1
|
Wang Q, Wang X, Liu B, Ma S, Zhang F, Sun S, Jing Y, Fan Y, Ding Y, Xiong M, Li J, Zhai Q, Zheng Y, Liu C, Xu G, Yang J, Wang S, Ye J, Izpisua Belmonte JC, Qu J, Liu GH, Zhang W. Aging induces region-specific dysregulation of hormone synthesis in the primate adrenal gland. NATURE AGING 2024; 4:396-413. [PMID: 38503993 DOI: 10.1038/s43587-024-00588-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 02/05/2024] [Indexed: 03/21/2024]
Abstract
Adrenal glands, vital for steroid secretion and the regulation of metabolism, stress responses and immune activation, experience age-related decline, impacting systemic health. However, the regulatory mechanisms underlying adrenal aging remain largely uninvestigated. Here we established a single-nucleus transcriptomic atlas of both young and aged primate suprarenal glands, identifying lipid metabolism and steroidogenic pathways as core processes impacted by aging. We found dysregulation in centripetal adrenocortical differentiation in aged adrenal tissues and cells in the zona reticularis region, responsible for producing dehydroepiandrosterone sulfate (DHEA-S), were highly susceptible to aging, reflected by senescence, exhaustion and disturbed hormone production. Remarkably, LDLR was downregulated in all cell types of the outer cortex, and its targeted inactivation in human adrenal cells compromised cholesterol uptake and secretion of dehydroepiandrosterone sulfate, as observed in aged primate adrenal glands. Our study provides crucial insights into endocrine physiology, holding therapeutic promise for addressing aging-related adrenal insufficiency and delaying systemic aging.
Collapse
Affiliation(s)
- Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuebao Wang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Beibei Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Shuai Ma
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng Zhang
- Division of Endocrinology, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
- The Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Shuhui Sun
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yaobin Jing
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- International Center for Aging and Cancer, Hainan Medical University, Haikou, China
| | - Yanling Fan
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Muzhao Xiong
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiaocheng Zhai
- Division of Endocrinology, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
- The Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Yandong Zheng
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Chengyu Liu
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Gang Xu
- Liver Transplant Center, Organ Transplant Center, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, China
| | - Jiayin Yang
- Liver Transplant Center, Organ Transplant Center, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, China
| | - Si Wang
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- The Fifth People's Hospital of Chongqing, Chongqing, China
- Aging Biomarker Consortium, Beijing, China
| | - Jinlin Ye
- The Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | | | - Jing Qu
- University of Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| |
Collapse
|
2
|
Benjamin JI, Pollock DM. Current perspective on circadian function of the kidney. Am J Physiol Renal Physiol 2024; 326:F438-F459. [PMID: 38134232 PMCID: PMC11207578 DOI: 10.1152/ajprenal.00247.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/28/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023] Open
Abstract
Behavior and function of living systems are synchronized by the 24-h rotation of the Earth that guides physiology according to time of day. However, when behavior becomes misaligned from the light-dark cycle, such as in rotating shift work, jet lag, and even unusual eating patterns, adverse health consequences such as cardiovascular or cardiometabolic disease can arise. The discovery of cell-autonomous molecular clocks expanded interest in regulatory systems that control circadian physiology including within the kidney, where function varies along a 24-h cycle. Our understanding of the mechanisms for circadian control of physiology is in the early stages, and so the present review provides an overview of what is known and the many gaps in our current understanding. We include a particular focus on the impact of eating behaviors, especially meal timing. A better understanding of the mechanisms guiding circadian function of the kidney is expected to reveal new insights into causes and consequences of a wide range of disorders involving the kidney, including hypertension, obesity, and chronic kidney disease.
Collapse
Affiliation(s)
- Jazmine I Benjamin
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - David M Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
3
|
Joshi K, Das M, Sarma A, Arora MK, SInghal M, Kumar B. Insight on Cardiac Chronobiology and Latest Developments of Chronotherapeutic Antihypertensive Interventions for Better Clinical Outcomes. Curr Hypertens Rev 2023; 19:106-122. [PMID: 36624649 DOI: 10.2174/1573402119666230109142156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 01/11/2023]
Abstract
Cardiac circadian rhythms are an important regulator of body functions, including cardiac activities and blood pressure. Disturbance of circadian rhythm is known to trigger and aggravate various cardiovascular diseases. Thus, modulating the circadian rhythm can be used as a therapeutic approach to cardiovascular diseases. Through this work, we intend to discuss the current understanding of cardiac circadian rhythms, in terms of quantifiable parameters like BP and HR. We also elaborate on the molecular regulators and the molecular cascades along with their specific genetic aspects involved in modulating circadian rhythms, with specific reference to cardiovascular health and cardiovascular diseases. Along with this, we also presented the latest pharmacogenomic and metabolomics markers involved in chronobiological control of the cardiovascular system along with their possible utility in cardiovascular disease diagnosis and therapeutics. Finally, we reviewed the current expert opinions on chronotherapeutic approaches for utilizing the conventional as well as the new pharmacological molecules for antihypertensive chronotherapy.
Collapse
Affiliation(s)
- Kumud Joshi
- Department of Pharmacy, Lloyd Institute of Management and Technology, Greater Noida, India
| | - Madhubanti Das
- Department of Zoology, Gauhati University, Guwahati, Assam, India
| | - Anupam Sarma
- Advanced Drug Delivery Laboratory, GIPS, Girijananda Chowdhury University, Guwahati, Assam, India
| | - Mandeep K Arora
- School of Pharmacy and population health informatics, DIT University, Dehradun, India
| | - Manmohan SInghal
- School of Pharmacy and population health informatics, DIT University, Dehradun, India
| | - Bhavna Kumar
- School of Pharmacy and population health informatics, DIT University, Dehradun, India
| |
Collapse
|
4
|
Izmailova O, Kabaliei A, Shynkevych V, Shlykova O, Kaidashev I. PPARG agonist pioglitazone influences diurnal kidney medulla mRNA expression of core clock, inflammation-, and metabolism-related genes disrupted by reverse feeding in mice. Physiol Rep 2022; 10:e15535. [PMID: 36511486 PMCID: PMC9746034 DOI: 10.14814/phy2.15535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023] Open
Abstract
This study examined the influence of PPARG activation by pioglitazone (PG) on the mRNA of core clock, inflammation- and metabolism-related genes in the mouse kidney medulla as well as urinary sodium/potassium excretion rhythms disrupted by reverse feeding. Mice were assigned to daytime feeding and nighttime feeding groups. PG 20 mg/kg was administered at 7 am or 7 pm. On day 8 of the feeding intervention, mice were killed at noon and midnight. Kidney medulla expression of Arntl, Clock, Nr1d1, Cry1, Cry2, Per1, Per2, Nfe2l2, Pparg, and Scnn1g was determined by qRT PCR. We measured urinary K+ , Na+ , urine volume, food, and H2 O intake. The reverse feeding uncoupled the peripheral clock gene rhythm in mouse kidney tissues. It was accompanied by a decreased expression of Nfe2l2 and Pparg as well as an increased expression of Rela and Scnn1g. These changes in gene expressions concurred with an increase in urinary Na+ , K+ , water excretion, microcirculation disorders, and cell loss, especially in distal tubules. PG induced the restoration of diurnal core clock gene expression as well as Nfe2l2, Pparg, Scnn1g mRNA, and decreased Rela expressions, stimulating Na+ reabsorption and inhibiting K+ excretion. PG intake at 7 pm was more effective than at 7 am.
Collapse
|
5
|
Costello HM, Johnston JG, Juffre A, Crislip GR, Gumz ML. Circadian clocks of the kidney: function, mechanism, and regulation. Physiol Rev 2022; 102:1669-1701. [PMID: 35575250 PMCID: PMC9273266 DOI: 10.1152/physrev.00045.2021] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/22/2022] Open
Abstract
An intrinsic cellular circadian clock is located in nearly every cell of the body. The peripheral circadian clocks within the cells of the kidney contribute to the regulation of a variety of renal processes. In this review, we summarize what is currently known regarding the function, mechanism, and regulation of kidney clocks. Additionally, the effect of extrarenal physiological processes, such as endocrine and neuronal signals, on kidney function is also reviewed. Circadian rhythms in renal function are an integral part of kidney physiology, underscoring the importance of considering time of day as a key biological variable. The field of circadian renal physiology is of tremendous relevance, but with limited physiological and mechanistic information on the kidney clocks this is an area in need of extensive investigation.
Collapse
Affiliation(s)
- Hannah M Costello
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - Jermaine G Johnston
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
- North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida
| | - Alexandria Juffre
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| | - G Ryan Crislip
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
| | - Michelle L Gumz
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida
- North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, Florida
| |
Collapse
|
6
|
Chan K, Wong FS, Pearson JA. Circadian rhythms and pancreas physiology: A review. Front Endocrinol (Lausanne) 2022; 13:920261. [PMID: 36034454 PMCID: PMC9399605 DOI: 10.3389/fendo.2022.920261] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022] Open
Abstract
Type 2 diabetes mellitus, obesity and metabolic syndrome are becoming more prevalent worldwide and will present an increasingly challenging burden on healthcare systems. These interlinked metabolic abnormalities predispose affected individuals to a plethora of complications and comorbidities. Furthermore, diabetes is estimated by the World Health Organization to have caused 1.5 million deaths in 2019, with this figure projected to rise in coming years. This highlights the need for further research into the management of metabolic diseases and their complications. Studies on circadian rhythms, referring to physiological and behavioral changes which repeat approximately every 24 hours, may provide important insight into managing metabolic disease. Epidemiological studies show that populations who are at risk of circadian disruption such as night shift workers and regular long-haul flyers are also at an elevated risk of metabolic abnormalities such as insulin resistance and obesity. Aberrant expression of circadian genes appears to contribute to the dysregulation of metabolic functions such as insulin secretion, glucose homeostasis and energy expenditure. The potential clinical implications of these findings have been highlighted in animal studies and pilot studies in humans giving rise to the development of circadian interventions strategies including chronotherapy (time-specific therapy), time-restricted feeding, and circadian molecule stabilizers/analogues. Research into these areas will provide insights into the future of circadian medicine in metabolic diseases. In this review, we discuss the physiology of metabolism and the role of circadian timing in regulating these metabolic functions. Also, we review the clinical aspects of circadian physiology and the impact that ongoing and future research may have on the management of metabolic disease.
