1
|
Nørregaard R, Mutsaers HAM, Frøkiær J, Kwon TH. Obstructive nephropathy and molecular pathophysiology of renal interstitial fibrosis. Physiol Rev 2023; 103:2827-2872. [PMID: 37440209 PMCID: PMC10642920 DOI: 10.1152/physrev.00027.2022] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023] Open
Abstract
The kidneys play a key role in maintaining total body homeostasis. The complexity of this task is reflected in the unique architecture of the organ. Ureteral obstruction greatly affects renal physiology by altering hemodynamics, changing glomerular filtration and renal metabolism, and inducing architectural malformations of the kidney parenchyma, most importantly renal fibrosis. Persisting pathological changes lead to chronic kidney disease, which currently affects ∼10% of the global population and is one of the major causes of death worldwide. Studies on the consequences of ureteral obstruction date back to the 1800s. Even today, experimental unilateral ureteral obstruction (UUO) remains the standard model for tubulointerstitial fibrosis. However, the model has certain limitations when it comes to studying tubular injury and repair, as well as a limited potential for human translation. Nevertheless, ureteral obstruction has provided the scientific community with a wealth of knowledge on renal (patho)physiology. With the introduction of advanced omics techniques, the classical UUO model has remained relevant to this day and has been instrumental in understanding renal fibrosis at the molecular, genomic, and cellular levels. This review details key concepts and recent advances in the understanding of obstructive nephropathy, highlighting the pathophysiological hallmarks responsible for the functional and architectural changes induced by ureteral obstruction, with a special emphasis on renal fibrosis.
Collapse
Affiliation(s)
- Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| |
Collapse
|
2
|
Motegi S, Tsuchiya A, Iwasawa T, Sato T, Kumagai M, Natsui K, Nojiri S, Ogawa M, Takeuchi S, Sakai Y, Miyagawa S, Sawa Y, Terai S. A novel prostaglandin I 2 agonist, ONO-1301, attenuates liver inflammation and suppresses fibrosis in non-alcoholic steatohepatitis model mice. Inflamm Regen 2022; 42:3. [PMID: 35101153 PMCID: PMC8805395 DOI: 10.1186/s41232-021-00191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND ONO-1301 is a novel long-lasting prostaglandin (PG) I2 mimetic with inhibitory activity on thromboxane (TX) A2 synthase. This drug can also induce endogenous prostaglandin (PG)I2 and PGE2 levels. Furthermore, ONO-1301 acts as a cytokine inducer and can initiate tissue repair in a variety of diseases, such as pulmonary hypertension, pulmonary fibrosis, cardiac infarction, and obstructive nephropathy. In this study, our aim was to evaluate the effect of ONO-1301 on liver inflammation and fibrosis in a mouse model of non-alcoholic steatohepatitis (NASH). METHODS The therapeutic effects of ONO-1301 against liver damage, fibrosis, and occurrence of liver tumors were evaluated using melanocortin 4 receptor-deficient (Mc4r-KO) NASH model mice. The effects of ONO-1301 against macrophages, hepatic stellate cells, and endothelial cells were also evaluated in vitro. RESULTS ONO-1301 ameliorated liver damage and fibrosis progression, was effective regardless of NASH status, and suppressed the occurrence of liver tumors in Mc4r-KO NASH model mice. In the in vitro study, ONO-1301 suppressed LPS-induced inflammatory responses in cultured macrophages, suppressed hepatic stellate cell (HSC) activation, upregulated vascular endothelial growth factor (VEGF) expression in HSCs, and upregulated hepatocyte growth factor (HGF) and VEGF expression in endothelial cells. CONCLUSIONS The results of our study highlight the potential of ONO-1301 to reverse the progression and prevent the occurrence of liver tumors in NASH using in vivo and in vitro models. ONO-1301 is a multidirectional drug that can play a key role in various pathways and can be further analyzed for use as a new drug candidate against NASH.
Collapse
Affiliation(s)
- Satoko Motegi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan.
| | - Takahiro Iwasawa
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Takeki Sato
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Masaru Kumagai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Kazuki Natsui
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Shunsuke Nojiri
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Masahiro Ogawa
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Suguru Takeuchi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Yosiki Sakai
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka Suita, Osaka, 565-0871, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan.
| |
Collapse
|
3
|
Innovative therapeutic strategy using prostaglandin I 2 agonist (ONO1301) combined with nano drug delivery system for pulmonary arterial hypertension. Sci Rep 2021; 11:7292. [PMID: 33790393 PMCID: PMC8012709 DOI: 10.1038/s41598-021-86781-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/03/2021] [Indexed: 02/05/2023] Open
Abstract
Clinical outcomes of pulmonary arterial hypertension (PAH) may be improved using targeted delivery system. We investigated the efficacy of ONO1301 (prostacyclin agonist) nanospheres (ONONS) in Sugen5416/hypoxia rat models of PAH. The rats were injected with saline (control) or ONONS (n = 10, each) on days 21 and 28, respectively. Hepatocyte growth factor (HGF)-expressing fibroblasts and inflammatory cytokines were measured. Cardiac performance was assessed and targeted delivery was monitored in vivo, using Texas red-labeled nanoparticles. Compared with control, HGF-expressing fibroblasts and HGF expression levels were significantly higher in the ONONS group, while the levels of interleukin-6, interleukin-1β, transforming growth factor-β, and platelet-derived growth factor were lower. Histological assessment revealed significant amelioration of the percent medial wall thickness in pulmonary vasculature of rats in the ONONS group. Rats in the ONONS group showed decreased proliferating cell nuclear antigen-positive smooth muscle cells and improved right ventricle pressure/left ventricle pressure. No difference was seen in the accumulation of Texas red-labeled nanoparticles in the brain, heart, liver, and spleen between PAH and normal rats. However, a significant area of nanoparticles was detected in the lungs of PAH rats. ONONS effectively ameliorated PAH, with selective delivery to the damaged lung.
Collapse
|
4
|
Aukema HM. Prostaglandins as potential targets for the treatment of polycystic kidney disease. Prostaglandins Leukot Essent Fatty Acids 2021; 164:102220. [PMID: 33285393 DOI: 10.1016/j.plefa.2020.102220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022]
Abstract
Polycystic kidney disease (PKD) is characterized by the proliferation of fluid-filled kidney cysts that enlarge over time, causing damage to the surrounding kidney and ultimately resulting in kidney failure. Both increased cell proliferation and fluid secretion are stimulated by increased cyclic adenosine monophosphate (cAMP) in PKD kidneys, so many treatments for the disease target cAMP lowering. Prostaglandins (PG) levels are elevated in multiple animal models of PKD and mediate many of their effects by elevating cAMP levels. Inhibiting the production of PG with cyclooxygenase 2 (COX2) inhibitors reduces PG levels and reduces disease progression. However, COX inhibitors also block beneficial PG and can cause nephrotoxicity. In an orthologous model of the main form of PKD, PGD2 and PGI2 were the two PG highest in kidneys and most affected by a COX2 inhibitor. Future studies are needed to determine whether specific blockage of PGD2 and/or PGI2 activity would lead to more targeted and effective treatments with fewer undesirable side-effects.
