aggravated ferroptosis and increased ROS accumulation and mitochondrial damage, whereas ALR overexpression attenuated ferroptosis through clearance of ROS and maintenance of mitochondrial morphology. Mechanistically, we demonstrated that ALR could directly bind to long-chain-fatty-acid-CoA ligase 4 (ACSL4) and further inhibit the expression of ACSL4 by interacting with certain regions. By resolution liquid chromatography coupled with triple quadruple mass spectrometry, we found that ALR could reduce the contents of polyunsaturated fatty acids, especially arachidonic acid. In addition, we showed that ALR binds to ACSL4 and attenuates oxylipin accumulation, exerting a protective effect against ferroptosis in AKI. Therefore, targeting renal ALR can attenuate ferroptosis and can offer a promising strategy for the treatment of AKI.
Collapse
Affiliation(s)
- Lili Huang
- Department of NephrologyThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Ling Zhang
- Department of NephrologyThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Zheng Zhang
- Department of NephrologyThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
- Department of Cell Biology and GeneticsChongqing Medical UniversityChongqingChina
| | - Fangyan Tan
- Department of NephrologyThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Yixin Ma
- Department of NephrologyThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Xujia Zeng
- Department of NephrologyThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Dan Cao
- Department of NephrologyThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Lili Deng
- Department of NephrologyThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Qi Liu
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral HepatitisThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Hang Sun
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral HepatitisThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Bingbing Shen
- Department of NephrologyChongqing University Central Hospital, Chongqing Emergency Medical CenterChongqingChina
| | - Xiaohui Liao
- Department of NephrologyThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
- Kuanren Laboratory of Translational Lipidology, Centre for Lipid ResearchThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
28
|
Long H, Zhang H, Ran L, Xiang L, Xie P, Zou L, Yi L, Tang X, Chen L, Li Q, Zhao H. Bioinformatics analysis and experimental validation reveal the anti-ferroptosis effect of FZD7 in acute kidney injury. Biochem Biophys Res Commun 2024; 692:149359. [PMID: 38071893 DOI: 10.1016/j.bbrc.2023.149359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Ferroptosis plays an important role in acute kidney injury (AKI), but the specific regulatory mechanism of ferroptosis in AKI remains unclear. This study is expected to analyze ferroptosis-related genes (FRGs) in AKI and explore their underlying mechanisms. RESULTS A total of 479 differentially expressed genes (DEGs), including 196 up-regulated genes and 283 down-regulated genes were identified in the AKI chip GSE30718. 341 FRGs were obtained from the Genecard, OMIM and NCBI database. Totally 11 ferroptosis-related DEGs in AKI were found, in which 7 genes (CD44, TIGAR, RB1, LCN2, JUN, ARNTL, ACSL4) were up-regulated and 4 genes (FZD7, EP300, FOXC1, DLST) were down-regulated. Three core genes (FZD7, JUN, EP300) were obtained by PPI and KEGG analysis, among which the function of FZD7 in AKI is unclear. The WGCNA analysis found that FZD7 belongs to a module that was negatively correlated with AKI. Further basic experiments confirmed that FZD7 is down-regulated in mouse model of ischemia-reperfusion-AKI and cellular model of hypoxia-reoxygenation(H/R). In addition, knockdown of FZD7 could further aggravate the down-regulation of cell viability induced by H/R and Erastin, while overexpression of FZD7 can rescue its down-regulation to some extent. Furthermore, we verified that knockdown of FZD7 decreased the expression of GPX4 and overexpression of FZD7 increased the expression of GPX4, suggesting that FZD7 may inhibit ferroptosis by regulating the expression of GPX4 and plays a vital role in the onset and development of AKI. CONCLUSIONS This article revealed the anti-ferroptosis effect of FZD7 in acute kidney injury through bioinformatics analysis and experimental validation, suggesting that FZD7 is a promising target for AKI and provided more evidence about the vital role of ferroptosis in AKI.
Collapse
Affiliation(s)
- Huanping Long
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Huhai Zhang
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Lingyu Ran
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Lunli Xiang
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Pan Xie
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Liying Zou
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Li Yi
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Xiaopeng Tang
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Liping Chen
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Qixuan Li
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Hongwen Zhao
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China.
| |
Collapse
|
29
|
Liang J, Liu Y. Animal Models of Kidney Disease: Challenges and Perspectives. KIDNEY360 2023; 4:1479-1493. [PMID: 37526653 PMCID: PMC10617803 DOI: 10.34067/kid.0000000000000227] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Kidney disease is highly prevalent and affects approximately 850 million people worldwide. It is also associated with high morbidity and mortality, and current therapies are incurable and often ineffective. Animal models are indispensable for understanding the pathophysiology of various kidney diseases and for preclinically testing novel remedies. In the last two decades, rodents continue to be the most used models for imitating human kidney diseases, largely because of the increasing availability of many unique genetically modified mice. Despite many limitations and pitfalls, animal models play an essential and irreplaceable role in gaining novel insights into the mechanisms, pathologies, and therapeutic targets of kidney disease. In this review, we highlight commonly used animal models of kidney diseases by focusing on experimental AKI, CKD, and diabetic kidney disease. We briefly summarize the pathological characteristics, advantages, and drawbacks of some widely used models. Emerging animal models such as mini pig, salamander, zebrafish, and drosophila, as well as human-derived kidney organoids and kidney-on-a-chip are also discussed. Undoubtedly, careful selection and utilization of appropriate animal models is of vital importance in deciphering the mechanisms underlying nephropathies and evaluating the efficacy of new treatment options. Such studies will provide a solid foundation for future diagnosis, prevention, and treatment of human kidney diseases.
Collapse
Affiliation(s)
- Jianqing Liang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Youhua Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| |
Collapse
|
30
|
Li C, Han S, Zhu J, Cheng F. MiR-132-3p activation aggravates renal ischemia-reperfusion injury by targeting Sirt1/PGC1alpha axis. Cell Signal 2023; 110:110801. [PMID: 37433399 DOI: 10.1016/j.cellsig.2023.110801] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/13/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
The pathogenesis of renal ischemic diseases remains unclear. In this study, we demonstrate the induction of microRNA-132-3p (miR-132-3p) in ischemic acute kidney injury (AKI) and cultured renal tubular cells under oxidative stress. miR-132-3p mimic increased apoptosis in renal tubular cells and enhanced ischemic AKI in mice, whereas miR-132-3p inhibition offered protective effects. We analyzed miR-132-3p target genes through bioinformatic analysis and Sirt1 was predicted as the target gene of miR-132-3p. Luciferase microRNA target reporter assay further verified Sirt1 as a direct target of miR-132-3p. In cultured tubular cells and mouse kidneys, IRI and H2O2 treatment repressed Sirt1 and PGC-1α/NRF2/HO-1 expression, whereas anti-miR-132-3p preserved Sirt1 and PGC-1α/NRF2/HO-1 expression. In renal tubular, Sirt1 inhibitor suppressed PGC1-1α/NRF2/HO-1 expression and aggravated tubular apoptosis. Together, the results suggest that miR-132-3p induction aggravates ischemic AKI and oxidative stress by repressing Sirt1 expression, and miR-132-3p inhibition offers renal protection and may be a potential therapeutic target.