Collapse
Affiliation(s)
- Karl Chan
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - F. Susan Wong
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - James Alexander Pearson
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
7
|
Yao Y, Silver R. Mutual Shaping of Circadian Body-Wide Synchronization by the Suprachiasmatic Nucleus and Circulating Steroids. Front Behav Neurosci 2022; 16:877256. [PMID: 35722187 PMCID: PMC9200072 DOI: 10.3389/fnbeh.2022.877256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
Background Steroids are lipid hormones that reach bodily tissues through the systemic circulation, and play a major role in reproduction, metabolism, and homeostasis. All of these functions and steroids themselves are under the regulation of the circadian timing system (CTS) and its cellular/molecular underpinnings. In health, cells throughout the body coordinate their daily activities to optimize responses to signals from the CTS and steroids. Misalignment of responses to these signals produces dysfunction and underlies many pathologies. Questions Addressed To explore relationships between the CTS and circulating steroids, we examine the brain clock located in the suprachiasmatic nucleus (SCN), the daily fluctuations in plasma steroids, the mechanisms producing regularly recurring fluctuations, and the actions of steroids on their receptors within the SCN. The goal is to understand the relationship between temporal control of steroid secretion and how rhythmic changes in steroids impact the SCN, which in turn modulate behavior and physiology. Evidence Surveyed The CTS is a multi-level organization producing recurrent feedback loops that operate on several time scales. We review the evidence showing that the CTS modulates the timing of secretions from the level of the hypothalamus to the steroidogenic gonadal and adrenal glands, and at specific sites within steroidogenic pathways. The SCN determines the timing of steroid hormones that then act on their cognate receptors within the brain clock. In addition, some compartments of the body-wide CTS are impacted by signals derived from food, stress, exercise etc. These in turn act on steroidogenesis to either align or misalign CTS oscillators. Finally this review provides a comprehensive exploration of the broad contribution of steroid receptors in the SCN and how these receptors in turn impact peripheral responses. Conclusion The hypothesis emerging from the recognition of steroid receptors in the SCN is that mutual shaping of responses occurs between the brain clock and fluctuating plasma steroid levels.
Collapse
Affiliation(s)
- Yifan Yao
- Department of Psychology, Columbia University, New York City, NY, United States
- *Correspondence: Yifan Yao,
| | - Rae Silver
- Department of Psychology, Columbia University, New York City, NY, United States
- Department of Neuroscience, Barnard College, New York City, NY, United States
- Department of Psychology, Barnard College, New York City, NY, United States
- Department of Pathology and Cell Biology, Graduate School, Columbia University Irving Medical Center, New York City, NY, United States
| |
Collapse
|
8
|
Xing L, Wu S, Shi Y, Yue F, Wei L, Russell R, Zhang D. Chronic constant light exposure aggravates high fat diet-induced renal injury in rats. Front Endocrinol (Lausanne) 2022; 13:900392. [PMID: 35966094 PMCID: PMC9372432 DOI: 10.3389/fendo.2022.900392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity-related kidney disease is now recognized as a global health issue, with a substantial number of patients developing progressive renal failure and end-stage renal disease. Interestingly, recent studies indicate light pollution is a novel environmental risk factor for chronic kidney disease. However, the impact of light pollution on obesity-related kidney disease remains largely unknown, with its underlying mechanism insufficiently explained. Renal hypoxia induced factor 1α (HIF1α) is critical in the development of glomerulosclerosis and renal fibrosis. The present study explored effects of constant light exposure on high fat diet (HFD) -induced renal injury and its association with HIF1α signal pathway. Thirty-two male Sprague Dawley rats were divided into four groups according to diet (HFD or normal chow diet) and light cycles (light/dark or constant light). After 16 weeks treatment, rats were sacrificed and pathophysiological assessments were performed. In normal chow fed rats, constant light exposure led to glucose abnormalities and dyslipidemia. In HFD fed rats, constant light exposure exacerbated obesity, glucose abnormalities, insulin resistance, dyslipidemia, renal functional decline, proteinuria, glomerulomegaly, renal inflammation and fibrosis. And, constant light exposure caused an increase in HIF1α and a decrease in prolyl hydroxylase domain 1 (PHD1) and PHD2 expression in kidneys of HFD-fed rats. Then, we demonstrated that BMAL1 bound directly to the promoters of PHD1 in mouse podocyte clone 5 cell line (MPC5) by ChIP assays. In conclusion, chronic constant light exposure aggravates HFD-induced renal injuries in rats, and it is associated with activation of HIF1α signal pathway.
Collapse
Affiliation(s)
- Lin Xing
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
| | - Shanyu Wu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Shi
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
| | - Fangzhi Yue
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Wei
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
| | - Ryan Russell
- Department of Health and Human Performance, College of Health Professions, University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Dongmei Zhang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Dongmei Zhang,
| |
Collapse
|
9
|
Soliman RH, Pollock DM. Circadian Control of Sodium and Blood Pressure Regulation. Am J Hypertens 2021; 34:1130-1142. [PMID: 34166494 PMCID: PMC9526808 DOI: 10.1093/ajh/hpab100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/12/2021] [Accepted: 06/23/2021] [Indexed: 01/26/2023] Open
Abstract
The attention for the control of dietary risk factors involved in the development of hypertension, includes a large effort on dietary salt restrictions. Ample studies show the beneficial role of limiting dietary sodium as a lifestyle modification in the prevention and management of essential hypertension. Not until the past decade or so have studies more specifically investigated diurnal variations in renal electrolyte excretion, which led us to the hypothesis that timing of salt intake may impact cardiovascular health and blood pressure regulation. Cell autonomous molecular clocks as the name implies, function independently to maintain optimum functional rhythmicity in the face of environmental stressors such that cellular homeostasis is maintained at all times. Our understanding of mechanisms influencing diurnal patterns of sodium excretion and blood pressure has expanded with the discovery of the circadian clock genes. In this review, we discuss what is known about circadian regulation of renal sodium handling machinery and its influence on blood pressure regulation, with timing of sodium intake as a potential modulator of the kidney clock.
Collapse
Affiliation(s)
- Reham H Soliman
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David M Pollock
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
10
|
Mishra R, Bethunaickan R, Berthier CC, Yi Z, Strohl JJ, Huerta PT, Zhang W, Davidson A. Reversible dysregulation of renal circadian rhythm in lupus nephritis. Mol Med 2021; 27:99. [PMID: 34488619 PMCID: PMC8419890 DOI: 10.1186/s10020-021-00361-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/23/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND We have found disruption of expression of major transcriptional regulators of circadian rhythm in the kidneys of several mouse models of lupus nephritis. Here we define the consequence of this disturbance with respect to circadian gene expression and renal homeostatic function in a mouse model of lupus nephritis. METHODS Molecular profiling of kidneys from 47 young and 41 nephritic female NZB/W F1 mice was performed at 4 hourly intervals over a 24 h period. Disruption of major circadian transcriptional regulators was confirmed by qPCR. Molecular data was normalized and analyzed for rhythmicity using RAIN analysis. Serum aldosterone and glucose and urine sodium and potassium were measured at 4 hourly intervals in pre-nephritic and nephritic mice and blood pressure was measured every 4 h. Analyses were repeated after induction of complete remission of nephritis using combination cyclophosphamide and costimulatory blockade. RESULTS We show a profound alteration of renal circadian rhythms in mice with lupus nephritis affecting multiple renal pathways. Using Cosinor analysis we identified consequent alterations of renal homeostasis and metabolism as well as blood pressure dipper status. This circadian dysregulation was partially reversed by remission induction therapy. CONCLUSIONS Our studies indicate the role of inflammation in causing the circadian disruption and suggest that screening for loss of normal blood pressure dipping should be incorporated into LN management. The data also suggest a potential role for circadian agonists in the treatment of lupus nephritis.
Collapse
Affiliation(s)
- Rakesh Mishra
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Ramalingam Bethunaickan
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Celine C Berthier
- Department of Internal Medicine, Nephrology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Zhengzi Yi
- Department of Medicine, Mount Sinai Medical Center, One Gustave L. Levy Place, P.O. Box 1243, New York, NY, 10029, USA
| | - Joshua J Strohl
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Patricio T Huerta
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Weijia Zhang
- Department of Medicine, Mount Sinai Medical Center, One Gustave L. Levy Place, P.O. Box 1243, New York, NY, 10029, USA.
| | - Anne Davidson
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
| |
Collapse
|
11
|
The Vascular Circadian Clock in Chronic Kidney Disease. Cells 2021; 10:cells10071769. [PMID: 34359937 PMCID: PMC8306728 DOI: 10.3390/cells10071769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease is associated with extremely high cardiovascular mortality. The circadian rhythms (CR) have an impact on vascular function. The disruption of CR causes serious health problems and contributes to the development of cardiovascular diseases. Uremia may affect the master pacemaker of CR in the hypothalamus. A molecular circadian clock is also expressed in peripheral tissues, including the vasculature, where it regulates the different aspects of both vascular physiology and pathophysiology. Here, we address the impact of CKD on the intrinsic circadian clock in the vasculature. The expression of the core circadian clock genes in the aorta is disrupted in CKD. We propose a novel concept of the disruption of the circadian clock system in the vasculature of importance for the pathology of the uremic vasculopathy.
Collapse
|
12
|
Kuzmenko NV, Tsyrlin VA, Pliss MG. Seasonal Dynamics of Melatonin, Prolactin,
Sex Hormones and Adrenal Hormones in Healthy People: a Meta-Analysis. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021030029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Meléndez-Fernández OH, Walton JC, DeVries AC, Nelson RJ. Clocks, Rhythms, Sex, and Hearts: How Disrupted Circadian Rhythms, Time-of-Day, and Sex Influence Cardiovascular Health. Biomolecules 2021; 11:883. [PMID: 34198706 PMCID: PMC8232105 DOI: 10.3390/biom11060883] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are the top cause of mortality in the United States, and ischemic heart disease accounts for 16% of all deaths around the world. Modifiable risk factors such as diet and exercise have often been primary targets in addressing these conditions. However, mounting evidence suggests that environmental factors that disrupt physiological rhythms might contribute to the development of these diseases, as well as contribute to increasing other risk factors that are typically associated with cardiovascular disease. Exposure to light at night, transmeridian travel, and social jetlag disrupt endogenous circadian rhythms, which, in turn, alter carefully orchestrated bodily functioning, and elevate the risk of disease and injury. Research into how disrupted circadian rhythms affect physiology and behavior has begun to reveal the intricacies of how seemingly innocuous environmental and social factors have dramatic consequences on mammalian physiology and behavior. Despite the new focus on the importance of circadian rhythms, and how disrupted circadian rhythms contribute to cardiovascular diseases, many questions in this field remain unanswered. Further, neither time-of-day nor sex as a biological variable have been consistently and thoroughly taken into account in previous studies of circadian rhythm disruption and cardiovascular disease. In this review, we will first discuss biological rhythms and the master temporal regulator that controls these rhythms, focusing on the cardiovascular system, its rhythms, and the pathology associated with its disruption, while emphasizing the importance of the time-of-day as a variable that directly affects outcomes in controlled studies, and how temporal data will inform clinical practice and influence personalized medicine. Finally, we will discuss evidence supporting the existence of sex differences in cardiovascular function and outcomes following an injury, and highlight the need for consistent inclusion of both sexes in studies that aim to understand cardiovascular function and improve cardiovascular health.