Collapse
Affiliation(s)
- Harold M Aukema
- Department of Food and Human Nutritional Sciences, University of Manitoba, MB R3T 2N2, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.
| |
Collapse
|
5
|
Masada K, Miyagawa S, Sakai Y, Harada A, Kanaya T, Sawa Y. Synthetic Prostacyclin Agonist Attenuates Pressure-Overloaded Cardiac Fibrosis by Inhibiting FMT. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:210-219. [PMID: 33102614 PMCID: PMC7558785 DOI: 10.1016/j.omtm.2020.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/11/2020] [Indexed: 01/17/2023]
Abstract
Fibroblast-to-myofibroblast transition (FMT) is the primary inducer of cardiac fibrosis. ONO-1301, a synthetic prostacyclin agonist, reportedly promotes tissue fibrosis repair by enhancing anti-fibrotic cytokine production. We hypothesized that ONO-1301 attenuates pressure-overloaded cardiac fibrosis by modulating FMT and generated a pressure-overloaded murine model via transverse aortic constriction (TAC) to evaluate the in vivo effects of ONO-1301. Cardiac fibrosis, left ventricular dilatation, and systolic dysfunction were established 4 weeks after TAC; however, ONO-1301 treatment initiated 2 weeks after TAC significantly attenuated those effects. Furthermore, ONO-1301 treatment significantly upregulated expression levels of cardioprotective cytokines such as vascular endothelial growth factor and hepatocyte growth factor in TAC hearts, whereas FMT-related factors, including transforming growth factor (TGF)-β1 and connective tissue growth factor, were significantly downregulated. The number of α-smooth muscle actin (α-SMA)- and vimentin-positive cells, representing fibroblast-originated cells transitioned into myofibroblasts, was significantly reduced in ONO-1301-treated TAC hearts. We isolated cardiac fibroblasts (CFs) from the left ventricles of adult male mice and assessed the effects of ONO-1301 on CFs stimulated by TGF-β. Results showed that ONO-1301 co-incubation significantly suppressed TGF-β-induced α-SMA expression and collagen synthesis, and significantly inhibited TGF-β-induced CF proliferation and migration. Our findings suggest that ONO-1301 ameliorates pressure overloaded cardiac fibrosis by inhibiting TGF-β-induced FMT.
Collapse
Affiliation(s)
- Kenta Masada
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yoshiki Sakai
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Akima Harada
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Tomomitsu Kanaya
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| |
Collapse
|
6
|
Role of the high-affinity leukotriene B4 receptor signaling in fibrosis after unilateral ureteral obstruction in mice. PLoS One 2019; 14:e0202842. [PMID: 30818366 PMCID: PMC6394974 DOI: 10.1371/journal.pone.0202842] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 02/10/2019] [Indexed: 12/28/2022] Open
Abstract
Leukotriene B4 (LTB4) is a lipid mediator that acts as a potent chemoattractant for inflammatory leukocytes. Kidney fibrosis is caused by migrating inflammatory cells and kidney-resident cells. Here, we examined the role of the high-affinity LTB4 receptor BLT1 during development of kidney fibrosis induced by unilateral ureteral obstruction (UUO) in wild-type (WT) mice and BLT1 knockout (BLT1-/-) mice. We found elevated expression of 5-lipoxygenase (5-LOX), which generates LTB4, in the renal tubules of UUO kidneys from WT mice and BLT1-/- mice. Accumulation of immunoreactive type I collagen in WT UUO kidneys increased over time; however, the increase was less prominent in BLT1-/- UUO kidneys. Accumulation of S100A4-positive fibroblasts increased temporally in WT UUO kidneys, but was again less pronounced in-BLT1-/- UUO kidneys. The same was true of mRNA encoding transforming growth factor-β (TGF)-β and fibroblast growth factor (FGF)-2. Finally, accumulation of F4/80-positive macrophages, which secrete TGF-β, increased temporally in WT UUO and BLT1-/- UUO kidneys, but to a lesser extent in the latter. Following LTB4 stimulation in vitro, macrophages showed increased expression of mRNA encoding TGF-β/FGF-2 and Col1a1, whereas L929 fibroblasts showed increased expression of mRNA encoding α smooth muscle actin (SMA). Bone marrow (BM) transplantation studies revealed that the area positive for type I collagen was significantly smaller in BLT1-/—BM→WT than in WT-BM→WT. Thus, LTB4-BLT1 signaling plays a critical role in fibrosis in UUO kidneys by increasing accumulation of macrophages and fibroblasts. Therefore, blocking BLT1 may prevent renal fibrosis.
Collapse
|
7
|
Cellular and molecular mechanisms of kidney fibrosis. Mol Aspects Med 2018; 65:16-36. [PMID: 29909119 DOI: 10.1016/j.mam.2018.06.002] [Citation(s) in RCA: 320] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/12/2018] [Indexed: 12/14/2022]
Abstract
Renal fibrosis is the final pathological process common to any ongoing, chronic kidney injury or maladaptive repair. It is considered as the underlying pathological process of chronic kidney disease (CKD), which affects more than 10% of world population and for which treatment options are limited. Renal fibrosis is defined by excessive deposition of extracellular matrix, which disrupts and replaces the functional parenchyma that leads to organ failure. Kidney's histological structure can be divided into three main compartments, all of which can be affected by fibrosis, specifically termed glomerulosclerosis in glomeruli, interstitial fibrosis in tubulointerstitium and arteriosclerosis and perivascular fibrosis in vasculature. In this review, we summarized the different appearance, cellular origin and major emerging processes and mediators of fibrosis in each compartment. We also depicted and discussed the challenges in translation of anti-fibrotic treatment to clinical practice and discuss possible solutions and future directions.