Collapse
Affiliation(s)
- Chenglong Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Shangting Han
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jiefu Zhu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| |
Collapse
|
31
|
Wu Y, Sun L, Chen X, Liu J, Ouyang J, Zhang X, Guo Y, Chen Y, Yuan W, Wang D, He T, Zeng F, Chen H, Wu S, Zhao Y. Cucurbit[8]uril-based water-dispersible assemblies with enhanced optoacoustic performance for multispectral optoacoustic imaging. Nat Commun 2023; 14:3918. [PMID: 37400468 DOI: 10.1038/s41467-023-39610-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 06/22/2023] [Indexed: 07/05/2023] Open
Abstract
Organic small-molecule contrast agents have attracted considerable attention in the field of multispectral optoacoustic imaging, but their weak optoacoustic performance resulted from relatively low extinction coefficient and poor water solubility restrains their widespread applications. Herein, we address these limitations by constructing supramolecular assemblies based on cucurbit[8]uril (CB[8]). Two dixanthene-based chromophores (DXP and DXBTZ) are synthesized as the model guest compounds, and then included in CB[8] to prepare host-guest complexes. The obtained DXP-CB[8] and DXBTZ-CB[8] display red-shifted and increased absorption as well as decreased fluorescence, thereby leading to a substantial enhancement in optoacoustic performance. Biological application potential of DXBTZ-CB[8] is investigated after co-assembly with chondroitin sulfate A (CSA). Benefiting from the excellent optoacoustic property of DXBTZ-CB[8] and the CD44-targeting feature of CSA, the formulated DXBTZ-CB[8]/CSA can effectively detect and diagnose subcutaneous tumors, orthotopic bladder tumors, lymphatic metastasis of tumors and ischemia/reperfusion-induced acute kidney injury in mouse models with multispectral optoacoustic imaging.
Collapse
Affiliation(s)
- Yinglong Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Lihe Sun
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, 510640, Guangzhou, China
| | - Xiaokai Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jiawei Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Juan Ouyang
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, 510640, Guangzhou, China
| | - Xiaodong Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yi Guo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yun Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Wei Yuan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Dongdong Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Ting He
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Fang Zeng
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, 510640, Guangzhou, China
| | - Hongzhong Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China.
| | - Shuizhu Wu
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, 510640, Guangzhou, China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
32
|
Yahiya YI, Hadi NR, Abu Raghif A, Qassam H, AL Habooby NGS. Role of Iberin as an anti-apoptotic agent on renal ischemia-reperfusion injury in rats. J Med Life 2023; 16:915-919. [PMID: 37675177 PMCID: PMC10478648 DOI: 10.25122/jml-2022-0281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/13/2023] [Indexed: 09/08/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) is a major contributor to acute and chronic kidney failure, heart failure, and ischemic stroke. This study aimed to investigate the therapeutic potential of Iberin, known for its anti-inflammatory, antioxidant, and antiapoptotic properties, in a rat model of renal IRI. Twenty-four adult male rats were randomly divided into four groups: Group I (Sham group) underwent laparotomy without IRI induction; Group II (Control group) underwent laparotomy followed by renal artery clamping for 30 minutes to induce ischemia, followed by 2 hours of reperfusion; Group III (Iberin treatment group) received a pre-injection of Iberin (15 mg/kg) and underwent 30 minutes of ischemia followed by 2 hours of reperfusion; and Group IV (Vehicle-treated group) received the vehicle (ethanol) 1 hour prior to ischemia and reperfusion induction. Iberin was diluted with ethanol. Biomarkers associated with inflammation, oxidative stress, and apoptosis were measured using enzyme-linked immunosorbent assay. Iberin treatment significantly reduced levels of inflammatory cytokines interleukin-1β (IL-1β) and IL-6, Bcl-2-associated X protein (BAX), tumor necrosis factor α (TNF-α), nuclear factor kappa p56, high mobility group B1, and neutrophil gelatinase-associated lipocalin. Moreover, Iberin increased levels of heat shock protein and Bcl2 compared to the control and vehicle groups. Iberin treatment prolonged the ischemic tolerance of renal tissue, potentially preventing or delaying irreversible injuries. These findings highlight the potential of Iberin as a promising candidate for mitigating renal injury caused by ischemia-reperfusion, due to its ability to modulate inflammatory markers.
Collapse
Affiliation(s)
- Yahiya Ibrahim Yahiya
- Deptartment of Pharmacology, Faculty of Pharmacy, University of Alkafeel, Najaf, Iraq
| | - Najah Rayish Hadi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Kufa, Iraq
| | - Ahmed Abu Raghif
- Deptartment of Pharmacology, College of Medicine, Al Nahrain University, Baghdad, Iraq
| | - Heider Qassam
- Deptartment of Pharmacology, Faculty of Pharmacy, University of Alkafeel, Najaf, Iraq
| | | |
Collapse
|
33
|
Zhou X, Xiang Y, Li D, Zhong M, Hong X, Gui Y, Min W, Chen Y, Zeng X, Zhu H, Liu Y, Liu S, Yang P, Hou F, Zhou D, Fu H. Limonin, a natural ERK2 agonist, protects against ischemic acute kidney injury. Int J Biol Sci 2023; 19:2860-2878. [PMID: 37324945 PMCID: PMC10266085 DOI: 10.7150/ijbs.82417] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023] Open
Abstract
Acute kidney injury (AKI) is a refractory clinical syndrome with limited effective treatments. Amid AKI, activation of the extracellular signal-regulated kinase (ERK) cascade plays a critical role in promoting kidney repair and regeneration. However, a mature ERK agonist in treating kidney disease remains lacking. This study identified limonin, a member of the class of compounds known as furanolactones, as a natural ERK2 activator. Employing a multidisciplinary approach, we systemically dissected how limonin mitigates AKI. Compared to vehicles, pretreatment of limonin significantly preserved kidney functions after ischemic AKI. We revealed that ERK2 is a significant protein linked to the limonin's active binding sites through structural analysis. The molecular docking study showed a high binding affinity between limonin and ERK2, which was confirmed by the cellular thermal shift assay and microscale thermophoresis. Mechanistically, we further validated that limonin promoted tubular cell proliferation and reduced cell apoptosis after AKI by activating ERK signaling pathway in vivo. In vitro and ex vivo, blockade of ERK abolished limonin's capacity of preventing tubular cell death under hypoxia stress. Our results indicated that limonin is a novel ERK2 activator with strong translational potential in preventing or mitigating AKI.