Collapse
Affiliation(s)
- O. Hecmarie Meléndez-Fernández
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; (J.C.W.); (R.J.N.)
| | - James C. Walton
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; (J.C.W.); (R.J.N.)
| | - A. Courtney DeVries
- Department of Medicine, Division of Oncology/Hematology, West Virginia University, Morgantown, WV 26505, USA;
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26505, USA
| | - Randy J. Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; (J.C.W.); (R.J.N.)
| |
Collapse
|
14
|
Soejima Y, Iwata N, Nakano Y, Yamamoto K, Suyama A, Nada T, Ogawa H, Otsuka F. Involvement of clock gene expression, bone morphogenetic protein and activin in adrenocortical steroidogenesis by human H295R cells. Endocr J 2021; 68:243-250. [PMID: 33028758 DOI: 10.1507/endocrj.ej20-0359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Functional interactions between the levels of clock gene expression and adrenal steroidogenesis were studied in human adrenocortical H295R cells. Fluctuations of Bmal1, Clock, Per2 and Cry1 mRNA levels were found in H295R cells treated with forskolin (FSK) in a serum-free condition. The changes of clock gene expression levels were diverged, with Clock mRNA level being significantly higher than Cry1 and Per2 mRNA levels after 12-h stimulation with FSK. After FSK induction, mRNA levels of StAR and CYP11B2 were highest at 12 hours and CYP17 mRNA level reached a peak at 6 hours, but HSD3B1 mRNA level was transiently decreased at 3 hours. The expression levels of Clock mRNA showed a significant positive correlation with StAR among the interrelationships between mRNA levels of key steroidogenic factors and clock genes. Knockdown of Clock gene by siRNA led to a significant reduction of FSK-induced expression of StAR and CYP17 after 12-h treatment with FSK. BMP-6 and activin, which modulate adrenal steroidogenesis, had inhibitory effects on Clock mRNA expression, whereas treatment with follistatin, a binding protein of activin, increased Clock mRNA levels in the presence of FSK, suggesting an endogenous function of activin in regulation of Clock mRNA expression. Collectively, the results indicated that changes of Clock mRNA expression, being upregulated by FSK and suppressed by BMP-6 and activin, were tightly linked to StAR expression by human adrenocortical cells.
Collapse
Affiliation(s)
- Yoshiaki Soejima
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Nahoko Iwata
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yasuhiro Nakano
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Koichiro Yamamoto
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Atsuhito Suyama
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Takahiro Nada
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hiroko Ogawa
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
15
|
Liu JA, Walton JC, DeVries AC, Nelson RJ. Disruptions of Circadian Rhythms and Thrombolytic Therapy During Ischemic Stroke Intervention. Front Neurosci 2021; 15:675732. [PMID: 34177452 PMCID: PMC8222607 DOI: 10.3389/fnins.2021.675732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/11/2021] [Indexed: 11/24/2022] Open
Abstract
Several endogenous and exogenous factors interact to influence stroke occurrence, in turn contributing to discernable daily distribution patterns in the frequency and severity of cerebrovascular events. Specifically, strokes that occur during the morning tend to be more severe and are associated with elevated diastolic blood pressure, increased hospital stay, and worse outcomes, including mortality, compared to strokes that occur later in the day. Furthermore, disrupted circadian rhythms are linked to higher risk for stroke and play a role in stroke outcome. In this review, we discuss the interrelation among core clock genes and several factors contributing to ischemic outcomes, sources of disrupted circadian rhythms, the implications of disrupted circadian rhythms in foundational stroke scientific literature, followed by a review of clinical implications. In addition to highlighting the distinct daily pattern of onset, several aspects of physiology including immune response, endothelial/vascular and blood brain barrier function, and fibrinolysis are under circadian clock regulation; disrupted core clock gene expression patterns can adversely affect these physiological processes, leading to a prothrombotic state. Lastly, we discuss how the timing of ischemic onset increases morning resistance to thrombolytic therapy and the risk of hemorrhagic transformation.
Collapse
Affiliation(s)
- Jennifer A Liu
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - James C Walton
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - A Courtney DeVries
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States.,Department of Medicine, Division of Oncology/Hematology, West Virginia University, Morgantown, WV, United States.,West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, United States
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
16
|
Ivy JR, Bailey MA. Nondipping Blood Pressure: Predictive or Reactive Failure of Renal Sodium Handling? Physiology (Bethesda) 2021; 36:21-34. [PMID: 33325814 DOI: 10.1152/physiol.00024.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Blood pressure follows a daily rhythm, dipping during nocturnal sleep in humans. Attenuation of this dip (nondipping) is associated with increased risk of cardiovascular disease. Renal control of sodium homeostasis is essential for long-term blood pressure control. Sodium reabsorption and excretion have rhythms that rely on predictive/circadian as well as reactive adaptations. We explore how these rhythms might contribute to blood pressure rhythm in health and disease.
Collapse
Affiliation(s)
- Jessica R Ivy
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew A Bailey
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
17
|
Huang H, Li Z, Ruan Y, Feng W, Chen J, Li X, Ouyang L, Huang H. Circadian rhythm disorder: a potential inducer of vascular calcification? J Physiol Biochem 2020; 76:513-524. [PMID: 32945991 DOI: 10.1007/s13105-020-00767-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/14/2020] [Indexed: 12/24/2022]
Abstract
Over the past decades, circadian rhythm has drawn a great attention in cardiovascular diseases. The expressions of rhythm genes fluctuate in accordance with the diurnal changes of vascular physiology, which highlights the pivotal effect of vascular clock. Recent researches show that the circadian clock can directly regulate the synthetic and secretory function of endothelial cells and phenotypic switch of vascular smooth muscle cells to adjust vascular relaxation and contraction. Importantly, dysfunction of vascular cells is involved in vascular calcification. Secretion of osteogenic cytokines and calcified vesicles in the vessel, osteogenic phenotype switch of vascular smooth muscle cells are all implicated in the calcification process. Moreover, circadian rhythm disorder can lead to abnormal hormone secretion, oxidative stress, inflammatory reaction, and autophagy, all of which should not be ignored in vascular calcification. Vascular senescence is another pathogenetic mechanism in vascular calcification. Accelerated vascular senescence may act as an important intermediate factor to promote vascular calcification in circadian rhythm disorders. In this review, we elaborate the potential effect of circadian rhythm disorder in vascular calcification and try to provide a new direction in the prevention of vascular calcification.
Collapse
Affiliation(s)
- Haoran Huang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, 518000, China
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaohuai Li
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, 518000, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yuyi Ruan
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, 518000, China
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weijing Feng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxue Li
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, 518000, China
| | - Liu Ouyang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, 518000, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Huang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, 518000, China.
| |
Collapse
|
18
|
Angelousi A, Nasiri-Ansari N, Karapanagioti A, Kyriakopoulos G, Aggeli C, Zografos G, Choreftaki T, Parianos C, Kounadi T, Alexandraki K, Randeva HS, Kaltsas G, Papavassiliou AG, Kassi E. Expression of clock-related genes in benign and malignant adrenal tumors. Endocrine 2020; 68:650-659. [PMID: 32147772 DOI: 10.1007/s12020-020-02246-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/26/2020] [Indexed: 01/03/2023]
Abstract
Although the effect of the central clock system on adrenal function has been extensively studied, the role of the peripheral clock system in adrenal tumorigenesis remains largely unexplored. In this study we investigated the expression of clock-related genes in normal adrenocortical tissue and adrenocortical tumors. Twenty-seven fresh frozen human adrenal tissues including 13 cortisol secreting adenomas (CSA), seven aldosterone producing adenomas (APA), and seven adrenocortical carcinomas (ACC) were collected. CLOCK, BMAL1, PER1, CRY1, Rev-ERB, and RORα mRNA and protein expression were determined by qPCR and immunoblotting in pathological tissues and compared with the adjacent normal adrenal tissues. A significant downregulation of PER1, CRY1, and Rev-ERB compared with their normal tissue was demonstrated in CSA. All clock-related genes were overexpressed in APA compared with their normal tissue, albeit not significantly. A significant upregulation of CRY1 and PER1 and downregulation of BMAL1, RORα, and Rev-ERB compared with normal adrenal tissue was observed in ACC. BMAL1 and PER1 were significantly downregulated in APA compared with CSA. CLOCK, CRY1, and PER1 were upregulated, whereas BMAL1, RORα, and Rev-ERB were downregulated in ACC compared with CSA. Our study demonstrated the expression of CLOCK, BMAL1, PER1, CRY1, Rev-ERB, and RORα in normal and pathological human adrenal tissues. Adrenal tumors exhibited altered expression of these genes compared with normal tissue, with specific differences between benign and malignant lesions and between benign tumors arising from glomerulosa vs fasciculata zone. Further studies should clarify whether these alterations could be implicated in adrenocortical tumorigenesis.
Collapse
Affiliation(s)
- Anna Angelousi
- 1st Department of Internal Medicine, Laiko University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Narjes Nasiri-Ansari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece
| | - Angeliki Karapanagioti
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece
| | - Georgios Kyriakopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece
| | - Chrysanthi Aggeli
- 3rd Department of Surgery, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - Giorgos Zografos
- 3rd Department of Surgery, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - Theodosia Choreftaki
- Department of Pathology, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - Christos Parianos
- 3rd Department of Surgery, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - Theodora Kounadi
- Department of Endocrinology and Diabetes Center, Athens General Hospital "G. Gennimatas", Athens, Greece
| | - Krystallenia Alexandraki
- 1st Department of Propaedeutic Internal Medicine, Laiko University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Harpal S Randeva
- Division of Translational and Experimental Medicine, Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Gregory Kaltsas
- 1st Department of Propaedeutic Internal Medicine, Laiko University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece
| | - Eva Kassi
- 1st Department of Internal Medicine, Laiko University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece.
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Blood pressure (BP) exhibits strong diurnal variations that have been shown to be important for normal physiology and health. In this review, we highlight recent advances in both basic and clinic research on how the circadian clock affects these BP rhythms. RECENT FINDINGS Tissue-specific and inducible knockout rodent models have provided novel ways to dissect how circadian clocks regulate BP rhythms and demonstrated that loss of these rhythms is associated with the development of disease. The use of circadian-specific research protocols has translated findings from rodent models to humans, providing insight into circadian control of BP, as well as how sleep, activity, and other factors influence diurnal BP rhythms. Circadian mechanisms play an important role in the regulation of diurnal BP rhythms. Future research needs to extend these findings to clinical populations and determine the extent to which circadian factors may play a role in the development of novel treatment approaches to the management of hypertension.