Collapse
|
8
|
Li Y, Xia W, Zhao F, Wen Z, Zhang A, Huang S, Jia Z, Zhang Y. Prostaglandins in the pathogenesis of kidney diseases. Oncotarget 2018; 9:26586-26602. [PMID: 29899878 PMCID: PMC5995175 DOI: 10.18632/oncotarget.25005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/14/2018] [Indexed: 12/11/2022] Open
Abstract
Prostaglandins (PGs) are important lipid mediators produced from arachidonic acid via the sequential catalyzation of cyclooxygenases (COXs) and specific prostaglandin synthases. There are five subtypes of PGs, namely PGE2, PGI2, PGD2, PGF2α, and thromboxane A2 (TXA2). PGs exert distinct roles by combining to a diverse family of membrane-spanning G protein-coupled prostanoid receptors. The distribution of these PGs, their specific synthases and receptors vary a lot in the kidney. This review summarized the recent findings of PGs together with the COXs and their specific synthases and receptors in regulating renal function and highlighted the insights into their roles in the pathogenesis of various kidney diseases.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Weiwei Xia
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Fei Zhao
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Zhaoying Wen
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Songming Huang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Zhanjun Jia
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Yue Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| |
Collapse
|
9
|
Tsushida K, Tanabe K, Masuda K, Tanimura S, Miyake H, Arata Y, Sugiyama H, Wada J. Estrogen-related receptor α is essential for maintaining mitochondrial integrity in cisplatin-induced acute kidney injury. Biochem Biophys Res Commun 2018; 498:918-924. [PMID: 29545177 DOI: 10.1016/j.bbrc.2018.03.080] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 03/10/2018] [Indexed: 11/24/2022]
Abstract
Acute kidney injury (AKI) has been associated with not only higher in-hospital mortality but also the subsequent development of chronic kidney disease (CKD). Recent evidence has suggested the involvement of mitochondrial dysfunction and impaired dynamics in the pathogenesis of AKI. Estrogen-related receptor α (ERRα) is an orphan nuclear receptor that acts as a transcription factor to regulate the transcription of genes required for mitochondrial biogenesis and oxidative phosphorylation. In the present study, we examined the effects of ERRα deficiency on the progression of AKI induced by cisplatin. Male C57BL/6 J wild-type and ERRα-/- mice received a single intraperitoneal injection of 20 mg/kg cisplatin. Seventy-two hours after the injection, kidney function and morphology were evaluated. ERRα expression was observed in renal tubules, and cisplatin inhibited its translocation into nuclei. ERRα deficiency exacerbated cisplatin-induced renal dysfunction and tubular injury, as well as oxidative stress and apoptosis. ERRα-/- mice kidneys revealed lower mitochondrial DNA content and swollen mitochondria with reduced cristae. In addition, these mice had lower expression of the mitochondrial fusion protein mitofusin-2. The cisplatin-induced decrease in mitochondrial DNA and altered mitochondrial structure were more severe in ERRα-/- mice. In cultured mouse proximal tubular epithelial cells, the ERRα inverse agonist XCT-790 significantly inhibited mitofusin-2 expression and induced mitochondrial fragmentation. Taken together, our findings suggest the involvement of ERRα in the progression of cisplatin-induced AKI probably through impaired mitochondrial dynamics.
Collapse
Affiliation(s)
- Keigo Tsushida
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Katsuyuki Tanabe
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Kana Masuda
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Tanimura
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiromasa Miyake
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuka Arata
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hitoshi Sugiyama
- Department of Human Resource Development of Dialysis Therapy for Kidney Disease, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
10
|
Lee JK, Luchian T, Park Y. New antimicrobial peptide kills drug-resistant pathogens without detectable resistance. Oncotarget 2018; 9:15616-15634. [PMID: 29643997 PMCID: PMC5884652 DOI: 10.18632/oncotarget.24582] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/20/2018] [Indexed: 11/25/2022] Open
Abstract
Clavaspirin peptide (CSP) is derived from the pharyngeal tissues of the tunicate Styela clava. The 23-amino acid peptide is histidine-rich and amidated at the N-terminus. CSP possesses low antimicrobial and high hemolytic activity at pH 7.4. Therefore, we designed 4 CSP analogs with substituted hydrophobic amino acids to reduce hydrophobic amino acid interactions. These modifications reduced the aggregation and cytotoxicity of the analogs at pH 7.4. The analogs also showed potent antimicrobial activity by accumulating on bacterial cell surfaces and inducing the lytic mechanism against gram-negative and gram-positive cells at pH 5.5 and 7.4. Moreover, exposure to the CSP-4 analog for up to 29 passages did not induce drug resistance in Staphylococcus aureus. Application of CSP-4 to inflamed skin of hairless mice infected with drug-resistant S. aureus (DRSA) significantly reduced skin infections without damaging dermal collagen or elastin. Topically applied CSP-4 penetrated 25–40 µm in the dermis within 30 min, reducing the levels of Toll-like receptor-2, nuclear factor kappa B (NF-κB), and the pro-inflammatory cytokines tumor necrosis factor- α (TNF-α) and interleukin-1β (IL-1 β). These results suggest that CSP-4 could be a promising topical antimicrobial agent for skin diseases caused by DRSA such as S. aureus CCARM 0027.
Collapse
Affiliation(s)
- Jong-Kook Lee
- Research Center for Proteinaceous Materials, Chosun University, Gwangju, Korea.,Department of Biomedical Science, Chosun University, Gwangju, Korea
| | - Tudor Luchian
- Department of Physics, Alexandru I. Cuza University, Iasi, Romania
| | - Yoonkyung Park
- Research Center for Proteinaceous Materials, Chosun University, Gwangju, Korea.,Department of Biomedical Science, Chosun University, Gwangju, Korea
| |
Collapse
|
11
|
Jackson L, Woodward M, Coward RJ. The molecular biology of pelvi-ureteric junction obstruction. Pediatr Nephrol 2018; 33:553-571. [PMID: 28286898 PMCID: PMC5859056 DOI: 10.1007/s00467-017-3629-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 12/17/2022]
Abstract
Over recent years routine ultrasound scanning has identified increasing numbers of neonates as having hydronephrosis and pelvi-ureteric junction obstruction (PUJO). This patient group presents a diagnostic and management challenge for paediatric nephrologists and urologists. In this review we consider the known molecular mechanisms underpinning PUJO and review the potential of utilising this information to develop novel therapeutics and diagnostic biomarkers to improve the care of children with this disorder.
Collapse
Affiliation(s)
- Laura Jackson
- Bristol Renal Group, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK. .,Bristol Royal Hospital for Children, Bristol, UK.
| | - Mark Woodward
- 0000 0004 0399 4960grid.415172.4Bristol Royal Hospital for Children, Bristol, UK
| | - Richard J. Coward
- 0000 0004 1936 7603grid.5337.2Bristol Renal Group, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY UK ,0000 0004 0399 4960grid.415172.4Bristol Royal Hospital for Children, Bristol, UK
| |
Collapse
|
12
|
Lv W, Booz GW, Wang Y, Fan F, Roman RJ. Inflammation and renal fibrosis: Recent developments on key signaling molecules as potential therapeutic targets. Eur J Pharmacol 2017; 820:65-76. [PMID: 29229532 DOI: 10.1016/j.ejphar.2017.12.016] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 12/21/2022]
Abstract
Chronic kidney disease (CKD) is a major public health issue. At the histological level, renal fibrosis is the final common pathway of progressive kidney disease irrespective of the initial injury. Considerable evidence now indicates that renal inflammation plays a central role in the initiation and progression of CKD. Some of the inflammatory signaling molecules involved in CKD include: monocyte chemoattractant protein-1 (MCP-1), bradykinin B1 receptor (B1R), nuclear factor κB (NF-κB), tumor necrosis factor-α (TNFα), transforming growth factor β (TGF-β), and platelet-derived growth factor (PDGF). Multiple antifibrotic factors, such as interleukin-10 (IL-10), interferon-γ (IFN-γ), bone morphogenetic protein-7 (BMP-7), hepatocyte growth factor (HGF) are also downregulated in CKD. Therefore, restoration of the proper balance between pro- and antifibrotic signaling pathways could serve as a guiding principle for the design of new antifibrotic strategies that simultaneously target many pathways. The purpose of this review is to summarize the existing body of knowledge regarding activation of cytokine pathways and infiltration of inflammatory cells as a starting point for developing novel antifibrotic therapies to prevent progression of CKD.