Collapse
Affiliation(s)
- Xianke Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; National Clinical Research Center for Kidney Disease; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Yadie Xiang
- Division of Nephrology, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; National Clinical Research Center for Kidney Disease; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Dier Li
- Division of Nephrology, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; National Clinical Research Center for Kidney Disease; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Menghua Zhong
- Division of Nephrology, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; National Clinical Research Center for Kidney Disease; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Xue Hong
- Division of Nephrology, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; National Clinical Research Center for Kidney Disease; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Yuan Gui
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Wenjian Min
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Yudan Chen
- Division of Nephrology, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; National Clinical Research Center for Kidney Disease; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Xi Zeng
- Division of Nephrology, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; National Clinical Research Center for Kidney Disease; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Haili Zhu
- Division of Nephrology, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; National Clinical Research Center for Kidney Disease; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Youhua Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; National Clinical Research Center for Kidney Disease; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Shijia Liu
- Department of Clinical Pharmacology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Fanfan Hou
- Division of Nephrology, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; National Clinical Research Center for Kidney Disease; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| | - Dong Zhou
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Haiyan Fu
- Division of Nephrology, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; National Clinical Research Center for Kidney Disease; Guangdong Provincial Institute of Nephrology; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515, China
| |
Collapse
|
34
|
Lee B, Kang W, Oh SH, Cho S, Shin I, Oh EJ, Kim YJ, Ahn JS, Yook JM, Jung SJ, Lim JH, Kim YL, Cho JH, Oh WY. In vivo imaging of renal microvasculature in a murine ischemia-reperfusion injury model using optical coherence tomography angiography. Sci Rep 2023; 13:6396. [PMID: 37076541 PMCID: PMC10115874 DOI: 10.1038/s41598-023-33295-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/11/2023] [Indexed: 04/21/2023] Open
Abstract
Optical coherence tomography angiography (OCTA) provides three-dimensional structural and semiquantitative imaging of microvasculature in vivo. We developed an OCTA imaging protocol for a murine kidney ischemia-reperfusion injury (IRI) model to investigate the correlation between renal microvascular changes and ischemic damage. Mice were divided into mild and moderate IRI groups according to the duration of ischemia (10 and 35 mins, respectively). Each animal was imaged at baseline; during ischemia; and at 1, 15, 30, 45, and 60 mins after ischemia. Amplitude decorrelation OCTA images were constructed with 1.5-, 3.0-, and 5.8-ms interscan times, to calculate the semiquantitative flow index in the superficial (50-70 μm) and the deep (220-340 μm) capillaries of the renal cortex. The mild IRI group showed no significant flow index change in both the superfial and the deep layers. The moderate IRI group showed a significantly decreased flow index from 15 and 45 mins in the superficial and deep layers, respectively. Seven weeks after IRI induction, the moderate IRI group showed lower kidney function and higher collagen deposition than the mild IRI group. OCTA imaging of the murine IRI model revealed changes in superficial blood flow after ischemic injury. A more pronounced decrease in superficial blood flow than in deep blood flow was associated with sustained dysfunction after IRI. Further investigation on post-IRI renal microvascular response using OCTA may improve our understanding of the relationship between the degree of ischemic insult and kidney function.
Collapse
Affiliation(s)
- ByungKun Lee
- Department of Mechanical Engineering, KAIST, Daejeon, Republic of Korea
- KI for Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | - Woojae Kang
- Department of Mechanical Engineering, KAIST, Daejeon, Republic of Korea
- KI for Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | - Se-Hyun Oh
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Seungwan Cho
- Department of Mechanical Engineering, KAIST, Daejeon, Republic of Korea
- KI for Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | - Inho Shin
- Department of Mechanical Engineering, KAIST, Daejeon, Republic of Korea
- KI for Health Science and Technology, KAIST, Daejeon, Republic of Korea
| | - Eun-Joo Oh
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - You-Jin Kim
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Ji-Sun Ahn
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Ju-Min Yook
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Soo-Jung Jung
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Jeong-Hoon Lim
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Yong-Lim Kim
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Jang-Hee Cho
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea.
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea.
| | - Wang-Yuhl Oh
- Department of Mechanical Engineering, KAIST, Daejeon, Republic of Korea.
- KI for Health Science and Technology, KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
35
|
Huang J, Shi L, Xia Y, Zhu J, Zha H, Wu X, Song Z. S100-A8/A9 activated TLR4 in renal tubular cells to promote ischemia-reperfusion injury and fibrosis. Int Immunopharmacol 2023; 118:110110. [PMID: 37028272 DOI: 10.1016/j.intimp.2023.110110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/22/2023] [Accepted: 03/26/2023] [Indexed: 04/09/2023]
Abstract
Renal ischemia/reperfusion injury (IRI) is a significant clinical problem without effective therapy. Unbiased omics approaches may reveal key renal mediators to initiate IRI. S100-A8/A9 was identified as the most significantly upregulated gene and protein base on proteomic analysis and RNA sequencing during the early reperfusion stage. S100-A8/A9 levels were significantly increased 1 day after transplantation in patients with donation after brain death (DBD). S100-A8/A9 production was associated with CD11b+Ly6G+ CXCR2+ immunocytes infiltration. Administration of S100-A8/A9 blocker ABR238901 significantly alleviates renal tubular injury, inflammatory cell infiltration, and renal fibrosis after renal IRI. Mechanistically, S100-A8/A9 could promote renal tubular cell injury and profibrotic cytokine production via TLR4. In conclusion, our findings found that early activation of S100-A8/A9 in renal IRI and targeting S100-A8/A9 signaling alleviates tubular injury and inhibits inflammatory response and renal fibrosis, which may provide a novel target for the prevention and treatment of acute kidney injury.
Collapse
Affiliation(s)
- Jing Huang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lang Shi
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yao Xia
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, Hubei 443000, China
| | - Jiefu Zhu
- Department of Organ transplantation, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hongchu Zha
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, Hubei 443000, China
| | - Xiongfei Wu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Zhixia Song
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, Hubei 443000, China.
| |
Collapse
|
36
|
Kang HB, Lim CK, Kim J, Han SJ. Oxypurinol protects renal ischemia/reperfusion injury via heme oxygenase-1 induction. Front Med (Lausanne) 2023; 10:1030577. [PMID: 36968831 PMCID: PMC10033620 DOI: 10.3389/fmed.2023.1030577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Renal ischemia/reperfusion (I/R) injury is a major cause of acute kidney injury (AKI) by increasing oxidative stress, inflammatory responses, and tubular cell death. Oxypurinol, an active metabolite of allopurinol, is a potent anti-inflammatory and antioxidant agent. To investigate the therapeutic potential and underlying mechanism of oxypurinol in ischemic AKI, C57BL/6 male mice were intraperitoneally injected with oxypurinol and subjected to renal I/R or sham surgery. We found that oxypurinol-treated mice had lower plasma creatinine and blood urea nitrogen levels and tubular damage (hematoxylin-and-eosin staining) compared to vehicle-treated mice after renal I/R injury. Furthermore, oxypurinol treatment reduced kidney inflammation (i.e., neutrophil infiltration and MIP-2 mRNA induction), oxidative stress (i.e., 4-HNE, heme oxygenase-1 [HO-1], 8-OHdG expression, and Catalase mRNA induction), and apoptosis (i.e., TUNEL or cleaved caspase-3-positive renal tubular cells), compared to vehicle-treated mice. Mechanistically, oxypurinol induced protein expressions of HO-1, which is a critical cytoprotective enzyme during ischemic AKI, and oxypurinol-mediated protection against ischemic AKI was completely eliminated by pretreatment with tin protoporphyrin IX, an HO-1 inhibitor. In conclusion, oxypurinol protects against renal I/R injury by reducing oxidative stress, inflammation, and apoptosis via HO-1 induction, suggesting its preventive potential in ischemic AKI.