Collapse
Affiliation(s)
- Megan K Rhoads
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vikhram Balagee
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - S Justin Thomas
- Department of Psychiatry, University of Alabama at Birmingham, SC1010, 1720 2nd Avenue South, Birmingham, AL, 35294-0017, USA.
| |
Collapse
|
20
|
Zhang D, Jin C, Obi IE, Rhoads MK, Soliman RH, Sedaka RS, Allan JM, Tao B, Speed JS, Pollock JS, Pollock DM. Loss of circadian gene Bmal1 in the collecting duct lowers blood pressure in male, but not female, mice. Am J Physiol Renal Physiol 2020; 318:F710-F719. [PMID: 31904281 PMCID: PMC7099501 DOI: 10.1152/ajprenal.00364.2019] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/11/2019] [Accepted: 01/03/2020] [Indexed: 01/19/2023] Open
Abstract
Kidney function follows a 24-h rhythm subject to regulation by circadian genes including the transcription factor Bmal1. A high-salt diet induces a phase shift in Bmal1 expression in the renal inner medulla that is dependent on endothelin type B (ETB) receptors. Furthermore, ETB receptor-mediated natriuresis is sex dependent. Therefore, experiments tested the hypothesis that collecting duct Bmal1 regulates blood pressure in a sex-dependent manner. We generated a mouse model that lacks Bmal1 expression in the collecting duct, where ETB receptor abundance is highest. Male, but not female, collecting duct Bmal1 knockout (CDBmal1KO) mice had significantly lower 24-h mean arterial pressure (MAP) than flox controls (105 ± 2 vs. 112 ± 3 mmHg for male mice and 106 ± 1 vs. 108 ± 1 mmHg for female mice, by telemetry). After 6 days on a high-salt (4% NaCl) diet, MAP remained significantly lower in male CDBmal1KO mice than in male flox control mice (107 ± 2 vs. 113 ± 1 mmHg), with no significant differences between genotypes in female mice (108 ± 2 vs. 109 ± 1 mmHg). ETB receptor blockade for another 6 days increased MAP similarly in both male and female CDBmal1KO and flox control mice. However, MAP remained lower in male CDBmal1KO mice than in male flox control mice (124 ± 2 vs. 130 ± 2 mmHg). No significant differences were observed between female CDBmal1KO and flox mice during ETB blockade (130 ± 2 vs. 127 ± 2 mmHg). There were no significant genotype differences in amplitude or phase of MAP in either sex. These data suggest that collecting duct Bmal1 has no role in circadian MAP but plays an important role in overall blood pressure in male, but not female, mice.
Collapse
Affiliation(s)
- Dingguo Zhang
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chunhua Jin
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ijeoma E Obi
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Megan K Rhoads
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Reham H Soliman
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Randee S Sedaka
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - J Miller Allan
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Binli Tao
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Joshua S Speed
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jennifer S Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - David M Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
21
|
Mirchi LF, Chylíková B, Janků M, Šeda O, Liška F. Transcriptomic analysis of left ventricle myocardium in an SHR congenic line with ameliorated cardiac fibrosis. Physiol Res 2019; 68:747-755. [PMID: 31424260 DOI: 10.33549/physiolres.934127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Metabolic syndrome and one of its manifestations, essential hypertension, is an important cause of worldwide morbidity and mortality. Morbidity and mortality associated with hypertension are caused by organ complications. Previously we revealed a decrease of blood pressure and an amelioration of cardiac fibrosis in a congenic line of spontaneously hypertensive rats (SHR), in which a short segment of chromosome 8 (encompassing only 7 genes) was exchanged for a segment of normotensive polydactylous (PD) origin. To unravel the genetic background of this phenotype we compared heart transcriptomes between SHR rat males and this chromosome 8 minimal congenic line (PD5). We found 18 differentially expressed genes, which were further analyzed using annotations from Database for Annotation, Visualization and Integrated Discovery (DAVID). Four of the differentially expressed genes (Per1, Nr4a1, Nr4a3, Kcna5) belong to circadian rhythm pathways, aldosterone synthesis and secretion, PI3K-Akt signaling pathway and potassium homeostasis. We were also able to confirm Nr4a1 2.8x-fold upregulation in PD5 on protein level using Western blotting, thus suggesting a possible role of Nr4a1 in pathogenesis of the metabolic syndrome.
Collapse
Affiliation(s)
- L F Mirchi
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
22
|
Kuzmenko NV. Seasonal Variations in Atmospheric Pressure, Partial Oxygen Density, and Geomagnetic Activity as Additional Synchronizers of Circannual Rhythms. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919040080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
23
|
Abstract
Numerous physiological functions exhibit substantial circadian oscillations. In the kidneys, renal plasma flow, the glomerular filtration rate and tubular reabsorption and/or secretion processes have been shown to peak during the active phase and decline during the inactive phase. These functional rhythms are driven, at least in part, by a self-sustaining cellular mechanism termed the circadian clock. The circadian clock controls different cellular functions, including transcription, translation and protein post-translational modifications (such as phosphorylation, acetylation and ubiquitylation) and degradation. Disruption of the circadian clock in animal models results in the loss of blood pressure control and substantial changes in the circadian pattern of water and electrolyte excretion in the urine. Kidney-specific suppression of the circadian clock in animals implicates both the intrinsic renal and the extrarenal circadian clocks in these pathologies. Alterations in the circadian rhythm of renal functions are associated with the development of hypertension, chronic kidney disease, renal fibrosis and kidney stones. Furthermore, renal circadian clocks might interfere with the pharmacokinetics and/or pharmacodynamics of various drugs and are therefore an important consideration in the treatment of some renal diseases or disorders.
Collapse
Affiliation(s)
- Dmitri Firsov
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.
| | - Olivier Bonny
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland. .,Service of Nephrology, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide a brief summary about the current state of knowledge regarding the circadian rhythm in the regulation of normal renal function. RECENT FINDINGS There is a lack of information regarding how the circadian clock mechanisms may contribute to the development of diabetic kidney disease. We discuss recent findings regarding mechanisms that are established in diabetic kidney disease and are known to be linked to the circadian clock as possible connections between these two areas. Here, we hypothesize various mechanisms that may provide a link between the clock mechanism and kidney disease in diabetes based on available data from humans and rodent models.
Collapse
Affiliation(s)
- Olanrewaju A Olaoye
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, 1600 SW Archer Road, Box 100224, Gainesville, FL, 32610, USA
| | - Sarah H Masten
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, 1600 SW Archer Road, Box 100224, Gainesville, FL, 32610, USA
| | - Rajesh Mohandas
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, 1600 SW Archer Road, Box 100224, Gainesville, FL, 32610, USA
- North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - Michelle L Gumz
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, 1600 SW Archer Road, Box 100224, Gainesville, FL, 32610, USA.
- North Florida/South Georgia Veterans Health System, Gainesville, FL, USA.
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
25
|
Angelousi A, Kassi E, Ansari-Nasiri N, Randeva H, Kaltsas G, Chrousos G. Clock genes and cancer development in particular in endocrine tissues. Endocr Relat Cancer 2019; 26:R305-R317. [PMID: 30959483 DOI: 10.1530/erc-19-0094] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/04/2019] [Indexed: 12/24/2022]
Abstract
Circadian rhythms at a central and peripheral level are operated by transcriptional/translational feedback loops involving a set of genes called 'clock genes' that have been implicated in the development of several diseases, including malignancies. Dysregulation of the Clock system can influence cancer susceptibility by regulating DNA damage and repair mechanisms, as well as apoptosis. A number of oncogenic pathways can be dysregulated via clock genes' epigenetic alterations, including hypermethylation of clock genes' promoters or variants of clock genes. Clock gene disruption has been studied in breast, lung and prostate cancer, and haematological malignancies. However, it is still not entirely clear whether clock gene disruption is the cause or the consequence of tumourigenesis and data in endocrine neoplasms are scarce. Recent findings suggest that clock genes are implicated in benign and malignant adrenocortical neoplasias. They have been also associated with follicular and papillary thyroid carcinomas and parathyroid adenomas, as well as pituitary adenomas and craniopharyngiomas. Dysregulation of clock genes is also encountered in ovarian and testicular tumours and may also be related with their susceptibility to chemotherapeutic agents. The most common clock genes that are implicated in endocrine neoplasms are PER1, CRY1; in most cases their expression is downregulated in tumoural compared to normal tissues. Although there is still a lot to be done for the better understanding of the role of clock genes in endocrine tumourigenenesis, existing evidence could guide research and help identify novel therapeutic targets aiming mainly at the peripheral components of the clock gene system.
Collapse
Affiliation(s)
- Anna Angelousi
- Endocrine Unit, 1st Department of Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Eva Kassi
- Endocrine Unit, 1st Department of Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Narjes Ansari-Nasiri
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Harpal Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Gregory Kaltsas
- Endocrine Unit, 1st Department of Propaedeutic Medicine, Laiko University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George Chrousos
- First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
26
|
Alli A, Yu L, Holzworth M, Richards J, Cheng KY, Lynch IJ, Wingo CS, Gumz ML. Direct and indirect inhibition of the circadian clock protein Per1: effects on ENaC and blood pressure. Am J Physiol Renal Physiol 2019; 316:F807-F813. [PMID: 30759025 DOI: 10.1152/ajprenal.00408.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Circadian rhythms govern physiological functions and are important for overall health. The molecular circadian clock comprises several transcription factors that mediate circadian control of physiological function, in part, by regulating gene expression in a tissue-specific manner. These connections are well established, but the underlying mechanisms are incompletely understood. The overall goal of this study was to examine the connection among the circadian clock protein Period 1 (Per1), epithelial Na+ channel (ENaC), and blood pressure (BP) using a multipronged approach. Using global Per1 knockout mice on a 129/sv background in combination with a high-salt diet plus mineralocorticoid treatment, we demonstrated that loss of Per1 in this setting is associated with protection from hypertension. Next, we used the ENaC inhibitor benzamil to demonstrate a role for ENaC in BP regulation and urinary Na+ excretion in 129/sv mice. We targeted Per1 indirectly using pharmacological inhibition of Per1 nuclear entry in vivo to demonstrate altered expression of known Per1 target genes as well as a BP-lowering effect in 129/sv mice. Finally, we directly inhibited Per1 via genetic knockdown in amphibian distal nephron cells to demonstrate, for the first time, that reduced Per1 expression is associated with decreased ENaC activity at the single channel level.
Collapse
Affiliation(s)
- Abdel Alli
- Department of Physiology and Functional Genomics, University of Florida , Gainesville, Florida.,Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida , Gainesville, Florida
| | - Ling Yu
- Department of Physiology and Functional Genomics, University of Florida , Gainesville, Florida.,College of Resources and Environmental Sciences, Nanjing Agricultural University , Nanjing , China
| | - Meaghan Holzworth
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida , Gainesville, Florida
| | - Jacob Richards
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida , Gainesville, Florida
| | - Kit-Yan Cheng
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida , Gainesville, Florida.,North Florida/South Georgia Veterans Affairs Medical Center , Gainesville, Florida
| | - I Jeanette Lynch
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida , Gainesville, Florida.,North Florida/South Georgia Veterans Affairs Medical Center , Gainesville, Florida
| | - Charles S Wingo
- Department of Physiology and Functional Genomics, University of Florida , Gainesville, Florida.,Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida , Gainesville, Florida.,North Florida/South Georgia Veterans Affairs Medical Center , Gainesville, Florida
| | - Michelle L Gumz
- Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida , Gainesville, Florida.,North Florida/South Georgia Veterans Affairs Medical Center , Gainesville, Florida.,Department of Biochemistry and Molecular Biology, University of Florida , Gainesville, Florida
| |
Collapse
|
27
|
Kim P, Oster H, Lehnert H, Schmid SM, Salamat N, Barclay JL, Maronde E, Inder W, Rawashdeh O. Coupling the Circadian Clock to Homeostasis: The Role of Period in Timing Physiology. Endocr Rev 2019; 40:66-95. [PMID: 30169559 DOI: 10.1210/er.2018-00049] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023]
Abstract
A plethora of physiological processes show stable and synchronized daily oscillations that are either driven or modulated by biological clocks. A circadian pacemaker located in the suprachiasmatic nucleus of the ventral hypothalamus coordinates 24-hour oscillations of central and peripheral physiology with the environment. The circadian clockwork involved in driving rhythmic physiology is composed of various clock genes that are interlocked via a complex feedback loop to generate precise yet plastic oscillations of ∼24 hours. This review focuses on the specific role of the core clockwork gene Period1 and its paralogs on intra-oscillator and extra-oscillator functions, including, but not limited to, hippocampus-dependent processes, cardiovascular function, appetite control, as well as glucose and lipid homeostasis. Alterations in Period gene function have been implicated in a wide range of physical and mental disorders. At the same time, a variety of conditions including metabolic disorders also impact clock gene expression, resulting in circadian disruptions, which in turn often exacerbates the disease state.