Collapse
Affiliation(s)
- Wenshan Lv
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao 26003, China
| | - George W Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Yangang Wang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao 26003, China
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
13
|
Honma S, Nakamura K, Shinohara M, Mitazaki S, Abe S, Yoshida M. Effect of amlodipine on mouse renal interstitial fibrosis. Eur J Pharmacol 2016; 780:136-41. [DOI: 10.1016/j.ejphar.2016.03.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/02/2016] [Accepted: 03/23/2016] [Indexed: 10/22/2022]
|
14
|
Fukushima S, Miyagawa S, Sakai Y, Sawa Y. A sustained-release drug-delivery system of synthetic prostacyclin agonist, ONO-1301SR: a new reagent to enhance cardiac tissue salvage and/or regeneration in the damaged heart. Heart Fail Rev 2016; 20:401-13. [PMID: 25708182 PMCID: PMC4464640 DOI: 10.1007/s10741-015-9477-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiac failure is a major cause of mortality and morbidity worldwide, since the standard treatment for cardiac failure in the clinical practice is chiefly to focus on removal of insults against the heart or minimisation of additional factors to exacerbate cardiac failure, but not on regeneration of the damaged cardiac tissue. A synthetic prostacyclin agonist, ONO-1301, has been developed as a long-acting drug for acute and chronic pathologies related to regional ischaemia, inflammation and/or interstitial fibrosis by pre-clinical studies. In addition, poly-lactic co-glycolic acid-polymerised form of ONO-1301, ONO-1301SR, was generated to achieve a further sustained release of this drug into the targeted region. This unique reagent has been shown to act on fibroblasts, vascular smooth muscle cells and endothelial cells in the tissue via the prostaglandin IP receptor to exert paracrinal release of multiple protective factors, such as hepatocyte growth factor, vascular endothelial growth factor or stromal cell-derived factor-1, into the adjacent damaged tissue, which is salvaged and/or regenerated as a result. Our laboratory developed a new surgical approach to treat acute and chronic cardiac failure using a variety of animal models, in which ONO-1301SR is directly placed over the cardiac surface to maximise the therapeutic effects and minimise the systemic complications. This review summarises basic and pre-clinical information of ONO-1301 and ONO-1301SR as a new reagent to enhance tissue salvage and/or regeneration, with a particular focus on the therapeutic effects on acute and chronic cardiac failure and underlying mechanisms, to explore a potential in launching the clinical study.
Collapse
Affiliation(s)
- Satsuki Fukushima
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan,
| | | | | | | |
Collapse
|
15
|
Ujike-Omori H, Maeshima Y, Kinomura M, Tanabe K, Mori K, Watatani H, Hinamoto N, Sugiyama H, Sakai Y, Morimatsu H, Makino H. The urinary levels of prostanoid metabolites predict acute kidney injury in heterogeneous adult Japanese ICU patients: a prospective observational study. Clin Exp Nephrol 2015; 19:1024-36. [PMID: 25669623 DOI: 10.1007/s10157-015-1092-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/02/2015] [Indexed: 01/14/2023]
Abstract
BACKGROUND Acute kidney injury (AKI) is frequently observed in critically ill patients in the intensive care unit (ICU) and is associated with increased mortality. Prostanoids regulate numerous biological functions, including hemodynamics and renal tubular transport. We herein investigated the ability of urinary prostanoid metabolites to predict the onset of AKI in critically ill adult patients. METHODS The current study was conducted as a prospective observational study. Urine of patients admitted to the ICU at Okayama University Hospital was collected and the urinary levels of prostaglandin E2 (PGE2), PGI2 metabolite (2,3-dinor-6-OXO-PGF1α), thromboxane A2 (TXA2) metabolite (11-dehydro-TXB2) were determined. RESULTS Of the 93 patients, 24 developed AKI (AKIN criteria). Surgical intervention (93, 75 %) was the leading cause of ICU admission. Overall, the ratio of the level of serum Cr on Day 1 after ICU admission to that observed at baseline positively correlated with the urinary 2,3-dinor-6-OXO-PGF1α/Cr (r = 0.57, p < 0.0001) and 11-dehydro-TXB2/Cr (r = 0.47, p < 0.0001) ratios. In 16 cases of de novo AKI, the urinary 2,3-dinor-6-OXO-PGF1α/Cr and 11-dehydro-TXB2/Cr values were significantly elevated compared with that observed in the non-AKI group, whereas the urinary PGE2/Cr values were not. The urinary 2,3-dinor-6-OXO-PGF1α/Cr ratio exhibited the best diagnostic and predictive performance among the prostanoid metabolites according to the receiver operating characteristic (ROC) analysis [ROC-area under the curve (AUC): 0.75]. CONCLUSIONS Taken together, these results demonstrate that the urinary 2,3-dinor-6-OXO-PGF1α/Cr and 11-dehydro-TXB2/Cr ratios are associated with the subsequent onset of AKI and poor outcomes in adult heterogeneous ICU patients.
Collapse
Affiliation(s)
- Haruyo Ujike-Omori
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yohei Maeshima
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Masaru Kinomura
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Katsuyuki Tanabe
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kiyoshi Mori
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroyuki Watatani
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Norikazu Hinamoto
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hitoshi Sugiyama
- Center for chronic kidney disease and peritoneal dialysis, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | - Hiroshi Morimatsu
- Department of Anesthesiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirofumi Makino
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
16
|
Giacco F, Du X, Carratú A, Gerfen GJ, D'Apolito M, Giardino I, Rasola A, Marin O, Divakaruni AS, Murphy AN, Shah MS, Brownlee M. GLP-1 Cleavage Product Reverses Persistent ROS Generation After Transient Hyperglycemia by Disrupting an ROS-Generating Feedback Loop. Diabetes 2015; 64:3273-84. [PMID: 26294429 PMCID: PMC4542449 DOI: 10.2337/db15-0084] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The assumption underlying current diabetes treatment is that lowering the level of time-averaged glucose concentrations, measured as HbA1c, prevents microvascular complications. However, 89% of variation in risk of retinopathy, microalbuminuria, or albuminuria is due to elements of glycemia not captured by mean HbA1c values. We show that transient exposure to high glucose activates a multicomponent feedback loop that causes a stable left shift of the glucose concentration-reactive oxygen species (ROS) dose-response curve. Feedback loop disruption by the GLP-1 cleavage product GLP-1(9-36)(amide) reverses the persistent left shift, thereby normalizing persistent overproduction of ROS and its pathophysiologic consequences. These data suggest that hyperglycemic spikes high enough to activate persistent ROS production during subsequent periods of normal glycemia but too brief to affect the HbA1c value are a major determinant of the 89% of diabetes complications risk not captured by HbA1c. The phenomenon and mechanism described in this study provide a basis for the development of both new biomarkers to complement HbA1c and novel therapeutic agents, including GLP-1(9-36)(amide), for the prevention and treatment of diabetes complications.