Collapse
Affiliation(s)
- Hye Bin Kang
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, Busan, Republic of Korea
| | - Chae Kyu Lim
- Department of St. Mary Pathology and Laboratory Medicine, Busan, Republic of Korea
| | - Jongwan Kim
- Department of Medical Laboratory Science, Dong-eui Institute of Technology, Busan, Republic of Korea
| | - Sang Jun Han
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, Busan, Republic of Korea
- *Correspondence: Sang Jun Han
| |
Collapse
|
37
|
Ma M, Li H, Yin S, Lin T, Song T. Overexpression of miR-92a attenuates kidney ischemia-reperfusion injury and improves kidney preservation by inhibiting MEK4/JNK1-related autophagy. Cell Mol Biol Lett 2023; 28:20. [PMID: 36890442 PMCID: PMC9997008 DOI: 10.1186/s11658-023-00430-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/07/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Kidney ischemia-reperfusion injury is inevitable in kidney transplantation, and is essential for primary graft dysfunction and delayed graft function. Our previous study has proved that miR-92a could ameliorate kidney ischemia-reperfusion injury, but the mechanism has not been studied. METHODS This study conducted further research on the role of miR-92a in kidney ischemia-reperfusion injury and organ preservation. In vivo, mice models of bilateral kidney ischemia (30 min), cold preservation after ischemia (cold preservation time of 6, 12, and 24 h), and ischemia-reperfusion (reperfusion time of 24, 48, and 72 h) were established. Before or after modeling, the model mice were injected with miR-92a-agomir through the caudal vein. In vitro, the hypoxia-reoxygenation of HK-2 cells was used to simulate ischemia-reperfusion injury. RESULTS Kidney ischemia and ischemia-reperfusion significantly damaged kidney function, decreased the expression of miR-92a, and increased apoptosis and autophagy in kidneys. miR-92a agomir tail vein injection significantly increased the expression of miR-92a in kidneys, improved kidney function, and alleviated kidney injury, and the intervention before modeling achieved a better effect than after. Moreover, miR-92a agomir significantly reduced the apoptosis and autophagy in HK-2 cells induced by hypoxia, hypoxia-reoxygenation, and rapamycin, while miR-92a antagomir had opposite effects. Furthermore, mitogen-activated protein kinase, c-Jun NH (2) terminal kinase, caspase 3, Beclin 1, and microtubule-associated protein 1 light chain 3B were inhibited by overexpression of miR-92a both in vivo and in vitro, which in turn reduced apoptosis and autophagy. CONCLUSIONS Our results prove that overexpression of miR-92a attenuated kidney ischemia-reperfusion injury and improved kidney preservation, and intervention before ischemia-reperfusion provides better protection than after.
Collapse
Affiliation(s)
- Ming Ma
- Department of Urology, West China Hospital, Sichuan University, 37# Guoxue Alley, Chengdu, 610041, Sichuan, China.,Organ Transplantation Center, West China Hospital, Sichuan University, 37# Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Hui Li
- Department of Urology, West China Hospital, Sichuan University, 37# Guoxue Alley, Chengdu, 610041, Sichuan, China.,Organ Transplantation Center, West China Hospital, Sichuan University, 37# Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Saifu Yin
- Department of Urology, West China Hospital, Sichuan University, 37# Guoxue Alley, Chengdu, 610041, Sichuan, China.,Organ Transplantation Center, West China Hospital, Sichuan University, 37# Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Tao Lin
- Department of Urology, West China Hospital, Sichuan University, 37# Guoxue Alley, Chengdu, 610041, Sichuan, China. .,Organ Transplantation Center, West China Hospital, Sichuan University, 37# Guoxue Alley, Chengdu, 610041, Sichuan, China.
| | - Turun Song
- Department of Urology, West China Hospital, Sichuan University, 37# Guoxue Alley, Chengdu, 610041, Sichuan, China. .,Organ Transplantation Center, West China Hospital, Sichuan University, 37# Guoxue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
38
|
Cai H, Chen Y, Feng Y, Asadi M, Kaufman L, Lee K, Kehrer T, Miorin L, Garcia-Sastre A, Gusella GL, Gu L, Ni Z, Mou S, He JC, Zhou W. SARS-CoV-2 viral protein ORF3A injures renal tubules by interacting with TRIM59 to induce STAT3 activation. Mol Ther 2023; 31:774-787. [PMID: 36523164 PMCID: PMC9750503 DOI: 10.1016/j.ymthe.2022.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/22/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Acute kidney injury occurs frequently in COVID-19 patients infected by the coronavirus SARS-CoV-2, and infection of kidney cells by this virus has been reported. However, little is known about the direct impact of the SARS-CoV-2 infection upon the renal tubular cells. We report that SARS-CoV-2 activated signal transducer and activator of transcription 3 (STAT3) signaling and caused cellular injury in the human renal tubular cell line. Mechanistically, the viral protein ORF3A of SARS-CoV-2 augmented both NF-κB and STAT3 signaling and increased the expression of kidney injury molecule 1. SARS-CoV-2 infection or expression of ORF3A alone elevated the protein level of tripartite motif-containing protein 59 (TRIM59), an E3 ubiquitin ligase, which interacts with both ORF3A and STAT3. The excessive TRIM59 in turn dissociated the phosphatase TCPTP from binding to STAT3 and hence inhibited the dephosphorylation of STAT3, leading to persistent STAT3 activation. Consistently, ORF3A induced renal injury in zebrafish and mice. In addition, expression of TRIM59 was elevated in the kidney autopsies of COVID-19 patients with acute kidney injury. Thus, the aberrant activation of STAT3 signaling by TRIM59 plays a significant role in the renal tubular cell injury caused by SARS-CoV-2, which suggests a potential targeted therapy for the renal complications of COVID-19.
Collapse
Affiliation(s)
- Hong Cai
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Renji Hospital, Uremia Diagnosis and Treatment Center, Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Chen
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Renji Hospital, Uremia Diagnosis and Treatment Center, Jiao Tong University School of Medicine, Shanghai, China
| | - Ye Feng
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Morad Asadi
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lewis Kaufman
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kyung Lee
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas Kehrer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo Garcia-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - G Luca Gusella
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Leyi Gu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Renji Hospital, Uremia Diagnosis and Treatment Center, Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaohui Ni
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Renji Hospital, Uremia Diagnosis and Treatment Center, Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Mou
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Renji Hospital, Uremia Diagnosis and Treatment Center, Jiao Tong University School of Medicine, Shanghai, China.