Collapse
Affiliation(s)
- Pureum Kim
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Hendrik Lehnert
- Department of Internal Medicine 1, University of Lübeck, Lübeck, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Sebastian M Schmid
- Department of Internal Medicine 1, University of Lübeck, Lübeck, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Nicole Salamat
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Johanna L Barclay
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Erik Maronde
- Department of Anatomy, Goethe University Frankfurt, Frankfurt, Germany
| | - Warrick Inder
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Oliver Rawashdeh
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
28
|
Fletcher ELK, Kanki M, Morgan J, Ray DW, Delbridge L, Fuller PJ, Clyne CD, Young MJ. Cardiomyocyte transcription is controlled by combined MR and circadian clock signalling. J Endocrinol 2019; 241:JOE-18-0584.R3. [PMID: 30689544 DOI: 10.1530/joe-18-0584] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/28/2019] [Indexed: 12/21/2022]
Abstract
We previously identified a critical pathogenic role for MR activation in cardiomyocytes that included a potential interaction between the MR and the molecular circadian clock. While glucocorticoid regulation of the circadian clock is undisputed, MR interactions with circadian clock signalling are limited. We hypothesised that the MR influences cardiac circadian clock signalling, and vice versa. 10nM aldosterone or corticosterone regulated CRY 1, PER1, PER2 and ReverbA (NR1D1) gene expression patterns in H9c2 cells over 24hr. MR-dependent regulation of circadian gene promoters containing GREs and E-box sequences was established for CLOCK, Bmal, CRY 1 and CRY2, PER1 and PER2 and transcriptional activators CLOCK and Bmal modulated MR-dependent transcription of a subset of these promoters. We also demonstrated differential regulation of MR target gene expression in hearts of mice 4hr after administration of aldosterone at 8AM versus 8PM. Our data support combined MR regulation of a subset of circadian genes and that endogenous circadian transcription factors CLOCK and Bmal modulate this response. This unsuspected relationship links MR in the heart to circadian rhythmicity at the molecular level and has important implications for the biology of MR signalling in response to aldosterone as well as cortisol. These data are consistent with MR signalling in the brain where, like the heart, it preferentially responds to cortisol. Given the undisputed requirement for diurnal cortisol release in the entrainment of peripheral clocks, the present study highlights the MR as an important mechanism for transducing the circadian actions of cortisol in addition to the GR in the heart.
Collapse
Affiliation(s)
- ELizabeth K Fletcher
- E Fletcher, Sackler School of Graduate Biomedical Sciences, Tuft Medical Centre, Boston, United States
| | - Monica Kanki
- M Kanki, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Australia
| | - James Morgan
- J Morgan, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Australia
| | - David W Ray
- D Ray, Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom of Great Britain and Northern Ireland
| | - Lea Delbridge
- L Delbridge, Dept Of Physiology, University of Melbourne, Melbourne, xxx, Australia
| | - Peter James Fuller
- P Fuller, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Australia
| | - Colin D Clyne
- C Clyne , Cancer Drug Discovery, Hudson Institute of Medical Research, Clayton, Australia
| | - Morag J Young
- M Young, Cardiovascular Endocrinology, Hudson Institute of Medical Research, Clayton, 3166, Australia
| |
Collapse
|
29
|
Douma LG, Solocinski K, Holzworth MR, Crislip GR, Masten SH, Miller AH, Cheng KY, Lynch IJ, Cain BD, Wingo CS, Gumz ML. Female C57BL/6J mice lacking the circadian clock protein PER1 are protected from nondipping hypertension. Am J Physiol Regul Integr Comp Physiol 2018; 316:R50-R58. [PMID: 30427705 DOI: 10.1152/ajpregu.00381.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The circadian clock is integral to the maintenance of daily rhythms of many physiological outputs, including blood pressure. Our laboratory has previously demonstrated the importance of the clock protein period 1 (PER1) in blood pressure regulation in male mice. Briefly, a high-salt diet (HS; 4% NaCl) plus injection with the long-acting mineralocorticoid deoxycorticosterone pivalate (DOCP) resulted in nondipping hypertension [<10% difference between night and day blood pressure (BP) in Per1-knockout (KO) mice but not in wild-type (WT) mice]. To date, there have been no studies that have examined the effect of a core circadian gene KO on BP rhythms in female mice. The goal of the present study was to determine whether female Per1-KO mice develop nondipping hypertension in response to HS/DOCP treatment. For the first time, we demonstrate that loss of the circadian clock protein PER1 in female mice does not significantly change mean arterial pressure (MAP) or the BP rhythm relative to female C57BL/6 WT control mice. Both WT and Per1-KO female mice experienced a significant increase in MAP in response to HS/DOCP. Importantly, however, both genotypes maintained a >10% dip in BP on HS/DOCP. This effect is distinct from the nondipping hypertension seen in male Per1-KO mice, demonstrating that the female sex appears to be protective against PER1-mediated nondipping hypertension in response to HS/DOCP. Together, these data suggest that PER1 acts in a sex-dependent manner in the regulation of cardiovascular rhythms.
Collapse
Affiliation(s)
- Lauren G Douma
- Department of Medicine, University of Florida , Gainesville, Florida.,Department of Biochemistry and Molecular Biology, University of Florida , Gainesville, Florida
| | - Kristen Solocinski
- Department of Medicine, University of Florida , Gainesville, Florida.,Department of Biochemistry and Molecular Biology, University of Florida , Gainesville, Florida
| | | | - G Ryan Crislip
- Department of Medicine, University of Florida , Gainesville, Florida.,Department of Physiology and Functional Genomics, University of Florida , Gainesville, Florida
| | - Sarah H Masten
- Department of Medicine, University of Florida , Gainesville, Florida
| | - Amber H Miller
- Department of Medicine, University of Florida , Gainesville, Florida
| | - Kit-Yan Cheng
- Department of Medicine, University of Florida , Gainesville, Florida
| | - I Jeanette Lynch
- Department of Medicine, University of Florida , Gainesville, Florida.,Department of Physiology and Functional Genomics, University of Florida , Gainesville, Florida
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida , Gainesville, Florida
| | - Charles S Wingo
- Department of Medicine, University of Florida , Gainesville, Florida.,Department of Physiology and Functional Genomics, University of Florida , Gainesville, Florida.,Research, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Michelle L Gumz
- Department of Medicine, University of Florida , Gainesville, Florida.,Department of Biochemistry and Molecular Biology, University of Florida , Gainesville, Florida.,Department of Physiology and Functional Genomics, University of Florida , Gainesville, Florida
| |
Collapse
|
30
|
De Lavallaz L, Musso CG. Chronobiology in nephrology: the influence of circadian rhythms on renal handling of drugs and renal disease treatment. Int Urol Nephrol 2018; 50:2221-2228. [PMID: 30324579 DOI: 10.1007/s11255-018-2001-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 10/04/2018] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Chronobiology studies the phenomenon of rhythmicity in living organisms. The circadian rhythms are genetically determined and regulated by external synchronizers (the daylight cycle). Several biological processes involved in the pharmacokinetics and pharmacodynamics of drugs are subjected to circadian variations. Chronopharmacology studies how biological rhythms influence pharmacokinetics, pharmacodynamics, and toxicity, and determines whether time-of-day administration modifies the pharmacological characteristics of the drug. Chronotherapy applies chronopharmacological studies to clinical treatments, determining the best biological time for dosing: when the beneficial effects are maximal and the incidence and/or intensity of related side effects and toxicity are minimal. Most water-soluble drugs or drug metabolites are eliminated by urine through the kidney. The rate of drug clearance in the urine depends on several intrinsic variables related to renal function including renal blood flow, glomerular filtration rate, the ability of the kidney to reabsorb or to secrete drugs, urine flow, and urine pH, which influences the degree of urine acidification. Curiously, all these variables present a circadian behavior in different mammalian models. CONCLUSION The circadian rhythms have influence in the renal physiology, pathophysiology, and pharmacology, and these data should be taken into account in clinical nephrology practice.
Collapse
Affiliation(s)
- Lucas De Lavallaz
- Human Physiology Department, Instituto Universitario del Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Carlos G Musso
- Human Physiology Department, Instituto Universitario del Hospital Italiano de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
31
|
Tetti M, Castellano I, Venziano F, Magnino C, Veglio F, Mulatero P, Monticone S. Role of Cryptochrome-1 and Cryptochrome-2 in Aldosterone-Producing Adenomas and Adrenocortical Cells. Int J Mol Sci 2018; 19:ijms19061675. [PMID: 29874863 PMCID: PMC6032245 DOI: 10.3390/ijms19061675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 11/17/2022] Open
Abstract
Mice lacking the core-clock components, cryptochrome-1 (CRY1) and cryptochrome-2 (CRY2) display a phenotype of hyperaldosteronism, due to the upregulation of type VI 3β-hydroxyl-steroid dehydrogenase (Hsd3b6), the murine counterpart to the human type I 3β-hydroxyl-steroid dehydrogenase (HSD3B1) gene. In the present study, we evaluated the role of CRY1 and CRY2 genes, and their potential interplay with HSD3B isoforms in adrenal pathophysiology in man. Forty-six sporadic aldosterone-producing adenomas (APAs) and 20 paired adrenal samples were included, with the human adrenocortical cells HAC15 used as the in vitro model. In our cohort of sporadic APAs, CRY1 expression was 1.7-fold [0.75–2.26] higher (p = 0.016), while CRY2 showed a 20% lower expression [0.80, 0.52–1.08] (p = 0.04) in APAs when compared with the corresponding adjacent adrenal cortex. Type II 3β-hydroxyl-steroid dehydrogenase (HSD3B2) was 317-fold [200–573] more expressed than HSD3B1, and is the main HSD3B isoform in APAs. Both dehydrogenases were more expressed in APAs when compared with the adjacent cortex (5.7-fold and 3.5-fold, respectively, p < 0.001 and p = 0.001) and HSD3B1 was significantly more expressed in APAs composed mainly of zona glomerulosa-like cells. Treatment with angiotensin II (AngII) resulted in a significant upregulation of CRY1 (1.7 ± 0.25-fold, p < 0.001) at 6 h, and downregulation of CRY2 at 12 h (0.6 ± 0.1-fold, p < 0.001), through activation of the AngII type 1 receptor. Independent silencing of CRY1 and CRY2 genes in HAC15 cells resulted in a mild upregulation of HSD3B2 without affecting HSD3B1 expression. In conclusion, our results support the hypothesis that CRY1 and CRY2, being AngII-regulated genes, and showing a differential expression in APAs when compared with the adjacent adrenal cortex, might be involved in adrenal cell function, and in the regulation of aldosterone production.