Collapse
Affiliation(s)
- Ferdinando Giacco
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Xueliang Du
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Anna Carratú
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Salerno, Italy
| | - Gary J Gerfen
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY
| | - Maria D'Apolito
- Institute of Pediatrics, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Ida Giardino
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Andrea Rasola
- Department of Biomedical Science, University of Padua, Padua, Italy
| | - Oriano Marin
- Department of Biomedical Science, University of Padua, Padua, Italy
| | - Ajit S Divakaruni
- Department of Pharmacology, University of California, San Diego, La Jolla, CA
| | - Anne N Murphy
- Department of Pharmacology, University of California, San Diego, La Jolla, CA
| | - Manasi S Shah
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Michael Brownlee
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY Department of Medicine, Albert Einstein College of Medicine, Bronx, NY Department of Pathology, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
17
|
Kashiwagi H, Yuhki KI, Kojima F, Kumei S, Takahata O, Sakai Y, Narumiya S, Ushikubi F. The novel prostaglandin I2 mimetic ONO-1301 escapes desensitization in an antiplatelet effect due to its inhibitory action on thromboxane A2 synthesis in mice. J Pharmacol Exp Ther 2015; 353:269-78. [PMID: 25740898 DOI: 10.1124/jpet.115.222612] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
ONO-1301 [(E)-[5-[2-[1-phenyl-1-(3-pyridyl)methylidene-aminooxy]ethyl]-7,8-dihydronaphthalene-1-yloxy]acetic acid] is a novel prostaglandin (PG) I2 mimetic with inhibitory activity on the thromboxane (TX) A2 synthase. Interestingly, ONO-1301 retains its inhibitory effect on platelet aggregation after repeated administration, while beraprost, a representative agonist for the PGI2 receptor (IP), loses its inhibitory effect after repeated administration. In the present study, we intended to clarify the mechanism by which ONO-1301 escapes desensitization of an antiplatelet effect. In platelets prepared from wild-type mice, ONO-1301 inhibited collagen-induced aggregation and stimulated cAMP production in an IP-dependent manner. In addition, ONO-1301 inhibited arachidonic acid-induced TXA2 production in platelets lacking IP. Despite the decrease in stimulatory action on cAMP production, the antiplatelet effect of ONO-1301 hardly changed after repeated administration for 10 days in wild-type mice. Noteworthy, beraprost could retain its antiplatelet effect after repeated administration in combination with a low dose of ozagrel, a TXA2 synthase inhibitor. Therefore, we hypothesized that chronic IP stimulation by beraprost induces an increase in TXA2 production, leading to reduction in the antiplatelet effect. As expected, repeated administration of beraprost increased the plasma and urinary levels of a TXA2 metabolite, while ONO-1301 did not increase them significantly. In addition, beraprost could retain the ability to inhibit platelet aggregation after repeated administration in mice lacking the TXA2 receptor (TP). These results indicate that TP-mediated signaling participates in platelet desensitization against IP agonists and that simultaneous inhibition of TXA2 production confers resistance against desensitization on IP agonists.
Collapse
Affiliation(s)
- Hitoshi Kashiwagi
- Department of Pharmacology, Asahikawa Medical University, Asahikawa, Japan (H.K., K.Y., F.K., S.K., O.T., F.U.); Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, Japan (H.K., K.Y., F.K., S.K., S.N., F.U.); Ono Pharmaceutical Co., Ltd., Research Headquarters, Osaka, Japan (Y.S.); and Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan (S.N.)
| | - Koh-Ichi Yuhki
- Department of Pharmacology, Asahikawa Medical University, Asahikawa, Japan (H.K., K.Y., F.K., S.K., O.T., F.U.); Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, Japan (H.K., K.Y., F.K., S.K., S.N., F.U.); Ono Pharmaceutical Co., Ltd., Research Headquarters, Osaka, Japan (Y.S.); and Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan (S.N.)
| | - Fumiaki Kojima
- Department of Pharmacology, Asahikawa Medical University, Asahikawa, Japan (H.K., K.Y., F.K., S.K., O.T., F.U.); Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, Japan (H.K., K.Y., F.K., S.K., S.N., F.U.); Ono Pharmaceutical Co., Ltd., Research Headquarters, Osaka, Japan (Y.S.); and Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan (S.N.)
| | - Shima Kumei
- Department of Pharmacology, Asahikawa Medical University, Asahikawa, Japan (H.K., K.Y., F.K., S.K., O.T., F.U.); Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, Japan (H.K., K.Y., F.K., S.K., S.N., F.U.); Ono Pharmaceutical Co., Ltd., Research Headquarters, Osaka, Japan (Y.S.); and Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan (S.N.)
| | - Osamu Takahata
- Department of Pharmacology, Asahikawa Medical University, Asahikawa, Japan (H.K., K.Y., F.K., S.K., O.T., F.U.); Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, Japan (H.K., K.Y., F.K., S.K., S.N., F.U.); Ono Pharmaceutical Co., Ltd., Research Headquarters, Osaka, Japan (Y.S.); and Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan (S.N.)
| | - Yoshiki Sakai
- Department of Pharmacology, Asahikawa Medical University, Asahikawa, Japan (H.K., K.Y., F.K., S.K., O.T., F.U.); Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, Japan (H.K., K.Y., F.K., S.K., S.N., F.U.); Ono Pharmaceutical Co., Ltd., Research Headquarters, Osaka, Japan (Y.S.); and Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan (S.N.)
| | - Shuh Narumiya
- Department of Pharmacology, Asahikawa Medical University, Asahikawa, Japan (H.K., K.Y., F.K., S.K., O.T., F.U.); Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, Japan (H.K., K.Y., F.K., S.K., S.N., F.U.); Ono Pharmaceutical Co., Ltd., Research Headquarters, Osaka, Japan (Y.S.); and Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan (S.N.)
| | - Fumitaka Ushikubi
- Department of Pharmacology, Asahikawa Medical University, Asahikawa, Japan (H.K., K.Y., F.K., S.K., O.T., F.U.); Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, Japan (H.K., K.Y., F.K., S.K., S.N., F.U.); Ono Pharmaceutical Co., Ltd., Research Headquarters, Osaka, Japan (Y.S.); and Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan (S.N.)
| |
Collapse
|
18
|
Boor P, Floege J. Renal allograft fibrosis: biology and therapeutic targets. Am J Transplant 2015; 15:863-86. [PMID: 25691290 DOI: 10.1111/ajt.13180] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/30/2014] [Accepted: 12/19/2014] [Indexed: 01/25/2023]
Abstract
Renal tubulointerstitial fibrosis is the final common pathway of progressive renal diseases. In allografts, it is assessed with tubular atrophy as interstitial fibrosis/tubular atrophy (IF/TA). IF/TA occurs in about 40% of kidney allografts at 3-6 months after transplantation, increasing to 65% at 2 years. The origin of renal fibrosis in the allograft is complex and includes donor-related factors, in particular in case of expanded criteria donors, ischemia-reperfusion injury, immune-mediated damage, recurrence of underlying diseases, hypertensive damage, nephrotoxicity of immunosuppressants, recurrent graft infections, postrenal obstruction, etc. Based largely on studies in the non-transplant setting, there is a large body of literature on the role of different cell types, be it intrinsic to the kidney or bone marrow derived, in mediating renal fibrosis, and the number of mediator systems contributing to fibrotic changes is growing steadily. Here we review the most important cellular processes and mediators involved in the progress of renal fibrosis, with a focus on the allograft situation, and discuss some of the challenges in translating experimental insights into clinical trials, in particular fibrosis biomarkers or imaging modalities.