| | - John Cijiang He
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Weibin Zhou
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
39
|
Tiba AT, Qassam H, Hadi NR. Semaglutide in renal ischemia-reperfusion injury in mice. J Med Life 2023; 16:317-324. [PMID: 36937464 PMCID: PMC10015556 DOI: 10.25122/jml-2022-0291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/13/2022] [Indexed: 03/21/2023] Open
Abstract
Ischemia and reperfusion injury (I/R) is a serious condition leading to organ failure, characterized by poor blood supply followed by rapid resuscitation of blood flow and reoxygenation. Renal failure caused by renal ischemia has high mortality and morbidity. This study aimed to explore the potential role of Semaglutide as a novel and effective therapeutic strategy for acute renal failure. Additionally, we aimed to assess the possible protective effect of Semaglutide on kidney I/R injury in mice through modulation of the inflammatory and oxidative pathways via phosphatidylinositol 3-kinase/adenosine triphosphate (PI3K/AKT) activation. We employed twenty-eight albino mice to induce the I/R injury model by clamping the renal artery for 30 min followed by a period of reperfusion for 2 hours. The control group was exposed to I/R injury, while the Semaglutide-treated group was pretreated with the drug 12 hours before induction of ischemia at a dose of 100 nmol/L/kg via the intraperitoneal route (i.p). In addition, the DMSO-treated group was subjected to similar conditions to the Semaglutide-treated group. At the end of the experiments, kidneys and blood samples were collected for investigation. Semaglutide could act as a protective agent against acute kidney injury by reducing inflammatory molecules such as tumor necrosis factor-alpha (TNF-α) and its cognate receptor, TNF-α R, interleukine-6 (IL-6). Furthermore, Semaglutide reduced F8 isoprostane levels, increased PI3K and AKT levels in renal tissues, and mitigated renal damage. Semaglutide had renoprotective effects via modulation of the inflammatory response and oxidative pathway by targeting the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Al-Tameemi Tiba
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Kufa, Iraq
| | - Heider Qassam
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Kufa, Iraq
| | - Najah Rayish Hadi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Kufa, Iraq
- Corresponding Author: Najah Rayish Hadi, Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Kufa, Iraq. E-mail:
| |
Collapse
|
40
|
Radiotherapy Advances in Renal Disease-Focus on Renal Ischemic Preconditioning. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010068. [PMID: 36671640 PMCID: PMC9855155 DOI: 10.3390/bioengineering10010068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Ionizing irradiation is widely applied as a fundamental therapeutic treatment in several diseases. Acute kidney injury (AKI) represents a global public health problem with major morbidity and mortality. Renal ischemia/reperfusion (I/R) is the main cause of AKI. I/R injury occurs when blood flow to the kidney is transiently interrupted and then restored. Such an ischemic insult significantly impairs renal function in the short and long terms. Renal ischemic preconditioning (IPC) corresponds to the maneuvers intended to prevent or attenuate the ischemic damage. In murine models, irradiation-induced preconditioning (IP) renders the renal parenchyma resistant to subsequent damage by activating defense pathways involved in oxidative stress, angiogenesis, and inflammation. Before envisioning translational applications in patients, safe irradiation modalities, including timing, dosage, and fractionation, need to be defined.
Collapse
|
41
|
Li DD, Li N, Cai C, Wei CM, Liu GH, Wang TH, Xu FR. A molecular network-based pharmacological study on the protective effect of Panax notoginseng rhizomes against renal ischemia-reperfusion injury. Front Pharmacol 2023; 14:1134408. [PMID: 37144215 PMCID: PMC10151715 DOI: 10.3389/fphar.2023.1134408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Objective: We aimed to explore the protective effect of Panax notoginseng rhizomes (PNR) on renal ischemia and reperfusion injury (RIRI) and the underlying molecular network mechanism based on network pharmacology and combined systemic experimental validation. Methods: A bilateral RIRI model was established, and Cr, SCr, and BUN levels were detected. Then, the PNR was pretreated 1 week before the RIRI model was prepared. To determine the effects of the PNR in RIRI, histopathological damage and the effect of PNRs to the kidney was assessed, using TTC, HE, and TUNEL staining. Furthermore, the underlying network pharmacology mechanism was detected by screening drug-disease intersection targets from PPI protein interactions and GO and KEGG analysis, and the hub genes were screened for molecular docking based on the Degree value. Finally, the expression of hub genes in kidney tissues was verified by qPCR, and the protein expression of related genes was further detected by Western blot (WB). Results: PNR pretreatment could effectively increase Cr level, decrease SCr and BUN levels, reduce renal infarct areas and renal tubular cell injury areas, and inhibit renal cell apoptosis. By using network pharmacology combined with bioinformatics, we screened co-targets both Panax notoginseng (Sanchi) and RIRI, acquired ten hub genes, and successfully performed molecular docking. Of these, pretreatment with the PNR reduced the mRNA levels of IL6 and MMP9 at postoperative day 1 and TP53 at postoperative day 7, and the protein expression of MMP9 at postoperative day 1 in IRI rats. These results showed that the PNR could decrease kidney pathological injury in IRI rats and inhibit apoptotic reaction and cell inflammation so as to improve renal injury effectively, and the core network mechanism is involved in the inhibition of MMP9, TP53, and IL-6. Conclusion: The PNR has a marked protective effect for RIRI, and the underlying mechanism is involved in inhibiting the expression of MMP9, TP53, and IL-6. This striking discovery not only provides fruitful evidence for the protective effect of the PNR in RIRI rats but also provides a novel mechanic explanation.
Collapse
Affiliation(s)
- Dan-Dan Li
- Yunnan Key Laboratory of Dai and Yi Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Na Li
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, Yunnan, China
| | - Chui Cai
- Yunnan Key Laboratory of Dai and Yi Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Chun-Mian Wei
- Yunnan Key Laboratory of Dai and Yi Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Guang-Hua Liu
- Yunnan Key Laboratory of Dai and Yi Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Ting-Hua Wang
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, Yunnan, China
- *Correspondence: Ting-Hua Wang, ; Fu-Rong Xu,
| | - Fu-Rong Xu
- Yunnan Key Laboratory of Dai and Yi Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- *Correspondence: Ting-Hua Wang, ; Fu-Rong Xu,
| |
Collapse
|
42
|
Malú Q, Lima K, Malmir M, Pinto R, da Silva IM, Catarino L, Duarte MP, Serrano R, Rocha J, Lima BS, Silva O. Contribution to the Preclinical Safety Assessment of Lannea velutina and Sorindeia juglandifolia Leaves. PLANTS (BASEL, SWITZERLAND) 2022; 12:130. [PMID: 36616259 PMCID: PMC9823897 DOI: 10.3390/plants12010130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Dried leaves of Lannea velutina A. Rich. and Sorindeia juglandifolia (A. Rich.) Planch. ex Oliv. (family Anacardiaceae) are used in African traditional medicine. Although these medicinal plants have widespread use in the treatment of inflammatory diseases, there is no scientific data concerning their preclinical or clinical safety. This work aimed to investigate the phytochemical properties of the leaves of both species using HPLC-UV/DAD, as well as the in vivo oral repeated-dose toxicity of 70% hydroethanolic leaf extract of S. juglandifolia and the in vitro genotoxicity of 70% hydroethanolic leaf extracts of L. velutina and S. juglandifolia. Clinical signs of toxicity, body weight variations, and changes in food consumption, mortality, and blood biochemical parameters were monitored. Genotoxicity was assessed using the bacterial reverse mutation assay (Ames test) with and without metabolic activation, according to OECD guidelines. The obtained results showed the presence of gallic acid and anacardic acid as the main marker constituents in both species. No significant changes in general body weight or food intake were observed; small significant changes with no critical relevance were observed in the blood biochemistry of animals treated with S. juglandifolia hydroethanolic extract (50, 400, and 1000 mg/kg body weight) compared to those in the control group. No genotoxicity was observed in the bacterial reverse mutation assay with S. juglandifolia and L. velutina extracts (up to 5 mg/plate). The safety data obtained in vivo and lack of genotoxic potential in vitro points to the safe medicinal use of S. juglandifolia and L. velutina extracts.