Collapse
Affiliation(s)
- Martina Tetti
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, 10126 Torino, Italy.
| | - Isabella Castellano
- Division of Pathology, Department of Medical Sciences, University of Torino,10126 Torino, Italy.
| | - Francesca Venziano
- Division of Pathology, Department of Medical Sciences, University of Torino,10126 Torino, Italy.
| | - Corrado Magnino
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, 10126 Torino, Italy.
| | - Franco Veglio
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, 10126 Torino, Italy.
| | - Paolo Mulatero
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, 10126 Torino, Italy.
| | - Silvia Monticone
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, 10126 Torino, Italy.
| |
Collapse
|
32
|
Thosar SS, Butler MP, Shea SA. Role of the circadian system in cardiovascular disease. J Clin Invest 2018; 128:2157-2167. [PMID: 29856365 DOI: 10.1172/jci80590] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
All species organize behaviors to optimally match daily changes in the environment, leading to pronounced activity/rest cycles that track the light/dark cycle. Endogenous, approximately 24-hour circadian rhythms in the brain, autonomic nervous system, heart, and vasculature prepare the cardiovascular system for optimal function during these anticipated behavioral cycles. Cardiovascular circadian rhythms, however, may be a double-edged sword. The normal amplified responses in the morning may aid the transition from sleep to activity, but such exaggerated responses are potentially perilous in individuals susceptible to adverse cardiovascular events. Indeed, the occurrence of stroke, myocardial infarction, and sudden cardiac death all have daily patterns, striking most frequently in the morning. Furthermore, chronic disruptions of the circadian clock, as with night-shift work, contribute to increased cardiovascular risk. Here we highlight the importance of the circadian system to normal cardiovascular function and to cardiovascular disease, and identify opportunities for optimizing timing of medications in cardiovascular disease.
Collapse
|
33
|
Abstract
The kidneys regulate many vital functions that require precise control throughout the day. These functions, such as maintaining sodium balance or regulating arterial pressure, rely on an intrinsic clock mechanism that was commonly believed to be controlled by the central nervous system. Mounting evidence in recent years has unveiled previously underappreciated depth of influence by circadian rhythms and clock genes on renal function, at the molecular and physiological level, independent of other external factors. The impact of circadian rhythms in the kidney also affects individuals from a clinical standpoint, as the loss of rhythmic activity or clock gene expression have been documented in various cardiovascular diseases. Fortunately, the prognostic value of examining circadian rhythms may prove useful in determining the progression of a kidney-related disease, and chronotherapy is a clinical intervention that requires consideration of circadian and diurnal rhythms in the kidney. In this review, we discuss evidence of circadian regulation in the kidney from basic and clinical research in order to provide a foundation on which a great deal of future research is needed to expand our understanding of circadian relevant biology.
Collapse
Affiliation(s)
- Jermaine G Johnston
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - David M Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
34
|
Douma LG, Gumz ML. Circadian clock-mediated regulation of blood pressure. Free Radic Biol Med 2018; 119:108-114. [PMID: 29198725 PMCID: PMC5910276 DOI: 10.1016/j.freeradbiomed.2017.11.024] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/21/2017] [Accepted: 11/28/2017] [Indexed: 12/24/2022]
Abstract
Most bodily functions vary over the course of a 24h day. Circadian rhythms in body temperature, sleep-wake cycles, metabolism, and blood pressure (BP) are just a few examples. These circadian rhythms are controlled by the central clock in the suprachiasmatic nucleus (SCN) of the hypothalamus and peripheral clocks located throughout the body. Light and food cues entrain these clocks to the time of day and this synchronicity contributes to the regulation of a variety of physiological processes with effects on overall health. The kidney, brain, nervous system, vasculature, and heart have been identified through the use of mouse models and clinical trials as peripheral clock regulators of BP. The dysregulation of this circadian pattern of BP, with or without hypertension, is associated with increased risk for cardiovascular disease. The mechanism of this dysregulation is unknown and is a growing area of research. In this review, we highlight research of human and mouse circadian models that has provided insight into the roles of these molecular clocks and their effects on physiological functions. Additional tissue-specific studies of the molecular clock mechanism are needed, as well as clinical studies including more diverse populations (different races, female patients, etc.), which will be critical to fully understand the mechanism of circadian regulation of BP. Understanding how these molecular clocks regulate the circadian rhythm of BP is critical in the treatment of circadian BP dysregulation and hypertension.
Collapse
Affiliation(s)
- Lauren G Douma
- Department of Medicine, Division of Nephrology, Hypertension and Renal Transplantation, University of Florida, Gainesville, FL 32610, United States; Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, United States
| | - Michelle L Gumz
- Department of Medicine, Division of Nephrology, Hypertension and Renal Transplantation, University of Florida, Gainesville, FL 32610, United States; Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
35
|
Hernandez M, Watkins J, Vu J, Hayward L. DOCA/salt hypertension alters Period1 and orexin-related gene expression in the medulla and hypothalamus of male rats: Diurnal influences. Auton Neurosci 2018; 210:34-43. [DOI: 10.1016/j.autneu.2017.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
|
36
|
Wiig H, Luft FC, Titze JM. The interstitium conducts extrarenal storage of sodium and represents a third compartment essential for extracellular volume and blood pressure homeostasis. Acta Physiol (Oxf) 2018; 222. [PMID: 29193764 DOI: 10.1111/apha.13006] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/31/2017] [Accepted: 11/23/2017] [Indexed: 12/15/2022]
Abstract
The role of salt in the pathogenesis of arterial hypertension is not well understood. According to the current understanding, the central mechanism for blood pressure (BP) regulation relies on classical studies linking BP and Na+ balance, placing the kidney at the very centre of long-term BP regulation. To maintain BP homeostasis, the effective circulating fluid volume and thereby body Na+ content has to be maintained within very narrow limits. From recent work in humans and rats, the notion has emerged that Na+ could be stored somewhere in the body without commensurate water retention to buffer free extracellular Na+ and that previously unidentified extrarenal, tissue-specific regulatory mechanisms are operative regulating the release and storage of Na+ from a kidney-independent reservoir. Moreover, immune cells from the mononuclear phagocyte system not only function as local on-site sensors of interstitial electrolyte concentration, but also, together with lymphatics, act as systemic regulators of body fluid volume and BP. These studies have established new and unexpected targets in studies of BP control and thus the pathophysiology of hypertension: the interstitium/extracellular matrix of the skin, its inherent interstitial fluid and the lymphatic vasculature forming a vessel network in the interstitium. Aspects of the interstitium in relation to Na+ balance and hypertension are the focus of this review. Taken together, observations of salt storage in the skin to buffer free extracellular Na+ and macrophage modulation of the extracellular matrix and lymphatics suggest that electrolyte homeostasis in the body cannot be achieved by renal excretion alone, but also relies on extrarenal regulatory mechanisms.
Collapse
Affiliation(s)
- H. Wiig
- Department of Biomedicine; University of Bergen; Bergen Norway
| | - F. C. Luft
- Experimental and Clinical Research Center; Max-Delbrück Center for Molecular Medicine; Charité Medical Faculty; Berlin Germany
- Division of Clinical Pharmacology; Department of Medicine; Vanderbilt University School of Medicine; Nashville TN USA
| | - J. M. Titze
- Division of Clinical Pharmacology; Department of Medicine; Vanderbilt University School of Medicine; Nashville TN USA
| |
Collapse
|
37
|
Altered Circadian Timing System-Mediated Non-Dipping Pattern of Blood Pressure and Associated Cardiovascular Disorders in Metabolic and Kidney Diseases. Int J Mol Sci 2018; 19:ijms19020400. [PMID: 29385702 PMCID: PMC5855622 DOI: 10.3390/ijms19020400] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/12/2018] [Accepted: 01/20/2018] [Indexed: 12/15/2022] Open
Abstract
The morning surge in blood pressure (BP) coincides with increased cardiovascular (CV) events. This strongly suggests that an altered circadian rhythm of BP plays a crucial role in the development of CV disease (CVD). A disrupted circadian rhythm of BP, such as the non-dipping type of hypertension (i.e., absence of nocturnal BP decline), is frequently observed in metabolic disorders and chronic kidney disease (CKD). The circadian timing system, controlled by the central clock in the suprachiasmatic nucleus of the hypothalamus and/or by peripheral clocks in the heart, vasculature, and kidneys, modulates the 24 h oscillation of BP. However, little information is available regarding the molecular and cellular mechanisms of an altered circadian timing system-mediated disrupted dipping pattern of BP in metabolic disorders and CKD that can lead to the development of CV events. A more thorough understanding of this pathogenesis could provide novel therapeutic strategies for the management of CVD. This short review will address our and others' recent findings on the molecular mechanisms that may affect the dipping pattern of BP in metabolic dysfunction and kidney disease and its association with CV disorders.
Collapse
|
38
|
Douma LG, Holzworth MR, Solocinski K, Masten SH, Miller AH, Cheng KY, Lynch IJ, Cain BD, Wingo CS, Gumz ML. Renal Na-handling defect associated with PER1-dependent nondipping hypertension in male mice. Am J Physiol Renal Physiol 2018; 314:F1138-F1144. [PMID: 29357420 DOI: 10.1152/ajprenal.00546.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Many physiological functions have a circadian rhythm, including blood pressure (BP). BP is highest during the active phase, whereas during the rest period, BP dips 10-20%. Patients that do not experience this dip at night are termed "nondippers." Nondipping hypertension is associated with increased risk of cardiovascular disease. The mechanisms underlying nondipping hypertension are not understood. Without the circadian clock gene Per1, C57BL/6J mice develop nondipping hypertension on a high-salt diet plus mineralocorticoid treatment (HS/DOCP). Our laboratory has shown that PER1 regulates expression of several genes related to sodium (Na) transport in the kidney, including epithelial Na channel (ENaC) and Na chloride cotransporter (NCC). Urinary Na excretion also demonstrates a circadian pattern with a peak during active periods. We hypothesized that PER1 contributes to circadian regulation of BP via a renal Na-handling-dependent mechanism. Na-handling genes from the distal nephron were inappropriately regulated in KO mice on HS/DOCP. Additionally, the night/day ratio of Na urinary excretion by Per1 KO mice is decreased compared with WT (4 × vs. 7×, P < 0.001, n = 6 per group). Distal nephron-specific Per1 KO mice also show an inappropriate increase in expression of Na transporter genes αENaC and NCC. These results support the hypothesis that PER1 mediates control of circadian BP rhythms via the regulation of distal nephron Na transport genes. These findings have implications for the understanding of the etiology of nondipping hypertension and the subsequent development of novel therapies for this dangerous pathophysiological condition.