Collapse
Affiliation(s)
- P Boor
- Division of Nephrology and Clinical Immunology, RWTH University of Aachen, Aachen, Germany; Department of Pathology, RWTH University of Aachen, Aachen, Germany; Institute of Molecular Biomedicine, Bratislava, Slovakia
| | | |
Collapse
|
19
|
Kamata M, Hosono K, Fujita T, Kamata K, Majima M. Role of cyclooxygenase-2 in the development of interstitial fibrosis in kidneys following unilateral ureteral obstruction in mice. Biomed Pharmacother 2015; 70:174-80. [PMID: 25776498 DOI: 10.1016/j.biopha.2015.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 01/04/2015] [Indexed: 12/23/2022] Open
Abstract
Unilateral ureteral obstruction (UUO) induced tubulointerstitial fibrosis in kidneys mimics the pathogenesis of chronic kidney diseases and is considered a suitable model for studying the mechanisms leading to fibrosis. To study the role of cyclooxygenase-2 (COX-2) in kidney fibrosis, we investigated whether a selective COX-2 inhibitor, celecoxib, affected renal interstitial fibrosis during UUO in mice. To induce UUO, the left proximal ureter was ligated in male C57BL/6 mice. The mice were fed a diet with or without celecoxib from the day of UUO induction. Following UUO, the renal pelvis was observed to be dilated and the kidney cortex was significantly thinner than that of sham-operated mice. Immunofluorescent staining of type I, III, and IV collagen in UUO kidneys revealed that interstitial collagen deposition was significantly increased in the celecoxib-treated group. Expression of type I, III, and IV collagen in UUO kidneys was also significantly higher in the celecoxib-treated group than in the vehicle-treated group. In the celecoxib-treated group, mRNA levels of TGF-β/FGF-2 were also significantly higher than those in the vehicle-treated group. The present study demonstrates that COX-2 plays a protective role against fibrosis in UUO kidneys and suggests that supplementation of COX-2 products, such as PG analogues, will be a good option for preventing interstitial fibrosis.
Collapse
Affiliation(s)
- Mariko Kamata
- Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan; Nephrology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan; Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Kanako Hosono
- Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Tomoe Fujita
- Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan; Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan
| | - Kouju Kamata
- Nephrology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Masataka Majima
- Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan; Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0374, Japan.
| |
Collapse
|
20
|
HGF-Met Pathway in Regeneration and Drug Discovery. Biomedicines 2014; 2:275-300. [PMID: 28548072 PMCID: PMC5344275 DOI: 10.3390/biomedicines2040275] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/15/2014] [Accepted: 10/13/2014] [Indexed: 12/26/2022] Open
Abstract
Hepatocyte growth factor (HGF) is composed of an α-chain and a β-chain, and these chains contain four kringle domains and a serine protease-like structure, respectively. Activation of the HGF–Met pathway evokes dynamic biological responses that support morphogenesis (e.g., epithelial tubulogenesis), regeneration, and the survival of cells and tissues. Characterizations of conditional Met knockout mice have indicated that the HGF–Met pathway plays important roles in regeneration, protection, and homeostasis in various cells and tissues, which includes hepatocytes, renal tubular cells, and neurons. Preclinical studies designed to address the therapeutic significance of HGF have been performed on injury/disease models, including acute tissue injury, chronic fibrosis, and cardiovascular and neurodegenerative diseases. The promotion of cell growth, survival, migration, and morphogenesis that is associated with extracellular matrix proteolysis are the biological activities that underlie the therapeutic actions of HGF. Recombinant HGF protein and the expression vectors for HGF are biological drug candidates for the treatment of patients with diseases and injuries that are associated with impaired tissue function. The intravenous/systemic administration of recombinant HGF protein has been well tolerated in phase I/II clinical trials. The phase-I and phase-I/II clinical trials of the intrathecal administration of HGF protein for the treatment of patients with amyotrophic lateral sclerosis and spinal cord injury, respectively, are ongoing.
Collapse
|
21
|
Watatani H, Maeshima Y, Hinamoto N, Yamasaki H, Ujike H, Tanabe K, Sugiyama H, Otsuka F, Sato Y, Makino H. Vasohibin-1 deficiency enhances renal fibrosis and inflammation after unilateral ureteral obstruction. Physiol Rep 2014; 2:2/6/e12054. [PMID: 24973329 PMCID: PMC4208642 DOI: 10.14814/phy2.12054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Tubulointerstitial injuries are known to predict the deterioration of renal function in chronic kidney disease (CKD). We recently reported the protective role of Vasohibin‐1(VASH‐1), a negative feedback regulator of angiogenesis, in diabetic nephropathy, but its impact on tubulointerstitial injuries remains to be elucidated. In the present study, we evaluated the role of endogenous VASH‐1 in regulating the tubulointerstitial alterations induced by unilateral ureteral obstruction (UUO), and assessed its role on fibrogenesis and the activation of Smad3 signaling in renal fibroblasts. UUO was induced in female Vasohibin‐1 heterozygous knockout mice (VASH‐1+/−) or wild‐type (WT) (VASH‐1+/+) littermates. Mice were sacrificed on Day 7 after left ureter ligation, and the kidney tissue was obtained. Interstitial fibrosis, the accumulation of type I and type III collagen and monocytes/macrophages infiltration in the obstructed kidneys (OBK) were significantly exacerbated in VASH‐1+/− mice compared with WT mice (Day 7). The increases in the renal levels of TGF‐β1, pSmad3, NF‐κB pp65, CCL2 mRNA, and the number of interstitial fibroblast‐specific protein‐1 (FSP‐1)+ fibroblasts in the OBK were significantly aggravated in VASH‐1+/− mice. In addition, treatment with VASH‐1 siRNA enhanced the TGF‐β1‐induced phosphorylation of Smad3, the transcriptional activation of the Smad3 pathway and the production of type I/type III collagen in fibroblasts, in vitro. Taken together, our findings demonstrate a protective role for endogenous VASH‐1 on tubulointerstitial alterations via its regulation of inflammation and fibrosis and also show the direct anti‐fibrotic effects of VASH‐1 on renal fibroblasts through its modulation of TGF‐β1 signaling. In the present study, we evaluated the role of endogenous Vasohibn‐1 VASH‐1 in regulating tubulointerstitial alterations induced by unilateral ureteral obstruction (UUO), and assessed its regulatory role on fibrogenesis and the activation of TGF‐beta/Smad3 signaling in renal fibroblasts. This is the first study to demonstrate the potential protective role for endogenous VASH‐1 on tubulointerstitial alterations via regulating inflammation and fibrosis, partly mediated via its direct anti‐fibrotic effects on renal fibroblasts through modulating TGF‐β1 signaling.