Collapse
Affiliation(s)
- Quintino Malú
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Katelene Lima
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Maryam Malmir
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Rui Pinto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Dr Joaquim Chaves Laboratório de Análises Clínicas, 2790-224 Carnaxide, Portugal
| | - Isabel Moreira da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Luís Catarino
- Centre for Ecology, Evolution and Environmental Changes, (cE3c) & CHANGE-Global Change and Sustainability Institute, Faculty of Sciences, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Maria Paula Duarte
- MEtRICs/Chemical Department, Nova School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Rita Serrano
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - João Rocha
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Beatriz Silva Lima
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Olga Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
43
|
Lee S, Oh J, Lee K, Cho M, Paulson B, Kim JK. Diagnosis of Ischemic Renal Failure Using Surface-Enhanced Raman Spectroscopy and a Machine Learning Algorithm. Anal Chem 2022; 94:17477-17484. [PMID: 36480771 DOI: 10.1021/acs.analchem.2c03634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To diagnose renal function using a biochip capable of detecting SERS and to assess Raman measurements taken from a bilateral renal ischemia model and the feasibility of early diagnosis was done. After generating a bilateral renal ischemia rat model, blood and urine were collected. After confirming the presence of renal injury and function, liquid drops were placed onto a Raman chip whose surface had been enhanced with Au-ZnO nanorods. SERS biomarkers that diffused into the nanogaps were selectively amplified. Raman signals varied based on the severity of the renal function, and these differences were confirmed statistically. These results confirm that renal ischemia leads to renal dysfunction and that surface-enhanced Raman spectroscopy and a machine learning algorithm can be used to track signals in the urine from the release of SERS biomarkers.
Collapse
Affiliation(s)
- Sanghwa Lee
- Biomedical Engineering Research Center, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Jeongmin Oh
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Kwanhee Lee
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Minju Cho
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Bjorn Paulson
- Biomedical Engineering Research Center, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Jun Ki Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| |
Collapse
|
44
|
Ahmadi-Noorbakhsh S, Farajli Abbasi M, Ghasemi M, Bayat G, Davoodian N, Sharif-Paghaleh E, Poormoosavi SM, Rafizadeh M, Maleki M, Shirzad-Aski H, Kargar Jahromi H, Dadkhah M, Khalvati B, Safari T, Behmanesh MA, Khoshnam SE, Houshmand G, Talaei SA. Anesthesia and analgesia for common research models of adult mice. Lab Anim Res 2022; 38:40. [PMID: 36514128 PMCID: PMC9746144 DOI: 10.1186/s42826-022-00150-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Anesthesia and analgesia are major components of many interventional studies on laboratory animals. However, various studies have shown improper reporting or use of anesthetics/analgesics in research proposals and published articles. In many cases, it seems "anesthesia" and "analgesia" are used interchangeably, while they are referring to two different concepts. Not only this is an unethical practice, but also it may be one of the reasons for the proven suboptimal quality of many animal researches. This is a widespread problem among investigations on various species of animals. However, it could be imagined that it may be more prevalent for the most common species of laboratory animals, such as the laboratory mice. In this review, proper anesthetic/analgesic methods for routine procedures on laboratory mice are discussed. We considered the available literature and critically reviewed their anesthetic/analgesic methods. Detailed dosing and pharmacological information for the relevant drugs are provided and some of the drugs' side effects are discussed. This paper provides the necessary data for an informed choice of anesthetic/analgesic methods in some routine procedures on laboratory mice.
Collapse
Affiliation(s)
- Siavash Ahmadi-Noorbakhsh
- Preclinical Core Facility (TPCF), Tehran University of Medical Sciences, Tehran, Iran.
- The National Ethics Committee for Biomedical Research, Floor 13th, Complex A, Ministry of Health and Medical Education, Eyvanak Blvd., Shahrake Gharb, Tehran, Iran.
| | - Mohammad Farajli Abbasi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Bayat
- Department of Physiology-Pharmacology-Medical Physic, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Nahid Davoodian
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ehsan Sharif-Paghaleh
- Preclinical Core Facility (TPCF), Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, England
| | - Seyedeh Mahsa Poormoosavi
- Department of Histology, School of Medicine, Research and Clinical Center for Infertility, Dezful University of Medical Sciences, Dezful, Iran
| | - Melika Rafizadeh
- Department of Pharmacology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Maleki
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Hossein Kargar Jahromi
- Research Center for Non-Communicable Disease, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Bahman Khalvati
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Tahereh Safari
- School of Medicine, Department of Physiology, PhD, Zahedan University of Medical Sciences, Zahedan, Iran
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Amin Behmanesh
- Department of Histology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Seyed Esmaeil Khoshnam
- Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Houshmand
- Psychiatry and Behavioral Sciences Research Center, Addiction Institute, Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sayyed Alireza Talaei
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
45
|
Shi L, Song Z, Li C, Deng F, Xia Y, Huang J, Wu X, Zhu J. HDAC6 Inhibition Alleviates Ischemia- and Cisplatin-Induced Acute Kidney Injury by Promoting Autophagy. Cells 2022; 11:cells11243951. [PMID: 36552715 PMCID: PMC9776591 DOI: 10.3390/cells11243951] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Histone deacetylase (HDAC) 6 exists exclusively in cytoplasm and deacetylates cytoplasmic proteins such as α-tubulin. HDAC6 dysfunction is associated with several pathological conditions in renal disorders, including UUO-induced fibrotic kidneys and rhabdomyolysis-induced nephropathy. However, the role of HDAC6 in ischemic acute kidney injury (AKI) and the mechanism by which HDAC6 inhibition protects tubular cells after AKI remain unclear. In the present study, we observed that HDAC6 was markedly activated in kidneys subjected to ischemia- and cisplatin (cis)-induced AKI treatment. Pharmacological inhibition of HDAC6 alleviated renal impairment and renal tubular damage after ischemia and cisplatin treatment. HDAC6 dysfunction was associated with decreased acetylation of α-tubulin at the residue of lysine 40 and autophagy. HDAC6 inhibition preserved acetyl-α-tubulin-enhanced autophagy flux in AKI and cultured tubular cells. Genetic ablation of the renal tubular (RT) Atg7 gene or pharmacological inhibition of autophagy suppressed the protective effects of HDAC6. Taken together, our study indicates that HDAC6 contributes to ischemia- and cisplatin-induced AKI by inhibiting autophagy and the acetylation of α-tubulin. These results suggest that HDAC6 could be a potential target for ischemic and nephrotoxic AKI.