Collapse
Affiliation(s)
- Lauren G Douma
- Department of Medicine, University of Florida , Gainesville, Florida.,Department of Biochemistry and Molecular Biology, University of Florida , Gainesville, Florida
| | | | - Kristen Solocinski
- Department of Medicine, University of Florida , Gainesville, Florida.,Department of Biochemistry and Molecular Biology, University of Florida , Gainesville, Florida
| | - Sarah H Masten
- Department of Medicine, University of Florida , Gainesville, Florida
| | - Amber H Miller
- Department of Medicine, University of Florida , Gainesville, Florida
| | - Kit-Yan Cheng
- Department of Medicine, University of Florida , Gainesville, Florida
| | - I Jeanette Lynch
- Department of Medicine, University of Florida , Gainesville, Florida.,Research, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida , Gainesville, Florida
| | - Charles S Wingo
- Department of Medicine, University of Florida , Gainesville, Florida.,Research, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Michelle L Gumz
- Department of Medicine, University of Florida , Gainesville, Florida.,Department of Biochemistry and Molecular Biology, University of Florida , Gainesville, Florida.,Research, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| |
Collapse
|
39
|
Gumz ML. Molecular basis of circadian rhythmicity in renal physiology and pathophysiology. Exp Physiol 2018; 101:1025-9. [PMID: 27474264 DOI: 10.1113/ep085781] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/20/2016] [Indexed: 12/20/2022]
Abstract
NEW FINDINGS What is the topic of this review? This brief symposium report is focused on the molecular and physiological evidence that supports a key role for the circadian clock in the regulation of kidney function. What advances does it highlight? Progress in understanding the molecular mechanism of the kidney clock is reviewed here, including new results from global 'omics' studies and candidate gene approaches. The molecular kidney clock is a master regulator of gene expression that affects renal electrolyte and drug handling as well as blood pressure. In this brief review, an overview of the molecular and physiological evidence for the kidney clock and the implications for the regulation of renal physiology and pathophysiology are presented. Accumulating evidence suggests that the molecular circadian clock acts as a master regulator of gene expression in the kidney. Global transcriptomic approaches have revealed the important finding that there are thousands of genes in the kidney subject to regulation by the molecular clock. Candidate gene approaches have also yielded information regarding regulation of renal sodium transport genes by the molecular clock. To date, the evidence linking the molecular kidney clock to rhythmic renal function provides strong support for the concept that circadian control of gene expression underlies rhythms in physiological function.
Collapse
Affiliation(s)
- Michelle L Gumz
- Department of Medicine, Division of Nephrology, Hypertension and Renal Transplantation, University of Florida, Gainesville, FL, USA.,Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
40
|
Aragao-Santiago L, Gomez-Sanchez CE, Mulatero P, Spyroglou A, Reincke M, Williams TA. Mouse Models of Primary Aldosteronism: From Physiology to Pathophysiology. Endocrinology 2017; 158:4129-4138. [PMID: 29069360 PMCID: PMC5711388 DOI: 10.1210/en.2017-00637] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/16/2017] [Indexed: 01/08/2023]
Abstract
Primary aldosteronism (PA) is a common form of endocrine hypertension that is characterized by the excessive production of aldosterone relative to suppressed plasma renin levels. PA is usually caused by either a unilateral aldosterone-producing adenoma or bilateral adrenal hyperplasia. Somatic mutations have been identified in several genes that encode ion pumps and channels that may explain the aldosterone excess in over half of aldosterone-producing adenomas, whereas the pathophysiology of bilateral adrenal hyperplasia is largely unknown. A number of mouse models of hyperaldosteronism have been described that recreate some features of the human disorder, although none replicate the genetic basis of human PA. Animal models that reproduce the genotype-phenotype associations of human PA are required to establish the functional mechanisms that underlie the endocrine autonomy and deregulated cell growth of the affected adrenal and for preclinical studies of novel therapeutics. Herein, we discuss the differences in adrenal physiology across species and describe the genetically modified mouse models of PA that have been developed to date.
Collapse
Affiliation(s)
- Leticia Aragao-Santiago
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Germany
| | - Celso E Gomez-Sanchez
- Endocrinology Division, G.V. (Sonny) Montgomery Veterans Affairs Medical Center and University of Mississippi Medical Center
| | - Paolo Mulatero
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Italy
| | - Ariadni Spyroglou
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Germany
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Germany
| | - Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Germany
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Italy
| |
Collapse
|
41
|
Fletcher EK, Morgan J, Kennaway DR, Bienvenu LA, Rickard AJ, Delbridge LMD, Fuller PJ, Clyne CD, Young MJ. Deoxycorticosterone/Salt-Mediated Cardiac Inflammation and Fibrosis Are Dependent on Functional CLOCK Signaling in Male Mice. Endocrinology 2017; 158:2906-2917. [PMID: 28911177 DOI: 10.1210/en.2016-1911] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 07/13/2017] [Indexed: 12/19/2022]
Abstract
Activation of the mineralocorticoid receptor (MR) promotes inflammation, fibrosis, and hypertension. Clinical and experimental studies show that MR antagonists have significant therapeutic benefit for all-cause heart failure; however, blockade of renal MRs limits their widespread use. Identification of key downstream signaling mechanisms for the MR in the cardiovascular system may enable development of targeted MR antagonists with selectivity for pathological MR signaling and lower impact on physiological renal electrolyte handling. One candidate pathway is the circadian clock, the dysregulation of which is associated with cardiovascular diseases. We have previously shown that the circadian gene Per2 is dysregulated in hearts with selective deletion of cardiomyocyte MR. We therefore investigated MR-mediated cardiac inflammation and fibrosis in mice that lack normal regulation and oscillation of the circadian clock in peripheral tissues, that is, CLOCKΔ19 mutant mice. The characteristic cardiac inflammatory/fibrotic response to a deoxycorticosterone (DOC)/salt for 8 weeks was significantly blunted in CLOCKΔ19 mice when compared with wild-type mice, despite a modest increase at "baseline" for fibrosis and macrophage number in CLOCKΔ19 mice. In contrast, cardiac hypertrophy in response to DOC/salt was significantly greater in CLOCKΔ19 vs wild-type mice. Markers for renal inflammation and fibrosis were similarly attenuated in the CLOCKΔ19 mice given DOC/salt. Moreover, increased CLOCK expression in H9c2 cardiac cells enhanced MR-mediated transactivation of Per1, suggesting cooperative signaling between these transcription factors. This study demonstrates that the full development of MR-mediated cardiac inflammation and fibrosis is dependent on intact signaling by the circadian protein CLOCK.
Collapse
Affiliation(s)
- Elizabeth K Fletcher
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
- Department of Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - James Morgan
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - David R Kennaway
- School of Medicine, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Laura A Bienvenu
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
- Department of Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Amanda J Rickard
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Lea M D Delbridge
- Department of Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Peter J Fuller
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
- Department of Medicine, Monash University, Clayton, Victoria 3168, Australia
| | - Colin D Clyne
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Morag J Young
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
- Department of Medicine, Monash University, Clayton, Victoria 3168, Australia
- Department of Physiology, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
42
|
Solocinski K, Holzworth M, Wen X, Cheng KY, Lynch IJ, Cain BD, Wingo CS, Gumz ML. Desoxycorticosterone pivalate-salt treatment leads to non-dipping hypertension in Per1 knockout mice. Acta Physiol (Oxf) 2017; 220:72-82. [PMID: 27636900 DOI: 10.1111/apha.12804] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/06/2016] [Accepted: 09/11/2016] [Indexed: 12/01/2022]
Abstract
AIM Increasing evidence demonstrates that circadian clock proteins are important regulators of physiological functions including blood pressure. An established risk factor for developing cardiovascular disease is the absence of a blood pressure dip during the inactive period. The goal of the present study was to determine the effects of a high salt diet plus mineralocorticoid on PER1-mediated blood pressure regulation in a salt-resistant, normotensive mouse model, C57BL/6J. METHODS Blood pressure was measured using radiotelemetry. After control diet, wild-type (WT) and Per1 (KO) knockout mice were given a high salt diet (4% NaCl) and the long-acting mineralocorticoid deoxycorticosterone pivalate. Blood pressure and activity rhythms were analysed to evaluate changes over time. RESULTS Blood pressure in WT mice was not affected by a high salt diet plus mineralocorticoid. In contrast, Per1 KO mice exhibited significantly increased mean arterial pressure (MAP) in response to a high salt diet plus mineralocorticoid. The inactive/active phase ratio of MAP in WT mice was unchanged by high salt plus mineralocorticoid treatment. Importantly, this treatment caused Per1 KO mice to lose the expected decrease or 'dip' in blood pressure during the inactive compared to the active phase. CONCLUSION Loss of PER1 increased sensitivity to the high salt plus mineralocorticoid treatment. It also resulted in a non-dipper phenotype in this model of salt-sensitive hypertension and provides a unique model of non-dipping. Together, these data support an important role for the circadian clock protein PER1 in the modulation of blood pressure in a high salt/mineralocorticoid model of hypertension.
Collapse
Affiliation(s)
- K Solocinski
- Department of Medicine, University of Florida, Gainesville, FL, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - M Holzworth
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - X Wen
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - K-Y Cheng
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - I J Lynch
- Department of Medicine, University of Florida, Gainesville, FL, USA
- North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - B D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - C S Wingo
- Department of Medicine, University of Florida, Gainesville, FL, USA
- North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - M L Gumz
- Department of Medicine, University of Florida, Gainesville, FL, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
- North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| |
Collapse
|
43
|
Nikolaeva S, Ansermet C, Centeno G, Pradervand S, Bize V, Mordasini D, Henry H, Koesters R, Maillard M, Bonny O, Tokonami N, Firsov D. Nephron-Specific Deletion of Circadian Clock Gene Bmal1 Alters the Plasma and Renal Metabolome and Impairs Drug Disposition. J Am Soc Nephrol 2016; 27:2997-3004. [PMID: 27056296 PMCID: PMC5042670 DOI: 10.1681/asn.2015091055] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/10/2016] [Indexed: 12/11/2022] Open
Abstract
The circadian clock controls a wide variety of metabolic and homeostatic processes in a number of tissues, including the kidney. However, the role of the renal circadian clocks remains largely unknown. To address this question, we performed a combined functional, transcriptomic, and metabolomic analysis in mice with inducible conditional knockout (cKO) of BMAL1, which is critically involved in the circadian clock system, in renal tubular cells (Bmal1lox/lox/Pax8-rtTA/LC1 mice). Induction of cKO in adult mice did not produce obvious abnormalities in renal sodium, potassium, or water handling. Deep sequencing of the renal transcriptome revealed significant changes in the expression of genes related to metabolic pathways and organic anion transport in cKO mice compared with control littermates. Furthermore, kidneys from cKO mice exhibited a significant decrease in the NAD+-to-NADH ratio, which reflects the oxidative phosphorylation-to-glycolysis ratio and/or the status of mitochondrial function. Metabolome profiling showed significant changes in plasma levels of amino acids, biogenic amines, acylcarnitines, and lipids. In-depth analysis of two selected pathways revealed a significant increase in plasma urea level correlating with increased renal Arginase II activity, hyperargininemia, and increased kidney arginine content as well as a significant increase in plasma creatinine concentration and a reduced capacity of the kidney to secrete anionic drugs (furosemide) paralleled by an approximate 80% decrease in the expression level of organic anion transporter 3 (SLC22a8). Collectively, these results indicate that the renal circadian clocks control a variety of metabolic/homeostatic processes at the intrarenal and systemic levels and are involved in drug disposition.