Collapse
Affiliation(s)
- Hiroyuki Watatani
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Yohei Maeshima
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Norikazu Hinamoto
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Hiroko Yamasaki
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Haruyo Ujike
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Katsuyuki Tanabe
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Hitoshi Sugiyama
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan Center for Chronic Kidney Disease and Peritoneal Dialysis, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Fumio Otsuka
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Hirofumi Makino
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| |
Collapse
|
22
|
Hinamoto N, Maeshima Y, Saito D, Yamasaki H, Tanabe K, Nasu T, Watatani H, Ujike H, Kinomura M, Sugiyama H, Sonoda H, Sato Y, Makino H. Urinary and plasma levels of vasohibin-1 can predict renal functional deterioration in patients with renal disorders. PLoS One 2014; 9:e96932. [PMID: 24915146 PMCID: PMC4051610 DOI: 10.1371/journal.pone.0096932] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 04/11/2014] [Indexed: 11/18/2022] Open
Abstract
Vasohibin-1 (VASH-1) is a negative feedback regulator of angiogenesis, and a small vasohibin-binding protein (SVBP) serves as its secretory chaperone and contributes to its antiangiogenic effects. In the present study, we aimed to define the clinical significance of VASH-1 and SVBP in patients with chronic kidney disease (CKD). We recruited 67 Japanese hospitalized patients with renal disorders with (n = 45) or without (n = 22) renal biopsy samples and 10 Japanese healthy controls. We evaluated the correlations between the plasma and urinary levels of VASH-1/VASH-1-SVBP complex/SVBP and the clinicopathological parameters. The plasma levels of VASH-1 were inversely correlated with age and systolic and diastolic blood pressure and positively correlated with crescent formation. Increased plasma and urinary levels of VASH-1 and VASH-1-SVBP complex were significantly correlated with worse renal outcomes. These results demonstrate an association between elevated urinary and plasma levels of VASH-1 and progressive decline of the renal function, thus suggesting a potential role for VASH-1 in predicting a worse renal prognosis in patients with renal disease, including CKD.
Collapse
Affiliation(s)
- Norikazu Hinamoto
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yohei Maeshima
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Chronic Kidney Disease and cardiovascular disease, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- * E-mail:
| | - Daisuke Saito
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroko Yamasaki
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Katsuyuki Tanabe
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tatsuyo Nasu
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Watatani
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Haruyo Ujike
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masaru Kinomura
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hitoshi Sugiyama
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Center for Chronic Kidney Disease and Peritoneal Dialysis, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hikaru Sonoda
- Discovery Research Laboratories, Shionogi, Osaka, Japan
| | - Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Hirofumi Makino
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
23
|
Xu Q, Sakai K, Suzuki Y, Tambo C, Sakai Y, Matsumoto K. Suppression of fibrogenic gene expression and liver fibrosis using a synthetic prostacyclin agonist. Biomed Res 2014; 34:241-50. [PMID: 24190236 DOI: 10.2220/biomedres.34.241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chronic injury and inflammation in the liver are associated with the development of liver fibrosis. Expressions of transforming growth factor-β1 (TGF-β1) and hepatocyte growth factor (HGF) participate in the development and suppression, respectively, of liver fibrosis. Here, we investigated the effect of ONO-1301, a synthetic prostaglandin I2/IP receptor agonist, on liver fibrosis and on changes in the hepatic expressions of genes that regulate the progression of fibrosis in mice. Liver fibrosis was caused by the repetitive administration of CCl4 for 12 weeks, with ONO-1301 being administered during the last 4 weeks. The expressions of fibrogenic genes: TGF-β1, connective tissue growth factor, α-smooth muscle actin, type-I collagen, and type-III collagen were upregulated by chronic liver injury, which was associated with the expansion of myofibroblasts and the development of liver fibrosis. Treatment with ONO-1301 increased hepatic HGF mRNA expression, but decreased the expressions of TGF-β1, connective tissue growth factor, α-smooth muscle actin, and type-I and type-III collagen, which was associated with the suppression of myofibroblast expansion and liver fibrosis. Neutralizing antibody for HGF significantly attenuated the suppressive action of ONO-1301 on liver fibrosis and fibrogenic gene expressions. The therapeutic action of ONO-1301 on liver fibrosis may have occurred partly through HGF-mediated pathways.
Collapse
Affiliation(s)
- Qing Xu
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Chen Y, Yang S, Yao W, Zhu H, Xu X, Meng G, Zhang W. Prostacyclin analogue beraprost inhibits cardiac fibroblast proliferation depending on prostacyclin receptor activation through a TGF β-Smad signal pathway. PLoS One 2014; 9:e98483. [PMID: 24852754 PMCID: PMC4031177 DOI: 10.1371/journal.pone.0098483] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 05/02/2014] [Indexed: 01/12/2023] Open
Abstract
Previous studies showed that prostacyclin inhibited fibrosis. However, both receptors of prostacyclin, prostacyclin receptor (IP) and peroxisome proliferator-activated receptor (PPAR), are abundant in cardiac fibroblasts. Here we investigated which receptor was vital in the anti-fibrosis effect of prostacyclin. In addition, the possible mechanism involved in protective effects of prostacyclin against cardiac fibrosis was also studied. We found that beraprost, a prostacyclin analogue, inhibited angiotensin II (Ang II)-induced neonatal rat cardiac fibroblast proliferation in a concentration-dependent and time-dependent manner. Beraprost also suppressed Ang II-induced collagen I mRNA expression and protein synthesis in cardiac fibroblasts. After IP expression was knocked down by siRNA, Ang II-induced proliferation and collagen I synthesis could no longer be rescued by beraprost. However, treating cells with different specific inhibitors of PPAR subtypes prior to beraprost and Ang II stimulation, all of the above attenuating effects of beraprost were still available. Moreover, beraprost significantly blocked transforming growth factor β (TGF β) expression as well as Smad2 phosphorylation and reduced Smad-DNA binding activity. Beraprost also increased phosphorylation of cAMP response element binding protein (CREB) at Ser133 in the nucleus. Co-immunoprecipitation analysis revealed that beraprost increased CREB but decreased Smad2 binding to CREB-binding protein (CBP) in nucleus. In conclusion, beraprost inhibits cardiac fibroblast proliferation by activating IP and suppressing TGF β-Smad signal pathway.