Collapse
Affiliation(s)
- Lang Shi
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Zhixia Song
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People’s Hospital of Yichang, Yichang 443000, China
| | - Chenglong Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Fangjing Deng
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Yao Xia
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People’s Hospital of Yichang, Yichang 443000, China
| | - Jing Huang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Xiongfei Wu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430064, China
- Correspondence: (X.W.); (J.Z.)
| | - Jiefu Zhu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan 430064, China
- Correspondence: (X.W.); (J.Z.)
| |
Collapse
|
46
|
Kyo S, Murata K, Kawatou M, Minatoya K, Sunagawa GA, Masumoto H. Quiescence-inducing neurons-induced hypometabolism ameliorates acute kidney injury in a mouse model mimicking cardiovascular surgery requiring circulatory arrest. JTCVS OPEN 2022; 12:201-210. [PMID: 36590714 PMCID: PMC9801336 DOI: 10.1016/j.xjon.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/10/2022]
Abstract
Objectives Acute kidney injury is a serious complication after cardiovascular surgery requiring circulatory arrest. It is reported that mice can be induced into a hibernation-like hypometabolic state by stimulating a specific neuron located at the hypothalamus (quiescence-inducing neurons-induced hypometabolism [QIH]). Here, we investigated the efficacy of QIH for the amelioration of acute kidney injury in an experimental circulatory arrest using a transgenic mouse model. Methods We genetically prepared mice in which QIH can be conditionally induced (QIH-ready mice). Mice were divided into 4 groups (n = 6 for each): QIH-ready normothermia (QN), QIH-ready hypothermia (QH), control normothermia (CN), and control hypothermia (CH). After induction of QIH, left thoracotomy and descending aorta crossclamping were conducted. After reperfusion, we collected kidneys and evaluated histologic changes and serum biochemical markers, specifically neutrophil gelatinase-associated lipocalin and cystatin C, indicating early kidney injury. Results Normothermia showed higher tubular injury scores than those in hypothermia (QN vs QH [P = .0021] and CN vs CH [P < .001]). QN exhibited lower neutrophil gelatinase-associated lipocalin and cystatin C levels than those in CN (neutrophil gelatinase-associated lipocalin: CN vs QN: 1.51 ± 0.71 vs 0.82 ± 0.32; P = .0414 and cystatin C: 1.48 ± 0.39 vs 0.71 ± 0.26; P = .0015). There was no significant difference between QN and QH. Conclusions QIH partly ameliorated acute kidney injury in a mouse ischemia model even in normothermia. QIH might be a promising approach to achieving sufficient kidney protection without hypothermic circulatory arrest in the future.
Collapse
Key Words
- AAV8, adeno-associated virus 8
- AKI, acute kidney injury
- CH, control hypothermia
- CN, control normothermia
- CNO, clozapine-N-oxide
- DHCA, deep hypothermic circulatory arrest
- NGAL, neutrophil gelatinase-associated lipocalin
- Q neurons, quiescence-inducing neurons
- Q neurons-induced hypometabolism
- QH, quiescence-inducing neurons-induced hypometabolism-ready hypothermia
- QIH, quiescence-inducing neurons-induced hypometabolism
- QN, quiescence-inducing neurons-induced hypometabolism-ready normothermia
- QRFP, pyroglutamylated RFamide peptide
- TA, ambient temperature
- TB, body temperature
- Vo2, the rate of oxygen consumption
- acute kidney injury
- circulatory arrest
- hibernation
- iCre, codon-improved Cre recombinase
Collapse
Affiliation(s)
- Shoichi Kyo
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kozue Murata
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Clinical Translational Research Program, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Masahide Kawatou
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenji Minatoya
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Genshiro A. Sunagawa
- Laboratory for Molecular Biology of Aging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Laboratory for Hibernation Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hidetoshi Masumoto
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Clinical Translational Research Program, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
47
|
Zhang J, Shen R, Lin H, Pan J, Feng X, Lin L, Niu D, Hou Y, Su X, Wang C, Wang L, Qiao X. Effects of contralateral nephrectomy timing and ischemic conditions on kidney fibrosis after unilateral kidney ischemia-reperfusion injury. Ren Fail 2022; 44:1568-1584. [PMID: 36154902 PMCID: PMC9543178 DOI: 10.1080/0886022x.2022.2126790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Acute kidney injury (AKI) is an important cause of chronic kidney disease (CKD), but the underlying mechanisms are unclear. Animal models are tools for studying the AKI-CKD progression. Kidney ischemia-reperfusion injury (IRI) models, especially the unilateral IRI (uIRI) model with delayed contralateral kidney resection, are commonly used to induce fibrotic progression to CKD after AKI. However, in previous studies, we found that details of the operation had a significant impact on the long-term outcomes of the kidney in this uIRI model. In this study, we investigated the effects of resection timing of the contralateral intact kidney, core body temperatures during ischemia, and time length of kidney ischemia on kidney function, histological injury and kidney fibrosis after AKI, using a mouse uIRI model with delayed contralateral nephrectomy. The results showed that all these parameters significantly affected the AKI-CKD transition. The post-AKI fibrosis worsened and the survival rate declined with a longer interval between contralateral nephrectomy and uIRI, higher ischemic body temperature, or longer ischemic duration when the other two variables were fixed. In conclusion, in the uIRI model with delayed contralateral nephrectomy, kidney fibrosis after AKI is influenced by many factors. Strictly controlling the experimental conditions is very important for the stability and consistency of the model.
Collapse
Affiliation(s)
- Junhua Zhang
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China.,Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China.,Institute of Nephrology, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Ruihua Shen
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China.,Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China.,Institute of Nephrology, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Hui Lin
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China.,Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China.,Institute of Nephrology, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Juan Pan
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China.,Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China.,Institute of Nephrology, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xinyuan Feng
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China.,Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China.,Institute of Nephrology, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Ling Lin
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China.,Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China.,Institute of Nephrology, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Dan Niu
- Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China.,Department of Pathology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yanjuan Hou
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China.,Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China.,Institute of Nephrology, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xiaole Su
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China.,Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China.,Institute of Nephrology, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Chen Wang
- Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China.,Department of Pathology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Lihua Wang
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China.,Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China.,Institute of Nephrology, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xi Qiao
- Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China.,Shanxi Kidney Disease Institute, Taiyuan, People's Republic of China.,Institute of Nephrology, Shanxi Medical University, Taiyuan, People's Republic of China
| |
Collapse
|
48
|
Chen YL, Li HK, Wang L, Chen JW, Ma X. No safe renal warm ischemia time-The molecular network characteristics and pathological features of mild to severe ischemia reperfusion kidney injury. Front Mol Biosci 2022; 9:1006917. [PMID: 36465563 PMCID: PMC9709142 DOI: 10.3389/fmolb.2022.1006917] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/03/2022] [Indexed: 07/25/2023] Open
Abstract
Ischemic acute kidney injury (AKI) has always been a hot and difficult research topic in the field of renal diseases. This study aims to illustrate the safe warm ischemia time of kidney and the molecular network characteristics and pathological features of mild to severe ischemia reperfusion kidney injury. We established varying degrees of renal injury due to different ischemia time (0 min, 16 min, 18 min, 20 min, 22 min, 24 min, 26 min, 28 min, and 30 min) on unilateral (left kidney) ischemia-reperfusion injury and contralateral (right kidney) resection (uIRIx) mouse model. Mice were sacrificed 24 h after uIRIx, blood samples were harvested to detect serum creatinine (Scr), and kidney tissue samples were harvested to perform Periodic Acid-Schiff (PAS) staining and RNA-Seq. Differentially expressed genes (DEGs) were identificated, time-dependent gene expression patterns and functional enrichment analysis were further performed. Finally, qPCR was performed to validated RNA-Seq results. Our results indicated that there was no absolute safe renal warm ischemia time, and every minute of ischemia increases kidney damage. Warm ischemia 26min or above in mice makes severe kidney injury, renal pathology and SCr were both significantly changed. Warm ischemia between 18 and 26 min makes mild kidney injury, with changes in pathology and renal molecular expression, while SCr did not change. No obvious pathological changes but significant differences in molecular expression were found less than 16min warm ischemia. There are two key time intervals in the process of renal ischemia injury, 0 min-16 min (short-term) and 26 min-28 min (long-term). Gene expression of immune-related pathways were most significantly down-regulated in short-term ischemia, while metabolism-related pathways were the mainly enriched pathway in long-term ischemia. Taken together, this study provides novel insights into safe renal artery occlusion time in partial nephrectomy, and is of great value for elucidating molecular network characteristics and pathological features of mild to severe ischemia reperfusion kidney injury, and key genes related to metabolism and immune found in this study also provide potential diagnostic and therapeutic biomarkers for AKI.