Collapse
Affiliation(s)
- Svetlana Nikolaeva
- Department of Pharmacology and Toxicology and Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia
| | | | | | - Sylvain Pradervand
- Genomic Technologies Facility, University of Lausanne, Lausanne, Switzerland
| | | | - David Mordasini
- Department of Pharmacology and Toxicology and Department of Nephrology, Hypertension and Clinical Pharmacology, Inselspital, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland
| | | | - Robert Koesters
- Department of Nephrology, Tenon Hospital, Université Pierre et Marie Curie, Paris, France; and
| | - Marc Maillard
- Service of Nephrology, Department of Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Olivier Bonny
- Department of Pharmacology and Toxicology and Service of Nephrology, Department of Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Natsuko Tokonami
- Department of Pharmacology and Toxicology and Labeled Research Team (ERL) 8228-U1138 équipe 3, Centre de Recherche des Cordeliers, Paris, France
| | | |
Collapse
|
44
|
Alterations in the expression of Per1 and Per2 induced by Aβ31-35 in the suprachiasmatic nucleus, hippocampus, and heart of C57BL/6 mouse. Brain Res 2016; 1642:51-58. [PMID: 27021954 DOI: 10.1016/j.brainres.2016.03.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 12/29/2022]
Abstract
Patients with Alzheimer's disease (AD) have circadian rhythm disorders, which are mimicked in 3xTg-AD and 5xFAD mouse models. The deposition of β-amyloid protein (Aβ) is an important pathological characteristic of AD, however, its role in inducing alterations in biological rhythms and in the expression of circadian clock-related genes remains elusive. The Per1 and Per2 play complex regulatory roles in biological clocks and are diffusely expressed in the suprachiasmatic nucleus (SCN), hippocampus and heart. In the present study, wheel-running behavioral experiments showed that Aβ31-35, which was administered into the hippocampus, resulted in the disruption of the circadian rhythm of C57BL/6 mice. Furthermore, real-time PCR and western blot analysis showed that Aβ31-35 altered the expression of the Per1 and Per2 in the SCN, hippocampus and heart. These findings provide experimental evidence for circadian rhythm disturbances in patients with AD.
Collapse
|
45
|
Abstract
Since the kidney is integral to maintenance of fluid and ion homeostasis, and therefore blood pressure regulation, its proper function is paramount. Circadian fluctuations in blood pressure, renal blood flow, glomerular filtration rate, and sodium and water excretion have been documented for decades, if not longer. Recent studies on the role of circadian clock proteins in the regulation of a variety of renal transport genes suggest that the molecular clock in the kidney controls circadian fluctuations in renal function. The circadian clock appears to be a critical regulator of renal function with important implications for the treatment of renal pathologies, which include chronic kidney disease and hypertension. The development, regulation, and mechanism of the kidney clock are reviewed here.
Collapse
Affiliation(s)
- Kristen Solocinski
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FloridaDepartment of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| | - Michelle L Gumz
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, FloridaDepartment of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| |
Collapse
|
46
|
Solocinski K, Richards J, All S, Cheng KY, Khundmiri SJ, Gumz ML. Transcriptional regulation of NHE3 and SGLT1 by the circadian clock protein Per1 in proximal tubule cells. Am J Physiol Renal Physiol 2015; 309:F933-42. [PMID: 26377793 DOI: 10.1152/ajprenal.00197.2014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 09/14/2015] [Indexed: 01/08/2023] Open
Abstract
We have previously demonstrated that the circadian clock protein period (Per)1 coordinately regulates multiple genes involved in Na(+) reabsorption in renal collecting duct cells. Consistent with these results, Per1 knockout mice exhibit dramatically lower blood pressure than wild-type mice. The proximal tubule is responsible for a majority of Na(+) reabsorption. Previous work has demonstrated that expression of Na(+)/H(+) exchanger 3 (NHE3) oscillates with a circadian pattern and Na(+)-glucose cotransporter (SGLT)1 has been demonstrated to be a circadian target in the colon, but whether these target genes are regulated by Per1 has not been investigated in the kidney. The goal of the present study was to determine if Per1 regulates the expression of NHE3, SGLT1, and SGLT2 in the kidney. Pharmacological blockade of nuclear Per1 entry resulted in decreased mRNA expression of SGLT1 and NHE3 but not SGLT2 in the renal cortex of mice. Per1 small interfering RNA and pharmacological blockade of Per1 nuclear entry in human proximal tubule HK-2 cells yielded the same results. Examination of heterogeneous nuclear RNA suggested that the effects of Per1 on NHE3 and SGLT1 expression occurred at the level of transcription. Per1 and the circadian protein CLOCK were detected at promoters of NHE3 and SGLT1. Importantly, both membrane and intracellular protein levels of NHE3 and SGLT1 were decreased after blockade of nuclear Per1 entry. This effect was associated with reduced activity of Na(+)-K(+)-ATPase. These data demonstrate a role for Per1 in the transcriptional regulation of NHE3 and SGLT1 in the kidney.
Collapse
Affiliation(s)
- Kristen Solocinski
- Department of Medicine, University of Florida, Gainesville, Florida; Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida; and
| | - Jacob Richards
- Department of Medicine, University of Florida, Gainesville, Florida; Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida; and
| | - Sean All
- Department of Medicine, University of Florida, Gainesville, Florida
| | - Kit-Yan Cheng
- Department of Medicine, University of Florida, Gainesville, Florida
| | - Syed J Khundmiri
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, District of Columbia
| | - Michelle L Gumz
- Department of Medicine, University of Florida, Gainesville, Florida; Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida; and
| |
Collapse
|
47
|
|
48
|
Nishimoto M, Fujita T. Renal mechanisms of salt-sensitive hypertension: contribution of two steroid receptor-associated pathways. Am J Physiol Renal Physiol 2015; 308:F377-87. [DOI: 10.1152/ajprenal.00477.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Although salt is a major environmental factor in the development of hypertension, the degree of salt sensitivity varies widely among individuals. The mechanisms responsible for this variation remain to be elucidated. Recent studies have revealed the involvement of two important signaling pathways in renal tubules that play key roles in electrolyte balance and the maintenance of normal blood pressure: the β2-adrenergic stimulant-glucocorticoid receptor (GR)-with-no-lysine kinase (WNK)4-Na+-Cl− cotransporter pathway, which is active in distal convoluted tubule (DCT)1, and the Ras-related C3 botulinum toxin substrate (Rac)1-mineralocorticoid receptor (MR) pathway, which is active in DCT2, connecting tubules, and collecting ducts. β2-Adrenergic stimulation due to increased renal sympathetic activity in obesity- and salt-induced hypertension suppresses histone deacetylase 8 activity via cAMP/PKA signaling, increasing the accessibility of GRs to the negative GR response element in the WNK4 promoter. This results in the suppression of WNK4 transcription followed by the activation of Na+-Cl− cotransporters in the DCT and elevated Na+ retention and blood pressure upon salt loading. Rac1 activates MRs, even in the absence of ligand binding, with this activity increased in the presence of ligand. In salt-sensitive animals, Rac1 activation due to salt loading activates MRs in DCT2, connecting tubules, and collecting ducts. Thus, GRs and MRs are independently involved in two pathways responsible for renal Na+ handling and salt-sensitive hypertension. These findings suggest novel therapeutic targets and may lead to the development of diagnostic tools to determine salt sensitivity in hypertensive patients.
Collapse
Affiliation(s)
- Mitsuhiro Nishimoto
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Toshiro Fujita
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
49
|
Boulkroun S, Fernandes-Rosa FL, Zennaro MC. Molecular and Cellular Mechanisms of Aldosterone Producing Adenoma Development. Front Endocrinol (Lausanne) 2015; 6:95. [PMID: 26124749 PMCID: PMC4464054 DOI: 10.3389/fendo.2015.00095] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/26/2015] [Indexed: 01/19/2023] Open
Abstract
Primary aldosteronism (PA) is the most common form of secondary hypertension with an estimated prevalence of ~10% in referred patients. PA occurs as a result of a dysregulation of the normal mechanisms controlling adrenal aldosterone production. It is characterized by hypertension with low plasma renin and elevated aldosterone and often associated with hypokalemia. The two major causes of PA are unilateral aldosterone producing adenoma (APA) and bilateral adrenal hyperplasia, accounting together for ~95% of cases. In addition to the well-characterized effect of excess mineralocorticoids on blood pressure, high levels of aldosterone also have cardiovascular, renal, and metabolic consequences. Hence, long-term consequences of PA include increased risk of coronary artery disease, myocardial infarction, heart failure, and atrial fibrillation. Despite recent progress in the management of patients with PA, critical issues related to diagnosis, subtype differentiation, and treatment of non-surgically correctable forms still persist. A better understanding of the pathogenic mechanisms of the disease should lead to the identification of more reliable diagnostic and prognostic biomarkers for a more sensitive and specific screening and new therapeutic options. In this review, we will summarize our current knowledge on the molecular and cellular mechanisms of APA development. On one hand, we will discuss how various animal models have improved our understanding of the pathophysiology of excess aldosterone production. On the other hand, we will summarize the major advances made during the last few years in the genetics of APA due to transcriptomic studies and whole exome sequencing. The identification of recurrent and somatic mutations in genes coding for ion channels (KCNJ5 and CACNA1D) and ATPases (ATP1A1 and ATP2B3) allowed highlighting the central role of calcium signaling in autonomous aldosterone production by the adrenal.
Collapse
Affiliation(s)
- Sheerazed Boulkroun
- UMRS_970, Paris Cardiovascular Research Center, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- University Paris Descartes, Sorbonne Paris Cité, Paris, France
- *Correspondence: Sheerazed Boulkroun, UMRS_970, Paris Cardiovascular Research Center (PARCC), Institut National de la Santé et de la Recherche Médicale (INSERM), 56 rue Leblanc, Paris 75015, France,
| | - Fabio Luiz Fernandes-Rosa
- UMRS_970, Paris Cardiovascular Research Center, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- University Paris Descartes, Sorbonne Paris Cité, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France
| | - Maria-Christina Zennaro
- UMRS_970, Paris Cardiovascular Research Center, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- University Paris Descartes, Sorbonne Paris Cité, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France
| |
Collapse
|
50
|
Affiliation(s)
- Michelle L Gumz
- Division of Nephrology, Hypertension, and Renal Transplantation, Departments of Medicine and Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| |
Collapse
|