Collapse
Affiliation(s)
- Yun Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Shengju Yang
- Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Wenjuan Yao
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Hongyan Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Xiaole Xu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Guoliang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
- * E-mail: (GM); (WZ)
| | - Wei Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
- * E-mail: (GM); (WZ)
| |
Collapse
|
25
|
Niina Y, Ito T, Oono T, Nakamura T, Fujimori N, Igarashi H, Sakai Y, Takayanagi R. A sustained prostacyclin analog, ONO-1301, attenuates pancreatic fibrosis in experimental chronic pancreatitis induced by dibutyltin dichloride in rats. Pancreatology 2014; 14:201-10. [PMID: 24854616 DOI: 10.1016/j.pan.2014.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND ONO-1301, a novel sustained-release prostacyclin agonist, has an anti-fibrotic effect on the lungs, heart, and kidneys that is partly associated with the induction of hepatocyte growth factor (HGF). This study examined the anti-fibrotic effect of ONO-1301 on chronic pancreatitis (CP) progression. METHODS CP was induced in rats in vivo by dibutyltin dichloride (DBTC). Seven days after DBTC injection (day 7), a slow-release form of ONO-1301 (10 mg/kg; ONO-1301-treated group) or vehicle (DBTC-treated group) was injected. On days 14 and 28, we evaluated the histopathological CP score and mRNA expressions of HGF, cytokines, and collagen in the pancreas by real-time RT-PCR. In vitro, monocytes and pancreatic stellate cells (PSCs) were isolated from normal rat spleen and pancreas, respectively. The cytokine and collagen expressions of monocytes and PSCs were detected by real-time RT-PCR, and PSCs proliferation was examined by BrdU assay. RESULTS Histopathological CP scores in vivo improved in the ONO-1301-treated group compared to the DBTC-treated group, particularly inflammatory cell infiltration on day 14 and interstitial fibrosis on day 28. HGF mRNA increased significantly after ONO-1301 administration, whereas IL-1β, TNF-α, TGF-β, MCP-1, and collagen mRNA decreased significantly. Cytokine expression in monocytes was suppressed in vitro not only by HGF, but also ONO-1301 alone. However, neither ONO-1301 nor HGF affected the proliferation, or cytokine or collagen expression of PSCs. CONCLUSIONS ONO-1301 suppresses pancreatic fibrosis in the DBTC-induced CP model by inhibiting monocyte activity not only with induction of HGF but also by ONO-1301 itself.
Collapse
Affiliation(s)
- Yusuke Niina
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| | - Tetsuhide Ito
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan.
| | - Takamasa Oono
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| | - Taichi Nakamura
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| | - Nao Fujimori
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| | - Hisato Igarashi
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| | - Yoshiki Sakai
- Ono Pharmaceutical Co., Ltd., Research Headquarters, Osaka, Japan
| | - Ryoichi Takayanagi
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
26
|
Kimura Y, Koya T, Kagamu H, Shima K, Sakamoto H, Kawakami H, Hoshino Y, Furukawa T, Sakagami T, Hasegawa T, Narita M, Suzuki E, Narita I. A single injection of a sustained-release prostacyclin analog (ONO-1301MS) suppresses airway inflammation and remodeling in a chronic house dust mite-induced asthma model. Eur J Pharmacol 2013. [DOI: 10.10.1016/j.ejphar.2013.09.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
A single injection of a sustained-release prostacyclin analog (ONO-1301MS) suppresses airway inflammation and remodeling in a chronic house dust mite-induced asthma model. Eur J Pharmacol 2013; 721:80-5. [PMID: 24128591 DOI: 10.1016/j.ejphar.2013.09.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 09/21/2013] [Accepted: 09/26/2013] [Indexed: 11/22/2022]
Abstract
ONO-1301, a novel prostacyclin agonist with thromboxane A2 synthase inhibitory activity, is a useful agent for ameliorating airway allergic inflammation; however, its short-action feature implies a requirement for the frequent administration of this drug. Therefore, we investigated the effects of ONO-1301-loaded poly (d,l-lactic-co-glycolic acid) microspheres (ONO-1301MS; to release ONO-1301 for 3 weeks) on the airway inflammation and remodeling in chronic house dust mite (HDM)-induced model. Balb/c mice were exposed to an HDM extract intranasally for 5 days/week for 5 consecutive weeks. The mice received a single subcutaneous injection of ONO-1301MS or vehicle after 3 weeks of HDM exposure, followed by 2 additional weeks of HDM exposure. Forty-eight hours after the last HDM exposure, airway hyperresponsiveness to methacholine was assessed and bronchoalveolar lavage was performed. Lung specimens were excised and stained to check for goblet cell metaplasia, airway smooth muscle hypertrophy, and submucosal fibrosis. Mice receiving ONO-1301MS showed significantly lower airway hyperresponsiveness, airway eosinophilia, and induced T helper 2 cytokine production compared with mice receiving the vehicle. Histological findings such as goblet cell metaplasia, airway smooth muscle hypertrophy, and submucosal fibrosis were decreased in ONO-1301MS-treated mice compared with vehicle-treated mice. A single administration of ONO-1301MS achieved sustained elevation of its circulating level for 3 weeks. These data suggest that a single administration of ONO-1301MS may suppress airway hyperresponsiveness, airway allergic inflammation, and development of airway remodeling in chronic HDM-induced asthma model. This agent may be effective as an anti-inflammatory and remodeling drug in the practical treatment of asthma.
Collapse
|
28
|
Xiao H, Si LY, Liu W, Li N, Meng G, Yang N, Chen X, Zhou YG, Shen HY. The effects of adenosine A2A receptor knockout on renal interstitial fibrosis in a mouse model of unilateral ureteral obstruction. Acta Histochem 2013; 115:315-9. [PMID: 23026406 DOI: 10.1016/j.acthis.2012.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/30/2012] [Accepted: 09/05/2012] [Indexed: 11/15/2022]
Abstract
Adenosine A2A receptor (A2AR) plays an important regulatory role in the processes of inflammation and fibrosis. However, it is unknown whether A2AR can mediate renal interstitial fibrosis (RIF). To evaluate the effect of genetic A2AR knockout (KO) on the pathological progress of RIF, we applied a unilateral ureteral obstruction (UUO) model of RIF on A2AR KO mice and their wild-type (WT) littermates. Renal pathological assessment was performed at different post-UUO stages using hematoxylin and eosin (H&E) and Masson's trichrome staining as well as quantitative morphological analysis. Our data demonstrated that: (i) the extent of RIF was determined by the development of UUO in a time-dependent manner; (ii) A2AR KO exacerbated the pathological progress of RIF in mice at the early post-UUO stage, i.e. day 3 and day 7; (iii) the profibrotic effect of A2AR KO was prominent until the late post-UUO stage, i.e. day 14, at which RIF reached a similar severity level in A2AR KO and WT mice. Our findings revealed that A2AR KO significantly exacerbated the progression of UUO-induced RIF in mice, prominently at the initial stage.
Collapse
Affiliation(s)
- Hang Xiao
- Molecular Biology Center, State Key Laboratory of Trauma, Burns, and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | | | | | | | | | | | | | | | | |
Collapse
|