Collapse
Affiliation(s)
- Ya-Lei Chen
- Department of Critical Care Medicine, Capital Medical University Electric Power Teaching Hospital/State Grid Beijing Electric Power Hospital, Beijing, China
| | - Huai-Kang Li
- Senior Department of Urology, The Third Medical Centre of PLA General Hospital, Beijing, China
| | - Lei Wang
- Senior Department of Urology, The Third Medical Centre of PLA General Hospital, Beijing, China
| | - Jian-Wen Chen
- Senior Department of Urology, The Third Medical Centre of PLA General Hospital, Beijing, China
- Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Xin Ma
- Senior Department of Urology, The Third Medical Centre of PLA General Hospital, Beijing, China
| |
Collapse
|
49
|
Maines LW, Green CL, Keller SN, Fitzpatrick LR, Smith CD. The Sphingosine Kinase 2 Inhibitor Opaganib Protects Against Acute Kidney Injury in Mice. Int J Nephrol Renovasc Dis 2022; 15:323-334. [PMID: 36420520 PMCID: PMC9677921 DOI: 10.2147/ijnrd.s386396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction Acute kidney injury (AKI) is a common multifactorial adverse effect of surgery, circulatory obstruction, sepsis or drug/toxin exposure that often results in morbidity and mortality. Sphingolipid metabolism is a critical regulator of cell survival and pathologic inflammation processes involved in AKI. Opaganib (also known as ABC294640) is a first-in-class experimental drug targeting sphingolipid metabolism that reduces the production and activity of inflammatory cytokines and, therefore, may be effective to prevent and treat AKI. Methods Murine models of AKI were used to assess the in vivo efficacy of opaganib including ischemia-reperfusion (IR) injury induced by either transient bilateral occlusion of renal blood flow (a moderate model) or nephrectomy followed immediately by occlusion of the contralateral kidney (a severe model) and lipopolysaccharide (LPS)-induced sepsis. Biochemical and histologic assays were used to quantify the effects of oral opaganib treatment on renal damage in these models. Results Opaganib suppressed the elevations of creatinine and blood urea nitrogen (BUN), as well as granulocyte infiltration into the kidneys, of mice that experienced moderate IR from transient bilateral ligation. Opaganib also markedly decreased these parameters and completely prevented mortality in the severe renal IR model. Additionally, opaganib blunted the elevations of BUN, creatinine and inflammatory cytokines following exposure to LPS. Conclusion The data support the hypotheses that sphingolipid metabolism is a key mediator of renal inflammatory damage following IR injury and sepsis, and that this can be suppressed by opaganib. Because opaganib has already undergone clinical testing in other diseases (cancer and Covid-19), the present studies support conducting clinical trials with this drug with surgical or septic patients at risk for AKI.
Collapse
Affiliation(s)
- Lynn W Maines
- Apogee Biotechnology Corporation, Hummelstown, PA, USA
| | | | | | | | - Charles D Smith
- Apogee Biotechnology Corporation, Hummelstown, PA, USA
- Correspondence: Charles D Smith, Apogee Biotechnology Corporation, 1214 Research Blvd, Suite 2015, Hummelstown, PA, 17036, USA, Email
| |
Collapse
|
50
|
Yu X, Xiao Q, Yu X, Cheng Y, Lin H, Xiang Z. A network pharmacology-based study on the mechanism of astragaloside IV alleviating renal fibrosis through the AKT1/GSK-3β pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115535. [PMID: 35840059 DOI: 10.1016/j.jep.2022.115535] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL REVELVANCE Astragaloside IV, a glycoside derived from Astragalus membranaceus, has anti-renal fibrosis effects. However, its mechanism of action has not yet been fully elucidated. AIM OF THE STUDY The purpose of this study was to investigate the anti-fibrotic effect of AS-IV and to clarify its underlying mechanism. MATERIALS AND METHODS The network pharmacology method, molecular docking and surface plasmon resonance (SPR) was used to identify potential targets and pathways of AS-IV. A unilateral ischemia-reperfusion injury (UIRI) animal model, as well as TGF-β1-induced rat renal tubular epithelial cells (NRK-52E) and renal fibroblasts (NRK-49F) were used to investigate and validate the anti-fibrotic activity and pharmacological mechanism of AS-IV. Network pharmacology was performed to construct a drug-target-pathway network. The anti-fibrosis effect of AS-IV was determined using hematoxylin-eosin (H&E) and MASSON staining, as well as immunostaining methods. qRT-PCR and western blotting were used to elucidate and validate the mechanism of AS-IV. RESULTS Network pharmacology revealed that the PI3K/AKT pathway is an important pathway in AS-IV. AS-IV inhibited the expression of α-SMA, collagen I, and fibronectin in NRK-52E, NRK-49F, and UIRI rats, and reduced serum creatinine and blood urea nitrogen levels in UIRI rats. AS-IV inhibited AKT phosphorylation, blocked GSK-3β phosphorylation, and restored GSK-3β activity, which contributed to the degradation of β-catenin, thereby preventing epithelial-mesenchymal transition (EMT). CONCLUSION Astragaloside IV alleviated renal fibrosis through the AKT1/GSK-3β pathway. In addition, our findings indicate that the network pharmacology method is a powerful tool for exploring the pharmacological mechanisms of drugs.
Collapse
Affiliation(s)
- Xinwei Yu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qiming Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xixi Yu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yu Cheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hao Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zheng Xiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Medical School, Zhejiang University City College, Hangzhou, 310015, China.
| |
Collapse
|